
Journal of Artificial Intelligence Research 41 (2011) 329-365 Submitted 02/11; published 06/11

Sequential Diagnosis by Abstraction

Sajjad Siddiqi
National University of Sciences and Technology

(NUST) Islamabad, Pakistan sajjad.ahmed@seecs.edu.pk

Jinbo Huang
NICTA and Australian National University

Canberra, Australia jinbo.huang@nicta.com.au

Abstract

When a system behaves abnormally, sequential diagnosis takes a sequence of measure-
ments of the system until the faults causing the abnormality are identified, and the goal
is to reduce the diagnostic cost, defined here as the number of measurements. To propose
measurement points, previous work employs a heuristic based on reducing the entropy over
a computed set of diagnoses. This approach generally has good performance in terms of
diagnostic cost, but can fail to diagnose large systems when the set of diagnoses is too
large. Focusing on a smaller set of probable diagnoses scales the approach but generally
leads to increased average diagnostic costs. In this paper, we propose a new diagnostic
framework employing four new techniques, which scales to much larger systems with good
performance in terms of diagnostic cost. First, we propose a new heuristic for measurement
point selection that can be computed efficiently, without requiring the set of diagnoses, once
the system is modeled as a Bayesian network and compiled into a logical form known as
d-DNNF. Second, we extend hierarchical diagnosis, a technique based on system abstrac-
tion from our previous work, to handle probabilities so that it can be applied to sequential
diagnosis to allow larger systems to be diagnosed. Third, for the largest systems where
even hierarchical diagnosis fails, we propose a novel method that converts the system into
one that has a smaller abstraction and whose diagnoses form a superset of those of the
original system; the new system can then be diagnosed and the result mapped back to
the original system. Finally, we propose a novel cost estimation function which can be
used to choose an abstraction of the system that is more likely to provide optimal average
cost. Experiments with ISCAS-85 benchmark circuits indicate that our approach scales
to all circuits in the suite except one that has a flat structure not susceptible to useful
abstraction.

1. Introduction

When a system behaves abnormally, the task of diagnosis is to identify the reasons for
the abnormality. For example, in the combinational circuit in Figure 1, given the inputs
P ∧ Q ∧ ¬R, the output V should be 0, but is actually 1 due to the faults at gates J and
B. Given a system comprising a set of components, and a knowledge base modeling the
behavior of the system, along with the (abnormal) observed values of some system variables,
a (consistency-based) diagnosis is a set of components whose failure (assuming the other
components to be healthy) together with the observation is logically consistent with the
system model. In our example, {V }, {K}, {A}, and {J,B} are some of the diagnoses given

c©2011 AI Access Foundation. All rights reserved.

Siddiqi & Huang

V

AJ

B

K

D

P

Q

R

1

1

1

1

1

1

1

1

0

AND BUFFER NOT OR

Figure 1: A faulty circuit.

the observation. In general, the number of diagnoses can be exponential in the number of
system components, and only one of them will correspond to the set of actual faults.

In this paper, therefore, we consider the problem of sequential diagnosis (de Kleer &
Williams, 1987), where a sequence of measurements of system variables is taken until the
actual faults are identified. The goal is to reduce the diagnostic cost, defined here as the
number of measurements. To propose measurement points, the state-of-the-art gde (general
diagnosis engine) framework (de Kleer & Williams, 1987; de Kleer, Raiman, & Shirley, 1992;
de Kleer, 2006) considers a heuristic based on reducing the entropy over a set of computed
diagnoses. This approach generally has good performance in terms of diagnostic cost, but
can fail to diagnose large systems when the set of diagnoses is too large (de Kleer & Williams,
1987; de Kleer et al., 1992; de Kleer, 2006). Focusing on a smaller set of probable diagnoses
scales the approach but generally leads to increased average diagnostic costs (de Kleer,
1992).

We propose a new diagnostic framework employing four new techniques, which scales to
much larger systems with good performance in terms of diagnostic cost. First, we propose a
new heuristic that does not require computing the entropy of diagnoses. Instead we consider
the entropies of the system variables to be measured as well as the posterior probabilities
of component failures. The idea is to select a component that has the highest posterior
probability of failure (Heckerman, Breese, & Rommelse, 1995) and from the variables of
that component, measure the one that has the highest entropy. To compute probabilities,
we exploit system structure so that a joint probability distribution over the faults and
system variables is represented compactly as a Bayesian network (Pearl, 1988), which is then
compiled into deterministic decomposable negation normal form (d-DNNF) (Darwiche, 2001;
Darwiche & Marquis, 2002). d-DNNF is a logical form that can exploit the structure present
in many systems to achieve compactness and be used to compute probabilistic queries
efficiently. Specifically, all the required posterior probabilities can be exactly computed by
evaluating and differentiating the d-DNNF in time linear in the d-DNNF size (Darwiche,
2003).

330

Sequential Diagnosis by Abstraction

Second, we extend hierarchical diagnosis, a technique from our previous work (Siddiqi
& Huang, 2007), to handle probabilities so that it can be applied to sequential diagnosis to
allow larger systems to be diagnosed. Specifically, self-contained subsystems, called cones,
are treated as single components and diagnosed only if they are found to be faulty in the
top-level diagnosis. This significantly reduces the number of system components, allowing
larger systems to be compiled and diagnosed. For example, the subcircuit in the dotted box
in Figure 1 is a cone (with A as output and {P,D} as inputs) which contains a fault. First,
cone A, as a whole, is determined as faulty. It is only then that A is compiled separately
and diagnosed. In previous work (Siddiqi & Huang, 2007) we only dealt with the task of
computing diagnoses, which did not involve measurements or probabilities; in the present
paper, we present several extensions that allow the technique to carry over to sequential
diagnosis.

Third, when the abstraction of a system is still too large to be compiled and diagnosed,
we use a novel structure based technique called cloning, which systematically modifies the
structure of a given system C to obtain a new system C′ that has a smaller abstraction
and whose diagnoses form a super-set of those of the original system; the new system can
then be diagnosed and the result mapped back to the original system. The idea is to select
a system component G that is not part of a cone and hence cannot be abstracted away in
hierarchical diagnosis, create one or more clones of G, and distribute G’s parents (from a
graph point of view) among the clones, in such a way that G and its clones now become parts
of cones and disappear from the abstraction. Repeated applications of this operation can
allow an otherwise unmanageable system to have a small enough abstraction for diagnosis
to succeed.

Finally, we propose a novel cost estimation function that can predict the expected
diagnostic cost when a given abstraction of the system is used for diagnosis. Our aim is
to find an abstraction of the system that is more likely to give optimal average cost. For
this purpose, we use this function on various abstractions of the system where different
abstractions are obtained by destroying different cones in the system (by “destroying a
cone” we mean to overlook the fact that it is a cone and include all its components in the
abstraction). The abstraction with the lowest predicted cost can then be used for the actual
diagnosis.

Experiments on ISCAS-85 benchmark circuits (Brglez & Fujiwara, 1985) indicate that
we can solve for the first time nontrivial multiple-fault diagnostic cases on all the bench-
marks, with good diagnostic costs, except one circuit that has a flat structure not susceptible
to useful abstraction, and the new cost estimation function can often accurately predict the
abstraction which is more likely to give optimal average cost.

2. Background and Previous Work

Suppose that the system to be diagnosed is formally modeled by a joint probability dis-
tribution Pr(X ∪ H) over a set of variables partitioned into X and H. Variables X are
those whose values can be either observed or measured, and variables H are the health vari-
ables, one for each component describing its health mode. The joint probability distribution
Pr(X ∪H) defines a set of system states.

331

Siddiqi & Huang

Diagnosis starts in the initial (belief) state

I0 = Pr(X ∪H | Xo = xo) (1)

where values xo of some variables Xo ⊆ X (we are using boldface uppercase letters to mean
both sets and vectors) are given by the observation, and we wish to reach a goal state

In = Pr(X ∪H | Xo = xo,Xm = xm) (2)

after measuring the values xm of some variables Xm ⊆ X\Xo, |Xm| = n, one at a time,
such that (the boldface 0 and 1 denote vectors of 0’s and 1’s):

∃Hf ⊆ H, P r(Hf = 0 | Xo = xo,Xm = xm) = 1 and

Pr(Hf = 0,H\Hf = 1 | Xo = xo,Xm = xm) > 0.

That is, in a goal state a set of components Hf are known to be faulty with certainty
and no logical inconsistency arises if all other components are assumed to be healthy. Other
types of goal conditions are possible. For example, if the health states of all components are
to be determined with certainty, the condition will be that Pr(H = 0 | Xo = xo,Xm = xm)
is 0 or 1 for all H ∈ H (such goals are only possible to reach if strong fault models are given,
where strong fault models are explicit descriptions of abnormal behavior, as opposed to
weak fault models where only the normal behavior is known).

Two special cases are worth mentioning: (1) If the initial state I0 satisfies the goal
condition with Hf = ∅ then the observation is normal and no diagnosis is required. (2)
If the initial state I0 satisfies the goal condition with some Hf 6= ∅, then the observation
is abnormal but the diagnosis is already completed (assuming that we are able to check
probabilities as necessary); in other words, a sequence of length 0 solves the problem.

Following de Kleer and Williams (1987) we assume that all measurements have unit
cost. Hence the objective is to reach a goal state in the fewest measurements possible.

The classical gde framework, on receiving an abnormal observation Xo = xo, considers
the Shannon’s entropy of the probability distribution over a set of computed diagnoses,
which is either the set of minimum-cardinality diagnoses or a set of probable/leading diag-
noses. It proposes to measure a variable X whose value will reduce that entropy the most,
on average. The idea is that the probability distribution over the diagnoses reflects the
uncertainty over the actual faults, and the entropy captures the amount of this uncertainty.
After a measurement is taken the entropy is updated by updating the posterior probabilities
of the diagnoses, potentially reducing some of them to 0.

The results reported by de Kleer et al. (1992) involving single-fault cases for ISCAS-85
circuits indicate that this method leads to measurement costs close to those of optimal
policies. However, a major drawback is that it can be impractical when the number of
diagnoses is large (e.g., the set of minimum-cardinality diagnoses can be exponentially
large). Focusing on a smaller set of probable diagnoses scales the approach but can increase
the likelihood of irrelevant measurements and generally leads to increased average diagnostic
costs (de Kleer, 1992).

From here on, we shall use combinational circuits as an example of the type of systems
we wish to diagnose. Our approach, however, applies as well to other types of systems as

332

Sequential Diagnosis by Abstraction

P θP okJ θokJ
1 0.5 1 0.9
0 0.5 0 0.1

P okJ J θJ |P,okJ
1 1 1 0
1 1 0 1
1 0 1 0.5
1 0 0 0.5
0 1 1 1
0 1 0 0
0 0 1 0.5
0 0 0 0.5

Figure 2: Bayesian network for the circuit in Figure 1 (left). CPTs for nodes P , J , and
okJ (right).

long as a probabilistic model is given that defines the behavior of the system. In Sections 4
and 5 we will present the new techniques we have introduced to significantly enhance the
scalability of sequential diagnosis. We start, however, by presenting in the following section
the system modeling and compilation method that underlies our new diagnostic system.

3. System Modeling and Compilation

In order to define a joint probability distribution Pr(X ∪H) over the system behavior, we
first assume that the prior probability of failure Pr(H = 0) is given for each component
H ∈ H as part of the input to the diagnosis task (de Kleer & Williams, 1987). For example,
the small table with two entries on the top-right of Figure 2 gives the prior probability of
failure for gate J as 0.1.

3.1 Conditional Probability Tables

Prior fault probabilities alone do not define the joint probability distribution Pr(X ∪H).
In addition, we need to specify for each component how its output is related to its inputs
and health mode. A conditional probability table (CPT) for each component does this job.

The CPT shown on the bottom (right) of Figure 2, for example, defines the behavior
of gate J : Each entry gives the probability of its output (J) being a particular value given
the value of its input (P) and the value of its health variable (okJ). In case okJ = 1,
the probabilities are always 0 or 1 as the behavior of a healthy gate is deterministic. The
case of okJ = 0 defines the fault model of the gate, which is also part of the input to the
diagnosis task. In our example, we assume that both output values have probability 0.5
when the gate is broken. For simplicity we assume that all gates have two health modes

333

Siddiqi & Huang

(i.e., each health variable is binary); the encoding and compilation to be described later,
however, allows an arbitrary number of health modes.

Given these tables, the joint probability distribution over the circuit behavior can be
obtained by realizing that the gates of a circuit satisfy an independence property, known as
the Markov property: Given its inputs and health mode, the output of a gate is independent
of any wire which is not a descendant of the gate (a wire X is a descendant of a gate Y if X
can be reached following a path from Y to an output of the circuit in the direction towards
the circuit outputs). This means that the circuit can be effectively treated as a Bayesian
network in the straightforward way, by having a node for each wire and each health variable,
and having an edge going from each input of a gate to its output, and also from the health
variable of a gate to its output. Figure 2 shows the result of this translation for the circuit
in Figure 1.

The joint probability distribution encoded in the Bayesian network provides the basis
for computing any posterior probabilities that we may need when proposing measurement
points (by the chain rule). However, it does not provide an efficient way of doing so.
Specifically, computing a posterior Pr(X = x |Y = y) given the values y of all the variables
Y with known values involves summing out all variables other than X and Y, which has a
complexity exponential in the number of such variables if done naively.

3.2 Propositional Modeling

It is known that a Bayesian network can be encoded into a logical formula and compiled
into d-DNNF, which, if successful, allows posterior probabilities of all variables to be com-
puted efficiently (Darwiche, 2003). For the purposes of sequential diagnosis, we encode the
Bayesian network as follows.

Consider the subcircuit in the dotted box in Figure 1 as an example, which can be
modeled as the following formula:

okJ → (J ↔ ¬P), okA→ (A↔ (J ∧D)).

Specifically, each signal of the circuit translates into a propositional variable (A, D,
P , J), and for each gate, an extra variable is introduced to model its health (okA, okJ).
The formula is such that when all health variables are true the remaining variables are
constrained to model the functionality of the gates. In general, for each component X, we
have okX → NormalBehavior(X).

Note that the above formula fails to encode half of the CPT entries, where okJ = 0. In
order to complete the encoding of the CPT of node J , we introduce an extra Boolean variable
θJ , and write ¬okJ → (J ↔ θJ). Finally, the health variables (okA, okJ) are associated
with the probabilities of the respective gates being healthy (0.9 in our experiments), and
each θ-variable (θJ) is associated with the probability of the corresponding gate giving an
output of 1 when broken (0.5 in our experiments; thus assuming that the output of a faulty
gate is probabilistically independent of its inputs).

The above encoding of the circuit is similar to the encoding of Bayesian networks de-
scribed by Darwiche (2003) in the following way: According to the encoding by Darwiche,
for every node in a Bayesian network and for every value of it there is an indicator variable.
Similarly for every conditional probability there is a network parameter variable. In our

334

Sequential Diagnosis by Abstraction

encoding, the variables for the wires are analogous to the network indicators, where the
encoding is optimized such that there is a single indicator for both values of the wire. Also,
our encoding exploits the logical constraints and does not generate network parameters for
zeros and ones in the CPT. Finally, the encoding for a node that represents a health vari-
able has been optimized such that we only need a single ok-variable which serves both as
an indicator and as a network parameter.

Once all components are encoded as described above, the union (conjunction) of the
formulas is compiled into d-DNNF. The required probabilities can be exactly computed
by evaluating and differentiating the d-DNNF in time linear in its size (Darwiche, 2003).
Details of the compilation process are discussed by Darwiche (2004), and the computation
of probabilities is described in Appendix A.

We now present our hierarchical diagnosis approach and propose a new measurement
selection heuristic.

4. Hierarchical Sequential Diagnosis

An optimal solution to sequential diagnosis would be a policy, that is, a plan of measure-
ments conditioned on previous measurement outcomes, where each path in the plan leads
to a diagnosis of the system (Heckerman et al., 1995). As computing optimal policies is
intractable in general, we follow the approach of heuristic measurement point selection as
in previous work.

We start with a definition of Shannon’s entropy ξ, which is defined with respect to a
probability distribution of a discrete random variable X ranging over values x1, x2, . . . , xk.
Formally:

ξ(X) = −
k∑

i=1

Pr(X = xi) logPr(X = xi). (3)

Entropy measures the amount of uncertainty over the value of the random variable. It
is maximal when all probabilities Pr(X = xi) are equal, and minimal when one of the
probabilities is 1, corresponding nicely to our intuitive notion of the degree of uncertainty.
In gde the entropy is computed for the probability distribution over the set of computed
diagnoses (i.e., the value of the random variable X here ranges over the set of diagnoses).
As mentioned earlier, this entropy can be difficult to compute when the number of diagnoses
is large (de Kleer & Williams, 1987; de Kleer, 2006).

4.1 Baseline Approach

Able to compute probabilities efficiently and exactly following successful d-DNNF compila-
tion, we now propose a new two-part heuristic that circumvents this limitation in scalability.
First, we consider the entropy of a candidate variable to be measured.

4.1.1 Heuristic Based on Entropy of Variable

Since a wire X only has two values, its entropy can be written as:

ξ(X) = −(px log px + px̄ log px̄) (4)

335

Siddiqi & Huang

where px = Pr(X = 1 | Y = y) and px̄ = Pr(X = 0 | Y = y) are the posterior probabilities
of X having values 1 and 0, respectively, given the values y of wires Y whose values are
known.

While ξ(X) captures the uncertainty over the value of the variable, we can also interpret
it as the expected amount of information gain provided by measuring the variable. Hence
as a first idea we consider selecting a variable with maximal entropy for measurement at
each step.

4.1.2 Improving Heuristic Accuracy

This idea alone, however, did not work very well in our initial experiments. As would be
confirmed by subsequent experiments, this is largely due to the fact that the (implicit) space
of all diagnoses is generally very large and can include a large number of unlikely diagnoses,
which tends to compromise the accuracy of the information gain provided by the entropy.
The experiments to confirm this explanation are as follows.

When the d-DNNF compilation is produced, and before it is used to compute prob-
abilities, we prune the d-DNNF graph so that models (satisfying variable assignments)
corresponding to diagnoses with more than k broken components are removed.1 We set the
initial k to the number of actual faults in the experiments, and observed that a significant
reduction of diagnostic cost resulted in almost all cases. This improved performance is ap-
parently due to the fact that the pruning updates the posterior probabilities of all variables,
making them more accurate since many unlikely diagnoses have been eliminated.

In practice, however, the number of faults is not known beforehand and choosing an
appropriate k for the pruning can be nontrivial (note that k need not be exactly the same
as the number of actual faults for the pruning to help). Interestingly, the following heuristic,
which is the one we will actually use, appears to achieve a similar performance gain in an
automatic way: We select a component that has the highest posterior probability of failure
(an idea from Heckerman et al., 1995; see Section 8), and then from the variables of that
component, measure the one that has the highest entropy. This heuristic does not require
the above pruning of the d-DNNF, and appears to improve the diagnostic cost to a similar
extent by focusing the measurement selection on the component most likely to be broken
(empirical results to this effect are given and discussed in Section 7.1).

4.1.3 The Algorithm

We start by encoding the system as a logical formula as discussed in Section 3, where a
subset of the variables are associated with numbers representing the prior fault probabilities
and probabilities involved in the fault models of the components, which is then compiled
into d-DNNF ∆.

The overall sequential diagnosis process we propose is summarized in Algorithm 1. The
inputs are a system C, its d-DNNF compilation ∆, the set of faults D (which is empty
but will be used in the hierarchical approach), a set of known values y of variables, and
an integer k specifying the fault cardinality bound (this is for running the model pruning
experiments described in Section 4.1.2, and is not required for diagnosis using our final

1. A complete pruning is not easy; however, an approximation can be achieved in time linear in the d-DNNF
size, by a variant of the minimization procedure described by Darwiche (2001); see Appendix B.

336

Sequential Diagnosis by Abstraction

Algorithm 1 Probabilistic sequential diagnosis

function psd(C, ∆, D, y, k)
inputs: {C: system}, {∆: d-DNNF}, {y: measurements}, {k: fault cardinality}, {D: ordered set
of known faults}
output: {pair< D , y >}
1: ∆← Reduce (∆, D, k − |D|) if D has changed
2: Given y on variables Y, Evaluate (∆, y) to obtain Pr(y)
3: Differentiate (∆) to obtain Pr(X = 1,y) ∀ variables X
4: Deduce fault as D = D ∪ {X : Pr(okX = 1,y) = 0}
5: if D has changed && MeetsCriteria(∆,D,y) then
6: return < D , y >
7: Measure variable X which is the best under a given heuristic
8: Add the measured value x of X to y, and go back to line 1

heuristic). We reduce ∆ by pruning some models (line 1) when the fault cardinality bound
k is given, using the function reduce(∆,D, k − |D|). reduce accepts as arguments the
current DNNF ∆, the set of known faults D, and the upper bound given by k −D on the
cardinality of remaining faults, whereas it returns the pruned DNNF. Reduce excludes the
known faults in D when computing the minimum cardinality of ∆, and then uses k − |D|
as the bound on the remaining faults (explained further in Appendix B). ∆ is reduced first
time when psd is called and later each time D is changed (i.e., when a component is found
faulty). We then evaluate (line 2) and differentiate (line 3) ∆ (see Appendix A), select a
measurement point and take the measurement (line 7), and repeat the process (line 8) until
the stopping criteria are met (line 5).

The stopping criteria on line 5 are given earlier in Section 2 as the goal condition, i.e.,
we stop when the abnormal observation is explained by all the faulty components D already
identified assuming that other components are healthy. A faulty component X is identified
when Pr(okX = 1,y) = 0 where y are the values of variables that are already known,
and as mentioned earlier these probabilities are obtained for all variables simultaneously in
the d-DNNF differentiation process. Finally, the condition that the current set of faulty
components, with health modes Hf , explains the observation is satisfied when Pr(Hf =
0,H\Hf = 1,y) > 0, which is checked by a single evaluation of the original d-DNNF. The
algorithm returns the actual faults together with the new set of known values of variables
(line 6).

4.2 Hierarchical Approach

We now scale our approach to handle larger systems using the idea of abstraction-based
hierarchical diagnosis (Siddiqi & Huang, 2007). The basic idea is that the compilation of
the system model into d-DNNF will be more efficient and scalable when the number of
system components is reduced. This can be achieved by abstraction, where subsystems,
known as cones, are treated as single components. An example of a cone is depicted in
Figure 1. The objective here is to use a single health variable and failure probability for
the entire cone, hence significantly reducing the size of the encoding and the difficulty of
compilation. Once a cone is identified as faulty in the top-level diagnosis, it can then be
compiled and diagnosed, in a recursive fashion.

337

Siddiqi & Huang

We now give formal definition of abstraction from our previous work:

4.2.1 Abstraction of System

Abstraction is based upon the structural dominators (Kirkland & Mercer, 1987) of a system.
A component X dominates a component Y , or X is called a dominator of Y , if any path
from Y to any output of the system contains X. A cone corresponds precisely to the set
of components dominated by a component. A cone may contain further cones leading to a
hierarchy of cones.

A system can be abstracted by treating all maximal cones in it as black boxes (a maximal
cone is one that is either contained in no other cone or contained in exactly one other cone
which is the whole system). In our example, cone A can be treated as a virtual gate with
two inputs {P,D} and the output A. The abstraction of a system can be formally defined
as:

Definition 1 (Abstraction of System). Given a system C, let C′ = C if C has a single
output; otherwise let C′ be C augmented with a dummy component collecting all outputs
of C. Let O be the only output of C′. The abstraction AC of system C is then the set of
components X ∈ C such that X is not dominated in C′ by any component other than X
and O.

For example, AC = {A,B,D,K, V }. J 6∈ AC as J cannot reach any output without
passing through A, which is a dominator of J .

In our previous work (Siddiqi & Huang, 2007), we only dealt with the task of comput-
ing minimum-cardinality diagnoses, which does not involve probabilities or measurement
selection. In the context of sequential diagnosis, several additional techniques have been
introduced, particularly in the computation of prior failure probabilities for the cones and
the way measurement points are selected, outlined below.

4.2.2 Propositional Encoding

We start with a discussion of the hierarchical encoding for probabilistic reasoning, which is
similar to the hierarchical encoding presented in our previous work (Siddiqi & Huang, 2007).
Specifically, for the diagnosis of the abstraction AC of the given system C, health variables
are only associated with the components AC\IC, which are the gates {A,B,D,K, V } in
our example (IC stands for the set of inputs of the system C). Thus the gate J in Figure 1
will not be associated with a health variable, as J is a wire internal to the cone rooted
at A. Consequently, only the nodes representing the components AC\IC will have health
nodes associated with them in the corresponding Bayesian network. Hence the node okJ is
removed from the Bayesian network in Figure 2.

In addition, we define the failure of a cone to be when it outputs the wrong value, and
introduce extra clauses to model the abnormal behavior of the cone. For example, the
encoding given in Section 3.2 for cone A in Figure 1 (in the dotted box) is as follows:

J ↔ ¬P, okA→ (A↔ (J ∧D)), ¬okA→ (A 6↔ (J ∧D))

The first part of the formula encodes the normal behavior of gate J (without a health
variable); the next encodes the normal behavior of the cone; the last encodes that the

338

Sequential Diagnosis by Abstraction

cone outputs a wrong value when it fails. Other gates (that are not roots of cones) in the
abstraction AC are encoded normally as described in Section 3.2.

Note that the formulas for all the components in a cone together encode a single CPT
for the whole cone, which provides the conditional probability of the cone’s output given
the health and inputs of the cone, instead of the health and inputs of the component at
the root of the cone. For example, the above encoding is meant to provide the conditional
probability of A given P , D, and okA (instead of J , D, and okA), where okA represents
the health mode of the whole cone and is associated with its prior failure probability, which
is initially unknown to us and has to be computed for all cones (explained below). Such
an encoding of the whole system provides a joint probability distribution over the variables
AC ∪ IC ∪H, where H = {okX | X ∈ AC\IC}.

4.2.3 Prior Failure Probabilities for Cones

When a cone is treated as a single component, its prior probability of failure as a whole can
be computed given the prior probabilities of components and cones inside it. We do this by
creating two copies ∆h and ∆f of the cone, where ∆h models only the healthy behavior of
the cone (without health variables), and ∆f includes the faulty behavior as well (i.e., the
full encoding described in Section 3.2). The outputs of both ∆h and ∆f are collected into
an XOR-gate X(when the output of XOR-gate X equals 1, both of its inputs are forced to
be different in value). We then compute the probability Pr(X = 1) giving the probability
of the outputs of ∆h and ∆f being different. The probability is computed by compiling this
encoding into d-DNNF and evaluating it under X = 1.

Note that this procedure itself is also abstraction-based and hierarchical, performed
bottom-up with the probabilities for the inner cones computed before those for the outer
ones. Also note that it is performed only once per system as a pre-processing step.

4.2.4 Measurement Point Selection and Stopping Criteria

In principle, the heuristic to select variables for measurement and the stopping criteria are
the same as in the baseline approach; however, a couple of details are worth mentioning.

First, when diagnosing the abstraction of a given system (or cone) C, the measurement
candidates are restricted to variables AC∪IC, ignoring the internal variables of the maximal
cones—those are only measured if a cone as a whole has been found faulty.

Second, it is generally important to have full knowledge of the values of cone’s inputs
before a final diagnosis of the cone is concluded. A diagnosis of a cone concluded with only
partial knowledge of its inputs may not include some faults that are vital to the validity of
global diagnosis. The reason is that the diagnosis of the cone assumes that the unknown
inputs can take either value, while in reality their values may become fixed when variables
in other parts of the system are measured, causing the diagnosis of certain cones to become
invalid, and possibly requiring the affected cones to be diagnosed once again to meet the
global stopping criteria (see line 17 in Algorithm 2).

To avoid this situation while retaining the effectiveness of the heuristic, we modify the
measurement point selection as follows when diagnosing a cone. After selecting a component
with the highest probability of failure, we consider the variables of that component plus the
inputs of the cone, and measure the one with the highest entropy. We do not conclude a

339

Siddiqi & Huang

Algorithm 2 Hierarchical probabilistic sequential diagnosis

function hpsd(C, uC, k)
inputs: {C : system},{uC: obs. across system} {k: fault cardinality}
local variables: {B,D,T : set of components} {y, z,uG : set of measurements} {i, k′ : integer}
output: {pair< D , uC >}
1: ∆← Compile2dDNNF (AC, uC)
2: i← 0 , D← φ , y← uC

3: < B,y >← psd (C, ∆, B, y, k)
4: for {; i < |B|; i+ +} do
5: G←Element (B, i)
6: if G is a cone then
7: z← y ∪ Implications (∆, y)
8: uG ← {x : x ∈ z, X ∈ IG ∪OG}
9: k′ ← k − |D| − |B|+ i+ 2

10: < T,uG >← hpsd(DG ∪ IG, uG, k′)
11: y← y ∪ uG , D← D ∪T
12: Evaluate (∆, y), Differentiate (∆)
13: else
14: D← D ∪ {G}
15: z← y ∪ Implications (∆, y)
16: uC ← uC ∪ {x : x ∈ z, X ∈ IC ∪OC}
17: if MeetsCriteria (C, D, y) then
18: return < D , uC >
19: else
20: goto line 3

diagnosis for the cone until values of all its inputs become known (through measurement or
deduction), except when the health of all the components in the cone has been determined
without knowing all the inputs to the cone (it is possible to identify a faulty component,
and with strong fault models also a healthy component, without knowing all its inputs).
Note that the restriction of having to measure all the inputs of a cone can lead to significant
increase in the cost compared with the cost of baseline approach; especially when the number
of inputs of a cone is large. This is discussed in detail in Section 6.

4.2.5 The Algorithm

Pseudocode for the hierarchical approach is given in Algorithm 2 as a recursive function.
The inputs are a system C, a set of known values uC of variables at the inputs IC and
outputs OC of the system, and again the optional integer k specifying the fault cardinality
bound for the purpose of experimenting with the effect of model pruning. We start with
the d-DNNF compilation of the abstraction of the given system (line 1) and then use the
function psd from Algorithm 1 to get a diagnosis B of the abstraction (line 3), assuming that
the measurement point selection and stopping criteria in Algorithm 1 have been modified
according to what is described in Section 4.2.4. The abstract diagnosis B is then used to
get a concrete diagnosis D in a loop (lines 4–14). Specifically, if a component G ∈ B is
not the root of a cone, then it is added to D (line 14); otherwise cone G is recursively
diagnosed (line 10) and the result of it added to D (line 11). When recursively diagnosing

340

Sequential Diagnosis by Abstraction

a cone G, the subsystem contained in G is represented by DG ∪ IG, where DG is the set of
components dominated by G and IG is the set of inputs of cone G.

Before recursively diagnosing a cone G, we compute an abnormal observation uG at the
inputs and the output (IG∪{G}) of the cone G. The values of some of G’s inputs and output
will have been either measured or deduced from the current set of measurements. The value
of a variable X is implied to be x under the measurements y if Pr(X = ¬x,y) = 0, which
is easy to check once ∆ has been differentiated under y. The function Implications(∆, y)
(lines 7 and 15) implements this operation, which is used to compute the partial abnormal
observation uG (line 8). A fault cardinality bound k′ for the cone G is then inferred (line 9),
and the algorithm called recursively to diagnose G, given uG and k′.

The recursive call returns the faults T inside the cone G together with the updated
observation uG. The observation uG may contain some new measurement results regarding
the variables IG ∪ {G}, which are added to the set of measurements y of the abstraction
(line 11); other measurement results obtained inside the cone are ignored due to reasons
explained in Section 4.2.4. The concrete diagnosis D is augmented with the faults T found
inside the cone (line 11), and ∆ is again evaluated and differentiated in light of the new
measurements (line 12).

After the loop ends, the variable uC is updated with the known values of the inputs
IC and outputs OC of the system C (line 16). The stopping criteria are checked for the
diagnosis D (line 17) and if met the function returns the pair < D,uC > (line 18); otherwise
more measurements are taken until the stopping criteria (line 17) have been met.

Since D can contain faults from inside the cones, the compilation ∆ cannot be used
to check the stopping criteria for D (note the change in the parameters to the function
MeetsCriteria at line 17) as the probabilistic information regarding variables inside cones
is not available in ∆. The criteria are checked as follows instead: We maintain the depth
level of every component in the system. The outputs of the system are at depth level 1 and
the rest of the components are assigned depth levels based upon the length of their shortest
route to an output of the system. For example, in Figure 1 gates B and J are at depth
level 3, while A is at depth level 2. Hence, B and J are deeper than A. We first propagate
the values of inputs in the system, and then propagate the fault effects of components in
D, one by one, by flipping their values to the abnormal ones and propagating them towards
the system outputs in such a way that deeper faults are propagated first (Siddiqi & Huang,
2007), and then check the values of system outputs obtained for equality with those in the
observation (y).

4.2.6 Example

Suppose that we diagnose the abstraction of the circuit in Figure 1, with the observation
uC = {P = 1, Q = 1, R = 0, V = 1}, and take the sequence of measurements y = {D =
1,K = 1, A = 1}. It is concluded, from the abstract system model, that given the values
of P and D, the value 1 at A is abnormal. So the algorithm concludes a fault at A. Note
that Q = 1 and D = 1 suggests the presence of another fault besides A, triggering the
measurement of gate B, which is also found faulty. The abstract diagnosis {A,B} meets
the stopping criteria with respect to the abstract circuit.

341

Siddiqi & Huang

V

A
J

B

K

D

P

Q

R

1

1

1

1

1

1

1

1

0

E

1

Figure 3: A faulty circuit with faults at B and J .

V

A
J

B'

K

D

P

Q

R

1

1

1

1

1

1

1

1

0

E

1

B

1

Figure 4: Creating a clone B′ of B according to D.

We then enter the diagnosis of cone A by a recursive call with observation uA = {P =
1, B = 1, A = 1}. The diagnosis of the cone A immediately reveals that the cone E is
faulty. Hence we make a further recursive call in order to diagnose E with the observation
uE = {P = 1, B = 1, E = 1}. The only unknown wire J is measured and the gate J is found
faulty, which explains the observation at the outputs of the cones E as well as A, given the
inputs P and B. The recursion terminates and the abstract diagnosis B = {A,B} generates
the concrete diagnosis D = {J,B}, which meets the stopping criteria and the algorithm
terminates.

5. Component Cloning

In the preceding section, we have proposed an abstraction-based approach to sequential di-
agnosis, which reduces the complexity of compilation and diagnosis by reducing the number
of system components to be diagnosed. We now take one step further, aiming to handle
systems that are so large that they remain intractable even after abstraction, as is the case
for the largest circuits in the ISCAS-85 benchmark suite.

Our solution is a novel method that systematically modifies the structure of a system to
reduce the size of its abstraction. Specifically, we select a component G with parents P (a
component X is a parent of a component Y , and Y is a child of X, if the output of Y is an
input of X) that is not part of a cone and hence cannot be abstracted away in hierarchical

342

Sequential Diagnosis by Abstraction

diagnosis, and create a clone G′ of it according to some of its parents P′ ⊂ P in the sense
that G′ inherits all the children of G and feeds into P′ while G no longer feeds into P′ (see
Figures 3 and 4 for an example). The idea is to create a sufficient number of clones of G
so that G and its clones become part of some cones and hence can be abstracted away.
Repeated applications of this operation can allow an otherwise unmanageable system to
have a small enough abstraction for compilation and diagnosis to succeed. The hierarchical
algorithm is then extended to diagnose the new system and the result mapped to the
original system. We show that we can now solve almost all the benchmark circuits, using
this approach.

Before we go into the details of the new method, we differentiate it from a technique
known as node splitting (Choi, Chavira, & Darwiche, 2007), which is used to solve MPE
queries on a Bayesian network. Node splitting breaks enough number of edges between
nodes from the network such that the MPE query on the resulting network becomes easy
to solve. A broken edge is replaced with a root variable with a uniform prior. The resulting
network is a relaxation or approximation of the original in that its MPE solution, which
may be computed from its compilation, gives an upper bound on the MPE solution of the
original network. A depth-first branch and bound search algorithm then searches for an
optimal solution using these bounds to prune its search space. A similar approach is also
used to solve Weighted Max-SAT problems (Pipatsrisawat & Darwiche, 2007).

This version of node splitting is not directly applicable in the present setting for the
following reasons. If edges in a system are broken and redirected into new root variables
(primary inputs), the resulting system represents a different input-output function from
that of the original system. The abnormal observation on the original system may hence
become a normal one on the new system (if the edges through which the fault propagates
are broken), eliminating the basis for diagnosis. Our technique of component cloning, which
can also be viewed as a version of node splitting, introduces clones of a component instead
of primary inputs and preserves the input-output function of the system. Also, the new
system is a relaxation of the original in that its diagnoses are a superset of those of the
original.

We now formally define component cloning:

Definition 2 (Component Cloning). Let G be a component in a system C with parents
P. We say that G is cloned according to parents P′ ⊂ P when system C results in a
system C′ as follows:

• The edges going from G to its parents P′ are removed.

• A new component G′ functionally equivalent to G is added to the system such that
G′ shares the inputs of G and feeds into each of P′.

Figures 3 and 4 show an example where creating a clone B′ of B according to {D}
results in a new circuit whose abstraction contains only the gates {A,D,K, V }, whereas
the abstraction of the original circuit contains also gate B.

5.1 Choices in Component Cloning

There are two choices to be made in component cloning: Which components do we clone,
and for each of them how many clones do we create and how do they split the parents?

343

Siddiqi & Huang

Since the goal of cloning is to reduce the abstraction size, it is clear that we only wish
to clone those components that lie in the abstraction (i.e., not within cones). Among these,
cloning of the root of a cone cannot reduce the abstraction size as it will destroy the existing
cone by reintroducing some of the components inside the cone into the abstraction. For
example, cloning D according to K in Figure 4 will produce a circuit where D and its clone
can be abstracted away but B′ is no longer dominated by D and hence is reintroduced into
the abstraction. Therefore, the final candidates for cloning are precisely those components
in the abstract system that are not roots of cones. Note that the order in which these
candidates are processed is unimportant in that each when cloned will produce an equal
reduction, namely a reduction of precisely 1 in the abstraction size, if any.

It then remains to determine for each candidate how many clones to create and how
to connect them to the parents. To understand our final method, it helps to consider a
naive method that simply creates |P| − 1 clones (where P is the set of parents) and has
each clone, as well as the original, feed into exactly one parent. This way every parent of
the component becomes the root of a cone and the component itself and all its clones are
abstracted away. In Figure 3, for example, B has three parents {E,A,D}, and this naive
method would create two clones of B for a total of three instances of the gate to split the
three parents, which would result in the same abstraction as in Figure 4.

The trick now is that the number of clones can be reduced by knowing that some parents
of the component may lie in the same cone and a single clone of the component according
to those parents will be sufficient for that clone to be abstracted away. In the example of
Figure 3, again, the parents E,A of B lie in the same cone A and it would suffice to create
a single clone of B according to {E,A}, resulting in the same, more efficient cloning as in
Figure 4.

More formally, we partition the parents of a component G into subsets P1,P2, . . . ,Pq

such that those parents of G that lie in the same cone are placed in the same subset and
the rest in separate ones. We then create q − 1 clones of G according to any q − 1 of these
subsets, resulting in G and all its clones being abstracted away. This process is repeated for
each candidate component until the abstraction size is small enough or no further reduction
is possible.

5.2 Diagnosis with Component Cloning

The new system is functionally equivalent to the original and has a smaller abstraction,
but is not equivalent to the original for diagnostic purposes. As the new model allows
a component and its clones to fail independently of each other, it is a relaxation of the
original model in that the diagnoses of the new system form a superset of those of the
original. Specifically, each diagnosis of the new system that assigns the same health state
to a component and its clones for all components corresponds to a diagnosis of the original
system; other diagnoses are spurious and are to be ignored.

The core diagnosis process given in Algorithm 2 continues to be applicable on the new
system, with only two minor modifications necessary. First, the spurious diagnoses are
(implicitly) filtered out by assuming the same health state for all clones (including the
original) of a component as soon as the health state of any one of them is known. Second,
whenever measurement of a clone of a component is proposed, the actual measurement is

344

Sequential Diagnosis by Abstraction

0 500 1000 1500 2000 2500
0

10

20

30

40

50

60

c7552

Cones
N

u
m

b
e

r
o

f
C

o
n

e
 I

n
p

u
ts

Figure 5: Cones in ISCAS-85 circuits.

taken on the original component in the original system, for obvious reasons (in other words,
the new system is used for reasoning and the original for measurements).

In principle, the presence of spurious diagnoses in the model can potentially skew the
measurement point selection heuristic (at least in the early stages of diagnosis, before the
spurious diagnoses are gradually filtered out). However, by using smaller benchmarks that
could be diagnosed both with and without cloning, we conducted an empirical analysis
which indicates, interestingly, that the overall diagnostic cost is only slightly affected. We
discuss this in more detail in Section 7.3.

6. Diagnostic Cost Estimation

We now address an interesting issue stemming from an observation we made conducting ex-
periments (to be detailed in the next section): While system abstraction is always beneficial
to compilation, the diagnostic cost does not always improve with the associated hierarchical
diagnosis. On the one hand, the hierarchical diagnosis approach can help in cases which
otherwise result in high costs using baseline approach by quickly finding faulty portions of
the system, represented by a set of faulty cones, and then directing the sequential diagnosis
to take measurements inside those cones, resulting in more useful measurements. On the
other hand, it can introduce overhead for cases where it has to needlessly go through hier-

345

Siddiqi & Huang

archies to locate the actual faults, and measure inputs of cones involved, while the baseline
version can find them more directly and efficiently.

The overhead of hierarchical approach can be quite high for faults that lie in cones with
a large number of inputs. For example, the graphs in Figure 5 show the number of inputs,
represented as dots, of various cones in ISCAS-85 circuits. Note that most of the cones have
a small number of inputs; however, some cones can have more than 30 inputs, especially
in c432 and the circuits beyond c1908, which contribute to increased diagnostic cost in
several cases (such increase in the cost due to cones was also confirmed by a separate set of
experiments using a large set of systematically generated combinational circuits, detailed
in Appendix C). To avoid the potential high cost of diagnosis for faults that lie in a cone
with a large number of inputs it is tempting to destroy that cone before compilation so
that any fault in it can now be directly found. However, due to the associated increase in
the abstraction size, destroying cones may cause increased costs for those cases that could
previously be solved more efficiently, and thus may show a negative impact, overall. This
calls for an automatic mechanism to predict the effect of destroying certain cones on the
overall diagnostic cost, which is the subject of this section.

We propose a novel cost estimation function to predict the average diagnostic cost when
a given abstraction of the system is considered for diagnosis, where different abstractions
can be obtained by destroying different cones in the system. Since cones can be destroyed
automatically, the function can be used to automatically propose an abstraction of the sys-
tem, to be used for diagnosis, that is more likely to give optimal average cost. The function
uses only the hierarchical structure of the given abstraction to predict its cost and does not
take into account other parameters that may also contribute to the cost, such as the proba-
bilities. In addition the function is limited to single fault cases only. Therefore, the expected
cost computed by this function is only indicative and cannot be always correct. However,
experiments show that the function is often quite useful in proposing an abstraction of the
system that is more likely to give optimal cost (to be discussed in the next section).

To estimate the expected diagnostic cost we assume that it is composed of two quantities
namely the isolation cost and the abstraction cost, which are inversely proportional to each
other. The isolation cost captures how well the given system abstraction can isolate the
faulty portions of the system. Therefore the isolation cost is minimum when a complete
abstraction of the system is used (i.e., all cones are considered) and generally increases as
cones are destroyed. The abstraction cost captures the overhead cost due to introduction
of cones. Hence, the abstraction cost is minimum (zero) when no abstraction is considered
and generally increases as cones are introduced.

We define the isolation cost of diagnosis considering an abstraction of the system to
be the average cost required to isolate a single fault in the system using that abstraction.
Similarly, we define the abstraction cost of diagnosis to be the average overhead cost required
to diagnose a single fault in the system using that abstraction. Then the expected average
cost of diagnosis when an abstraction of the system is considered for diagnosis is the sum of
the isolation and the abstraction costs for that abstraction. As different cones are destroyed
in a given abstraction of the system we expect changes in the values of the abstraction and
isolation costs, which determine whether the overall cost can go up or down (if the changes
are uneven) or stay constant (if the changes are even). The idea is to obtain an abstraction

346

Sequential Diagnosis by Abstraction

of the system to strike a balance between the two quantities to get an overall optimal cost.
Below we discuss how the isolation and abstraction costs can be estimated.

We noted in our experiments when using the baseline approach that our heuristic can
isolate a single fault in the system with a cost that is on average comparable to the log2

of the number of measurement points in the system, which provided us with the basis for
computing the isolation cost. In the hierarchical approach, when a fault lies inside a cone
one can first estimate the isolation cost of diagnosing the cone, separately, and then add
it to the isolation cost of diagnosing the abstract system to get the average isolation cost
for all (single) faults that lie in that cone. For example, when no cones are considered the
cost of isolating a fault in the circuit in Figure 3 is log2(6) = 2.58 (values of P , Q, R and
V are already known). However, when cones are considered the cost of isolating a fault
that lies inside the cone A is the sum of the isolation cost of the abstract circuit and the
isolation cost of the subcircuit inside cone A, which is log2(4) + log2(1) = 2. Similarly, to
get an average isolation cost for all single faults in the system, when using the hierarchical
approach, one can add the isolation cost of diagnosing the abstract system and the average
of the isolation costs of diagnosing all the abstract components (where the isolation cost
for an abstract component which is not a cone is zero). Note that the isolation cost of
diagnosing a cone can be computed by again taking the abstraction of the cone.

To estimate the abstraction cost of diagnosis under a given abstraction we first need
to estimate the overhead cost involved for each individual component in the system under
that abstraction. To estimate the overhead cost of a, possibly faulty, component one can
take the union of all the inputs and outputs of cones in which that component lies, and
the number of such measurement points (approximately) constitutes the required overhead
cost for that component. If a component does not lie in any cone then the overhead cost
for that component is zero. For example, when the circuit in Figure 3 is diagnosed using
the hierarchical approach, to find the gate J as faulty one must first find the cone A to be
faulty and then the cone E to be faulty and then the gate J to be faulty. So the overhead
cost for the gate J in this case will be 1 + 2 + 1 = 4 (i.e., we have to measure wires A, B, E,
J , assuming that Q is known). The abstraction cost of diagnosis under a given abstraction
of the system is then the average of the overhead costs of all the system components under
that abstraction.

We now give formal definitions related to the cost estimation function. Let MPu(C)
be the set of those measurement points in the system C whose values are unknown, and
MPu(G) the set of those inputs and output of an abstract or concrete component G whose
values are unknown. Let p be the number of abstract components in an abstraction AC of
system C. Let Gi ∈ AC be an abstract component (either a concrete component or a cone
in the abstraction; a concrete component in the abstraction can be regarded as a trivial
cone containing only the component itself). Let DGi

be the subsystem dominated by Gi

and AGi
be the abstraction of the subsystem.

The isolation cost IC(C,AC) when an abstraction AC of the system C is considered for
diagnosis is the sum of log2(|MPu(AC)|) and the average of the isolation costs computed,
in a similar manner, for the subsystems contained in the abstract components in AC:

347

Siddiqi & Huang

IC(C,AC) =

{
log2(|MPu(AC)|) + 1

p

∑p
i=1 IC(DGi

,AGi
), if |MPu(AC)| > 0

1
p

∑p
i=1 IC(DGi

,AGi
) otherwise

(5)

where IC(DGi
,AGi

) recursively computes the isolation cost of the subsystem contained in
the abstract component Gi, using Equation 5, by taking its abstraction AGi

. Note that
when computing IC(DGi

,AGi
) we assume that the inputs and output of Gi have already

been measured. Thus MPu(DGi
) excludes the inputs and output of cone Gi. If Gi is a

concrete component then IC(DGi
,AGi

) = 0. If no cones are considered (AC = C) then∑p
i=1 IC(DGi

,AGi
) = 0 and the isolation cost is simply equal to log2(|MPu(C)|).

To compute the abstraction cost of diagnosing the system under a given abstraction we
first compute the overhead costs of diagnosing individual cones in the abstraction. Then
we multiply the abstraction cost for a cone with the number of components contained in
that cone to get the total overhead cost for all the components in that cone. Adding up
the overhead costs computed this way from all the cones in the abstraction and dividing
this number by the total number of concrete components in the whole system gives us the
average overhead cost per component, which we call the abstraction cost. Formally: Let
there be q cones in AC. Then the abstraction cost AC(C,AC) when the abstraction AC

of the system C is considered for diagnosis is given as:

AC(C,AC) =
1

n

q∑
i=1

|DGi
| ∗ {MPu(Gi) +AC(DGi

,AGi
)} : Gi ∈ AC is a cone (6)

where |DGi
| is the number of (concrete) components contained in the coneGi, andMPu(Gi)+

AC(DGi
,AGi

) recursively computes the abstraction cost of diagnosing the cone Gi, using
Equation 6, by taking its abstraction AGi

. When the abstraction cost of Gi is multiplied by
|DGi

| we effectively add the cost of measuring cone inputs and output in the overhead cost
of every component inside the cone. Again note that when computing AC(DGi

,AGi
) we

assume that all the variables in MPu(Gi) have already been measured. Thus MPu(DGi
)

excludes the inputs and output of cone Gi.

Finally the total expected cost EDC(C,AC) of diagnosing a system C when an ab-
straction AC of the system is considered for diagnosis is given as:

EDC(C,AC) = IC(C,AC) +AC(C,AC). (7)

7. Experimental Results

This section provides an empirical evaluation of our new diagnostic system, referred to as
sda (sequential diagnosis by abstraction), that implements the baseline, hierarchical, and
cloning-based approaches described in Sections 4 and 5, and the cost estimation function
described in Section 6. All experiments were conducted on a cluster of 32 computers con-
sisting of two types of (comparable) CPUs, Intel Core Duo 2.4 GHz and AMD Athlon 64
X2 Dual Core Processor 4600+, both with 4 GB of RAM running Linux. A time limit of 2

348

Sequential Diagnosis by Abstraction

hours and a memory limit of 1.5 GB were imposed on each test case. The d-DNNF compi-
lation was done using the publicly available d-DNNF compiler c2d (Darwiche, 2004, 2005).
The CNF was simplified before compilation using the given observation, which allowed us
to compile more circuits, at the expense of requiring a fresh compilation per observation
(see Algorithm 2, line 1).

We generated single- and multiple-fault scenarios using ISCAS-85 benchmark circuits,
where in each scenario a set of gates is assumed to be faulty. For single-fault cases of circuits
up to c1355 we simulated the equal prior probability of faults by generating n fault scenarios
for each circuit, where n equals the number of gates in the circuit: Each scenario contains a
different faulty gate. We then randomly generated 5 test cases (abnormal observations) for
each of these n scenarios. Doing the same for multiple-fault scenarios would not be practical
due to the large number of combinations, so for each circuit up to c1355 (respectively, larger
than c1355) we simply generated 500 (respectively, 100) random scenarios with the given
fault cardinality and a random test case for each scenario.

Thus in each test case we have a faulty circuit where some gate or gates give incorrect
outputs. The inputs and outputs of the circuit are observed. The values of internal wires are
then computed by propagating the inputs in the normal circuit towards the outputs followed
by propagating the outputs of the assumed faulty gates one by one such that deeper faults
are propagated first. The obtained values of internal wires are then used to simulate the
results of taking measurements. We use Pr(okX = 1) = 0.9 for all gates X of the circuit.
Note that such cases, where all gates fail with equal probability, are conceivably harder to
solve as the diagnoses will tend to be less differentiable. Then, for each gate, the two output
values are given equal probability when the gate is faulty. Again, this will tend to make
the cases harder to solve due to the high degree of uncertainty. For each circuit and fault
cardinality, we report the cost (number of measurements taken) and time (including the
compilation time, in CPU seconds) to locate the faults, averaged over all test cases solved.

We present the experiments in four subsections demonstrating the effectiveness of the
four techniques proposed in this paper, namely the new heuristic, hierarchical sequential
diagnosis, component cloning, and the cost estimation function.

7.1 Effectiveness of Heuristic

We start with a comparison of the baseline algorithm of sda with gde and show that sda
achieves similar diagnostic costs and scales to much larger circuits, hence illustrating the
effectiveness of our new heuristic (along with the new way to compute probabilities).

7.1.1 Comparison with gde

We could obtain only the tutorial version of gde (Forbus & de Kleer, 1993) for the compar-
ison, downloadable from http://www.qrg.northwestern.edu/BPS/readme.html. gde uses
ATCON, a constraint language developed using the LISP programming language, to repre-
sent diagnostic problem cases. A detailed account of this language is given by Forbus and
de Kleer (1993). Further, it employs an interactive user interface that proposes measure-
ment points with their respective costs and lets the user enter outcomes of measurements.
For the purpose of comparison we translated our problem descriptions to the language ac-
cepted by gde, and also modified gde to automatically read in the measurement outcomes

349

Siddiqi & Huang

size system
single-fault double-fault triple-fault
cost time cost time cost time

13
gde 3.6 2.0 3.8 1.81 4.0 1.9
sda 3.6 0.01 3.4 0.01 2.8 0.01

14
gde 3.5 6.66 3.3 15.1 3.0 14
sda 4.2 0.01 2.9 0.01 2.9 0.01

15
gde 3.4 111 3.5 88 4.3 299
sda 3.9 0.01 3.4 0.01 3.7 0.01

16
gde 3.3 398 3.5 556 3.2 509
sda 3.5 0.01 3.3 0.01 2.8 0.01

17
gde 3.7 2876 4.6 4103 4.5 2067
sda 3.8 0.01 4.2 0.01 4.2 0.01

Table 1: Comparison with gde.

from the input problem description. We also compiled the LISP code to machine dependent
binary code using the native C compiler to improve run-time performance.

This version of gde, developed for tutorial purposes, computes the set of minimal diag-
noses instead of probable diagnoses. This makes our comparison less informative. Never-
theless, we are able to make a reasonable comparison in terms of diagnostic cost as the set
of minimal diagnoses can also serve as a large set of probable diagnoses when components
have equal prior probabilities. According to de Kleer (1992) availability of more diagnoses
aids in heuristic accuracy, whereas focusing on a smaller set of probable diagnoses can be
computationally more efficient but increase the average diagnostic cost.

This version of gde was in fact unable to solve any circuit in ISCAS-85. To enable
a useful comparison, we extracted a set of small subcircuits from the ISCAS-85 circuits:
50 circuits of size 13, 14, 15 and 16, and 10 circuits of size 17. For each circuit we ran-
domly generated 5 single-fault, 5 double-fault, and 5 triple-fault scenarios, and one test
case (input/output vector) for each fault scenario. The comparison between gde and sda
(baseline) on these benchmarks given in Table 1 shows that sda performs as well as gde in
terms of diagnostic cost.

7.1.2 Larger Benchmarks

To evaluate the performance of sda on the larger ISCAS-85 circuits, we have again con-
ducted three sets of experiments, this time involving single, double, and five faults, respec-
tively. As the version of gde available to us is unable to handle these circuits, in order to
provide a systematic reference point for comparison we have implemented a random strat-
egy where a random order of measurement points is generated for each circuit and used
for all the test cases. This strategy also uses the d-DNNF to check whether the stopping
criteria have been met.

Table 2 shows the comparison between the random strategy and sda using the baseline
approach with two different heuristics, one based on entropies of wires alone (ew) and the
other based also on failure probabilities (fp). For each of the three systems we ran the same
set of experiments with and without pruning the d-DNNF (using the known fault cardinality
as described in Section 4.1.2), indicated in the third column of the table. Only the test
cases for the first four circuits could be solved. For other circuits the failure occurred during
the compilation phase, and hence affected both the random strategy and sda.

350

Sequential Diagnosis by Abstraction

circuit system pruning
single-fault double-fault five-fault
cost time cost time cost time

c432 rand
no 92.3 20.7 97.7 23.2 117.8 26.5

(160 gates)

yes 4.5 11.4 36.8 12.4 99.7 17.2

sda(ew)
no 42.0 16.6 42.5 21.3 68.4 25.5
yes 3.7 11.1 8.6 12.0 33.8 12.8

sda(fp)
no 6.7 11.7 6.4 12.5 9.4 13.0
yes 4.3 11.0 5.0 12.3 9.1 12.6

c499 rand
no 109.6 0.8 120.6 1.2 150.0 1.4

(202 gates)

yes 5.5 0.2 20.1 0.2 104.9 0.7

sda(ew)
no 58.1 0.7 54.0 0.5 95.8 0.8
yes 3.6 0.2 3.7 0.2 35.7 0.3

sda(fp)
no 6.5 0.2 4.3 0.2 7.2 0.2
yes 4.8 0.2 3.0 0.2 7.1 0.2

c880 rand
no 221.0 1.9 251.3 1.9 306.4 2.3

(383 gates)

yes 5.4 0.2 47.3 0.3 205.7 1.3

sda(ew)
no 26.8 0.3 32.8 0.4 79.0 0.7
yes 4.0 0.2 6.8 0.2 30.5 0.4

sda(fp)
no 10.8 0.2 9.2 0.2 15.8 0.3
yes 5.6 0.2 6.7 0.2 14.0 0.3

c1355 rand
no 327.2 4.3 365.7 5.7 437.4 5.6

(546 gates)

yes 7.4 0.4 59.0 1.0 328.6 3.5

sda(ew)
no 82.6 1.3 91.2 1.5 203.9 3.4
yes 4.9 0.4 5.5 0.4 65.9 1.1

sda(fp)
no 34.1 0.8 14.8 0.5 19.3 0.8
yes 8.0 0.4 9.4 0.6 18.4 0.6

Table 2: Effectiveness of heuristic.

It is clear that the diagnostic cost is significantly lower with both heuristics of sda than
with the random strategy whether or not pruning has been used. It is also interesting
to note that pruning significantly reduces the diagnostic cost for the random and sda-ew
strategies, but has much less effect on sda-fp except in a few cases (c1355 single-fault).
Moreover, sda-fp generally dominates sda-ew, both with and without pruning.

We may also observe that (i) on the five-fault cases, sda-fp without pruning results in
much lower diagnostic cost than sda-ew with pruning; (ii) on the double-fault cases, the two
are largely comparable; and (iii) on the single-faults cases, the comparison is reversed. This
indicates that as the fault cardinality rises, the combination of failure probabilities and wire
entropies appears to achieve an effect similar to that of pruning. That sda-ew with pruning
performs better than sda-fp without pruning on single-fault cases can be attributed to the
fact that on these cases pruning is always exact and hence likely to result in maximum
benefit.

7.2 Effectiveness of Abstraction

We now report, in Table 3, the results of repeating the same experiments with sda-fp using
the hierarchical approach.

Most notably, the running time generally reduces for all cases and we are now able to
handle two more circuits, namely c1908 and c2670, solving 139 of 300 cases for c1908 (25
of single-, 15 of double-, and 99 of five-fault cases) and 258 of 300 cases for c2670 (100 of

351

Siddiqi & Huang

circuit pruning
single-fault double-fault five-fault
cost time cost time cost time

c432 no 15.4 0.4 15.8 0.5 22.2 0.5
(64 cones) yes 4.9 0.3 10.4 0.4 21.5 0.4

c499 no 7.3 0.1 5.8 0.1 10.5 0.2
(90 cones) yes 4.5 0.1 3.9 0.1 9.6 0.2

c880 no 9.5 0.1 10.2 0.1 17.4 0.2
(177 cones) yes 5.6 0.1 7.6 0.1 16.3 0.2

c1355 no 9.3 0.3 8.2 0.2 14.0 0.3
(162 cones) yes 5.8 0.2 6.3 0.2 14.4 0.3

c1908 no 11.0 222 17.1 587 34.9 505
(374 cones) yes 3.0 214 8.5 463 32.4 383

c2670 no 16.3 213 19.2 172 25.4 58
(580 cones) yes 6.5 196 13.3 90 24.3 45

Table 3: Effectiveness of abstraction.

circuit
total abstraction cloning total abstraction size
gates size time clones after cloning

c432 160 59 0.03 27 39

c499 202 58 0.02 0 58

c880 383 77 0.1 24 57

c1355 58 58 0.05 0 58

c1908 880 160 0.74 237 70

c2670 1193 167 0.77 110 116

c3540 1669 353 5.64 489 165

c5315 2307 385 3.6 358 266

c6288 2416 1456 0.16 0 1456

c7552 3512 545 6.68 562 378

Table 4: Results of preprocessing step of cloning.

single-, 60 of double-, and 98 of five-fault cases). Again all failures occurred during the
compilation phase. Note that some observations do not cause sufficient simplification of
the theory for it to be successfully compiled even after abstraction. In terms of diagnostic
cost, in most cases the hierarchical approach is comparable to the baseline approach. On
c432, the baseline approach consistently performs better than the hierarchical in each fault
cardinality, while the reverse is true on c1355. Note also that pruning helps further reduce
the diagnostic cost to various degrees as with the baseline approach.

As discussed earlier, the results confirm that the main advantage of hierarchical approach
is that larger circuits can be solved. For circuits that can also be solved by the baseline
approach, hierarchical approach may help reduce the diagnostic cost by quickly finding
faulty portions of the circuit, represented by a set of faulty cones, and then directing the
measurements inside them, which can result in more useful measurements (e.g. in the case
of c1355). On the other hand, it may suffer in cases where it has to needlessly go through
hierarchies to locate the actual faults, while the baseline version can find them more directly
and efficiently (e.g. in the case of c432). This is further discussed in Section 7.4.

352

Sequential Diagnosis by Abstraction

circuit
single-fault double-fault five-fault
cost time cost time cost time

c432 7.2 10.3 6.6 7.8 9.6 9.7

c880 11.2 0.2 9.3 0.2 16.2 0.3

Table 5: Effect of component cloning on diagnostic performance.

circuit
single-fault double-fault five-fault
cost time cost time cost time

c432 15.2 0.1 14.8 0.1 20.2 0.1

c880 8.8 0.1 9.3 0.1 15.8 0.2

c1908 13.6 2.8 18.3 5.0 35.4 5.1

c2670 13.5 4.5 15.3 0.7 20.1 2.3

c3540 27.8 382 30.5 72.5 36.1 108.6

c5315 7.2 2.5 21.1 5.9 24.4 6.6

c7552 70.6 1056 43.1 129.0 104.8 1108

Table 6: Hierarchical sequential diagnosis with component cloning (c499 and c1355 omit-
ted as they are already easy to diagnose and cloning does not lead to reduced
abstraction).

7.3 Effectiveness of Component Cloning

In this subsection we discuss the experiments with component cloning. We show that cloning
does not significantly affect diagnostic cost and allows us to solve much larger circuits, in
particular, nearly all the circuits in the ISCAS-85 suite.

Table 4 shows the result of the pre-processing step of cloning on each circuit. The
columns give the name of the circuit, the total number of gates in that circuit, the size of
the abstraction of the circuit before cloning, the time spent on cloning, the total number of
clones created in the circuit, and the abstraction size of the circuit obtained after cloning.
On all circuits except c499, c1355, and c6288, a significant reduction in the abstraction size
has been achieved. c6288 appears to be an extreme case with a very large abstraction that
lacks hierarchy; while gates in the abstractions of c499 and c1355 are all roots of cones,
affording no opportunities for further reduction (note that these two circuits are already
very simple and easy to diagnose).

We start by investigating the effect of component cloning on diagnostic performance.
To isolate the effect of component cloning we use the baseline version of sda (i.e., without
abstraction), and without pruning. Table 5 summarizes the performance of baseline sda
with cloning on the circuits c432 and c880. Comparing these results with the correspond-
ing entries in Table 2 shows that the overall diagnostic cost is only slightly affected by
cloning. We further observed that in a significant number of cases the proposed measure-
ment sequence did not change after cloning, while in most of the other cases it changed
only insubstantially. Moreover, in a number of cases, although a substantially different
sequence of measurements was proposed, the actual diagnostic cost did not change much.
Finally, note that the diagnosis time in the case of c432 has reduced after cloning, which
can be ascribed to the general reduction in the complexity of compilation due to a smaller
abstraction.

353

Siddiqi & Huang

circuit
total max. cone abstraction measurement

AC IC EDC
cases single-fault

cases inputs size points solved cost time

c432 800
38 39 32 11.51 5.67 17.1 800 15.2 0.06
18 49 42 5.22 6.05 11.2 800 11.0 0.1
14 52 45 4.87 6.11 10.9 800 11.0 0.1
9 53 46 4.64 6.14 10.8 800 10.7 0.1
4 104 97 2.11 6.72 8.8 800 8.8 0.3
0 187 180 0.00 7.50 7.5 800 7.3 7.3

c499 1010
8 58 26 3.77 5.32 9.0 1010 7.3 0.1
5 74 42 3.13 5.91 9.0 1010 7.7 0.1
3 170 138 0.71 7.10 7.8 1010 9.4 0.1
0 202 170 0.0 7.40 7.4 1010 6.4 0.1

c880 1915
16 57 31 6.54 5.42 11.9 1915 8.7 0.1
14 74 48 5.75 6.02 11.7 1915 8.5 0.1
10 105 79 4.22 6.72 10.9 1915 8.0 0.1
6 170 144 2.70 7.48 10.1 1915 8.6 0.1
0 407 381 0.0 8.57 8.5 1915 10.8 0.2

c1355 2730
8 58 26 3.59 6.34 9.9 2730 9.30 0.1
5 98 66 2.74 7.20 9.9 2730 12.55 0.2
4 114 82 2.47 7.27 9.7 2730 12.39 0.2
3 266 234 1.43 8.23 9.6 2730 22.5 0.3
2 426 394 0.43 8.77 9.2 2730 33.5 0.4
0 546 514 0.0 9.00 9.0 2730 34.0 0.4

c1908 859
40 70 45 14.37 7.07 21.4 859 18.7 2.6
29 76 51 12.85 7.15 20.0 859 17.8 5.8
28 80 55 12.70 7.23 19.9 859 18.3 5.9
27 82 57 12.62 7.27 19.8 859 18.2 5.9
20 138 113 8.36 7.82 16.2 859 17.7 15.0
18 150 125 7.79 7.92 15.7 859 17.7 47.5

c2670 989
55 56 52 17.84 6.40 24.2 989 19.2 0.7
34 58 57 16.19 6.53 22.7 989 19.1 0.8
33 128 64 15.63 6.68 22.3 989 18.6 0.8
25 178 114 11.52 7.44 18.9 970 16.1 79.0

Table 7: Effectiveness of diagnostic cost estimation.

Our final set of experimental results with ISCAS-85 circuits, summarized in Table 6,
illustrates the performance of hierarchical sequential diagnosis with component cloning—
the most scalable version of sda. All the test cases for circuits c1908 and 2670 were now
solved, and the largest circuits in the benchmark suite could now be handled: All the cases
for c5315, 164 of the 300 cases for c3540 (34 of single-, 65 of double-, and 65 of five-fault
cases), and 157 of the 300 cases for c7552 (60 of single-, 26 of double-, and 71 of five-
fault cases) were solved. In terms of diagnostic cost cloning generally resulted in a slight
improvement. In terms of time the difference is insignificant for c432 and c880, and for the
larger circuits (c1908 and c2670) diagnosis with cloning was clearly more than an order of
magnitude faster.

7.4 Effectiveness of Diagnostic Cost Estimation

Finally, we demonstrate the effectiveness of our cost estimation function. We show that it
is often possible to destroy different cones to obtain different abstractions of a system that

354

Sequential Diagnosis by Abstraction

can all be successfully compiled, and then, using the cost estimation function, select an
abstraction to be used for diagnosis that is more likely to give optimal average cost. These
results also help explain why in some cases the hierarchical approach causes diagnostic cost
to increase compared with the baseline approach.

In these experiments, we use sda with cloning and include circuits up to c2670, consid-
ering only single-fault test cases. We did not include the largest circuits in our analysis as
these circuits often could not be compiled after some cones in them were destroyed; there-
fore it was not possible to obtain an overall picture of the actual cost for these circuits. Test
cases for circuits up to c1355 are the same as used before, whereas for circuits c1908 and
c2670, this time, we use a more complete set of cases as done for smaller circuits. Specif-
ically, we generate n fault scenarios for each circuit, where n equals the number of gates
in the circuit: Each scenario contains a different faulty gate. We then randomly generate
1 test case for each of these n scenarios (in some cases, we could not obtain a test case in
reasonable time and the corresponding scenarios were not used).

The results of experiments are summarized in Table 7. For each circuit the first row
shows results when all cones have been considered and the subsequent rows show results
when all cones having more than a specified number of inputs (in column 3) have been
destroyed. When the value in column 3 is 0 we get the trivial abstraction, where all cones
have been destroyed, which is equivalent to using the baseline approach. The last two
columns show the (actual) average cost and time for diagnosing a circuit using the given
abstraction. The columns labeled with AC, IC, and EDC show values obtained using the
equations 6, 5, and 7, respectively, for a given abstraction.

The results show that we are often able to destroy several cones while still being able to
compile the circuit successfully. However, quite naturally, the compilation time increases as
more cones are destroyed such that at some point the circuits start to fail to compile, where
we stop destroying cones. The actual diagnostic cost on different circuits show different
trends each time some cones have been destroyed. For example, on c432 it shows significant
improvement while the reverse is true for c1355. On remaining circuits the actual cost shows
somewhat mixed trends; however, the relative increase or decrease in the costs is generally
less significant.

Comparison of the isolation and abstraction costs (i.e., IC and AC, respectively) for
various abstractions confirms that each time some cones are destroyed the isolation cost
increases while the abstraction cost decreases. It is the potentially imbalanced change in
the two costs that determines whether the cost might go up or down after the cones are
destroyed. For example, in the case of c432 the abstraction cost drops more rapidly than
the isolation cost increases when cones are destroyed, while in the case of c1355 the two
costs change almost at the same pace.

Comparison of the predicted costs EDC with the actual costs shows that for c432,
c499, c1908, and c2670 the predicted costs are often quite close to the actual costs, which
demonstrates the relative accuracy of our approach. As a result, for these circuits the
cost estimation function can accurately predict the abstraction that is more likely to give
optimal cost. For example, it correctly suggests that one should use the baseline approach
with c432. For the other two circuits, c880 and c1355, the predicted and actual costs are
significantly different, and the cost estimation function fails to give good predictions. c1355

355

Siddiqi & Huang

seems to be a special case in which the actual diagnostic cost increases quite rapidly as
cones are destroyed, the reason for which will be an interesting topic for future work.

8. Related Work

Out et al. (1994) considered two kinds of hierarchical models and discussed automatic
methods for constructing their abstractions. In the first kind, components of the given
detailed model are aggregated into single components of the abstract model, such that every
diagnosis of the detailed model, refined from a diagnosis of the abstract model, is guaranteed
to be valid. Thus there is no need to check the validity of detailed diagnoses afterwards.
In the second kind, the abstract model is constructed such that it is always possible to
determine a unique diagnosis at every level of the hierarchy with a reasonable cost, where the
measurements that are less costly to make appear in the most abstract model and the more
costly measurements appear in the most detailed model. More techniques for automatic
abstraction-based on system observability were discussed by Torta and Torasso (2003, 2008).
These papers provide alternative techniques to automatic abstraction; however, they do not
address sequential diagnosis.

The idea of testing the most likely failing component comes from Heckerman et al. (1995),
where the testing of a component was considered a unit operation and components were
tested in decreasing order of their likelihood of failure, which was computed assuming a
single fault (this assumption could compromise the quality of the measurement sequence
in multiple-fault cases as the authors pointed out). In our case, by contrast, the testing of
each variable of a component is a unit operation, calling for a more complex heuristic in
order to minimize the number of tests; also, we do not need to assume a single fault. Our
work also goes further in scalability using several structure-based techniques: compilation,
abstraction, and component cloning.

Chittaro & Ranon (2004) considered the computation of diagnoses using a hierarchical
algorithm. Their method takes a hierarchical decomposition of the system as input, where
sets of components are aggregated into units, and computes a set of diagnoses at the most
abstract level, which are then refined hierarchically to the most detailed level. Feldman &
van Gemund (2006) developed a hierarchical diagnosis algorithm and tested it on reverse
engineered ISCAS-85 circuits (Hansen, Yalcin, & Hayes, 1999) that are available in high-
level form. The idea is to decompose the system into hierarchies in such a way as to minimize
the sharing of variables between them. This can be done for well engineered problems and
they have formed hierarchies by hand for ISCAS-85 circuits. The system is represented
by a hierarchical logical formula where each hierarchy is represented by a traditional CNF
formula. This representation can be translated to a fully hierarchical DNF, a fully flattened
DNF, or a partially flattened DNF dictated by a depth parameter, after which a hierarchical
search algorithm is employed to find the diagnoses. The hierarchical aspect of these two
approaches is similar to that of ours; however, they require a hierarchical decomposition of
the system to be either given as part of the input, or obtained by hand, while our approach
searches for hierarchies automatically. Another major difference is that they consider only
the computation of diagnoses and do not address the problem of sequential diagnosis.

Based on the gde framework, de Kleer (2006) studied the sensitivity of diagnostic
cost to what is called the ε-policy, which is the policy that quantifies how the posterior

356

Sequential Diagnosis by Abstraction

probabilities of diagnoses are to be estimated when gde computes its heuristic. In our
case, probabilities of diagnoses are not required at all, and the other probabilities that
are required can all be computed exactly by evaluating and differentiating the d-DNNF.
Nevertheless, our algorithm can be sensitive to the initial probabilistic model given and
sensitivity analysis in this regard may lead to interesting findings.

Recently, Flesch, Lucas, & van der Weide (2007) proposed a new framework to integrate
probabilistic reasoning into model-based diagnosis. The framework is based upon the notion
of conflict measure, which originated as a tool for the detection of conflicts between an
observation and a given Bayesian network (Jensen, 2001). When a system is modeled as
a Bayesian network for diagnostic reasoning, it is possible to use this conflict measure to
differentiate between diagnoses according to their degree of consistency with a given set of
observations. This work, however, does not address the problem of sequential diagnosis,
i.e., locating actual faults by taking measurements.

Most recently, Feldman, Provan, and van Gemund (2009) proposed a related method
for reducing diagnostic uncertainty. While our work attempts to identify the actual faults
with the fewest individual measurements, their heuristic was aimed at reducing the number
of diagnoses with the fewest test vectors.

9. Conclusion

We have presented a new system for sequential diagnosis, called sda, that employs four
new structure-based techniques to scale diagnosis to larger systems. Specifically, it uses
a heuristic for measurement selection that can be computed efficiently from the d-DNNF
compilation of the system. To diagnose larger systems, it automatically computes a struc-
tural abstraction of the system and performs diagnosis in a hierarchical fashion. It then
employs a structure-based technique for further reducing the abstraction size of the system,
which scales the diagnosis to the largest benchmark systems. Finally, it can automatically
select an abstraction of the system that is more likely to give optimal average cost.

Acknowledgments

We thank the anonymous reviewers for their comments. NICTA is funded by the Australian
Government as represented by the Department of Broadband, Communications and the
Digital Economy and the Australian Research Council through the ICT Centre of Excellence
program. Part of this work has appeared in KR 2010 (Siddiqi & Huang, 2010); another
part of this work was carried out during July–September 2010 while the first author was
visiting NICTA.

Appendix A. Computing Probabilities on d-DNNF

Here we briefly describe the computation of probabilities based on d-DNNF compilations of
Bayesian networks. d-DNNF is a graph representation of a nested and/or expression where
negation only appears next to variables, children of every and-node have disjoint sets of
variables (decomposability), and children of every or-node are pairwise logically inconsistent

357

Siddiqi & Huang

¬θJ

or

or or

andand

okA

okJ

and

θA¬okA

and

θJ¬okJ

and

¬J and

and

and

P D A

0.1 0.90.5 0.5 0.50.1

0.9 0.05

0.95

0.05

0.0475

0

1 1 1

1

0

0.05

0.95

0

J
1

0.0475

0.0475

Figure 6: d-DNNF compilation of subcircuit (dotted) in Figure 1 given the observation
A ∧ P ∧D and computation of the posterior probability of J = 1.

(determinism). For example, Figure 6 shows a d-DNNF compilation of the subcircuit in
the dotted box of Figure 1 under the observation A ∧ P ∧D.

Given a d-DNNF compilation, the probability Pr(E = e) for an instantiation e of any set
of variables E can be obtained by the following linear-time procedure: (i) Set all variables E
to Boolean constants according to the instantiation e, (ii) set all other literals (not in E) to
true except those that have numbers associated with them (negative literals are associated
with 1 minus the corresponding numbers for the positive literals), and (iii) evaluate the d-
DNNF bottom-up by treating true as 1, false as 0, the remaining leaves as their associated
numbers, or-nodes as additions, and and-nodes as multiplications. The number at the root
will be Pr(E = e). For example, Figure 6 shows the computation of the probability of J = 1
given the observation A∧P ∧D. Thus e = {A = 1, P = 1, D = 1, J = 1}. In the d-DNNF,
we set A = 1, P = 1, D = 1, J = 1,¬J = 0. The rest of the literals are given values that
are associated with them (discussed in Section 3.2).

Furthermore, a second traversal of the d-DNNF, from the top down, can effectively
differentiate the d-DNNF so that updated probabilities are computed at once for every
possible change in the value of a variable (e.g., from unknown to known) (Darwiche, 2003).
This is useful for our measurement point selection where we need to update the entropies
for all candidate measurement points.

Appendix B. Cardinality-based Model Pruning

Here we present the technique referred to in Section 4 that can be used to remove a signif-
icantly large number (if not all) of diagnoses of cardinality > k from the d-DNNF.

The value of k must be greater or equal to the minimum-cardinality of the d-DNNF
for pruning to occur. If k is equal to the minimum-cardinality of the d-DNNF then all
diagnoses with cardinality > k can be removed using the minimization procedure described

358

Sequential Diagnosis by Abstraction

Figure 7: Pruning d-DNNF to improve heuristic accuracy.

by Darwiche (2001). If, however, k is greater than the minimum-cardinality of the d-DNNF
then we need a similar but modified minimization algorithm to make sure we do not remove
diagnoses of cardinality ≤ k.

While a complete pruning is difficult to achieve in general, an approximation is possible.
In a naive approach, one may remove every child l of every or-node n for which minimum-
cardinality (mc) of l is greater than k, which will be sound in that it will never remove
diagnoses of cardinality ≤ k but may result in too little pruning in many cases. We can
increase the amount of pruning performed by computing local value k(n) for every node n
given the global k for the whole d-DNNF using a top-down traversal through the d-DNNF:
Every node n suggests a value k(l) for its child l and the largest of these values is accepted to
be the final value of k(l) (this is essential to avoid possibly removing diagnoses of cardinality
≤ k). More pruning can occur in this way because k(n) can often be less than the global
k. Once k(n) has been computed for every node, every child l of every or-node n for which
mc(l) > k(l) can then be pruned.

We now give the pruning algorithm which performs a two pass traversal through the
d-DNNF. The mc(n) is updated during upward traversal and represents the minimum-
cardinality of diagnoses under a node n, whereas the k(n) is updated during downward
traversal and represents the upper bound on the fault-cardinality for a node which is used
to prune branches emanating from the node whose mc(n) exceeds the k(n).

The two passes of the procedure are as follows: Initialize mc(n) to 0 and k(n) to -∞
(least possible value) for all n. Traverse the d-DNNF so that children are visited before
parents and for every leaf node, set mc(n) to 1 if n is a negated health variable and 0
otherwise; for every or-node, set mc(n) to the minimum of the values of mc of its children;
for every and-node set mc(n) to the sum of the values of mc of its children. Now traverse
the d-DNNF so that parents are visited before children and set k(n) for the root node to
the value k; for every or-node, remove every child p of n for which mc(p) > k(n) and for
every remaining child v set k(v) to k(n) if k(n) > k(v); for every child p of every and-node,
let tp be the sum of the values of mc of all the other children and set k(p) to the value tp if
tp > k(p).

In the above procedure the conditions k(n) > k(v) and tp > k(p) while updating k for
a node ensure that only a safe value for k is set. An example is shown in Figure 7. The
mc (left) and k (right) values are shown for each node. The branches labeled α, β, γ, and

359

Siddiqi & Huang

G1

G2

G4

G5

C1

C2

G3

G6

I1

I2

I3

Figure 8: A combinational circuit generated randomly from a set of components consisting
of gates G1, G2, . . . , G6 and cones C1, C2, when they are processed in the order:
G1, C1, G2, G3, G4, C2, G5, G6.

N
total average approx. abstraction total abstraction size
gates depth treewidth size clones after cloning

32 104 26.9 13 26 32 17

40 130 31.6 16 31 42 20

48 156 30.3 17 38 69 24

56 182 34.8 21 45 68 28

64 208 37.6 24 51 84 32

72 234 41.1 26 59 108 38

80 260 39.3 29 66 128 41

88 286 41.6 32 71 158 42

96 312 46.3 34 79 172 48

104 338 43.4 36 82 177 49

112 364 41.8 39 90 194 57

120 390 48.5 43 97 218 61

128 416 48.1 45 104 194 65

136 442 50.7 48 112 243 72

144 468 48.2 51 116 265 70

152 494 50.8 51 123 272 78

Table 8: Randomly generated combinational circuits (N, 25, 5).

η are subgraphs associated with hypothetical values for mc. The figure shows that the
minimum-cardinality for every node (mc) is less than or equal to the bound (k) except for
the branch labeled η, which gets pruned accordingly.

Appendix C. Randomly Generated Combinational Circuits

In this section we use a novel method to systematically generate series of combinational
circuits such that their structure and size can be controlled. This enables the evaluation of
our techniques on circuits other than ISCAS-85 benchmarks, which has helped us identify
factors that affect the diagnostic cost, leading us to the cost estimation function given in
Section 6. Specifically, we observe that for circuits of a similar structure, diagnostic cost
generally increases with circuit size, which helped us devise the notion of isolation cost; and

360

Sequential Diagnosis by Abstraction

that when circuit size is held constant, diagnostic cost generally increases with the number
of cones in the circuit, which helped us devise the notion of abstraction cost.

The circuits are generated by composing a set of pre-formed building blocks. The latter
consist of both gates and cones. The gates are taken from a pool of six gates of types OR,
NOR, AND, NAND, NOT, and BUFFER, and the cones from a pool of eight cones, each
of which has 10 gates and is extracted from ISCAS-85 benchmark circuits.

Our composition method is inspired from the method of generating random Bayesian
networks described by Marinescu, Kask, and Dechter (2003). The circuits are generated
according to a formula (N,P, I), where N is the number of components (building blocks)
to use, P the percentage of cones in the components, and I the maximum number of inputs
a gate can have. To generate the N components we randomly pick (P/100)∗N cones (with
repetition) from the pool of cones and N − (P/100) ∗ N gates (with repetition) from the
pool of gates and place them in a random order. The number of inputs of each gate is set
randomly between 2 and I, except for a NOT or BUFFER gate which can have only one
input.

We then process each component as follows: Suppose that the components are placed
in the order C1, C2, . . . , CN . Let Pi be the set of components that precede Ci in the
order. When we process a component Ci we connect every input of Ci to the output of a
randomly chosen component from Pi such that no two inputs of Ci are connected to the
same component. If an input of Ci cannot be connected (either because Pi is empty or all
the components in Pi have been used) then it is treated as a primary input of the circuit.
For example, the circuit in Figure 8 has been randomly generated according to the formula
(8, 25, 2), where the components shown in the boxes represent cones.

By varying the parameters (N,P, I) we can obtain circuits of varying size and structure.
First we fix P = 25, I = 5 and vary N to generate a range of circuits of increasing size. For
each N we generate 10 circuits. These circuits are summarized in Table 8. The numbers in
the columns are averaged over all circuits of a given size, and rounded off. Generally, when
N is increased we see an increase in the abstraction size as well as the estimated treewidth,
corresponding to an increase in the perceived difficulty of the circuit (e.g., note that the
largest circuit in this set is smaller than c1355, but the estimated treewidth of c1355 is much
lower, at 25; the actual compilation was indeed harder for the former circuit). For each
circuit we randomly generate 10 single-fault, 10 double-fault, and 10 five-fault scenarios and
a single test case for each scenario.

The results of experiments with these circuits are given in Tables 9, 10, and 11, using
the baseline, hierarchical, and cloning techniques, respectively. These results are generally
consistent with those obtained using the ISCAS-85 circuits. The baseline sda could not
solve any circuit beyond (72, 25, 5). The hierarchical sda solved more circuits but could
not solve any circuit beyond (80, 25, 5). The most scalable version of sda, with component
cloning, solved much larger circuits, up to (168, 25, 5).

Note that there is a general trend of increase in diagnostic cost with increase in N . This
is consistent with one’s intuitive expectation that diagnostic uncertainty would increase with
system size. Also note that diagnostic cost is often significantly higher for the hierarchical
approach than the baseline approach. As discussed earlier, this can be attributed to the
fact that the hierarchical approach often has to go through hierarchies of cones to reach a
faulty gate, which the baseline approach may be able to reach more directly.

361

Siddiqi & Huang

N
total

pruning
single-fault double-fault five-fault

gates solved cost time solved cost time solved cost time

32 104 no 100 5.86 0.56 100 6.34 0.57 100 9.19 0.60
yes 100 4.81 0.54 100 5.24 0.55 100 8.22 0.59

40 130 no 100 5.82 4.31 100 7.05 4.51 100 11.53 5.09
yes 100 4.5 4.16 100 5.08 4.28 100 10.35 4.93

48 156 no 100 6.58 32.43 100 8.72 32.75 100 11.19 34.87
yes 100 4.73 31.27 100 5.9 31.14 100 9.46 33.84

56 182 no 80 5.26 190.99 80 6.9 192.69 80 11.05 202.4
yes 80 3.58 185.32 80 5.62 190.25 80 8.325 197.05

64 208 no 50 5.58 532.82 50 6.9 540.31 50 13.94 581.11
yes 50 5.02 527.24 50 4.72 525.02 50 9.84 558.79

72 234 no 10 6.2 207.89 10 9.5 230.72 10 27.5 354.80
yes 10 6.2 207.49 10 5.8 205.41 10 11.4 248.20

Table 9: Baseline heuristic on randomly generated circuits (N, 25, 5).

N
total

pruning
single-fault double-fault five-fault

gates solved cost time solved cost time solved cost time

32 104 no 100 7.81 0.15 100 8.78 0.16 100 12.59 0.18
yes 100 3.42 0.15 100 5.87 0.16 100 11.88 0.17

40 130 no 100 7.2 0.71 100 8.19 0.72 100 13.77 0.75
yes 100 3.07 0.70 100 5.18 0.71 100 12.94 0.73

48 156 no 100 7.03 4.10 100 8.12 4.14 100 12.78 4.26
yes 100 3.18 4.01 100 4.96 4.02 100 11.51 4.08

56 182 no 100 7.81 42.63 100 9.1 43.58 100 11.92 43.64
yes 100 2.98 41.60 100 6.31 42.23 100 11.1 42.19

64 208 no 80 8.35 108.61 80 9.11 107.96 80 14.85 111.04
yes 80 3.31 107.05 80 5.35 106.31 80 13.56 107.71

72 234 no 30 7.56 120.59 30 9.83 122.50 30 12.66 123.81
yes 30 2.8 118.35 30 5.53 118.57 30 11.2 119.93

80 260 no 10 6.9 190.66 10 9.2 193.58 10 12.4 197.29
yes 10 2.8 188.95 10 4.6 189.73 10 10.5 190.07

Table 10: Hierarchical heuristic on randomly generated circuits (N, 25, 5).

We also observe that, again, pruning leads to a general improvement in diagnostic cost.
The improvement is more significant for the hierarchical approach, which can be explained
by the fact that the effect of pruning is much greater on the abstract model, as each branch
pruned can correspond to a large part of the original system.

We now perform another set of experiments to study the impact of hierarchy in a
controlled manner. This time we hold the size of the circuits more or less constant and
vary the percentage of cones in them. Specifically, we generate a large number of random
circuits with P ranging from 0 to 50, such that for each value of P the generated circuits
contain 120 gates on average.

The experiments on these circuits are summarized in Table 12. Note that as P increases
the estimated treewidth of the circuits decreases, as would be expected, and the actual
compilation time indeed also decreases. The diagnostic cost, on the other hand, increases
steadily up to P = 25 and remains more or less flat afterwards. This confirms the potential

362

Sequential Diagnosis by Abstraction

N
total single-fault double-fault five-fault
gates solved cost time solved cost time solved cost time

32 104 100 7.86 0.04 100 8.78 0.05 100 12.13 0.06

40 130 100 8.12 0.05 100 9.6 0.06 100 13.58 0.08

48 156 100 8.25 0.07 100 9.34 0.08 100 12.6 0.10

56 182 100 9.03 0.12 100 10.4 0.13 100 13.37 0.15

64 208 100 10.06 0.45 100 10.73 0.46 100 15.41 0.49

72 234 100 9.15 0.78 100 11.38 0.80 100 15.44 0.84

80 260 100 9.78 0.83 100 11.38 0.85 100 15.5 0.89

88 286 100 9.56 0.78 100 10.87 0.79 100 16.6 0.84

96 312 100 10.4 1.85 100 10.81 1.87 100 17.87 1.97

104 338 100 10.03 4.23 100 11.79 4.26 100 16.95 4.34

112 364 100 10.44 29.20 100 11.76 29.39 100 17.62 29.93

120 390 100 10.36 39.88 100 13.6 40.15 100 20.76 41.17

128 416 90 11.17 98.70 90 13.73 99.08 90 19.33 100.73

136 442 90 11.82 220.41 90 13.76 221.63 89 20.25 225.58

144 468 80 12.08 207.69 80 15.05 207.68 80 19.92 210.86

152 494 40 12.7 256.43 40 14.72 257.5 40 23.02 260.41

160 520 40 12.5 476.93 40 14.15 479.33 40 18.5 479.83

168 546 10 8.7 84.16 10 10.1 84.44 10 15.1 85.27

Table 11: Component cloning on randomly generated circuits (N, 25, 5).

P
total

treewidth
single-fault double-fault five-fault

circuits cost time cost time cost time

0 1000 32 5.7 8.8 7.7 8.8 13.5 9.0

5 600 23 6.7 0.9 8.0 0.9 13.0 0.9

10 900 21 7.5 0.5 8.7 0.5 13.2 0.5

15 1000 18 7.7 0.1 9.1 0.1 12.2 0.1

20 1100 17 8.0 0.1 9.4 0.1 12.3 0.1

25 1300 15 9.2 0.1 10.3 0.1 13.6 0.1

50 800 12 8.6 0.06 10.0 0.07 12.4 0.1

Table 12: Component cloning on randomly generated circuits (N ,P ,5).

negative impact of hierarchy on the diagnostic cost we hypothesized: As P increases the
likelihood of a fault occurring inside a cone also increases and thus on average one has to
take more measurements, many on inputs to cones, to locate a fault. That diagnostic cost
does not further increase after P = 25 is consistent with the observation that since the
circuit size is fixed at roughly 120 and each cone contributes 10 gates to the circuit, when
P increases to some point, there will be very few gates lying outside cones and hence the
likelihood of a fault occurring in a cone will have more or less plateaued.

References

Brglez, F., & Fujiwara, H. (1985). A neutral netlist of 10 combinational benchmark cir-
cuits and a target translator in Fortran. In Proceedings of the IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 695–698.

Chittaro, L., & Ranon, R. (2004). Hierarchical model-based diagnosis based on structural
abstraction. Artificial Intelligence, 155 (1-2), 147–182.

363

Siddiqi & Huang

Choi, A., Chavira, M., & Darwiche, A. (2007). Node splitting: A scheme for generat-
ing upper bounds in Bayesian networks. In Proceedings of the 23rd Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 57–66.

Darwiche, A., & Marquis, P. (2002). A knowledge compilation map. Journal of Artificial
Intelligence Research, 17, 229–264.

Darwiche, A. (2001). Decomposable negation normal form. Journal of the ACM, 48 (4),
608–647.

Darwiche, A. (2003). A differential approach to inference in Bayesian networks. Journal of
the ACM, 50 (3), 280–305.

Darwiche, A. (2004). New advances in compiling CNF into decomposable negation nor-
mal form. In Proceedings of the 16th European Conference on Artificial Intelligence
(ECAI), pp. 328–332.

Darwiche, A. (2005). The c2d compiler user manual. Tech. rep. D-147, Computer Science
Department, UCLA. http://reasoning.cs.ucla.edu/c2d/.

de Kleer, J., & Williams, B. C. (1987). Diagnosing multiple faults. Artificial Intelligence,
32 (1), 97–130.

de Kleer, J. (1992). Focusing on probable diagnosis. In Readings in model-based diagnosis,
pp. 131–137. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

de Kleer, J. (2006). Improving probability estimates to lower diagnostic costs. In 17th
International Workshop on Principles of Diagnosis (DX).

de Kleer, J., Raiman, O., & Shirley, M. (1992). One step lookahead is pretty good. In
Readings in model-based diagnosis, pp. 138–142. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Feldman, A., & van Gemund, A. (2006). A two-step hierarchical algorithm for model-
based diagnosis. In Proceedings of the 21st AAAI Conference on Artificial Intelligence
(AAAI), pp. 827–833.

Feldman, A., Provan, G. M., & van Gemund, A. J. C. (2009). FRACTAL: Efficient fault
isolation using active testing. In Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI), pp. 778–784.

Flesch, I., Lucas, P., & van der Weide, T. (2007). Conflict-based diagnosis: Adding un-
certainty to model-based diagnosis. In Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 380–385.

Forbus, K. D., & de Kleer, J. (1993). Building problem solvers. MIT Press, Cambridge,
MA, USA.

Hansen, M. C., Yalcin, H., & Hayes, J. P. (1999). Unveiling the ISCAS-85 benchmarks: A
case study in reverse engineering. IEEE Design and Test of Computers, 16 (3), 72–80.

364

Sequential Diagnosis by Abstraction

Heckerman, D., Breese, J. S., & Rommelse, K. (1995). Decision-theoretic troubleshooting.
Communications of the ACM, 38 (3), 49–57.

Jensen, F. V. (2001). Bayesian networks and decision graphs. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Kirkland, T., & Mercer, M. R. (1987). A topological search algorithm for ATPG. In
Proceedings of the 24th Conference on Design Automation (DAC), pp. 502–508.

Marinescu, R., Kask, K., & Dechter, R. (2003). Systematic vs. non-systematic algorithms
for solving the MPE task. In Proceedings of the 19th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 394–402.

Out, D.-J., van Rikxoort, R., & Bakker, R. (1994). On the construction of hierarchic models.
Annals of Mathematics and Artificial Intelligence, 11 (1-4), 283–296.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: Networks of plausible infer-
ence. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Pipatsrisawat, K., & Darwiche, A. (2007). Clone: Solving weighted Max-SAT in a reduced
search space. In Proceedings of the 20th Australian Joint Conference on Artificial
Intelligence (AI), pp. 223–233.

Siddiqi, S., & Huang, J. (2007). Hierarchical diagnosis of multiple faults. In Proceedings of
the 20th International Joint Conference on Artificial Intelligence (IJCAI), pp. 581–
586.

Siddiqi, S., & Huang, J. (2010). New advances in sequential diagnosis. In Proceedings of
the Twelfth International Conference on Principles of Knowledge Representation and
Reasoning (KR), pp. 17–25.

Torta, G., & Torasso, P. (2003). Automatic abstraction in component-based diagnosis driven
by system observability. In Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 394–402.

Torta, G., & Torasso, P. (2008). A symbolic approach for component abstraction in model-
based diagnosis. In 19th International Workshop on Principles of Diagnosis (DX).

365

