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Abstract

We address the problem of computing approximate marginals in Gaussian probabilistic
models by using mean field and fractional Bethe approximations. We define the Gaus-
sian fractional Bethe free energy in terms of the moment parameters of the approximate
marginals, derive a lower and an upper bound on the fractional Bethe free energy and
establish a necessary condition for the lower bound to be bounded from below. It turns out
that the condition is identical to the pairwise normalizability condition, which is known to
be a sufficient condition for the convergence of the message passing algorithm. We show
that stable fixed points of the Gaussian message passing algorithm are local minima of
the Gaussian Bethe free energy. By a counterexample, we disprove the conjecture stating
that the unboundedness of the free energy implies the divergence of the message passing
algorithm.

1. Introduction

One of the major tasks of probabilistic inference is calculating marginal posterior prob-
abilities of a set of variables given some observations. In case of Gaussian models, the
computational complexity of computing marginals might scale cubically with the number of
variables, while for models with discrete variables it often leads to intractable computations.
Computations can be made faster or tractable by using approximate inference methods like
the mean field approximation (e.g., Jaakkola, 2000) and the Bethe-type approximation (e.g.,
Yedidia, Freeman, & Weiss, 2000). These methods were developed for discrete probabilistic
graphical models, but they are applicable to Gaussian models as well. However, there are
important differences in their behavior for the discrete and Gaussian cases. For example,
while in discrete models the error function of the Bethe approximation—called Bethe free
energy—is bounded from below (Heskes, 2004; Watanabe & Fukumizu, 2009), in Gaussian
models this might not always the case (Welling & Teh, 2001).

An understanding of properties of the Bethe free energy of Gaussian models might
also be help to understand the properties of the energy function in conditional Gaussian
models. Conditional Gaussian or hybrid graphical models, such as switching Kalman filters
(Zoeter & Heskes, 2005), combine both discrete and Gaussian variables. Approximate
inference in these models can be carried out by expectation propagation (e.g., Minka, 2004,
2005) which can be viewed as a generalization of the Bethe approximation, where the
marginal consistency constraints on the approximate marginals are replaced by expectation
constraints (Heskes, Opper, Wiegerinck, Winther, & Zoeter, 2005). In order to understand
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the properties of the Bethe free energy of hybrid models, a good understanding of the two
special cases of discrete and Gaussian models is needed. While the properties of the Bethe
free energy of discrete models have been studied extensively in the last decade and are well
understood (Yedidia et al., 2000; Heskes, 2003; Wainwright, Jaakkola, & Willsky, 2003;
Watanabe & Fukumizu, 2009), the properties of the Gaussian Bethe free energy have been
studied much less.

The message passing algorithm is a well established method for finding the stationary
points of the Bethe free energy (Yedidia et al., 2000; Heskes, 2003). It works by locally
updating the approximate marginals and has been successfully applied in both discrete (e.g.,
Murphy, Weiss, & Jordan, 1999; Wainwright et al., 2003) and Gaussian models (e.g., Weiss
& Freeman, 2001; Rusmevichientong & Roy, 2001; Malioutov, Johnson, & Willsky, 2006;
Johnson, Bickson, & Dolev, 2009; Nishiyama & Watanabe, 2009; Bickson, 2009). Gaussian
message passing is the simplest case of a free-energy based message passing algorithm on
models with continuous variables, therefore, it is important to understand its behavior.

Gaussian message passing has many practical applications like in distributed averaging
(Moallemi & Roy, 2006), peer-to-peer rating, linear detection, SVM regression (Bickson,
2009) and more generally in problems that involve solving large sparse linear systems or
approximating the marginal variances of large sparse Gaussian systems typically encoun-
tered in distributed computing settings. For further applications the reader is referred to
the work of Bickson (2009) and references therein.

Finding sufficient conditions for the convergence of message passing in Gaussian models
has been successfully addressed by many authors. Using the computation tree approach,
Weiss and Freeman (2001) proved that message passing converges whenever the precision
matrix—inverse covariance—of the probability distribution is diagonally dominant1. With
the help of an analogy between message passing and walk–sum analysis, (Malioutov et al.,
2006) derived the stronger condition of pairwise normalizability2. A different approach was
taken by Welling and Teh (2001), who directly minimized the Bethe free energy with regard
to the parameters of approximate marginals, conjecturing that Gaussian message passing
converges if and only if the free energy is bounded from below. Their experiments showed
that message passing and direct minimization either converge to the same solution or both
fail to converge. We adopt a similar approach, that is, instead of analyzing the properties
of the Gaussian message passing algorithm using approaches like in Weiss and Freeman or
Malioutov et al., we choose to study the properties of the Gaussian Bethe free energy and
its stationary points. This will help us to draw conclusions about the existence of local
minima, the possible stable fixed points to which message passing can converge.

This paper is structured as follows. In Section 2 we introduce Gaussian Markov random
fields and the message passing algorithm. In Section 3 we define the Gaussian fractional
Bethe free energies parameterized by the moment parameters of the approximate marginals
and derive boundedness conditions for them. These two sections are based on the authors
earlier work (Cseke & Heskes, 2008). In Section 4 we analyze the stability properties of the
Gaussian message passing algorithm and, using a similar line of argument as Watanabe and

1. The matrix A is diagonally dominant if |Aii| >
∑
j 6=i |Aij | for all i.

2. Following the work of Malioutov et al. (2006), we call a Gaussian distribution pairwise normalizable if it
can be factorized into a product of normalizable “pair” factors, that is, p(x1, . . . , xn) =

∏
ij Ψij(xi, xj)

such that all Ψijs are normalizable.
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Fukumizu (2009), we show that its stable fixed points are indeed local minima of the Bethe
free energy. We conclude the paper with a few experiments in Sections 5 and 6 supporting
our results and their implications.

2. Approximating Marginals in Gaussian Models

The probability density of a Gaussian random vector x ∈ Rn is defined in terms of canonical
parameters h and Q as

p(x) ∝ exp

{
hTx− 1

2
xTQx

}
, (1)

where Q is s positive definite matrix. The expectation m and the covariance V of x is
then given by m = Q−1h and V = Q−1 respectively. In many real world applications the
matrix Q is sparse with and it typically has low density, that is, the number of non-zero
elements in Q scales with the number of variables n.

This probability density can also be defined in terms of an undirected probabilistic
graphical model commonly known as Gaussian Markov random field (GMRF). Since the
interactions between the variables in p are pairwise, we can associate the variables xi to the
nodes v ∈ V = {1, . . . , n} of an undirected graph G = (V,E), where the edges e ∈ E ⊆ V ×V
of the graph stand for the non-zero off-diagonal elements of Q. We use i ∼ j as a proxy for
(i, j) ∈ E. By using the notation introduced above, the density p in (1) can be written as
the product

p(x) ∝
∏
i∼j

Ψij(xi, xj) (2)

of Gaussian functions Ψij(xi, xj) (also called potentials) associated with the edges e = (i, j)
of the graph. If h and Q are given then we can define the potentials as

Ψij(xi, xj) = exp {γiijhixi + γjijhjxj − γ
i
ijQiix

2
i /2− γ

j
ijQjjx

2
j/2−Qijxixj} ,

where
∑

i∼jγ
i
ij = 1 and

∑
j∼iγ

j
ij = 1 are partitioning h and Q into the corresponding

factors. In practice, however, the factors Ψij might be given by the problem at hand and

h and Q as well as γiij and γjij computed by summing their parameters and computing the
partitioning respectively. Without loss of generality, we can and we will use Qii = 1, since
the results in the paper can be easily re-formulated for general Qs by a rescaling of the
variables (e.g., Malioutov et al., 2006).

The numerical calculation of all marginals, can be done by solving the linear system
m = Q−1h and performing a sparse Cholesky factorization LLT = Q followed by solv-
ing the Takahashi equations (Takahashi, Fagan, & Chin, 1973). An alternative option to
calculate the marginal means and to approximate marginal variances is to run the Gaus-
sian message passing algorithm in the probabilistic graphical model associated with the
representation in (2). The Gaussian message passing algorithm is the Gaussian variant
of message passing algorithm (Pearl, 1988), which is a dynamical programming algorithm
introduced to compute marginal densities in discrete probabilistic models with pairwise in-
teractions and tree-structured graphs G. However, it turned out that by running it in loops
on graphs with cycles, it yields good approximations of the marginal distributions (Murphy
et al., 1999). Weiss and Freeman (2001) showed that when the Gaussian message passing
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Figure 1: An illustration of the incoming and outgoing messages at adjacent nodes i and j.

algorithm is converging, it computes the exact mean parameters m, thus it can also be
used for solving linear systems (e.g., Bickson, 2009). Message passing works by updating
and passing directed messages along the edges of the graph G, which, in case the algorithm
converges, are then used to compute (approximate) marginal probability distributions. The
Gaussian and the discrete algorithms have the same functional form with the exception of
the summation (discrete case) and integration operators (Gaussian case). Each message
µi←j(xi) is updated according to

µnewi←j(xi) =

∫
dxj Ψij(xi, xj)

∏
k∈∂j\i

µj←k (xj) , (3)

where ∂i = {j : j ∼ i} denotes the index set of variables connected to xi in G. At each step
the current approximations qij(xi,j ) of p(xi, xj) can be computed according to

qij (xi, xj) ∝ Ψij(xi, xj)
∏
l∈∂i\j

µi←l (xi)
∏

k∈∂j\i

µj←k (xj) . (4)

The update steps in (9) have to be iterated until convergence. The corresponding qij(xi, xj)s
yield the final approximation of the p(xi, xj)s. It is common to use damping, that is,
to replace µnewi←j(xi) by µi←j(xi)

1−εµnewi←j(xi)
ε with ε ∈ (0, 1]. In practice, this helps to

dampen the possible periodic paths of (3), but it keeps the properties of the fixed points
unchanged. Figure 1 illustrates the incoming and outgoing messages at the nodes associated
with variables xi and xj . A quite significant difference between the discrete and Gaussian
the message passing is the replacement of the sum operator with the integral operator.
While finite sums always exist, the integral in (3) can become infinite. This problem can
be remedied technically by a canonical parameterization (see Section 4) which keeps the
algorithm running, but it can lead to non-normalizable approximate marginals qij , and thus
a (possible) break-down of the algorithm.

Message passing was introduced by Pearl (1988) as a heuristic algorithm (in discrete
models), however, Yedidia et al. (2000) showed that it can also be viewed as an algorithm for
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finding the stationary points of the so-called Bethe free energy, an error function measuring
the difference between p and a specific family of distributions to be detailed in the next
section. It has been shown by Heskes (2003) and later in a different way by Watanabe and
Fukumizu (2009) that stable fixed points of the (loopy) message passing algorithm are local
minima of the corresponding Bethe free energy. In this paper we show that this holds for
Gaussian models as well.

Our interest in the properties of the Gaussian Bethe free energy and the correspond-
ing Gaussian message passing algorithm is motivated mainly by their implications in more
general models and inference algorithms like non-Gaussian models and expectation propa-
gation, respectively. For this reason, we will not compare the speed of the method and the
accuracy of the approximation with the above mentioned exact linear algebraic methods.

As mentioned in the introduction, the approach we take is similar to that of Welling and
Teh (2001), that is, we study the properties of the Gaussian Bethe free energy, parameterized
in terms of the moment parameters of the approximate marginals. In the following we
introduce the mean field and the Bethe approximation in Gaussian models. Readers familiar
with this subject can continue with Section 3.

2.1 The Gaussian Bethe Free Energy

A popular method to approximate marginals is approximating p with a distribution q having
a form that makes marginals easy to identify, for example, it factorizes or it has a “tree-
like” form. The most common quantity to measure the difference between two probability
distributions is the Kullback-Leibler divergence D [q || p]. It is often used to characterize the
quality of the approximation and formulate the computation of approximate marginals as
the optimization problem

q∗(x) = argmin
q∈F

∫
dx q(x) log

[
q(x)

p(x)

]
. (5)

Here, F is the set of distributions with the above mentioned form. Since it is not symmetric,
the Kullback-Leibler divergence is not a distance, but D [q || p] ≥ 0 for any proper q and p,
D [q || p] = 0 if and only if p = q, and it is convex both in q and p.

A family F of densities possessing a form that makes marginals easy to identify is the
family of distributions that factorize as q(x) =

∏
k qk(xk). In other words, in problem (5) we

approximate p with a distribution that has independent variables. An approximation q of
this type is called mean field approximation (e.g., Jaakkola, 2000). Defining FMF ({qk}) =
D [
∏
qk || p] and writing out the right hand side of (5) in detail, one gets

FMF ({qk}) = −
∫
dx
∏
k

qk(xk) log p(x) +
∑
k

∫
dxk qk(xk) log qk(xk).

Using the parameterization qk(xk) = N(xk|mk, vk),m = (m1, . . . ,mn)T and v = (v1, . . . , vn)T ,
this reduces to

FMF (m,v) = −hTm+
1

2
mTQm+

1

2

∑
k

Qkkvk −
1

2

∑
k

log(vk) + CMF ,

5



Cseke & Heskes

where CMF is an irrelevant constant. Although D [
∏
k qk || p] might not be convex in

(q1, . . . , qn), one can easily check that FMF is convex in its variables m and v and its
minimum is obtained for m = Q−1h and vk = 1/Qkk. Since[

Q−1
]
kk

=
(
Qkk −QT

k,\k
[
Q\k,\k

]−1
Q\k,k

)−1
,

one can easily see that the mean field approximation underestimates variances. The mean
field approximation computes a solution in which the means are exact, but the variances are
computed as if there were no interactions between the variables, namely, as if the matrix
Q were diagonal, thus giving poor estimates of the variances.

In order to improve the estimates for variances, one has to choose approximating dis-
tributions q that are able to capture dependencies between the variables in p. It can be
verified that any distribution in which the dependencies form a tree graph can be written
in the form

p(x) =
∏
i∼j

p(xi, xj)

p(xi)p(xj)

∏
k

p(xk),

where i and j run through the edges (i, j) of the tree and k through the nodes 1, . . . , n.
Although in most cases the undirected graph generated by the non-zero elements in Q is
not a tree, based on the “tree intuition” one can construct q from one and two variable
marginals as

q(x) ∝
∏
i∼j

qij(xi, xj)

qi(xi)qj(xj)

∏
k

qk(xk) (6)

and constrain the functions qij and qk to be marginally consistent and normalize to 1, that
is,
∫
dxjqij(xi, xj) = qi(xi) for any i ∼ j and

∫
dxkqk(xk) = 1 for any k. An approximation

of the form (6) together with the constraints on qijs and qks is called a Bethe approximation.
Let us denote the family of such functions by FB. By choosing qij(xi, xj) = qi(xi)qj(xj) one
can easily check that FMF ⊂ FB, thus FB is non-empty. Assuming that the approximate
marginals are correct and q normalizes to 1 and then substituting (6) into (5), we get an
approximation of the Kullback–Leibler divergence in (5) called the Bethe free energy.

Due to the factorization of p, we can write the Bethe free energy as

FB({qij , qk}) = −
∑
i∼j

∫
dxi,j qij(xi,j) log Ψij(xi,j) (7)

+
∑
i∼j

∫
dxi,j qij(xi,j) log

[
qij(xi,j)

qi(xi)qj(xj)

]
+
∑
k

∫
dxk qk(xk) log qk(xk).

One can also define the free energy through the Bethe approximation∫
dx q (x) log q (x) ≈

∑
i∼j

∫
dxi,j q (xi,j) log q (xi,j)

+
∑
k

(1− nk)
∫
dxk q (xk) log q (xk)

6
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of the entropy (e.g., Yedidia et al., 2000) and substitute the marginals with functions qij and
qk that normalize to one and are connected through the marginal consistency constraints∫
dxjqij(xi, xj) = qi(xi).

From the stationary conditions of the Lagrangian corresponding to the fractional Bethe
free energy (7) and the marginal consistency and normalization constraints, one can derive
the same iterative algorithm as in (3) for the corresponding Lagrange multipliers of the
consistency constraints (Yedidia et al., 2000). Similarly, approximate marginals can then
be computed according to (4). It can be shown that there is a one-to-one correspondence
between the stationary points of the Bethe free energy (7) and the fixed points of the
message passing algorithm (3). Later, in Section 4 we will link the stable fixed points of (3)
to the local minima of (7).

2.2 Fractional Free Energies and the Message Passing Algorithm

As mentioned in the introduction, in case of Gaussian models the message passing algorithm
does not always converge. The reason for this appears to be that the approximate marginals
may get indefinite or negative definite covariance matrices. Welling and Teh (2001) pointed
out that this can be due to the unboundedness of the Bethe free energy.

Since FMF is convex and bounded and the Bethe free energy might be unbounded, it
seems plausible to analyze the fractional Bethe free energy

Fα({qij , qk}) = −
∑
i∼j

∫
dxi,j qij(xi,j) log Ψij(xi,j) (8)

+
∑
i∼j

1

αij

∫
dxi,j qij(xi,j) log

[
qij(xi,j)

qi(xi)qj(xj)

]
+
∑
k

∫
dxk qk(xk) log qk(xk).

introduced by Wiegerinck and Heskes (2003). Here, α denotes the set of positive reals {αij}.
They showed that the fractional Bethe free energy “interpolates” between the mean field
and the Bethe approximation. That is, for αij = 1 we get the Bethe free energy, while in the
case when all αijs tend to 0, the mutual information between variables xi and xj is highly
penalized, therefore, (8) enforces solutions close to the mean field solution. They also showed
that the fractional message passing algorithm derived from (8) can be interpreted as Pearl’s
message passing algorithm with the difference that instead of computing local marginals—
like in Pearl’s algorithm—one computes local αij–marginals.3 The local αij–marginals
correspond to “true” local marginals when αij = 1 and to local mean field approximations
when αij = 0. The resulting algorithm is called the fractional message passing algorithm
and the message updates are defined as

µnewi←j(xi)
α =

∫
dxj Ψα

ij(xi, xj)
∏

k∈∂j\i

µj←k (xj)µj←i (xj)
1−α , (9)

while the approximate marginals are computed according to

qij (xi, xj) ∝ Ψα
ij(xi, xj)

∏
l∈∂i\j

µi←l (xi)µi←j (xi)
1−α ∏

k∈∂j\i

µj←k (xj)µj←i (xj)
1−α . (10)

3. We define the α–marginals of a distribution p as argmin{qk}Dα

[
p ‖
∏
k

qk

]
, where Dα is the α–divergence

Dα [p || q] =
[∫
dxp(x)αq(x)1−α + α

∫
dxp(x) + (1− α)

∫
dxq(x)

]
/α(1− α) (e.g., Minka, 2005).
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Power expectation propagation by Minka (2004) is an approximate inference method
that uses local approximations with α–divergences. In case of Gaussian models power
expectation propagation—with a fully factorized approximating distribution—leads to the
same message passing algorithm as the one derived from (8) and the appropriate constraints.
Starting from the idea of creating an upper bound on the log partition function when p and
q are exponential distributions, Wainwright et al. (2003) derived a form of (8) where the
αijs are chosen such that this bound is convex in {qij , qk}.

Message passing works well in practice, however, there are other ways to find the local
minima of the fractional free energies like the direct minimization w.r.t. some parameteri-
zation of the approximate marginals qij and qk (Welling & Teh, 2001). The latter method is
slower but more likely to converge. In the following we analyze the Bethe free energy when
expressed in terms of the moment parameters of the approximate marginals qij . Later in
Section 4 we analyze the stability conditions of the fractional message passing algorithm
and by expressing these conditions in term of the moment parameters of the approximate
marginals, we show that stable fixed points of the fractional Gaussian message passing are
local minima of the fractional Bethe free energy.

3. Bounds on the Gaussian Bethe Free Energy

In this section we analyze the parametric form of (8). We show that the fractional Gaus-
sian Bethe free energy is a non-increasing function of α. By letting all αij tend to in-
finity, we obtain a lower bound for the free energies. It turns out that the condition for
the lower bound to be bounded from below is the same as the pairwise normalizability
condition in the work of Malioutov et al. (2006).

As mentioned in Section 2, without loss of generality, we can work with a unit di-
agonal Q. We define R to be a matrix with zeros on its diagonal and Q = I + R,
where I is the identity matrix. |R| will be the matrix formed by the absolute values
of R’s elements. We use the moment parameterization qij(xi,j) = N(xi,j |mij ,Vij) and

qk(xk) = N(xk|mk, vk), where mij = (mi
ij ,m

j
ij)

T and Vij = [viij , vij ; vji, v
j
ij ], with vij = vji.

By using mi ≡ mi
ij = mi

ik and vi ≡ viij = vkik for all i ∼ j and i ∼ k, we embed the
marginalization (

∫
dxjqij(xi, xj) = qi(xi) for all i ∼ j) and normalization (

∫
dxjqj(xj) = 1)

constraints into the parameterization. With a slight abuse of notation the matrix formed
by diagonal elements vk and off-diagonal elements vij is denoted by V (we can take vij = 0
for all i � j), the vector of means by m = (m1, . . . ,mn)T and the vector of variances by
v = (v1, . . . , vn)T . Substituting qij and qk into (8) one gets

Fα (m,V ) =− hTm+
1

2
mTQm+

1

2
tr(QTV )

− 1

2

∑
i∼j

1

αij
log

(
1−

v2
ij

vivj

)
− 1

2

∑
k

log (vk) + C, (11)

where C is an irrelevant constant. Note that the variables m and V are independent, hence
the minimizations of Fα (m,V ) with regard to m and V can be carried out independently.

8



Bethe Free Energies and Message Passing in Gaussian Models

Property 1. Fα (m,V ) is convex and bounded in (m, {vij}i 6=j) and at any stationary point
we have

m∗ = Q−1h

vij
∗ = −sign(Rij)

√
1 + (2αijRij)2vivj − 1

2αij |Rij |
. (12)

Proof: Q is positive definite by definition, therefore, the quadratic term in m is convex
and bounded. The variables m and V are independent and the minimum with regard
to m is achieved at m∗ = Q−1h. One can check that the second order derivative of
Fα (m,V ) with regard to vij is non-negative and the first order derivative has only one
solution when −vivj ≤ v2

ij ≤ vivj . Since the variables vij are independent, one can conclude
that Fα (m,V ) is convex in vij . From the independence of m and V , it follows that Fα is
convex in (m, {vij}i 6=j). �

Since the Vijs are constrained to be covariance matrices, we have vivj > v2
ij , thus the

first logarithmic term in (11) is negative. As a consequence,

Fα1(m,V ) ≥ Fα2(m,V ) for any 0 < α1 ≤ α2,

where α1 ≤ α2 is taken element by element. This observation leads to the following
property.
Property 2. With αij = α, Fα is a non-increasing function of α.

Using Property 1 and substituting v∗ij into Fα we define the constrained function

F cα(m,v) = −hTm+
1

2
mTQm+

1

2

∑
k

vk

− 1

2

∑
i∼j

1

αij

(√
1 + (2αijRij)2vivj − 1

)

− 1

2

∑
n(i,j)

1

αij
log

(
2

√
1 + (2αijRij)2vivj − 1

(2αijRij)2vivj

)

− 1

2

∑
k

log(vk) + Cc, (13)

where Cc is an irrelevant constant. From Property 2, it follows that when choosing αij = α,
the function in (13) is a non-increasing function of α. It then makes sense to take α →∞
and verify whether we can get a lower bound for (13).
Lemma 1. For any v > 0, 0 ≤ α1 ≤ 1 and α2 ≥ 1 the following inequalities hold.

FMF (m,v) ≥ F cα1
(m,v) ≥ FB

(
m, {v∗ij},v

)
FB
(
m, {v∗ij},v

)
≥ F cα2

(m,v) . . .

. . . ≥ FMF (m,v)− 1

2

√
v
T |R|

√
v

Moreover, they are tight, that is,

lim
α→0

Fα
(
m, {v∗ij(α)},v

)
= FMF (m,v)

9
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and

lim
α→∞

Fα
(
m, {v∗ij(α)},v

)
= FMF (m,v)− 1

2

√
v
T |R|

√
v.

Proof: Since the Bethe free energy is the specific case of the fractional Bethe free energy for
α = 1, the inequalities on FB(m, {v∗ij(α)},v) follow from Property 2. Now, we show that

the upper and lower bounds are tight. The function (1 + x2)1/2 − 1 behaves as 1
2x

2 in the
neighborhood of 0, therefore,

lim
α→0

v∗ij(α) = 0 and lim
α→0

log

(
1− v∗ij

2(α)

vivj

)
α

= − 1

vivj
lim
α→0

v∗ij
2(α)

α
= 0,

showing that FMF (m,v) is a tight upper bound.
As α tends to infinity, we have

lim
α→∞

√
1 + (2αRij)2vivj − 1

2α
= |Rij |

√
vi
√
vj

and

lim
α→∞

1

α
log

(√
1 + (2αRij)2vivj − 1

(2αRij)2vivj

)
= 0,

yielding a tight lower bound

lim
α→∞

Fα
(
m, {v∗ij(α)},v

)
= FMF (m,v)− 1

2

√
v
T |R|

√
v. �

Let λmax(|R|) be the largest eigenvalue of |R|. Analyzing the boundedness of the lower
bound, we arrive at the following theorem.
Theorem 1. For the fractional Bethe free energy in (11) corresponding to a connected

Gaussian model, the following statements hold

(1) if λmax(|R|) < 1, then Fα is bounded from below for all α > 0,

(2) if λmax(|R|) > 1, then Fα is unbounded from below for all α > 0,

(3) if λmax(|R|) = 1, then Fα is bounded from below if and only if
∑
i

∑
i∼j
α−1
ij ≥2n.

Proof: Since in Fα there is no interaction between the parameters m and V and the term
depending on m is bounded from below due to the positive definiteness of Q, we can simply
neglect this term when analyzing the boundedness of Fα. Let us write out in detail the
lower bound of the fractional Bethe free energies in the form

FMF (m,v)− 1

2

√
v
T |R|

√
v = (14)

1

2
mTQ−1m− hTm+

1

2

√
v
T

(I − |R|)
√
v − 1

2
1T log(v) + const.

Statement (1): The condition λmax(|R|) < 1 implies that I − |R| is positive definite. Now,

10
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log(x) ≤ x − 1, thus 1
2

√
v
T

(I − |R|)
√
v − 1T log(

√
v) ≥ 1

2

√
v
T

(I − |R|)
√
v − 1T

√
v + n.

The latter is bounded from below and so it follows that (14) is bounded from below as
well. According to Lemma 1, the boundedness of (14) implies that all fractional Bethe free
energies are bounded from below.
Statement (2): We assumed that the Gaussian network is connected and undirected. Ac-
cording to the Perron-Frobenius theory of non-negative matrices (e.g., Horn & Johnson,
2005), |R| has a simple maximal eigenvalue λmax(|R|) and all elements of the eigenvec-
tor umax corresponding to it are positive. Let us take the fractional Bethe free energy
and analyze its behavior when

√
v = tumax and t → ∞. For large values of t we have

(1 + (2αijRij)
2(uimaxu

j
max)2t4)1/2 ' 2αij |Rij |uimaxu

j
maxt2, therefore, the sum of the second

and third term in (13) simplifies to (1 − λmax(|R|))t2 and this term dominates over the
logarithmic ones as t→∞. As a result, the limit is independent of the choice of αij and it
tends to −∞ whenever λmax(|R|) > 1.
Statement (3): If λmax(|R|) = 1, then the only direction in which the quadratic term will
not dominate is

√
v = tumax. Therefore, we have to analyze the behavior of the loga-

rithmic terms in (13) when t → ∞. For large ts these behave as (
∑

i∼j α
−1
ij − 2n) log(t).

For this reason, the boundedness of F cα—and thus of Fα—depends on the condition in
statement (3). �

It was shown by Malioutov et al. (2006) that the condition λmax(|R|) < 1 is an equivalent
condition to pairwise normalizability. Therefore, pairwise normalizability is not only a
sufficient condition for the message passing algorithm to converge, but it is also a necessary
condition for the fractional Gaussian Bethe free energies to be bounded. Using Lemma 1, we
can show that for a suitably chosen ε > 0 there always exists an αε such that the constrained
fractional free energy F cα possesses a local minimum for any 0 < α < αε (Property A2 in
Section A of the Appendix).

Example In the case of models with an adjacency matrix (non-zero entries of R) corre-
sponding to a K–regular graph4 and equal interaction weights Rij = r, the maximal eigen-
value of |R| is λmax(|R|) = Kr and the eigenvector corresponding to this eigenvalue is 1.
(We define 1 as the vector that has all its elements equal to 1.) The model is symmetric
and by verifying the stationary point conditions, it turns out that for some choice of r and
α there exists a local minimum, which also lies in the direction 1. One can show that when
the model is not pairwise normalizable (Kr > 1), the critical r below which the fractional
Bethe free energy possesses this local minimum is rc(K,α) = 1/2

√
α(K − α) and for any

valid r the critical α below which the fractional Bethe free energies possesses this local
minimum is αc(K, r) = 1

2K(1−
√

1− 1/(Kr)2). These results are illustrated in Figure 2.
(Note that for 2–regular graphs, all valid models are pairwise normalizable and possess a
unique global minimum.) �

For K–regular graphs, the convexity of the fractional Bethe free energy in terms of
{qij , qk} requires α ≥ K, a much stronger condition than α ≥ αc(K, r). Thus, if we choose
α sufficiently large such that the Bethe free energy is guaranteed to have a unique global
minimum, this minimum is unbounded.

4. A K–regular graph is a graph in which all nodes are connected to K other nodes.

11
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Figure 2: Visualizing critical parameters for a symmetric K-regular Gaussian model with Rij = r.
Plots in the left panel correspond to the constrained fractional Bethe free energies F cα for√
v = σ1 for an 8 node 4–regular Gaussian model with r=0.27 (Kr > 1) and varying α.

Plots in the right panel correspond to the constrained Bethe free energies F c1 for
√
v = σ1

in an 8 node 4–regular Gaussian model with varying r. Here, rvalid is the supremum of
rs for which the model is valid, that is, Q is positive definite.

This example disproves the conjecture by Welling and Teh (2001), that is, even when
the Bethe free energy is not bounded from below, it can possess a finite local minimum to
which the message passing and the minimization algorithms can converge.

4. The Message Passing Algorithm in Gaussian Models

In this section, we turn our attention towards the properties of the message passing algo-
rithm in Gaussian models. Following a similar line of argument as Watanabe and Fukumizu
(2009) we show that stable fixed points of the message passing algorithm correspond to local
minima of the Bethe free energy. We use the moment parameterization introduced in the
previous sections. The way we proceed is the following: (1) we make a linear expansion of
message passing iteration at a fixed point, (2) we express the linear expansion in terms of
moment parameters corresponding to the fixed point and finally (3) we connect the prop-
erties of the latter with the properties of the Hessian of the Bethe free energy by using the
matrix determinant lemma.

The form of the equation (9) implies that the messages µi←j (xi) are univariate Gaussian
functions, thus we can express them in terms of two scalar (canonical) parameters ηij and
λij such that logµi←j (xi) = −λijx2

i /2 + ηijxi + τijj , where the τijs are irrelevant constants.
When expressed in terms of ηij and λij , the damped message passing algorithm (9) translates

12
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to

ηnewij = (1− ε)ηij +
ε

α

αγiijhi − αRij αγ
j
ijhj +

∑
k∈∂j\i

ηjk + (1− α)ηji

αγjij +
∑

k∈∂j\i
λjk + (1− α)λji

 (15)

λnewij = (1− ε)λij +
ε

α

αγiij − α2R2
ij

αγjij +
∑

k∈∂j\i

λjk + (1− α)λji

−1


(16)

where γiij , γ
j
ij , hi and Rij are parameters of Ψij as in Section 2.1, with Rij = Qij and the

assumption that Qii = 1. The approximate marginals qij in (10) might not be normalizable,
but the message passing iteration in (15) and (16) stays well defined unless there is a zero
in the denominator on the rhs. This rarely happens in practice. However, it is more
common that message passing converges while there are some intermediate steps at which
the approximate marginals qij are not normalizable. This can often be remedied by choosing
an appropriate damping parameter ε.

The iteration (16) for the λijs is independent of ηijs and the iteration (15) for the ηijs
is linear in ηij . It is interesting to see that when h = 0 neither the constrained Bethe
free energy (13) nor the message passing algorithm (16) depend on the sign of Rij . These
are only relevant to compute the means—when h 6= 0—and the signs of the correlations
in (12). As a result, the marginal variances computed by either minimizing the Bethe free
energy or by running the message passing algorithm can only depend on |R|, similarly to
the constrained fractional free energy F cα.

4.1 Stability of the Gaussian Message Passing Algorithm

In the following we analyze the stability of the message passing iteration at its fixed points,
that is, at the stationary points of the Lagrangian corresponding to the constrained mini-
mization of the Gaussian Bethe free energy. We reiterate that we use G = (V,E) to denote
the graph corresponding to Q, namely, V = {1, . . . , n} and E = {(i, j) : Qij 6= 0}. The vec-
tor λ ∈ R|E|, corresponding to a set of messages {λij}ij , is composed by the concatenation
of λijs such that ij is followed by ji and the (ij, ji) blocks follow a lexicographic order w.r.t.
ij and i < j. The vector η consists of the variables ηij and follows a similar structure as λ.

We define r̂, ĥ, γ̂ ∈ R|E| as r̂ij = r̂ji = Rij , ĥij = hj and γ̂ij = γjij . We also define the
|E| × |E| matrix

Mij,kl (α) ≡


1 if j = k

1− α if kl = ji
0 otherwise

which encodes the weighted edge adjacency corresponding to G and α. The number of non-
zero elements in M(α), scales roughly with nnzeros (Q)2/n, where nnzeros (Q) denotes
the number of non-zeros in Q. Since the parallel message update given Equations (15) and
(16) can be rewritten in terms of two matrix-vector multiplications and element by element
operations on vectors, the computational complexity of an update also scales as roughly
with nnzeros (Q)2/n.

13
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With this notation, the local linearization of the update equations (15) and (16) can be
written as

∂ (ηnew,λnew)

∂ (η,λ)
(η,λ) = (1− ε)I . . .

+
ε

α

 −diag
(
αr̂ 1

αγ̂+M(α)λ

)
M(α) diag

(
αr̂ αγ̂ĥ+M(α)η

(αγ̂+M(α)λ)2

)
M(α)

0 diag
(
α2r̂2 1

(αγ̂+M(α)λ)2

)
M(α)

 , (17)

where all operations on vectors are element by element. The stability of a fixed point
(η∗,λ∗) depends on the union of the spectra of

Jη(η∗,λ∗) ≡ −α−1diag
(
αr̂(αγ̂ + M(α)λ∗)−1

)
M(α)

and

Jλ(η∗,λ∗) ≡ α−1diag
(
α2r̂2(αγ̂ + M(α)λ∗)−2

)
M(α).

It is important to point out that the stability properties depend only on λ∗ and R and are
independent of η∗ and h.

Our goal is to connect the stability properties of the message passing algorithm to the
properties of the Bethe free energy. Therefore, we express the stability properties in terms
of the moment parameters of approximate marginals. For any λ that leads to normal-
izable approximate marginals qij(xi, xj), we can use (10) to identify the local covariance
parameters Vij defined in Section 3, but now without enforcing the marginal matching
constraints viij = viik. The correspondence is given by

[
viij vij
vij vjij

]−1

=
1

viijv
j
ij − v2

ij

[
vjij −vij
−vij viij

]
(18)

=

 αγiij +
∑

l∈∂i\j
λil + (1− α)λij αRij

αRij αγjij +
∑

k∈∂j\i
λjk + (1− α)λji

 .
The approximate local covariances vij are fully determined by viij , v

j
ij and rij and have

the form as in (12). This leaves us with |E| moment parameters to be computed by the
message passing algorithm. Let v̂ ∈ R|E| be defined as v̂ij = viij , v̂ji = vjij and yij(v̂) =

vij/(v
i
ijv

j
ij − vij

2), where vij is computed according to (12). It can be checked that the
mapping between y and v̂ is continuous and bijective. This implies that the canonical to
moment parameter transformation in (18) can be written as y(v̂) = αγ̂ + M(α)λ. Since
M(α) is singular only when α = K and the graph G is K-regular—see Property A1 in
Section A of the Appendix for details—for the rest of the cases, there is a continuous,
bijective mapping between the moment parameters v̂ and the canonical parameters λ that
lead to normalizable approximate marginals.

At any fixed point (η∗,λ∗) we have moment matching, that is, viij = viik ≡ v∗i for any
k, j ∈ ∂i, therefore we can express the stability properties in terms of moment parameters

14
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v∗ = (v∗i , . . . , v
∗
n). Using (18) and defining the diagonal matrix D ∈ R|E|×|E| with the

diagonal elements Dij,ij =
√
v∗i , we get

DJη(λ∗(v∗))D−1 = −α−1diag

vij(α, v∗i , v∗j )√
v∗i v
∗
j

M(α) (19)

and

D2Jλ(λ∗(v∗))D−2 = α−1diag

(
vij(α, v

∗
i , v
∗
j )

2

v∗i v
∗
j

)
M(α). (20)

Let σ(A) denote the spectrum of the matrix A. Since we have σ
(
DJηD

−1
)

= σ (Jη) and
σ
(
D2JλD

−2
)

= σ (Jλ), it is sufficient to analyze the spectral properties of the right hand
sides in equations (19) and (20).

The message passing algorithm is asymptotically stable at λ∗(v∗) if and only if

max {ρ (Jη(λ∗(v∗))) , ρ (Jλ(λ∗(v∗)))} < 1, (21)

where ρ(·) denotes the spectral radius. It is interesting to see that although the functional
forms of the free energies and the message passing algorithms are different in the Gaussian
and discrete case, the stability conditions have similar forms. This will allow us to use
some of the results of Watanabe and Fukumizu (2009). In the next section, we show the
implications of this condition for the properties of the Hessian of the free energy.

4.2 Stable Fixed Points and Local Minima

The Hessian H[Fα] of the Bethe free energy (11) depends only on the moment parameters
vi, vj and vij . Note that now, the vijs are unconstrained parameters. It is an (|E|/2 + 2n)×
(|E|/2 + 2n) matrix and it has the form

H[Fα](V ) =


Q 0 0

0 diag
(
∂2Fα
∂2vij

) [
∂2Fα
∂vij∂vi

]
ij,i

0
[
∂2Fα
∂vij∂vi

]T
ij,i

[
∂2Fα
∂vi∂vj

]
i,j

 ,

where we use V to denote the collection of parameters vi, i = 1, . . . , n and vij , i ∼ j.
Since the block corresponding to the partial differentials w.r.t. vij is diagonal with positive
elements, the Hessian is positive definite at V if the Schur complement corresponding to
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the partial differentials w.r.t. vis is positive definite at V . The latter is given by

Hv
ii[Fα](V ) =

∂2Fα
∂vi∂vi

−
∑
i∼j

[
∂2Fα
∂vij∂vi

]2 [
∂Fα
∂vij

]−1

=
1

2

1

v2
i

1 +
1

α

∑
i∼j

c4
ij

1− c4
ij

 ,

Hv
ij [Fα](V ) =

∂2Fα
∂vi∂vj

− ∂2Fα
∂vij∂vi

∂2Fα
∂vij∂vj

[
∂2Fα
∂2vij

]−1

= −1

2

1

vivj

1

α

c2
ij

1− c4
ij

,

where we use the notation cij = vij/
√
vivj .

Now, we would like to connect the condition in (21) to the positive definiteness of the
matrixHv[Fα](V ). In the following we show that stable fixed points λ∗(v∗) of the Gaussian
message passing algorithm, satisfying (21), correspond to local minima of the Gaussian free
energy Fα at v∗ and vij(α, v

∗
i , v
∗
j ).

According to Watanabe and Fukumizu (2009), for any arbitrary vector w ∈ R|E| one
has

det
(
I|E| − α−1diag (w)M(α)

)
= det

(
In + α−1A(w)

)∏
ij

(1− wijwji), (22)

where
Aii (w) =

∑
i∼j

wijwji
1− wijwji

and Aij (w) = − wij
1− wijwji

. (23)

The proof is an application of the matrix determinant lemma and a reproduction of it can
be found in Section A of the Appendix. Equation (22) expresses the determinant of an
|E|×|E| matrix as the determinant of an n×n matrix.

Let c ∈ R|E| with cij(V ) = vij/
√
vivj . By substituting w = c(V )2 in (23), we find that

det
(
I − α−1diag

(
c(V )2

)
M(α)

)
= f (V ) det (H[Fα](V )) , (24)

where f (V ) is a positive function defined as

f (V ) = 2nα|E||Q|−1
∏
k

v2
k

∏
i∼j

(
vivj − v2

ij

)2

vivj + v2
ij

(
1−

v2
ij

vivj

)
.

for all V corresponding to normalizable approximate marginals. Now, adapting the theorem
of Watanabe and Fukumizu (2009) we have the following theorem.
Theorem If σ

(
α−1diag

(
c(V )2

)
M(α)

)
⊆ C \ R≥1 then the Hessian of the (Gaussian)

Bethe free energy H[Fα] is positive definite at V .
Proof: The assumption σ

(
α−1diag

(
c(V )2

)
M(α)

)
⊂ C \ R≥1 implies that we have

det
(
I − α−1diag(c(V )2

)
M(α)) > 0. By choosing Vij(t) = tvij with t ∈ [0, 1], we find

that c(V(t))2 = t2c(V )2, therefore, det
(
I − α−1diag(c(V (t)

)2
)M(α))>0 for any t ∈ [0, 1].
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This implies that det (H[Fα](V (t))) > 0 for any t ∈ [0, 1]. Since H[Fα](V (0)) = I > 0
and the eigenvalues of H[Fα](V (t)) change continuously w.r.t. t ∈ [0, 1], it results that
H[Fα](V (1)) > 0 for any V , thus satisfying the condition of the theorem. �

The fixed point (η∗,λ∗) is stable if and only if max{ρ(Jη(λ∗(v∗))), ρ(Jλ(λ∗(v∗)))} < 1.
This implies σ

(
α−1diag(c(V ∗)2)M(α)

)
⊆ C \ R≥1 and leads to the following property.

Property 3. Stable fixed points (η∗,λ∗) of the damped Gaussian message passing algo-
rithm (16) are local minima of the Gaussian Bethe free energy F cα in (13) at v∗(λ∗).

The above shows that the boundedness of Fα or the existence of local minima in case
of an unbounded Fα plays a significant role in the convergence of Gaussian message pass-
ing. We illustrate this in Section 5. If the fractional message passing algorithm converges
then it converges to a set of messages that corresponds to a local minimum of the frac-
tional free energy. This also implies that the mean parameters of the local approximate
marginals are exact (see Property 1. in Section 3). Note that the observations in Section 3
and Property A2 in the Appendix together with Property 3 imply that there is always a
range of α values for which the fractional free energy possesses a local minimum to which
the fractional message passing can converge.

4.3 The Damping and the Fractional Parameters

The local stability condition in (21) is independent of the damping parameter ε. Therefore,
it does not alter the local stability properties, it only makes the iteration slower and numer-
ically more stable, that is, it can dampen the possible periodic trajectories of the message
passing algorithm.

The fractional parameter α characterizes the inference process and as we have seen in the
example in the previous sections, by choosing smaller αs we can create local minima. In the
particular case when h = 0, there is a somewhat similar property for the message passing
updates as well. Let Λ ∈ R|E| be the set of messages λ that lead to normalizable approximate
marginals. The set Λ is characterized by the model parameters |R|, γ̂ and α. We reiterate
that the elements of v̂ are the local variances viij and vjij and there is a continuous bijective

mapping between λ ∈ Λ and v̂ ∈ R|E|+ given by y(v̂) = αγ̂+M(α)λ, unless α = K and G is
K-regular. This allows us to study the stability properties in terms of moment parameters

v̂(λ). Let c(v̂, α) = [vij(α, v
i
ij , v

j
ij)/
√
viijv

j
ij ]ij be the vector of “local correlations”. By using

Gershgorin’s theorem (Horn & Johnson, 2005) and c(v̂, α)2 ≤ c(v̂, α), we find that for any
eigenvalue β of α−1diag(c(v̂, α))M(α) or α−1diag(c(v̂, α))2M(α) we have

|β| ≤ max
i,j

[
α−1c(v̂, α) [(nj − 1) + |1− α|]

]
.

When h = 0, there are no updates in η, the rhs of the above equation depends on
α−1c(v̂, α)2 (see Equations (17) and (20)) and we have lim

α→0
α−1c(v̂, α)2 = 0, thus, small

α values can help to achieve convergence. However, when h 6= 0 the term α−1c(v̂, α) is
dominating and the effects of decreasing α towards zero can be ambiguous.
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5. Experiments

We implemented both direct minimization and fractional message passing and analyzed
their behavior for different values of λmax(|R|). For reasons of simplicity, we set all αijs
equal. The results on an small scale model are summarized in Figure 3. Note that there
is a good correspondence between the behavior of the fractional Bethe free energies in the
direction of the eigenvalue corresponding to λmax(|R|) and the convergence of the Newton
method. The Newton method was started from different initial points. We experienced
that when λmax(|R|) > 1 and setting the initial value to v0 = t2u2

max , the algorithm
did not converge for high values of t. This can be explained by the top plots in Figure 3:
for high values of t, the initial point might not be in the convergence region of the local
minimum. For the fractional message passing algorithm we used two types of initialization:
(1) when λmax(|R|) < 1 we set Ψij such that they are all normalizable by setting γiij =

|Rij |ujmax/λmaxuimax (Malioutov et al., 2006), (2) when λmax(|R|) ≥ 1, we used γiij = 1/ni,
that is, a symmetric partitioning of the diagonal elements. We set the initial messages such
that all approximate marginals are normalizable in the first step of the iteration.

We experienced a behavior similar to that described by Welling and Teh (2001) for
standard message passing, namely, fractional message passing and direct minimization either
both converge or both fail to converge. Our experiments in combination with Theorem 1
show that when λmax(|R|) > 1, standard message passing at best converges to a local
minimum of the Bethe free energy. If standard message passing fails to converge, one
can decrease α and search for a stationary point—preferably a local minimum—of the
corresponding fractional free energy.

It can be seen from the results in the right panels of Figure 2, that when the model is no
longer pairwise normalizable, the local minimum and not the unbounded global minimum
can be viewed the natural continuation of the (bounded) global minimum for pairwise
normalizable models. This explains why the quality of the approximation at the local
minimum for models that are not pairwise normalizable is still comparable to that at the
global minimum for models that are pairwise normalizable.

6. Conclusions

As we have seen, FMF and FMF − 1
2

√
v
T |R|

√
v provide tight upper and lower bounds for

the Gaussian fractional Bethe free energies. It turns out that pairwise normalizability is
not only a sufficient condition for the message passing algorithm to converge, but it is also
a necessary condition for the Gaussian fractional Bethe free energies to be bounded from
below.

If the model is pairwise normalizable, then the lower bound is bounded, and both direct
minimization and message passing are converging. In our experiments both converged to
the same minimum. This suggests that in the pairwise normalizable case, fractional Bethe
free energies possess a unique global minimum.

If the model is not pairwise normalizable, then none of the fractional Bethe free energies
are bounded from below. However, there is always a range of α values for which the
fractional free energy possesses a local minimum to which both direct minimization and
fractional message passing can converge. Thus, by decreasing α towards zero, one gets
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Figure 3: The top panels show the constrained fractional Bethe free energies of an Gaussian model
with 8 variables in the direction

√
v = tumax, where umax is the eigenvector correspond-

ing to λmax(|R|) for λmax(|R|) = 0.9 (top-left) and λmax(|R|) = 1.1 (top-right). The
thick lines are the functions FMF (dashed), FB (dashed dotted) and the lower bound

FMF − 1
2

√
v
T |R|

√
v (continuous). The thin lines are the constrained α-fractional free

energies F cα for α ∈ [10−2, 102]. Center panels show the final function values after the
convergence of the Newton method. The bottom panels show the || · ||2 error in ap-
proximation for the single node standard deviations σ =

√
v. Missing values indicate

non-convergence.
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closer to the mean field energy and a finite local minimum will appear (Property A2 in
the Appendix). We experienced that for a suitable range of αs,εs and initial values the
fractional Gaussian message passing can be made to converge.

As mentioned in Section 2.1, αijs correspond to using local αij divergences when ap-
plying power expectation propagation with a fully factorized approximating distribution.
Seeger (2008) reports that when expectation propagation does not converge, applying power
expectation propagation with α<1 helps to achieve convergence. In the case of the problem
addressed in this paper this behavior can be explained by the observation that small αs
make a finite local minima more likely to occur and thus prevents the covariance matrices
from becoming indefinite or even non positive definite. Although the most common reason
for using α<1 in EP is numerical robustness, it also implies finding the saddle point of the
α-fractional EP free energy. It might be interesting to investigate whether it is the same
reason why convergence is more likely as in the case of Gaussian fractional message passing.

Wainwright et al. (2003) propose to convexify the Bethe free energy for discrete models
by choosing αijs sufficiently large such that the fractional Bethe free energy has a unique
global minimum. This strategy appears to fail for Gaussian models. Convexification makes
the possibly useful finite local minima disappear, leaving just the unbounded global mini-
mum. In the case of the more general hybrid models, the use of the convexification is still
unclear.

The example in Section 3 disproves the conjecture in the work of Welling and Teh (2001):
even when the Bethe free energy is not bounded from below, it can possess a finite local
minimum to which the message passing and the minimization algorithms can converge.

We have shown that stable fixed points of the Gaussian fractional message passing
algorithms are local minima of the fractional Bethe free energy. Although the existence
of a local minimum does not guarantee the convergence of the message passing algorithm,
in practice we experienced that the existence of a local minimum implies convergence.
Based on these results, we hypothesize that when pairwise normalizability does not hold,
the Gaussian Bethe free energy and the Gaussian message passing algorithm (α = 1) can
have two types of behavior:

(1) the Gaussian Bethe free energy possesses a unique finite local minimum to which
optimization methods can converge by starting from, say, the mean field solution
vi = 1/Qii; the Gaussian message passing has a corresponding unique stable fixed
point, to which it can converge with suitable starting point and sufficient damping,

(2) no finite local minimum exists, and thus, both the optimization and the message
passing algorithm diverge.

By using the fractional free energy and the fractional message passing and by varying α,
one can switch between these behaviors. Computing the critical αc (|R|) for a general |R|
remains an open question. We believe that the properties of the free energies in K-regular
symmetric models (Section 3), where the critical values can be easily computed, give a good
insight into the properties of the free energies for general Gaussian models.
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Appendix A. Properties and Proofs

Lemma A1. (Watanabe & Fukumizu, 2009) For any graph G = (V,E), edge adjacency
matrix M(α) (defined in Section 4.1), and arbitrary vector w ∈ R|E|, one has

det
(
I|E| − α−1diag (w)M(α)

)
= det

(
I|V | + α−1A(w)

)∏
ij

(1− wijwji),

where
Aii (w) =

∑
i∼j

wijwji
1− wijwji

and Aij (w) = − wij
1− wijwji

.

Proof: We reproduce the proof in a somewhat simplified form. Let us define Uij,· = eTj ,

Vij,· = eTi —where ek is the kth unit vector of Rn—and S with[
Sij,ij Sij,ji
Sji,ij Sji,ji

]
=

[
0 1
1 0

]
,

then we have M(α) = UV T − αS. Let us define W ∈ R|E|×|E| a diagonal matrix with
wij,ij = wij . Using the matrix determinant lemma this reads as

det
(
I − α−1W

(
UV T − αS

))
= det

(
I +WS − α−1W

(
UV T

))
= det

(
I − α−1W

(
UV T

)
(I +WS)−1

)
det (I +WS)

= det
(
I − α−1V T (I +WS)−1WU

)
det (I +WS).

The (ij, ji) block of (I +WS)−1W is

1

1− wjiwji

[
1 −wij
−wji 1

] [
wij 0
0 wji

]
=

1

1− wjiwji

[
wij −wijwji

−wjiwij wji

]
and thus, we can define A ≡ V T (I +WS)−1WU such that

Ai,i =
∑
i∼j

wijwji
1− wijwji

and Ai,j = − wij
1− wijwji

.

This completes the proof of the matrix determinant lemma (22) in Section 4.2. �
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Property A1. The matrix M(α) = UV T − αS is singular only for K-regular graphs
with α = K.
Proof: Let x ∈ R|E| and y = M(α)x. Then yij =

∑
k∼j xjk − αxji. Let us fix j, then

yij = 0 for any i means that
∑

k∼j xjk = αxji for any i. This can only hold if the graph is
K-regular, α = K and all xijs are equal or xij = 0 for all pair indices ij. �

Property A2. For a suitably chosen ε > 0, there exists an αε such that the constrained
fractional free energy F cα possesses a local minimum for all 0 < α < αε.
Proof: Let us define v∗MF = argminv FMF (v) and

U εMF = {v : FMF (v) ≤ FMF (v∗MF ) + 2ε} .

The form of FMF implies that we can always choose ε such that U εMF is a proper subset of the
positive “quadrant” in Rn, in other words, U εMF ⊂ Rn+. Then due to the properties of FMF

(continuous and convex, with a unique finite global minimum attained at a finite value), the
domain U εMF is closed, bounded, convex and v∗MF ∈ U εMF \ ∂U εMF , that is, v∗MF is in the
interior of U εMF . Since FMF and F cα(v) are continuous on Rn+, the set U εMF is closed and
bounded and lim

α→0
F cα(v) = FMF (v) (pointwise convergence) for all v ∈ Rn+, it follows that F cα

converges uniformly on U εMF as α→ 0. This, together with the monotonicity of F cα w.r.t. α,
implies that there exists αε such that FMF (vMF )− ε < F cα(vMF ) < FMF (vMF ) for all 0 <
α < αε and all v ∈ U εMF . Let us fix α. It is known that, since U εMF is closed and bounded and
F cα is continuous, F cα attains its extrema on U εMF . Since FMF (v) = FMF (v∗MF ) + 2ε for all
v ∈ ∂U εMF and F cα(v) > FMF (v)− ε for all v ∈ U εMF it follows that F cα(v) > FMF (v∗MF )+ ε
for all v ∈ ∂U εMF . We have chosen α such that FMF (v∗MF )− ε < F cα(v∗MF ) < FMF (v∗MF ).
The latter two conditions imply that one of the extrema has to be a local minimum in the
interior of U εMF . �
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