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Abstract

We extend the potential-based shaping method from Markoisita processes to multi-player
general-sum stochastic games. We prove that the Nash laiiln a stochastic game remains
unchanged after potential-based shaping is applied to nlieomment. The property of policy
invariance provides a possible way of speeding convergehen learning to play a stochastic
game.

1. Introduction

In reinforcement learning, one may suffer from the temporadit assignment problem (Sutton &
Barto, 1998) where a reward is received after a sequencetiohac The delayed reward will lead
to difficulty in distributing credit or punishment to eacthtian from a long sequence of actions and
this will cause the algorithm to learn slowly. An example listproblem can be found in some
episodic tasks such as a soccer game where the player is iwaly gedit or punishment after a
goal is scored. If the number of states in the soccer gamegs,l& will take a long time for a
player to learn its equilibrium policy.

Reward shaping is a technique to improve the learning pedoce of a reinforcement learner
by introducing shaping rewards to the environment (GullagaBarto, 1992; Mataric, 1994).
When the state space is large, the delayed reward will slomndbe learning dramatically. To
speed up the learning, the learner may apply shaping rewauitie environment as a supplement
to the delayed reward. In this way, a reinforcement learmilggprithm can improve its learning
performance by combining a "good" shaping reward functidh tine original delayed reward.

The applications of reward shaping can be found in the tiieea(Gullapalli & Barto, 1992;
Dorigo & Colombetti, 1994; Mataric, 1994; Randlgv & Alstrg®98). Gullapalli and Barto (1992)
demonstrated the application of shaping to a key-pressithske a robot was trained to press keys
on a keyboard. Dorigo and Colombetti (1994) applied shapioiicies for a robot to perform a
predefined animate-like behavior. Mataric (1994) pregskateintermediate reinforcement function
for a group of mobile robots to learn a foraging task. Ranalad Alstrgm (1998) combined rein-
forcement learning with shaping to make an agent learn i@ d@ribicycle to a goal. The theoretical
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analysis of reward shaping can be found in the literature fgada, & Russell, 1999; Wiewiora,
2003; Asmuth, Littman, & Zinkov, 2008). Ng et al. (1999) prated a potential-based shaping
reward that can guarantee the policy invariance for a siagknt in a Markov decision process
(MDP). Ng et al. proved that the optimal policy keeps uncleghgfter adding the potential-based
shaping reward to an MDP environment. Following Ng et al.eWiora (2003) showed that the ef-
fects of potential-based shaping can be achieved by a plartiitialization of Q-values for agents
using Q-learning. Asmuth et al. (2008) applied the potéi@sed shaping reward to a model-based
reinforcement learning approach.

The above articles focus on applications of reward shamiregsingle agent in an MDP. For the
applications of reward shaping in general-sum games, Babasoz de Cote, and Littman (2008)
introduced a social shaping reward for players to learrr thguilibrium policies in the iterated
prisoner’s dilemma game. But there is no theoretical prdgfadicy invariance under the reward
transformation. In our research, we prove that the NasHibdaiunder the potential-based shaping
reward transformation (Ng et al., 1999) will also be the Negtilibria for the original game under
the framework of general-sum stochastic games. Note thaithilar work of Devlin and Kudenko
(2011) was published while this article was under reviewt Bavlin and Kudenko only proved
sufficiency based on a proof technique introduced by Asmutd.€2008), while we prove both
sufficiency and necessity using a different proof techniguéis article.

2. Framework of Stochastic Games

Stochastic games were first introduced by Shapley (1953 stnchastic game, players choose the
joint action and move from one state to another state basddegoint action they choose. In this
section, under the framework of stochastic games, we int@dlarkov decision processes, matrix
games and stochastic games respectively.

2.1 Markov Decision Processes

A Markov decision process is a tup|8 A, T, y,R) whereSis the state spacd, is the action space,
T :Sx Ax S—[0,1] is the transition functiony € [0, 1] is the discount factor and: Sx Ax S— R
is the reward function. The transition function denotes @bpbility distribution over next states
given the current state and action. The reward function @snbe received reward at the next state
given the current action and the current state. A Markovsiegciprocess has the following Markov
property: the player’'s next state and reward only depencherptayer’s current state and action.
A player’s policym: S— A'is defined as a probability distribution over the player'tars given
a state. An optimal policyt" will maximize the player’s discounted future reward. Foy &DP,
there exists a deterministic optimal policy for the playReltsekas, 1987).

Starting in the current statsand following the optimal policy thereafter, we can get tpéroal
state-value function as the expected sum of discountedrdew&utton & Barto, 1998)

-
V""<s>=E{ Virky |sk=s,n*} (1)
J;) et j+1

wherek is the current time stepyj.1 is the received immediate reward at the time stepj + 1,
y € [0,1] is a discount factor, andl is a final time step. In (1), we have — o if the task is an
infinite-horizon task such that the task will run over infinpperiod. If the task is episodid, is
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defined as the terminal time when each episode is terminatibe aime stepl. Then we call the
state where each episode ends as the terminalsstabe a terminal state, the state-value function is
always zero such tha&t(sr) = 0 for all st € S. Given the current stateand actiorg, and following
the optimal policy thereafter, we can define an optimal aetialue function (Sutton & Barto, 1998)

Q"(sa)= Y T(sas) [Rsas)+W™(s) )

seS

whereT(s,a,5) = Pr{sc;1 = §|sk = s,a = a} is the probability of the next state beisg, 1 =5
given the current stat® = sand actiore, = a at time stefk, andR(s,a,5) = E{r¢ 1|k =S a =4,
.1 =S} is the expected immediate reward received at Sageven the current stateand action
a. In a terminal state, the action-value function is alway® zeich thaQ(sr,a) =0 foralls € S

2.2 Matrix Games

A matrix game is a tuplén, Ay, ..., An, Ry, ..., Ry) wherenis the number of playersy(i=1,...,n)

is the action set for the playémndR; : A; x --- x A, — R is the payoff function for the player

A matrix game is a game involving multiple players and a €rgjhate. Each playefi = 1,...,n)
selects an action from its action sgtand receives a payoff. The playes payoff functionR; is
determined by all players’ joint action from joint actioresgA; x - - - x A,. For a two-player matrix
game, we can set up a matrix with each element containing@tffay each joint action pair. Then
the payoff functionR; for playeri(i = 1,2) becomes a matrix. If the two players in the game are
fully competitive, we will have a two-player zero-sum matgame withR; = —R».

In a matrix game, each player tries to maximize its own palpaffed on the player’s strategy. A
player’s strategy in a matrix game is a probability disttiba over the player’s action set. To evalu-
ate a player’s strategy, we introduce the following conaéptash equilibrium. A Nash equilibrium
in a matrix game is a collection of all players’ policies;, - - - , 75;) such that

\/I(n::l_k77n|-*77n;:) 2 \/i(r[i(7”'am7”'7n;:)7 VTEEH,,I:L an (3)

whereV(-) is the expected payoff for playérgiven all players’ current strategies amgdis any
strategy of player from the strategy spadé;. In other words, a Nash equilibrium is a collection
of strategies for all players such that no player can do bettehanging its own strategy given that
other players continue playing their Nash equilibrium giels (Basar & Olsder, 1999). We define
Qi(ay,...,an) as the received payoff of the playiegiven players’ joint actioray, ..., a,, andrg (&)
(i=1,...,n) as the probability of playerchoosing actiora;. Then the Nash equilibrium defined
in (3) becomes

; Qi(a,....an)m(ay) - 7' (a) -~ Th(an) =
ag,...,an€AL X+ X Ap

; Qi(as,....an)m(ar) -1 (&) - M(an), VI eMii=1,--,n 4)
a,...,an€AL X - X An

wherert*(a) is the probability of player choosing actior®; under the player's Nash equilibrium

strategyrt'.
A two-player matrix game is called a zero-sum game if the tlayqrs are fully competitive.
In this way, we haveR; = —R,. A zero-sum game has a unique Nash equilibrium in the sense

of the expected payoff. It means that, although each playsr Imave multiple Nash equilibrium
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strategies in a zero-sum game, the value of the expectedfpdyander these Nash equilibrium
strategies will be the same. If the players in the game aréutigtcompetitive or the summation
of the players’ payoffs is not zero, the game is called a gdrsarm game. In a general-sum game,
the Nash equilibrium is no longer unique and the game mig¥e haultiple Nash equilibria. Unlike
the deterministic optimal policy for a single player in an MDhe equilibrium strategies in a multi-
player matrix game may be stochastic.

2.3 Stochastic Games

A Markov decision process contains a single player and plalsitates while a matrix game contains
multiple players and a single state. For a game with more tmnplayer and multiple states,
we define a stochastic game (or Markov game) as the comhmnatiMarkov decision processes
and matrix games. A stochastic game is a tupleS Ay, ..., An, T,Y,Ry,...,R,) wheren is the
number of the playersl : Sx A; x --- x Ay x S— [0,1] is the transition functionA;(i = 1,...,n)

is the action set for the playéry € [0,1] is the discount factor an|; : Sx A; X --- x Ay x S— R

is the reward function for playar The transition function in a stochastic game is a probisbili
distribution over next states given the current state amtt mction of the players. The reward
function Ri(s,a,...,an,5) denotes the reward received by playdan states after taking joint
action(ay,...,a,) in states. Similar to Markov decision processes, stochastic gansestave the
Markov property. That is, the player’s next state and revasulgt depend on the current state and all
the players’ current actions.

To solve a stochastic game, we need to find a paticyS — A; that can maximize playéis
discounted future reward with a discount facjorSimilar to matrix games, the player’s policy in
a stochastic game is probabilistic. An example is the sagaere introduced by Littman (Littman,
1994) where an agent on the offensive side must use a praigbgolicy to pass an unknown
defender. In the literature, a solution to a stochastic geamebe described as Nash equilibrium
strategies in a set of associated state-specific matrix g@B@vling, 2003; Littman, 1994). In
these state-specific matrix games, we define the actior-VahctionQ; (s, ay,...,a,) as the ex-
pected reward for playérwhen all the players take joint actian, ..., a, in states and follow the
Nash equilibrium policies thereafter. If the value @f(s,ay,...,as) is known for all the states,
we can find playei’s Nash equilibrium policy by solving the associated stgtecific matrix game
(Bowling, 2003). Therefore, for each statewe have a matrix game and we can find the Nash
equilibrium strategies in this matrix game. Then the Naslhildgium policies for the game are the
collection of Nash equilibrium strategies in each stateefr matrix game for all the states.

2.4 Multi-Player General-Sum Stochastic Games

For a multi-player general-sum stochastic game, we wanhtbthie Nash equilibria in the game if
we know the reward function and transition function in thenga A Nash equilibrium in a stochastic
game can be described as a tuple gblicies (1, ..., ;) such that for alse Sandi =1,--- ,n,

Vi(smg,..., ..., %) > Mi(s,1q,...,T5,..., ;) forall 5 € IN; (5)

wherel; is the set of policies available to playeandV(s, 1, ..., ;) is the expected sum of
discounted rewards for playegiven the current state and all the players’ equilibriumiqes. To
simplify notation, we us¥,*(s) to represenYi(s, 11, - - - , 1; ) as the state-value function under Nash
equilibrium policies. We can also define the action-valugction Q*(s,ay, - - - ,&,) as the expected
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sum of discounted rewards for playiggiven the current state and the current joint action of al th
players, and following the Nash equilibrium policies tredter. Then we can get

VI*(S) = g Qi*(svalf"7an)nik(sval)"'rﬁ(saan)a (6)
ag, - ,an€AL X X An

Qi(say,...,an) = z T(sa,...,an,S) [R(sa,...,an,s) + W (S)], (7)
seS
wherert(s,a) € PD(A) is a probability distribution over actioa under playei’s Nash equilib-
rium policy, T(s,as,...,a,,5) =Pr{sq1=95|x =s,a1,...,an} is the probability of the next state
beings' given the current stateand joint action(a,...,an), andRi(s,a, ..., an,s) is the expected
immediate reward received in stafegiven the current stateand joint action(ay,...,a,). Based
on (6) and (7), the Nash equilibrium in (5) can be rewritten as

; Qi*(s,al,...,an)rf{(s,al)---m*(s,a;)---rﬁ(s,an)2
ag,...,an€AL X - X Ap

; Qf(s,al,...,an)m*(s,al)---n.f(s,ai)---n;;(s,an). (8)
ag,...,an€AL X - X An

3. Potential-Based Shaping in General-Sum Stochastic Games

Ng et al. (1999) presented a reward shaping method to dehltigt credit assignment problem
by adding a potential-based shaping reward to the envirahniehe combination of the shaping
reward with the original reward may improve the learningf@enance of a reinforcement learning
algorithm and speed up the convergence to the optimal pdiiog theoretical studies on potential-
based shaping methods that appear in the published literatmsider the case of a single agent in
an MDP (Ng et al., 1999; Wiewiora, 2003; Asmuth et al., 2008)our research, we extend the
potential-based shaping method from Markov decision @®eeto multi-player stochastic games.
We prove that the Nash equilibria under the potential-babeghing reward transformation will be
the Nash equilibria for the original game under the framévafrgeneral-sum stochastic games.
We define a potential-based shaping rewr(d, s') for playeri as

FI(S>SI) = Vq)i (d) — P (S)v (9)

where® : S— R is a real-valued shaping function addsr) = O for any terminal stater. We
define a multi-player stochastic game as a tile- (S Ag,..., A, T,y,Ry,...,R,) whereSis a set
of statesAy, ..., A, are players’ action set$, is the transition functiony is the discount factor, and
R(s,a1,...,an,5)(i =1,...,n) is the reward function for player After adding the shaping reward
function Fi(s,s) to the reward functiorRi(s,ay,...,an,s), we define a transformed multi-player
stochastic game as a tup® = (SAq,...,AyT,V,R},...,R;) whereR(i = 1,...,n) is the new
reward function given byR(s,a1,...,an,S) = F(s,8) + Ri(s,a1,...,a,,5). Inspired by Ng et al.
(1999)’s proof of policy invariance in an MDP, we prove thdippinvariance in a multi-player
general-sum stochastic game as follows.

Theorem 1. Given an n-player discounted stochastic game=NS Ay, ..., Ay, T,y,Ry,...,Ry), we
define a transformed n-player discounted stochastic game ($ Ay, ..., Ay, T,y,Ri+F1,... Ry +
Fn) where € Sx S is a shaping reward function for player i. We callefpotential-based shaping
function if i has the form of (9). Then, the potential-based shaping immd is a necessary and
sufficient condition to guarantee the Nash equilibrium g@plnvariance such that
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e (Sufficiency) If F(i = 1,...,n) is a potential-based shaping function, then every Nash-equi
librium policy in M’ will also be a Nash equilibrium policy in M (and vice versa).

e (Necessity) If F(i=1,...,n) is not a potential-based shaping function, then there mast ex
a transition function T and reward function R such that thesNaquilibrium policy in M
will not be the Nash equilibrium policy in M.

Proof. (Proof of Sufficiency
Based on (8), a Nash equilibrium in the stochastic gMnean be represented as a set of policies
such that forali=1,...,n,se Sandmy, €

; Qu, (S8, an) Ty, (S,81) - Thy (S,@) -+~ Thy, (S, 80) >

Qwi (Sag,---,8n)Thy, (S,81) -+~ Tht, (S,8) -+~ Thy, (S, @n).- (10)
We subtractd;(s) on both sides of (10) and get

Qu (S8, ,80) Ty, (S,80) -+~ Ty, (S,8) -+~ Thy, (S,8n) — Pi(S) >

QK/Ii(S>a1>"'7an)m1(s>a1)"' Tli\/|i(S,ai)-'- rﬁn(s,an)—dbi(s). (11)

almanezlx“‘xAn

alwane;lx“‘xAn

; An[QM(&aL---,an)—¢i(8)m1(s,a1)---ﬂ&‘ni(s,au)--mn(s,an)>
ag,...,an€AL X -+ X
; [Qw (S.a1,....80) — Pi(9)]hy, (S,21) - T, (S, &) - Ty, (S, @) (12)
at,...,an€AL X - X Ap
We define A
Qw(S.a1,..-,8) = Qy (S,a1,...,an) — Pi(s). (13)

Then we can get

; Qu/(s.a,....an) Ty, (S,81) - Ty, (S,&) -+ Ty, (S.@n) >
az,...,an€AL X+ X Ap
; Qu/(s.ay,....an) Ty, (S,81) -~ Thy, (S,&) - Ty, (S, @n). (14)

We now use some algebraic manipulations to rewrite themetidue function under the Nash equi-
librium in (7) for playeri in the stochastic gamd as

Q;\k/li(S?alv"'?an)_q)i(S) = SZ T(S7a1>"'>an7sl) [RMi(Saalw"vanvd)_‘_Wl\jli(d)
€S
+y®i(s) — ydi(s)] - Pi(9). (15)
SinceS¢esT (S a,...,an,5) = 1, the above equation becomes
Qu(s.ay,...,a)) — Pi(s) = ZT(s,al,...,an,d) [Rwi(s,a1,...,an,s)

seS

+YPi(8) — Bi(8) + Wi, () — y@i(s)] - (16)

402



PoLicY INVARIANCE UNDER REWARD TRANSFORMATIONS

According to (6), we can rewrite the above equation as

Qu (sa,....an) —®i(s) = 3 T(s.a,...,an,S) [Ru(s,a1,...,an,S) + ydi(s) — ®;(s)
seS

Qi:/li(slvagl.v'">a;1)m1(slvag.)"'mi(sl>a;1)_ VCDI(SI)]
= 5 T(sa,....a,s) {Rw(sa,...,an,s) +ydi(s) — Pi(s)

seS

[QK/I, (Slvag.v s >a;1) - (Di (SJ)] rﬁl(s’,a’l) e mi (Slva:‘l)} . (17)

+y ;
a,..,@n€AL X X An

+y ;
a,..,@n€AL X X An

Based on the definitions &f(s,s') in (9) andQMi/ (s,a,...,an) in (13), the above equation becomes

Qu(sa....a) = Y T(sa,....an,8) [Ru(Sa,...,a,5) +F(sS)
seS

+y ; QM{(Slaagl.a"va;‘l) ml(sl7aél.)”'r®|i (sl7a;‘l)] : (18)

Since equations (14) and (18) have the same form as equd6yi(8), we can conclude that
QM{(S, a,...,an) is the action-value function under the Nash equilibriumgfiaryeri in the stochas-
tic gameM’. Therefore, we can obtain

Qui(S.a1,. @) = Qiy(S,ar,-., @) = Qy (Sa1, ., @) — Bi(9). (19)

If the states is the terminal statesy, then we haveQMi/(sT,al,...,an) = Qi (sr,ay,...,an) —
®i(st) =0—-0=0. Based on (14) an@M{(s,al,...,an) = Qjy(sa,...,an), we can find that
the Nash equilibrium iM is also the Nash equilibrium iKl’. Then the state-value function under
the Nash equilibrium in the stochastic gaMécan be given as

Vi (9) = Vi (8~ () (20)

(Proof of Necessily
If K (i=1,...,n) is not a potential-based shaping function, we will hBy\s, ') # y®;(s) — ®i(s).
Similar to Ng et al. (1999)’s proof of necessity, we define: F(s,s') — [y®;(s') — ®;(s)]. Then we
can build a stochastic gani by giving the following transition functiom and player 1's reward
function Ry, (+)

T(s,at,a,...,80,%) = 1,
T(s,82,a,...,80,%) = 1,
T(s,a1,...,8n,8) = 1,
T(ss,a1,...,8n,8) = 1,
R (51,81, 8n.%) = . (21)
Rw,(s1,a1,...,a1,%) = 0,
Rw,(S2,81,...,81,%3) = O,
Rw,(S3,a1,...,a8,%) = 0,
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Figure 1: possible states of the stochastic model in thefmfowecessity

wherea;(i = 1,...,n) represents any possible actianc A; from playeri, anda} anda? represent
player 1's action 1 and action 2 respectively. Equaﬂdel,a},az,...,an,%) =1in (21) denotes
that, given the current statg, player 1's actional will lead to the next stats; no matter what
joint action the other players take. Based on the aboveitiam$unction and reward function, we
can get the game model including states s»,S3) shown in Figure 1. We now defin@(s) =
—Fi(s,s3)(i = 1,2,3). Based on (6), (7), (19), (20) and (21), we can obtain plajseadtion-value
function at states; in M andM’

. A
QMl(Slva%w") = Ev
Qi (s.&,...) = 0,
A
Quy (su.a1,..) = Fa(s1,%) + (s, %) — 5.
Quy (s.ai,...) = Fi(s1,52) + yFu(s2.3)
Then the Nash equilibrium policy for player 1 at statés
a; if A>0, a2 if A>0,
ml(slyal) = ) mi(slaal) = . (22)
a2 otherwise at otherwise

Therefore, in the above case, the Nash equilibrium policypfayer 1 at state; in M is not the
Nash equilibrium policy irV’. O

The above analysis shows that the potential-based shapivayd with the form of5(s,s) =
y®i(s) — ®i(s) guarantees the Nash equilibrium policy invariance. Nowdbestion becomes
how to select a shaping functioh;(s) to improve the learning performance of the learner. Ng
et al. (1999) showed thabi(s) = Vy; () is a good candidate for improving the player’s learning
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performance in an MDP. We substitutg(s) = Vy (s) into (18) and get

Qw(sas,....an) = Quy(S.21,.-,an)

= 5 T(sau,...,an,s) [Ry(sar,....a,s) +F(ss)
seS

+Yy ; QK/II’(S[’agL’7a;‘I) Tlﬁll(sl,a&)ml(sl’a;])]
= SZ T(sa,...,an,S) [Ru(sa1,...,an,S) +F(ss)
€S

+ y(Vi (8) — @i(S))]
= gz T(sa,...,an,S) [Ru(s a1,...,an,S) + F(s,s)]. (23)
=

Equation (23) shows that the action-value funcﬂ@m(s, ai,...,an) in statescan be easily obtained
by checking the immediate rewaRy, (s, a1, ...,an,S) + F(s,S) that playeri received in state'.
However, in practical applications, we will not have all ihtormation of the environment such as
T(sa,...,an,S) andR(s,a,...,an,s). This means that we cannot find a shaping functip(s)
such that®;(s) = Vy; (s) without knowing the model of the environment. Therefores goal for
designing a shaping function is to findm(s) as a “good” approximation tdy, (s).

4. Conclusion

A potential-based shaping method can be used to deal witletmgoral credit assignment problem
and speed up the learning process in MDPs. In this articleextend the potential-based shaping
method to general-sum stochastic games. We prove that dpeged potential-based shaping re-
ward applied to a general-sum stochastic game will not obémg original Nash equilibrium of the
game. The analysis result in this article has the potertimhprove the learning performance of the
players in a stochastic game.
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