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Abstract

Traditional learning-based coreference resolvers operate by training the mention-pair
model for determining whether two mentions are coreferent or not. Though conceptually
simple and easy to understand, the mention-pair model is linguistically rather unappealing
and lags far behind the heuristic-based coreference models proposed in the pre-statistical
NLP era in terms of sophistication. Two independent lines of recent research have at-
tempted to improve the mention-pair model, one by acquiring the mention-ranking model to
rank preceding mentions for a given anaphor, and the other by training the entity-mention
model to determine whether a preceding cluster is coreferent with a given mention. We
propose a cluster-ranking approach to coreference resolution, which combines the strengths
of the mention-ranking model and the entity-mention model, and is therefore theoretically
more appealing than both of these models. In addition, we seek to improve cluster rankers
via two extensions: (1) lexicalization and (2) incorporating knowledge of anaphoricity by
jointly modeling anaphoricity determination and coreference resolution. Experimental re-
sults on the ACE data sets demonstrate the superior performance of cluster rankers to
competing approaches as well as the effectiveness of our two extensions.

1. Introduction

Noun phrase (NP) coreference resolution is the task of identifying which NPs (or mentions in
ACE terminology?) in a text or dialogue refer to the same real-world entity or concept. From
a computational perspective, coreference is a clustering task, with the goal of partitioning
a set of mentions into coreference clusters where each cluster contains all and only the
mentions that are co-referring. From a mathematical perspective, a coreference relation is
an equivalence relation defined on a pair of mentions, as it satisfies reflexivity, symmetry,
and transitivity. Following our previous work on coreference resolution, we use the term
anaphoric to describe a mention that is part of a coreference chain but is not the head of a
chain. Given an anaphoric mention my, an antecedent of my, is a mention that is coreferent
with my and precedes it in the associated text, and the set of candidate antecedents of my
consists of all mentions that precede my.>

1. More precisely, a mention is an instance of reference to an entity in the real world. In this article, we
treat the terms mention and noun phrase as synonymous and use them interchangeably.

2. Note that these definitions are somewhat overloaded. Linguistically, an anaphor is a noun phrase that
depends on its antecedent for its semantic interpretation. Hence, “Barack Obama” can be anaphoric in
our definition but not in the formal definition.
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The research focus of computational coreference resolution exhibited a gradual shift from
heuristic-based approaches to machine learning approaches in the past decade. The shift
can be attributed in part to the advent of the statistical natural language processing (NLP)
era, and in part to the public availability of coreference-annotated corpora produced as a
result of the MUC-6 and MUC-7 conferences and the series of ACE evaluations. One of the
most influential machine learning approaches to coreference resolution is the classification-
based approach, where coreference is recast as a binary classification task (e.g., Aone &
Bennett, 1995; McCarthy & Lehnert, 1995). Specifically, a classifier that is trained on
coreference-annotated data is used to determine whether a pair of mentions is co-referring
or not. However, the pairwise classifications produced by this classifier (which is now com-
monly known as the mention-pair model) may not satisfy the transitivity property inherent
in the coreference relation, since it is possible for the model to classify (A,B) as coreferent,
(B,C) as coreferent, and (A,C) as not coreferent. As a result, a separate clustering mecha-
nism is needed to coordinate the possibly contradictory pairwise classification decisions and
construct a partition of the given mentions.

The mention-pair model has significantly influenced learning-based coreference research
in the past fifteen years. In fact, many of the recently published coreference papers are
still based on this classical learning-based coreference model (e.g., Bengtson & Roth, 2008;
Stoyanov, Gilbert, Cardie, & Riloff, 2009). Despite its popularity, the model has at least
two major weaknesses. First, since each candidate antecedent for a mention to be resolved
(henceforth an active mention) is considered independently of the others, this model only
determines how good a candidate antecedent is relative to the active mention, but not
how good a candidate antecedent is relative to other candidates. In other words, it fails
to answer the critical question of which candidate antecedent is most probable. Second,
it has limitations in its expressiveness: the information extracted from the two mentions
alone may not be sufficient for making an informed coreference decision, especially if the
candidate antecedent is a pronoun (which is semantically empty) or a mention that lacks
descriptive information such as gender (e.g., “Clinton”).

Recently, coreference researchers have investigated alternative models of coreference that
aim to address the aforementioned weaknesses of the mention-pair model. To address the
first weakness, researchers have proposed the mention-ranking model. This model deter-
mines which candidate antecedent is most probable given an active mention by imposing
a ranking on its candidate antecedents (e.g., Denis & Baldridge, 2007b, 2008; Iida, Inui,
& Matsumoto, 2009). Ranking is arguably a more natural formulation of coreference res-
olution than classification, as a ranker allows all candidate antecedents to be considered
simultaneously and therefore directly captures the competition among them. Another de-
sirable consequence is that there exists a natural resolution strategy for a ranking approach:
a mention is resolved to the candidate antecedent that has the highest rank. This contrasts
with classification-based approaches, where many clustering algorithms have been employed
to co-ordinate the pairwise coreference decisions (because it is unclear which one is the best).
To address the second weakness, researchers have proposed the entity-mention coreference
model (e.g., Luo, Ittycheriah, Jing, Kambhatla, & Roukos, 2004; Yang, Su, Zhou, & Tan,
2004; Yang, Su, Lang, Tan, & Li, 2008). Unlike the mention-pair model, the entity-mention
model is trained to determine whether an active mention belongs to a preceding, possibly
partially-formed, coreference cluster. Hence, it can employ cluster-level features (i.e., fea-
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tures that are defined over any subset of mentions in a preceding cluster), which makes it
more expressive than the mention-pair model.

While the entity-mention model and the mention-ranking model are conceptually simple
extensions to the mention-pair model, they were born nearly ten years after the mention-pair
model was proposed, and in particular, their contributions should not be under-estimated:
they paved a new way of thinking about supervised modeling of coreference that represents
a significant departure from their mention-pair counterpart, which for many years is the
learning-based coreference model for NLP researchers. The proposal of these two models
is facilitated in part by advances in statistical modeling of natural languages: statistical
NLP models have evolved from capturing local information to global information, and
from employing classification-based models to ranking-based models. In the context of
coreference resolution, the entity-mention model enables us to compute features based on a
variable number of mentions, and the mention-ranking model enables us to rank a variable
number of candidate antecedents. Nevertheless, neither of these models addresses both
weaknesses of the mention-pair model satisfactorily: while the mention-ranking model allows
all candidate antecedents to be ranked and compared simultaneously, it does not enable the
use of cluster-level features; on the other hand, while the entity-mention model can employ
cluster-level features, it does not allow all candidates to be considered simultaneously.

Motivated in part by this observation, we propose a learning-based approach to corefer-
ence resolution that is theoretically more appealing than both the mention-ranking model
and the entity-mention model: the cluster-ranking approach. Specifically, we recast coref-
erence as the problem of determining which of a set of preceding coreference clusters is the
best to link to an active mention using a learned cluster-ranking model. In essence, the
cluster-ranking model combines the strengths of the mention-ranking model and the entity-
mention model, and addresses both weaknesses associated with the mention-pair model.

While the cluster-ranking model appears to be a conceptually simple and natural ex-
tension of the entity-mention model and the mention-ranking model, we believe that such
simplicity stems primarily from our choice of a presentation of these concepts that is easiest
for the reader to understand. In particular, we note that the mental processes involved in
the design of the cluster-ranking model are by no means as simple as the way the model
is presented: it requires not only an analysis of the strengths and weaknesses of existing
approaches to learning-based coreference resolution and the connection between them, but
also our formulation of the view that the entity-mention model and the mention-ranking
model are addressing two complementary weaknesses of the mention-pair model. We believe
that the significance of our cluster-ranking model lies in bridging two rather independent
lines of learning-based coreference research that have been going on in the past few years,
one involving the entity-mention model and the other the mention-ranking model.

In addition, we seek to improve the cluster-ranking model with two sources of linguis-
tic knowledge. First, we propose to exploit knowledge of anaphoricity (i.e., knowledge of
whether a mention is anaphoric or not). Anaphoricity determination is by no means a new
problem, and neither is the use of anaphoricity information to improve coreference reso-
lution. Owur innovation lies in the way we learn knowledge of anaphoricity. Specifically,
while previous work has typically adopted a pipeline coreference architecture, in which
anaphoricity determination is performed prior to coreference resolution and the resulting
information is used to prevent a coreference system from resolving mentions that are de-
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termined to be non-anaphoric (for an overview, see the work of Poesio, Uryupina, Vieira,
Alexandrov-Kabadjov, & Goulart, 2004), we propose a model for jointly learning anaphoric-
ity determination and coreference resolution. Note that a major weakness of the pipeline
architecture lies in the fact that errors in anaphoricity determination could be propagated
to the coreference resolver, possibly leading to a deterioration of coreference performance
(Ng & Cardie, 2002a). Our joint model is a potential solution to this error-propagation
problem.

Second, we examine a kind of linguistic features that is not exploited by the majority
of existing supervised coreference resolvers: word pairs that are composed of the strings (or
the head nouns) of an active mention and one of its preceding mentions. Intuitively, these
word pairs contain useful information. For example, they may help improve the precision
of a model, by allowing a learner to learn that “it” only has a moderate probability of
being anaphoric, and that “the contrary” taken from the phrase “on the contrary” is never
anaphoric. They may also help improve its recall, by allowing the learner to determine,
for instance, that “airline” and “carrier” can be coreferent. Hence, they offer a convenient
means to attack one of the major problems in coreference research: identifying coreferent
common nouns that are lexically dissimilar but semantically related. Note that they are
extremely easy to compute, even more so than the so-called “cheap” features such as string-
matching and grammatical features (Yang, Zhou, Su, & Tan, 2003), but the majority of
the existing supervised coreference systems are unlexicalized and hence are not exploiting
them. Somewhat unexpectedly, however, for researchers who do lexicalize their coreference
models by employing word pairs as features (e.g., Luo et al., 2004; Daumé III & Marcu, 2005;
Bengtson & Roth, 2008), their feature analysis experiments indicate that lexical features
are at best marginally useful. For instance, Luo et al. and Daume III and Marcu report
that leaving out lexical features in their feature ablation experiments causes the ACE value
to drop only by 0.8 and 0.7, respectively. While previous attempts on lexicalization merely
append all word pairs to a conventional coreference feature set, our goal is to investigate
whether we can make better use of lexical features for learning-based coreference resolution.

To sum up, we propose a cluster-ranking approach to coreference resolution and a joint
model for exploiting anaphoricity information, and investigate the role of lexicalization in
learning-based coreference resolution. Besides empirically demonstrating that our cluster-
ranking model significantly outperforms competing approaches on the ACE 2005 coreference
data set, and that our two extensions to the model, namely lexicalization and joint modeling,
are effective in improving its performance, we believe our work makes four contributions to
coreference resolution:

Narrowing the modeling gap. While machine learning approaches to coreference res-
olution have received a lot of attention since the mid-1990s, the mention-pair model has
heavily influenced learning-based coreference research for more than a decade, and yet this
model lags far behind the heuristic-based coreference models proposed in the 1980s and
1990s in terms of sophistication. In particular, the notion of ranking can be traced back to
centering algorithms (for more information, see the books by Mitkov, 2002; Walker, Joshi,
& Prince, 1998), and the idea behind ranking preceding clusters (in a heuristic manner) can
be found in Lappin and Leass’s (1994) influential paper on pronoun resolution. While our
cluster-ranking model does not completely close the gap between the simplicity of machine
learning approaches and the sophistication of heuristic approaches to coreference resolu-
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tion, we believe that it represents an important step towards narrowing this gap. Another
important gap that our cluster-ranking model helps to bridge is the two independent lines
of learning-based coreference research that have been going on in the past few years, one
involving the entity-mention model and the other mention-ranking model.

Promoting the use of ranking models. While the mention-ranking model has been
empirically shown to outperform the mention-pair model (Denis & Baldridge, 2007b, 2008),
the former has not received as much attention among coreference researchers as it should.
In particular, the mention-pair model continues to be more popularly used and investigated
in the past few years than the mention-ranking model. We believe the lack of excitement for
ranking-based approaches to coreference resolution can be attributed at least in part to a
lack of theoretical understanding of ranking, as previous work on ranking-based coreference
resolution has employed ranking algorithms essentially as a black box. Without opening the
black box, it could be difficult for researchers to appreciate the subtle difference between
ranking and classification. In an attempt to promote the use of ranking-based models,
we provide a brief history of the use of ranking in coreference resolution (Section 2), and
tease apart the differences between classification and ranking by showing the constrained
optimization problem a support vector machine (SVM) attempts to solve in classification-
based and ranking-based coreference models (Section 3).

Gaining a better understanding of existing learning-based coreference models.
Recall that lexicalization is one of the two linguistic knowledge sources that we propose to
use to improve the cluster-ranking model. Note that lexicalization can be applied to not only
the cluster-ranking model, but essentially any learning-based coreference models. However,
as mentioned before, the vast majority of existing coreference resolvers are unlexicalized. In
fact, the mention-ranking model has only been shown to improve the mention-pair model on
an unlexicalized feature set. In an attempt to gain additional insights into the behavior of
different learning-based coreference models, we compare their performance on a lexicalized
feature set. Furthermore, we analyze them via experiments involving feature ablation and
data source adaptability, as well as report their performance on resolving different types of
anaphoric expressions.

Providing an implementation of the cluster-ranking model. To stimulate further
research on ranking-based approaches to coreference resolution, and to facilitate the use of
coreference information in high-level NLP applications, we make our software that imple-
ments the cluster-ranking model publicly available.?

The rest of this article is organized as follows. Section 2 provides an overview of the use
of ranking in coreference resolution. Section 3 describes our baseline coreference models:
the mention-pair model, the entity-mention model, and the mention-ranking model. We
discuss our cluster-ranking approach and our joint model for anaphoricity determination
and coreference resolution in Section 4. Section 5 provides the details of how we lexicalize the
coreference models. We present evaluation results and experimental analyses of different
aspects of the coreference models in Section 6 and Section 7, respectively. Finally, we
conclude in Section 8.

3. The software is available at http://www.hlt.utdallas.edu/~altaf/cherrypicker/.
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2. Ranking Approaches to Coreference Resolution: A Bit of History

While ranking is theoretically and empirically a better formulation of learning-based coref-
erence resolution than classification, the mention-ranking model has not been as popularly
used and investigated as its mention-pair counterpart since it was proposed. To promote
ranking-based coreference models, and to set the stage for further discussion of learning-
based coreference models in the next section, we provide in this section a brief history of
the use of ranking in heuristic-based and learning-based coreference resolution.

In a broader sense, many heuristic anaphora and coreference resolvers are ranking-
based. For example, to find an antecedent for an anaphoric pronoun, Hobbs’s (1978) sem-
inal syntax-based resolution algorithm considers the sentences in a given text in reverse
order, starting from the sentence in which the pronoun resides and searching for potential
antecedents in the corresponding parse trees in a left-to-right, breadth-first manner that
obeys binding and agreement constraints. Hence, if we keep searching until the beginning
of the text is reached (i.e., we do not stop even after the algorithm proposes an antecedent),
we will obtain a ranking of the candidate antecedents for the pronoun under considera-
tion, where the rank of a candidate is determined by the order in which it is proposed by
the algorithm. In fact, the rank of an antecedent obtained via this method is commonly
known as its Hobbs’s distance, which has been used as a linguistic feature in statistical
pronoun resolvers (e.g., Ge, Hale, & Charniak, 1998; Charniak & Elsner, 2009). In general,
search-based resolution algorithms like Hobbs’s consider candidate antecedents in a partic-
ular order and (typically) propose the first candidate that satisfies all linguistic constraints
as the antecedent.

Strictly speaking, however, we may want to consider a heuristic resolution algorithm as
a ranking-based algorithm only if it considers all candidate antecedents simultaneously, for
example by assigning a rank or score to each candidate and selecting the highest-ranked
or highest-scored candidate to be the antecedent. Even under this stricter definition of
ranking, there are still many heuristic resolvers that are ranking-based. These resolvers
typically assign a rank or score to each candidate antecedent based on a number of factors,
or knowledge sources, and then propose the one that has the highest rank or score as an
antecedent (e.g., Carbonell & Brown, 1988; Cardie & Wagstaff, 1999). A factor belongs to
one of two types: constraints and preferences (Mitkov, 1998). Constraints must be satisfied
before two mentions can be posited as coreferent. Examples of constraints include gender
and number agreement, binding constraints, and semantic compatibility. Preferences indi-
cate the likelihood that a candidate is an antecedent. Some preference factors measure the
compatibility between an anaphor and its candidate (e.g., syntactic parallelism favors can-
didates that have the same grammatical role as the anaphor), while other preference factors
are computed based on the candidate only, typically capturing the salience of a candidate.
Fach constraint and preference is manually assigned a weight indicating its importance.
For instance, gender disagreement is typically assigned a weight of —oo, indicating that a
candidate and the anaphor must agree in gender, whereas preference factors typically have
a finite weight. The score of a candidate can then be obtained by summing the weights of
the factors associated with the candidate.

Some ranking-based resolution algorithms do not assign a score to each candidate an-
tecedent. Rather, they simply impose a ranking on the candidates based on their salience.
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Perhaps the most representative family of algorithms that employ salience to rank can-
didates is centering algorithms (for descriptions of specific centering algorithms, see the
work of Grosz, Joshi, & Weinstein, 1983, 1995; Walker et al., 1998; Mitkov, 2002), where
the salience of a mention, typically estimated using its grammatical role, is used to rank
forward-looking centers.

The work most related to ours is that of Lappin and Leass (1994), whose goal is to per-
form pronoun resolution by assigning an anaphoric pronoun to the highest-ranked preceding
cluster, and is therefore a heuristic cluster-ranking model. Like many other heuristic-based
resolvers, Lappin and Leass’s algorithm identifies the highest-ranked preceding cluster for
an active mention by first applying a set of linguistic constraints to filter candidate an-
tecedents that are grammatically incompatible with the active mention, and then ranking
the preceding clusters, which contain the mentions that survive the filtering process, using
salience factors. Examples of salience factors include sentence recency (whether the pre-
ceding cluster contains a mention that appears in the sentence currently being processed),
subject emphasis (whether the cluster contains a mention in the subject position), existen-
tial emphasis (whether the cluster contains a mention that is a predicate nominal in an
existential construction), and accusative emphasis (whether the cluster contains a mention
that appears in a verbal complement in accusative case). Each salience factor is associated
with a manually-assigned weight that indicates its importance relative to other factors, and
the score of a cluster is the sum of the weights of the salience factors that are applicable to
the cluster. While Lappin and Leass’s paper is a widely read paper on pronoun resolution,
the cluster ranking aspect of their algorithm has rarely been emphasized. In fact, we are
not aware of any recent work on learning-based coreference resolution that establishes the
connection between the entity-mention model and Lappin and Leass’s algorithm.

Despite the conceptual similarities, our cluster-ranking model and Lappin and Leass’s
(1994) algorithm differ in several respects. First, Lappin and Leass only tackle pronoun res-
olution rather than the full coreference task. Second, while they apply linguistic constraints
to filter incompatible candidate antecedents, our resolution strategy is learned without ap-
plying hand-coded constraints in a separate filtering step. Third, while they attempt to
compute the salience of a preceding cluster with respect to an active mention, we attempt
to determine the compatibility between a cluster and an active mention, using factors that
determine not only salience but also lexical and grammatical compatibility, for instance.
Finally, their algorithm is heuristic-based, where the weights associated with each salience
factor are encoded manually rather than learned, unlike our system.

The first paper on learning-based coreference resolution was written by Connolly, Burger,
and Day (1994) and was published in the same year as Lappin and Leass’s (1994) paper.
Contrary to common expectation, the coreference model this paper proposes is a ranking-
based model, not the influential mention-pair model. The main idea behind Connolly et
al.’s approach is to convert a problem of ranking N candidate antecedents into a set of
pairwise ranking problems, each of which involves ranking exactly two candidates. To
rank two candidates, a classifier can be trained using a training set where each instance
corresponds to the active mention as well as two candidate antecedents and possesses a
class value that indicates which of the two candidates is better. This idea is certainly ahead
of its time, as it is embodied in many of the advanced ranking algorithms developed in
the machine learning and information retrieval communities in the past few years. It is
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later re-invented at almost the same time, but independently, by Yang et al. (2003) and
lida, Inui, Takamura, and Matsumoto (2003), who refer to it as the twin-candidate model
and the tournament model, respectively. The name twin-candidate model is motivated by
the fact that the model considers two candidates at a time, whereas the name tournament
model was assigned because each ranking of two candidates can be viewed as a tournament
(with the higher-ranked candidate winning the tournament) and the candidate that wins
the largest number of tournaments is chosen as the antecedent for the active mention. This
bit of history is rarely mentioned in the literature, but it reveals three somewhat interesting
and perhaps surprising facts. First, ranking was first applied to train coreference models
much earlier than people typically think. Second, despite being the first learning-based
coreference model, Connolly et al.’s ranking-based model is theoretically more appealing
than the classification-based mention-pair model, and is later shown by Yang et al. and
Iida et al.. to be empirically better as well. Finally, despite its theoretical and empirical
superiority, Connolly et al.’s model was largely ignored by the NLP community and received
attention only when it was re-invented nearly a decade later, while during this time period
its mention-pair counterpart essentially dominated learning-based coreference research.*

We conclude this section by making the important observation that the distinction be-
tween classification and ranking applies to discriminative models but not generative models.
Generative models try to capture the true conditional probability of some event. In the con-
text of coreference resolution, this will be the probability of a mention having a particular
antecedent or of it referring to a particular entity (i.e., preceding cluster). Since these prob-
abilities have to normalize, this is similar to a ranking objective: the system is trying to raise
the probability that a mention refers to the correct antecedent or entity at the expense of
the probabilities that it refers to any other. Thus, the antecedent version of the generative
coreference model as proposed by Ge et al. (1998) resembles the mention-ranking model,
while the entity version as proposed by Haghighi and Klein (2010) is similar in spirit to the
cluster-ranking model.

3. Baseline Coreference Models

In this section, we describe three coreference models that will serve as our baselines: the
mention-pair model, the entity-mention model, and the mention-ranking model. For illus-
trative purposes, we will use the text segment shown in Figure 1. Each mention m in the
segment is annotated as [m]i’gd, where mid is the mention id and cid is the id of the cluster
to which m belongs. As we can see, the mentions are partitioned into four sets, with Barack

Obama, his, and he in one cluster, and each of the remaining mentions in its own cluster.

4. It may not be possible (and perhaps not crucial) to determine why the mention-pair model received a
lot more attention than Connolly et al.’s model, but since those were the days when academic papers
could not be accessed easily in electronic form, we speculate that the publication venue played a role:
Connolly et al.’s work was published in the New Methods in Language Processing conference in 1994
(and later as a book chapter in 1997), whereas the mention-pair model was introduced in Aone and
Bennett’s (1995) paper and McCarthy and Lehnert’s (1995) paper, which appeared in the proceedings
of two comparatively higher-profile Al conferences: ACL 1995 and IJCAT 1995.
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[Barack Obamal} nominated [Hillary Rodham Clinton)3 as [[his|3 secretary of state]s on [Monday)3.
[He]§ ...

Figure 1: An illustrative example

3.1 Mention-Pair Model

As noted before, the mention-pair model is a classifier that decides whether or not an
active mention my, is coreferent with a candidate antecedent m;. Each instance i(m;, my)
represents m; and my,. In our implementation, an instance consists of the 39 features shown
in Table 1. These features have largely been employed by state-of-the-art learning-based
coreference systems (e.g., Soon, Ng, & Lim, 2001; Ng & Cardie, 2002b; Bengtson & Roth,
2008), and are computed automatically. As can be seen, the features are divided into four
blocks. The first two blocks consist of features that describe the properties of m; and my,
respectively, and the last two blocks of features describe the relationship between m; and
my. The classification associated with a training instance is either positive or negative,
depending on whether m; and my, are coreferent.

If one training instance were created from each pair of mentions, the negative instances
would significantly outnumber the positives, yielding a skewed class distribution that will
typically have an adverse effect on model training. As a result, only a subset of mention
pairs will be generated for training. Following Soon et al. (2001), we create (1) a positive
instance for each anaphoric mention my, and its closest antecedent m;; and (2) a negative
instance for my, paired with each of the intervening mentions, m;i1,mjy2,...,mp—1. In
our running example shown in Figure 1, three training instances will be generated for He:
i(Monday, He), i(secretary of state, He), and i(his, He). The first two of these instances will
be labeled as negative, and the last one will be labeled as positive. To train the mention-pair
model, we use the SVM learning algorithm from the SVM" 9" package (Joachims, 1999).°

As mentioned in the introduction, while previous work on learning-based coreference
resolution typically treats the underlying machine learner simply as a black-box tool, we
choose to provide the reader with an overview of SVMs, the learner we are employing in our
work. Note that this is a self-contained overview, but it is by no means a comprehensive
introduction to maximum-margin learning: our goal here is to provide the reader with only
the details that we believe are needed to understand the difference between classification
and ranking and perhaps appreciate the importance of ranking.’

To begin with, assume that we are given a data set consisting of positively labeled
points, which have a class value of +1, and negatively labeled points, which have a class

5. Since SVM'"9"* agsumes real-valued features, it cannot operate on features with multiple discrete values
directly. Hence, we need to convert the features shown in Table 1 into an equivalent set of features
that can be used directly by SVM"9"*  For uniformity, we perform the conversion for each feature in
Table 1 (rather than just the multi-valued features) as follows: we create one binary-valued feature for
SVM!9"* from each feature-value pair that can be derived from the feature set in Table 1. For example,
PRONOUN_1 has two values, Y and N. So we will derive two binary-valued features, PRONOUN_1=Y and
PRONOUN_1=N. One of them will have a value of 1 and the other will have a value of 0 for each instance.

6. For an overview of the theory of maximum-margin learning, we refer the reader to Burges’s (1998)
tutorial.
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Features describing m;, a candidate antecedent

Y if m; is a pronoun; else N
Y if m; is a subject; else N
Y if m; is a nested NP; else N

Features describing mj, the mention to be resolved

1 PRONOUN_1
2  SUBJECT_1

3 NESTED_1

4  NUMBER_2

5 GENDER_2

6 PRONOUN_2
7 NESTED_2

8  SEMCLASS_2
9  ANIMACY_2
10 PRO_TYPE_2

SINGULAR or PLURAL, determined using a lexicon

MALE, FEMALE, NEUTER, or UNKNOWN, determined using a list of
common first names

Y if my, is a pronoun; else N

Y if my, is a nested NP; else N

the semantic class of my; can be one of PERSON, LOCATION, ORGA-
NIZATION, DATE, TIME, MONEY, PERCENT, OBJECT, OTHERS, deter-
mined using WordNet (Fellbaum, 1998) and the Stanford NE recog-
nizer (Finkel, Grenager, & Manning, 2005)

Y if my, is determined as HUMAN or ANIMAL by WordNet and an NE
recognizer; else N

the nominative case of my if it is a pronoun; else NA. E.g., the
feature value for him is HE

Features describing the relationship between m;, a candidate antecedent and my,
the mention to be resolved

11
12
13
14
15
16
17

18

19

20

21

22

23
24

25

26
27

28
29

HEAD_MATCH
STR_MATCH
SUBSTR_-MATCH
PRO_STR_MATCH
PN_STR_MATCH
NONPRO_STR_MATCH
MODIFIER_MATCH

PRO_TYPE_MATCH

NUMBER

GENDER

AGREEMENT

ANIMACY

BOTH_PRONOUNS

C if the mentions have the same head noun; else I

C if the mentions are the same string; else I

C if one mention is a substring of the other; else I

C if both mentions are pronominal and are the same string; else I
C if both mentions are proper names and are the same string; else I
C if the two mentions are both non-pronominal and are the same
string; else I

C if the mentions have the same modifiers; NA if one of both of them
don’t have a modifier; else I

C if both mentions are pronominal and are either the same pronoun
or different only with respect to case; NA if at least one of them is
not pronominal; else 1

C if the mentions agree in number; I if they disagree; NA if the
number for one or both mentions cannot be determined

C if the mentions agree in gender; I if they disagree; NA if the gender
for one or both mentions cannot be determined

C if the mentions agree in both gender and number; I if they disagree
in both number and gender; else NA

C if the mentions match in animacy; I if they don’t; NA if the
animacy for one or both mentions cannot be determined

C if both mentions are pronouns; I if neither are pronouns; else NA

BOTH_PROPER_NOUNSC if both mentions are proper nouns; I if neither are proper nouns;

MAXIMALNP

SPAN
INDEFINITE

APPOSITIVE
COPULAR

else NA

C if the two mentions does not have the same maximial NP projec-
tion; else I

C if neither mention spans the other; else I

C if my, is an indefinite NP and is not in an appositive relationship;
else I

C if the mentions are in an appositive relationship; else I

C if the mentions are in a copular construction; else I
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Features describing the relationship between m;, a candidate antecedent and my,

the mention to be resolved (continued from the previous page)

30 SEMCLASS C if the mentions have the same semantic class (where the set of
semantic classes considered here is enumerated in the description of
the SEMCLASS_2 feature); I if they don’t; NA if the semantic class
information for one or both mentions cannot be determined

31  ALIAS C if one mention is an abbreviation or an acronym of the other; else
I
32 DISTANCE binned values for sentence distance between the mentions

Additional features describing the relationship between m;, a candidate antecedent

and my, the mention to be resolved

33 NUMBER the concatenation of the NUMBER_2 feature values of m; and my.
E.g., if m; is Clinton and my, is they, the feature value is SINGULAR-
PLURAL, since my; is singular and my, is plural

34 GENDER’ the concatenation of the GENDER_2 feature values of m; and my,
35 PRONOUN’ the concatenation of the PRONOUN_2 feature values of m; and my,
36 NESTED’ the concatenation of the NESTED_2 feature values of m; and my,
37 SEMCLASS’ the concatenation of the SEMCLASS_2 feature values of m; and my
38  ANIMACY’ the concatenation of the ANIMACY_2 feature values of m; and my,
39 PRO_TYPE’ the concatenation of the PRO_TYPE_2 feature values of m; and my,

Table 1: Feature set for coreference resolution. Non-relational features describe a mention
and in most cases take on a value of YES or NO. Relational features describe the relationship
between the two mentions and indicate whether they are COMPATIBLE, INCOMPATIBLE or
NOT APPLICABLE.

value of —1. When used in classification mode, an SVM learner aims to learn a hyperplane
(i.e., a linear classifier) that separates the positive points from the negative points. If
there is more than one hyperplane that achieves zero training error, the learner will choose
the hyperplane that maximizes the margin of separation (i.e., the distance between the
hyperplane and the training example closest to it), as a larger margin can be proven to
provide better generalization on unseen data (Vapnik, 1995). More formally, a maximum
margin hyperplane is defined by w - x — b = 0, where x is a feature vector representing
an arbitrary data point, and w (a weight vector) and b (a scalar) are parameters that are
learned by solving the following constrained optimization problem:

OPTIMIZATION PROBLEM 1: HARD-MARGIN SVM FOR CLASSIFICATION
.1 9
arg min §HW”

subject to

yilw-x; —b) >1, 1<i<n,

where y; € {41, —1} is the class of the i-th training point x;. Note that for each data point
x;, there is exactly one linear constraint in this optimization problem that ensures x; is
correctly classified. In particular, using a value of 1 on the right side of each inequality
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constraint ensures a certain distance (i.e., margin) between each x; and the hyperplane. It
can be shown that the margin is inversely proportional to the length of the weight vector.
Hence, minimizing the length of the weight vector is equivalent to maximizing the margin.
The resulting SVM classifier is known as a hard-margin SVM: the margin is “hard” because
each data point has to be on the correct side of the hyperplane.

However, in cases where the data set is not linearly separable, there is no hyperplane
that can perfectly separate the positives from the negatives, and as a result, the above
constrained optimization problem does not have a solution. Instead of asking the SVM
learner to give up and return no solution, we solve a relaxed version of the problem where
we also consider hyperplanes that produce non-zero training errors as potential solutions.
In other words, we have to modify the linear constraints associated with each data point
so that training errors are allowed. However, if we only modify the linear constraints but
leave the objective function as it is, then the learner will only search for a maximum-margin
hyperplane regardless of the training error it produces. Since training error correlates
positively with generalization error, it is crucial for the objective function to also take into
consideration the training error so that a hyperplane with a large margin and a low training
error can be found. However, it is non-trivial to maximize the margin and minimize the
training error simultaneously, since training error typically increases as we maximize the
margin. As a result, we need to find a trade-off between these two criteria, resulting in
an objective function that is a linear combination of margin size and training error. More
formally, we find the optimal hyperplane by solving the following constrained optimization
problem:

OPTIMIZATION PROBLEM 2: SOFT-MARGIN SVM FOR CLASSIFICATION
.1 9
arg min §HWH + C’Z &
KA

subject to

As before, y; € {+1,—1} is the class of the i-th training point x;. C' is a regularization
parameter that balances training error and margin size. Finally, &; is a non-negative slack
variable that represents the degree of misclassification of x;; in particular, if & > 1, then
data point 4 is on the wrong side of the hyperplane. Because this SVM allows data points
to appear on the wrong side of the hyperplane, it is also known as a soft-margin SVM.
Given this optimization problem, we rely on the training algorithm employed by SVM! 9t
for finding the optimal hyperplane.

After training, the resulting SVM classifier is used by a clustering algorithm to identify
an antecedent for a mention in a test text. Specifically, each active mention is compared in
turn to each preceding mention. For each pair, a test instance is created as during training
and presented to the SVM classifier, which returns a value that indicates the likelihood that
the two mentions are coreferent. Mention pairs with class values above 0 are considered
coreferent; otherwise the pair is considered not coreferent. Following Soon et al. (2001), we
apply a closest-first linking regime for antecedent selection: given an active mention my,
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we select as its antecedent the closest preceding mention that is classified as coreferent with
my. If my is not classified as coreferent with any preceding mention, it will be considered
non-anaphoric (i.e., no antecedent will be selected for my).

3.2 Entity-Mention Model

Unlike the mention-pair model, the entity-mention model is a classifier that decides whether
or not an active mention my, belongs to a partial coreference cluster c; that precedes my,.
Each training instance, #(c;j, my), represents c¢; and my. The features for an instance can be
divided into two types: (1) features that describe my, (i.e, those shown in the second block
of Table 1), and (2) cluster-level features, which describe the relationship between c¢; and
myg. A cluster-level feature can be created from a feature employed by the mention-pair
model by applying a logical predicate. For example, given the NUMBER feature (i.e., feature
#19 in Table 1), which determines whether two mentions agree in number, we can apply
the ALL predicate to create a cluster-level feature that has the value YES if my agrees in
number with all of the mentions in ¢; and NO otherwise. Motivated by previous work (Luo
et al., 2004; Culotta, Wick, & McCallum, 2007; Yang et al., 2008), we create cluster-level
features from mention-pair features using four commonly-used logical predicates: NONE,
MOST-FALSE, MOST-TRUE, and ALL. Specifically, for each feature X shown in the last two
blocks in Table 1, we first convert X into an equivalent set of binary-valued features if it
is multi-valued. Then, for each resulting binary-valued feature X;, we create four binary-
valued cluster-level features: (1) NONE-X; is true when X, is false between my and each
mention in ¢;; (2) MOST-FALSE-X; is true when X, is true between my, and less than half
(but at least one) of the mentions in ¢;; (3) MOST-TRUE-X;, is true when X, is true between
my, and at least half (but not all) of the mentions in ¢;; and (4) ALL-X, is true when X,
is true between mj, and each mention in ¢;. Hence, for each X3, exactly one of these four
cluster-level features evaluates to true.”

Following Yang et al. (2008), we create (1) a positive instance for each anaphoric mention
my, and the preceding cluster ¢; to which it belongs; and (2) a negative instance for my,
paired with each preceding cluster whose last mention appears between my and its closest
antecedent (i.e., the last mention of ¢;). Consider again our running example. Three
training instances will be generated for He: #({Monday}, He), i({secretary of state}, He),
and ({ Barack Obama, his}, He). The first two of these instances will be labeled as negative,
and the last one will be labeled as positive. As in the mention-pair model, we train the
entity-mention model using the SVM learner.

Since the entity-mention model is a classifier, we will again use SVM!9"* in classification
mode, resulting in a constrained optimization problem that is essentially the same as OPTI-
MIZATION PROBLEM 2, except that each training example x; represents an active mention
and one of its preceding clusters rather than two mentions.

7. Note that a cluster-level feature can also be represented as a probabilistic feature. Specifically, recall that
the four logical predicates partitions the [0,1] interval. Which predicate evaluates to true for a given
cluster-level feature depends on the probability obtained during the computation of the feature. Instead
of applying the logical predicates to convert the probability into one of the four discrete values, we can
simply use the probability as the value of the cluster-level feature. However, we choose not to employ
this probabilistic representation, as preliminary experiments indicated that using probabilistic features
yielded slightly worse results than using logical features.
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After training, the resulting classifier is used to identify a preceding cluster for a mention
in a test text. Specifically, the mentions are processed in a left-to-right manner. For each
active mention myg, a test instance is created between my and each of the preceding clusters
formed so far. All the test instances are then presented to the classifier. Finally, we adopt
a closest-first clustering regime, linking m;. to the closest preceding cluster that is classified
as coreferent with my. If my is not classified as coreferent with any preceding cluster, it
will be considered non-anaphoric. Note that all partial clusters preceding my are formed
incrementally based on the predictions of the classifier for the first & — 1 mentions; no
gold-standard coreference information is used in their formation.

3.3 Mention-Ranking Model

As noted before, a ranking model imposes a ranking on all the candidate antecedents of an
active mention my. To train the ranking-model, we use the SVM ranker-learning algorithm
from Joachims’s (2002) SVM"9"* package.

Like the mention-pair model, each training instance i(m;,my) represents my and a
preceding mention m;. In fact, the features that represent an instance and the method
for creating training instances are identical to those employed by the mention-pair model.
The only difference lies in labeling the training instances. Assuming that S is the set of
training instances created for anaphoric mention my, the rank value for #(m;,my) in Sy
is the rank of m; among competing candidate antecedents, which is 2 if m; is the closest
antecedent of my, and 1 otherwise.® To exemplify, consider again our running example. As
in the mention-pair model, three training instances will be generated for He: i(Monday,
He), i(secretary of state, He), i(his, He). The third instance will have a rank value of 2,
and the remaining two will have a rank value of 1.

At first glance, it seems that the training set that is generated for learning the mention-
ranking model, is identical to the one for learning the mention-pair model, as each instance
represents two mentions and is labeled with one of two possible values. Since previous work
on ranking-based coreference resolution does not attempt to clarify the difference between
the two, we believe that it could be difficult for the reader to appreciate the idea of using
ranking for coreference resolution.

Let us first describe the difference between classification and ranking at a high level,
beginning with the training sets employed by the mention-ranking model and the mention-
pair model. The difference is that the label associated with each instance for training the
mention-ranking model is a rank value, whereas the label associated with each instance for
training the mention-pair model is a class value. More specifically, since a ranking SVM
learns to rank a set of candidate antecedents, it is the relative ranks between two candidates,
rather than the absolute rank of a candidate, that matter in the training process. In other
words, from the point of view of the ranking SVM, a training set where instance #1 has
a rank value of 2 and instance #2 has a rank value of 1 is functionally equivalent to one
where #1 has a rank value of 10 and #2 has a rank value of 5, assuming that the remaining
instances generated for the same anaphor in the two training sets are identical to each other
and do not have a rank value between 1 and 10.

8. A larger rank value implies a better rank in SVM!*9",
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Next, we take a closer look at the ranker-training process. We denote the training set
that is created as described above by 7. In addition, we assume that an instance in T
is denoted by (zjk,y;k), where xj; is the feature vector created from anaphoric mention
my, and candidate antecedent m;, and y;i is its rank value. Before training a ranker, the
SVM ranker-learning algorithm derives a training set 7” from the original training set T as
follows. Specifically, for every pair of training instances (z,yix) and (xx, y;x) in 7" where
Yik 7 Yjk, We create a new training instance (z;jx, yi;%) for T/, where x;;, = xix — x5, and
Yijk € {+1,—1} is 1 if x;, has a larger rank value than z;; (and —1 otherwise). In a way,
the creation of 7" resembles Connolly et al.’s (1994) pairwise ranking approach that we saw
in Section 2, where we convert a ranking problem into a pairwise classification problem.’
The goal of the ranker-learning algorithm, then, is to find a hyperplane that minimizes the
number of misclassifications in 7”. Note that since y;;; € {+1,—1}, the class value of an
instance in 7" depends only on the relative ranks of two candidate antecedents, not their
absolute rank values.

Given the conversion from a ranking problem to a pairwise classification problem, the
constrained optimization problem that the SVM ranker-learning algorithm attempts to
solve, as described below, is similar to OPTIMIZATION PROBLEM 2:

OPTIMIZATION PROBLEM 3: SOFT-MARGIN SVM FOR RANKING

1 2
arg min §||W|| +CZfijk
subject to

Yijk(W - (X — Xjg) — b) > 1 — &jis

where ;. is a non-negative slack variable that represents the degree of misclassification of
X;jk, and C' is a regularization parameter that balances training error and margin size.

Two points deserve mention. First, this optimization problem is equivalent to the one
for a classification SVM on pairwise difference feature vectors x;; — x;,. As a result, the
training algorithm that was used to solve OPTIMIZATION PROBLEM 2 is also applicable
to this optimization problem. Second, while the number of linear inequality constraints
generated from document d in the optimization problems for training the mention-pair
model and the entity-mention model is quadratic in the number of mentions in d, the
number of constraints generated for a ranking SVM is cubic in the number of mentions,
since each instance now represents three (rather than two) mentions.

After training, the mention-ranking model is applied to rank the candidate antecedents
for an active mention in a test text as follows. Given an active mention my, we follow Denis
and Baldridge (2008) and use an independently-trained classifier to determine whether my
is non-anaphoric. If so, my will not be resolved. Otherwise, we create test instances for mj
by pairing it with each of its preceding mentions. The test instances are then presented to
the ranker, which computes a rank value for each instance by taking the dot product of the

9. The main difference between 7" and the training set employed by Connolly et al.’s approach is that in
T’, each instance is formed by taking the difference of the feature vectors of two instances in 7', whereas
in Connolly et al.’s training set, each instance is formed by concatenating the feature vectors of two
instances in 7.
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instance vector and the weight vector. The preceding mention that is assigned the largest
value by the ranker is selected as the antecedent of my. Ties are broken by preferring the
antecedent that is closest in distance to my.

The anaphoricity classifier used in the resolution step is trained using a publicly-available
implementation'? of maximum entropy (MaxEnt) modeling. Each instance corresponds
to a mention and is represented by 26 features that are deemed useful for distinguishing
between anaphoric and non-anaphoric mentions (see Table 2 for details). Linguistically,
these features can be broadly divided into three types: string-matching, grammatical, and
semantic. Each of them is either a relational feature, which compares a mention to one of its
preceding mentions, or a non-relational feature, which encodes certain linguistic property of
the mention whose anaphoricity is to be determined (e.g., NP type, number, definiteness).

4. Coreference as Cluster Ranking

In this section, we describe our cluster-ranking approach to NP coreference. As noted
before, our approach aims to combine the strengths of the entity-mention model and the
mention-ranking model.

4.1 Training and Applying a Cluster Ranker

For ease of exposition, we will describe in this subsection how to train and apply the cluster-
ranking model when it is used in a pipeline architecture, where anaphoricity determination
is performed prior to coreference resolution. In the next subsection, we will show how the
two tasks can be learned jointly.

Recall that the cluster-ranking model ranks a set of preceding clusters for an active
mention myg. Since the cluster-ranking model is a hybrid of the mention-ranking model
and the entity-mention model, the way it is trained and applied is also a hybrid of the
two. In particular, the instance representation employed by the cluster-ranking model is
identical to that used by the entity-mention model, where each training instance #(c;j, ms)
represents a preceding cluster ¢; and an anaphoric mention m; and consists of cluster-
level features formed from predicates. Unlike in the entity-mention model, however, in the
cluster-ranking model, (1) a training instance is created between each anaphoric mention my,
and each of its preceding clusters; and (2) since we are training a model for ranking clusters,
the assignment of rank values to training instances is similar to that of the mention-ranking
model. Specifically, the rank value of a training instance i(cj, my) created for my is the
rank of ¢; among the competing clusters, which is 2 if m;, belongs to ¢j, and 1 otherwise.

To train the cluster-ranking model, we use the SVM learner in ranking mode, resulting in
a constrained optimization problem that is essentially the same as OPTIMIZATION PROBLEM
3, except that each training example x;;;, represents an active mention m; and two of its
preceding clusters, ¢; and c¢;, rather than two of its preceding mentions.

Applying the learned cluster ranker to a test text is similar to applying the mention-
ranking model. Specifically, the mentions are processed in a left-to-right manner. For each
active mention my, we first apply an independently-trained classifier to determine if my, is
non-anaphoric. If so, my will not be resolved. Otherwise, we create test instances for my by

10. See http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html.
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Feature Type Feature Description
Lexical STR_MATCH Y if there exists a mention m; preceding m;, such that, after
discarding determiners, m; and my, are the same string; else
N.
HEAD_MATCH Y if there exists a mention m; preceding my, such that m; and
my, have the same head; else N.
UPPERCASE Y if my, is entirely in uppercase; else N.
Grammatical DEFINITE Y if my, starts with “the”; else N.
(NP type) DEMONSTRATIVE | Y if my starts with a demonstrative such as “this”, “that”,
“these”, or “those”; else N.
INDEFINITE Y if my, starts with “a” or “an”; else N.
QUANTIFIED Y if my, starts with quantifiers such as “every”, “some”, “all”,
“most”, “many”, “much”, “few”, or “none”; else N.

ARTICLE DEFINITE if my is a definite NP; QUANTIFIED if my is a quan-
tified NP; else INDEFINITE.

PRONOUN Y if my, is a pronoun; else N.

PROPER_NOUN Y if my, is a proper noun; else N.

BARE_SINGULAR | Y if my is singular and does not start with an article; else N.

BARE_PLURAL Y if my, is plural and does not start with an article; else N.
EMBEDDED Y if my, is a prenominal modifier; else N.

Grammatical APPOSITIVE Y if my, is the first of the two mentions in an appositive
(NP construction; else N.
property/ PREDNOM Y if my is the first of the two mentions in a predicate nominal
relationship construction; else N.

NUMBER SINGULAR if my is singular in number; PLURAL if my, is plural
in number; UNKNOWN if the number information cannot be
determined.

CONTAINS_PN Y if my is not a proper noun but contains a proper noun; else
N.
Grammatical THE_N Y if my, starts with “the” followed exactly by one common
(Syntactic noun; else N.
Pattern) THE_2N Y if my starts with “the” followed exactly by two common
nouns; else N.

THE_PN Y if my starts with “the” followed exactly by a proper noun;
else N.

THE_PN_N Y if my, starts with “the” followed exactly by a proper noun
and a common noun; else N.

THE_ADJ_N Y if my starts with “the” followed exactly by an adjective and
a common noun; else N.

THE_NUM_N Y if my starts with “the” followed exactly by a cardinal and a
common noun; else N.

THE_NE Y if my, starts with “the” followed exactly by a named entity;
else N.

THE_SING_N Y if my, starts with “the” followed by a singular NP not con-
taining any proper noun; else N.
Semantic ALIAS Y if there exists a mention m; preceding my, such that m; and

my, are aliases; else N.

Table 2: Feature set for anaphoricity determination. Each instance represents a single mention,

my, characterized by 26 features.
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pairing it with each of its preceding clusters. The test instances are then presented to the
ranker, and my, is linked to the cluster that is assigned the highest value by the ranker. Ties
are broken by preferring the cluster whose last mention is closest in distance to my. Note
that these partial clusters preceding my are formed incrementally based on the predictions
of the ranker for the first K — 1 mentions.

4.2 Joint Anaphoricity Determination and Coreference Resolution

The cluster ranker described above can be used to determine which preceding cluster an
anaphoric mention should be linked to, but it cannot be used to determine whether a men-
tion is anaphoric or not. The reason is simple: all the training instances are generated from
anaphoric mentions. Hence, to jointly learn anaphoricity determination and coreference
resolution, we must train the ranker using instances generated from both anaphoric and
non-anaphoric mentions.

Specifically, when training the ranker, we provide each active mention with the option to
start a new cluster by creating an additional instance that (1) contains features that solely
describe the active mention (i.e., the features shown in the second block of Table 1), and (2)
has the highest rank value among competing clusters (i.e., 2) if it is non-anaphoric and the
lowest rank value (i.e., 1) otherwise. The main advantage of jointly learning the two tasks
is that it allows the ranking model to evaluate all possible options for an active mention
(i.e., whether to resolve it, and if so, which preceding cluster is the best) simultaneously.
Essentially the same method can be applied to jointly learn the two tasks for the mention-
ranking model.

After training, the resulting cluster ranker processes the mentions in a test text in a
left-to-right manner. For each active mention my, we create test instances for it by pairing
it with each of its preceding clusters. To allow for the possibility that m; is non-anaphoric,
we create an additional test instance that contains features that solely describe the active
mention (similar to what we did in the training step above). All these test instances are then
presented to the ranker. If the additional test instance is assigned the highest rank value
by the ranker, then my, is classified as non-anaphoric and will not be resolved. Otherwise,
my, is linked to the cluster that has the highest rank, with ties broken by preferring the
antecedent that is closest to my. As before, all partial clusters preceding my are formed
incrementally based on the predictions of the ranker for the first £ — 1 mentions.

Finally, we note that our model for jointly learning anaphoricity determination and coref-
erence resolution is different from recent attempts to perform joint inference for anaphoricity
determination and coreference resolution using integer linear programming (ILP), where an
anaphoricity classifier and a coreference classifier are trained independently of each other,
and then ILP is applied as a postprocessing step to jointly infer anaphoricity and corefer-
ence decisions so that they are consistent with each other (e.g., Denis & Baldridge, 2007a).
Joint inference is different from our joint-learning approach, which allows the two tasks to
be learned jointly and not independently.

5. Lexicalization for Coreference Resolution

Next, we investigate the role of lexicalization (i.e., the use of word pairs as linguistic features)
in learning-based coreference resolution. The motivation behind our investigation is two-
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fold. First, lexical features are very easy to compute and yet they are under-investigated
in coreference resolution. In particular, only a few attempts have been made to employ
them to train the mention-pair model (e.g., Luo et al., 2004; Daumé IIT & Marcu, 2005;
Bengtson & Roth, 2008). In contrast, we want to determine whether they can improve
the performance of our cluster-ranking model. Second, the mention-pair model and the
mention-ranking model have only been compared with respect to a non-lexical feature set
(Denis & Baldridge, 2007b, 2008), so it is not clear how they will perform relative to each
other when they are trained on lexical features. We desire an answer to this question,
as it will allow us to gain additional insights into the strengths and weaknesses of these
learning-based coreference models.

Recall from the introduction that previous attempts on lexicalizing the mention-pair
model show that lexical features are at best marginally useful. Hence, one of our goals
here is to determine whether we can make better use of lexical features for a learning-based
coreference resolver. In particular, unlike the aforementioned attempts on lexicalization,
which simply append all word pairs to a “conventional” coreference feature set consisting of
string-matching, grammatical, semantic, and distance (i.e., proximity-based) features (e.g.,
the feature set shown in Table 1), we investigate a model that exploits lexical features
in combination with only a small subset of these conventional coreference features. This
would allow us to have a better understanding of the significance of these conventional
features. For example, features that encode agreement on gender, number, and semantic
class between two mentions are employed by virtually all learning-based coreference resolver,
but we never question whether there are better alternatives to these features. If we could
build a lexicalized coreference model without these commonly-used features and did not
observe any performance deterioration, it would imply that these conventional features were
replaceable, and that there was no prototypical way of building a learning-based coreference
system.

The question is: what is the small subset of conventional features that we should use in
combination with the lexical features? As mentioned above, since one of the advantages of
lexical features is that they are extremely easy to compute, we desire only those conventional
features that are also easy to compute, especially those that do mot require a dictionary to
compute. As we will see, we choose to use only two features, the ALIAS feature and the
DISTANCE feature (see features 31 and 32 in Table 1), and rely on an off-the-shelf named
entity (NE) recognizer to compute NE types.

Note, however, that the usefulness of lexical features could be limited in part by data
sparseness: many word pairs that appear in the training data may not appear in the test
data. While employing some of the conventional features described above (e.g., DISTANCE)
will help alleviate this problem, we seek to further improve generalizability by introducing
two types of features: semi-lexical and unseen features. We will henceforth refer to the
feature set that comprises these two types of features, the lexical features, the ALIAS feature,
and the DISTANCE feature as the Lexical feature set. In addition, we will refer to the feature
set shown in Table 1 as the Conventional feature set.

Below we first describe the Lexical feature set for training the mention-pair model and
the mention-ranking model (Section 5.1). After that, we show how to create cluster-level
features from this feature set for training the entity-mention model and the cluster-ranking
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model, as well as issues in training a joint model for anaphoricity determination and coref-
erence resolution (Section 5.2).

5.1 Lexical Feature Set

Unlike previous work on lexicalizing learning-based coreference models, our Lexical feature
set consists of four types of features: lexical features, semi-lexical features, unseen features,
as well as two “conventional” features (namely, ALIAS and DISTANCE).

To compute these features, we preprocess a training text by randomly replacing 10%
of its nominal mentions (i.e., common nouns) with the label UNSEEN. If a mention my is
replaced with UNSEEN, all mentions that have the same string as m; will also be replaced
with UNSEEN. A test text is preprocessed differently: we simply replace all mentions whose
strings are not seen in the training data with UNSEEN. Hence, artificially creating UNSEEN
labels from a training text will allow a learner to learn how to handle unseen words in a
test text, potentially improving generalizability.

After preprocessing, we can compute the features for an instance. Assuming that we are
training the mention-pair model or the mention-ranking model, each instance corresponds
to two mentions, m; and my, where m; precedes mj, in the text. The features can be
divided into four groups: unseen, lexical, semi-lexical, and conventional. Before describing
these features, two points deserve mention. First, if at least one of m; and m;, is UNSEEN,
no lexical, semi-lexical, or conventional features will be created for them, since features
involving an UNSEEN mention are likely to be misleading for a learner in the sense that they
may yield incorrect generalizations from the training set. Second, since we use an SVM for
training and testing, each instance can contain any number of features, and unless otherwise
stated, a feature has the value 1.

Unseen feature. If both m; and my are UNSEEN, we determine whether they are the
same string. If so, we create an UNSEEN-SAME feature; otherwise, we create an UNSEEN-
DIFF feature. If only one of them is UNSEEN, no feature will be created.

Lexical feature. We create a lexical feature between m; and my, which is an ordered
pair consisting of the heads of the mentions. For a pronoun or a common noun, the head
is assumed to be the last word of the mention'!; for a proper noun, the head is taken to be
the entire noun phrase.

Semi-lexical features. These features aim to improve generalizability. Specifically, if
exactly one of m; and my, is tagged as an NE by the Stanford NE recognizer (Finkel et al.,
2005), we create a semi-lexical feature that is identical to the lexical feature described above,
except that the NE is replaced with its NE label (i.e., PERSON, LOCATION, ORGANIZATION).
If both mentions are NEs, we check whether they are the same string. If so, we create the
feature *NE*-SAME, where *NE* is replaced with the corresponding NE label. Otherwise,
we check whether they have the same NE tag and a word-subset match (i.e., whether all

11. As we will see in the evaluation section, our mention extractor is trained to extract base NPs. Hence,
while our heuristic for extracting head nouns is arguably overly simplistic, it will not be applied to
recursive NPs (e.g., NPs that contain prepositional phrases), which are phrases on which it is likely to
make mistakes. However, if we desire a better extraction accuracy, we can extract the head nouns from
syntactic parsers that provide head information, such as Collins’s (1999) parser.
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word tokens in one mention appear in the other’s list of tokens). If so, we create the feature
*NE*-SUBSAME, where *NE* is replaced with their NE label. Otherwise, we create a feature
that is the concatenation of the NE labels of the two mentions.

Conventional features. To further improve generalizability, we incorporate two easy-to
compute features from the Conventional feature set: ALIAS and DISTANCE.

5.2 Feature Generation

Now that we have a Lexical feature set for training the mention-pair model and the mention-
ranking model, we can describe the two extensions to this feature set that are needed to
(1) train the entity-mention model and the cluster-ranking model, and (2) perform joint
learning for anaphoricity determination and coreference resolution.

The first extension concerns the generation of cluster-level features for the entity-mention
model and the cluster-level model. Recall from Section 3.2 that to create cluster-level fea-
tures given the Conventional feature set, we first convert each feature employed by the
mention-pair model into an equivalent set of binary-valued features, and then create a
cluster-level feature from each of the resulting binary-valued features. On the other hand,
given the Lezical feature set, this method of producing cluster-level features is only appli-
cable to the two “conventional” features (i.e., ALIAS and DISTANCE), as they also appear
in the Conventional feature set. For an unseen, lexical, or semi-lexical feature, we create a
feature between the active mention and each mention in the preceding cluster, as described
in Section 5.1'2, and the value of this feature is the number of times it appears in the in-
stance. Encoding feature values as frequency rather than binary values allows us to capture
cluster-level information in a shallow manner.

The second extension concerns the generation of features for representing the additional
instance that is created when training the joint version of the mention-ranking model and
the cluster-ranking model. Recall from Section 4.2 that when the Conventional feature set
was used, we represented this additional instance using features that were computed solely
from the active mention. On the other hand, given the Lezical feature set, we can no longer
use the same method for representing this additional instance, as there is no feature in
the Lezical feature set that is computed solely from the active mention. As a result, we
represent this additional instance using just one feature, NULL-X, where X is the head of the
active mention, to help the learner learn that X is likely to be non-anaphoric.

6. Evaluation

Our evaluation is driven by the following questions, focusing on (1) the comparison among
different learning-based coreference models, and (2) the effect of lexicalization on these
models. Specifically:

e How do the learning-based coreference models (namely, the mention-pair model, the
entity-mention model, the mention-ranking model, and our cluster-ranking model)
compare with each other?

12. Strictly speaking, the resulting feature is not a cluster-level feature, as it is computed between an active
mention and only one of the mentions in the preceding cluster.
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e Does joint modeling for anaphoricity determination and coreference resolution offer
any benefits over the pipeline architecture, where anaphoricity is performed prior to
coreference resolution?

e Do lexicalized coreference models perform better than their unlexicalized counter-
parts?

In the rest of this section, we will first describe the experimental setup (Section 6.1),
and then show the performance of the four models, including the effect of lexicalization and
joint modeling whenever applicable, on three different feature sets (Section 6.2).

6.1 Experimental Setup

We begin by providing the details on the data sets, our automatic mention extraction
method, and the scoring programs.

6.1.1 CORPUS

We use the ACE 2005 coreference corpus as released by the LDC, which consists of the 599
training documents used in the official ACE evaluation.'® To ensure diversity, the corpus was
created by selecting documents from six different sources: Broadcast News (BN), Broadcast
Conversations (BC), Newswire (NW), Webblog (WB), Usenet (UN), and Conversational
Telephone Speech (CTS). The number of documents belonging to each source is shown in
Table 3.

Data set BN | BC | NW | WL | UN | CTS
# of documents 226 | 60 | 106 | 119 | 49 39

Table 3: Statistics for the ACE 2005 corpus

6.1.2 MENTION EXTRACTION

We evaluate each coreference model using system mentions. To extract system mentions
from a test text, we trained a mention extractor on the training texts. Following Florian
et al. (2004), we recast mention extraction as a sequence labeling task, where we assign
to each token in a test text a label that indicates whether it begins a mention, is inside
a mention, or is outside a mention. Hence, to learn the extractor, we create one training
instance for each token in a training text and derive its class value (one of b, i, and o)
from the annotated data. Each instance represents w;, the token under consideration, and
consists of 29 linguistic features, many of which are modeled after the systems of Bikel,
Schwartz, and Weischedel (1999) and Florian et al. (2004), as described below.

Lexical (7): Tokens in a window of 7: {w;_3,...,w;+3}.

Capitalization (4): Determine whether w; IsAl1Cap, IsInitCap, IsCapPeriod, and
IsAllLower.

13. Since we did not participate in ACE 2005, we do not have access to the official test set.
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Morphological (8): wj;’s prefixes and suffixes of length one, two, three, and four.

Grammatical (1): The part-of-speech (POS) tag of w; obtained using the Stanford log-
linear POS tagger (Toutanova, Klein, Manning, & Singer, 2003).

Semantic (1): The named entity (NE) tag of w; obtained using the Stanford CRF-based
NE recognizer (Finkel et al., 2005).

Dictionaries (8): We employ eight dictionary-based features that indicate the presence
or absence of w; in a particular dictionary. The eight dictionaries contain pronouns (77
entries), common words and words that are not names (399.6k), person names (83.6k),
person titles and honorifics (761), vehicle words (226), location names (1.8k), company
names (77.6k), and nouns extracted from WordNet that are hyponyms of PERSON (6.3k).

We employ CRF++'4, a C++ implementation of conditional random fields, for training
the mention detector on the training set. Overall, the detector achieves an F-measure of
86.7 (86.1 recall, 87.2 precision) on the test set. These extracted mentions are to be used
as system mentions in our coreference experiments.

6.1.3 SCORING PROGRAMS

To score the output of a coreference model, we employ two scoring programs, B® (Bagga
& Baldwin, 1998) and ¢3-CEAF' (Luo, 2005), which address the inherent weaknesses of
the MUC scoring program (Vilain, Burger, Aberdeen, Connolly, & Hirschman, 1995).16
Both B? and CEAF score a response (i.e., system-generated) partition, R, against a key
(i.e., gold-standard) partition, K, and report coreference performance in terms of recall,
precision, and F-measure. B? first computes recall and precision for each mention, my, as
follows:

R, NK, R NK
recall(my) = M, precision(my,) = M7

where R,,, is the coreference cluster containing my, in R, and K,,, is the coreference cluster
containing my in K. Then it computes overall recall (resp. precision) by averaging the
per-mention recall (resp. precision) scores.

On the the hand, CEAF first constructs the optimal one-to-one mapping between the
clusters in the key partition and those in the response partition. Specifically, assume that
K ={K;,Ks,...,K,} is the set of clusters in the key partition, and R = {Ry, Ra,..., Ry}
is the set of clusters in the response partition. To compute recall, CEAF first computes the
score of each cluster, K;, in K as follows:

score(K;) = |K; N Ry,

14. Available from http://crfpp.sourceforge.net

15. CEAF has two versions: ¢3-CEAF and ¢4-CEAF. The two versions differ in how the similarity of two
aligned clusters is computed. We refer the reader to Luo’s (2005) paper for details. ¢3-CEAF is chosen
here because it is the more commonly-used version of CEAF.

16. Briefly, the MUC scoring program suffers from two often-cited weaknesses. First, as a link-based measure,
it does not reward successful identification of singleton clusters, since the mentions in these clusters are
not linked to any other mentions. Second, it tends to under-penalize partitions with overly large clusters.
See the work of Bagga and Baldwin (1998), Luo (2005), and Recasens and Hovy (2011) for details.
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where R; is the cluster to which Kj; is mapped in the optimal one-to-one mapping, which
can be constructed efficiently using the Kuhn-Munkres algorithm (Kuhn, 1955). Note that
if K; is not mapped to any cluster in R, then score(K;) = 0. CEAF then computes recall
by summing the score of each cluster in K and dividing the sum by the number of mentions
in K. Precision can be computed in the same manner, except that we reverse the roles of
K and R.

A complication arises when B? is used to score a response partition containing system
mentions. Recall that B® constructs a mapping between the mentions in the response and
those in the key. Hence, if the response is generated using gold-standard mentions, then
every mention in the response is mapped to some mention in the key and vice versa. In
other words, there are no twinless (i.e., unmapped) mentions (Stoyanov et al., 2009). This
is not the case when system mentions are used, but the original description of B3 does
not specify how twinless mentions should be scored (Bagga & Baldwin, 1998). To address
this problem, we set the per-mention recall and precision of a twinless mention to zero,
regardless of whether the mention appears in the key or the response. Note that CEAF can
compare partitions with twinless mentions without any modification, since it operates by
aligning clusters, not mentions.

Additionally, we apply a preprocessing step to a response partition before scoring it:
we remove all and only those twinless system mentions that are singletons. The reason is
simple: since the coreference resolver has successfully identified these mentions as singletons,
it should not be penalized, and removing them allows us to avoid such penalty. Note that
we only remove twinless (as opposed to all) system mentions that are singletons: this allows
us to reward a resolver for successful identification of singleton mentions that have twins.
On the other hand, we retain (1) twinless system mentions that are non-singletons (as the
resolver should be penalized for identifying spurious coreference relations) and (2) twinless
mentions in the key partition (as we want to ensure that the resolver makes the correct
coreference or non-coreference decisions for them).!”

6.2 Results

Before showing the results of the learning-based coreference models, let us consider the “head
match” baseline, which is a commonly-used heuristic baseline for coreference resolution. It
posits two mentions as coreferent if and only if their head nouns match. Head nouns are
determined as described in Section 5.1: the head of a proper noun is the string of the entire
mention, whereas the head of a pronoun or a common noun is the last word of the mention.
Since one of our goals is to examine the effect of lexicalization on a coreference model, the
head match baseline can provide information on how well we can do with one of the simplest
kinds of string matching. Results of this baseline, shown in row 1 of Table 4, are expressed
in terms of recall (R), precision (P), and F-measure (F) obtained via B> and CEAF. As we
can see from Table 4, this baseline achieves F-measure scores of 54.9 and 49.6 according to
B? and CEAF, respectively.

17. In addition to the method described here, a number of methods have been proposed to address the
mapping problem. We refer the reader to the work of Enrique, Gonzalo, Artiles, and Verdejo (2009),
Stoyanov et al. (2009), and Cai and Strube (2010) for details.
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Next, we train and evaluate the learning-based coreference models using five-fold cross
validation. For each data set s; shown in Table 3, we partition the documents in s; into
five folds of approximately equal size, s;1,...,s;5. We then train each coreference model
on four folds and use it to generate coreference chains for the documents in the remaining
fold, repeating this step five times so that each fold is used as the test fold exactly once.
After that, we apply B2 and CEAF to the entire set of automatically coreference-annotated
documents to obtain the scores in Table 4. Below we discuss the results of the learning-
based coreference models obtained when used in combination with three feature sets: the
Conventional feature set (Section 6.2.1), the Lexical feature set (Section 6.2.2), and the
Combined feature set, which is composed of all the features from Conventional and Lexical
(Section 6.2.3).

6.2.1 RESULTS USING THE CONVENTIONAL FEATURES

To gauge the performance of our cluster-ranking model, we employ as baselines the mention-
pair model, the entity-mention model, and the mention-ranking model.

The mention-pair baseline. We train our first learning-based baseline, the mention-
pair model, using the SVM learning algorithm as implemented in the SVM!9" package.®
As we can see from row 2 of Table 4, the mention-pair model achieves F-measure scores of
58.6 (B3) and 54.4 (CEAF), which represent a statistically significant improvement of 3.7%
and 4.8% in F-measure over the corresponding results for the head match baseline.'”

The entity-mention baseline. Next, we train our second learning-based baseline, the
entity-mention model, using the SVM learner. As we can see from row 3 of Table 4, this
baseline achieves F-measure scores of 58.9 (B?) and 54.8 (CEAF), which represent small but
statistically significant improvements over the mention-pair model. The significant perfor-
mance difference is perhaps not particularly surprising given the improved expressiveness
of the entity-mention model over the mention-pair model.

The mention-ranking baseline. Our third baseline is the mention-ranking model, which
is trained using the ranker-learning algorithm in SVM“9". To identify non-anaphoric men-
tions, we employ two methods. In the first method, we follow Denis and Baldridge (2008)
and adopt a pipeline architecture, where we train a MaxEnt classifier for anaphoricity de-
termination independently of the mention ranker on the training set using the 26 features
described in Section 3.3. We then apply the resulting classifier to each test text to filter non-
anaphoric mentions prior to coreference resolution. Results of this pipeline mention ranker
are shown in row 4 of Table 4. As we can see, the ranker achieves F-measure scores of 57.7
(B) and 53.0 (CEAF), yielding a significant performance deterioration in comparison to
the entity-mention baseline.

In the second method, we perform anaphoricity determination jointly with coreference
resolution using the method described in Section 4.2. While we discussed this joint learning
method in the context of cluster ranking, it should be easy to see that the method is
equally applicable to the mention-ranking model. Results of the mention ranker using this

18. For this and subsequent uses of the SVM learner, we set all parameters to their default values. In
particular, we employ a linear kernel to obtain all the results in this article.
19. All statistical significance results in this article are obtained using the paired ¢-test, with p < 0.05.
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B’ CEAF
Coreference Model R P F R P F
1 | Head match 44.1 729 549 || 41.9 60.8 49.6
Using the Conventional feature set
2 | Mention-pair model 49.7 714 58.6 || 49.5 60.5 54.4
3 | Entity-mention model 499 71.7 589 || 51.0 59.2 54.8
4 | Mention-ranking model (Pipeline) | 48.1 72.1 57.7 || 51.7 54.4 53.0
5 | Mention-ranking model (Joint) 49.1 76.1 59.7 || 52.9 59.2 55.9
6 | Cluster-ranking model (Pipeline) 499 71.6 588 || 53.4 54.6 54.0
7 | Cluster-ranking model (Joint) 51.1 73.3 60.2 || 54.1 60.2 57.0
Using the Lexical feature set
8 | Mention-pair model 53.0 75.3 62.2 || 55.6 62.0 58.6
9 | Entity-mention model 53.1 75.8 62.5 || 55.7 62.2 58.8
10 | Mention-ranking model (Pipeline) 55.7 675 61.0 || 56.3 62.0 59.0
11 | Mention-ranking model (Joint) 56.6 73.1 63.8 | 58.5 65.0 61.6
12 | Cluster-ranking model (Pipeline) 51.0 67.1 58.0 || 53.1 55.3 H4.1
13 | Cluster-ranking model (Joint) 51.3 75.7 61.1 || 53.3 58.6 H5.8
Using the Combined feature set
14 | Mention-pair model 50.4 73.1 59.6 || 53.8 61.9 57.5
15 | Entity-mention model 50.5 73.4 59.8 || 54.1 62.3 57.9
16 | Mention-ranking model (Pipeline) 50.6 74.6 60.3 || 54.1 61.8 5HT.7
17 | Mention-ranking model (Joint) 499 79.3 613 || 54.7 61.4 579
18 | Cluster-ranking model (Pipeline) 52.9 709 60.6 || 57.5 62.1 59.7
19 | Cluster-ranking model (Joint) 54.3 75.1 63.0 || 57.6 64.3 60.8

Table 4: Five-fold cross-validation coreference results obtained using B* and CEAF. The
best F-measure achieved for each feature set/scoring program combination is boldfaced.

joint architecture are shown in row 5 of Table 4. As we can see, the ranker achieves F-
measure scores of 59.7 (B?) and 55.9 (CEAF), which represent significant improvements
over the entity-mention model and its pipeline counterpart. Not only do these results
demonstrate the superiority of the joint mention-ranking model to the entity-mention model,
they substantiate the hypothesis that joint modeling offers benefits over pipeline modeling.

Our cluster-ranking model. Finally, we evaluate our cluster-ranking model. As in the
mention-ranking baselines, we employ both the pipeline architecture and the joint archi-
tecture for anaphoricity determination. Results are shown in rows 6 and 7 of Table 4,
respectively, for the two architectures. As we can see, the pipeline architecture yields F-
measure scores of 58.8 (B?) and 54.0 (CEAF), which represent a significant improvement
over the mention ranker adopting the pipeline architecture. With the joint architecture,
the cluster ranker achieves F-measure scores of 60.2 (B3) and 57.0 (CEAF). This also rep-
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resents a significant improvement over the mention ranker adopting the joint architecture,
the best of the baselines. Taken together, these results demonstrate the superiority of the
cluster ranker to the mention ranker. Finally, the fact that the joint cluster ranker performs
significantly better than its pipeline counterpart provides further empirical support for the
benefits of joint modeling over pipeline modeling.

6.2.2 REsSuULTS USING THE LEXICAL FEATURES

Next, we evaluate the learning-based coreference models using the Lexical features. Results
are shown in rows 8-13 of Table 4. In comparison to the results obtained using the Con-
ventional features, we see a different trend: the joint mention-ranking model replaces the
cluster-ranking model as the best-performing model. Moreover, its improvement over the
second best-performing model, which is the entity-mention model according to B® and the
pipeline mention-ranking model according to CEAF, is statistically significant regardless of
which scoring program is used. A closer examination of the results reveals that employing
Lezical rather than Conventional features substantially improves the performance of the
mention-ranking model: in comparison to the unlexicalized joint mention-ranking model
(row 5), the F-measure scores of the lexicalized joint mention-ranking model (row 11) rise
by 4.1% (B?) and 5.7% (CEAF). This increase in F-measure can be attributed primarily
to a substantial rise in recall, even though there is also a large increase in CEAF precision.
Besides the joint mention-ranking model, the mention-pair model and the entity-mention
model also benefit substantially when the Conventional features are replaced with the Lex-
ical features: we see that the F-measure scores increase by 3.6% (B3) and 4.2% (CEAF) for
the mention-pair model, and by 3.6% (B?) and 4.0% (CEAF) for the entity-mention model.
The gains in F-measure for these two models can be attributed to large increases in both
recall and precision. On the other hand, the joint cluster-ranking model does not always
improve when we replace the Conventional features with the Lexical features. In fact, the
performance difference between the cluster-ranking model and the entity-mention model is
statistically indistinguishable. Finally, we see the benefits of jointly learning anaphoricity
determination and coreference resolution again: when the joint version of the mention-
ranking model is used rather than the pipeline version (compare rows 10 and 11), the
F-measure scores rise significantly by 2.8% (B?) and 2.6% (CEAF). Similarly for the cluster-
ranking model: the joint version improves the pipeline version significantly by 3.1% (B?)
and 1.7% (CEAF) in F-measure.

Overall, these results are somewhat unexpected: recall that the Lexical features are
very knowledge-lean, consisting of lexical, semi-lexical, and unseen features, as well as only
two Conventional features. In particular, it does not employ any conventional coreference
features that encode agreement on gender and number. This implies that many existing
implementations of the mention-pair model, the entity-mention model, and the mention-
ranking model, which are unlexicalized and rely heavily on the conventional features, are not
making effective use of the labeled data. Perhaps more importantly, our results indicate that
these coreference models can perform well (and in fact better) even without the conventional
coreference features. Since all of the Lezical can be computed extremely easily, they can
readily be applied to other languages, which is another advantage of this feature set. On the
other hand, it is interesting to see that both versions of the cluster-ranking model exhibit

495



RAaHMAN & Na

less dramatic changes in performance as we replace the Conventional features with the
Lexical features.

6.2.3 REsSuULTS USING THE COMBINED FEATURES

Since the Conventional features and the Lezical features represent two fairly different sources
of knowledge, we examine whether we can improve the coreference models by combining
these two feature sets. Results of the coreference models using the Combined features are
shown in rows 14-19 of Table 4. These results exhibit essentially the same trend as those that
we obtained with the Conventional features, with the joint cluster-ranking model performing
the best and the mention-pair model performing the worst. In fact, the joint cluster-ranking
model yields significantly better performance when used with the Combined features than
with the Conventional features or the Lewical features alone. Similarly for the pipeline
cluster-ranking model, which achieves significantly better performance with the Combined
features than with the Conventional or Lexical features. These results seem to suggest that
the cluster-ranking model is able to exploit the potentially different sources of information
provided by the two feature sets to improve its performance. In addition, they demonstrate
the benefits of joint modeling: for the mention-ranking model, the joint version improves
the pipeline version significantly by 1.0% (B?) and 0.2% (CEAF) in F-measure; and for the
cluster-ranking model, the joint version improves its pipeline counterpart significantly by
2.4% (B?) and 1.1% (CEAF) in F-measure.

The remaining coreference models all exhibit a drop in performance when the Combined
features are used in lieu of the Lexical features. These results seem to suggest that the
cluster-ranking model offers more robust performance in the face of changes in the underly-
ing feature set than the other coreference models, and that feature selection, an issue that is
under-explored in coreference resolution, may be crucial when we employ the other corefer-
ence models.?? Perhaps more importantly, despite the fact that the Conventional features
and the Lezical features represent two fairly different sources of information, all but the
cluster-ranking model are unable to exploit the potentially richer amount of information
contained in the Combined feature set. Hence, while virtually all the linguistic features
that are recently developed for supervised coreference resolution have been evaluated using
the mention-pair model (see, for example, the work of Strube, Rapp, & Miiller, 2002; Ji,
Westbrook, & Grishman, 2005; Ponzetto & Strube, 2006), the utility of these features may
be better demonstrated using the cluster-ranking model.

A natural question is: how does our joint cluster-ranking model compare to the existing
coreference systems? Since we did not participate in the ACE evaluations, we do not have
access to the official test sets with which we can compare our model against the ACE
participating coreference systems. The comparison is further complicated by the fact that
existing coreference systems have been evaluated on different data sets, including the two
MUC data sets (MUC-6, 1995; MUC-7, 1998) and the various ACE data sets (e.g., ACE-2,
ACE 2003, ACE 2004, ACE 2005), as well as on different partitions of a given data set.
To our knowledge, the only coreference model that has been evaluated on the same test
data as ours is Haghighi and Klein’s (2010) unsupervised coreference model. Their model

20. In fact, Ng and Cardie (2002b), Strube and Miiller (2003), and Ponzetto and Strube (2006) show that
the mention-pair model can be improved using feature selection.
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has recently been shown to surpass the performance of Stoyanov et al.’s (2009) system,
which is one of the best existing implementations of the mention-pair model. On our test
data, Haghighi and Klein’s model achieves a B3 F-measure of 62.7, while ours achieves a
B? F-measure of 62.8.2! These results provide suggestive evidence that our cluster-ranking
model achieves performance that is comparable with one of the best existing coreference
models.

Nevertheless, we caution that these results do not allow one to claim anything more
than the fact that our model compares favorably to Haghighi and Klein’s (2010) model. For
instance, one cannot claim that their model is better because it achieves the same level of
performance as ours without using any labeled data. The reasons are that (1) the mentions
used by the two models in the coreference process are extracted differently and (2) the
linguistic features employed by the two models and the way these features are computed
are also different from each other. Since previous work has shown that these linguistic
preprocessing steps can have a considerable impact on the performance of a resolver (Barbu
& Mitkov, 2001; Stoyanov et al., 2009), it is possible that if one model employed the features
or the mentions that the other model is currently using, then the results would be different.
Hence, if one is to fairly compare two coreference models, they should be evaluated on the
same set of mentions (rather than just the same set of documents) and are given access to
the same set of knowledge sources, in essentially the same way as we compare the various
learning-based coreference models in this article.

7. Experimental Analyses

In an attempt to gain insights into the different aspects of our coreference models, we
conduct additional experiments and analyses. Rather than report five-fold cross-validation
results, in this section we report results on one fold (i.e., the fold we designate as the test
set) and use the remaining four folds solely for training.

7.1 Improving Classification-Based Coreference Models

Given the generally poorer performance of classification-based coreference models, a nat-
ural question is: can they be improved? To answer this question, we investigate whether
these models can be improved by employing a different clustering algorithm and a different
learning algorithm. There are reasons for our decision to focus on these two dimensions.
First, as noted in the introduction, one of the weaknesses of these models is that it is
not clear which clustering algorithm offers the best performance. Given this observation,
we will examine whether we can improve these models by replacing Soon et al.’s (2001)
“closest-first” linking regime with the “best-first” linking strategy, which has been shown
to offer better performance for the mention-pair model on the MUC data sets (Ng & Cardie,
2002b). Second, as discussed at the end of Section 2, we may be able to achieve some of the
advantage of ranking in classification-based models by employing a learning algorithm that
optimizes for conditional probabilities instead of 0/1 decisions. Motivated by this observa-
tion, we will examine whether we can improve classification-based models by training them
using MaxEnt, which employs a likelihood-based loss function. Note that MaxEnt is one

21. Note that Haghighi and Klein did not report any CEAF scores in their paper.
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of the most popular learning algorithms for training coreference models (see, for example,
Morton, 2000; Kehler, Appelt, Taylor, & Simma, 2004; Ponzetto & Strube, 2006; Denis &
Baldridge, 2008; Finkel & Manning, 2008; Ng, 2009).

To evaluate these two modifications, we apply them in isolation and in combination to
the two classification-based models (i.e., the mention-pair model and the entity-mention
model) when they are trained using three different feature sets (i.e., Conventional, Lex-
ical, and Combined). We train the MaxEnt-based coreference models using YASMET??,
and follow Ng and Cardie’s (2002b) implementation of the best-first clustering algorithm.
Specifically, among the candidate antecedents or preceding clusters that are classified as
coreferent with active mention my, best-first clustering links my to the “most likely” one.
For a MaxEnt model, a pair is classified as coreferent if and only if its classification value
is above 0.5, and the most likely antecedent/preceding cluster for my is the one that has
the highest probability of coreference with my. For an SVM!“"_trained model, a pair is
classified as coreferent if and only if its classification value is above 0, and the most likely
antecedent /preceding cluster for my is the one that has the most positive classification
value.

Table 5 presents B2 and CEAF results of the two classification-based coreference models
when they are trained using two learning algorithms (i.e., SVM and MaxEnt) and used
in combination with two clustering algorithms (i.e., closest-first clustering and best-first
clustering). To study how the choice of the clustering algorithm impacts performance, we
should compare the results of closest-first clustering and best-first clustering in Table 5
for each combination of learning algorithm, feature set, coreference model, and scoring
program. For instance, comparing rows 1 and 2 of Table 5 enables us to examine which of
the two clustering algorithms is better for the mention-pair model when it is trained with
the Conventional feature set and each of the two learners. Overall, we see a fairly consistent
trend: best-first clustering yields results that are slightly worse than those obtained using
closest-first clustering, regardless of the choice of the clustering algorithm, the learning
algorithm, the feature set, and the scoring program. At first glance, these results seem
contradictory to those by Ng and Cardie (2002b), who demonstrate the superiority of best-
first clustering to closest-first clustering for coreference resolution. We speculate that the
contradictory results can be attributed to two reasons. First, in our best-first clustering
experiments, we still employed Soon et al.’s (2001) training instance selection method,
where we created a positive training instance between an anaphoric mention and its closest
antecedent /preceding cluster, unlike Ng and Cardie, who claim that “for the proposed best-
first clustering to be successful, however, a different method for training instance selection
would be needed.” In particular, they propose to use the “most confident” antecedent,
rather than the closest antecedent, to generate positive instances from an anaphoric mention.
Second, Ng and Cardie demonstrate the success of best-first clustering on the MUC data
sets, and it is possible that this success may not carry over to the ACE data sets. Additional
experiments are needed to determine the reason, however.

22. See http://www.fjoch.com/YASMET .html. The reason why YASMET is chosen is that it provides the
capability to rank, which allows us to compare the results of MaxEnt-trained classification models and
ranking models. See the work of Ravichandran, Hovy, and Och (2003) for a discussion of the differences
between the training of these two types of MaxEnt models.
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Table 5: SVM vs. MaxEnt results for classification-based coreference models. These one-fold
B3 and CEAF scores are obtained by training coreference models using SVM and MaxEnt. The

A CLUSTER-RANKING APPROACH TO COREFERENCE RESOLUTION

SVM MaxEnt
Coreference Model R P F R P F
B? results using the Conventional feature set
Mention-pair model (Closest first) | 46.2 72.0 56.2 || 59.6 55.3 57.3
Mention-pair model (Best first) 457 71.0 55.6 || 59.2 54.8 56.9
Entity-mention model (Closest first) | 46.8 72.5 56.8 || 59.7 55.9 57.7
Entity-mention model (Best first) 46.3 72.1 56.3 || 59.3 55.1 57.1
B? results using the Lezical feature set
Mention-pair model (Closest first) | 52.8 73.0 61.2 || 52.8 64.6 58.1
Mention-pair model (Best first) 52.1 72.1 60.5 || 52.1 64.2 575
Entity-mention model (Closest first) | 52.8 73.6 61.2 || 52.8 64.6 58.2
Entity-mention model (Best first) 524 722 608 || 52.2 64.3 57.6
B? results using the Combined feature set
Mention-pair model (Closest first) | 49.1 73.2 58.8 || 50.3 65.9 57.0
Mention-pair model (Best first) 48.7 728 583 | 49.3 652 56.1
Entity-mention model (Closest first) | 49.5 73.2 59.1 || 50.5 66.1 57.3
Entity-mention model (Best first) 49.1 72.7 58.6 || 50.1 65.6 56.8
(a) B® results
CEAF results using the Conventional feature set
Mention-pair model (Closest first) | 48.5 55.3 51.6 || 51.4 56.5 53.8
Mention-pair model (Best first) 48.1 549 51.2 || 51.1 56.1 53.4
Entity-mention model (Closest first) | 49.5 55.8 52.5 || 51.4 56.7 53.9
Entity-mention model (Best first) 49.2 55.1 519 || 51.1 56.2 53.5
CEAF results using the Lexical feature set
Mention-pair model (Closest first) | 54.6 61.2 57.7 || 53.5 56.8 55.1
Mention-pair model (Best first) 54.2  60.7 57.3 || 53.1 56.2 54.6
Entity-mention model (Closest first) | 54.9 61.7 58.1 || 53.5 57.4 55.3
Entity-mention model (Best first) 54.5 61.1 57.6 || 53.1 56.9 549
CEAF results using the Combined feature set
Mention-pair model (Closest first) | 53.8 60.0 56.7 || 54.9 56.3 55.5
Mention-pair model (Best first) 53.1 59.7 56.2 || 54.3 55.8 55.0
Entity-mention model (Closest first) | 54.1 60.9 57.3 || 55.1 56.8 55.9
Entity-mention model (Best first) 53.7 60.3 56.8 || 54.5 56.2 55.3
(b) CEAF? results

best F-measure achieved for each feature set/scoring program combination is boldfaced.
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Next, to examine whether minimizing likelihood-based loss via MaxEnt training instead
of SVM’s classification loss would enable us to achieve some of the advantage of ranking
(and hence leads to better performance), we compare the two columns of Table 5. As we can
see, when the Conventional feature set is used, MaxEnt outperforms SVM, regardless of the
choice of the clustering algorithm, the scoring program, and the coreference model. On the
other hand, when the Lexical features or the Combined features are used, SVM outperforms
MaxEnt consistently. Overall, these mixed results seem to suggest that whether MaxEnt
offers better performance than SVM is to some extent dependent on the underlying feature
set.

7.2 Performance of Maximum-Entropy-Based Ranking Models

Some prior work suggests that MaxEnt-based ranking may provide better gains than SVM-
based ranking, since it can generate reliable confidence values and can dynamically adjust
relative ranks according to baseline results (e.g., Ji, Rudin, & Grishman, 2006). To deter-
mine whether this is the case for coreference resolution, we conduct experiments in which
we train the ranking-based coreference models using the ranker-learning algorithm in YAS-
MET.

B? and CEAF results for the mention-ranking model and the cluster-ranking model when
they are trained using MaxEnt in combination three different feature sets (i.e., Conventional,
Lezical, and Combined) are shown in the “MaxEnt” column of Table 6. For comparison,
we also show the corresponding results obtained via SVM-based ranking in the same table
(see the “SVM” column). Comparing these two columns, we see mixed results: of the 24
experiments that involve ranking models, MaxEnt-based ranking outperforms SVM-based
ranking in six of them. In other words, our results suggest that for the coreference task,
SVM-based ranking is generally better than MaxEnt-based ranking.

7.3 Accuracy of Anaphoricity Determination

In Section 6.2, we saw that a joint ranking model always performs significantly better than
its pipeline counterpart. In other words, joint modeling for coreference and anaphoricity
improves coreference resolution. A natural question is: does joint modeling also improve
anaphoricity determination?

To answer this question, we measure the accuracy of the anaphoricity information result-
ing from pipeline modeling and joint modeling. Recall that for pipeline modeling, we rely
on the output of an anaphoricity classifier that is trained independently of the coreference
system that uses the anaphoricity information (see Section 3.3). The accuracy of this clas-
sifier on the test set is shown under the “Acc” column in row 1 of Table 7. In addition, we
show in the table its recall (R), precision (P), and F-measure (F) on identifying anaphoric
mentions. As we can see, the classifier achieves an accuracy of 81.1 and a F-measure score
of 83.8.

On the other hand, for joint modeling, we can compute the accuracy of anaphoricity
determination from the output of a joint coreference model. Specifically, given the output
of a joint model, we can determine which mentions are resolved to a preceding antecedent
and which are not. Assuming that a mention that is resolved is anaphoric and one that is
not resolved is non-anaphoric, we can compute the accuracy of anaphoricity determination
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SVM MaxEnt
Coreference Model R P F R P F

B? results using the Conventional feature set

1 | Mention-ranking model (Pipeline) | 46.7 71.5 56.5 || 58.7 59.1 58.8
2 | Mention-ranking model (Joint) 476 748 582 || 59.1 59.3 59.2
3 | Cluster-ranking model (Pipeline) 53.6 59.5 56.4 || 51.7 69.9 59.3
4 | Cluster-ranking model (Joint) 52.2 73.8 61.2 || 52.1 70.6 60.0
B? results using the Lezical feature set
5 | Mention-ranking model (Pipeline) 53.8 68.3 60.1 || 56.6 61.1 58.8
6 | Mention-ranking model (Joint) 54.6 72.8 62.4 || 56.3 64.4 60.1
7 | Cluster-ranking model (Pipeline) 51.7 68.2 58.8 || 484 66.6 56.1
8 | Cluster-ranking model (Joint) 52.9 734 615 || 48.0 729 578
B? results using the Combined feature set
9 | Mention-ranking model (Pipeline) | 49.8 72.6 59.1 || 51.4 68.3 58.7
10 | Mention-ranking model (Joint) 50.5 77.6 61.2 || 52.5 70.3 60.1
11 | Cluster-ranking model (Pipeline) 53.8 T71.2 61.3 || 541 67.5 60.1
12 | Cluster-ranking model (Joint) 544 748 62.8 || 545 68.3 60.6

(a) B® results

CEAF results using the Conventional feature set
13 | Mention-ranking model (Pipeline) | 49.4 55.7 524 | 51.5 56.6 53.9

14 | Mention-ranking model (Joint) 50.5 56.3 53.2 || 51.8 56.9 54.2
15 | Cluster-ranking model (Pipeline) 53.6 59.5 56.4 || 53.1 587 55.8
16 | Cluster-ranking model (Joint) 55.2 61.6 58.2 || 53.2 59.3 56.1

CEAF results using the Lexical feature set
17 | Mention-ranking model (Pipeline) 54.7 59.8 57.1 || 55.7 56.6 56.1

18 | Mention-ranking model (Joint) 56.9 63.3 59.9 || 554 60.7 57.9
19 | Cluster-ranking model (Pipeline) 52.7 584 554 || 50.9 52.3 51.5
20 | Cluster-ranking model (Joint) 55.0 61.4 58.1 || 50.5 56.6 53.3

CEAF results the Combined feature set
21 | Mention-ranking model (Pipeline) 53.7 58.8 56.1 || 563.4 58.7 559

22 | Mention-ranking model (Joint) 54.9 61.7 58.1 || 54.9 56.3 55.5
23 | Cluster-ranking model (Pipeline) 55.1 60.1 574 || 56.1 60.0 57.9
24 | Cluster-ranking model (Joint) 58.4 651 61.6 || 56.7 62.5 59.5

(b) CEAF results

Table 6: SVM vs. MaxEnt results for ranking-basd coreference models. These one-fold B3
and CEAF scores are obtained by training coreference models using SVM and MaxEnt. The best
F-measure achieved for each feature set/scoring program combination is boldfaced.
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Source of Anaphoricity Information | Acc R P F
1 | Anaphoricity Classifier 81.1 || 87.6 | 80.3 | 83.8
2 | Mention-ranking (Conventional) 78.7 || 83.1 | 79.3 | 81.2
3 | Cluster-ranking (Conventional) 81.9 || 87.8 | 80.4 | 83.9
4 | Mention-ranking (Lezical) 84.2 || 88.3 | 82.1 | 85.1
5 | Cluster-ranking (Lewical) 83.1 || 87.9 | 81.8 | 84.7
6 | Mention-ranking (Combined) 79.1 || 84.3 | 79.1 | 81.6
7 | Cluster-ranking (Combined) 83.1 || 874 | 82.1 | 84.6

Table 7: Anaphoricity determination results.

as well as the precision, recall, and F-measure on identifying anaphoric mentions. Since all
these performance numbers are derived from the output of a joint model, we can compute
them for each of the two joint ranking models (i.e., the mention-ranking model and the
cluster-ranking model) when used in combination with each of the three coreference feature
sets (i.e., Conventional, Lezical, and Combined). This results in six sets of performance
numbers, which are shown in rows 2—7 of Table 4. As we can see, the accuracies range from
78.7 to 84.2, and the F-measure scores range from 81.2 to 85.1.

In comparison to the results of the anaphoricity classifier shown in row 1, we can see
that joint modeling improves the performance of anaphoricity determination except for two
cases, namely, mention-ranking/Conventional and mention-ranking/Combined. In other
words, in these two cases, joint modeling benefits coreference resolution but not anaphoric-
ity determination. While it seems counter-intuitive that one can achieve better coreference
performance with a lower accuracy on determining anaphoricity, it should not be difficult
to see the reason: the joint model is trained to maximize the pairwise ranking accuracy,
which presumably correlates with coreference performance, whereas the anaphoricity clas-
sifier is trained to maximize the accuracy of determining the anaphoricity of a mention,
which may not always have any correlation with coreference performance. In other words,
improvements in anaphoricity accuracy generally but not necessarily imply corresponding
improvements in clustering-level coreference accuracy.

Finally, it is important to bear in mind that the conclusions we have drawn regarding
pipeline and joint modeling are based on the results of an anaphoricity classifier trained
on 26 features. It is possible that different conclusions could be drawn if we trained the
anaphoricity classifier on a different set of features. Therefore, an interesting future direction
would be to improve the anaphoricity classifier by employing additional features, such as
those proposed by Uryupina (2003). We may also be able to derive sophisticated features
by harnessing recent advances in lexical semantics research, specifically by using methods
for phrase clustering (e.g., Lin & Wu, 2009), lexical chain discovery (e.g., Morris & Hirst,
1991), and paraphrase discovery (see the survey papers by Androutsopoulos & Malakasiotis,
2010; Madnani & Dorr, 2010).
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7.4 Joint Inference Versus Joint Learning for the Mention-Pair Model

As mentioned at the end of Section 4.2, joint modeling for anaphoricity determination and
coreference resolution is fundamentally different from joint inference for these two tasks.
Recall that in joint inference using ILP, an anaphoricity classifier and a coreference classifier
are trained independently of each other, and then ILP is applied as a postprocessing step
to jointly infer anaphoricity and coreference decisions so that they are consistent with each
other (e.g., Denis & Baldridge, 2007a). In this subsection, we investigate how joint learning
compares with joint inference for anaphoricity determination and coreference resolution.

Let us begin with an overview of the ILP approach proposed by Denis and Baldridge
(2007a) for joint inference for anaphoricity determination and coreference resolution. The
ILP approach is motivated by the observation that the output of an anaphoricity model and
that of a coreference model for a given document have to satisfy certain constraints. For
instance, if the coreference model determines that a mention my, is not coreferent with any
other mentions in the associated text, then the anaphoricity model should determine that
my is non-anaphoric. In practice, however, since the two models are trained independently
of each other, this and other constraints cannot be enforced.

Denis and Baldridge (2007a) provide an ILP framework for jointly determining anaphoric-
ity and coreference decisions for a given set of mentions based on the probabilities provided
by the anaphoricity model P4 and the mention-pair coreference model Pg, such that the
resulting joint decisions satisfy the desired constraints while respecting as much as pos-
sible the probabilistic decisions made by the independently-trained P4 and Pg. Specif-
ically, an ILP program is composed of an objective function to be optimized subject to
a set of linear constraints, and is created for each test text D as follows. Let M be
the set of mentions in D, and P be the set of mention pairs formed from M (i.e., P =
{(mj,my) | mj,my, € M,j < k}). Each ILP program has a set of indicator variables. In
our case, we have one binary-valued variable for each anaphoricity decision and coreference
decision to be made by an ILP solver. Following Denis and Baldridge’s notation, we use
Yk to denote the anaphoricity decision for mention my, and z(; 3y to denote the coreference
decision involving mentions m; and my. In addition, each variable is associated with an
assignment cost. Specifically, let c<cj7k> = —log(Pc(mj,my)) be the cost of setting x; 1y to
1, and E(%’Jf) = —log(1 — Pc(m;, my)) be the complementary cost of setting x(;;y to 0. We
can similarly define the cost associated with each v, letting cj? = —log(P4(myg)) be the
cost of setting y; to 1, and é? = —log(1 — P4(my)) be the complementary cost of setting
yi to 0. Given these costs, we aim to optimize the following objective function:

min Z C(%‘Jf) Tkt E<Cj,k> (11— Tjky) Z cj? Yk + Ej? (1 —yg)
(mjvmk)ep my €M

subject to a set of manually-specified linear constraints. Denis and Baldridge specify four
types of constraints: (1) each indicator variable can take on a value of 0 or 1; (2) if m; and
my, are coreferent (z(;;y=1), then my is anaphoric (y,=1); (3) if my, is anaphoric (yx=1),
then it must be coreferent with some preceding mention m;; and (4) if my, is non-anaphoric,
then it cannot be coreferent with any mention.

Two points deserve mention. First, we are minimizing the objective function, since each
assignment cost is expressed as a negative logarithm value. Second, since transitivity is
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not guaranteed by the above constraints®?, we use the closest-link clustering algorithm to
put any two mentions that are posited as coreferent into the same cluster. Note that the
best-link clustering strategy is not applicable here, since a binary decision is assigned to
each pair of mentions by the ILP solver. We use Ip_solve?*, a publicly-available ILP solver,
to solve this program.

B? and CEAF results of performing joint inference on the outputs of the anaphoricity
model and the mention-pair model using ILP are shown in the “Joint Inference” column of
Tables 8a and 8b, respectively, where the rows correspond to results obtained by training
the coreference models on different feature sets. Since one of our goals is to compare joint
inference and joint learning, we also show in the “Joint Learning” column the results of the
joint mention-ranking model, where anaphoricity determination and coreference resolution
are learned in a joint fashion. Note that the reason for using the mention-ranking model
(rather than the cluster-ranking model) as our joint model here is that we want to ensure a
fair comparison of joint learning and joint inference as much as possible: had we chosen the
cluster-ranking model as our joint model, the difference between the joint learning results
and the joint inference results could have been caused by the increased expressiveness of
the cluster-ranking model. Finally, to better understand whether the mention-pair model
benefits from joint inference using ILP, we show in the “No Inference” column the relevant
mention-pair model results from Table 4, where the output of the model is not postprocessed
with any inference mechanism.

From Table 8, we can see that the joint learning results are substantially better than the
joint inference results, except for one case (Conventional/ CEAF), where the two achieve
comparable performance. Previous work by Roth (2002) and Roth and Yih (2004) has
suggested that it is often more effective to learn simple local models and use complicated
integration strategies to make sure constraints on the output are satisfied than to learn
models that satisfy the constraints directly. Our results imply that this is not true for the
coreference task.

Comparing the joint inference and “No Inference” results in Table 8, we can see that the
mention-pair model does not benefit from the application of ILP. In fact, its performance
deteriorates when ILP is used. These results are inconsistent with those reported by Denis
and Baldridge (2007a), who show that joint inference using ILP can improve the mention-
pair model. We speculate that the inconsistency accures from the fact that Denis and
Baldridge evaluate the ILP approach on ¢rue mentions (i.e., gold-standard mentions), while
we evaluate it on system mentions. Additional experiments are needed to determine the
reason, however.

7.5 Data Source Adaptability

One may argue that since we train and test a model on documents from the same data
source (i.e., the model trained on the documents from BC is tested on the documents from

23. Finkel and Manning (2008) show how to formulate linear constraints so that the ILP solver outputs
coreference decisions that satisfy transitivity. However, since the number of additional constraints needed
to guarantee transitivity grows cubically with the number of mentions and previous work shows that
having these additional constraints do not yield substantial performance improvements when applied to
system mentions (Ng, 2009), we decided not to employ them in our experiments.

24. Available from http://lpsolve.sourceforge.net/

504



A CLUSTER-RANKING APPROACH TO COREFERENCE RESOLUTION

Joint Learning

Joint Inference

No Inference

Feature Set R P F R P F R P F
1 | Conventional | 47.6 74.8 582 || 58.2 559 57.0 | 59.6 55.3 57.3
2 | Lexical 54.6 72.8 62.4 | 49.1 70.1 57.8 || 52.8 64.6 58.1
3 | Combined 50.5 77.6 61.2 | 53.2 56.9 549 || 50.3 65.9 57.0

(a) B?

results

Feature Set

Joint Learning
R P F

Joint Inference
R P F

No Inference
R P F

1 | Conventional

50.5 56.3 53.2

49.7 575 53.3

514 56.5 53.8

[\

Lexical

96.9 63.3 59.9

50.6 58.6 54.3

93.5 56.8 55.1

3 | Combined

54.9 61.7 58.1

53.2 56.9 549

54.9 56.3 55.5

(b) CEAF results

Table 8: Joint learning vs. joint inference results. The joint modeling results are obtained
using the mention-ranking model. The joint inference results are obtained by applying ILP to the
anaphoricity classifier and the mention-pair model. The “no inference” results are those produced
by the mention-pair model. All coreference models are trained using MaxEnt.

BC, for example), it should not be surprising that lexicalization helps, since word pairs in
a training set are more likely to be found in a test set if the training and test texts are
from the same data source. To examine whether models that employ the Lexical features
will suffer if they are trained and tested on different data sources, we perform a set of data
source adaptability experiments, where we apply a coreference model that is trained with
the Lexical features on documents from one data source to documents from all data sources.
Here, we show the results obtained using the mention-ranking model, primarily because it
yielded the best performance with the Lexical features among the learning-based coreference
models. For comparison, we also show the data source adaptability results obtained using
the mention-ranking model that is trained with the (non-lexical) Conventional feature set.

The B3 and CEAF F-measure scores of these experiments are shown in Tables 9a and
9b, where the left half and the right half of the table contain the lexicalized mention-ranking
model results and the unlexicalized mention-ranking model results, respectively. Each row
corresponds to a data source on which a model is trained, except for the last two rows,
which we will explain shortly. Each column corresponds to a test set from a particular data
source.

To answer the question of whether the performance of a coreference model that employs
the Lexical features will deteriorate if they are trained and tested on different data sources,
we can look at the diagonal entries in the left half of Tables 9a and 9b, which contain
the results obtained when the lexicalized mention-ranking model is trained and tested on
documents from the same source. If the model indeed performs worse when it is trained
and tested on documents from different sources, then a diagonal entry should contain the
highest score among the entries in the same column. As we can see from the left half of
the two tables, this is to a large extent correct: four of the six diagonal entries contain the
highest scores in their respective columns according to both scoring programs. This provides
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Lexical features Conventional features

T Test | g | BN | oy Nw| UN | WL|| BC | BN | e8| Nw| UN | WL
BC 56.5| 61.0] 58.7| 64.2| 57.2 66.6|| 52.1| 55.9| 55.1| 59.1| 52.8| 63.8
BN 57.6 63.5] 60.7| 63.5] 55.4| 67.0|| 51.8| 59.7 58.4| 58.7| 52.5| 62.8
CTS 55.5| 61.1| 62.7] 61.9] 54.9| 65.9|| 51.8| 58.4| 59.5| 59.2 53.6| 64.2
NW 55.6| 62.1| 56.7| 65.4f 56.4| 59.2|| 51.5| 55.3| 55.7| 58.5| 52.1| 60.3
UN 56.4| 62.8| 60.0| 62.9| 56.3| 67.3|| 52.7 57.3| 59.2| 59.0| 53.2| 64.2
WL 56.4| 62.8| 58.5| 63.4] 55.9| 68.7| 51.5| 56.5| 55.1| 59.0| 52.7| 64.0
Max—Min 21 125 60 |35 1]23 1|95 1.2 (44 |44 | 0.7 | 1.5 | 3.9

Std. Dev. 0.76] 1.01| 2.07| 1.18] 0.81| 3.36]| 0.45| 1.64| 2.09| 0.26| 0.53| 1.52

(a) B3 results
Lexical features Conventional features

T Test | po | BN | o1y Nw| UN | WL|| BC | BN | o8| Nw| UN | WL
BC 52.0| 57.2| 55.5| 61.5| 56.5 65.7|| 46.0| 49.3| 52.7| 53.1| 49.1| 60.8
BN 53.8 61.3| 58.8| 60.5| 54.1| 66.0|| 45.9| 54.8 55.2| 52.9| 48.0| 60.1
CTS 51.9| 58.6| 62.0| 58.4| 53.7| 64.8|| 44.7| 52.3| 56.5 53.8 50.0| 61.0
NW 50.5| 58.9| 53.3| 62.7 54.6| 54.5|| 45.5| 49.2| 52.6| 52.7| 48.4| 56.5
UN 52.5| 60.3| 58.3| 59.3| 55.7| 67.0|| 46.00 51.3| 56.2| 52.8| 48.8| 60.8
WL 53.4| 61.1| 55.7| 59.8| 55.0| 67.1}| 45.7| 50.4| 51.4| 52.9| 50.1] 61.1]
Max—Min 33 141 |87 |43 |28 |12.7|| 1.3 | 56 | 51 | 1.1 | 2.1 | 4.6

Std. Dev. 1.18| 1.60| 3.07| 1.55] 1.04| 4.82|| 0.50| 2.11| 2.14| 0.40| 0.85| 1.77

(b) CEAF results

Table 9: Results for data source adaptability. Each row shows the results obtained by training
the mention ranking model on the data set shown on the first column of the row, and each column
corresponds to the test set from a particular data source. The best result obtained on each test set
for each of the two coreference models is boldfaced.

suggestive evidence that the answer to our question is affirmative. Nevertheless, if we look
at right half of the two tables, where we show the results obtained using the unlexicalized
mention-ranking model, we see a similar, but perhaps weaker, trend: according to CEAF,
four of the six diagonal entries contain the highest scores in their respective columns, and
according to B3, two of the six diagonal entries exhibit this trend. Hence, the fact that
a model performs worse when it is trained and tested on different data sources cannot be
attributed solely to lexicalization.

Perhaps a more informative question is: do lexicalized models trained on different data
sources exhibit more varied performance on a given test set (composed of documents from
the same source) than unlexicalized models trained on different data sources? An affirmative
answer to this question will provide empirical support for the hypothesis that a lexicalized
model fits the data on which it is trained more than its unlexicalized counterpart. To answer
this question, we compute for each column and each of the two models (1) the difference
between the highest and lowest scores (see the “Max—Min” row), and (2) the standard
deviation of the six scores in the corresponding column (see the “Std. Dev.” row). If we
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compare the corresponding columns of the two coreference models, we can see that except
for BN, the lexicalized model does exhibit more varied performance on a given test set than
the unlexicalized model according to both scoring programs, regardless of whether we are
measuring the variation using Max—Min or standard deviation.

7.6 Feature Analysis

In this subsection, we analyze the effects of the linguistic features on the performance of
the coreference models. Given the large number of models trained on each of the three
feature sets, it is not feasible for us to analyze the features for each model and each feature
set. Since the cluster-ranking model, when used with the Combined feature set, yields the
best performance, we will analyze its features. In addition, since the Lezical features have
yielded good performance for the mention-ranking model, it would be informative to see
which Lezical features have the greatest contribution to its performance. As a result, we
will perform feature analysis on these two model/feature set combinations.

Although we have identified two particular model/feature set combinations, we actually
have a total of 12 model/feature set combinations: recall that except for row 1, each row in
Table 4 shows the aggregated result for the six data sets, where we trained one model for
each data set. In other words, for each of the two combinations we selected above, we have
six learned models. To reduce the number of models we need to analyze and yet maximize
the insights we can gain, we choose to analyze the models that were trained on data sets
from two fairly different domains: Newswire (NW) and Broadcast News (BN).

The next question is: how can we analyze the features? We apply the backward elimi-
nation feature selection algorithm (see the survey paper by Blum & Langley, 1997), which
starts with the full feature set and removes in each iteration the feature whose removal
yields the best system performance. Despite its greedy nature, this algorithm runs in time
quadratic to the number of features, making it computationally expensive to run on our
feature sets. To reduce computational cost, we divide our features into feature types and
apply backward elimination to eliminate one feature type per iteration.

The features are grouped as follows. For the Lexical feature set, we divide the features
into five types: (1) unseen features, (2) lexical features, (3) semi-lexical features, (4) DIS-
TANCE, and (5) ALIAS. In other words, the division corresponds roughly to the one described
in Section 5.1, except that we put the two “conventional” features into two different groups,
since linguistically one is a positional feature and the other is a semantic feature. For the
Combined feature set, we divide the features into seven groups, the first four of which are
identical to those in the division of the Lexical features above. For the remaining features,
we divide them into STRING-MATCHING features, which comprise features 11-18 in Table 1;
GRAMMATICAL features, which comprise features 1-7, 9-10, 19-29, 33-36, and 38-39; and
SEMANTIC features, which comprise features 8, 30, and 31. Note that ALIAS, the only se-
mantic feature in the Lezical feature set, is combined with other semantic features in the
Conventional feature set to form the SEMANTIC feature type.

Results are shown in Tables 10-13. Specifically, Tables 10a and 10b show the B? and
CEAF F-measure scores of the feature analysis experiments involving the mention-ranking
model, using the Lexical feature set on the NW data set. In each table, the first row shows
how the system would perform if each class of features were removed. We remove the least
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(b) CEAF results

Table 10: Feature analysis results (in terms of F-measure scores) for the mention-ranking
model using the Lexical features on the NW data set. When all feature types are used to train
the model, the B3 and CEAF F-measure scores are 65.4 and 62.7, respectively.

important feature class (i.e., the feature class whose removal yields the best performance),
and the next row shows how the adjusted system would perform without each remaining
class. According to both scoring programs, removing the UNSEEN features yields the least
drop to performance (note from the caption that with the full feature set, the B® score
is 65.4 and the CEAF score is 62.7). In fact, the two scorers agree that the LEXICAL and
SEMI-LEXICAL features are more important than the UNSEEN, ALIAS, and DISTANCE features.
Nevertheless, these results suggest that all five feature types are important, since the best
performance is achieved using the full feature set.

Tables 11a and 11b show the B® and CEAF F-measure scores of the feature analysis
experiments involving the cluster-ranking model, using the Combined feature set on the NW
data set. Recall that in the Combined feature set, we have seven types of features. As we can
see, the two scorers agree completely on the order in which the features should be removed.
In particular, the most important features are the LEXICAL and SEMI-LEXICAL features,
whereas the least important features are those that are not present in the Lexical feature
set, namely, the GRAMMATICAL, STRING-MATCHING, and SEMANTIC features. This suggests
that the lexical features are in general more important than the non-lexical features when
they are used in combination. This is somewhat surprising, as the non-lexical features
are the commonly-used features for coreference resolution, whereas Lexical features are
comparatively much less investigated by coreference researchers. Nevertheless, unlike what
we saw in Table 10, where all feature types appear to be relevant, in Table 11a, we see that
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(b) CEAF results

Table 11: Feature analysis results (in terms of F-measure) for the cluster-ranking model
using the Combined features on the NW data set. When all feature types are used to train the
model, the B? and CEAF F-measure scores are 64.6 and 62.3, respectively.

the best B? F-measure score is 67.2, which is achieved using only the LEXICAL features.
This represents a 2.6% absolute gain in F-measure over the model trained on all seven
feature types, suggesting a learning-based coreference model could be improved via feature
selection.

Next, we investigate whether similar trends can be observed when the models are trained
on a different source: Broadcast News. Specifically, we show in Tables 12a and 12b the B?
and CEAF F-measure scores of the feature analysis experiments involving the mention-
ranking model, using the Lezical feature set on the BN data set. As in Table 11, we
see that the two scorers agree completely on the order in which the features should be
removed. In fact, similar to what we observed in Table 10 (on the NW data set), both
scorers determine that the LEXICAL and SEMI-LEXICAL features are the most important,
whereas the DISTANCE and ALIAS features are the least important, although all five feature
types appear to be relevant according to both scorers.

Finally, we show in Tables 13a and 13b the B3 and CEAF F-measure scores of the feature
analysis experiments involving the cluster-ranking model, using the Combined feature set
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Table 12: Feature analysis results (in terms of F-measure) for the mention-ranking model
using the Lexical features on the BN data set. When all feature types are used to train the
model, the B® and CEAF F-measure scores are 63.5 and 61.3, respectively.

on the BN data set. Asin Tables 11 and 12, the two scorers agree completely on the order in
which the features should be removed. As far as feature contribution is concerned, these two
tables resemble Tables 11a and 11b: in both cases, the LEXICAL, SEMI-LEXICAL, and UNSEEN
features are the most important; the STRING-MATCHING and GRAMMATICAL features are the
least important; and the SEMANTIC and DISTANCE features are in the middle. In this case,
however, all seven feature types seem to be relevant, as the best performance is achieved
using the full feature set according to both scorers. Perhaps most interestingly, the numbers
in each column are generally increasing as we move down the column. This means that a
feature type becomes progressively less useful as we remove more and more feature types.
This also suggests that the interactions between different feature types are non-trivial and
that a feature type may be useful only in the presence of another feature type.

In summary, results on two data sets (NW and BN) and two scoring programs demon-
strate that (1) in general all feature types are crucial to overall performance, and (2)
the little-investigated Lezical features contribute more to overall performance than the
commonly-used Conventional features.

7.7 Resolution Performance

To gain additional insights into our results, we analyze the behavior of the coreference
models for different types of anaphoric expressions when they are trained with different
feature sets. Specifically, we partition the mentions into different resolution classes. While
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Table 13: Feature analysis results (in terms of F-measure) for the cluster-ranking model
using the Combined features on the BN data set. When all feature types are used to train the
model, the B® and CEAF F-measure scores are 63.6 and 61.3, respectively.

previous work has focused mainly on three rather coarse-grained resolution classes (namely,
pronouns, proper nouns, and common nouns), we follow Stoyanov et al. (2009) and subdivide
each class into three fine-grained classes. It is worth mentioning that none of Stoyanov et
al.’s classes corresponds to non-anaphoric expressions. Since we believe that non-anaphoric
expressions play an important role in the analysis of the performance of a coreference
model, we propose three additional classes that correspond to non-anaphoric pronouns,
non-anaphoric proper nouns, and non-anaphoric common nouns. Finally, there are certain
types of anaphoric pronouns (e.g., wh-pronouns) that do not fall into any of Stoyanov et
al.’s pronoun categories. To fill this gap, we create another category that serves as the
default category for any anaphoric pronouns not covered by Stoyanov et al.’s classes. This
results in 13 resolution classes, which are discussed below in detail.

Proper nouns. Four classes are defined for proper nouns. (1) e: a proper noun is assigned
to this exact string match class if there is a preceding mention such that the two are
coreferent and are the same string; (2) p: a proper noun is assigned to this partial string
match class if there is a preceding mention such that the two are coreferent and have some
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content words in common; (3) n: a proper noun is assigned to this no string match class
if there is no preceding mention such that the two are coreferent and have some content
words in common; and (4) na: a proper noun is assigned to this non-anaphor class if it is
not coreferent with any preceding mention.

Common nouns. Four analogous resolution classes are defined for mentions whose head
is a common noun: (5) e; (6) p; (7) n; and (8) na.

Pronouns. We have three pronoun classes. (9) 14+2: 1st and 2nd person pronouns; (10)
G3: gendered 3rd person pronouns (e.g., she); (11) U3: ungendered 3rd person pronouns;
(12) oa: any anaphoric pronouns that do not belong to (9), (10), and (11); and (13) na:
non-anaphoric pronouns.

Next, we score each resolution class. Unlike Stoyanov et al. (2009), who use a modified
version of the MUC scorer, we employ B2. The reasons are that the MUC scorer (1) does
not reward singleton clusters, and (2) can inflate a system’s performance when the clusters
are overly large. To compute the score for class C, we process the mentions in a test text in
a left-to-right manner. For each mention encountered, we check whether it belongs to C. If
so, we use our coreference model to decide how to resolve it. Otherwise, we use an oracle to
make the correct resolution decision?®(so that in the end all the mistakes can be attributed
to the incorrect resolution of the mentions in C, thus allowing us to directly measure its
impact on overall performance). After all the test documents are processed, we compute
the B® F-measure score on only the mentions that belong to C.

Performance of each resolution class, when aggregated over the test sets of the six data
sources in the same way as before, are shown in Table 14, which provides a nice diagnosis
of the strengths and weaknesses of each coreference model when used in combination with
each feature set. We also show in the table the percentage of mentions belonging to each
class below the name of each class, and abbreviate the name of each model as follows: HM
corresponds to the head match baseline, whereas MP, EM, MR, and CR denote the mention-
pair model, the entity-mention model, the mention-ranking model, and the cluster-ranking
model, respectively. Each ranking model has two versions, the pipeline version (denoted by
P) and the joint version (denoted by J).

A few points deserve mention. Recall from Table 4 that when the Conventional features
are used, the joint mention-ranking model performs better than the mention-pair model
and the entity-mention model. Comparing row 5 with rows 2 and 3 of Table 14, we can
see that the improvements can be attributed primarily to its better handling of one proper

25. If the oracle determines that a mention is anaphoric and that its antecedents are not in the same cluster
(because our model has previously made a mistake), we employ the following heuristic to select which
antecedent to resolve the mention to: we try to resolve it to the closest preceding antecedent that does
not belong to class C, and if no such antecedent exists, we resolve it to the closest preceding antecedent
that belongs to class C. The reason behind the heuristic’s preference for a preceding antecedent that does
not belong to class C is simple: since we are resolving the mention using an oracle, we want to choose
the antecedent that allows us to maximize the overall score; resolving the mention to an antecedent
that does not belong to C is more likely to yield a better score than resolving it to an antecedent that
belongs to C, since the former was resolved using an oracle but the latter was not. The same heuristic
applies if we are trying to use the oracle to resolve a mention to a preceding cluster: we first attempt to
resolve it to the closest preceding cluster containing a mention that does not belong to C, and if no such
antecedent exists, we resolve it to the closest preceding cluster containing a mention that belongs to C.
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Proper nouns Common nouns Pronouns
Class e p n na e p n na 142 | G3 | U3 | oa na
% 15216 |32 |139] 6.3 |03 |47 |[19.2] 15.1]49 |51 |44 |6.1

1 [AM [ 68.3]33.0 [ 34.4 [ 635 ]| 48.1 | 55.6 | 24.7 | 68.1 ]| 50.7

16.3 [ 41.7 [ 23.2 [ 55.7 |

Using the Conventional feature set

MP 69.6 | 35.4 | 35.6 | 65.8 || 56.1 | 54.7 | 24.0 | 70.4 || 53.8 | 55.6 | 46.1 | 24.1 | 51.9
EM 69.9 | 359 | 359 | 65.8 || 57.3 | 55.1 | 24.3 | 70.9 || 54.2 | 56.0 | 46.4 | 24.6 | 51.7
MR-P | 783 | 41.1 | 32.7 | 76.0 || 48.5 | 58.3 | 27.2 | 78.2 || 54.1 | 57.1 | 44.9 | 22.7 | 61.6
MR-J | 794 | 42.5 | 33.4 | 76.4 || 48.2 | 59.0 | 27.6 | 78.5 || 4.4 | 57.7 | 45.8 | 23.0 | 62.2
CR-P | 799 | 425 | 34.2 | 75.9 || 64.1 | 58.6 | 27.1 | 80.8 || 57.9 | 61.8 | 49.7 | 25.6 | 58.1
CR-J 79.9 | 439 | 344 | 76.7 || 65.0 | 59.2 | 27.4 | 82.1 || 58.6 | 62.5 | 50.7 | 26.3 | 59.7

~N O Uk W N

Using the Lexical feature set

8 | MP 788 | 419 | 32.1 | 78.6 || 66.5 | b4.2 | 24.1 | 77.6 || 55.5 | 57.4 | 44.1 | 24.3 | 61.8
9 | EM 79.1 | 41.8 | 324 | 78.4 || 66.5 | 4.7 | 24.1 | 779 || 55.7 | 57.8 | 44.1 | 24.2 | 62.1
10 | MR-P | 78.3 | 66.4 | 40.7 | 75.8 || 53.2 | 60.7 | 28.3 | 83.3 || 62.1 | 60.6 | 47.3 | 29.1 | 61.8
11 | MR-J | 79.5 | 67.1 | 41.3 | 76.3 || 54.4 | 61.1 | 28.6 | 83.5 || 62.6 | 62.3 | 47.9 | 31.3 | 62.6
12 | CR-P | 75.3 | 65.7 | 40.4 | 76.6 || 50.2 | 61.4 | 30.3 | 81.9 || 60.3 | 61.0 | 50.6 | 36.2 | 66.3
13 | CR-J 76.4 | 684 | 41.1 | 77.2 || 50.8 | 63.2 | 31.1 | 83.1 || 61.9 | 62.6 | 51.8 | 37.6 | 67.0

Using the Combined feature set

14 | MP 73.8 | 40.1 | 38.8 | 67.6 || 55.9 | 54.8 | 25.0 | 73.7 || 58.6 | 60.7 | 49.3 | 27.6 | 58.1
15 | EM 73.9 | 40.6 | 39.2 | 68.2 || 56.3 | 55.8 | 25.0 | 74.4 || 58.7 | 61.6 | 49.6 | 26.2 | 58.3
16 | MR-P | 76.4 | 50.9 | 33.3 | 80.7 || 53.4 | 55.4 | 23.2 | 78.9 || 58.3 | 56.1 | 44.3 | 25.8 | 66.4
17 | MR-J | 77.2 | 52.3 | 34.7 | 82.0 || 54.3 | 56.8 | 24.7 | 80.9 || 59.5 | 59.5 | 45.8 | 26.5 | 67.1
18 | CR-P | 783 | 61.3 | 41.5 | 783 || 60.9 | 55.4 | 24.4 | 79.3 || 62.1 | 65.5 | 51.4 | 34.7 | 62.7
19 | CR-J 79.9 | 62.0 | 424 | 79.1 || 62.8 | 56.8 | 25.5 | 79.9 || 62.7 | 66.2 | 52.8 | 35.5 | 64.4

Table 14: B3 F-measure scores of different resolution classes.

noun class (e) and all three classes that correspond to non-anaphoric mentions (na). These
results indicate that it is important to take into account the non-anaphoric mentions when
analyzing the performance of a coreference model. At the same time, we can see that the
joint mention-ranking model does not resolve the type ’e’ common nouns as well as the
mention-pair model and the entity-mention model. Also, results in rows 5 and 7 indicate
that the joint cluster-ranking model is better than the joint mention-ranking model due to
its better handling of the type ¢’ common nouns, the non-anaphoric common nouns, as
well as the anaphoric pronouns.

Next, recall from Table 4 that when the Lezical features are used in lieu of the Conven-
tional features, the mention-pair model, the entity-mention model, and the joint mention-
ranking model all exhibit significant improvements in performance. For the mention-pair
model and the entity-mention model, such improvements stem primarily from better han-
dling of three proper noun classes (e,p,na), two common noun classes (e,na), and the non-
anaphoric pronouns (compare rows 2 and 8 as well as rows 3 and 9 of Table 14). For the joint
mention-ranking model, on the other hand, the improvements accrue from better handling
of two proper noun classes (p,n), two common classes (e,na), and the anaphoric pronouns,
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as can be seen from rows 5 and 11. While the joint cluster-ranking model does not show
overall improvement as we switch from Conventional to Lexical features (compare rows 7
and 13), the resulting models behave differently. Specifically, using the Lexical features, the
model gets worse at handling one proper noun class (e) and one common noun class (e),
but better at handling another proper noun class (n), two other common noun classes (p,n),
one anaphoric pronoun class (1+42), and the non-anaphoric pronouns.

Finally, recall that when the Combined features are used in lieu of the Lexical features,
all but the cluster-ranking model show a deterioration in performance. For the mention-pair
model and the entity-mention model, the deterioration in performance can be attributed
to poorer handling of two proper noun classes (e,na), two common noun classes (e,na),
and the non-anaphoric pronouns, although they are better at handling one proper noun
class (n) and the anaphoric pronouns (compare rows 8 and 14 as well as rows 9 and 15 of
Table 14). Overall, poorer handling of anaphoricity appears to be a major factor responsible
for the performance deterioration. For the joint mention-ranking model, the reasons for the
performance deterioration are slightly different: comparing rows 11 and 17, we see its poorer
handling of two proper noun classes (p,n), three common noun classes (p,n,na), and the
anaphoric pronouns, although it is better at handling the non-anaphoric proper nouns and
pronouns. As mentioned before, the two versions of the cluster-ranking model improve
when they are trained on the Combined features. However, such improvements do not stem
from improvements for all classes (compare rows 12 and 18 as well as rows 13 and 19).
For instance, when replacing the Lezxical features with the Combined features in the joint
cluster-ranking model, we see improvements for two proper noun classes (e,na), one common
noun class (e), and several pronoun classes (14+2,G3,U3), but performance drops for another
proper noun class (p), three other common noun classes (p,n,na), and two pronoun classes
(oa,na).

Overall, these results provide us with additional insights into the strengths and weak-
nesses of a learning-based coreference model as well as directions for future work. In par-
ticular, even if two models yield similar overall performance, they can be quite different at
the resolution class level. Since there is no single coreference model that outperforms the
others on all resolution classes, it may be beneficial to apply an ensemble approach, where
an anaphor belonging to a particular resolution class is resolved by the model that offers
the best performance for that class.

8. Conclusions

As Mitkov (2001, p. 122) puts it, coreference resolution is a “difficult, but not intractable
problem,” and researchers have been making “steady progress” on improving machine learn-
ing approaches to the problem in the past fifteen years. The progress is slow, however.
Despite its deficiencies, the mention-pair model was widely thought to be the only learning-
based coreference model for almost a decade. The entity-mention model and the mention-
ranking model emerged only after the mention-pair model has dominated learning-based
coreference research for nearly ten years. Although these two models are conceptually sim-
ple, they represent a significant departure from the mention-pair model and a new way of
thinking about how alternative models of coreference can be designed. Our cluster-ranking
model further advances learning-based coreference research theoretically by combining the
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strengths of these two models, thereby addressing two commonly cited weaknesses of the
mention-pair model. It not only bridges the gap between two independent lines of learning-
based coreference research — one concerning the entity-mention model and the other the
mention-ranking model — that has been going on for the past few years, but also nar-
rows the modeling gap between the sophistication of rule-based coreference models and
the simplicity of learning-based coreference models. Empirically, we have shown using the
ACE 2005 coreference data set that the cluster-ranking model acquired by jointly learning
anaphoricity determination and coreference resolution surpasses the performance of several
competing approaches, including the mention-pair model, the entity-mention model, and
the mention-ranking model. Perhaps equally importantly, our cluster-ranking model is the
only model considered here that can profitably exploit the information provided by two
fairly different sources of information, the Conventional features and the Lezical features.

While ranking is a more natural formulation of coreference resolution than classification,
ranking-based coreference models have not been more popularly used than the influential
mention-pair model. One of our goals in this article is to promote the application of ranking
techniques to coreference resolution. Specifically, we attempted to clarify the difference be-
tween classification-based and ranking-based coreference models by showing the constrained
optimization problem that an SVM learner needs to solve for each type of models, hoping
that this will help the reader appreciate the importance of ranking for coreference resolu-
tion. In addition, we have provided ample empirical evidence that ranking-based models
are superior to classification-based models for coreference resolution.

Another contribution of our work lies in the empirical demonstration of the benefits of
lexicalizing learning-based coreference models. While previous work showed that lexical-
ization only provides marginal benefits to a coreference model, we showed that lexicaliza-
tion can significantly improve the mention-pair model, the entity-mention model, and the
mention-ranking model, to the point where they approach or even surpass the performance
of the cluster-ranking model. Interestingly, we showed that these models benefit from lex-
icalization the most when no conventional coreference features are used. This challenges
the common belief that there is a prototypical set of linguistic features (e.g., gender and
number agreement) that must be used for constructing learning-based coreference systems.
In addition, our feature analysis experiments indicated that the conventional features con-
tributed less to overall performance than the rarely studied lexical features for our joint
cluster-ranking coreference model when the two types of features are used in combination.

Finally, we examined the performance of each coreference model in resolving mentions
belonging to different resolution classes. We found that even if two models achieve similar
overall performance, they can be quite different at the resolution class level. Overall, these
results provide us with additional insights into the strengths and weaknesses of a learning-
based coreference model as well as promising directions for future research.

Bibliographic Note

Portions of this work were previously presented in a conference publication (Rahman &
Ng, 2009). The current article extends this work in several ways, most notably: (1) an
overview of the literature on ranking approaches to coreference resolution (Section 2); (2) a
detailed explanation of the difference between classification and ranking (Section 3); (3) an
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investigation of the issues in lexicalizing coreference models (Section 5); and (4) an in-depth
analysis of the different aspects of our coreference system (Section 7).
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