
Journal of Artificial Intelligence Research 41 (2011) 69-95 Submitted 10/10; published 05/11

Value of Information Lattice: Exploiting Probabilistic
Independence for Effective Feature Subset Acquisition

Mustafa Bilgic mbilgic@iit.edu

Illinois Institute of Technology

Chicago, IL 60616 USA

Lise Getoor getoor@cs.umd.edu

University of Maryland

College Park, MD 20742 USA

Abstract

We address the cost-sensitive feature acquisition problem, where misclassifying an in-
stance is costly but the expected misclassification cost can be reduced by acquiring the
values of the missing features. Because acquiring the features is costly as well, the ob-
jective is to acquire the right set of features so that the sum of the feature acquisition
cost and misclassification cost is minimized. We describe the Value of Information Lattice
(VOILA), an optimal and efficient feature subset acquisition framework. Unlike the common
practice, which is to acquire features greedily, VOILA can reason with subsets of features.
VOILA efficiently searches the space of possible feature subsets by discovering and exploiting
conditional independence properties between the features and it reuses probabilistic infer-
ence computations to further speed up the process. Through empirical evaluation on five
medical datasets, we show that the greedy strategy is often reluctant to acquire features,
as it cannot forecast the benefit of acquiring multiple features in combination.

1. Introduction

We often need to make decisions and take appropriate actions in a complex and uncertain
world. An important subset of decisions can be formulated as a classification problem,
where an instance is described by a set of features and one of finite categorical options is
chosen based on these features. Examples include medical diagnosis where the patients are
described by lab tests and a diagnosis is to be made about the disease state of the patient,
and spam detection where an email is described by its content and the email client needs
to decide whether or not the email is spam.

Much research has been done on how to learn effective and efficient classifiers assuming
that the features describing the entities are fully given. Even though this complete data
assumption might hold on a few domains, in practice features that describe the entities
often have missing values. In certain domains such as medical diagnosis where a decision is
made based on a number of features that include laboratory test results, the missing feature
values can be acquired at a cost by performing the related tests. In such cases, we need
to decide which tests to perform in which order. The answer to this question, of course,
depends on how important it is to get the correct classification decision. Put alternatively,
the cost of an incorrect classification (e.g., a misdiagnosis) determines how much we are
willing to spend on expensive tests. Thus, we need to devise a feature acquisition policy
that can determine which tests to perform in which order and when to stop and make the

c©2011 AI Access Foundation. All rights reserved.

Bilgic & Getoor

final classification decision so that the total incurred cost, the feature acquisition cost and
the expected misclassification cost, is minimized.

Devising the optimal policy in general requires considering all possible permutations of
the features and their expected values. To provide some intuition, some features might be
useful only if acquired together, and the cost and benefit of acquiring some features can
depend on which other features have been acquired and what their values turned out to
be. Because devising the optimal policy is intractable in general, previous work has been
greedy (Gaag & Wessels, 1993; Yang, Ling, Chai, & Pan, 2006), has approximated value
of information calculations (Heckerman, Horvitz, & Middleton, 1993), and has developed
heuristic feature scoring techniques (Núñez, 1991; Turney, 1995).

The greedy approach, however, has at least two major limitations. First, because it
considers each feature in isolation, it cannot accurately forecast the value of acquiring
multiple features together, causing it to produce sub-optimal policies. Second, the greedy
strategy assumes that features can be acquired sequentially and the value of a feature can
be observed before acquiring the next one. This assumption, however, is often not very
practical. For example, doctors typically order batches of measurements simultaneously
such as blood count, cholesterol level, etc., and then possibly order another batch after the
results arrive. These two limitations of the greedy approach make it necessary to reason
with sets of features.

Reasoning with sets of features, on the other hand, poses serious tractability challenges.
First of all, the number of subsets is exponential in the size of the feature set. Second,
judging the value of acquiring a set of features requires taking an expectation over the
possible values of the features in the set, which is also exponential in the number of the
features. The good news, however, is that we do not need to consider all possible subsets of
features in practice; certain features can render other features useless, while some features
are useful only if acquired together. For example, an X-Ray might render a skin test
useless for diagnosing tuberculosis. Similarly, a chest pain alone might not be useful for
differentiating between a cold and a heart disease; it becomes useful only if it is combined
with other features, such as a blood test.

In this article, we describe a data structure that discovers and exploits these types of
constraints (features that render other features useless and features that are useful only
if acquired together) from the underlying probability distribution. We propose Value of
Information Lattice (VOILA) that reduces the space of all possible subsets by exploiting the
constraints between the features. Additionally, VOILA makes it possible to share value of
information calculations between different feature sets to reduce the computation time.

This article builds upon our earlier work (Bilgic & Getoor, 2007). Our contributions in
this article include:

• We introduce two additional techniques for sharing computations between different
subsets of features. These new techniques are based on information caching and
utilizing paths in the underlying Bayesian network.

• We experiment with asymmetric misclassification costs in addition to the symmetric
costs. The asymmetric setup reflects a more realistic case and provides new insights.

• In addition to the feature acquisition costs defined by Turney (1995), we generate
and experiment with synthetic feature costs. The synthetic feature costs capture

70

Value of Information Lattice

more complex feature acquisition costs and allows for leeway for various acquisition
strategies to differ.

The remainder of this article is organized as follows. We describe the notation and
problem formulation in Section 2. We describe how we can reduce the search space and
share computations using VOILA in Section 3. We show experimental results in Section 4,
discuss related work in Section 5, and discuss future work in Section 6. We then conclude
in Section 7.

2. Notation and Problem Formulation

Our main task is to classify a given instance that has missing feature values and incur
the minimum acquisition and misclassification cost. Let the instance be described by a set of
features X = {X1, X2, . . . , Xn} and let Y be the random variable representing its class. We
assume that the joint probability distribution P (Y,X) is given and concern ourselves with
feature acquisition during only inference (note that the conditional distribution P (Y |X) is
not appropriate, as most features are assumed to be unobserved initially). For the purpose
of this article, we assume that we are given a Bayesian network, but any joint probabilistic
model that allows us to efficiently answer conditional independence queries can be used.

In the notation, a bold face letter represents a set of random variables and non-bold face
letter represents a single random variable. For example X represents the set of features,
whereas Xi ∈ X represents a feature in X and Y represents the class variable. Additionally,
a capital letter represents a random variable, and a lowercase letter represents a particular
value of that variable; this applies to both individual variables and sets of variables. For
example, Y represents a variable, and y represents a particular value that Y can take.

In addition to the probabilistic model, we are also given the cost models that specify
feature acquisition costs and misclassification costs. Formally, we assume that we have a
feature acquisition cost function that given a subset of features, S, and the set of features
whose values are known (evidence) E, returns a non-negative real number C(S | e). We
also assume that we have a misclassification cost model that returns the misclassification
cost cij incurred when Y is assigned yi when the correct assignment is yj . With these cost
functions, we can model non-static feature acquisition costs; that is, the cost of acquiring
the feature Xi can depend on what has been acquired so far and what their values are
(e) as well what is acquired in conjunction with this feature (S \ {Xi}). Moreover, the
misclassification cost model does not assume symmetric costs; different kids of errors (false
positives or negatives) can have different costs.

Figure 1 shows a simple example configuration with two features, X1 and X2, and the
class variable Y . In this simple example, the joint distribution P (X, Y) is represented as
a table, the feature costs are simple independent costs for X1 and X2, and the misclassifi-
cation cost is symmetric where both types of misclassifications cost the same and correct
classification does not cost anything.

A diagnostic policy π is a decision tree where each node represents a feature and the
branches from the nodes represent the possible values of the features. Each path of the
policy, ps ∈ π, represents an ordered sequence feature values s. We will often use ps to
represent an ordered version of s. Typically, the order of the features in the set will be
important for computing the feature costs, as the cost of a feature can depend on the values

71

Bilgic & Getoor

Figure 1: Example configuration with two features X1 and X2 and class variable Y . The
table from left to right represent: the joint probability distribution P (X1, X2, Y),
the feature costs, and the misclassification costs.

of previously acquired features. The order of the features will be irrelevant for computing
the probability P (s). An example conditional policy using the example configuration of
Figure 1 is given in Figure 2.

Each policy π has two types of costs: the feature acquisition cost and a misclassification
cost. These costs are defined in terms of the costs associated with following the paths in
the policy. We first describe how to compute the feature acquisition cost of a path and then
describe how to compute the associated expected misclassification cost. Finally, we show
how to compute the expected total cost of a policy using the total costs associated with
each path.

In the most naive version, the feature cost of a path ps is the sum of the costs of the
features that appear on the path. However, in practice, the cost of a feature can depend on
which features have been acquired so far and the observed values of the acquired features.
For example, performing the treadmill test (asking the patient to run a treadmill and
measure his heart beat, etc.) can be riskier if we had ordered a cholesterol test and its
result turned out to be high, putting the patient in high risk for heart disease. To account
for these types of costs, the order of the features in ps matters, and the total feature cost
of a path is the summation of the individual feature costs conditioned on the values of the
features that precede the features in consideration:

FC(ps) =

n∑
j=1

C(ps[j] | ps[1 : j])

where ps[j] represents the jth feature in ps and ps[1 : j] represents feature values 1 through
j in ps.

When we reach the end of a path, we need to make a classification decision. In this
case, we simply utilize the Bayesian decision theory and choose the decision with minimum
risk (i.e., misclassification cost). We find such a decision by using the probabilistic model to

72

Value of Information Lattice

Figure 2: An example conditional policy with features X1, X2 and class variable Y . Each
non-leaf node represents a feature acquisition, with probability distribution of the
possible values, and the cost of the feature. Each path (e.g., X1 = T,X2 = T) has
an acquisition cost and expected misclassification cost. The policy overall has an
expected total cost ETC, which is the sum of total costs of each path, weighted
by the probability of following that path.

compute the probability distribution P (Y | ps) and choose the value of Y that leads to the
minimum expected cost. Note that the order of the features values do not matter in this
case; that is P (Y | ps) = P (Y | s). The expected misclassification of a path, EMC(ps), is

73

Bilgic & Getoor

computed as follows:

EMC(ps) = EMC(s) = min
yi

∑
yj

P (Y = yj | s)× cij (1)

The total cost that we incur by following a path of a policy is simply the sum of the feature
and the expected misclassification costs of that path:

TC(ps) = FC(ps) + EMC(ps)

Finally, we compute the expected total cost of a policy π using the total costs of the
individual paths ps ∈ π. Each path ps ∈ π has a probability of occurrence in real world.
Such probability can be easily computed by the generative probability model that we as-
sumed. It is simply P (s). The expected total cost of a policy is then the sum of the total
cost of each path, TC(ps), weighted by the probability of following that path, P (s):

ETC(π) =
∑
ps∈π

P (s)TC(ps) (2)

The objective of feature acquisition during inference is, given the joint probabilistic
model and the cost models for acquisition and misclassification, find the policy that has the
minimum expected total cost. However, building the optimal decision tree is known to be
NP-complete (Hyafil & Rivest, 1976). Thus, most research have been greedy choosing the
best feature that reduces the misclassification costs the most and has the lowest cost (e.g.,
Gaag & Wessels, 1993; Dittmer & Jensen, 1997) or have developed heuristic feature scoring
techniques (e.g., Núñez, 1991; Tan, 1990).

In the greedy strategy, each path of the policy is extended with the feature that reduces
the misclassification cost the most and that has the lowest cost. More specifically, the path
ps is replaced with new paths ps∪x1i

,ps∪x2i
, . . . ,ps∪xni where x1

i , x
2
i , . . . , x

n
i are the values

that Xi can take and Xi is the feature that has the highest benefit. We define the benefit of
a feature Xi given a path ps as the reduction in the total cost of the path when the path
is expanded with the possible values of Xi. More formally,

Benefit(Xi | ps) , TC(ps)−
n∑
j=1

P (xji | s)TC(p
s∪xji

)

= FC(ps) + EMC(s)−
n∑
j=1

P (xji | s)
(
FC(p

s∪xji
) + EMC(s ∪ xji)

)

= FC(ps)−

 n∑
j=1

P (xji | s)FC(p
s∪xji

)

+ EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji)

= FC(ps)− (FC(ps) + C(Xi | s)) + EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji)

= −C(Xi | s) + EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji)

74

Value of Information Lattice

Note that, the last two terms are equivalent to the definition of expected value of informa-
tion, EVI, (Howard, 1966):

EV I(Xi | s) = EMC(s)−
n∑
j=1

P (xji | s)EMC(s ∪ xji) (3)

Substituting EVI, the definition of benefit becomes very intuitive:

Benefit(Xi | ps) = Benefit(Xi | s) = EV I(Xi | s)− C(Xi | s) (4)

With this definition, the greedy strategy iteratively finds the feature that has the highest
positive benefit (value cost difference), acquires it, and stops acquisition when there are no
more features with a positive benefit value.

We also note that it is straightforward to define EVI and Benefit for a set S′ of features
just like we did for a single feature. The only difference is that the expectation needs to be
taken over the joint assignments, s′, to the features in the set S′.

EV I(S′ | s) = EMC(s)−
∑
s′

P (s′ | s)EMC(s ∪ s′) (5)

and,

Benefit(S′ | s) = EV I(S′ | s)− C(S′ | s) (6)

There are a few problems with the greedy strategy as we have mentioned earlier. First,
it is short-sighted. There exist sets S ⊆ X such that Benefit(S) >

∑
Xi∈S

Benefit(Xi).

This is easier to see, for example, for the XOR function, Y = X1 XOR X2, where X1 and X2

alone are not useful but they are determinative together. Due to this relationship, a greedy
policy is not guaranteed to be optimal. Moreover, the greedy policy can prematurely stop
acquisition because no single feature seems to provide positive benefit.

The second problem with the greedy strategy is that we often need to acquire a set of
features simultaneously. For example, a doctor orders a set of lab tests when s/he sends the
patient to a lab, such as blood count, cholesterol level, etc. rather than ordering a single test,
waiting for its result and ordering the next one. However, the traditional greedy strategy
cannot handle reasoning with sets of features naturally.

We would like to be able to reason with sets of features for these two reasons. Our
objective in this article is, given an existing potentially empty set of already observed
features E and their observed values e, find the set that has the highest benefit:

L(X | e) , argmax
S⊆X\E

Benefit(S | e) (7)

There are two problems with this formulation: first, the number of subsets of X \ E is
exponential in the size of X \E, and second, for each set S, we need to take an expectation
over the joint assignments to all features in the set. We address these two problems using
a data structure that we describe next.

75

Bilgic & Getoor

3. Value of Information Lattice (VOILA)

VOILA makes reasoning with sets of features tractable by reducing the space of possible
sets and allowing sharing of EVI computations between different sets. In this section, we
will first explain how we can reduce the space and then explain techniques for computation
sharing.

3.1 Reducing the Space of Possible Sets

In most domains, there are often complex interactions between the features and the
class label. Contrary to the Naive Bayes assumption, features are often not conditionally
independent given the class label. Some features are useless once some other features are
already acquired. For example a chest X-Ray is typically more determinative than a skin
test for tuberculosis. Similarly, some features are useless alone unless they are accompanied
with other features. For example, a chest pain alone might be due to a variety of sicknesses;
if it is accompanied with high cholesterol, it could indicate a heart disease, whereas if it is
combined with fever, a cold might be more probable. These types of interactions between
the features allow us to reduce the space of candidate feature sets.

As we have mentioned in the problem formulation, we have assumed that we already have
a joint probabilistic model over the features and the class variable, P (Y,X). We will find
these two types of feature interactions by asking probabilistic independence queries using
P (Y,X). Specifically, we assume that we are given a Bayesian network that represents
P (Y,X). The Bayesian network will allow us to find these types of interactions through
standard d-separation algorithms.

Definition 1 A set S ⊆ X \E is irreducible with respect to evidence e if ∀Xi ∈ S, Xi is
not conditionally independent of Y given e and S \ {Xi}.

Given a Bayesian network over X and Y , it is straightforward to check irreducibility through
d-separation (Pearl, 1988).

Proposition 1 Let S′ be a maximal irreducible subset of S with respect to e. Then, EV I(S |
e) = EV I(S′ | e).

Proof: Let S′′ = S \ S′. If S′ is a maximal irreducible set, S′ ∪ E d-separates Y and S′′.
Otherwise, we could make S′ larger by including the non-d-separated element(s) from S′′ in
S′. Thus, we have P (Y | e, s) = P (Y | e,S′,S′′) = P (Y | e,S′). Substitution in Equations
1 and 5 yields the desired property.

Note that under the assumption that C(S′ | e) ≤ C(S | e) for any S′ ⊆ S, it suffices to
consider only the irreducible sets to find the optimal solution to the objective function in
Equation (7). VOILA is a data structure that contains only the irreducible feature subsets
of X, with respect to a particular set of evidence e. We next define VOILA formally.

Definition 2 A VOILA V is a directed acyclic graph in which there is a node corresponding
to each possible irreducible set of features, and there is a directed edge from a feature set S
to each node that corresponds to a direct (maximal) subset of S. Other subset relationships
in the lattice are then defined through the directed paths in V.

76

Value of Information Lattice

(a) (b)

Figure 3: (a) A simple Bayesian network illustrating dependencies between attributes and
the class variable. (b) The VOILA corresponding to the network.

Figure 3(a) shows a simple Bayesian network and its corresponding VOILA, with respect
to the empty evidence set, is shown in Figure 3(b). Notice that the VOILA contains only the
irreducible subsets given the Bayesian network; for instance, the VOILA does not contain
sets that include both X1 and X2 because X1 d-separates X2 from Y . We also observe that
the number of irreducible subsets is 9 in contrast to 24 = 16 possible subsets. Moreover,
note that the largest subset size is now 3 in contrast to 4. Having smaller feature sets sizes
has a dramatic effect on the value of information calculations. In fact, these savings can
make solving the objective function optimally (Equation (7)) feasible in practice.

3.2 Sharing EVI Calculations

Finding the set S that has the highest Benefit (Equation 6) requires computing EV I(S)
(Equation 5). However, computing EV I(S) requires taking an expectation over all possible
values of the features in S. Moreover, searching for the best set among all the irreducible sets
requires us to compute EVI for all irreducible sets. To make such computations tractable in
practice, VOILA allows computation sharing between its nodes. In this article, we describe
three possible ways of sharing computations between the nodes of VOILA.

77

Bilgic & Getoor

3.2.1 Subset Relationships

VOILA exploits the subset relationships between different feature sets in order to avoid
computing EVI for some nodes. First of all, if there is a directed path from node S1 to S2

in VOILA, then S1 ⊃ S2 and thus EV I(S1 | e) ≥ EV I(S2 | e)1. Now assume that there is
a directed path from Si to Sj and EV I(Si | e) = EV I(Sj | e). Then, all of the nodes on
this path will also have the same EVI, thus we do not need to do the computation for those
subsets. An algorithm that makes use of this observation is given in Algorithm 1.

Algorithm 1: Efficient EVI computation using VOILA.

Input: VOILA V and current evidence E
Output: VOILA updated with correct EVI values
for all root node(s) S1

value← EV I(S | e); ub(S)← value; lb(S)← value2

ub(descendants(S))← value3

for all leaf node(s) S4

value← EV I(S | e); ub(S)← value; lb(S)← value5

lb(ancestors(S))← value6

for all node S where lb(S) 6= ub(S)7

value← EV I(S | e); ub(S)← value; lb(S)← value8

lb(ancestors(S))← value9

ub(descendants(S))← value10

It is important to point out that all nodes of VOILA are irreducible sets. Unless there are
totally useless features that do not change P (Y) when observed, then we should not have
any two distinct nodes where the EVI values are exactly equal. However, this statement is
true only if we do not have any context-specific independencies (independencies that hold
only under certain assignments to the variables) in the underlying Bayesian network. In our
description and implementation, we used standard d-separation at the variable level; one
can imagine going one step further and define the irreducible sets through both the variable
level d-separation and context specific independencies.

In order to share computations between different nodes of the lattice, we keep lower
and upper bounds on the EVI of a node. The lower bound is determined by the values of
the descendants of the node whereas the upper bound is determined by the values of its
ancestors. First, we initialize these bounds by computing the value of the information at
the boundary of the lattice, i.e., the root node(s) and the leaf node(s) (lines 1–6) 2. Then,
we loop over the nodes whose upper bounds and lower bounds are not equal (line 7–10),
computing their values and updating the bounds at their ancestors and descendants. The
algorithm terminates when the upper bounds and lower bounds for all the nodes become
tight. The order in which to choose the nodes in line 7 so that the number of sets for which
a value is calculated is minimum is still an open question. A possible heuristic is to perform

1. A superset has always a higher or equivalent EVI (Equation (5)) than its subset.
2. We do not need to compute EVI for all root nodes; it suffices to compute it for the node that corresponds

to the Markov blanket of Y . This will be explained in more detail in the next section.

78

Value of Information Lattice

a binary search and choose a middle node on a path between two nodes for which the values
have already been calculated.

3.2.2 Information Pathways at the Underlying Bayesian Network

The second mechanism that VOILA uses to share EVI computations is through the edges
in the underlying Bayesian network. We specifically make use of the following fact:

Proposition 2 For all S1 and S2, if S1 d-separates Y from S2 with respect to e, then
EV I(S1 | e) ≥ EV I(S2 | e).

Proof: Consider S12 = S1∪S2. Because of the subset relationship, we know that EV I(S12 |
e) ≥ EV I(S1 | e) and EV I(S12 | e) ≥ EV I(S2 | e).

EV I(S12 | e) = EMC(Y | e)−
∑
s12

P (s12 | e)EMC(Y | e, s12)

= EMC(Y | e)−
∑
s1

∑
s2

P (s1, s2 | e)EMC(Y | e, s1, s2)

= EMC(Y | e)−
∑
s1

∑
s2

P (s1, s2 | e)EMC(Y | e, s1)

= EMC(Y | e)−
∑
s1

P (s1 | e)EMC(Y | e, s1)

= EV I(S1 | e)

≥ EV I(S2 | e)

The third line follows from the second by the fact that S1 d-separates Y from S2 and thus
P (Y | s1, s2) = P (Y | s1).

Corollary: The Markov blanket of Y , (i.e., Y ’s parents, Y ’s children, and Y ’s children’s
other parents), is the set that has the highest EVI in our search space, as it d-separates all
of the remaining variables from Y . Using this corollary, we do not need to compute the EVI
for all root nodes in Algorithm 1; we can compute EVI for the root node that corresponds
to the Markov blanket of Y and it serves as the upper bound for the EVI of the remaining
root nodes.

These relationships can very well be exploited like we exploited the subset relationships
above. Instead of just using the subset relationships, we can use both subset and inde-
pendence relationships. One simple way to make use of Algorithm 1 without modification
is to add edges between any S1 and S2 where the independence property holds. An ex-
ample S1 and S2 according to our toy network in Figure 3(a) would be S1 = {X1} and
S2 = {X2}. Thus, we can add a directed edge from X1 to X2 in our VOILA in Figure 3(b)
and Algorithm 1 will work just fine.

3.2.3 Incremental Inference

The third and the last mechanism that VOILA uses for computation sharing is through
caching of probabilities at its nodes. For each candidate set S ∈ V, we need to compute
EV I(S | e) which requires computing P (S | e) and EMC(Y | S, e). If we cache the

79

Bilgic & Getoor

conditional probabilities at each node of V, then to compute P (S | e), we find one of its
supersets Si = S ∪ {Xi} and then compute P (S | e) =

∑
xi
P (S, Xi = xi | e).

Computing EMC(Y | S, e) requires computing P (Y | S, e). To perform this computa-
tion efficiently, we cache the state of the junction tree at each node of the VOILA. Then, we
find a subset, Sj , such that S = Sj ∪ {Xj}. We compute P (Y | S, e) by integrating the
extra evidence to the junction tree at node Sj that is used to compute P (Y | Sj , e).

3.3 Constructing VOILA

Efficient construction of VOILA is not a straightforward task. The brute force approach
would be to enumerate all possible subsets of X \E and for each subset check whether it is
irreducible. However, this brute force approach is clearly impractical. Because the number
of nodes in VOILA is expected to be much fewer than the number of possible subsets of X\E,
if we can be smart about which sets we consider for inclusion in V, we can construct it
more efficiently. That is, instead of generating all possible candidates and checking whether
they are irreducible or not, we try to generate only irreducible sets. We first introduce the
notion of a dependency constraint and then explain how we can use dependency constraints
to efficiently construct VOILA.

Definition 3 A dependency constraint for a feature Xi ∈ S with respect to S and E is the
constraint on S ∪E that ensures a dependency between Xi and Y exists.

For instance, in our running example, a dependency constraint for X2 is ¬X1; in other
words, in order for X2 to be relevant, X1 should not be included in S ∪ E. Similarly, the
dependency constraint for X4 is X3, meaning that X3 must be included in S∪E. Specifically,
a dependency constraint for a feature Xi requires that all Xj on the path from Y to Xi

not to be included in S∪E if Xj is not part of a v-structure; if Xj is part of a v-structure,
then either Xj or one of its descendants must be included in S∪E (we refer to these latter
constraints as positivity constraints). The algorithm that uses these ideas to compute the
dependency constraints for each feature is given in Algorithm 2.

Algorithm 2: Dependency constraint computation for Xi.

Input: Xi, Y
Output: Dependency constraint for Xi, denoted DC(Xi)
DC(Xi)← false1

for each undirected path pj between Xi and Y2

DCj(Xi)← true3

for each Xk on the path pj4

if Xk does not a cause a v-structure then5

DCj(Xi)← DCj(Xi) ∧ ¬Xk6

else7

DCj(Xi)← DCj(Xi) ∧ (Xk ∨Descendants(Xk))8

DC(Xi)← DC(Xi) ∨DCj(Xi)9

80

Value of Information Lattice

These dependency constraints can be used to check whether a set is irreducible or
potentially irreducible. Intuitively, a set is potentially irreducible if it is not irreducible but
it is possible to make the set irreducible by adding more features into it. More formally,

Definition 4 A set S ⊆ X \ E is potentially irreducible with respect to evidence e if,
S is not irreducible but there exists a non-empty set of features S′ ⊆ X \ {E ∪ S} such that
S ∪ S′ is irreducible.

Potential irreducibility is possible due to the non-monotonic nature of d-separation. That is,
a feature that is d-separated from Y can become dependent if we consider it in combination
with other features. For example, in our running example, {X4} is not irreducible, as X4

is d-separated from Y , whereas {X3, X4} is irreducible.

We use the dependency constraints to check whether a set is irreducible or potentially
irreducible. Because a set S is irreducible only if a dependency between all of its elements
and Y exists, the dependency constraint for the set S is the conjunction of the dependency
constraints of its members. The irreducibility of S can be checked by setting the elements
of S and E to “true” and setting the remaining elements of X to “false” and evaluating the
set’s dependency constraint. In our running example, the dependency constraint for the set
{X2, X4} is ¬X1∧X3. Assuming E = ∅, when we set the members of {X2, X4} to true, and
set the remaining features, X1 and X3, to false, ¬X1 ∧X3 then evaluates to false and thus
this set is not irreducible. This makes sense because given no evidence, X4 is independent
of Y , so while {X2} is a useful feature set to consider for acquisition, {X2, X4} is not.

Checking for potential irreducibility is very similar. Set the elements of S and E to true
like we did above. Then, set the positivity constraints of the members of S to true. Finally,
set everything else to false. Using the same example above, to check whether {X2, X4} is
potentially irreducible, set X2 = true, X4 = true. Also set X3 = true because it is the
positivity constraint for X4. Set the remaining features, that is X1, to false. Evaluating the
constraint ¬X1 ∧X3 yields to true, showing that {X2, X4} is potentially irreducible (while
it was not irreducible).

Given the definitions of irreducibility and potential irreducibility and the mechanisms to
check for these properties through the notion of dependency constraints, we next describe
the algorithm to construct VOILA.

VOILA construction proceeds in a bottom up fashion, beginning with the lowest level,
which initially contains only the empty set and constructs new irreducible feature sets by
adding one feature at a time into the VOILA structure. Algorithm 3 gives the details of
the algorithm. The algorithm keeps track of the irreducible feature sets IS, and the set
of potentially irreducible feature sets PS. When we are done processing feature Xij , we
remove from PS any potentially irreducible set that cannot become irreducible because Xij

will not be re-considered (line 11).

3.3.1 Analysis of VOILA Construction Algorithm

The construction algorithm inserts a node into the VOILA only if the corresponding set
is irreducible (lines 6 and 7). Moreover, by keeping track of potentially irreducible sets
(lines 8–10), we generate every possible irreducible set that can be generated. Thus, VOILA
contains only and all of the possible irreducible subsets of X.

81

Bilgic & Getoor

Algorithm 3: The VOILA construction algorithm.

Input: Set of features X and class variable Y .
Output: The VOILA data structure V, given E.
Pick an ordering of elements of X = Xi1 , Xi2 , . . . , Xin1

IS← {∅}; PS← ∅2

for j = 1 to n3

for each S ∈ IS ∪PS4

S′ ← S ∪Xij ; DC(S′)← DC(S) ∧DC(Xij)5

if S′ is irreducible then6

IS← IS ∪ {S′}; Add a node corresponding to S′ to V7

else8

if S′ is potentially irreducible then9

PS← PS ∪ {S′}10

Remove from PS all sets that are no longer potentially irreducible11

max = size of largest S in IS; Ll = {S | S ∈ IS and |S| = l}12

for l = 0 to max− 113

for each S ∈ Ll14

for each S′ ∈ Ll+115

if S ⊂ S′ then16

Add an edge from S′ to S to V17

The worst-case running time of the algorithm is still exponential in the number of
initially unobserved features, X \ E, because number of irreducible sets can potentially
be exponential. The running time in practice, though, depends on the structure of the
Bayesian network that the VOILA is based upon and the ordering of the variables in line 1.
For example, if the Bayesian network is naive Bayes, then all subsets are irreducible (no
feature d-separates any other feature from the class variable); thus, the search space cannot
be reduced at all. However, naive Bayes makes extremely strong assumptions which are
unlikely to hold in practice. In fact, as we empirically show in the experiments section on five
real-world datasets, features often are not conditionally independent given the class variable;
there are more complex interactions between them and thus the number of irreducible
subsets is substantially smaller than the number of all possible subsets.

The for loop at line 4 iterates over each irreducible and potentially irreducible sets
that have been generated so far, and the number of potentially-irreducible sets generated
depends on the ordering chosen. A good ordering processes features with literals with
positivity constraints in other features’ dependency constraints earlier. That is, for each
undirected path from Y to Xi that includes Xj in a v-structure, a good ordering puts Xj

earlier in the ordering than everything between Xj and Xi. For instance, in our sample
Bayesian network in Figure 3(a), we should consider X3 earlier than X4. We refer to an
ordering as perfect if it satisfies all the positivity constraints. If a perfect ordering is used,
VOILA construction algorithm never generates a potentially irreducible set. Unfortunately, it

82

Value of Information Lattice

is not always possible to find a perfect ordering. A perfect ordering is not possible when two
features have each other as a positivity constraint literal in their dependency constraints.
This case occurs only when there is a loop from Y to Y that has two or more v-structures
(Note that even though a Bayesian network is a directed acyclic graph, it can still contain
loops, i.e., undirected cycles). A perfect ordering was possible in four of the five real world
datasets that we used.

3.4 Using VOILA for Feature-value Acquisition

VOILA makes searching the space of all possible subsets tractable in practice. Using
this flexibility, it is possible to devise several different acquisition policies. We describe two
policies as example policies in this section.

The first acquisition policy aims to capture the practical setting where more than one
feature is acquired at once. The policy can be constructed using VOILA as follows. Each
path ps of the policy π (which is initially empty) is repeatedly extended by acquiring the
set S′ ∈ V that has the best Benefit(S′ | s, e). The policy construction ends when no path
can be extended, i.e., all candidate sets have non-positive Benefit values for each path of π.

The second acquisition policy adds a look-ahead capability to the greedy policy. That
is, rather than repeatedly extending each path ps of policy π with the feature Xi that has
the highest Benefit(Xi | s, e), we add a look-ahead capability, and first find the set S′ ∈ V
that has the highest Benefit(S′ | s, e). Then, instead of acquiring all features in S′ all
at once, like we did in the above policy, we find the feature Xi ∈ S′ that has the highest
Benefit(Xi | s, e) and acquire it to extend ps.

4. Experiments

We experimented with five real-world medical datasets that Turney (1995) described
and used in his paper. These datasets are Bupa Liver Disorders, Heart Disease, Hepatitis,
Pima Indians Diabetes, and Thyroid Disease, which are all available from the UCI Machine
Learning Repository (Frank & Asuncion, 2010). The datasets had a varying number of
features ranging from five to 20. Four out of five datasets had binary labels, whereas the
Thyroid dataset had three labels.

For each dataset, we first learned a Bayesian Network that both provides the joint
probability distribution P (Y,X) and efficiently answers conditional independence queries
thorough d-separation (Pearl, 1988). We built a VOILA for each dataset using the learned
Bayesian Network. We first present statistics on each dataset, such as the number of features
and number of nodes in the VOILA, and then compare various acquisition policies.

4.1 Search Space Reduction

Table 1 shows aggregate statistics about each dataset, describing the number of features,
the number of all possible subsets, the number of subsets in VOILA, and the percent reduction
in the search space. As this table shows, the number of irreducible subsets is substantially
fewer than all possible subsets. For the Thyroid Disease dataset, for example, the number
of possible subsets is over a million whereas the number of irreducible subsets is fewer than

83

Bilgic & Getoor

Table 1: Aggregate statistics about each dataset. The number of irreducible subsets, i.e.,
the number of nodes in VOILA, is substantially fewer than the number of all possible
subsets.

Dataset Features All Subsets Nodes in VOILA Reduction

Bupa Liver Disorders 5 32 26 19%
Pima Indians Diabetes 8 256 139 46%
Heart Disease 13 8,192 990 88%
Hepatitis 19 524,288 18,132 97%
Thyroid Disease 20 1,048,576 28,806 97%

thirty thousand. This enormous reduction in the search space makes searching through the
possible sets of features tractable in practice.

4.2 Expected Total Cost Comparisons

We compared the expected total costs (Equation 2) of four different acquisition policies
for each dataset. These policies are as follows:

• No Acquisition: This policy does not acquire any features; it aims to minimize the
expected misclassification cost based on the prior probability distribution of the class
variable, P (Y).

• Markov Blanket: This policy acquires every relevant feature, regardless of the mis-
classification costs. The Market Blanket of Y in a Bayesian network is defined as Y ’s
parents, children, and its children’s other parents (Pearl, 1988). Intuitively, it is the
minimal set S ⊆ X such that Y ⊥ (X \ S) | S.

• Greedy: This policy repeatedly expands each path ps of an initially empty policy π
by acquiring the feature Xi that has the highest positive Benefit(Xi | s) (Equation
4). The policy construction ends when no path can be extended with a feature with
a positive Benefit value.

• Greedy-LA: This policy adds a look-ahead capability to the Greedy strategy. This
policy repeatedly expands each path ps of an initially empty policy π by first finding
the set S′ that has the highest positive Benefit(S′ | s) (Equation 6) and then acquiring
the feature Xi ∈ S′ that has the maximum Benefit(Xi | s) (Equation 4). The policy
construction ends when no set with a positive Benefit value can be found for any path
of the policy.

The feature costs for each dataset are described in detail by Turney (1995). In summary,
each feature can either have an independent cost, or can belong to a group of features, where
the first feature in that group incurs an additional cost. For example, the first feature from
a group of blood measurements incurs the overhead cost of drawing blood from the patient.
The feature costs are based on the data from Ontario Ministry of Health (1992).

84

Value of Information Lattice

Table 2: Example misclassification cost matrix (cij) for the symmetric and asymmetric mis-
classification costs. cij are set in way to achieve a prior expected misclassification
cost of 1. In the symmetric cost case, choosing the most probable class leads
to EMC = 1, whereas, in the asymmetric cost case, the choosing either class is
indifferent and both leads to the same EMC of 1.

Actual Class Prior Probability Pred. Class Symm. Cost Asymm. Cost

y1 P (y1) = 0.6510
y1 0 0
y2 2.866 2.866

y2 P (y2) = 0.3490
y1 2.866 1.536
y2 0 0

We observed that most of the features were assigned the same cost. For example, four
out of five features in the Bupa Liver Disorders dataset, 13 out of 19 features in the Hepatitis
dataset, six out of eight features in the Diabetes dataset, and 16 out of 20 features in the
Thyroid Disease dataset were assigned the same cost. When the costs are so similar, the
problem is practically equivalent to finding the minimum size decision tree. To provide more
structure into the feature acquisition costs, we also experimented with randomly generated
feature and group costs. For each feature, we randomly generated a cost between 1 and 100,
and for each group we generated a cost between 100 and 200. We repeated the experiments
with three different seeds for each dataset.

The misclassification costs were not defined in the paper by Turney (1995). One reason
could be that it is easier to define the feature costs, but defining the cost of a misclas-
sification can be non-trivial. Instead, Turney tests different acquisition strategies using
various misclassification costs. We follow a similar technique with a slight modification. We
compare the above acquisition policies under both symmetric (cij = cji) and asymmetric
misclassification costs. To be able to judge how the misclassification cost structure affects
feature acquisition, we unify the presentation, and compare different acquisition strategies
under the same a priori expected misclassification costs, as defined in Equation (1). Specif-
ically, we compare the acquisition policies under various a priori EMC that are achieved by
varying the cij accordingly. We show an example misclassification table for an EMC value
of 1 in Table 2. For the real feature cost case, we varied the EMC between 0 and 2000, and
varied it from 0 to 4000 for the synthetic feature cost case.

We compare the Greedy, Greedy-LA, and Markov Blanket policies by plotting how
much cost each policy saves with respect to the No Acquisition policy. In the X axis
of the plots, we vary a priori expected misclassification cost using the methodology we
described above. We plot the savings on the Y axis. For each dataset, we plot four different
scenarios: the cross product of {symmetric, asymmetric} misclassification costs, and {real,
synthetic} feature costs.

The results for the Liver Disorders, Diabetes, Heart Disease, Hepatitis, and Thyroid
Disease are given in Figures 4, 5, 6, 7, and 8 respectively. For each figure, symmetric
misclassification cost scenarios are given in sub-figures (a) and (c), whereas the asymmetric

85

Bilgic & Getoor

(a) (b)

(c) (d)

Figure 4: Expected Total Cost (ETC) comparisons for the Bupa Liver Disorders dataset.
The a priori class distribution is as follows: P (Y) = [0.4959, 0.5041].

misclassification cost scenarios are presented in (b) and (d). Similarly, the real feature cost
scenarios are given in (a) and (b) and the synthetic feature cost scenarios are presented in
(c) and (d). We next summarize the results.

• We found that the Greedy policy often prematurely stopped acquisition, performing
even worse than the Markov Blanket strategy. This is true for most of the datasets,
regardless of the feature and misclassification cost structures. The fact that the Greedy
strategy can perform worse than Markov Blanket strategy is really troubling. At first,
it might seem rather unintuitive that Greedy strategy can perform worse than Markov

Blanket strategy. Part of the reason is that the features belong to groups and the first
feature from its group incurs an overhead cost. In Greedy strategy where each feature
is considered in isolation, the overhead costs can outweigh each single feature’s benefit,
and because Greedy does not look ahead, it is reluctant to commit to acquiring the
first feature from any group.

86

Value of Information Lattice

(a) (b)

(c) (d)

Figure 5: Expected Total Cost (ETC) comparisons for the Pima Indian Diabetes dataset.
A priori class distribution is as follows: P (Y) = [0.6510, 0.3490].

• Greedy-LA strategy never performs worse than any other strategy under any setting.

• The misclassification cost structure (symmetric or asymmetric) had a considerable
effect on how the policies behaved. The differences between symmetric and asymmet-
ric cases were particularly evident for datasets where the class distribution was more
imbalanced, such as the Diabetes (Figure 5), Hepatitis (Figure 7), and the Thyroid
Disease (Figure 8) datasets. The differences due to the misclassification cost structure
can be summarized as follows:

– When the class distribution is imbalanced and the misclassification cost is sym-
metric, acquiring more information cannot change the classification decisions
easily due to the class imbalance, thus the features do not have high EVI values.
On the other hand, if the misclassification costs are asymmetric, features tend
to have higher EVI values. Thus, the Greedy and Greedy-LA strategies start
acquiring features earlier in the X axis for the asymmetric cases compared to

87

Bilgic & Getoor

(a) (b)

(c) (d)

Figure 6: Expected Total Cost (ETC) comparisons for the Heart Disease dataset. A priori
class distribution is as follows: P (Y) = [0.5444, 0.4556].

their symmetric counterparts. For example, for the Thyroid disease dataset with
real feature costs, the Greedy strategy starts acquisition only when the EMC is
greater than 600 for symmetric misclassification costs (Figure 8(a)) whereas it
starts acquiring when the EMC reaches only 100 for the asymmetric case (Fig-
ure 8(b)). For the synthetic feature costs, the results are more dramatic; neither
Greedy or Greedy-LA acquires any features for the symmetric cost case (Fig-
ure 8(c)), whereas they start acquisition when EMC = 200 for the asymmetric
case (Figure 8(d)).

– In the same realm with the above results, the slope of the savings for the asym-
metric case is much higher compared to the symmetric case.

– The misclassification cost structure causes differences between the Greedy and
Greedy-LA policies in a few cases. For the Diabetes dataset Greedy policy per-
forms worse when the misclassification costs are symmetric (Figures 5(a) and

88

Value of Information Lattice

(a) (b)

(c) (d)

Figure 7: Expected Total Cost (ETC) comparisons for the Hepatitis dataset. A priori class
distribution is as follows: P (Y) = [0.7908, 0.2092].

5(c)), whereas for the Hepatitis dataset, it performs worse for the asymmetric
misclassification costs (Figures 7(b) and 7(d)).

• The Greedy policy sometimes has an erratic, unpredictable, and unreliable perfor-
mance as the expected misclassification changes. It possibly hits a local minima, gets
out of it later, and hits local minima again (Figures 6 and 8(d)).

We finally present an aggregate summary of the results in Table 3. Table 3 shows how
much the Greedy policy and the Greedy-LA policy saves over the Markov Blanket policy.
The results are presented as the average saving over various intervals, such as [0-500). As
this table also shows, the Greedy-LA policy never loses compared to the Markov Blanket

policy, as one would expect. Additionally, the Greedy-LA policy wins over the Greedy

policy for most of the cases, and it never looses. Finally, Greedy policy prematurely stops
acquisition, having negative savings with respect to the Markov Blanket strategy.

89

Bilgic & Getoor

(a) (b)

(c) (d)

Figure 8: Expected Total Cost (ETC) comparisons for the Thyroid Disease dataset. A
priori class distribution is as follows: P (Y) = [0.0244, 0.0507, 0.9249].

5. Related Work

Decision theoretic value of information calculations provide a principled methodology
for information gathering in general (Howard, 1966; Lindley, 1956). Influence diagrams,
for example, are popular tools for representing decisions and utility functions (Howard &
Matheson, 1984). However, because devising the optimal acquisition policy (i.e., construct-
ing the optimal decision tree) is intractable in general, most of the approaches to feature
acquisition have been myopic (Dittmer & Jensen, 1997), greedily acquiring one feature at
a time. The greedy approaches typically differ in i) the problem setup they assume, ii)
the way the features are scored, and iii) the classification model being learned. We review
existing work here, highlighting the differences between different techniques in these three
dimensions.

Gaag and Wessels (1993) consider the problem of “evidence” gathering for diagnosis
using a Bayesian Network. In their setup, they gather evidence (i.e., observe the values of
the variables) until the hypothesis is confirmed or disconfirmed to a desired extent. They

90

Value of Information Lattice

Table 3: Savings of Greedy (GR) and Greedy-LA (LA) with respect to the Markov Blanket

policy, averaged over different intervals. An entry is in bold if it is worse than
Greedy-LA, and it is in red if it is worse than Markov Blanket.

Liver Diabetes Heart Hepatitis Thyroid
GR LA GR LA GR LA GR LA GR LA

Real Feature Costs & Symmetric Misclassification Costs

[0-500) 6.77 9.08 15.49 24.27 240.59 243.31 4.19 5.86 28.07 28.07
[500-1000) -18.84 2.70 -18.28 17.06 121.31 144.87 -6.06 3.90 13.90 13.90
[1000-1500) -42.12 2.66 -48.35 17.35 79.07 116.68 -14.32 3.90 13.41 13.41
[1500-2000] -67.59 2.85 -81.43 17.34 -24.98 111.34 -23.40 3.85 13.41 13.41

Real Feature Costs & Asymmetric Misclassification Costs

[0-500) 7.33 9.3 22.74 23.84 245.79 245.79 -9.55 5.84 17.7 17.7
[500-1000) -16.78 2.66 9.85 13.31 131.36 143.3 -47.61 2.57 1.56 1.56
[1000-1500) -38.26 3.04 3.99 11.7 46.20 114.23 -84.79 2.57 1.56 1.56
[1500-2000] -61.88 2.97 -2.54 13.7 -40.96 107.14 -125.69 2.57 1.56 1.56

Synthetic Feature Costs & Symmetric Misclassification Costs

[0-500) 307.39 307.39 418.34 418.34 723.36 723.36 231.93 231.93 298.01 298.01
[500-1000) 160.95 160.95 245.75 288.65 579.25 585.72 63.59 106.54 277.70 277.70
[1000-1500) 60.30 79.76 163.80 224.09 444.42 539.88 96.39 96.39 257.40 257.40
[1500-2000) 31.86 53.97 138.78 163.45 378.43 490.23 88.14 88.14 237.09 237.09
[2000-2500) 10.43 53.01 108.69 163.78 364.03 482.24 79.88 79.88 216.79 216.79
[2500-3000) -14.60 62.66 78.90 164.75 268.00 458.89 71.63 71.63 196.48 196.48
[3000-3500) -39.64 59.96 48.83 172.76 171.91 422.06 63.38 68.67 176.18 176.18
[3500-4000] -67.18 63.68 15.75 172.13 109.91 412.11 54.30 63.66 153.84 153.84

Synthetic Feature Costs & Asymmetric Misclassification Costs

[0-500) 306.19 306.19 441.29 441.29 728.57 728.57 219.04 219.04 276.32 276.32
[500-1000) 156.78 156.78 341.28 341.28 599.02 603.12 88.34 91.53 213.60 213.60
[1000-1500) 66.57 79.79 260.09 261.21 505.80 517.37 -16.86 49.39 162.52 162.52
[1500-2000) 37.47 60.62 201.19 204.31 420.56 519.29 -54.31 61.90 113.82 113.82
[2000-2500) 14.84 55.70 161.24 164.17 320.32 512.75 -64.75 61.90 65.12 68.39
[2500-3000) -9.19 58.85 144.24 151.22 211.26 500.75 -101.93 61.90 28.72 34.73
[3000-3500) -33.22 59.33 132.84 139.54 248.73 400.16 -139.11 61.90 0.78 14.67
[3500-4000] -59.66 63.13 126.43 136.51 206.06 389.32 -180.01 61.90 -18.10 9.50

propose an acquisition algorithm that greedily computes the expected utility of acquiring a
feature and chooses the one with the highest utility. They define the utility as the absolute
value of the change in the probability distribution of the hypothesis being tested.

In more recent work, Sent and Gaag (2007) consider the problem of acquiring more than
a single feature at each step. They define subgoals and cluster the features for each subgoal.
The subgoals and clustering of the features are provided by the domain experts. Then, they
in the non-myopic case, they pick a cluster by calculating their expected values. However,

91

Bilgic & Getoor

because clusters can be big, calculating the expected value of a cluster can be problematic;
thus, they also provide a semi-myopic algorithm where they pick the cluster that has the
best (myopic) feature.

Núñez (1991) introduces a decision tree algorithm called EG2 that is sensitive to the
feature costs. Rather than splitting the decision tree at a feature that has high information
gain, EG2 chooses a feature that has least “information cost function,” which is defined as
the ratio of a feature’s cost to its discriminative efficiency. EG2 is, however, is not directly
optimized to balance the misclassification cost and feature acquisition cost; rather it is
optimized for 0/1 loss while taking the feature costs into account. Similarly, Tan (1990)
modifies the ID3 algorithm (Quinlan, 1986) to account for feature costs. Tan considers the
domain where a robot needs to sense, recognize, and act, and the number of features is very
large. For the robot to act efficiently, it needs to trade-off accuracy for efficiency.

Turney (1995) builds a decision tree called ICET (standing for Inexpensive Classification
with Expensive Tests) using a genetic search algorithm (Grefenstette, 1986) and using
Núñez’s (1991) criteria to build C4.5 decision trees (Quinlan, 1993). Unlike Núñez, Turney
takes misclassification costs into account (in addition to the feature costs) to evaluate a
given decision tree and looks for a good decision tree using genetic search algorithms.

Yang et al. (2006) build cost-sensitive decision trees and Naive Bayes classifiers that
take both feature costs and misclassification costs into account. Unlike Núñez (1991), who
scores features based on information gain and cost ratio, Yang et al. score features based on
expected reduction in the total cost (i.e., sum of the feature cost and the misclassification
cost) on the training data. By doing so, they take feature costs and misclassification costs
into account directly at learning time.

Bayer-Zubek (2004) formulates the feature acquisition problem as a Markov Decision
Process and provides both greedy and systematic search algorithms to develop diagnostic
policies. Bayer-Zubek takes both feature cost and misclassification costs into account and
automatically finds an acquisition plan that balances the two costs. She introduces an
admissible heuristic for AO* search and describes regularization techniques to reduce over-
fitting to the training data.

Saar-Tsechansky, Melville, and Provost (2009) consider active feature acquisition for
classifier induction. Specifically, they are given a training data with missing feature val-
ues, and a cost matrix that defines the cost of acquiring each feature value, they describe
an incremental algorithm that can select the best feature to acquire iteratively to build a
model that is expected to have high future performance. The utility of acquiring a feature
is estimated in terms of expected performance improvement per unit cost. The two charac-
teristics that make this work different from most of the previous work is that i) the authors
do not assume a fixed budget a priori; rather they build the model incrementally, ii) each
feature can have a different cost for each instance.

Finally, Greiner, Grove, and Roth (2002) analyze the sample complexity of dynamic
programming algorithms that performs value iteration to search for the best diagnostic
policies. They analyze the problem of learning the optimal policy, using a variant of the
probably-approximately-correct (PAC) model. They show that the learning can be achieved
efficiently when the active classifier is allowed to perform only (at most) a constant number
of tests and show that learning the optimal policy is often intractable in more general
environments.

92

Value of Information Lattice

6. Future Work

In this article, we have only scratched the surface of incorporating constraints between
features in order to reduce the search space and make reasoning with sets tractable. We
have discovered two types of constraints (features that render other features useless, and
features that are useless without other features) purely from the underlying probability
distribution. We have shown that these automatically discovered constraints helped reduce
the search space dramatically. In practice, it is possible to discover additional types of
constraints that can potentially be used reduce the search space further (for e.g., ordering
constraints where certain procedures always precede other procedures). Constraints can
also be defined based on observed feature values; for example, a treadmill test might not be
performed for patients of old age. Patients can decline certain procedures and medications.
Eliciting these constraints from the domain experts and utilizing them to further reduce
the search space is a promising future direction.

Most of the existing feature acquisition frameworks, including this one, are a major
simplification of what happens in practice; we have assumed that acquiring the values of the
features does not change the class value or values of other variables. However, in practice,
feature value measurements can have “side-effects,” for example, in medical diagnosis while
certain measurements are non-invasive and do not change the status of the patient, others
might include medications that can affect the outcome. Similarly, in fault diagnosis and
repair, the purpose is not only to diagnose but it is to repair the fault, so some actions can
in fact repair the fault, in essence changing the class value. Taking these extra “side-effects”
into account will make feature acquisition frameworks more realistic.

7. Conclusion

The typical approach to feature acquisition has been greedy in the past primarily due to
the sheer size of the possible subsets of features. We described a general technique that can
optimally prune the search space by exploiting the conditional independence relationships
between the features and the class variable. We empirically showed that exploiting the con-
ditional independence relationships can substantially reduce the number of possible subsets.
We also introduced a novel data structure called Value of Information Lattice (VOILA) that
can both efficiently reduce the search space using the conditional independence relation-
ships and also can share probabilistic inference computations between different subsets of
features. By using VOILA, we were able to add a full look-ahead capability to the greedy
acquisition policy, which would not be practical otherwise. We experimentally showed on
five real-world medical datasets that the greedy strategy often stopped feature acquisition
prematurely, performing worse than even a policy that acquires all the features.

Acknowledgments

We thank the reviewers for their helpful and constructive feedback. This material is
based on work supported by the National Science Foundation under Grant No. 0746930.

93

Bilgic & Getoor

References

Bayer-Zubek, V. (2004). Learning diagnostic policies from examples by systematic search.
In Annual Conference on Uncertainty in Artificial Intelligence.

Bilgic, M., & Getoor, L. (2007). VOILA: Efficient feature-value acquisition for classification.
In AAAI Conference on Artificial Intelligence, pp. 1225–1230.

Dittmer, S., & Jensen, F. (1997). Myopic value of information in influence diagrams. In
Annual Conference on Uncertainty in Artificial Intelligence, pp. 142–149.

Frank, A., & Asuncion, A. (2010). UCI machine learning repository..

Gaag, L., & Wessels, M. (1993). Selective evidence gathering for diagnostic belief networks.
AISB Quarterly, pp. 23–34.

Grefenstette, J. (1986). Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics, 16 (1), 122–128.

Greiner, R., Grove, A. J., & Roth, D. (2002). Learning cost-sensitive active classifiers.
Artificial Intelligence, 139 (2), 137–174.

Heckerman, D., Horvitz, E., & Middleton, B. (1993). An approximate nonmyopic compu-
tation for value of information. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15 (3), 292–298.

Howard, R. A., & Matheson, J. E. (1984). Readings on the Principles and Applications of
Decision Analysis, chap. Influence Diagrams. Strategic Decision Group.

Howard, R. A. (1966). Information value theory. IEEE Transactions on Systems Science
and Cybernetics, 2 (1), 22–26.

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal binary decision trees is NP-
Complete. Information Processing Letters, 5 (1), 15–17.

Lindley, D. V. (1956). On a measure of the information provided by an experiment. Annals
of Mathematical Statistics, 27, 986–1005.

Núñez, M. (1991). The use of background knowledge in decision tree induction. Machine
Learning, 6 (3), 231–250.

of Health, O. M. (1992). Schedule of benefits: Physician services under the health insurance
act..

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San
Francisco.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1 (1), 81–106.

Quinlan, J. R. (1993). C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

Saar-Tsechansky, M., Melville, P., & Provost, F. (2009). Active feature-value acquisition.
Management Science, 55 (4), 664–684.

Sent, D., & Gaag, L. C. (2007). Enhancing automated test selection in probabilistic net-
works. In Proceedings of the 11th conference on Artificial Intelligence in Medicine,
pp. 331–335.

94

Value of Information Lattice

Tan, M. (1990). CSL: A cost-sensitive learning system for sensing and grasping objects. In
IEEE International Conference on Robotics and Automation.

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research, 2, 369–
409.

Yang, Q., Ling, C., Chai, X., & Pan, R. (2006). Test-cost sensitive classification on data
with missing values. IEEE Transactions on Knowledge and Data Engineering, 18 (5),
626–638.

95

