
Journal of Artificial Intelligence Research 41 (2011) 231-266 Submitted 11/2010; published 06/2011

Probabilistic Relational Planning

with First Order Decision Diagrams

Saket Joshi joshi@eecs.oregonstate.edu

School of Electrical Engineering and Computer Science
Oregon State University
Corvallis, OR 97331, USA

Roni Khardon roni@cs.tufts.edu

Department of Computer Science

Tufts University

Medford, MA, 02155, USA

Abstract

Dynamic programming algorithms have been successfully applied to propositional stochas-
tic planning problems by using compact representations, in particular algebraic decision
diagrams, to capture domain dynamics and value functions. Work on symbolic dynamic
programming lifted these ideas to first order logic using several representation schemes.
Recent work introduced a first order variant of decision diagrams (FODD) and developed a
value iteration algorithm for this representation. This paper develops several improvements
to the FODD algorithm that make the approach practical. These include, new reduction
operators that decrease the size of the representation, several speedup techniques, and
techniques for value approximation. Incorporating these, the paper presents a planning
system, FODD-Planner, for solving relational stochastic planning problems. The system
is evaluated on several domains, including problems from the recent international planning
competition, and shows competitive performance with top ranking systems. This is the
first demonstration of feasibility of this approach and it shows that abstraction through
compact representation is a promising approach to stochastic planning.

1. Introduction

Planning under uncertainty is one of the core problems of Artificial Intelligence. Over the
years research on automated planning has produced a number of planning formalisms and
systems. The STRIPS planning system (Fikes & Nilsson, 1971) led a generation of auto-
mated planning research. This produced a number of successful systems for deterministic
planning using various paradigms like partial order planning (Penberthy & Weld, 1992),
planning based on planning graphs (Blum & Furst, 1997), planning by satisfiability (Kautz
& Selman, 1996) and heuristic search (Bonet & Geffner, 2001). These ideas were later em-
ployed in solving the problem of planning under uncertainty (Blum & Langford, 1998; Weld,
Anderson, & Smith, 1998; Majercik & Littman, 2003; Yoon, Fern, & Givan, 2007; Teichteil-
Koenigsbuch, Infantes, & Kuter, 2008). Of these, approaches using forward heuristic search
related to the planning graph (Blum & Furst, 1997) have been very successful at the recent
international planning competitions (Yoon et al., 2007; Teichteil-Koenigsbuch et al., 2008).

Another approach to probabilistic planning is based on Markov decision processes (MDPs).
The fact that solutions to MDPs generate policies rather than action sequences is particu-

c©2011 AI Access Foundation. All rights reserved.

Joshi & Khardon

larly attractive for probabilistic planning, and this approach came to be known as Decision
Theoretic Planning (Boutilier, Dean, & Hanks, 1999a). Classical solution techniques for
MDPs, like value iteration (VI) (Bellman, 1957) and policy iteration (PI) (Howard, 1960),
are based on dynamic programming. These early solutions, however, require enumeration of
the state space. Owing to the curse of dimensionality (Bellman, 1957), even for reasonably
small problems, the state space can be very large. This can be seen easily for proposition-
ally factored domains where the state is defined by N binary variables and the number of
possible states is 2N .

Several approaches were developed to handle such propositionally factored domains
(Boutilier, Dearden, & Goldszmidt, 1999b; Kearns & Koller, 1999; Guestrin, Koller, Parr, &
Venkataraman, 2003b; Hoey, St-Aubin, Hu, & Boutilier, 1999). One of the most successful,
SPUDD (Hoey et al., 1999), demonstrated that if the MDP can be represented using alge-
braic decision diagrams (ADDs) (Bahar, Frohm, Gaona, Hachtel, Macii, Pardo, & Somenzi,
1993), then VI can be performed entirely using the ADD representation thereby avoiding
the need to enumerate the state space. Propositionally factored representations show an
impressive speedup by taking advantage of the propositional domain structure. However,
they do not benefit from the structure that exists with objects and relations. Boutilier,
Reiter, and Price (2001) developed the foundations for provably optimal solutions of re-
lational problems and provided the Symbolic Dynamic Programming (SDP) algorithm in
the context of situation calculus. This algorithm provided a framework for dynamic pro-
gramming solutions of Relational MDPs that was later employed in several formalisms and
systems (Kersting, van Otterlo, & De Raedt, 2004; Hölldobler, Karabaev, & Skvortsova,
2006; Sanner & Boutilier, 2009; Wang, Joshi, & Khardon, 2008).

The advantage of the relational representation is abstraction. One can plan at the ab-
stract level without grounding the domain, potentially leading to more efficient algorithms.
In addition, the solution at the abstract level is optimal for every instantiation of the domain
and can be reused for multiple problems. However, this approach raises some difficult com-
putational issues because one must use theorem proving to reason at the abstract level, and
because for some problems optimal solutions at the abstract level can be infinite in size. Fol-
lowing Boutilier et al. (2001) several abstract versions of the value iteration (VI) algorithm
have been developed using different representation schemes. For example, approximate
solutions based on linear function approximations have been developed and successfully ap-
plied to several problems from the international planning competitions (Sanner & Boutilier,
2009).

An alternative representation is motivated by the success of algebraic decision diagrams
in solving propositional MDPs (Hoey et al., 1999; St-Aubin, Hoey, & Boutilier, 2000).
Following this work, relational variants of decision diagrams have been defined and used for
VI algorithms (Wang et al., 2008; Sanner & Boutilier, 2009). Sanner and Boutilier report on
an implementation that did not scale well to yield exact solutions for large problems. Our
previous work (Wang et al., 2008) introduced First Order Decision Diagrams (FODD), and
developed algorithms and reduction operators for them. However, the FODD representation
requires non-trivial operations for reductions (to maintain small diagrams and efficiency)
leading to difficulties with implementation and scaling.

This paper develops several algorithmic improvements and extensions to the FODD
based solution that make the approach practical.

232

Probabilistic Planning with FODD

First, we introduce new reduction operators, named R10 and R11, that decrease the
size of the FODD representation. R10 makes a global analysis of the FODD and removes
many redundant portions of the diagram simultaneously. R11 works locally and targets a
particular redundancy that arises quite often when two FODDs are composed through a
binary operation; a procedure that is used repeatedly in the VI algorithm. We prove the
soundness of these reductions showing that when they are applied the diagrams maintain
their correct value.

Second, we present a novel FODD operation, sub-apart(A, B) that identifies minimal
conditions (in terms of variables) under which one FODD A dominates the value of another
FODD B. This new operation simultaneously expands the applicability of the R7 reduction
(Wang et al., 2008) to cover more situations and simplifies the test for its applicability, that
must be implemented in our system. We prove the soundness of this operation showing
that when it is applied with R7 the diagrams maintain their correct value.

Third, we present several techniques to speed up the FODD-based planning algorithm.
These include a sound simplification of one of the steps in the algorithm and in addition
several approximation techniques that can trade-off accuracy for improvements in run time.

Fourth, we extend the system to allow it to handle action costs and universal goals.
Incorporating all these ideas the paper presents FODD-Planner, a planning system for
solving relational stochastic planning problems using FODDs.

Fifth, we perform an experimental evaluation of the FODD-Planner system on several
domains, including problems from the recent international planning competition (IPC).
The experiments demonstrate that the new reductions provide significant speedup of the
algorithm and are crucial for its practicality. More importantly they show that the FODD-

Planner exhibits competitive performance with top ranking systems from the IPC. To
our knowledge this is the first application of a pure relational VI algorithm without linear
function approximation to problems of this scale. Our results demonstrate that abstraction
through compact representation is a promising approach to stochastic planning.

The rest of the paper is organized as follows. Section 2 gives a short introduction
to relational MDPs and FODDs. Section 3 presents techniques to speed up the FODD-

Planner. In section 4 we introduce new operators for removing redundancies in FODDs.
Section 5 describes the FODD-Planner system and in Section 6 we present the results of
experiments on planning domains from the IPC. Section 7 provides additional discussion of
related work and Section 8 concludes with a summary and ideas for future work.

2. Preliminaries

This section gives an overview of Relational MDPs, First Order Decision Diagrams and the
Symbolic Dynamic Programming algorithm.

2.1 Relational Markov Decision Processes

A Markov decision process (MDP) is a mathematical model of the interaction between an
agent and its environment (Puterman, 1994). Formally a MDP is a 5-tuple < S, A, T, R, γ >
defining

• A set of fully observable states S.

233

Joshi & Khardon

• A set A of actions available to the agent.

• A state transition function T defining the probability P (s′|s, a) of getting to state s′

from state s on taking action a.

• A reward function R(s, a) defining the immediate reward achieved by the agent for
being in state s and taking action a. To simplify notation we assume that the reward
is independent of a so that R(s, a) = R(s). However the general case can be handled
in the same way.

• A discount factor 0 ≤ γ ≤ 1 that captures the relative value of immediate actions over
future actions.

The objective of solving a MDP is to generate a policy that maximizes the agent’s total,
expected, discounted, reward. Intuitively, the expected utility or value of a state is equal
to the reward obtained in the state plus the discounted value of the state reached by the
best action in the state. This is captured by the Bellman equation as V (s) = Maxa[R(s)
+ γΣs′P (s′|s, a)V (s′)]. The discount factor γ < 1 guarantees that V (s) is finite even when
considering an infinite number of steps. For episodic tasks such as planning it provides
an incentive to find short solutions. The VI algorithm treats the Bellman equation as an
update rule V (s) ← Maxa[R(s) + γΣs′P (s′|s, a)V (s′)], and iteratively updates the value
of every state until convergence. Once the optimal value function is known, a policy can be
generated by assigning to each state the action that maximizes expected value.

A Relational MDP (RMDP) is a MDP where the world is represented by objects and
relations among them. A RMDP is specified by

1. A set of world predicates. Each literal, formed by instantiating a predicate using
objects from the domain, can be either true or false in a given state. For ex-
ample in the boxworld domain, world literals are of the form box-in-city(box, city),
box-on-truck(box, truck), and truck-in-city(truck, city).

2. A set of action predicates. Each action literal formed by instantiating an action pred-
icate using objects from the domain defines a concrete action. In the boxworld do-
main, actions have the form load-box-on-to-truck-in-city(box, truck, city), unload-box
-from-truck-in-city(box, truck, city), and drive-truck(truck, source.city, dest.city).

3. A state transition function that provides an abstract description of the probabilistic
move from one state to another. For example, using a STRIPS-like notation, the
transition defined by the action load-box-on-to-truck-in-city can be described as

Action: load-box-on-to-truck-in-city(box, truck, city):
Preconditions: box-in-city(box, city), truck-in-city(truck, city)
Outcome 1: Probability 0.8 box-on-truck(box, truck),¬box-in-city(box, city)
Outcome 2: Probability 0.2 nothing changes.

If the preconditions of the action, box-in-city(box, city) and truck-in-city(truck, city)
are satisfied, then with probability 0.8, the action will succeed generating the effect
box-on-truck(box, truck) and ¬box-in-city(box, city). All other predicate instantia-
tions remain unchanged. The state remains unchanged with probability 0.2.

234

Probabilistic Planning with FODD

4. An abstract reward function describing conditions under which rewards are obtained.
For example in the boxworld domain, the reward function is described as ∀box∀city,
destination(box, city) → box-in-city(box, city) constructed so as to capture the goal
of transporting all boxes from their source cities to their respective destination cities.

Boutilier et al. (2001) developed SDP, the first VI algorithm for RMDPs. This was an
important theoretical result for RMDPs because for a finite horizon, SDP is guaranteed to
produce the optimal value function independent of the domain size. Thus the same value
function is applicable for a logistics problem with 2 cities, 2 trucks and 2 boxes, a logistics
problem with 100 cities, 1000 trucks and 2000 boxes, and any other instance of the domain.

One of the important ideas in SDP was to represent stochastic actions as deterministic
alternatives under nature’s control. This helps separate regression over deterministic action
alternatives from the probabilities of action effects. This separation is necessary when
transition functions are represented as relational schemas abstracting over the structure of
the states. The basic outline of the relational value iteration algorithm is as follows:

1. Regression: The n step-to-go value function Vn is regressed over every deterministic
variant Aj(~x) of every action A(~x) to produce Regr(Vn, Aj(~x)). At the first itera-
tion V0 is assigned the reward function. This is not necessary for correctness of the
algorithm but is a convenient starting point for VI. Regr(Vn, Aj(~x)) describes the
conditions under which the action alternative Aj(~x) causes the state to transition to
some abstract state description in V n+1.

2. Add Action Variants: The Q-function

Q
A(~x)
Vn

= R⊕ [γ ⊗⊕j(prob(Aj(~x))⊗Regr(Vn, Aj(~x)))]

for each action A(~x) is generated. In this step the different alternatives of an action
are combined. Each alternative Aj(~x) produces Regr(Vn, Aj(~x)) from the regression
step. All the Regr(Vn, Aj(~x))s are then added each weighted by the probability of

Aj(~x). This produces the parametrized function Q
A(~x)
Vn

which describes the utility of
being in a state and taking a concrete action A(~x).

3. Object Maximization: Maximize over the action parameters of Q
A(~x)
Vn

to produce

QA
Vn

for each action A(~x), thus obtaining the value achievable by the best ground
instantiation of A(~x).

4. Maximize over Actions: The n + 1 step-to-go value function Vn+1 = maxA QA
Vn

, is
generated.

In this description of the algorithm all intermediate constructs (R, P , V etc.) are
represented in some compact form and they capture a mapping from states to values or
probabilities. The operations of the Bellman update are performed over these functions
while maintaining the compact form. The variant of SDP developed in our previous work
(Wang et al., 2008) employed First Order Decision Diagrams to represent the intermediate
constructs.

235

Joshi & Khardon

p(x)

q(y)

1 0

q(y)

1 0

(a) (b)

Figure 1: Two example FODDs. In these and all diagrams in the paper, left going edges
represent the branch taken when the predicate is true and right going edges
represent false branches.

2.2 First Order Decision Diagrams

This section briefly reviews previous work on FODDs and their use for relational MDPs
(Wang et al., 2008). We use standard terminology from First-Order logic (Lloyd, 1987).
A First Order Decision Diagram is a labeled directed acyclic graph, where each non-leaf
node has exactly 2 outgoing edges with true and false labels. The non-leaf nodes are
labeled by atoms generated from a predetermined signature of predicates, constants and an
enumerable set of variables. Leaf nodes have non-negative numeric values. The signature
also defines a total order on atoms, and the FODD is ordered with every parent smaller
than the child according to that order. Two examples of FODDs are given in Figure 1; in
these and all diagrams in the paper left going edges represent the true branches and right
edges are the false branches.

Thus, a FODD is similar to a formula in first order logic in that it shares some syntactic
elements. Its meaning is similarly defined relative to interpretations of the symbols. An
interpretation defines a domain of objects, identifies each constant with an object, and
specifies a truth value of each predicate over these objects. In the context of relational
MDPs, an interpretation represents a state of the world with the objects and relations
among them. Given a FODD and an interpretation, a valuation assigns each variable in
the FODD to an object in the interpretation. Following Groote and Tveretina (2003), the
semantics of FODDs are defined as follows. If B is a FODD and I is an interpretation,
a valuation ζ that assigns a domain element of I to each variable in B fixes the truth
value of every node atom in B under I. The FODD B can then be traversed in order to
reach a leaf. The value of the leaf is denoted MapB(I, ζ). MapB(I) is then defined as
maxζMapB(I, ζ), i.e. an aggregation of MapB(I, ζ) over all valuations ζ. For example,
consider the FODD in Figure 1(a) and the interpretation I with objects a, b and where
the only true atoms are p(a), q(b). The valuations {x/a, y/a}, {x/a, y/b}, {x/b, y/a}, and
{x/b, y/b}, will produce the values 0, 1, 0, 0 respectively. By the max aggregation semantics,
MapB(I) = max{0, 1, 0, 0} = 1. Thus, this FODD is equivalent to the formula ∃x,∃y, p(x)∧
q(y).

236

Probabilistic Planning with FODD

In general, max aggregation yields existential quantification when leaves are binary.
When using numerical values we can similarly capture value functions for relational MDPs.
Thus, every FODD with binary leaves has an equivalent formula in First-Order logic, where
all variables are existentially quantified. Conversely, every function free formula in First-
Order logic, where the variables are existentially quantified, has an equivalent FODD rep-
resentation.1 FODDs cannot capture universal quantification. Recently we introduced a
generalized FODD based formalism that does capture arbitrary quantifiers (Joshi, Kersting,
& Khardon, 2009); however it is more expensive to use computationally and it is not used
in this paper.

Akin to ADDs, FODDs can be combined under arithmetic operations, and reduced in
order to remove redundancies. Intuitively, redundancies in FODDs arise in two different
ways. The first, observes that some edges will never be traversed by any valuation. Re-
duction operators for such redundancies are called strong reduction operators. The second
requires more subtle analysis: there may be parts of the FODD that are traversed under
some valuations but because of the max aggregation, the valuations that traverse those
parts are never instrumental in determining the map. Operators for such redundancies are
called weak reductions operators. Strong reductions preserve MapB(I, ζ) for every valuation
ζ (thereby preserving MapB(I)) and weak reductions preserve MapB(I) but not necessarily
MapB(I, ζ) for every ζ. Groote and Tveretina (2003) introduced four strong reduction op-
erators (R1 · · · R4). Wang et al. (2008) added the strong reduction operator R5. They also
introduced the notion of weak reductions and developed weak reduction operators (R6 · · ·
R9). Another subtlety arises because for RMDP domains we may have some background
knowledge about the predicates in the domain. For example, in the blocksworld, if block a
is clear then on(x, a) is false for all values of x. We denote such background knowledge by
B and allow reductions to rely on such knowledge. Below, we discuss the operator R7 in
some detail because of its relevance to the next section.

We use the following notation. If e is an edge from node n to node m, then source(e)
= n, target(e) = m and sibling(e) is the other edge out of n. For node n, the symbols
n↓t and n↓f denote the true and false edges out of n respectively. l(n) denotes the
atom associated with node n. Node formulas (NF) and edge formulas (EF) are defined
recursively as follows. For a node n labeled l(n) with incoming edges e1, . . . , ek, the node
formula is NF(n) = (∨iEF(ei)). The edge formula for the true outgoing edge of n is
EF(n↓t) = NF(n) ∧ l(n). The edge formula for the false outgoing edge of n is EF(n↓f) =
NF(n) ∧ ¬l(n). These formulas, where all variables are existentially quantified, capture
the conditions under which a node or edge are reached. Similarly, if B is a FODD and
p is a path from the root to a leaf in B, then the path formula for p, denoted by PF(p)
is the conjunction of literals along p. The variables of p, are denoted ~xp. When ~xp are
existentially quantified, satisfiability of PF(p) under an interpretation I is a necessary and
sufficient condition for the path p to be traversed by some valuation under I. If ζ is such
a valuation, then we define PathB(I, ζ) = p. The leaf reached by path p is denoted as
leaf(p). We let PF(p)\Lit denote the path formula of path p with the literal Lit removed
(if it was present) from the conjunction. B denotes background knowledge of the domain.

1. This can be seen by translating the formula f into a disjunctive normal form f = ∨fi, representing
every conjunct fi as a FODD, and calculating their disjunction using the apply procedure of Wang et al.
(2008).

237

Joshi & Khardon

Figure 2: An example of the R7 reduction.

In the process of the algorithm, and also during reductions, we need to perform opera-
tions on functions represented as FODDs. Let B1 and B2 be two FODDs each representing
a function from states to real values (B1 : S → ℜ, B2 : S → ℜ). Let B be the function such
that ∀S, B(S) = B1(S) + B2(S). Wang et al. (2008) provide an algorithm for calculating
a FODD representation of B. We denote this operation by B = B1 ⊕B2 and similarly use
⊖, ⊗ etc. to denote operations over diagrams.

The R7 Reduction: Weak reductions arise in two forms - edge redundancies and node re-
dundancies. Corresponding to these, the R7 reduction operator (Wang et al., 2008) has two
variants - R7-replace (for removing redundant edges) and R7-drop (for removing redundant
nodes). An edge is redundant when all valuations going through it are dominated by other
valuations. Intuitively, given a FODD B and edges e1 and e2 in B, if for every valuation
going through edge e2, there always is another valuation going through e1 that gives a better
value, we can replace target(e2) by 0 without affecting MapB(I) for any interpretation I.
Figure 2 shows an example of this reduction. In the FODD on the left, consider a valuation
reaching the 1 leaf by traversing the path ¬p(x)∧p(y) under some interpretation I. Then we
can generate another valuation (by substituting the value of y for the value of x) that reaches
the 1 leaf through the path p(x). Therefore, intuitively the path ¬p(x) ∧ p(y) is redundant
and can be removed from the diagram. The R7-replace reduction formalizes this notion
with a number of conditions such that when certain combinations of these conditions are
satisfied, an edge reduction becomes applicable. For example, when the following conditions
occur together in a FODD, it can be reduced by replacing the target of edge e2 by the 0 leaf.

(P7.2) : B |= ∀~u, [[∃~w, EF(e2)] → [∃~v,EF(e1)]] where ~u are the variables that appear in
both target(e1) and target(e2), ~v the variables that appear in EF(e1) but are not in ~u, and
~w the variables that appear in EF(e2) but are not in ~u.

This condition requires that for every valuation ζ1 that reaches e2 there is a valuation
ζ2 that reaches e1 such that ζ1 and ζ2 agree on all variables that appear in both target(e1)
and target(e2).
(V7.3) : all leaves in D = target(e1) ⊖ target(e2) have non-negative values, denoted as
D ≥ 0. In this case for any fixed valuation potentially reaching both e1 and e2 it is better
to follow e1 instead of e2.
(S1) : There is no path from the root to a leaf that contains both e1 and e2.

238

Probabilistic Planning with FODD

The operator R7-replace(e1, e2) replaces target(e2) with a leaf valued 0. Notice that
the FODD in Figure 2 satisfies conditions P7.2, V7.3, and S1. For (P7.2) the shared
variable is z and it holds that ∀z, [[∃x∃y,¬p(x)∧p(y)]→ [∃x, p(x)]]. (V7.3) holds because
target(e1) = target(e2) and D ≡ 0. With these definitions Wang et al. (2008) show that it
is safe to perform R7-replace when the conditions P7.2, V7.3, and S1 hold:

Lemma 1 ((Wang et al., 2008)) Let B be a FODD, e1 and e2 edges for which conditions
P7.2, V7.3, and S1 hold, and B′ the result of R7-replace(e1, e2), then for any interpretation
I we have MAPB(I) = MAPB′(I).

Similarly R7-drop formalizes conditions under which nodes can be dropped from the di-
agram. Several alternative conditions for the applicability of R7 (R7-replace and R7-drop)
are given by Wang et al. (2008). This provided a set of alternative conditions for applica-
bility of R7 none of which dominates the others, with the result that effectively one has to
check all the conditions when reducing a diagram. The next section shows how the process
of applying R7 can be simplified and generalized.

R7 captures the fundamental intuition behind weak reductions and hence is widely
applicable. Unfortunately it is also very expensive to run. In practice R7-replace conditions
have to be tested for all pairs of edges in the diagram. Each test requires theorem proving
with disjunctive First-Order formulas.

2.3 VI with FODDs

In previous work (Wang et al., 2008) we showed how to capture the reward function and
the dynamics of the domain using FODDs and presented a value iteration algorithm along
the lines described in the last section. Reward and value functions are captured directly
using FODDs. Domains dynamics are captured by FODDs describing the probabilities of
action variants prob(Aj(~a)), and by special FODDs, Truth Value Diagrams (TVD), that
capture the deterministic effects of each action variant, similar to the successor state axioms
used by Boutilier et al. (2001). For every action variant Aj(~a) and each predicate schema
p(~x) the TVD T (A(~a), p(~x)) is a FODD with {0, 1} leaves. The TVD gives the truth value
of p(~x) in the next state when A(~a) has been performed in the current state. The TVDs
therefore capture action preconditions within the FODD structure and p(~x) is the potential
effect where the formalism specifies its truth value directly instead of saying whether it
changes or not. All operations that are needed in the SDP algorithm (regression, plus,
times, max) can be performed by special algorithms combining FODDs. The details of
these representations and algorithms were previously described (Wang et al., 2008) and
they are not directly needed for the discussion in this paper and thus omitted here.

On the other hand, direct application of these operations will yield large FODDs with
redundant structure and therefore, to keep the diagram size manageable, FODDs have
to be reduced at every step of the algorithm. Efficient and successful reductions are the
key to this procedure. The reductions R1-R9 (Groote & Tveretina, 2003; Wang et al.,
2008) provide a first step towards an efficient FODD system. However, they do not cover
all possible redundancies and they are expensive to apply in practice. Therefore a direct
implementation of these is not sufficient to yield an effective stochastic planner. In the

239

Joshi & Khardon

p(x)

q(x)

r(z)0

02

13

10 r(z) q(x)

q(x) p(y)

e1

e2

Figure 3: FODD example showing applicability of Sub-Apart.

following sections we present new reduction operations and speedup techniques to make VI
with FODDs practical.

3. Speedup Techniques

This section presents two techniques to speed up the VI algorithm of Wang et al. (2008)
while maintaining an exact solution.

3.1 Subtracting Apart - Improving Applicability of R7

The applicability of R7 can be increased if certain branches have variables standardized
apart in a way that preserves the evaluation of the FODD under the max aggregation
semantics. Consider the FODD B in Figure 3. Intuitively a weak reduction is applicable
on this diagram because of the following argument. Consider a valuation ζ = {x \ 1, y \ 2,
z \ 3} crossing edge e2 under some interpretation I. Then I |= B → ¬p(1)∧ p(2). Therefore
there must be a valuation η = {x \ 2, z \ 3} (and any value for y), that crosses edge e1.
Now depending on the truth value of I |= B → q(1) and I |= B → q(2), we have four
possibilities of where ζ and η would reach after crossing the nodes target(e2) and target(e1)
respectively. However, in all these cases, MapB(I, η) ≥ MapB(I, ζ). Therefore we should
be able to replace target(e2) by a 0 leaf. A similar argument shows that we should also be
able to drop the node source(e2). Surprisingly, though, none of the R7 conditions apply
in this case and this diagram cannot be reduced. On closer inspection we find that the
reason for this is that the conditions (P7.2) and (V7.3) are too restrictive. (V7.3)
holds but (P7.2) requires that ∀x,∀z,[[∃y,¬p(x) ∧ p(y)] → [p(x)]] implying that for every
valuation crossing edge e2, there has to be another valuation crossing edge e1 such that
the valuations agree on the value of x and z and this does not hold. However, from our
argument above, for η to dominate ζ, the two valuations need not agree on the value of x.
We observe that if we rename variable x so that its instances are different in the sub-FODDs

240

Probabilistic Planning with FODD

rooted at target(e1) and target(e2) (i.e. we standardized apart w.r.t. x) then both (P7.2)
and (V7.3) go through and the diagram can be reduced. Notice that for this type of
simplification to go through it must be the case that B1 ⊖B2 ≥ 0 already holds. The more
variables we standardize apart the “harder” it is to keep this condition. To develop this
idea, we introduce a new FODD subtraction algorithm Sub-apart: Given diagrams B1 and
B2 the algorithm tries to standardize apart as many of their common variables as possible,
while keeping the condition B1 ⊖ B2 ≥ 0 true. The algorithm returns a 2-tuple {T, V },
where T is a Boolean variable indicating whether the combination can produce a diagram
that has no negative leaves when all variables except the ones in V are standardized apart.

The algorithm uses the standard recursive template for combining ADDs and FODDs
(Bahar et al., 1993; Wang et al., 2008) where a root node is chosen from the root of the two
diagrams and the operation is recursively performed on the corresponding sub-diagrams. In
addition when the roots of the two diagrams are identical Sub-apart considers the possibility
of making them different by standardizing apart. Sub-apart uses these recursive calls to
collect constraints specifying which variables cannot be standardized apart; these sets are
combined and returned to the calling procedure.

Procedure 1 Sub-apart(A, B)

1. If A and B are both leaves,

(a) If A−B ≥ 0 return {true, {}} else return {false, {}}

2. If l(A) < l(B), let

(a) {L, V1} = Sub-apart(target(A↓t), B)

(b) {R, V2} = Sub-apart(target(A↓f), B)

Return {L ∧R, V1 ∪ V2}

3. If l(A) > l(B), let

(a) {L, V1} = Sub-apart(A, target(B↓t))

(b) {R, V2} = Sub-apart(A, target(B↓f))

Return {L ∧R, V1 ∪ V2}

4. If l(A) = l(B), let V be the variables of A (or B). Let

(a) {LL, V3} = Sub-apart(target(A↓t), target(B↓t))

(b) {RR, V4} = Sub-apart(target(A↓f), target(B↓f))

(c) {LR, V5} = Sub-apart(target(A↓t), target(B↓f))

(d) {RL, V6} = Sub-apart(target(A↓f), target(B↓t)

(e) If LL ∧RR = false, return {false, V3 ∪ V4}

(f) If LR ∧RL = false return {true, V ∪ V3 ∪ V4}

(g) Return {true, V3 ∪ V4 ∪ V5 ∪ V6}

241

Joshi & Khardon

The next theorem shows that the procedure is correct. The variables common to B1 and
B2 are denoted by ~u and B ~w denotes the combination diagram of B1 and B2 under the
subtract operation when all variables except the ones in ~w are standardized apart. Let n1

and n2 be the roots nodes of B1 and B2 respectively.

Theorem 1 Sub-apart(n1, n2) = {true, ~v} implies B~v contains no negative leaves and
Sub-apart(n1, n2) = {false, ~v} implies ¬∃~w such that ~w ⊆ ~u and B ~w contains no negative
leaves.

Proof: The proof is by induction on k, the sum of the number of nodes in B1 and B2. For
the base case when k = 2, both B1 and B2 are single leaf diagrams and the statement is
trivially true. Assume that the statement is true for all k ≤ m and consider the case where
k = m+1. When l(n1) < l(n2), in the resultant diagram of combination under subtraction,
we expect n1 to be the root node and n1↓t ⊖ n2 and n1↓f ⊖ n2 to be the left and right
sub-FODDs respectively. Hence, the Sub-apart algorithm recursively calls Sub-apart(n1↓t,
n2) and Sub-apart(n1↓f , n2). Since the sum of the number of nodes of the diagrams in the
recursive calls is always ≤ m, the statement is true for both recursive calls. Clearly, the
top level can return a true iff both calls return true. In addition, if we keep the variables
in V1 and V2 (of step 2) in their original form (that is, not standardized apart) then for
both branches of the new root n1 we are guaranteed positive leaves and therefore the same
is true for the diagram rooted at n1. A similar argument shows that the statement is true
when l(n1) > l(n2).

When l(n1) = l(n2), again by the inductive hypothesis, the statement of the theorem is
true for all recursive calls. Here we have 2 choices. We could either standardize apart the
variables V in l(n1) and l(n2) or keep them identical. If they are the same, in the resultant
diagram of combination under subtraction we expect n1 to be the root node and n1↓t⊖n2↓t

and n1↓f ⊖ n2↓f to be the left and right sub-FODDs respectively. Again the top level can
return a true iff both calls return true. The set of shared variables requires the variables
of l(n1) in addition to those from the recursive calls in order to ensure that l(n1) = l(n2).

If we standardize apart l(n1) and l(n2), then we fall back on one of the cases where n1

6= n2 except that the algorithm checks for the second level of recursive calls n1↓t ⊖ n2↓t,
n1↓t ⊖ n2↓f , n1↓f ⊖ n2↓t and n1↓f ⊖ n2↓f . The top level of the algorithm can return true if
all four calls return true and return the union of the sets of variables returned by the four
calls. If not all four calls return true, the algorithm can still keep the variables in l(n1) and
l(n2) identical and return true if the conditions for that case are met. �

The theorem shows that the algorithm is correct but does not guarantee minimality. In
fact, the smallest set of variables ~w for B ~w to have no negative leaves may not be unique
(Wang et al., 2008). One can also show that the output of Sub-apart may not be minimal.
In principle, one can use a greedy procedure that standardizes apart one variable at a time
and arrives at a minimal set ~w. However, although Sub-apart does not produce a minimal
set, we prefer it to the greedy approach because it is fast and often generates a small set ~w
in practice. We can now define new conditions for applicability of R7:
(V7.3S) : Sub-apart(target(e1), target(e2)) = {true, V1}.
(P7.2S) : B |= ∀ V1, [[∃~w, EF(e2)]→ [∃~v,EF(e1)]] where as above and ~v, ~w are the remain-
ing variables (i.e. not in V1) in EF(e1), EF(e2) respectively.

242

Probabilistic Planning with FODD

(P7.2S) guarantees that whenever there is a ζ2 running through target(e2), there is always
a ζ1 running through target(e1) and ζ1 and ζ2 agree on V1. (V7.3S) guarantees that under
this condition, ζ1 provides a better value than ζ2. Using exactly the same proof as Lemma 1
given by Wang et al. (2008), we can show the following:

Lemma 2 Let B be a FODD, e1 and e2 edges for which conditions P7.2S, V7.3S, and
S1 hold, and B′ the result of R7-replace(e1, e2), then for any interpretation I we have
MAPB(I) = MAPB′(I).

Importantly, conditions (P7.2S) , (V7.3S) subsume all the previous conditions for ap-
plicability and safety of R7-replace that were previously given (Wang et al., 2008). There-
fore, instead of testing for multiple conditions it is sufficient to test for (P7.2S) and
(V7.3S) . A very similar argument as the one above shows how Sub-apart extends and sim-
plifies the conditions of R7-drop. Thus the use of Sub-apart both simplifies the conditions
to be tested and provides more opportunities for reductions. In our implementation, we
use the new conditions with Sub-apart whenever testing for applicability of R7-replace and
R7-drop.

3.2 Not Standardizing Apart

Recall that the FODD-based VI algorithm must add functions represented by FODDs (in
Steps 2 and 4) and take the maximum over functions represented by FODDs (in Step
4). Since the individual functions are independent functions of the state, the variables of
different functions are not related to one another. Therefore, before adding or maximizing,
the algorithm by Wang et al. (2008) standardizes apart the diagrams. That is, all variables
in the diagrams are given new names so they do not constrain each other. On the other hand,
since the different diagrams are structurally related this often introduces redundancies (in
the form of renamed copies of the same atoms) that must be removed by reduction operators.
However, our reduction operators are not ideal and avoiding this step can lead to significant
speedup in the system. Here we observe that for maximization (in Step 4) standardizing
apart is not needed and therefore can be avoided.

Theorem 2 Let B1 and B2 be FODDs. Let B be the result of combining B1 and B2

under the max operation when B1 and B2 are standardized apart. That is, ∀s,MAPB(s) =
max{MAPB1

(s),MAPB2
(s)}. Let B′ be the result of combining B1 and B2 under the max

operation when B1 and B2 are not standardized apart. ∀ interpretations I, MapB(I) =
MapB′(I).

Proof: The theorem is proved by showing that for any I a valuation for the maximizing
diagram can be completed into a valuation over the combined diagram giving the same
value. Clearly MapB(I) ≥ MapB′(I) since every substitution and path that exist for B′

are also possible for B. We show that the other direction holds as well. Let ~u be the
variables common to B1 and B2. Let ~u1 be the variables in B1 that are not in B2 and ~u2

be the variables in B2 not in B1. By definition, for any interpretation I,

MapB(I) = Max[MapB1
(I), MapB2

(I)] = Max[MapB1
(I, ζ1), MapB2

(I, ζ2)]

243

Joshi & Khardon

Figure 4: FODD example illustrating the need for a DPO.

for some valuations ζ1 over ~u ~u1 and ζ2 over ~u ~u2. Without loss of generality let us assume
that MapB1

(I, ζ1) = Max[MapB1
(I, ζ1), MapB2

(I, ζ2)]. We can construct valuation ζ over
~u ~u1 ~u2 such that ζ and ζ1 share the values of variables in ~u and ~u1. Obviously MapB1

(I, ζ)
= MapB1

(I, ζ1). Also, by the definition of FODD combination, we have MapB′(I) ≥
MapB1

(I, ζ) = MapB(I). �

4. Additional Reduction Operators

In this section we introduce two new reduction operators that improve the efficiency of the
VI algorithm. The following definitions are important in developing these reductions and
to understand potential scope for reducing diagrams.

Definition 1 A descending path ordering (DPO) is an ordered list of all paths from the
root to a leaf in FODD B, sorted in descending order by the value of the leaf reached by the
path. The relative order of paths reaching the same leaf can be set arbitrarily.

Definition 2 If B is a FODD, and P is the DPO for B, then a path pj ∈ P is instrumental
with respect to P iff

1. there is an interpretation I and valuation, ζ, such that PathB(I, ζ) = pj, and

2. ∀ valuations η, if PathB(I, η) = pk, then k ≥ j.

The example in Figure 4 shows why a DPO is needed. The paths p(x) ∧ ¬p(y) and
¬p(x) ∧ p(z) both imply each other. Whenever there is a valuation traversing one of the
paths there is always another valuation traversing the other. Removing any one path from
the diagram would be safe meaning that the map is not changed. But we cannot remove
both paths. Without an externally imposed order on the paths, it is not clear which path
should be labeled as redundant. A DPO does exactly that to make the reduction possible.
It is not clear at the outset how to best choose a DPO so as to maximally reduce the
size of a diagram. A lexicographic ordering over paths of equal value makes for an easy
implementation but may not be the best. We describe our heuristic approach for choosing
DPOs in the next section in the context of the implementation of the FODD-Planner.

244

Probabilistic Planning with FODD

4.1 The R10 Reduction

A path in FODD B is dominated if whenever a valuation traverses it, there is always
another valuation traversing another path and reaching a leaf of greater or equal value.
Now if all paths through an edge e are dominated, then no valuation crossing that edge will
ever determine the map under max aggregation semantics. In such cases we can replace
target(e) by a 0 leaf. This is the basic intuition behind the R10 operation.

Although its objective is the same as that of R7-replace, R10 is faster to compute in some
cases and has two advantages over R7-replace. First, because paths can be ranked by the
value of the leaf they reach, we can perform a single ranking and check for all dominated
paths (and hence all dominated edges). Hence, while all other reduction operators are
local, R10 is a global reduction. Second, the theorem proving required for R10 is always
on conjunctive formulas with existentially quantified variables, which is decidable in the
function free case (e.g., Khardon, 1999). This gives a speedup over R7-replace. On the
other hand R10 must explicitly enumerate the DPO and is therefore not efficient if the
FODD has an exponential number of non-zero valued paths. In such a case R7 or some
other edge based procedure is likely to be more efficient.

Consider the example shown in Figure 5. The following list specifies a DPO for this
diagram:

1. p(y), ¬p(z), ¬p(x) → 3

2. p(y), ¬p(z), p(x), ¬q(x) → 3

3. ¬p(y), p(x), q(x) → 2

4. p(y), ¬p(z), p(x), q(x) → 2

Notice that the relative order of paths reaching the same leaf in this DPO is defined by
ranking shorter paths higher than longer ones. This is not a requirement for the correctness
of the algorithm but is a good heuristic. According to the reduction procedure, all edges
of path 1 are important and cannot be reduced. However, since 1 subsumes 2, 3 and 4, all
the other edges (those belonging to paths 2, 3 and 4 and those not appearing in any of the
ranked paths) can be reduced. Therefore the reduction procedure replaces the targets of all
edges other than the ones in path 1, to the value 0. Path 1 is thus an instrumental path
but paths 2, 3 and 4 are not. This process is formalized in the following algorithm.

Procedure 2 R10(B)

1. Let E be the set of all edges in B

2. Let P = [p1, p2 · · · pn] be a DPO for B. Thus p1 is a path reaching the highest leaf
and pn is a path reaching the lowest leaf.

3. For j = 1 to n, do the following

(a) Let Epj
be the set of edges on pj

(b) If ¬∃i, i < j such that B |= (∃ ~xpj , PF(pj)) → (∃ ~xpi, PF(pi)), then set E =
E − Epj

245

Joshi & Khardon

p(y)

p(z) p(x)

p(x) q(x)

q(x)

0 0

02

32

p(y)

p(z)

p(x)0

0

0 3

R10

Figure 5: FODD example illustrating the R10 reduction.

4. For every edge e ∈ E, set target(e) = 0 in B

In the example in Figure 5 none of the paths 2, 3 and 4 pass the conditions of step 3b
in the algorithm. Therefore their edges are not to be removed from E and are assigned
the value 0 by the algorithm. Here R10 is able to identify in one pass, the one path
(shown along a curved indicator line) that dominates all other paths. To achieve the same
reduction, R7-replace takes 2-3 passes depending on the order of application. Since every
pass of R7-replace has to check for implication of edge formulas for every pair of edges,
this can be expensive. On the other hand, there are cases where R10 is not applicable but
R7-replace is. An example of this is shown in the diagram in Figure 6. For this diagram it
is easy to see that if e2 is reached then so is e1 and e1 always gives a strictly better value.
R10 cannot be applied because it tests subsumption for complete paths. In this case the
path for e2 implies the disjunction of two paths going through e1.

We next present a proof of correctness for R10. Lemma 3 shows that our test for
instrumental paths is correct. Lemma 4 shows that, as a result, edges marked for deletion
at the end of the algorithm do not belong to any instrumental path. The theorem uses this
fact to argue correctness of the algorithm.

Lemma 3 For any path pj ∈ P , if pj is instrumental then ¬∃i, i < j and B |= (∃ ~xpj ,
PF(pj)) → (∃ ~xpi, PF(pi)).

Proof: If pj is instrumental then by definition, there is an interpretation I and valuation,
ζ, such that PathB(I, ζ) = pj , and ∀ valuations η, ¬∃ i < j such that PathB(I, η) = pi. In
other words, I |= [B → (∃ ~xpj , PF(pj))] but I 6|= [B → (∃ ~xpi , PF(pi))] for any i < j. This
implies that ¬∃i, i < j and (B → ∃ ~xpj , PF(pj)) |= (B → ∃ ~xpi , PF(pi)). Hence ¬∃i, i < j
and B |= [(∃ ~xpj , PF(pj)) → (∃ ~xpi , PF(pi))]. �

Lemma 4 If E is the set of edges left at the end of the R10 procedure then if e ∈ E then
there is no instrumental path that goes through e.

246

Probabilistic Planning with FODD

Figure 6: FODD example where R7 is applicable but R10 is not.

Proof: Lemma 3 proves that if a path pj is instrumental, then ¬∃i, i < j and B |= [(∃ ~xpj ,
PF(pj)) → (∃ ~xpi , PF(pi))]. Thus in step 3b of R10, if a path is instrumental, all its edges
are removed from E. Therefore if e ∈ E at the end of the R10 procedure, it cannot be
in pj . Since pj is not constrained in any way in the argument above, e cannot be in any
instrumental path. �

Theorem 3 Let B be any FODD. If B′ = R10(B) then ∀ interpretations I, MapB(I) =
MapB′(I).

Proof: By the definition of R10, the only difference between B and B′ is that some
edges that pointed to sub-FODDs in B, point to the 0 leaf in B′. These are the edges
left in the set E at the end of the R10 procedure. Therefore any valuation crossing these
edges achieves a value of 0 in B′ but could have achieved more value in B under the same
interpretation. Valuations not crossing these edges will achieve the same value in B′ as they
did in B. Therefore for any interpretation I and valuation ζ, MapB(I, ζ) ≥ MapB′(I, ζ)
and hence MapB(I) ≥ MapB′(I).

Fix any interpretation I and v = MapB(I). Let ζ be a valuation such that MapB(I, ζ)
= v. If there is more than one ζ that gives the value v, we choose one whose path pj

has the least index in P . Now by definition pj is instrumental and by lemma 4, none of
the edges of pj are removed by R10. Therefore MapB′(I, ζ) = v = MapB(I). Finally, by
the definition of the max aggregation semantics, MapB′(I) ≥ MapB′(I, ζ) and therefore
MapB′(I) ≥ MapB(I). �

The R10 procedure is similar to the reduction of decision list rules of ReBel (Kersting
et al., 2004). The difference, however, is that R10 is a reduction procedure for FODDs
and therefore uses the individual rules only as a subroutine to gather information about
redundant edges. Thus while ReBel removes paths R10 removes edges affecting multiple
paths in the diagram. The main potential disadvantage of R10 and the representation of
ReBel is the case where the number of paths is prohibitively large. In this case R7 or some
other edge based reduction is likely to be more efficient. As our experiments show this is not
the case on the IPC domains tested. In the general case, a meta-reduction heuristic trading
off the advantages of different operators would be useful. We discuss our implementation
and experimental results in the next sections.

247

Joshi & Khardon

4.2 The R11 Reduction

Consider the FODD B in Figure 1(a). Clearly, with no background knowledge this dia-
gram cannot be reduced. Now assume that the background knowledge B contains a rule
∀x, [q(x)→ p(x)]. In this case if there exists a valuation that reaches the 1 leaf, there must
be another such valuation ζ that agrees on the values of x and y. ζ dominates the other
valuations under the max aggregation semantics. The background knowledge rule implies
that for ζ, the test at the root node is redundant. However, we cannot set the left child of
the root to 0 since the entire diagram will be eliminated. Therefore R7 is not applicable,
and similarly none of the other existing reductions is applicable. Yet redundancies like the
given example arise often in runs of the value iteration algorithm. This happens naturally,
without the artificial background knowledge used for our example but the corresponding
diagrams are too large to include in the text. The main reason for such redundancies is
that standardizing apart (which was discussed above) introduces multiple renamed copies
of the same atoms in the different diagrams. When the diagrams are added, many of the
atoms are redundant but some are not removed by old operators. These atoms may end
up in a parent-child relation with weak implication from child to parent, similar to the
example given. We introduce the R11 reduction operator that can handle such situations.
R11 reduces the FODD in Figure 1(a) to the FODD in Figure 1(b).

Let B be a FODD, n a node in B, e an edge such that e ∈ {n↓t, n↓f}, e′ = sibling(e)
(so that when e = n↓t, e′ = n↓f and vice versa), and P the set of all paths from the root
to a non-zero leaf going through edge e. Then the reduction R11(B, n, e) drops node n
from diagram B and connects its parents to target(e). We need two conditions for the
applicability of R11. The first requires that the sibling is a zero valued leaf.

Condition 1 target(e′) = 0.

The second requires that valuations that are rerouted by R11 when traversing B′, that
is valuations that previously reached the 0 leaf and now traverse some path in P , are
dominated by other valuations giving the same value.

Condition 2 ∀p ∈ P , B |= [∃ ~xp, PF(p)\ne.lit ∧ ne′ .lit] → [∃ ~xp, PF(p)].

The next theorem shows that R11 is sound. The proof shows that by condition 2 the
rerouted valuations do not add value to the diagram.

Theorem 4 If B′ = R11(B, n, e), and conditions 1 and 2 hold, then ∀ interpretations I,
MapB(I) = MapB′(I).

Proof: Let I be any interpretation and let Z be the set of all valuations. We can divide Z
into three disjoint sets depending on the path taken by valuations in B under I. Ze - the
set of all valuations crossing edge e, Ze′ - the set of all valuations crossing edge e′ and Zother

- the set of valuations not reaching node n. We analyze the behavior of the valuations in
these sets under I.

• Since structurally the only difference between B and B′ is that in B′ node n is by-
passed, all paths from the root to a leaf that do not cross node n remain untouched.
Therefore ∀ζ ∈ Zother, MapB(I, ζ) = MapB′(I, ζ).

248

Probabilistic Planning with FODD

• Since, in B′ the parents of node n are connected to target(e), all valuations crossing
edge e and reaching target(e) in B under I will be unaffected in B′ and will, therefore,
produce the same map. Thus ∀ζ ∈ Ze, MapB(I, ζ) = MapB′(I, ζ).

• Now, let m denote the node target(e) in B. Under I, all valuations in Ze′ will reach
the 0 leaf in B but they will cross node m in B′. Depending on the leaf reached after
crossing node m, the set Ze′ can be further divided into 2 disjoint subsets. Ze′

zero -
the set of valuations reaching a 0 leaf and Ze′

nonzero - the set of valuations reaching a
non-zero leaf. Clearly ∀ζ ∈ Ze′

zero, MapB(I, ζ) = MapB′(I, ζ).

By the structure of B, every ζ ∈ Ze′

nonzero, traverses some p ∈ P , that is, (PF(p)\ne.lit
∧ ne′ .lit)ζ is true in I. Condition 2 states that for every such ζ, there is another
valuation η such that (PF(p))η is true in I, so η traverses the same path. However,
every such valuation η must belong to the set Ze by the definition of the set Ze. In
other words, in B′ every valuation in Ze′

nonzero is dominated by some valuation in Ze.

From the above argument we conclude that in B′ under I, every valuation either produces
the same map as in B or is dominated by some other valuation. Under the max aggregation
semantics, therefore, MapB(I) = MapB′(I). �

5. FODD-Planner

In this section we discuss the system FODD-Planner that implements the VI algorithm
with FODDs. FODD-Planner employs a number of approximation techniques that yield
further speedup. The system also implements extensions of the basic VI algorithm that
allow it to handle action costs and universal goals. The following sections describe these
details.

5.1 Value Approximation

Reductions help keep the diagrams small in size by removing redundancies but when the
true n step-to-go value function itself is large, legal reductions cannot help. There are
domains where the true value function is unbounded. For example in the tireworld domain
from the international planning competition, where the goal is always to get the vehicle to
a destination city, one can have a chain of cities linked to one another up to the destination.
This chain can be of any length. Therefore when the value function is represented using
state abstraction, it must be unbounded. As a result SDP-like algorithms are less effective
on domains where the dynamics lead to such transitive structure and every iteration of value
iteration increases the size of the n step-to-go value function (Kersting et al., 2004; Sanner
& Boutilier, 2009). In other cases the value function is not infinite but is simply too large to
manipulate efficiently. When this happens we can resort to approximation keeping as much
of the structure of the value function as possible while maintaining efficiency. One must be
careful about the tradeoff here. Without approximation the runtime can be prohibitive and
too much approximation causes loss of structure and value. We next present three methods
to get approximations which act at different levels in the algorithm.

249

Joshi & Khardon

5.1.1 Not Standardizing Apart Action Variants

Standardizing apart the diagrams of action variants before adding them is required for the
correctness of the FODD based VI algorithm. That is, if we do not standardize apart action
variant diagrams before adding them, the value given to some states may be lower than the
true value (Wang et al., 2008). Intuitively, this is true since different paths in the value
function share atoms and variables. Now, for a fixed action, the best variable binding and
corresponding value for different action variants may be different. Thus, if the variables are
forced to be the same for the variants, we may rule out viable combinations of value. On the
other hand, the value obtained if we do not standardize apart is a lower bound on the true
value. This is because every path in the diagram resulting from not standardizing apart is
present in the diagram resulting from standardizing apart. Although the value is not exact,
not standardizing apart leads to more compact diagrams, and can therefore be useful in
speeding up the algorithm. We call this approximation method non-std-apart and use it as
a heuristic to speed up computation. Although this heuristic may cause loss of structure in
the representation of the value function, we have observed that in practice it gives significant
speedup while maintaining most of the relevant structure. This approximation is used in
some of the experiments described below.

5.1.2 Merging Leaves

The use of FODDs also allows us to approximate the value function in a simple and con-
trolled way. Here we follow the approximation techniques of APRICODD (St-Aubin et al.,
2000) where they were used for propositional problems. The idea is to reduce the size of
the diagram by merging substructures that have similar values. One way of doing this is to
reduce the precision of the leaf values. That is, for a given precision value ǫ, we join leaves
whose value is within ǫ. This, in turn, leads to reduction of the diagram because subparts
of the diagram that previously pointed to different leaves, now point to the same leaf. The
granularity of approximation, however, becomes an extra parameter for the system and has
to be chosen carefully. Details are provided in the experiments below.

5.1.3 Domain Determinization

Previous work on stochastic planning has discovered that for some domains one can get good
performance by pretending that the domain is deterministic and re-planning if unexpected
outcomes are reached (Yoon et al., 2007). Here we use a similar idea and determinize the
domain in the process of policy generation. This saves significant amount of computation
and avoids the typical increase in size of the value function encountered in step 2 of the VI
algorithm. Domains can be determinized in many ways. We choose to perform determiniza-
tion by replacing every stochastic action with its most probable deterministic alternative.
This is done only once prior to running VI. Although this method of determinization is
sub-optimal for many domains, it makes sense for domains where the most probable out-
come corresponds to the successful execution of an action (Little & Thibaux, 2007) as is the
case in the domains we experimented with. Note that the determinization only applies to
the process of policy generation. When the generated policy is deployed to solve planning
problems, it does so under the original stochastic environment. This approximation is used
in some of the experiments described below.

250

Probabilistic Planning with FODD

5.2 Extensions of the VI Algorithm

FODD-Planner makes two additional extensions to the basic algorithm. This allows the
handling of action costs, arbitrary conjunctive goals as well as universal goals.

5.2.1 Handling Action Costs

The standard way to handle action costs is to replace R(s, a) by R(s, a) − Cost(s, a) in
the VI algorithm. However, our formalism using FODDs relies on the fact that all the
leaves (and thus values) are non-negative. To avoid this difficulty, we note that action costs
can be supported as long as there is at least one zero cost action. To see this recall the VI
algorithm. The appropriate place to add action costs is just before the Object Maximization
step. However, because this step is followed by maximizing over the action diagrams, if at
least one action has 0 cost (if not we can create a no-op action), the resultant diagram after
maximization will never have negative leaves. Therefore we safely convert negative leaves
before the maximization step to 0 and thereby avoid conflict with the reduction procedures.

5.2.2 Handling Universal Goals

FODDs with max aggregation cannot represent universal quantifiers. Therefore our VI
algorithm cannot handle universal goals at the abstract level (though see Joshi et al. (2009)
for a formalism that does accept arbitrary quantifiers). For a concrete planning problem
with a known set of objects we can instantiate the universal goal to get a large conjunctive
goal. In principle we can run VI and policy generation for this large conjunctive goal.
However, this would mean that we cannot plan off-line to get a generic policy and must
replan for each problem instance from scratch. Here we follow an alternative heuristic
approach previously introduced by Sanner and Boutilier (2009) and use an approximation
of the true value function, that results from a simple additive decomposition of the goal
predicates.

Concretely, during off-line planning we plan separately for a generic version of each
predicate. For example in the transportation domain discussed above we will plan for
the generic predicate box-in-city(box, city) as well as other individual predicates. Then at
execution time, when given a concrete goal, we approximate the true value function by the
sum of the generic versions over each ground goal predicate. This is clearly not an exact
calculation and will not work in every case. On the other hand, it considerably extends the
scope of the technique and works well in many situations.

5.3 The FODD-Planner System

We implemented the FODD-Planner system, plan execution routines and evaluation
routines under Yap Prolog 5.1.2. Our code and domain encodings as used in the experiments
reported in the next section are available at http://code.google.com/p/foddplanner/

under tag release11-JAIR2011.

Our implementation uses a simple theorem prover that supports background knowledge
by a procedure we call “state flooding”. That is, to prove B |= X → Y , where X is a ground
conjunction (represented in Prolog as a list), we “flood” X using rules of the background
knowledge using the following simple steps until convergence.

251

Joshi & Khardon

1. Generate Z, the set of all ground literals that can be derived from X and the rules of
background knowledge.

2. Set X = X ∪ Z.

When X has converged we test for membership of Y in X. Because of our restricted
language, the reasoning problem is decidable and our theorem prover is complete.2

The overall algorithm is the same as SDP except that all operations are performed
on FODDs and reductions are applied to keep all intermediate diagrams compact. In
the experiments reported below, we use all previously mentioned reductions (R1 · · · R11)
except R7-replace. We applied reductions iteratively until no reduction was applicable on
the FODD. There is no correct order to apply the reductions in the sense that any reduction
when applied can give rise to other reductions. Heuristically we chose an order where we
hope to get as much of the diagram reduced as soon as possible. We apply reductions in the
following order. We start by applying R10 twice with a different DPO each time. The first
DPO is generated by breaking ties in favor of shorter paths. The second is generated by
reversing the order of equal valued paths in the first DPO. With R10 we hope to catch many
redundant edges early. R10 is followed by R7-drop to remove redundant nodes connected
to the edges removed by R10. After this, we apply a round of all strong reductions followed
by R9 to remove the redundant equality nodes. R9 is followed by another round of strong
reductions. This sequence is performed iteratively until the diagram is stable. In the
FODD-Planner strong reductions are automatically applied every time two diagrams are
combined (using the apply algorithm (Wang et al., 2008)) and weak reductions are applied
every time two diagrams are combined except during regression by block combination.
We chose to apply R11 only twice in every iteration - once after regression and once just
before the next iteration. This setting for application of reduction operators is investigated
experimentally and discussed in Section 6.1.

To handle complex goals we use the additive goal decomposition. For each generic goal
atom g we run the system for the specified number of iterations, but at the last iteration we
do not perform step 4 of the algorithm. This yields a set of functions, Qg,A, parameterized
by action and generic goal that implicitly represent the policy. To improve on line execution
time using this policy we extract the set of paths from the Q functions and perform logical
simplification on these paths removing implied atoms and directly applying equalities when
they are in the path formula. This is the final form of the policy from the off-line planning
phase. for the on-line phase, given a concrete problem state and goal we identify potential
actions, and for each action find the top ranking rule for each concrete goal atom g. These
are combined to give the total value for each action and the action with the highest value
is chosen, breaking ties randomly if it is not unique.

2. An alternative to the list representation of X would have been to utilize the Prolog database to store
the literals of X and employ the Prolog engine to query Y . However, in our experience with Yap, it
becomes expensive to assert (and retract) the literals of X to (from) the Prolog database so that the list
representation is faster.

252

Probabilistic Planning with FODD

6. Experimental Results

We ran experiments on a standard benchmark problem as well as probabilistic planning
domains from the international planning competitions (IPC) held in 2004, 2006 and 2008.
The probabilistic track of the IPC provides domain descriptions in the PPDDL language
(Younes, Littman, Weissman, & Asmuth, 2005). We encoded the TVDs and probability and
reward functions for these domains by translating the PPDDL manually in a straightforward
manner.3 All experiments were run on a Linux machine with an Intel Pentium D processor
running at 3 GHz, with 2 GB of memory. Following IPC standards, all timings, rewards
and plan-lengths we report are averages over 30 rounds. For each domain, we constructed
by hand background knowledge restricting arguments of predicates (e.g. a box can only be
at one city in any time so Bin(b, c1), Bin(b, c2) → (c1 = c2)). As discussed above, this is
useful in the process of simplifying diagrams.

6.1 Merits of Reduction Operators

The following subsections present our main results showing performance in solving planning
problems from IPC. Before discussing these we first investigate and illustrate the merits of
the various reduction operators in terms of their effect on off-line planning time. The
experiments are performed on the tireworld and boxworld domains that are described in
more detail below. For this section is suffices to consider the domains as typical cases we
might have to address in solving planning problems and focus on the differences between
reductions.

In the first set of experiments we compare the run time with R7 and R10 in the context
of other reductions. Since R10 and R7 are both edge removal reductions and R7-drop is used
in conjunction with both, we compare R10 to R7-replace directly under all configurations
of R9 and R11. Except for the choice of reductions used the experimental setup is exactly
the same as detailed above. Figures 7 and 8 show the time to build a policy over varying
number of iterations for different settings of these weak reduction operators for the boxworld
and the tireworld domains. The figures clearly show the superiority of R10 over R7-replace.
All combinations with R7-replace have prohibitively large run times at 3 or 4 iterations.
With or without R9 and R11, R10 is orders of magnitude more efficient than R7-replace.
It is for this reason that in all future experiments we used R10 instead of R7-replace.
The experiments also demonstrate that without the new reduction operators presented in
this paper the FODD-Planner would be too slow to run sufficient iterations of the VI
algorithm as done in the following subsections to yield good planning performance. Figure 8
shows that for boxworld R11 hinders R7. It appears that in this case, the application of
R11 limits the applicability of R7 causing larger diagrams and thus further slowing down
VI.

Figures 9 and 10 show the relative merits of R9 and R11 in the presence of R10 for the
two domains. The figures are similar to the previous two plots except that we focus on the
relevant portion of the CPU time axis. Clearly R11 is an important reduction and it makes

3. The FODD formalism cannot capture all of PPDDL. In particular since FODDs cannot represent uni-
versal quantification, we cannot handle universal action preconditions. On the other hand FODDs can
handle universal action effects. Wang (2007) provides an algorithm and a detailed discussion of transla-
tion from PPDDL to FODDs.

253

Joshi & Khardon

 0

 20000

 40000

 60000

 80000

 100000

 0 1 2 3 4 5 6 7 8

C
P

U
 T

im
e

(s
ec

on
ds

)

of iterations

Tireworld: R7 vs. R10

R10
R10+R11
R10+R9

R10+R9+R11
R7

R7+R11
R7+R9

R7+R9+R11

Figure 7: A comparison of planning time taken by various settings of reduction operators
over varying number of iterations for tireworld. Four settings of R10 are compared
against four settings of R7. All R7 variants do not complete 5 iterations within
the time range on the graph and therefore these points are not plotted.

 0

 10000

 20000

 30000

 40000

 0 1 2 3 4 5 6

C
P

U
 T

im
e

(s
ec

on
ds

)

of iterations

Boxworld: R7 vs. R10

R10
R10+R11

R10+R9
R10+R9+R11

R7
R7+R11
R7+R9

R7+R9+R11

Figure 8: A comparison of planning time taken by various settings of reduction operators
over varying number of iterations for boxworld. Four settings of R10 are compared
against four settings of R7. All R7 variants do not complete 5 iterations within
the time range on the graph and therefore these points are not plotted.

planning more efficient in both settings (just R10 and R10+R9). R9 is less effective in
tireworld. In boxworld, however the presence of R9 clearly improves planning efficiency for
both settings, and the best performance is achieved in the setting using R10+R9+R11. In
addition, R9 targets the removal of equality nodes which no other reduction does directly.

254

Probabilistic Planning with FODD

 0

 5000

 10000

 15000

 20000

 25000

 0 1 2 3 4 5 6 7 8

C
P

U
 T

im
e

(s
ec

on
ds

)

of iterations

Tireworld: Merits of R9 and R11

R10
R10+R11
R10+R9

R10+R9+R11

Figure 9: A comparison of the merits of R9 and R11 in the presence of R10 for tireworld.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 1 2 3 4 5 6

C
P

U
 T

im
e

(s
ec

on
ds

)

of iterations

Boxworld: Merits of R9 and R11

R10
R10+R11

R10+R9
R10+R9+R11

Figure 10: A comparison of the merits of R9 and R11 in the presence of R10 for boxworld.

Based on these results we choose the setting where we employ R10 along with R9 and R11
for the remaining experiments.

6.2 The Logistics Benchmark Problem

This is the boxworld problem introduced by Boutilier et al. (2001) that has been used as a
standard example for exact solution methods for relational MDPs. The domain consists of
boxes, cities and trucks. The objective is to get certain boxes to certain cities by loading,
unloading and driving. For the benchmark problem, the goal is the existence of a box in
Paris. The load and unload actions are probabilistic and the probability of success of unload
depends on whether it is raining or not. In this domain, all cities are reachable from each
other. As a result the domain has a compact abstract optimal value function. Note that for
this challenge domain there are no concrete planning instances to solve. Instead the goal

255

Joshi & Khardon

Coverage Time (ms) Reward
GPT 100% 2220 57.66

Policy Iteration with
policy language bias 46.66% 60466 36
Re-Engg NMRDPP 10% 290830 -387.7

FODD-Planner 100% 231270 70.0

Table 1: fileworld domain results

is to solve the off-line problem and produce the (abstract) optimal solution efficiently. The
domain description has 3 predicates of arity 2 and 3 actions each having 2 arguments.

Like ReBel (Kersting et al., 2004) and FOADD (Sanner & Boutilier, 2009) we are able
to solve this MDP and identify all relevant partitions of the optimal value function and
in fact the value function converges after 10 iterations. FODD-Planner performed 10
iterations in under 2 minutes.

6.3 The Fileworld Domain

This domain was part of the probabilistic track of IPC-4 (2004) (information on the com-
petitions is accessible at http://ipc.icaps-conference.org/). The domain consists of
files and folders. Every file obtains a random assignment to a folder at execution time and
the goal is to place each file in its assigned folder. There is a cost of 100 to handle a folder
and a cost of 1 to place a file in a folder. The optimal policy for this domain is to first get
the assignments of files to folders and then handle each folder once, placing all files that
were assigned to it. The domain description has 8 predicates of arity 0 to 2 and 16 actions
with 0 to 1 arguments.

Results have been published for one problem instance which consisted of thirty files
and five folders. Since the goal is conjunctive we used the additive goal decomposition
discussed above. We used off-line planning for a generic goal filed(a) and use the policy
to solve for any number of files. This domain is ideal for abstract solvers because the
optimal value function and policy for a generic goal are compact and can be found quickly.
The FODD-Planner was able to achieve convergence within 4 iterations even without
approximation. Policy generation and execution together took under 4 minutes. Of the 6
systems that competed on this track, results have been published for 3 on the website cited
above. Table 1 compares the performance of FODD-Planner to the others. We observe
that we rank ahead of all in terms of total reward and coverage (both FODD-Planner

and GPT achieve full coverage).

6.4 The Tireworld Domain

This domain was part of the probabilistic track of IPC-5 (2006). The domain consists of a
network of locations (or cities). A vehicle starts from one city and moves from city to city
with the objective of reaching a destination city. Moves can only be made between cities
that are directly connected by a road. In addition, on any move, the vehicle may lose a tire
with 40% probability. Some cities have a spare tire that can be loaded onto the vehicle. If
the vehicle contains a spare tire, the flat tire can be changed with 50% success probability.
This domain is simple but not trivial owing to the possibility of a complex network topology

256

Probabilistic Planning with FODD

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

P
er

ce
nt

ag
e

R
un

s
S

ol
ve

d

Problem Instance ID

Tireworld: Percentage Runs Solved vs. Problem Instance

FOALP
FPG

Paragraph
FF-Replan

FODDPlanner

Figure 11: Coverage result of tireworld experiments

 10

 100

 1000

 10000

 100000

 1e+06

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 R
un

ni
ng

 T
im

e
(m

s)

Problem Instance ID

Tireworld: Average Running Time vs. Problem Instance

FOALP
FPG

Paragraph
FF-Replan

FODDPlanner

Figure 12: Timing result of tireworld experiments

and high probabilities of failure. The IPC description of this domain has 5 predicates of
arity 0 to 2 and 3 actions with 0 to 2 arguments.

Participants at IPC-5 competed over 15 problem instances on this domain with varying
degree of difficulty. In problem 1 there were 16 locations which were progressively increased
by 2 per problem up to 44 locations in problem 15.

To limit off-line planning time we restricted FODD-Planner to 7 iterations without
any approximation for the first 3 iterations and with the non-std-apart approximation for the
remaining iterations. The policy was generated in 55 minutes; this together with the online
planning time is within the competition time bound. The performance of FODD-Planner

257

Joshi & Khardon

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

A
ve

ra
ge

 #
 A

ct
io

ns
 to

 G
oa

l

Problem Instance ID

Tireworld: Average # Actions to Goal vs. Problem Instance

FOALP
FPG

Paragraph
FF-Replan

FODDPlanner

Figure 13: Plan length result of tireworld experiments

and systems competing in the probabilistic track of IPC-5, for which data is published, is
summarized in Figures 11, 12, and 13. The figures are indexed by problem instance and
show a comparison of the percentage of runs each planner was able to solve (coverage), the
average time per instance taken by each planner to generate an online solution, and the
average number of actions taken by each planner to reach the goal on every instance. We
observe that the overall performance of FODD-Planner is competitive with (and in a
few cases better than) the other systems. Runtimes to generate online solutions are high
for FODD-Planner but are comparable to FOALP which is the only other First-Order
planner. On the other hand, in comparison with the other systems, we are able to achieve
high coverage and short plans on many of the problems.

6.5 Value Approximation by Merging Leaves

Although the tireworld domain can be solved as above within the IPC time limit, one might
wish for even faster execution. As we show next, the heuristic of merging leaves provides
such a tool, potentially trading off quality of coverage and plan length for faster planning
and execution times. Table 2 shows the average reduction in planning time, coverage and
planning length achieved when the approximation merging leaves is used. The highest
reward obtained in any state is 500. We experimented with reducing precision on the leaves
with values between 50.0 and 150.0. As the results demonstrate, for some loss in coverage
and planning length, the system can gain in terms of execution time and planning time.
For example, with leaf precision of 50.0 (10% of the total value) we get 95.53% reduction
in planning time (22 fold speedup) but we lose 15.29% in coverage.4

4. Note that the measure of plan length, the average over problems solved, is not a good representation
of performance when coverage is not full. In this case, if coverage goes down by dropping the harder
problems with longer solutions, plan length will appear to be better, but this is clearly not an indication
of improved performance.

258

Probabilistic Planning with FODD

Reduction in Reduction in Reduction in Reduction in
Precision Planning Time Execution Time Coverage Plan length

50 93.53% 88.3% 15.29% 14.54%
75 98.13% 95.21% 15.29% 6.23%
100 98.28% 95.21% 15.29% 6.23%
125 99.65% 95.48% 31.76% -30.86%
150 99.73% 95.61% 31.76% -30.86%

Table 2: Percentage average reduction in planning time, execution time, coverage and plan
length for tireworld under the approximation merging leaves for varying leaf pre-
cision values. For example, the first row of the table states that by reducing the
precision on the leaves to 50, which is 10% of the largest achievable reward in
any state, the planning time was reduced by 93.53% of its original value, average
execution time was reduced by 88.3%, average coverage was reduced by 15.29%
and average plan length was reduced by 14.54%

6.6 Boxworld

In this domain from IPC 2008, the world consists of boxes, trucks, planes and a map of
cities. The objective is to get boxes from source cities to destination cities using the trucks
and planes. Boxes can be loaded and unloaded from the trucks and planes. Trucks (and
planes) can be driven (flown) from one city to another as long as there is a direct road (or
air route) from the source to the destination city. The only probabilistic action is drive.
drive works as expected (transporting the truck from the source city to the destination
city) with probability 0.8. Occasionally drive teleports a truck to the wrong city. The IPC
description of this domain includes 11 predicates of arity 2 and 6 actions with 3 arguments.

IPC posted 15 problems with varying levels of difficulty for this domain. In all problems
the world consisted of 4 trucks and 2 airplanes. In problems 1 to 3 there were 10 boxes and
5 cities. Problems 4 and 5 had 10 boxes and 10 cities. Problems 6 and 7 had 10 boxes and
15 cities. Problems 8 and 9 had 15 boxes and 10 cities. Problems 10, 11 and 12 had 15 boxes
and 15 cities. Competition results show that RFF (Teichteil-Koenigsbuch et al., 2008) was
the only system that solved any of the 15 problems. Neither RFF nor FODD-Planner

could solve problems 13 to 15; hence we omit results for those.

To limit off-line planning time we determinized this domain (making drive deterministic)
and restricted FODD-Planner to 5 iterations. Since the domain was determinized, there
was only one alternative per action. Therefore the the non-std-apart approximation has
no effect here. The policy was generated in 42.6 minutes. The performance of FODD-

Planner and RFF is summarized in Figures 14, 15, and 16. The figures show a comparison
of the percentage of runs each planner was able to solve (coverage), the average reward
achieved per problem instance, and the average number of actions taken by each planner
to reach the goal on every instance.

As can be seen FODD-Planner has lower coverage than RFF. However, our perfor-
mance is close to RFF in terms of accumulated reward and consistently better in terms of
plan length even on problems where we achieve full coverage.

259

Joshi & Khardon

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

P
er

ce
nt

ag
e

R
un

s
S

ol
ve

d

Problem Instance ID

Boxworld: Percentage Runs Solved vs. Problem Instance

FODDPlanner
RFF

Figure 14: Coverage results of boxworld experiments

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12

A
ve

ra
ge

 #
 A

ct
io

ns
 to

 G
oa

l

Problem Instance ID

Boxworld: Average # Actions to Goal vs. Problem Instance

FODDPlanner
RFF

Figure 15: Plan length results of boxworld experiments

260

Probabilistic Planning with FODD

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2 4 6 8 10 12

A
ve

ra
ge

 R
ew

ar
d

Problem Instance ID

Boxworld: Average Reward vs. Problem Instance

FODDPlanner
RFF

Figure 16: Average reward results of boxworld experiments

In this domain we experienced long plan execution times (10 minutes per round on hard
problems and about 15 seconds per round on the easier problems). This points to the com-
plexity of the instances and could be a one reason for the failure of other planning systems
at IPC where a strict time bound was observed, and for the failure of RFF on problems 13,
14 and 15. Thus, although the performance of our system is promising, reducing online ex-
ecution time is crucial. As shown above, for some domains the technique of merging leaves
can lead to such improvement at the cost of some reduction in performance. Unfortunately,
for this domain merging leaves did not provide any advantage. As in tireworld, there is a
clear tradeoff between the quality of coverage and planning time. However the switch is
abrupt and to gain significantly in execution time one incurs a significant loss in coverage.
Improving the runtime for online application of our policies is an important aspect for future
work.

7. Related Work

The introduction briefly reviewed previous work on MDPs, propositionally factored MDPs
and RMDPs focusing on work that is directly related to the ideas used in this paper. There
have been several other solution formalisms for RMDPs that combine dynamic program-
ming with other ideas to yield successful systems. These include approaches that combine
dynamic programming with linear function approximation (Sanner & Boutilier, 2009), for-
ward search (Hölldobler et al., 2006) and machine learning (Fern, Yoon, & Givan, 2006;
Gretton & Thiebaux, 2004). All of these yielded strong implementations that participated
in some planning competitions. Other works do not directly use dynamic programming.
For instance Guestrin, Koller, Gearhart, and Kanodia (2003a) present an approach using
additive value functions based on object classes and employ linear programming to solve
the RMDP. Mausam and Weld (2003) employ SPUDD (Hoey et al., 1999) to solve ground
instances of an RMDP, generate training data from the solutions and learn a lifted value

261

Joshi & Khardon

function from the training data using a relational tree learner. Gardiol and Kaelbling (2003)
apply methods from probabilistic planning to solve RMDPs.

In the most closely related work that preceded our effort, Sanner and Boutilier (2009)
developed a relational extension of linear function approximation techniques for factored
MDPs. The value function is represented as a weighted sum of basis functions, each denoting
a partition of the state space. The difference from the work on factored MDPs is that these
basis functions are First-Order formulas and thus the value function is valid for any domain
size (this is the same fundamental advantage that RMDP solvers have over ground MDP
solvers). They develop methods for automatic generation of First-Order constraints in a
linear program and automatic generation of basis functions that show promise in solving
some domains from the IPC. The work of Sanner and Boutilier is thus an extension of
the work on linear representations for propositionally factored MDPs (e.g., Guestrin et al.,
2003b) to capture relational structure. In a similar view the work on FODD-Planner is
a relational extension of the work on ADD based solvers for propositionally factored MDPs
(Hoey et al., 1999). In this context it is interesting to note that Sanner and Boutilier also
developed a relational extension of ADDs they call FOADDs. In contrast with FODDs,
nodes in FOADDs are labeled with closed First-Order formulas.5 Sanner and Boutilier
report on an implementation that was able to provide exact solutions for simple problems,
but they developed and applied the approach using linear function approximation for more
complex problems. Our experiments do use approximation and they demonstrate that
FODDs can be used to solve problems at least of the complexity currently employed in the
IPC.

Another important body of work is pursued by Relational Reinforcement Learning
(RRL) (Tadepalli, Givan, & Driessens, 2004) where techniques from reinforcement learning
are used to learn or construct value functions and policies for relational domains. RRL
followed from the seminal work of Dzeroski, De Raedt, and Driessens (2001) whose algo-
rithm involved generating state-value pairs by state space exploration (biased in favor of
state-action pairs with high estimated value) and learning a relational value function tree
from the collected data. In a sense the First-Order decision trees used by Dzeroski et al.
(2001) are similar to FODDs. However, there is an important difference in the semantics
of these representations with strong implications for computational properties. While the
trees employ semantics based on traversal of a single path, FODD semantics are based on
aggregating values generated by traversal of multiple paths. We have previously argued
(Wang et al., 2008) that the FODD semantics are much better suited for dynamic program-
ming solutions. There have been several approaches to RRL in recent years showing nice
performance (for example, Driessens & Dzeroski, 2004; Kersting & De Raedt, 2004; Walker,

5. As discussed by Sanner and Boutilier (2009) it is hard to characterize the exact relationship between
FOADDs and FODDs in terms of representation and computational properties. An anonymous reviewer
kindly provided the following example that shows that in some cases FODDs might be more compact than
FOADDs. Consider a domain with n unary predicates A1(·), . . . , An(·) capturing some object properties
and consider the formula ∃x, A1(x) Xor A2(x) Xor . . . Xor An(x) where n is odd. The formula requires
that there exists an object for which an odd number of properties Ai(·) hold. Due to their restriction to
use only the connectives And, Or and Not, the FOADDs must rewrite this formula in a way that yields a
representation (for example in its DNF form) whose size is exponential in the number of predicates. On
the other hand, one can represent this formula with a linear size FODD, similar to the representation of
parity functions with propositional BDDs.

262

Probabilistic Planning with FODD

Torrey, Shavlik, & Maclin, 2007; Croonenborghs, Ramon, Blockeel, & Bruynooghe, 2007)
although they are applied to problems of smaller scale than the ones from the IPC. An
excellent overview of the various solutions methods for RMDPs is provided by van Otterlo
(2008).

8. Conclusion and Future Work

The main contribution of this paper is the introduction of FODD-Planner, a relational
planning system based on First Order Decision Diagrams. This is the first planning system
that uses lifted algebraic decision diagrams as its representation language and successfully
solves planning problems from the international planning competition. FODD-Planner

provides several improvements over previous work on FODDs (Wang et al., 2008). The im-
provements include the reduction operators R10, R11 the Sub-apart operator, and several
speedup and value approximation techniques. Taken together, these improvements pro-
vide substantial speedup making the approach practical. Therefore, the results show that
abstraction through compact representation is a promising approach to stochastic planning.

Our work raises many questions concerning foundations for FODDs and their applica-
tion to solve RMDPs. The first is the question of reductions. Our set of reductions is
still heuristic and does not guarantee a canonical form for diagrams which is instrumental
for efficiency of propositional algorithms. Identifying such “complete” sets of reductions
operators and canonical forms is an interesting challenge. Identifying a practically good
set of operators trading off complexity for reduction power is crucial for further applicabil-
ity. In recent work (Joshi, Kersting, & Khardon, 2010) we developed practical variants of
model-checking reductions (Joshi et al., 2009) demonstrating significant speedup over the
system presented here. Another improvement may be possible by using the FODD based
policy iteration algorithm (Wang & Khardon, 2007). This may allow us to avoid approxi-
mation of infinite size value functions in cases where the policy is still compact. Another
direction is the use of the more expressive GFODDs (Joshi et al., 2009) that can handle ar-
bitrary quantification and can therefore be applied more widely. Finally this work suggests
the potential of using FODDs as the underlying representation for relational reinforcement
learning. Therefore, it will be interesting to develop learning algorithms for FODDs.

Acknowledgments

This work was partly supported by NSF grants IIS 0936687 and IIS 0964457. Saket Joshi
was additionally supported by a Computing Innovation Postdoctoral Fellowship. Some
of the experiments reported in this paper were performed on the Tufts Linux Research
Cluster supported by Tufts UIT Research Computing. We thank Kristian Kersting for
valuable input on the system and insightful discussions.

References

Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A., & Somenzi, F. (1993).
Algebraic decision diagrams and their applications. In IEEE /ACM ICCAD, pp.
188–191.

263

Joshi & Khardon

Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ.

Blum, A., & Furst, M. (1997). Fast planning through planning graph analysis. Artificial
Intelligence, 90(1-2), 279–298.

Blum, A., & Langford, J. (1998). Probabilistic planning in the graphplan framework. In
Proceedings of the Fifth European Conference on Planning, pp. 8–12.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129,
5–33.

Boutilier, C., Dean, T., & Hanks, S. (1999a). Decision-theoretic planning: Structural as-
sumptions and computational leverage. Journal of Artificial Intelligence Research, 11,
1–94.

Boutilier, C., Dearden, R., & Goldszmidt, M. (1999b). Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121, 49–107.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic programming for First-Order
MDPs. In Proceedings of the International Joint Conference of Artificial Intelligence,
pp. 690–700.

Croonenborghs, T., Ramon, J., Blockeel, H., & Bruynooghe, M. (2007). Online learning
and exploiting relational models in reinforcement learning. In Proceedings of the
International Joint Conference of Artificial Intelligence, pp. 726–731.

Driessens, K., & Dzeroski, S. (2004). Integrating guidance into relational reinforcement
learning. Machine Learning, 57, 271–304.

Dzeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning.
Machine Learning, 43, 7–52.

Fern, A., Yoon, S., & Givan, R. (2006). Approximate policy iteration with a policy language
bias. Journal of Artificial Intelligence Research, 25(1), 75–118.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4), 189–208.

Gardiol, N., & Kaelbling, L. (2003). Envelope-based planning in relational MDPs. In Pro-
ceedings of the International Conference on Neural Information Processing Systems,
pp. 1040–1046.

Gretton, C., & Thiebaux, S. (2004). Exploiting First-Order regression in inductive policy
selection. In Proceedings of the Workshop on Uncertainty in Artificial Intelligence.

Groote, J., & Tveretina, O. (2003). Binary decision diagrams for First-Order predicate
logic. Journal of Logic and Algebraic Programming, 57, 1–22.

Guestrin, C., Koller, D., Gearhart, C., & Kanodia, N. (2003a). Generalizing plans to new
environments in relational MDPs. In Proceedings of the International Joint Conference
of Artificial Intelligence, pp. 1003–1010.

Guestrin, C., Koller, D., Parr, R., & Venkataraman, S. (2003b). Efficient solution algorithms
for factored MDPs. Journal of Artificial Intelligence Research, 19, 399–468.

264

Probabilistic Planning with FODD

Hoey, J., St-Aubin, R., Hu, A., & Boutilier, C. (1999). SPUDD: Stochastic planning us-
ing decision diagrams. In Proceedings of the Workshop on Uncertainty in Artificial
Intelligence, pp. 279–288.

Hölldobler, S., Karabaev, E., & Skvortsova, O. (2006). FluCaP: a heuristic search planner
for First-Order MDPs. Journal of Artificial Intelligence Research, 27, 419–439.

Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press.

Joshi, S., Kersting, K., & Khardon, R. (2009). Generalized First-Order decision diagrams
for First-Order Markov decision processes. In Proceedings of the International Joint
Conference of Artificial Intelligence, pp. 1916–1921.

Joshi, S., Kersting, K., & Khardon, R. (2010). Self-Taught decision theoretic planning
with First-Order decision diagrams. In Proceedings of the International Conference
on Automated Planning and Scheduling, pp. 89–96.

Kautz, H., & Selman, B. (1996). Pushing the envelope: Planning, propositional logic, and
stochastic search. In Proceedings of the National Conference of the American Associ-
ation for Artificial Intelligence, pp. 1194–1201.

Kearns, M., & Koller, D. (1999). Efficient reinforcement learning in factored MDPs. In
Proceedings of the International Joint Conference of Artificial Intelligence, pp. 740–
747.

Kersting, K., & De Raedt, L. (2004). Logical Markov decision programs and the convergence
of logical TD(λ). In Proceedings of Inductive Logic Programming, pp. 180–197.

Kersting, K., van Otterlo, M., & De Raedt, L. (2004). Bellman goes relational. In Proceedings
of the International Conference on Machine Learning, pp. 465–472.

Khardon, R. (1999). Learning function free Horn expressions. Machine Learning, 37 (3),
249–275.

Little, I., & Thibaux, S. (2007). Probabilistic planning vs. replanning. In Proceedings of
the ICAPS Workshop on IPC: Past, Present and Future.

Lloyd, J. (1987). Foundations of Logic Programming. Springer Verlag. Second Edition.

Majercik, S., & Littman, M. (2003). Contingent planning under uncertainty via stochastic
satisfiability. Artificial Intelligence, 147 (1-2), 119–162.

Mausam, & Weld, D. (2003). Solving relational MDPs with First-Order machine learning. In
Proceedings of the ICAPS Workshop on Planning under Uncertainty and Incomplete
Information.

Penberthy, J., & Weld, D. (1992). UCPOP: A sound, complete, partial order planner for
ADL. In Principles of Knowledge Representation and Reasoning, pp. 103–114.

Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic program-
ming. Wiley.

Sanner, S., & Boutilier, C. (2009). Practical solution techniques for First-Order MDPs.
Artificial Intelligence, 173, 748–788.

265

Joshi & Khardon

St-Aubin, R., Hoey, J., & Boutilier, C. (2000). APRICODD: Approximate policy construc-
tion using decision diagrams. In Proceedings of the International Conference on Neural
Information Processing Systems, pp. 1089–1095.

Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement learning: An
overview. In Proceedings of the International Conference on Machine Learning ’04
Workshop on Relational Reinforcement Learning.

Teichteil-Koenigsbuch, F., Infantes, G., & Kuter, U. (2008). RFF: A robust FF-based MDP
planning algorithm for generating policies with low probability of failure. In Sixth
IPC at ICAPS.

van Otterlo, M. (2008). The logic of Adaptive behavior: Knowledge representation and
algorithms for adaptive sequential decision making under uncertainty in First-Order
and relational domains. IOS Press.

Walker, T., Torrey, L., Shavlik, J., & Maclin, R. (2007). Building relational world models for
reinforcement learning. In Proceedings of Inductive Logic Programming, pp. 280–291.

Wang, C. (2007). First-Order Markov decision processes. Ph.D. thesis, Tufts University.

Wang, C., Joshi, S., & Khardon, R. (2008). First-Order decision diagrams for relational
MDPs. Journal of Artificial Intelligence Research, 31, 431–472.

Wang, C., & Khardon, R. (2007). Policy iteration for relational MDPs. In Proceedings of
the Workshop on Uncertainty in Artificial Intelligence, pp. 408–415.

Weld, D., Anderson, C., & Smith, D. (1998). Extending graphplan to handle uncertainty and
sensing actions. In Proceedings of the National Conference on Artificial Intelligence.

Yoon, S., Fern, A., & Givan, R. (2007). FF-Replan: A baseline for probabilistic planning. In
Proceedings of the International Conference on Automated Planning and Scheduling,
pp. 352–359.

Younes, H., Littman, M., Weissman, D., & Asmuth, J. (2005). The first probabilistic track
of the international planning competition. Journal of Artificial Intelligence Research,
24 (1), 851–887.

266

