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Abstract

Standard belief change assumes an underlying logic containing full classical proposi-
tional logic. However, there are good reasons for considering belief change in less expressive
logics as well. In this paper we build on recent investigations by Delgrande on contraction
for Horn logic. We show that the standard basic form of contraction, partial meet, is too
strong in the Horn case. This result stands in contrast to Delgrande’s conjecture that
orderly mazichoice is the appropriate form of contraction for Horn logic. We then define a
more appropriate notion of basic contraction for the Horn case, influenced by the convexity
property holding for full propositional logic and which we refer to as infra contraction. The
main contribution of this work is a result which shows that the construction method for
Horn contraction for belief sets based on our infra remainder sets corresponds exactly to
Hansson’s classical kernel contraction for belief sets, when restricted to Horn logic. This
result is obtained via a detour through contraction for belief bases. We prove that kernel
contraction for belief bases produces precisely the same results as the belief base version
of infra contraction. The use of belief bases to obtain this result provides evidence for the
conjecture that Horn belief change is best viewed as a ‘hybrid’ version of belief set change
and belief base change. One of the consequences of the link with base contraction is the
provision of a representation result for Horn contraction for belief sets in which a version
of the Core-retainment postulate features.

1. Introduction

In his seminal paper, Delgrande (2008) has shed some light on the theoretical underpinnings
of belief change by weakening a usual assumption in the belief change community, namely
that the underlying logical formalism should be at least as strong as (full) classical propo-
sitional logic (Gérdenfors, 1988). Delgrande investigated contraction functions for belief
sets (sets of sentences that are closed under logical consequence) restricted to Horn formu-
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las (1951). Delgrande’s main contributions were essentially threefold. Firstly, he showed
that the move to Horn logic leads to two different types of contraction functions, referred
to as entailment-based contraction (e-contraction) and inconsistency-based contraction (i-
contraction), which coincide in the full propositional case. Secondly, he showed that Horn
contraction for belief sets does not satisfy the controversial Recovery postulate, but exhibits
some characteristics that are usually associated with the contraction of belief bases (arbi-
trary sets of sentences). And finally, Delgrande made a tentative conjecture that a version
of Horn contraction usually referred to as orderly maxichoice contraction is the appropriate
method for contraction in Horn theories.

While Delgrande’s partial meet constructions are appropriate choices for contraction in
Horn logic, we show that they do not constitute all the appropriate forms of Horn contrac-
tion. Moreover, as referred to above, although Horn contraction is defined for Horn belief
sets, it is related in some ways to contraction for belief bases, an aspect which has not yet
been explored properly in the literature.

In this paper we continue the investigation into contraction for Horn logic, and address
both the issues mentioned above, as well as others. Focusing on Delgrande’s entailment-
based contraction, we start by providing a more fine-grained construction for belief set
contraction which we refer to in this paper as infra contraction. We then bring into the
picture a construction method for contraction first introduced by Hansson (1994), known
as kernel contraction. Although kernel contraction is usually associated with belief base
contraction, it can be applied to belief sets as well. Our main contribution is a result which
shows that infra contraction corresponds exactly to Hansson’s kernel contraction for belief
sets, when restricted to Horn logic. In order to prove this, we first take a close look at
contraction for belief bases, defining a base version of infra contraction and proving that
this construction is equivalent to kernel contraction for Horn belief bases. Since Horn belief
sets are not closed under classical logical consequence, they can be seen as a ‘hybrid’ between
belief sets and belief bases. This justifies the use of belief bases to obtain results for belief
set Horn contraction.

Horn logic has found extensive use in Artificial Intelligence, in particular in logic pro-
gramming, truth maintenance systems, and deductive databases. This explains, in part,
our interest in belief change for Horn logic. (Despite our interest in Horn formulas, it is
worth noting that in this work we do not consider logic programming explicitly and we do
not use negation as failure at all.) Another reason for focusing on this topic is because of its
application to debugging and repairing ontologies in description logics (Baader, Calvanese,
McGuinness, Nardi, & Patel-Schneider, 2007). In particular, Horn logic can be seen as
the backbone of the £L family of description logics (Baader, Brandt, & Lutz, 2005), and
therefore a proper understanding of belief change for Horn logic is important for finding
solutions to similar problems expressible in the ££ family.

The remainder of the present paper is organized as follows: After some logical prelimi-
naries (Section 2), we give the background on belief set contraction (Section 3) and on belief
base contraction (Section 4) that is necessary for the core section of the paper (Section 5).
There we prove that kernel contraction and infra contraction are equivalent on the level
of belief bases. This enables us to prove that kernel contraction and infra contraction are
equivalent on the Horn belief set level as well. From this we are led to provide a character-
ization of infra contraction for Horn belief sets in which a version of the Core-retainment
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postulate (Hansson, 1994) for bases features. This provides even more evidence for the
‘hybrid’ aspect of Horn belief change. All these results are stated for entailment-based
contraction (e-contraction). In Section 6, where we discuss related work, we also mention
similar results for Delgrande’s i-contraction and another relevant type of Horn contraction,
namely Booth et al’s (2009) package contraction. We conclude with a summary of our con-
tributions as well as a discussion on future directions of investigation. Proofs of all new
results can be found in Appendix A.

2. Preliminaries

We work in a finitely generated propositional language over a set of propositional atoms 3,
together with the distinguished atom T (¢rue), and with the standard model-theoretic
semantics. Atoms are denoted by p,q,..., possibly with subscripts. The formulas of our
language are denoted by ¢, 1), ... Those are recursively defined as follows:

o n=p|Tlop|leAe

All the other connectives (V, —, <+, ...) and the special atom L (false) are defined in terms
of = and A in the usual way. With L£p we denote the set of all formulas of the language.

Classical logical consequence and logical equivalence are denoted by = and = respec-
tively. For X C Lp, the set of sentences logically entailed by X is denoted by Cn(X). A
belief set is a logically closed set, i.e., for a belief set K, K = Cn(K). We usually denote
belief sets by K, possibly decorated by primes. (X ) denotes the power set (set of all sub-
sets) of X. When displaying belief sets we sometimes follow the convention of displaying
one representative of each equivalence class modulo logical equivalence, and dropping the
representative for the tautologies. As an example, for Lp generated by the two atoms p
and ¢, the set Cn({p}) can be represented as {p,pV ¢,p V —q}.

A Horn clause is a sentence of the form p; Aps A ... Ap, — q where n > 0, p;,q € [
for 1 <4 < n (recall that the p;s and ¢ may be one of L or T as well). If n = 0 we write
q instead of — ¢q. A Horn formula is a conjunction of Horn clauses. A Horn set is a set of
Horn formulas.

Given a propositional language Lp, the Horn language Ly generated from Lp is simply
the set of Horn formulas occurring in £Lp. The Horn logic obtained from £y has the same
semantics as the propositional logic obtained from Lp, but just restricted to Horn formulas.
Hence, we have that |=, =, and all other related notions are defined relative to the logic we
are working in. We use k5 and Cnpi(.) to denote classical entailment and consequence for
propositional logic. For Horn logic, we define Cnyy (.) as follows: Crnp (X) =qef Crp(X) N
Ly for X C L. And we define |:HLas follows: For X C Ly and ¢ € Ly, X ):HLgo if and only
if X k5 ¢

The consequence operator Cnyy(.) is a Tarskian consequence operator in the sense that
it satisfies the following properties for all Horn sets X, X':

e X C CnyL(X) (Inclusion)
o Cny(X) = Cnp (Cnp (X)) (Idempotency)
o If X C X', then Cnp(X) C Cnp(X7) (Monotonicity)
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A Horn belief set, usually denoted by H (possibly with primes), is a Horn set closed
under the operator Cnni(.), i.e., H = Cny(H). We shall dispense with such subscripts
whenever the context makes it clear which logic we are dealing with.

In the AI tradition, a given set of formulas of the underlying logical language is called
a knowledge base, or simply a set of beliefs. Belief change deals with situations in which an
agent has to modify its beliefs about the world, usually due to new or previously unknown
incoming information, also represented as formulas of the language. Common operations of
interest in belief change are the expansion (Gardenfors, 1988) of an agent’s current beliefs X
by a given formula ¢ (usually denoted as X + ¢), where the basic idea is to add ¢ regardless
of the consequences, and the revision (Gardenfors, 1988) of its current beliefs by ¢ (denoted
as X x ), where the intuition is to incorporate ¢ into the current beliefs in some way while
ensuring consistency of the resulting theory at the same time. Perhaps the most basic
operation in belief change is that of contraction (Alchourrén, Gérdenfors, & Makinson,
1985; Géardenfors, 1988), which is intended to represent situations in which an agent has to
give up @ from its current stock of beliefs (denoted as X —¢). Indeed the revision operation
can be defined in terms of contraction and simple expansion via the Levi identity (Levi,
1977). Therefore, contraction is the focus of the present paper and in what follows we shall
investigate it in detail. Throughout Sections 3 and 4 we assume we work in the language
of full propositional logic Lp.

3. Belief Set Contraction

We commence with a discussion on belief set contraction, where the aim is to describe
contraction on the knowledge level (Gérdenfors, 1988), i.e., independently of how beliefs are
represented syntactically. Thus, contraction is defined only for belief sets.

Definition 1 (Belief Set Contraction) A belief set contraction — for a belief set K is
a function from Lp to P (Lp).

By the principle of categorical matching (Gérdenfors & Rott, 1995) the contraction of a
belief set by a sentence is expected to yield a new belief set.

One of the standard approaches for constructing belief contraction operators is based
on the notion of a remainder set of a set K with respect to a formula ¢: a maximal subset
of K not entailing ¢ (Alchourrén et al., 1985). Here we define this for belief sets, but it has
been known in the literature that its basic principle can be applied to belief bases as well
(we shall recall this in Section 4).

Definition 2 (Remainder Sets) Given a belief set K and a formula ¢ € Lp, X € K 1g
if and only if

e X CK;
o X [~ ; and
e For every X' such that X C X' C K, X' = .

We call the elements of K 1@ the remainder sets of K with respect to .
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It is easy to verify that K Ly = () if and only if = ¢ (Gérdenfors, 1988).

Since there is no unique method for choosing between possibly different remainder sets,
there is a presupposition of the existence of a suitable selection function for doing so:

Definition 3 (Selection Functions) A selection function ~ for a set K is a (partial)
function from P(P(Lp)) to P(P(Lp)) such that

o Y(KLlp)={K} if KLo=0; and
o ) Cy(KLy) C KLlp otherwise.

Selection functions provide a mechanism for identifying the remainder sets judged to be
most appropriate. The resulting contraction is obtained by taking the intersection of the
chosen remainder sets.

Definition 4 (Partial Meet Contraction) For a selection function -y, the belief set con-
traction operator — generated by v and defined as K — ¢ =ger (| 7(K L) is a partial meet
contraction.

Two subclasses of belief set partial meet deserve special mention:

Definition 5 (Maxichoice and Full Meet) Given a selection function v, — is a maxi-
choice contraction if and only if v(K Ly) is always a singleton set. It is a full meet con-
traction if and only if v(K Lyp) = K 1@ whenever K Ly # ().

It is worth mentioning that belief set full meet contraction is unique, while belief set
maxichoice contraction usually is not.

Kernel contraction was introduced by Hansson (1994) as a generalization of safe contrac-
tion (Alchourrén & Makinson, 1985). Instead of looking at mazimal subsets not implying
a given formula, kernel operations are based on minimal subsets that do imply it.

Definition 6 (Kernel) For a belief set K, X € K 1 ¢ if and only if
« X CK;
o X E;and
o For every X' such that X' C X, X' |~ .

K 1l ¢ is called the kernel set of K with respect to @ and the elements of K 1 ¢ are called
the p-kernels of the belief set K.

The result of a kernel contraction is obtained by removing at least one element from
every (non-empty) o-kernel of K, using an incision function.

Definition 7 (Incision Functions) An incision function o for a set K is a function from
the set of kernel sets of K to &(Lp) such that
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o o(K 1) CU(KLLp); and

o If)#£X e K1l o, then X No(K 1) # 0.

Given a belief set K and an incision function ¢ for K, ideally we would want the kernel
contraction —, for K generated by o be defined as:

K = ¢ =qet K\ o(K L) (1)

It turns out that for a belief set K, the contraction operator in (1) does not respect
the principle of categorical matching. That is because, for a belief set as input, the kernel
contraction —, from (1) above does not necessarily produce a belief set as a result: K —; ¢
is not in general closed under logical consequence, as shown by the following example.

Example 1 Let K = Cn({p — q,q — r}) and assume that we want to contract p — r
from K. We have K1 (p —r) = {{p = r},{p = ¢,a = r},{p > ¢,.pNqg — r}}. For
the incision function o defined such that o(K 1L (p — r)) ={p = r,p — ¢pNq— 1}, we
have that applying the operator in (1) gives us K' such that K' |=p A q — r, but obviously
pAgq—r¢ K.

Of course, it is possible to ensure that one obtains a belief set by closing the result
obtained from the operator above under logical consequence.

Definition 8 (Belief Set Kernel Contraction) Given a belief set K and an incision
function o for K, the belief set contraction operator =, for K generated by o and defined
as K =5 ¢ =4¢r On(K —5 ) is a belief set kernel contraction.

We shall see in Section 4 that belief set kernel contraction is closely related to a version of
belief base contraction referred to as saturated base kernel contraction (Hansson, 1999).

Belief set contraction defined in terms of partial meet contraction corresponds exactly to
what is perhaps the best-known approach to belief change: the so-called AGM approach (Al-
chourrén et al., 1985). AGM requires that (basic) belief set contraction be characterized by
the following set of postulates:

(K-1) K—¢p=0On(K — ) (Closure)
(K—-2) K—pCK (Inclusion)
(K—-3) f p¢ K,then K —p =K (Vacuity)
(K —4) If £, then o ¢ K — ¢ (Success)
(K—=5) If p=1,then K —p=K — (Extensionality)
(K —6) If p € K, then Cn((K —p)U{p}) =K (Recovery)
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Full AGM contraction involves two extended postulates in addition to the basic postulates
given above. We shall not elaborate in detail on the intuition of these postulates. For that
we refer the reader to the book by Géardenfors (1988) or the handbook by Hansson (1999).

Alchourrén et al. (1985) have shown that these postulates characterize belief set partial
meet contraction exactly, as shown by the following result:

Theorem 1 (Alchourrén et al., 1985) Every belief set partial meet contraction satis-
fies Postulates (K — 1)<(K — 6). Conversely, every belief set contraction which satisfies
Postulates (K — 1)~(K — 6) is a belief set partial meet contraction.

Hansson (1994) has shown that Postulates (K — 1)—(K — 6) also characterize kernel
contraction for belief sets:

Theorem 2 (Hansson, 1994) FEwvery belief set kernel contraction satisfies the Postulates
(K—1)~(K—6). Conversely, every belief set contraction which satisfies Postulates (K —1)—
(K —6) is a belief set kernel contraction.

We conclude this section with an important new observation whose usefulness will be-
come apparent in Section 5.

Theorem 3 (Convexity) Let K be a belief set, let —,. be a (belief set) mazichoice con-
traction, and let —p, denote (belief set) full meet contraction. For every ¢ € Lp and every
belief set X, such that K —p, ¢ C Xy C K —pc @, there is a (belief set) partial meet
contraction —pm, such that K —p, ¢ = X,.

This result shows that every belief set between the results obtained from full meet
contraction and some maxichoice contraction can also be obtained from some partial meet
contraction. So, it is possible to define a version of belief set contraction based on such sets.

Definition 9 (Infra Remainder Sets) Given a formula ¢ € Lp, and belief sets K and
K', K' € K|y if and only if there is some K" € K1y such that (KLlyp) C K' C K".
We refer to the elements of K | as the infra remainder sets of K with respect to .

It is easy to see that K | ¢ = ) if and only if = ¢. Note that by definition the set of infra
remainder sets of a belief set K are required to be belief sets themselves.

All remainder sets with respect to a formula ¢ are also infra remainder sets with respect
to ¢, and so is the intersection of any set of remainder sets with respect to . Indeed, the
intersection of any set of infra remainder sets with respect to ¢ is also an infra remainder
set with respect to . So the set of infra remainder sets with respect to ¢ contains all belief
sets between some remainder set with respect to ¢ and the intersection of all remainder
sets with respect to ¢. This explains why infra contraction below is not defined as the
intersection of infra remainder sets (cf. Definition 4).

Definition 10 (Infra Contraction) Let K be a belief set. An infra selection function T
for K is a (partial) function from (P (Lp)) to P (Lp) such that T(K L) = K whenever
Kle=10, and (K |yp) € K| otherwise. A belief set contraction operator —. is a belief
set infra contraction if and only if K — ¢ = 7(K ).
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In a sense, then, infra contraction is closer to maxichoice contraction than to partial meet

contraction, since it chooses just a single element from the set of infra remainder sets, much

like maxichoice contraction chooses just a single element from the set of remainder sets.
One immediate consequence of Theorem 3 and Definition 10 is the following:

Corollary 1 Infra contraction and partial meet contraction coincide for belief sets.

4. Belief Base Contraction

Now we turn our attention to belief base contraction, where an agent’s beliefs are represented
as a (usually finite) set of sentences not necessarily closed under logical consequence, also
known as a base. We usually denote bases by B, possibly decorated with primes.

Definition 11 (Belief Base Contraction) A base contraction — for a base B is a func-
tion from Lp to P(Lp).

Intuitively the idea is that, for a fixed belief base B, contraction of a formula ¢ from B
produces a new base B — .

Given the construction methods for belief set contraction already discussed in Section 3,
two obvious ways to define belief base contraction are to consider both partial meet con-
traction and kernel contraction for bases. Below we present both cases.

All definitions required for partial meet in the base case are analogous to those given in
the belief set case in Section 3. For the reader’s convenience, we state them explicitly here:

Definition 12 (Base Remainder Sets) Given a base B and a formula ¢, X € Bly if
and only if

e X C By
o X [~ p; and
o For every X' such that X C X' C B, X' |= ¢.

We call the elements of B_Lp the base remainder sets of B with respect to .
Similarly to the belief set case, it is easy to verify that B_Ly = () if and only if = ¢.

Definition 13 (Selection Functions) A selection function v for a base B is a (partial)

function from P(P(Lp)) to P(P(Lp)) such that
e Y(BLy)={B} if BLo=10; and
e ) C v(BLy) C BLly otherwise.

Definition 14 (Base Partial Meet Contraction) For a selection function vy, the belief
base contraction operator —~ generated by v and defined as B — ¢ =ger (1Y(BLlyp) is a
base partial meet contraction.
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Definition 15 (Base Maxichoice and Full Meet) Given a selection function vy, — is
a base maxichoice contraction if and only if v(BLy) is always a singleton set. It is a base
full meet contraction if and only if v(BLy) = Bly whenever BLy # ().

As in the belief set case, it can be checked that belief base full meet contraction is unique,
while base maxichoice contraction usually is not.

Hansson (1992) showed that belief base partial meet contraction can be characterized
by the following postulates:

B—1) If £, then B— ¢ £~ ¢ (Success)

B-2) B—-¢CB (Inclusion)

B —3) If B' = ¢ if and only if B’ =1 for all B’ C B, then B — ¢ = B — ¢ (Uniformity)

(
(
(
(B —4

)
)
)
) If ¢ € (B\ (B — ¢)), then there is a B’ such that

(B—p)C B CBand B' £ ¢, but BU{yY} E e (Relevance)

Again, we shall not elaborate in detail on the intuition of these postulates. For that we
refer the reader to the handbook by Hansson (1999).

Theorem 4 (Hansson, 1992) FEvery base partial meet contraction operator satisfies Pos-
tulates (B —1)—(B —4). Conwversely, every base contraction which satisfies (B —1)-(B —4)
1$ a base partial meet contraction.

One question that arises is whether the following belief base version of the convexity
principle from Theorem 3 holds:

(Base Convexity) For a belief base B, let —,,. be a base maxichoice contraction, and
let —,, denote base full meet contraction. For every set X and ¢ such that B —,¢ C
X C B —yc @, there is a base partial meet contraction —,, such that B —,,, p = X.

As in the belief set case, this principle simply states that every set between the results
obtained from base full meet contraction and some base maxichoice contraction can be
obtained from some belief base partial meet contraction. The following example shows that
it does not hold.

Example 2 Let B = {p — q,q — r,pAq — r,pAr — q} and consider contraction byp — r.
It is easily verified that base mazichoice gives either B— (p — 1) =B ={p — ¢,pAr — q}
or B—(p —r)=B"={q— r,pAq — r,pAr — q}. Therefore the only other result obtained
from base partial meet contraction is that which is provided by base full meet contraction:
B—(p—r)=DB" ={pAr — q}. But observe that even though it is the case that
B" C X C B" where X ={pANq—r,pAr— q}, X is not equal to any of B', B", or B".

We shall come back to this issue at the end of the section.

Below we give the definitions for kernel contraction in the belief base case. Again, they
are analogous to those given in the belief set case in the previous section, but for the reader’s
convenience we state them explicitly here.
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Definition 16 (Base Kernels) For a belief base B and a formula ¢, X € B 1 ¢ if and
only if

e X C B;

e X |=¢; and

o For every X' such that X' C X, X' }£ ¢.

B 1l ¢ is called the kernel set of B with respect to ¢, and the elements of B 1L ¢ are called
the p-kernels of B.

The result of a base kernel contraction is obtained by removing at least one element
from every (non-empty) ¢-kernel of B, using an incision function.

Definition 17 (Incision Functions for Bases) An incision function o for a base B is a
function from the set of kernel sets of B to Z(Lp) such that

e o(Blp) CU(BLy); and
o If0# X € Bll yp, then X No(B 1L ) # 0.

We refer to an incision function o as minimal if and only if for every v, and every incision
function o', o(B 1L ¢) C ¢/(B 1L ). The (unique) maximum incision function o is defined
as follows: for every ¢, o(B 1L ¢) = J(B 1L ¢).

It is worthy of mention that minimal incision functions always exist.

Definition 18 (Base Kernel Contraction) Given an incision function o for a base B,
the base kernel contraction —, for B generated by o is defined as: B—, ¢ = B\ o(B 1L p).

Base kernel contraction can be characterized by the same postulates as base partial meet
contraction, except that Relevance is replaced by the Core-retainment postulate below:

(B—5) If € (B\ (B —¢)), then
there is some B’ C B such that B’ = ¢ but B'U{y} E ¢ (Core-retainment)

Theorem 5 (Hansson, 1994) FEvery base kernel contraction satisfies Postulates (B —1)—
(B—3) and (B —5). Conversely, every base contraction which satisfies Postulates (B —1)-
(B —3) and (B —5) is a base kernel contraction.

Clearly, Core-retainment is slightly weaker than Relevance. And indeed, it thus follows
that all base partial meet contractions are base kernel contractions, but as the following
example from Hansson (1999) shows, some base kernel contractions are not base partial
meet contractions.

Example 3 Let B = {p,pV q,p <> q}. Then B (pAq) = {{p.p < ¢}, {pV ¢ p < q}}.
So there is an incision function o for B such that c(B 1L (pAq)) = {pVq,p <> q}, and then
B —, (pANq) = {p}. On the other hand, BL(p A q) = {{p,pV ¢}, {p <> ¢}}, from which it
follows that base partial meet contraction B — (p A q) yields either {p,pV q}, or {p <> q},
or {p,pV q} N{p + ¢} =0, none of which are equal to B —, (p A q) = {p}.
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As we briefly pointed out after Definition 8, our definition of kernel contraction for belief
sets is closely related to a version of belief base contraction that Hansson (1999) refers to
as saturated base kernel contraction:

Definition 19 (Saturated Base Kernel Contraction) Given a belief base B and an
incision function o for B, the base contraction =, for B generated by o and defined as
B =, p =4 BN Cn(B —4 ) is a saturated base kernel contraction.

It is easily shown (Hansson, 1994) that when the set B in the definition for saturated base
kernel contraction is a belief set, the two notions coincide.

Observation 1 For a belief set K and an incision function o for K, the saturated base
kernel contraction for o and the belief set kernel contraction for o are identical.

While saturated base kernel contractions are not in general base partial meet contrac-
tions (Hansson, 1999, p. 91), this distinction disappears when considering belief sets only:

Theorem 6 (Hansson, 1994) Let K be a belief set. A belief set contraction — is a satu-
rated base kernel contraction if and only if it is a belief set partial meet contraction.

And as a result of Observation 1 and Theorem 6 we immediately have the following corollary:

Corollary 2 Let K be a belief set. A belief set contraction — is a belief set kernel contrac-
tion if and only if it is a belief set partial meet contraction.

Thanks to Theorem 3 (Convexity) we can extend Corollary 2 to show that kernel con-
traction, partial meet contraction, and infra contraction all coincide for belief sets.

Corollary 3 Let K be a belief set. A belief set contraction — is a belief set kernel contrac-
tion if and only if it is a belief set partial meet contraction if and only if it is a belief set
infra contraction.

So far we have considered remainder sets for bases and kernel sets for bases, but not infra
remainder sets for bases (cf. end of Section 3). We conclude this section with a discussion
on this commencing with the definition of base infra remainder sets.

Definition 20 (Base Infra Remainder Sets) Given a formula ¢, and bases B and B’,
B’ € Bl if and only if there is some B” € By such that (\BLly) C B' C B”. We refer

to the elements of Bl as the base infra remainder sets of B with respect to .

Observe that the definition of base infra remainder sets is the same as for infra remainder
sets, differing only in that it deals with belief bases and not belief sets. Note in particular
that the elements are not required to be belief sets themselves. Base infra remainder sets
can be used to define a form of base contraction in a way that is similar to the definition of
(belief set) infra contraction (cf. Definition 10).
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Definition 21 (Base Infra Contraction) A base infra selection function 7 is a (partial)
function from P(P(Lp)) to P(Lp) such that 7(B | ¢) = B whenever Bl ¢ = 0, and
T(B | ¢) € Bl ¢ otherwise. A belief base contraction operator —; generated by T and
defined as B —r ¢ =qer T(Bl ) is a base infra contraction.

A natural question to ask is how base infra contraction compares with base partial meet
contraction and base kernel contraction. The following result, which plays a central role in
this paper, shows that base infra contraction corresponds exactly to base kernel contraction.

Theorem 7 A base contraction for a belief base B is a belief base kernel contraction for B
if and only if it is a base infra contraction for B.

From Example 3 we know that base kernel contraction is more general than base partial
meet contraction: every base partial meet contraction is also a base kernel contraction, but
the converse does not hold. From Theorem 7 the following result thus follows.

Observation 2 Base infra contraction is more general than base partial meet contraction.

Theorem 7 has a number of other interesting consequences as well. On a philosophical
note, it provides evidence for the contention that the kernel contraction approach is more
appropriate than the partial meet approach. As mentioned earlier, it is well-known that
kernel contraction and partial meet contraction coincide for belief sets, but differ for belief
bases (kernel contraction being more general than partial meet contraction in this case).
The importance of Theorem 7 is that it shows a new and seemingly different approach to
contraction (infra contraction) to be identical to kernel contraction for both belief sets and
belief bases, but different from partial meet contraction for belief bases, thereby tilting the
scales of evidence towards kernel contraction. As we shall see in the next section, Theorem 7
is also instrumental in “lifting” this result to the level of Horn belief sets.

5. Horn Belief Set Contraction

In the previous sections we recalled several results from the belief change literature and
stated new ones, connecting different constructions to sets of rationality postulates. It is
important to note that although most of the examples in the literature assume that the
underlying logic contains classical propositional logic, the results are usually valid for a
broader set of languages. This has been discussed in different contexts by Hansson and
Wassermann (2002), Flouris et al. (2006), Ribeiro and Wassermann (2009a, 2009b, 2010),
Varzinczak (2008, 2010), and Wassermann (2011), among others. For belief bases, it was
shown by Hansson and Wassermann (2002) that in order to keep the representation theorems
for partial meet and kernel contraction, the logic only needs to be compact and monotonic.
This means that the results transfer directly to Horn logics. However, for belief sets the
representation theorems demand more restrictions of the logic. As shown by Flouris et
al. (2006), a contraction operation satisfying the basic AGM postulates exists only if the
logic is decomposable.

Definition 22 (Flouris et al., 2006) A logic is called decomposable if and only if for all
sets of formulas X, X', such that Cn(0) C Cn(X') C Cn(X), there exists a set of formulas
X" such that Cn(X") C On(X) and Cn(X) = Cn(X'U X").
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It was shown by Ribeiro (2010) that Horn logic is not decomposable. Therefore, new
constructions and sets of postulates are needed to deal with contraction of Horn belief sets.

Delgrande (2008) investigated two distinct classes of contraction functions for Horn
belief sets: entailment-based contraction (e-contraction), for removing an unwanted conse-
quence; and inconsistency-based contraction (i-contraction), for removing formulas leading
to inconsistency; while Booth et al. (2009) subsequently extended the work of Delgrande
by providing more fine-grained versions of his constructions. Our focus in this paper is on
e-contraction, although Delgrande, as well as Booth et al., also consider ¢-contraction.

Recall that we use H, sometimes decorated with primes, to denote a Horn belief set.

Definition 23 (e-Contraction) An e-contraction — for a Horn belief set H is a function

from Ly to P (Ly).

Delgrande’s method of construction for e-contraction is in terms of partial meet con-
traction. The definitions of remainder sets (Definition 2), selection functions (Definition 3),
partial meet contraction (Definition 4), as well as maxichoice and full meet contraction (Def-
inition 5) all carry over for e-contraction, with the set K in each case being replaced by a
Horn belief set H, and we refer to these as e-remainder sets (denoted by H L), e-selection
functions, partial meet e-contraction, maxichoice e-contraction and full meet e-contraction
respectively (we leave out the reference to the term “Horn”, since there is no room for
ambiguity here). As in the full propositional case, it is easy to verify that all e-remainder
sets are also Horn belief sets, and that all partial meet e-contractions (and therefore the
maxichoice e-contractions, as well as full meet e-contraction) produce Horn belief sets.

Although Delgrande defines and discusses partial meet e-contraction, he argues that
maxichoice e-contraction is the appropriate approach for e-contraction. To be more precise,
the version of maxichoice e-contraction that Delgrande advocates is actually a restricted ver-
sion of maxichoice e-contraction that we refer to as orderly maxichoice e-contraction. (This
is just the Horn case of the maxichoice contraction operators satisfying all the AGM pos-
tulates, including the supplementary ones). Whereas (ordinary) maxichoice e-contraction
is constructed by setting, for every ¢ € Ly, H — ¢ equal to any element of H 1 ¢, orderly
maxichoice e-contraction is more systematic in nature. Associated with every orderly maxi-
choice e-contraction is a linear order < on UgoE £ (HLp), the union of all e-remainder sets
of H with respect to all sentences ¢ € Ly. Intuitively, the higher up in the linear order,
the more plausible an element of | J .., (HLyp) is intended to be. The orderly maxichoice
e-contraction generated from < is then obtained as follows: for every ¢ € Ly, K — ¢ is
selected to be the most plausible e-remainder set of H with respect to ¢ (the one that is
the highest up in the order <).

Here we argue that although all partial meet e-contractions are appropriate choices for
e-contraction, they do not make up the set of all appropriate e-contractions. In other words,
Delgrande’s approach is not ‘complete’. The argument for appropriate e-contractions other
than partial meet e-contraction is based on the observation that the convexity result for full
propositional logic in Theorem 3 does not hold for Horn logic.

Example 4 Let H = Cny({p — q,q — r}). For the e-contraction of p — r from H, mazi-
choice yields either H., . = CnuqL({p — q}) or H2,. = Cnp({g — r,p AT — q}), whereas full
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meet yields H f,, = Cnu({p A7 — q}). These are the only three partial meet e-contractions.
Now consider the Horn belief set H = Cng.({pANq—r,pAr —q}). It is clear that
Hyp, C H' C H2 . but there is no partial meet e-contraction yielding H'.

mc?

In order to rectify this situation, we propose that e-contraction should be extended to
include cases such as H' above. The argument is as follows: Since full meet e-contraction is
deemed to be appropriate, it stands to reason that any belief set H’ bigger than it should
also be seen as appropriate, provided that H' does not contain any irrelevant additions. But
since H' is contained in some maxichoice e-contraction, H' cannot contain any irrelevant
additions. After all, the maxichoice Horn e-contraction contains only relevant additions,
since it is an appropriate form of contraction. Hence H’ is also an appropriate result of
e-contraction.

In summary, every Horn belief set between full meet and some maxichoice e-contraction
ought to be seen as an appropriate candidate for e-contraction. This is captured by the
definition below.

Definition 24 (Infra e-Remainder Sets) For Horn belief sets H and H', H € H | ¢
if and only if there is some H" € H 1 .o such that (HL.p) C H C H”. We refer to the
elements of H lcp as the infra e-remainder sets of H with respect to .

As with the case for full propositional logic (cf. Definition 9), e-remainder sets are also infra
e-remainder sets, and so is the intersection of any set of e-remainder sets. Similarly, the
intersection of any set of infra e-remainder sets is also an infra e-remainder set, and the
set of infra e-remainder sets contains all Horn belief sets between some e-remainder set and
the intersection of all e-remainder sets. As in the full propositional case, this explains why
e-contraction is not defined as the intersection of infra e-remainder sets (cf. Definition 4).

Definition 25 (Horn e-Contraction) Let H be a Horn belief set and ¢ € Ly be a Horn
formula. An infra e-selection function T is a (partial) function from P (P (Ly)) to P(Ly)
such that

o 7(Hlep) = H whenever H . p = 0; and
o T(Hlcp) € Hleyp otherwise.

An e-contraction —; is an infra e-contraction if and only if H — ¢ = 7(H le ).

The results on how kernel contraction, partial meet contraction and infra contraction
compare for the base case (kernel contraction and infra contraction are identical, while both
are more general than partial meet contraction) invite the question whether similar results
hold for Horn belief sets. Before we provide an answer to this, we need a suitable version
of kernel contraction for Horn belief sets.

Definition 26 (Horn kernel e-contraction) Given o Horn belief set H and an inci-
ston function o for H, the Horn kernel e-contraction for H, abbreviated as the kernel e-
contraction for H, is defined as H =5 ¢ =g4ef Cnu(H —5 @), where —5 is the belief base
kernel contraction for ¢ obtained from o.
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It turns out that infra e-contraction and kernel e-contraction coincide, as the following
result shows.

Theorem 8 An e-contraction for a Horn belief set H is an infra e-contraction for H if
and only if it is a kernel e-contraction for H.

From Theorem 8 and Example 4 it follows that partial meet e-contraction is more
restrictive than kernel e-contraction. When it comes to Horn belief sets, we therefore have
exactly the same pattern as we have for belief bases: kernel contraction and infra contraction
coincide, while both are strictly more permissive than partial meet contraction. Contrast
this with the case for belief sets for full propositional logic where infra contraction, partial
meet contraction and kernel contraction all coincide.

One conclusion to be drawn from this is that the restriction to the Horn case produces
a curious hybrid between belief sets and belief bases for full propositional logic. On the one
hand, Horn contraction deals with sets that are logically closed. But on the other hand, the
results for Horn logic obtained in terms of construction methods are close to those obtained
for belief base contraction.

Either way, the new results on belief base contraction prove to be quite useful in the
investigation of contraction for Horn belief sets. We conclude this section by providing
a representation result for Horn contraction inspired by the new results on belief base
contraction in this paper.

Theorem 9 Ewvery infra e-contraction satisfies (K — 1), (K —2), (K —4), (K —5) and
Core-retainment. Conversely, every e-contraction which satisfies (K —1), (K —2), (K —4),
(K —5), and Core-retainment is an infra e-contraction.

This result was inspired by Theorem 7 which shows that base kernel and base infra
contraction coincide. Given that Core-retainment is used in characterizing base kernel
contraction, Theorem 7 shows that there is a link between Core-retainment and base infra
contraction, and raises the question of whether there is a link between Core-retainment and
infra e-contraction. The answer, as we have seen in Theorem 9, is yes. This result provides
more evidence for the hybrid nature of contraction for Horn belief sets. In this case the
connection with base contraction is strengthened.

6. Related Work

To our knowledge, the first formal proposal of taking non-maximal remainder sets for a
contraction following the AGM principles was made by Restall and Slaney (1995). The
construction appears in a context very different from ours: they use a four-valued logic
and show that by dropping the Recovery postulate, they obtain a representation result
for partial-meet with non-maximal remainders. Note that there is no restriction as to the
remainder sets containing a minimal core, as was made for infra remainders, and as a result
there is no postulate associated with any kind of minimal change.

While there has been some work on revision for Horn formulas (Eiter & Gottlob, 1992;
Liberatore, 2000; Langlois, Sloan, Szorényi, & Turdn, 2008), it is only recently that attention
has been paid to contraction for Horn logic. Apart from the work of Delgrande (2008) which
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has been discussed, there is some recent work on obtaining a semantic characterisation of
Horn contraction using the system of spheres by Fotinopoulos and Papadopoulos (2009),
and via epistemic entrenchment by Zhuang and Pagnucco (2010).

Billington et al. (1999) considered revision and contraction for defeasible logic which is
quite different from Horn logic in many respects, but nevertheless has a rule-like flavour to
it which has some similarity to Horn logic.

The present paper is an extension of the work by Booth et al. (2009) in which they
show that infra e-contraction is captured precisely by the six AGM postulates for belief set
contraction, except that Recovery is replaced by the following (weaker) postulate (H —. 6)
together with the Failure postulate:

(H—.6) Ifp € H\ (H — ¢), then
there exists an X such that (J(H Lep) € X C H and X [~ ¢, but X U{¢} E ¢

(H—c7) If Ep, then H—cp=H (Failure)

Theorem 10 (Booth et al., 2009) FEvery infra e-contraction operator satisfies Postu-
lates (K — 1)~(K —5), (H —¢ 6) and (H —. 7). Conversely, every e-contraction which
satisfies (K — 1)~(K —5), (H —¢ 6) and (H —¢ 7) is an infra e-contraction.

Postulate (H —. 6) bears some resemblance to the Relevance postulate for base contrac-
tion in that it states that all sentences removed from H during a ¢-contraction must have
been removed for a reason: adding them again brings back ¢. Postulate (H —, 7) simply
states that contracting with a tautology leaves the initial belief set unchanged.

It is worth noting that (H —. 6) is a somewhat unusual postulate in that it refers
directly to the construction method it is intended to characterize, i.e., to e-remainder sets.
Here we have provided a more elegant characterization of infra e-contraction by taking a
detour through base contraction. Firstly, we replaced (H —. 6) with the Core-retainment
postulate that is used in the characterization of base kernel contraction. Then it turns out
that the Vacuity postulate (K — 3) and the Failure postulate (H —. 7) both follow from
Core-retainment and the Inclusion postulate (K — 2), from which we then obtained our
characterization of infra e-contraction.

In addition to e-contraction, Delgrande also investigated a version of Horn contraction
he refers to as inconsistency-based contraction (or i-contraction) where the purpose is to
modify an agent’s Horn belief set in such a way as to avoid inconsistency when a sentence ¢
is provided as input. That is, an i-contraction —; should be such that (H —; ¢)U{¢} I;ﬁLJ_.

In addition to both e- and i-contraction, Booth et al. (2009) considered package contrac-
tion (or p-contraction), a version of contraction studied by Fuhrmann and Hansson (1994)
for the classical case (i.e., for logics containing full propositional logic). Given a set of
formulas X, the goal is to make sure that none of the sentences in X is in the result ob-
tained from p-contraction. For full propositional logic this is similar to contracting with
the disjunction of the sentences in X. For Horn logic, which does not have full disjunction,
package contraction is more interesting. Although it seems that the new results presented
in this paper can be applied to both i-contraction and p-contraction, this still has to be
verified in detail.
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Recent work by Delgrande and Wassermann (2010) draws inspiration from the semantic
representation of remainder sets. In the classical AGM approach, a remainder set can be
obtained semantically by adding to the models of a belief set H a counter-model of the
formula ¢ for contraction. With Horn clauses, this construction will not necessarily lead to
sets that correspond to remainder sets. This is because, as is known in Horn logic, given
any two models of my, msy of a Horn belief set H, the model my Mmy is also a model of H,
where m1 M mo denotes that model in which the atoms true in it are precisely the atoms
which are true in both m; and ms. To illustrate this, consider the following example:

Example 5 (Delgrande & Wassermann, 2010) Let B = {p,q,r} and let the Horn be-
lief set H = Cny(p A q). Consider candidates for H— (pAq). There are three e-remainder
sets, given by the Horn closures of p A (r — q), g A (r — p), and (p — q) AN (g — p) A (r —
p) A (r = q). Any infra e-remainder set contains the closure of (r — p) A (r — q).

In Example 5, the unique model of the set {p, —q, r} is a countermodel of p A q. If we add it
to the models of H and close them under M so that the result represents a Horn belief set,
we obtain the set of models of the formula p, which cannot be an e-remainder set, as there
is an e-remainder set (CnyL(p A (r — ¢))) containing it. This means that in an approach
based on e-remainder sets we cannot have contraction operators with the same behaviour
as the classical ones.

Delgrande and Wassermann propose to mimic the semantic construction of classical
remainders: a weak-remainder of H and ¢ is formed by intersecting H with a maximal
consistent Horn theory not containing ¢. Equivalently, the weak-remainders can be seman-
tically characterized by taking the closure under intersection of the models of H together
with a single counter-model of ¢. Representation results for contraction based on weak-
remainders are then provided.

Concerning the connection between partial meet contraction and kernel contraction for
bases, Falappa et al. (2006) have shown how to construct a partial meet contraction from
a kernel contraction, which is always possible, and how to construct a kernel contraction
from a partial meet contraction, when this is possible. These results can be generalized so
that they apply to base infra contraction and base kernel contraction. That is, it should be
possible to construct a base infra contraction from every base kernel contraction, as well as
a base kernel contraction from every base infra contraction.

7. Concluding Remarks

In bringing Hansson’s kernel contraction into the picture, we have made meaningful con-
tributions to the investigation into contraction for Horn logic. The main contributions of
the present paper are as follows: (i) A result which shows that infra contraction and kernel
contraction for the belief base case coincide; and (7) Lifting the previous results to Horn
belief sets to show that infra contraction and kernel contraction for Horn belief sets coincide.

The investigation into base contraction also allowed us to improve on the rather un-
satisfactory representation result proved by Booth et al. for infra contraction, which relies
on a postulate referring directly to the construction method it is intended to characterize.
We obtained a more elegant representation result by replacing the postulate introduced by
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Booth et al. with the well-known Core-retainment postulate, which is usually associated
with base contraction. The presence of Core-retainment here further enforces the hybrid
nature of Horn belief change, lying somewhere between belief set change and base change.

We have seen that kernel e-contraction and infra e-contraction are more general than
partial meet e-contraction. But there is also evidence that even these forms of Horn con-
traction may not be sufficient to obtain all meaningful answers. Consider, for example, our
Horn belief set example Cny ({p — ¢,q — r}) encountered in Example 4. If we view basic
Horn clauses (clauses with exactly one atom in the head and the body) as representative
of arcs in a graph, in the style of the old inheritance networks, there is a case to be made
for regarding the three “arcs” p — ¢q, ¢ — r, and p — r, as the basic information used to
generate the belief set. Then one possible desirable outcome of a contraction by p — r is
CnpL(q — r). However, as we have seen in Example 4, this is not an outcome supported
by infra e-contraction (and therefore not by kernel e-contraction either). Ideally, a truly
comprehensive e-contraction approach for Horn logic would be able to account for such
cases as well.

Here we focus only on basic Horn contraction. For future work we plan to investigate
Horn contraction for full AGM contraction, obtained by adding the extended postulates.
Another interesting question for further investigation is whether Theorem 9 can be gener-
alized to other logics, notably extensions of (full) propositional logic.

Finally, as mentioned earlier, one of the reasons for focusing on this topic is because of
its application to debugging and repairing ontologies in description logics. In particular,
Horn logic can be seen as the backbone of the ££ family of description logics (Baader et al.,
2005), and therefore a proper understanding of belief change for Horn logic is important
for finding solutions to similar problems expressible in the ££ family. We are currently
investigating these possibilities.
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Appendix A. Proofs of Main Theorems

For the proofs of Lemma A.1 and Theorem 3 we need a few model-theoretic notions. We
denote by W the set of valuations of £p and by [p] the set of models of ¢, i.e., the set of
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valuations which satisfy . For a set of sentences X, we denote by [X] the set of models
of X, i.e., the set of valuations which satisfy all sentences in X. For any V' C W, we let
Th(V)={p € Lp |V C [e]}.

The results in Lemma A.1 below are well-known model-theoretic descriptions of full
meet, partial meet, and maxichoice contraction, first presented by Katsuno & Mendel-
zon (1991). The results, as stated below, are not stated directly by Katsuno & Mendelzon,
but follow as easy consequences of their Theorem 3.3.

Lemma A.1 (Katsuno & Mendelzon, 1991) Let K be a belief set.

1. Let —py, be the (belief set) full meet contraction. For every ¢ € Lp, K —pm ¢ =
Th([K] U [=¢]);

2. Let —p. be a (belief set) mazichoice contraction. For every ¢ € Lp, there is aw € [
such that K —pe ¢ = Th([K] U {w});

3. Given ¢ € Lp, let V, C [~] be such that Vi, # 0. There is a (belief set) partial meet
contraction —pm such that for every ¢ € Lp, K —pm ¢ = Th([K]UV,,).

Theorem 3 (Convexity) Let K be a belief set, let —,c be a (belief set) mazichoice con-
traction, and let — g, denote (belief set) full meet contraction. For every ¢ € Lp, let X,
be a belief set such that (K —pm ) € Xy € K —pe . There is a (belief set) partial meet
contraction —py, such that for every ¢ € Lp, K —pp, ¢ = X,

Proof:

The cases where = ¢ and ¢ ¢ K hold easily, so we suppose that [~ ¢ and ¢ € K. Now, pick
any belief set X, such that K —,p € X, C K —,.¢. By Points (1) and (2) of Lemma A.1
this means that there is a w € [~y] such that [K]U {w} C [X,] € K U [~y|. From this
it follows that [X,] = [K] U [V,] for some V,, C [~¢]. And from Point (3) of Lemma A.1
it then follows that there is a partial meet contraction —,, such that, for every ¢ € Lp,
K —pmp = Xp = Th([K]U V). [QED]

Lemma A.2 (Falappa et al., 2006) FEvery base kernel contraction defined by a minimal
incision function is a base maxichoice contraction.

Lemma A.3 The base kernel contraction defined by the maximal incision function is the
full meet base contraction.

Proof:

We need to prove that B\ J(B1L¢) = (BLy). If E ¢ or B [~ ¢ the result follows
immediately. So we suppose that [~ ¢ and B = ¢. For the left-to-right direction, suppose
that ¢ € B and ¢ ¢ |J(B 1L ¢), and assume there is some base remainder set of B with
respect to ¢, say X, such that ¢» ¢ X. Then it must be the case that 1 is contained
in some @-kernel of B. But then ¢ € |J(BL1Lp): a contradiction. For the right-to-left
direction, suppose v is in every base remainder set of B with respect to ¢, and assume
that ¢ ¢ B\ (B 1L ¢). Since ¢ € B it follows that ¢ € |J(B 1L ¢). That is, ¢ is in some
@-kernel of B. So there is at least one minimal incision function o such that ¢ € o(B 1L ¢).
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Now, from Lemma A.2 it follows that there is a base remainder set of B with respect to ¢,
say Y, such that Y = B\ (B 1L ). So ¢ ¢ Y, which contradicts the supposition that 1)
is in every base remainder set of B with respect to ¢. [QED]

Theorem 7 A base contraction for a belief base B is a belief base kernel contraction for B
if and only if it is a base infra contraction for B.

Proof:

For the “only if” part, let — be a base kernel contraction for B, let o be the incision function
for B which generates —, and pick a ¢ € Lp. If = ¢ or B [~ ¢ the result holds easily, so we
suppose that }= ¢ and B = ¢. It remains to be shown that ((BLy) € B—¢ C B’ for some
B’ € Blp. Observe firstly that B\|J(B 1L ¢) C B\o(B 1L ¢) = B—¢. From Lemma A.3 it
then follows directly that ((BLy) C B—¢. Next, pick any minimal incision function o’ such
that o/(B 1L ¢) C o(B 1L ¢) (o' clearly exists). So B—¢ =B\ o(B1l y) C B\ ¢ (Bl )
and from Lemma A.2 it follows that B\ ¢/(B 1L ¢) = B’ for some B’ € BLyp.

For the “if” part, let — be a base infra contraction for B. We construct an incision
function o such that the base kernel contraction it generates is exactly —. Pick a ¢ € Lp
and suppose that = ¢ and B = ¢ (for the remaining cases the result easily holds). Let
o(B 1L ¢) = B\(B—¢). Since B—¢ C B we have that B—¢ = B\o(B 1L ¢). First we need
to show that o(B 1L ¢) C |J(B 1L ¢). To do so, observe that since B — ¢ € B, it follows
that ((BLy) € B — ¢. Therefore B\ (B — ¢) C B\ [(BLly). By Lemma A.3 and the
construction of o we then have that o(B 1) = B\ (B —¢) C B\ [(BLly) =UJ(B 1 ¢).

It remains to be shown that for every ¥ such that 0 CY € Bl ¢, Y No(B 1L ¢) # 0.
Pick a Y such that ) C Y € Bl ¢, and assume that Y No(B 1L ¢) = (). Then it must be
the case that Y C B — ¢. But Y = ¢ and therefore B — ¢ |= ¢, a contradiction. [QED]

Theorem 8 An e-contraction for a Horn belief set H is an infra e-contraction for H if and
only if it is a kernel e-contraction for H.

Proof:

Consider a belief base B and a formula ¢. From Theorem 7 it follows that the set of base
infra remainder sets of B with respect to ¢ (i.e., the set Bl ¢) is equal to the set of results
obtained from the base kernel contraction of B by ¢, call it K C’f . Now let B be such that
it is a set of Horn formulas closed under Horn consequence (a Horn belief set) and ¢ a Horn
formula. The elements of K Cg are not necessarily closed under Horn consequence, but if
we do close them, we obtain exactly the set of results obtained from kernel e-contraction
when contracting B by ¢ (by the definition of kernel e-contraction). Let us refer to this
latter set as Cnp (KCF), ie., Cnp (KCF) = {Cnu(X) | X € KCF}. Also, the elements
of B | ¢ are not closed under Horn consequence, but if we do close them the resulting
set (refer to this set as Cnu(Bly)) contains exactly the infra e-remainder sets of B with
respect to ¢, i.e., Cny(Bly) = Ble. To see why, observe that since B is closed under
Horn consequence, the (base) remainder sets of B with respect to ¢ (i.e., the elements of
B1p) are also closed under Horn consequence. So the elements of B | ¢ are all the sets (not
necessarily closed under Horn consequence) between () (BLy) and some element of Bl .
Therefore the elements of Cny (Bl ) are all those elements of B¢ that are closed under
Horn consequence, i.e., Cny(Bly) = Bl p as was claimed. But since Bl = KCg, it is
also the case that CnyL(Bly) = C’nHL(KC’E), and therefore CnHL(KC’f) = Blep. [QED]
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Theorem 9 Fvery infra e-contraction satisfies (K — 1), (K —2), (K —4), (K —5) and
Core-retainment. Conversely, every e-contraction which satisfies (K —1), (K —2), (K —4),
(K —5), and Core-retainment is an infra e-contraction.

Proof:

Let H be a Horn belief set, and let — be an infra e-contraction. If H — ¢ = H, then
(K —-1), (K—-2), (K—4), (K —5) and Core-retainment are trivially satisfied. Suppose
H— ¢ # H. Then H— ¢ = X for some X € H |, ¢. Then, by definition, H — ¢ is a
Horn belief set, and hence H — ¢ = Cnp(H — ¢) (Postulate (K — 1)). Moreover, there is
an X' € H1l.p such that X C X’. Since X’ C H, it also follows that X C H, and then
H — ¢ C H (Postulate (K — 2)). (K —4) is also satisfied from the definition of H |.¢ and
the monotonicity of classical logic. (K — 5) follows straightforwardly from the fact that we
are working with Horn belief sets. Finally, for Core-retainment, suppose that ¢» € H and
Y ¢ H — . Now assume that H' U {¢} [f5 o for every H' C H such that H' [ ¢. In
particular then, for every H' € H1l.p, H U{¢} g, - From that it follows that v € H
for every H' € Hl.p, and therefore that ¢ € ((HLep). And from this we have that
1 € H — ¢, which contradicts our supposition.

Conversely, let H be a Horn belief set and let — be an e-contraction which satisfies
Postulate (K —1), (K —2), (K —4), (K —5), and Core-retainment. We need to show that
for every p € Ly, H—¢ € H |.p. Observe firstly that — satisfies (K —3). To see why, note
that from Core-retainment it follows that if ¢ ¢ H then H \ (H — ¢) = (), and therefore
that H C H — . From (K — 2) it then follows that H = H — ¢.

If ¢ ¢ H it follows directly from (K —3) that H —¢ € H ]ep. If |5, ¢ it follows directly
from (K —2) and Core-retainment that H — ¢ = H, and therefore that H — ¢ € H |, .

So, we suppose that ¢ € H and I;zﬁl_go. To show that H — ¢ € H |, ¢, we need to show
that H — ¢ is a Horn belief set (from Postulate (K —1)) such that (((H Lep) € H—¢ C H’
for some H' € H1l.p. Observe firstly that, since H — ¢ C H (by Postulate (K — 2)) and
¢ ¢ H— ¢ (by (K —4)), there has to be an H' € H 1. such that H — ¢ C H'. Finally,
assume there is a 1 € ((HLcp) such that ¢ ¢ H — ¢. By Core-retainment it then follows
that there is an H” C H such that H” & ¢ but H” U {¢} k5 ». From this it follows
that there is a Horn belief set X such that H” C X and X & ¢ but X U {¢} 5 ». So
X € Hl.p, but ¥ ¢ X, which contradicts our assumption that ¢ € ((H Lcp). It therefore
follows that ((HLy) C H — ¢. [QED]
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