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Abstract

We extend the potential-based shaping method from Markov decision processes to multi-player
general-sum stochastic games. We prove that the Nash equilibria in a stochastic game remains
unchanged after potential-based shaping is applied to the environment. The property of policy
invariance provides a possible way of speeding convergencewhen learning to play a stochastic
game.

1. Introduction

In reinforcement learning, one may suffer from the temporalcredit assignment problem (Sutton &
Barto, 1998) where a reward is received after a sequence of actions. The delayed reward will lead
to difficulty in distributing credit or punishment to each action from a long sequence of actions and
this will cause the algorithm to learn slowly. An example of this problem can be found in some
episodic tasks such as a soccer game where the player is only given credit or punishment after a
goal is scored. If the number of states in the soccer game is large, it will take a long time for a
player to learn its equilibrium policy.

Reward shaping is a technique to improve the learning performance of a reinforcement learner
by introducing shaping rewards to the environment (Gullapalli & Barto, 1992; Mataric, 1994).
When the state space is large, the delayed reward will slow down the learning dramatically. To
speed up the learning, the learner may apply shaping rewardsto the environment as a supplement
to the delayed reward. In this way, a reinforcement learningalgorithm can improve its learning
performance by combining a "good" shaping reward function with the original delayed reward.

The applications of reward shaping can be found in the literature (Gullapalli & Barto, 1992;
Dorigo & Colombetti, 1994; Mataric, 1994; Randløv & Alstrøm, 1998). Gullapalli and Barto (1992)
demonstrated the application of shaping to a key-press taskwhere a robot was trained to press keys
on a keyboard. Dorigo and Colombetti (1994) applied shapingpolicies for a robot to perform a
predefined animate-like behavior. Mataric (1994) presented an intermediate reinforcement function
for a group of mobile robots to learn a foraging task. Randløvand Alstrøm (1998) combined rein-
forcement learning with shaping to make an agent learn to drive a bicycle to a goal. The theoretical

c©2011 AI Access Foundation. All rights reserved.



LU, SCHWARTZ, & G IVIGI

analysis of reward shaping can be found in the literature (Ng, Harada, & Russell, 1999; Wiewiora,
2003; Asmuth, Littman, & Zinkov, 2008). Ng et al. (1999) presented a potential-based shaping
reward that can guarantee the policy invariance for a singleagent in a Markov decision process
(MDP). Ng et al. proved that the optimal policy keeps unchanged after adding the potential-based
shaping reward to an MDP environment. Following Ng et al., Wiewiora (2003) showed that the ef-
fects of potential-based shaping can be achieved by a particular initialization of Q-values for agents
using Q-learning. Asmuth et al. (2008) applied the potential-based shaping reward to a model-based
reinforcement learning approach.

The above articles focus on applications of reward shaping to a single agent in an MDP. For the
applications of reward shaping in general-sum games, Babes, Munoz de Cote, and Littman (2008)
introduced a social shaping reward for players to learn their equilibrium policies in the iterated
prisoner’s dilemma game. But there is no theoretical proof of policy invariance under the reward
transformation. In our research, we prove that the Nash equilibria under the potential-based shaping
reward transformation (Ng et al., 1999) will also be the Nashequilibria for the original game under
the framework of general-sum stochastic games. Note that the similar work of Devlin and Kudenko
(2011) was published while this article was under review. But Devlin and Kudenko only proved
sufficiency based on a proof technique introduced by Asmuth et al. (2008), while we prove both
sufficiency and necessity using a different proof techniquein this article.

2. Framework of Stochastic Games

Stochastic games were first introduced by Shapley (1953). Ina stochastic game, players choose the
joint action and move from one state to another state based onthe joint action they choose. In this
section, under the framework of stochastic games, we introduce Markov decision processes, matrix
games and stochastic games respectively.

2.1 Markov Decision Processes

A Markov decision process is a tuple(S,A,T,γ ,R) whereS is the state space,A is the action space,
T : S×A×S→ [0,1] is the transition function,γ ∈ [0,1] is the discount factor andR: S×A×S→R

is the reward function. The transition function denotes a probability distribution over next states
given the current state and action. The reward function denotes the received reward at the next state
given the current action and the current state. A Markov decision process has the following Markov
property: the player’s next state and reward only depend on the player’s current state and action.
A player’s policyπ : S→ A is defined as a probability distribution over the player’s actions given
a state. An optimal policyπ∗ will maximize the player’s discounted future reward. For any MDP,
there exists a deterministic optimal policy for the player (Bertsekas, 1987).

Starting in the current statesand following the optimal policy thereafter, we can get the optimal
state-value function as the expected sum of discounted rewards (Sutton & Barto, 1998)

Vπ∗
(s) = E

{

T

∑
j=0

γ j rk+ j+1|sk = s,π∗

}

(1)

wherek is the current time step,rk+ j+1 is the received immediate reward at the time stepk+ j +1,
γ ∈ [0,1] is a discount factor, andT is a final time step. In (1), we haveT → ∞ if the task is an
infinite-horizon task such that the task will run over infinite period. If the task is episodic,T is
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defined as the terminal time when each episode is terminated at the time stepT. Then we call the
state where each episode ends as the terminal statesT . In a terminal state, the state-value function is
always zero such thatV(sT) = 0 for all sT ∈ S. Given the current statesand actiona, and following
the optimal policy thereafter, we can define an optimal action-value function (Sutton & Barto, 1998)

Qπ∗
(s,a) = ∑

s′∈S

T(s,a,s′)
[

R(s,a,s′)+ γVπ∗
(s′)

]

(2)

whereT(s,a,s′) = Pr{sk+1 = s′|sk = s,ak = a} is the probability of the next state beingsk+1 = s′

given the current statesk = sand actionak = a at time stepk, andR(s,a,s′) =E{rk+1|sk = s,ak = a,
sk+1 = s′} is the expected immediate reward received at states′ given the current states and action
a. In a terminal state, the action-value function is always zero such thatQ(sT ,a) = 0 for all sT ∈ S.

2.2 Matrix Games

A matrix game is a tuple(n,A1, . . . ,An,R1, . . . ,Rn) wheren is the number of players,Ai(i = 1, . . . ,n)
is the action set for the playeri andRi : A1×·· ·×An → R is the payoff function for the playeri.
A matrix game is a game involving multiple players and a single state. Each playeri(i = 1, . . . ,n)
selects an action from its action setAi and receives a payoff. The playeri’s payoff functionRi is
determined by all players’ joint action from joint action spaceA1×·· ·×An. For a two-player matrix
game, we can set up a matrix with each element containing a payoff for each joint action pair. Then
the payoff functionRi for player i(i = 1,2) becomes a matrix. If the two players in the game are
fully competitive, we will have a two-player zero-sum matrix game withR1 =−R2.

In a matrix game, each player tries to maximize its own payoffbased on the player’s strategy. A
player’s strategy in a matrix game is a probability distribution over the player’s action set. To evalu-
ate a player’s strategy, we introduce the following conceptof Nash equilibrium. A Nash equilibrium
in a matrix game is a collection of all players’ policies(π∗

1 , · · · ,π∗
n) such that

Vi(π∗
1 , · · · ,π∗

i , · · · ,π∗
n) ≥ Vi(π∗

1 , · · · ,πi , · · · ,π∗
n), ∀πi ∈ Πi , i = 1, · · · ,n (3)

whereVi(·) is the expected payoff for playeri given all players’ current strategies andπi is any
strategy of playeri from the strategy spaceΠi. In other words, a Nash equilibrium is a collection
of strategies for all players such that no player can do better by changing its own strategy given that
other players continue playing their Nash equilibrium policies (Başar & Olsder, 1999). We define
Qi(a1, . . . ,an) as the received payoff of the playeri given players’ joint actiona1, . . . ,an, andπi(ai)
(i = 1, . . . ,n) as the probability of playeri choosing actiona1. Then the Nash equilibrium defined
in (3) becomes

∑
a1,...,an∈A1×···×An

Qi(a1, . . . ,an)π∗
1(a1) · · ·π∗

i (ai) · · ·π∗
n(an)≥

∑
a1,...,an∈A1×···×An

Qi(a1, . . . ,an)π∗
1(a1) · · ·πi(ai) · · ·π∗

n(an), ∀πi ∈ Πi, i = 1, · · · ,n (4)

whereπ∗
i (ai) is the probability of playeri choosing actionai under the playeri’s Nash equilibrium

strategyπ∗
i .

A two-player matrix game is called a zero-sum game if the two players are fully competitive.
In this way, we haveR1 = −R2. A zero-sum game has a unique Nash equilibrium in the sense
of the expected payoff. It means that, although each player may have multiple Nash equilibrium
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strategies in a zero-sum game, the value of the expected payoff Vi under these Nash equilibrium
strategies will be the same. If the players in the game are notfully competitive or the summation
of the players’ payoffs is not zero, the game is called a general-sum game. In a general-sum game,
the Nash equilibrium is no longer unique and the game might have multiple Nash equilibria. Unlike
the deterministic optimal policy for a single player in an MDP, the equilibrium strategies in a multi-
player matrix game may be stochastic.

2.3 Stochastic Games

A Markov decision process contains a single player and multiple states while a matrix game contains
multiple players and a single state. For a game with more thanone player and multiple states,
we define a stochastic game (or Markov game) as the combination of Markov decision processes
and matrix games. A stochastic game is a tuple(n,S,A1, . . . ,An,T,γ ,R1, . . . ,Rn) wheren is the
number of the players,T : S×A1×·· ·×An×S→ [0,1] is the transition function,Ai(i = 1, . . . ,n)
is the action set for the playeri, γ ∈ [0,1] is the discount factor andRi : S×A1×·· ·×An×S→ R

is the reward function for playeri. The transition function in a stochastic game is a probability
distribution over next states given the current state and joint action of the players. The reward
function Ri(s,a1, . . . ,an,s′) denotes the reward received by playeri in states′ after taking joint
action(a1, . . . ,an) in states. Similar to Markov decision processes, stochastic games also have the
Markov property. That is, the player’s next state and rewardonly depend on the current state and all
the players’ current actions.

To solve a stochastic game, we need to find a policyπi : S→ Ai that can maximize playeri’s
discounted future reward with a discount factorγ . Similar to matrix games, the player’s policy in
a stochastic game is probabilistic. An example is the soccergame introduced by Littman (Littman,
1994) where an agent on the offensive side must use a probabilistic policy to pass an unknown
defender. In the literature, a solution to a stochastic gamecan be described as Nash equilibrium
strategies in a set of associated state-specific matrix games (Bowling, 2003; Littman, 1994). In
these state-specific matrix games, we define the action-value functionQ∗

i (s,a1, . . . ,an) as the ex-
pected reward for playeri when all the players take joint actiona1, . . . ,an in states and follow the
Nash equilibrium policies thereafter. If the value ofQ∗

i (s,a1, . . . ,an) is known for all the states,
we can find playeri’s Nash equilibrium policy by solving the associated state-specific matrix game
(Bowling, 2003). Therefore, for each states, we have a matrix game and we can find the Nash
equilibrium strategies in this matrix game. Then the Nash equilibrium policies for the game are the
collection of Nash equilibrium strategies in each state-specific matrix game for all the states.

2.4 Multi-Player General-Sum Stochastic Games

For a multi-player general-sum stochastic game, we want to find the Nash equilibria in the game if
we know the reward function and transition function in the game. A Nash equilibrium in a stochastic
game can be described as a tuple ofn policies(π∗

1 , . . . ,π∗
n) such that for alls∈ Sandi = 1, · · · ,n,

Vi(s,π∗
1 , . . . ,π∗

i , . . . ,π∗
n)≥Vi(s,π∗

1 , . . . ,πi , . . . ,π∗
n) for all πi ∈ Πi (5)

whereΠi is the set of policies available to playeri andVi(s,π∗
1 , . . . ,π∗

n) is the expected sum of
discounted rewards for playeri given the current state and all the players’ equilibrium policies. To
simplify notation, we useV∗

i (s) to representVi(s,π∗
1 , · · · ,π∗

n) as the state-value function under Nash
equilibrium policies. We can also define the action-value functionQ∗(s,a1, · · · ,an) as the expected
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sum of discounted rewards for playeri given the current state and the current joint action of all the
players, and following the Nash equilibrium policies thereafter. Then we can get

V∗
i (s) = ∑

a1,··· ,an∈A1×···×An

Q∗
i (s,a1, · · · ,an)π∗

1(s,a1) · · ·π∗
n(s,an), (6)

Q∗
i (s,a1, . . . ,an) = ∑

s′∈S

T(s,a1, . . . ,an,s
′)
[

Ri(s,a1, . . . ,an,s
′)+ γV∗

i (s
′)
]

, (7)

whereπ∗
i (s,ai) ∈ PD(Ai) is a probability distribution over actionai under playeri’s Nash equilib-

rium policy, T(s,a1, . . . ,an,s′) = Pr{sk+1 = s′|sk = s,a1, . . . ,an} is the probability of the next state
beings′ given the current statesand joint action(a1, . . . ,an), andRi(s,a1, . . . ,an,s′) is the expected
immediate reward received in states′ given the current states and joint action(a1, . . . ,an). Based
on (6) and (7), the Nash equilibrium in (5) can be rewritten as

∑
a1,...,an∈A1×···×An

Q∗
i (s,a1, . . . ,an)π∗

1(s,a1) · · ·π∗
i (s,ai) · · ·π∗

n(s,an)≥

∑
a1,...,an∈A1×···×An

Q∗
i (s,a1, . . . ,an)π∗

1(s,a1) · · ·πi(s,ai) · · ·π∗
n(s,an). (8)

3. Potential-Based Shaping in General-Sum Stochastic Games

Ng et al. (1999) presented a reward shaping method to deal with the credit assignment problem
by adding a potential-based shaping reward to the environment. The combination of the shaping
reward with the original reward may improve the learning performance of a reinforcement learning
algorithm and speed up the convergence to the optimal policy. The theoretical studies on potential-
based shaping methods that appear in the published literature consider the case of a single agent in
an MDP (Ng et al., 1999; Wiewiora, 2003; Asmuth et al., 2008).In our research, we extend the
potential-based shaping method from Markov decision processes to multi-player stochastic games.
We prove that the Nash equilibria under the potential-basedshaping reward transformation will be
the Nash equilibria for the original game under the framework of general-sum stochastic games.

We define a potential-based shaping rewardFi(s,s′) for playeri as

Fi(s,s
′) = γΦi(s

′)−Φi(s), (9)

whereΦ : S→ R is a real-valued shaping function andΦ(sT) = 0 for any terminal statesT . We
define a multi-player stochastic game as a tupleM = (S,A1, . . . ,An,T,γ ,R1, . . . ,Rn) whereS is a set
of states,A1, . . . ,An are players’ action sets,T is the transition function,γ is the discount factor, and
Ri(s,a1, . . . ,an,s′)(i = 1, . . . ,n) is the reward function for playeri. After adding the shaping reward
function Fi(s,s′) to the reward functionRi(s,a1, . . . ,an,s′), we define a transformed multi-player
stochastic game as a tupleM′ = (S,A1, . . . ,An,T,γ ,R′

1, . . . ,R
′
n) whereR′

i(i = 1, . . . ,n) is the new
reward function given byR′

i(s,a1, . . . ,an,s′) = Fi(s,s′)+Ri(s,a1, . . . ,an,s′). Inspired by Ng et al.
(1999)’s proof of policy invariance in an MDP, we prove the policy invariance in a multi-player
general-sum stochastic game as follows.

Theorem 1. Given an n-player discounted stochastic game M= (S,A1, . . . ,An,T,γ ,R1, . . . ,Rn), we
define a transformed n-player discounted stochastic game M′ = (S,A1, . . . ,An,T,γ ,R1+F1, . . . ,Rn+
Fn) where Fi ∈ S×S is a shaping reward function for player i. We call Fi a potential-based shaping
function if Fi has the form of (9). Then, the potential-based shaping function Fi is a necessary and
sufficient condition to guarantee the Nash equilibrium policy invariance such that
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• (Sufficiency) If Fi (i = 1, . . . ,n) is a potential-based shaping function, then every Nash equi-
librium policy in M′ will also be a Nash equilibrium policy in M (and vice versa).

• (Necessity) If Fi (i = 1, . . . ,n) is not a potential-based shaping function, then there may exist
a transition function T and reward function R such that the Nash equilibrium policy in M′

will not be the Nash equilibrium policy in M.

Proof. (Proof of Sufficiency)
Based on (8), a Nash equilibrium in the stochastic gameM can be represented as a set of policies
such that for alli = 1, . . . ,n,s∈ SandπMi ∈ Π

∑
a1,...,an∈A1×···×An

Q∗
Mi
(s,a1, . . . ,an)π∗

M1
(s,a1) · · ·π∗

Mi
(s,ai) · · ·π∗

Mn
(s,an)≥

∑
a1,...,an∈A1×···×An

Q∗
Mi
(s,a1, . . . ,an)π∗

M1
(s,a1) · · ·πMi (s,ai) · · ·π∗

Mn
(s,an). (10)

We subtractΦi(s) on both sides of (10) and get

∑
a1,...,an∈A1×···×An

Q∗
Mi
(s,a1, . . . ,an)π∗

M1
(s,a1) · · ·π∗

Mi
(s,ai) · · ·π∗

Mn
(s,an)−Φi(s)≥

∑
a1,...,an∈A1×···×An

Q∗
Mi
(s,a1, . . . ,an)π∗

M1
(s,a1) · · ·πMi (s,ai) · · ·π∗

Mn
(s,an)−Φi(s). (11)

Since∑a1,...,an∈A1×···×An
π∗

M1
(s,a1) · · ·π∗

Mi
(s,ai) · · ·π∗

Mn
(s,an) = 1, we can get

∑
a1,...,an∈A1×···×An

[Q∗
Mi
(s,a1, . . . ,an)−Φi(s)]π∗

M1
(s,a1) · · ·π∗

Mi
(s,ai) · · ·π∗

Mn
(s,an)≥

∑
a1,...,an∈A1×···×An

[Q∗
Mi
(s,a1, . . . ,an)−Φi(s)]π∗

M1
(s,a1) · · ·πMi (s,ai) · · ·π∗

Mn
(s,an). (12)

We define
Q̂M′

i
(s,a1, . . . ,an) = Q∗

Mi
(s,a1, . . . ,an)−Φi(s). (13)

Then we can get

∑
a1,...,an∈A1×···×An

Q̂M′
i
(s,a1, . . . ,an)π∗

M1
(s,a1) · · ·π∗

Mi
(s,ai) · · ·π∗

Mn
(s,an)≥

∑
a1,...,an∈A1×···×An

Q̂M′
i
(s,a1, . . . ,an)π∗

M1
(s,a1) · · ·πMi (s,ai) · · ·π∗

Mn
(s,an). (14)

We now use some algebraic manipulations to rewrite the action-value function under the Nash equi-
librium in (7) for playeri in the stochastic gameM as

Q∗
Mi
(s,a1, . . . ,an)−Φi(s) = ∑

s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)+ γV∗

Mi
(s′)

+γΦi(s
′)− γΦi(s

′)
]

−Φi(s). (15)

Since∑s′∈ST(s,a1, . . . ,an,s′) = 1, the above equation becomes

Q∗
Mi
(s,a1, . . . ,an)−Φi(s) = ∑

s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)

+γΦi(s
′)−Φi(s)+ γV∗

Mi
(s′)− γΦi(s

′)
]

. (16)
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According to (6), we can rewrite the above equation as

Q∗
Mi
(s,a1, . . . ,an)−Φi(s) = ∑

s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)+ γΦi(s

′)−Φi(s)

+γ ∑
a1,...,an∈A1×···×An

Q∗
Mi
(s′,a′1, . . . ,a

′
n)π∗

M1
(s′,a′1) · · ·π∗

Mi
(s′,a′n)− γΦi(s

′)
]

= ∑
s′∈S

T(s,a1, . . . ,an,s
′)
{

RMi (s,a1, . . . ,an,s
′)+ γΦi(s

′)−Φi(s)

+γ ∑
a1,...,an∈A1×···×An

[

Q∗
Mi
(s′,a′1, . . . ,a

′
n)−Φi(s

′)
]

π∗
M1
(s′,a′1) · · ·π∗

Mi
(s′,a′n)

}

. (17)

Based on the definitions ofFi(s,s′) in (9) andQ̂M′
i
(s,a1, . . . ,an) in (13), the above equation becomes

Q̂M′
i
(s,a1, . . . ,an) = ∑

s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)+Fi(s,s

′)

+γ ∑
a1,...,an∈A1×···×An

Q̂M′
i
(s′,a′1, . . . ,a

′
n) π∗

M1
(s′,a′1) · · ·π∗

Mi
(s′,a′n)

]

. (18)

Since equations (14) and (18) have the same form as equations(6)-(8), we can conclude that
Q̂M′

i
(s,a1, . . . ,an) is the action-value function under the Nash equilibrium forplayeri in the stochas-

tic gameM′. Therefore, we can obtain

Q̂M′
i
(s,a1, . . . ,an) = Q∗

M′
i
(s,a1, . . . ,an) = Q∗

Mi
(s,a1, . . . ,an)−Φi(s). (19)

If the states is the terminal statesT , then we haveQ̂M′
i
(sT ,a1, . . . ,an) = Q∗

Mi
(sT ,a1, . . . ,an)−

Φi(sT) = 0− 0 = 0. Based on (14) and̂QM′
i
(s,a1, . . . ,an) = Q∗

M′
i
(s,a1, . . . ,an), we can find that

the Nash equilibrium inM is also the Nash equilibrium inM′. Then the state-value function under
the Nash equilibrium in the stochastic gameM′ can be given as

V∗
M′

i
(s) =V∗

Mi
(s)−Φi(s). (20)

(Proof of Necessity)
If Fi (i = 1, . . . ,n) is not a potential-based shaping function, we will haveFi(s,s′) 6= γΦi(s′)−Φi(s).
Similar to Ng et al. (1999)’s proof of necessity, we define∆ = Fi(s,s′)− [γΦi(s′)−Φi(s)]. Then we
can build a stochastic gameM by giving the following transition functionT and player 1’s reward
functionRM1(·)

T(s1,a
1
1,a2, . . . ,an,s3) = 1,

T(s1,a
2
1,a2, . . . ,an,s2) = 1,

T(s2,a1, . . . ,an,s3) = 1,

T(s3,a1, . . . ,an,s3) = 1,

RM1(s1,a1, . . . ,an,s3) =
∆
2
, (21)

RM1(s1,a1, . . . ,an,s2) = 0,

RM1(s2,a1, . . . ,an,s3) = 0,

RM1(s3,a1, . . . ,an,s3) = 0,

403



LU, SCHWARTZ, & G IVIGI

S1 S3

2

1
a

S2

1

1
a

Figure 1: possible states of the stochastic model in the proof of necessity

whereai(i = 1, . . . ,n) represents any possible actionai ∈ Ai from playeri, anda1
1 anda2

1 represent
player 1’s action 1 and action 2 respectively. EquationT(s1,a1

1,a2, . . . ,an,s3) = 1 in (21) denotes
that, given the current states1, player 1’s actiona1

1 will lead to the next states3 no matter what
joint action the other players take. Based on the above transition function and reward function, we
can get the game model including states(s1,s2,s3) shown in Figure 1. We now defineΦ1(si) =
−F1(si ,s3)(i = 1,2,3). Based on (6), (7), (19), (20) and (21), we can obtain player 1’s action-value
function at states1 in M andM′

Q∗
M1
(s1,a

1
1, . . . ) =

∆
2
,

Q∗
M1
(s1,a

2
1, . . . ) = 0,

Q∗
M′

1
(s1,a

1
1, . . . ) = F1(s1,s2)+ γF1(s2,s3)−

∆
2
,

Q∗
M′

1
(s1,a

2
1, . . . ) = F1(s1,s2)+ γF1(s2,s3).

Then the Nash equilibrium policy for player 1 at states1 is

π∗
M1
(s1,a1) =







a1
1 if ∆ > 0,

a2
1 otherwise

, π∗
M′

1
(s1,a1) =







a2
1 if ∆ > 0,

a1
1 otherwise

. (22)

Therefore, in the above case, the Nash equilibrium policy for player 1 at states1 in M is not the
Nash equilibrium policy inM′.

The above analysis shows that the potential-based shaping reward with the form ofFi(s,s′) =
γΦi(s′)− Φi(s) guarantees the Nash equilibrium policy invariance. Now thequestion becomes
how to select a shaping functionΦi(s) to improve the learning performance of the learner. Ng
et al. (1999) showed thatΦi(s) = V∗

Mi
(s) is a good candidate for improving the player’s learning
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performance in an MDP. We substituteΦi(s) =V∗
Mi
(s) into (18) and get

Q̂M′
i
(s,a1, . . . ,an) = Q∗

M′
i
(s,a1, . . . ,an)

= ∑
s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)+Fi(s,s

′)

+γ ∑
a1,...,an∈A1×···×An

Q∗
M′

i
(s′,a′1, . . . ,a

′
n) π∗

M1
(s′,a′1) · · ·π∗

Mi
(s′,a′n)

]

= ∑
s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)+Fi(s,s

′)

+ γ(V∗
Mi
(s′)−Φi(s

′))
]

= ∑
s′∈S

T(s,a1, . . . ,an,s
′)
[

RMi (s,a1, . . . ,an,s
′)+Fi(s,s

′)
]

. (23)

Equation (23) shows that the action-value functionQ∗
M′

i
(s,a1, . . . ,an) in statescan be easily obtained

by checking the immediate rewardRMi (s,a1, . . . ,an,s′)+Fi(s,s′) that playeri received in states′.
However, in practical applications, we will not have all theinformation of the environment such as
T(s,a1, . . . ,an,s′) andRi(s,a1, . . . ,an,s′). This means that we cannot find a shaping functionΦi(s)
such thatΦi(s) = V∗

Mi
(s) without knowing the model of the environment. Therefore, the goal for

designing a shaping function is to find aΦi(s) as a “good” approximation toV∗
Mi
(s).

4. Conclusion

A potential-based shaping method can be used to deal with thetemporal credit assignment problem
and speed up the learning process in MDPs. In this article, weextend the potential-based shaping
method to general-sum stochastic games. We prove that the proposed potential-based shaping re-
ward applied to a general-sum stochastic game will not change the original Nash equilibrium of the
game. The analysis result in this article has the potential to improve the learning performance of the
players in a stochastic game.
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