
Journal of Artificial Intelligence Research 39 (2010) 663-687 Submitted 6/10; published 11/10

An Effective Algorithm for and Phase Transitions of the
Directed Hamiltonian Cycle Problem

Gerold Jäger gej@informatik.uni-kiel.de
Computer Science Institute,
Christian-Albrechts-University of Kiel,
D-24118 Kiel, Germany

Weixiong Zhang weixiong.zhang@wustl.edu

Department of Computer Science and Engineering,
Washington University,
St. Louis, Missouri 63130, United States

Abstract

The Hamiltonian cycle problem (HCP) is an important combinatorial problem with
applications in many areas. It is among the first problems used for studying intrinsic prop-
erties, including phase transitions, of combinatorial problems. While thorough theoretical
and experimental analyses have been made on the HCP in undirected graphs, a limited
amount of work has been done for the HCP in directed graphs (DHCP). The main con-
tribution of this work is an effective algorithm for the DHCP. Our algorithm explores and
exploits the close relationship between the DHCP and the Assignment Problem (AP) and
utilizes a technique based on Boolean satisfiability (SAT). By combining effective algo-
rithms for the AP and SAT, our algorithm significantly outperforms previous exact DHCP
algorithms, including an algorithm based on the award-winning Concorde TSP algorithm.
The second result of the current study is an experimental analysis of phase transitions of
the DHCP, verifying and refining a known phase transition of the DHCP.

1. Introduction

An undirected graph G = (V,E) is Hamiltonian if it contains a Hamiltonian cycle (HC), a
cycle that visits each vertex exactly once. Given a graph, the Hamiltonian cycle problem
(HCP) is to find a HC or to prove that no HC exists in the graph. The decision version of the
HCP is among the first problems that were proven to beNP-complete (Karp, 1972). HCP is
a well-known problem with many applications in different areas, e.g., the Hamiltonian cycle
game in game theory (Stojaković & Szabó, 2005), the problem of finding a knight’s tour on
a chessboard in artificial intelligence (Henderson & Apodaca, 2008), and the DNA Physical
Mapping in biology (Grebinski & Kucherov, 1996). Much research has been done on the
HCP in undirected graphs. For reviews, see the work of Bondy (1995), Christofides (1975),
Chvátal (1985), Gould (1991), Vandegriend (1998), and Gutin and Moscato (2000). In
particular, many algorithms have been developed for the HCP (Angluin & Valiant, 1979;
Bollobás, Fenner & Frieze, 1987; Frieze, 1988a; Pósa, 1976; Vandegriend, 1998), as reviewed
in the Stony Brook Algorithm Repository (Skiena, 2008). One effective algorithm for the
HCP is based on the related Traveling Salesman Problem (TSP) in an undirected weighted
graph, which is the problem of finding a HC with minimum total weight.

c©2010 AI Access Foundation. All rights reserved.

Jäger & Zhang

The HCP is also a canonical problem for understanding intrinsic properties of combina-
torial problems. One such problem property is the so called phase transition. Consider an
undirected graph Gn,m with m edges randomly chosen from all possible n(n − 1)/2 edges
over n vertices. It is expected that when keeping the size n, i.e., the number of vertices, a
constant while increasing the number of edges m, the probability that a random graph Gn,m
is Hamiltonian increases from 0 to 1. Surprisingly, the probability of being Hamiltonian for
Gn,m exhibits a sharp, dramatic transition from 0 to 1, and the transition occurs approx-
imately when m = dc · n · (log n + log log n)/2c (Bollobás, 1985; Cheeseman, Kanefsky &
Taylor, 1991; Komlós & Szemerédi, 1983). Furthermore, it was experimentally shown that
when the constant c is between 1.08 and 1.10, the probability that Gn,m is Hamiltonian is
1/2 (Vandegriend & Culberson, 1998). Phase transitions in the HCP have also been studied
under other different control parameters, for example, the so called general constrainedness
parameter (Frank, Gent & Walsh, 1998). The phase transition result of the HCP has moti-
vated a substantial amount of research on phase transitions of other combinatorial problems,
particularly the TSP (Zhang & Korf, 1996) and Boolean satisfiability (Monasson, Zecchina,
Kirkpatrick & Selman, 1999).

In this study we consider the HCP in directed graphs, which we call directed HCP,
or DHCP for short. In addition to the known applications of the HCP mentioned above,
an interesting application of the DHCP is that DHCP heuristics can be used to solve the
Bottleneck TSP (Kabadi & Punnen, 2002). In contrast to the extensive amount of work
on the HCP for undirected graphs, the research on the DHCP is rather limited (Angluin
& Valiant, 1979; Bang-Jensen & Gutin, 2008; Kelly, 2007). The first exact algorithm for
the DHCP was developed by Martello (1983). This algorithm outputs a fixed number h
of HCs or reports that it cannot find h HCs in a given directed graph. By setting h = 1,
this gives rise to an algorithm for the DHCP. In recent years, algorithms based on SAT
encoding have been introduced to this problem, e.g., the absolute encoding (Hoos, 1999)
and the relative encoding (Prestwich, 2003; see also Velev & Gao, 2009). Furthermore, a
probabilistic heuristic for DHCP of complexity O(n1.5) was proposed (Frieze, 1988b). It
can be shown that for the random class Gn,m the probability, that for a given instance a
HC is found by this algorithm and therefore exists, changes from 0 to 1, when n grows to
infinity and m = n log n+cn, where c is a constant. For the DHCP, a phase transition result
similar to that of the HCP has been obtained as well, namely the phase transition occurs
at m = dc ·n · (log n+ log log n)c (McDiarmid, 1980), where the constant c was expected to
be close to 1.

Note that the research on the TSP has also alluded to a DHCP algorithm. Using the
technique of 2-point reduction, the asymmetric TSP (ATSP) – where the distance from city i
to city j may not be necessarily equal to that from j to i – can be converted to the symmetric
TSP, with the number of vertices being doubled (Jonker & Volgenant, 1983). Using this
transformation, we can determine whether a directed graph is Hamiltonian by solving the
symmetric TSP using the renowned Concorde algorithm (Applegate, Bixby, Chávatal &
Cook, 2005, 2006). Concorde has solved many large benchmark instances (Cook, 2010),
including a TSP instance with 85, 900 cities (Applegate et al., 2009), which up to date is
the largest solved practical TSP instance.

The main contribution of this paper is an effective exact algorithm for the DHCP. In our
algorithm, we utilize methods for two well-known combinatorial problems, i.e., the Assign-

664

Algorithm for Directed Hamiltonian Cyce Problem

ment Problem (AP) and Boolean satisfiability (SAT); we therefore denote our algorithm by
AP-SAT. Using random graphs and many real world instances, we experimentally compare
the AP-SAT algorithm with the DHCP algorithm of Martello (1983), the TSP based ap-
proach that takes advantage of the TSP solver Concorde (Applegate et al., 2005, 2006)
and the above-mentioned SAT encodings for the DHCP (Hoos, 1999; Prestwich, 2003). The
results show that the AP-SAT algorithm significantly outperforms these algorithms.

The second contribution is an experimental study and refinement of the known phase
transition result on the existence of a HC in a random directed graph (McDiarmid, 1980),
as similarly done for the HCP (Vandegriend & Culberson, 1998).

2. The Algorithm

Consider a directed unweighted graph G = (V,E) with nodes V and edges E. For our
purpose of solving the DHCP, we consider the problem of determining whether or not
there exists a collection of cycles, which may not be necessarily complete cycles, visiting
each vertex exactly once. We call this problem directed Assignment Problem or DAP for
short. Our algorithm explores and exploits the intrinsic relationship between the DHCP
and the DAP. More precisely, the AP-SAT algorithm searches for a HC in the space of DAP
solutions. It first solves the DAP. If the DAP solution forms a HC, or no DAP solution
exists, the algorithm terminates. If the DAP solver returns a solution that is not a HC, the
algorithm then tries to patch the subcycles in the solution into a HC using the well-known
Karp-Steele patching method (Karp & Steele, 1985). If no HC is found either, these DAP
and patching steps are iterated, with the only difference that another DAP solution might
be found. For most cases that we considered in this study, the algorithm can find a HC or
determine that no solution exists after these two steps. If the algorithm fails to solve the
problem after these iterative steps, it then attempts to enumerate the DAP solutions by
formulating the DAP as a Boolean satisfiability problem and repeatedly solving the problem
using a SAT solver and adding constraints to eliminate the DAP solutions that have been
encountered. We discuss the details of these steps in the rest of the section.

2.1 Solving the Assignment Problem

Given n vertices and a matrix C = (cij)1≤i,j≤n ∈ Rn,n of the costs between pairs of
vertices, the Assignment Problem (AP) is to find a vertex permutation π∗ such that
π∗ = arg min

{ ∑n
i=1 ci,π(i) : π ∈ Πn

}
, where Πn is the set of all permutations of {1, . . . , n}.

Note that an AP solution can be viewed as a collection of cycles visiting each vertex exactly
once.

Many algorithms have been developed for the AP (Bertsekas, 1981; Goldberg & Kennedy,
1995; Jonker & Volgenant, 1987). (For an experimental comparison of AP algorithms see
Dell’Amico & Toth, 2000.) The most efficient one is the Hungarian algorithm, which is based
on König-Egervary’s theorem and has a complexity of O(n3). In the AP-SAT algorithm we
use the implementation of the Hungarian algorithm by Jonker and Volgenant (1987, 2004).

665

Jäger & Zhang

For an unweighted directed graph G = (V,E), DAP can be solved by applying an AP
algorithm to the AP instance defined by the matrix C = (cij)1≤i,j≤n with

cij =


0, if (i, j) ∈ E, i 6= j
1, if (i, j) /∈ E, i 6= j
1, if i = j

where we map the costs of arcs in G to 0 and the costs of the remaining arcs to 1. If the
AP algorithm returns a solution with cost 0, there is a DAP solution in G, since every arc
taken in the AP solution is an arc in G. On the other hand, if it returns a solution of cost
greater than 0, there is no DAP solution in G because at least one arc in the solution does
not belong to G.

The first step of the AP-SAT algorithm is this DAP algorithm. Then a HC of G, if one
exists, is a solution to the DAP. We have to distinguish three cases at the end of the first
step:

• If the cost of the AP solution is greater than 0, G does not have a HC, and the DHCP
instance is solved with no solution.

• If the AP solution has cost 0 and the solution consists of one cycle, we have found a
HC – and the DHCP instance is also solved.

• If the AP solution has cost 0 and the AP solution has more than one cycle, we cannot
determine, based on the AP solution, whether or not G is Hamiltonian. We then
continue to the next steps of the AP-SAT algorithm.

2.2 Karp-Steele Patching

If the DAP solution does not provide a definitive answer to the problem, i.e., the case where
the AP solution cost is 0 and the AP solution contains more than one cycle, we continue to
search for a HC in G. We first patch the subcycles in an attempt to form a HC, and we use
Karp-Steele patching (KSP) for this purpose, which is an effective ATSP heuristic (Glover,
Gutin, Yeo & Zverovich, 2001; Goldengorin, Jäger & Molitor, 2006; Karp & Steele, 1985).
The operation of patching two cycles C1 and C2 in an AP solution is defined as follows:
two fixed arcs (v1, w1) ∈ C1 and (v2, w2) ∈ C2 are first deleted and two arcs (v1, w2) and
(v2, w1) joining the two cycles are added. The cost of patching C1 and C2 using (v1, w2)
and (v2, w1) is equal to

δ(C1, C2) = c(v1, w2) + c(v2, w1)− (c(v1, w1) + c(v2, w2))

i.e., δ(C1, C2) is the difference between the total cost of the inserted arcs and the total cost
of the deleted arcs. In each step we choose to patch the two cycles that have the largest
number of vertices. For these two cycles, the two arcs are chosen in such a way that the
patching cost is the minimum among all possible arc pairs. If we have k ≥ 2 cycles, we
repeat this patching step k − 1 times to form one cycle at the end. We apply KSP to the
AP instance defined in Section 2.1. If the patching procedure provides a HC, the AP-SAT
algorithm can be terminated. Otherwise, we continue to the next step.

666

Algorithm for Directed Hamiltonian Cyce Problem

2.3 Solving Variant APs

DAP may have multiple solutions, and some of the DAP solutions may be HCs. We can
increase the chance of finding a HC if we apply the AP step multiple times, since the
computational cost of the AP and the KSP algorithms is low. The key is to avoid finding
the same DAP solution again. To accomplish this, we slightly alter some of the arc costs of
the corresponding AP instance so as to find the other DAP solutions, enhanced by the KSP if
needed, to increase the possibility of finding a HC. In other words, we add a “perturbation”
component to create multiple variant AP instances to boost the overall chance of finding a
HC. Note that in the worst case when the DHCP instance contains no HC, this procedure
will not be productive.

The main idea to create a variant AP instance is to reduce the chance that the subcycles
in the current AP solution can be chosen in the subsequent rounds of solving the APs. This
is done by “perturbing” the costs of some of the arcs in G as follows. For each arc in the
current DAP solution we increase its cost by one. To create an AP instance different from
that in Section 2.1, we generalize the AP instance as follows. Let ci,j be the cost of the arc
(i, j) ∈ E, and let

M := n ·max {ci,j | (i, j) ∈ E}+ 1

i.e., M is greater than n times the largest cost of an arc in G. We then set the costs of the
edges not in E to M . The AP instance of Section 2.1 is a special case of this AP instance,
where the costs ci,j for all arcs (i, j) ∈ E are 0. It is critical to notice that all DAP solutions,
including a HC, must have costs less than M . As before, if the solution contains a HC,
the algorithm terminates; otherwise, the subcycles are patched using the KSP to possibly
find a HC. We repeat this step multiple times so that an arc, which has appeared in many
previous DAP solutions, will be very unlikely to appear in the next DAP solution, and an
arc, which has never occurred in any previous DAP solution, will be more likely to appear
in the next DAP solution.

Let r be the maximal number of AP/KSP calls, i.e., the number of variant AP instances
solved. We observed in our experiments that r = n (see step 3 of the pseudo code of the
appendix) is a good choice. This will be discussed in detail in Section 3.1.

2.4 Implicitly Enumerating all DAP Solutions Using SAT

All the AP and patching based steps discussed above may still miss a solution to a DHCP
instance. We now consider how to implicitly enumerate all DAP solutions for finding a
solution to the DHCP, if it exists. The idea is to systematically rule out all the DAP
solutions that have been discovered so far during the search. To this end, we first formulate
a DAP as a Boolean satisfiability (SAT) problem (Dechter, 2003) and forbid a DAP solution
by adding new constraints to the SAT model. This elementary technique of adding new
constraints with the purpose of enumerating all SAT solutions can also be applied to a
general SAT problem (e.g., see Jin, Han & Somenzi, 2005). Notice that this cannot be
easily done under the AP framework because such constraints cannot be properly added to
the AP. Moreover, we can take advantage of the research effort that has been devoted to
SAT, in particular, we can use an effective SAT solver called MiniSat (Eén & Sörensson,
2003, 2010).

667

Jäger & Zhang

In the conjunctive normal form (CNF), a SAT instance over a set of Boolean variables
is a conjunction of clauses, each of which is a disjunction of literals which are Boolean
variables or their negations. A clause is satisfied if one of its literals is True, and the
instance is satisfied if all its clauses are satisfied. The SAT problem is to find a truth
assignment of the variables to satisfy all clauses if they are satisfiable, or to determine no
such assignment exists. SAT was the first problem shown to be NP-complete (Cook, 1971;
Garey & Johnson, 1979; Karp, 1972).

We now formulate the DAP in SAT. A solution to a DAP must obey the following
restrictions:

• For each vertex i, i = 1, . . . , n, exactly one arc (i, j), i 6= j, exists in the DAP solution.

• For each vertex i, i = 1, . . . , n, exactly one arc (j, i), j 6= i, exists in the DAP solution.

We first introduce an integer decision variable xi,j to the arc (i, j) ∈ E where xi,j = 1 holds
if and only if the arc (i, j) appears in the DAP solution. We represent the above constraints
in the following integer linear program (ILP).{ ∑n

j=1,(i,j)∈E xi,j = 1 for i = 1, . . . , n∑n
i=1,(i,j)∈E xi,j = 1 for j = 1, . . . , n

(1)

where xi,j ∈ {0, 1} for (i, j) ∈ E. We thus have a total of 2n constraints. Note that we only
have to use m variables, one variable for each arc in the graph, which can be substantially
smaller than n2 variables for sparse graphs. We represent the integer linear program (1)
by a SAT model similar to the work of Lynce and Marques-Silva (2006), where we replace
integer variables xi,j with Boolean variables yi,j . To enforce the 2n restrictions in the SAT
formulation, we need to introduce constraints in clauses. One restriction in (1) means that
exactly one of the up to n involved Boolean variables for a vertex can be set to True and
the rest must be False. To represent this, we introduce at most 2n2 auxiliary variables
z1, z2, . . . , z2n2 , with up to n z’s for one restriction. Without loss of generality, consider the
first restriction, which has z1, z2, . . . , zn associated. We use zk to represent that at least one
of y1,1, y1,2, . . . , y1,k is True. Precisely, the z variables are defined as follows.

• z1 = y1,1 or equivalently (¬y1,1 ∨ z1) ∧ (y1,1 ∨ ¬z1).

• zk = y1,k ∨ zk−1 or equivalently (zk ∨ ¬y1,k) ∧ (zk ∨ ¬zk−1) ∧ (¬zk ∨ y1,k ∨ zk−1) for
k = 2, 3, . . . , n.

In addition, we need to enforce that only one y1,i for i = 1, 2, . . . , n can be True. This
means that if y1,k is True, none of the y1,i for i < k can be True. This can be formulated
as

• ¬zk−1 ∨ ¬y1,k for k = 2, 3, . . . , n.

Finally, zn must be True. The other restrictions in (1) are represented similarly.
The SAT based representation allows us to exclude a non-Hamiltonian DAP solution

previously found in the search. This can be done by introducing new clauses to explicitly

668

Algorithm for Directed Hamiltonian Cyce Problem

forbidding all subcycles of this solution. Let such a subcycle be (v1, v2, . . . , vk, v1). Then
we add the clause

¬yv1,v2 ∨ . . . ∨ ¬yvk−1,vk
∨ ¬yvk,v1

to the current SAT instance. As a result, the updated SAT instance is not satisfiable,
meaning that the corresponding DHCP instance does not contain a HC, or gives rise to a
new DAP solution, as it does not allow the previous DAP solution.

In summary, after the AP- and patching-related steps failed to find a solution, the AP-
SAT algorithm transforms the problem instance into a SAT instance. Then it collects all
previous DAP solutions, each of which includes at least two subcycles, and excludes these
subcycles for each of the DAP solutions by adding new clauses as described above. Then
the resulting SAT model is solved. If the SAT model is not satisfiable, then the DHCP
algorithm terminates with the result of the problem instance being not Hamiltonian. If the
SAT model is satisfiable and the solution has only one cycle, the algorithm stops with a HC.
If the SAT model is satisfiable, but the solution has more than one subcycle, new clauses
are introduced to the SAT model to rule out this solution, and the algorithm repeats to
solve the revised formula. Since there is a finite number of DAP solutions, the algorithm
terminates. In the worst case if the DAP solutions contain no HC, the SAT part of the
algorithm will enumerate all these DAP solutions. For an overview, we outline the main
steps of the AP-SAT algorithm in a pseudo code in the appendix.

2.5 Some General Remarks

Before we present our experimental results, we like to comment on the method we proposed
to help appreciate its features.

1. The AP-SAT algorithm consists of three main components, namely the AP step, the
KSP step and the SAT step. It might be interesting to know which of these compo-
nents is the most important one. For this, we have to distinguish between completeness
and efficacy of the algorithm. The only necessary step for the completeness is the SAT
step of Section 2.4. This step without all previous steps leads also to a correct DHCP
algorithm. On the other hand, the AP-SAT algorithm is more effective if the AP and
the KSP steps are called often and the SAT step is not called or called only a few
times. For example, if for an instance no DAP solution exists or an existing HC is
found by the previous steps, the SAT part will not be invoked at all. Indeed, our
experiments showed that the SAT step is not invoked for most of the test instances.
Regarding the relative time needed by the AP and the KSP steps, we have to con-
sider the density of problem instances. For an instance with a small number of arcs,
in most cases there is not only no HC solution, but also no DAP solution. In this
case the algorithm terminates after the first AP step and does not need to make any
KSP call. On the other hand, an instance with a large number of arcs should require
many AP steps, as many DAP solutions may exist which are not HCs, and thus a HC
solution may have to be found by KSP. This expected behavior could be validated by
experiments: the time for the KSP steps is smaller for instances with a small number
of arcs, but is larger for instances with a large number of arcs (see Figure 4).

669

Jäger & Zhang

2. The AP-SAT algorithm is also able to solve HCP as a special case of DHCP, but it
is less effective for this case. The reason is that for a symmetric case, an arc and its
reverse arc are often present in a DAP solution, resulting in many small cycles of two
vertices in the solution. Thus in general we have to enumerate a large number of DAP
solutions. In the worst case when no HC exists, all these DAP solutions have to be
enumerated, giving rise to a long running time.

3. We can easily revise the AP-SAT algorithm to identify all HCs in a directed graph.
Finding all solutions can be desirable for many applications, e.g., the problem of find-
ing all knight’s tour on a chessboard (Henderson & Apodaca, 2008; Kyek, Parberry &
Wegener, 1997). For algorithms for this problem, see the already mentioned algorithm
of Martello (1983) and the algorithm of Frieze and Suen (1992). The revision works as
follows. If no HC exists, the algorithm remains the same. Consider now the case that
at least one HC exists. If the first HC has been found, the original AP-SAT algorithm
terminates in this case. The revised algorithm at this stage saves the first HC, and
then continues to search for the next HC. In the pseudo code of the appendix, we
only need to replace “STOP with” by “SAVE” in rows 8, 11, and 23. Note that
for the revised algorithm, the SAT part is always invoked if at least one HC exists.
Furthermore – like the original AP-SAT algorithm – this revised algorithm works also
for the symmetric case, but is less effective.

4. The AP-SAT algorithm used a restart scheme, i.e., it repeatedly solved a series of AP
instances, which were derived by modifying costs of the arcs appeared in the previous
AP solution. Although the restart scheme and the random restart scheme, which was
developed for constraint problems in artificial intelligence (Gomes, Selman & Kautz,
1998), follow the same design principle of trying to avoid to encounter the same
solutions again in subsequent runs, these two schemes are fundamentally different. As
its name indicated, the random restart scheme depends on random choices made for
variable and value selections in the process of search for a variable assignment for a
constraint problem. In contrast, our restart scheme is not random; the arcs in the
current AP solution will receive higher costs so that the subcycles in the current AP
solution will less likely be chosen again. In other words, the restart scheme we used
is somewhat deterministic and depends on solution structures of the problem.

5. The method we used to exclude the subcycles in the solution to the current DAP in-
stance from the subsequent SAT solving process follows in principle the popular idea
of adding “no-good” constraints to a constraint satisfaction problem (Frost & Dechter,
1994; Richards & Richards, 2000; Zhang, Madigan, Moskewicz & Malik, 2001). Specif-
ically, these subcycles are forbidden by introducing additional constraints.

3. Experimental Results

We have implemented the AP-SAT algorithm, the DHCP algorithm of Martello (1983),
the DHCP algorithms based on the absolute SAT encoding (Hoos, 1999) and the relative
SAT encoding (Prestwich, 2003) in C++ and compared them to an algorithm based on
the award-winning Concorde TSP program (Applegate et al., 2005, 2006). For the al-

670

Algorithm for Directed Hamiltonian Cyce Problem

gorithm of Martello we have implemented a version which terminates whenever a HC, if
one exists, is found. For the SAT based algorithms we used the AP solver of Jonker and
Volgenant (1987, 2004) and the MiniSat SAT solver of Eén and Sörensson (2003, 2010).
To apply Concorde, a DHCP instance was first transformed to an asymmetric TSP in-
stance by the transformation in Section 2.1 and then to a symmetric TSP instance by the
2-point reduction method (Jonker & Volgenant, 1983). In our implementation, the 2-point
reduction works as follows for a graph G = (V,E) with V = {v1, v2, . . . , vn}.

1. Make a copy of the vertices v1, v2, . . . , vn, and create the vertex set V ′ := {v′1, v′2,
. . . , v′n}.

2. Define a new complete graph G′ on the vertex set V ∪ V ′ with (symmetric) cost
function c′ : V ∪ V ′ → {0; 1; 2} by

c′(vi, v′j) :=


0 for 1 ≤ i = j ≤ n
1 for 1 ≤ i 6= j ≤ n, (vi, vj) ∈ E
2 for 1 ≤ i 6= j ≤ n, (vi, vj) /∈ E

c′(vi, vj) := 2 for 1 ≤ i 6= j ≤ n
c′(v′i, v

′
j) := 2 for 1 ≤ i 6= j ≤ n

Then a directed HC exists on G if and only if a TSP tour of cost n exists on G′. Note that
– in contrast to the general version of the 2-point reduction – no value of −∞ is required
here. We also tried the 3-point reduction method, which is in principle similar to the 2-point
reduction, but uses two (instead of one) copies of the vertex set and uses only cost values
from {0; 1}. For the details of the 3-point reduction, see the work of Karp (1972). Our
experimental results, which are not included here, showed that the 3-point reduction runs
slower on average than the 2-point reduction. Therefore, in the rest of the comparison, we
only consider the 2-point reduction.

After the 2-point reduction, Concorde started with the worst possible solution value
as the initial upper bound and was terminated as soon as its lower bound indicates a HC
is impossible.

In addition to this comparison, we also experimentally analyzed the AP-SAT algorithm
including its asymptotic behavior, and applied it to study phase transitions of the DHCP.
All our experiments were carried out on a PC with an Athlon 1900MP CPU with 2 GB of
memory.

3.1 Comparison of DHCP Algorithms

In our experiments we first tested random asymmetric instances Gn,m and parameters
n = 100, 200, 400, 800, 1600 and m = dc·n·(log n+log log n)c with c = 0.5, 0.6, . . . , 1.90, 2.00.
For each n and each c we generated 50 random instances and measured the CPU time for
these instances. Furthermore, we tested real-world and random instances from the Dimacs
challenge (Johnson et al., 2002, 2008) and non-random instances (Reinelt, 1991, 2008).
Whereas Tsplib contains 26 single asymmetric TSP instances with sizes from 17 to 443,
the Dimacs challenge contains 10 asymmetric problem generators called amat, coin, crane,
disk, rect, rtilt, shop, stilt, super, and tmat. Using each of these generators we generated 24

671

Jäger & Zhang

instances, 10 with 100 vertices, 10 with 316 vertices, 3 with 1000 vertices, and 1 with 3162
vertices, leading to 240 instances (for each of the 10 problem generators 24 instances) overall.
To transform asymmetric TSP instances back to DHCP instances, it seems to be reasonable
to only keep the arcs of small weights while ignoring the ones with large weights. In other
words, to generate a DHCP instance we chose the m smallest arcs in the corresponding
asymmetric TSP instance. It is interesting to note that the most difficult problem instances
for most problems in Tsplib and Dimacs appear when the degree parameter c is around
2, which is the value we used in our experiments. In contrast, the most difficult instances
of random graphs occur when the degree parameter c is 0.9 (see Section 3.3).

To investigate the variation of running time, we present one subfigure for each problem
class, i.e., for the 5 random classes with sizes 100, 200, 400, 800, 1600, and for the 10
Dimacs classes amat, coin, crane, disk, rect, rtilt, shop, stilt, super, and tmat. The y-axis
gives the average times plus their 95% confidence intervals, where all values are in seconds.
For the random classes the x-axis describes the degree parameter c, and for the Dimacs
classes it describes the size n. The results for the random instances are summarized in
Figure 1 and for the Dimacs instances in Figures 2, 3. As the Tsplib class consists only
of 26 single instances with completely different sizes, structures and difficulties, we present
these results in Table 1. If an experiment of a single algorithm on a single instance required
at least 1 hour or did not terminate due to a high memory requirement, we set the CPU
times as “3600 seconds”.

Figures 1 – 3 and Table 1 show that the two SAT encodings are not competitive with
AP-SAT, Concorde or the Martello algorithm. Furthermore, AP-SAT and Concorde are
more stable than the Martello algorithm. Concorde failed to solve 16 Dimacs instances
(3 coin, 3 crane, 4 rect, 5 stilt, 1 super types) within the maximal allowed time of 1 hour,
whereas the AP-SAT algorithm failed only on 7 instances. Among these 7 instances on
which AP-SAT failed, 6 are stilt types, and the remaining instance (super3162) could be
solved if we increased the maximal allowed time from 1 hour to 4 hours (see Table 2). The
Martello algorithm was unable to solve the instances with 800 or larger size because of its
high memory requirement. For the other instances, it failed on 1 random instance of size
400 with degree parameter 0.9, on 51 Dimacs instances (10 coin, 12 crane, 11 disk, 11 rect,
7 stilt types), and 9 Tsplib instances (see Table 1). Nevertheless, the Martello algorithm
outperformed Concorde on smaller and easier instances, indicating that the former has
a worse asymptotic running time. Overall, we observed that the AP-SAT algorithm is
clearly superior to the four other algorithms. Among the 4266 instances (4000 random
instances, 240 Dimacs instances and 26 Tsplib instances) tested, only on 13 instances,
one of the other four algorithms is faster than AP-SAT. These problem instances include 4
random instances, namely 1 of size 400 with degree parameter 0.9, 3 of size 800 with degree
parameters 0.8, 0.9, 0.9, respectively, 8 Dimacs instances, namely coin1000-2, rect316-9,
stilt100-1, stilt100-5, stilt100-6, stilt100-7, stilt100-8, stilt316-2, and the Tsplib instance
br17 (see Table 1).

672

Algorithm for Directed Hamiltonian Cyce Problem

Figure 1: Comparison of all algorithms on random instances.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Size 100

Degree parameter c

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Size 200

Degree parameter c
A

v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Size 400

Degree parameter c

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Size 800

Degree parameter c

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Size 1600

Degree parameter c

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde

673

Jäger & Zhang

Figure 2: Comparison of all algorithms on Dimacs instances, part 1.

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

amat instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

coin instances

Size
A

v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

crane instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

disk instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

rect instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

rtilt instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

674

Algorithm for Directed Hamiltonian Cyce Problem

Figure 3: Comparison of all algorithms on Dimacs instances, part 2.

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

shop instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

stilt instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

super instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

100 316 1000 3162
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

tmat instances

Size

A
v
e

ra
g

e
 r

u
n

n
in

g
 t
im

e

 AP−SAT
 Concorde
 Martello
 Abs. Encoding
 Rel. Encoding

675

Jäger & Zhang

Table 1: Comparison of all algorithms on Tsplib instances.

Running time for algorithm
Instance (Size) AP-SAT Concorde Martello Absolute Encoding Relative Encoding

br17 (17) 4.05 0.07 66.39 0.85 0.08
ftv33 (34) 0 0.13 0 3.29 0
ftv35 (36) 0 0.15 0 5.59 0
ftv38 (39) 0 0.23 0 2.96 0.01
p43 (43) 0 0.42 0 65.58 0.01

ftv44 (45) 0 0.19 0 1.97 0.01
ftv47 (48) 0 0.16 0 5.23 0.01
ry48p (48) 0 0.07 3600 53.96 47.91
ft53 (53) 0 1.56 0 20.31 0.02
ftv55 (56) 0 0.09 0.01 11.13 230.04
ftv64 (65) 0 0.23 0 119.96 0.04
ft70 (70) 0 0.87 0 34.18 0.05
ftv70 (71) 0 0.29 0 1904.56 0.06

kro124p (100) 0 3.74 0.04 1993.33 3600
ftv100 (101) 0 0.56 3600 1024.22 3600
ftv110 (111) 0 2.42 3600 3600 3600
ftv120 (121) 0 0.8 3600 3600 3600
ftv130 (131) 0 3.04 3600 3600 3600
ftv140 (141) 0 0.84 3600 593.65 3600
ftv150 (151) 0 1.13 3600 2676.16 3600
ftv160 (161) 0 1.14 3600 3600 3600
ftv170 (171) 0 2.13 3600 3600 3600
rbg323 (323) 0.01 4.81 0.09 3600 5.12
rbg358 (358) 0.02 13.55 0.14 3600 6.98
rbg403 (403) 0.02 4.52 0.18 3600 10
rbg443 (443) 0.02 6.73 0.21 3600 13.24

676

Algorithm for Directed Hamiltonian Cyce Problem

3.2 Analysis of AP-SAT

The efficacy of the AP-SAT algorithm may be due to the following reasons. Instances
with no HC are most likely to have no DAP solution either, and therefore the algorithm
terminates after the first AP call. On the other hand, instances with a HC are likely to
have multiple HCs, one of which can be found quickly by the AP or KSP steps. The only
difficult case is when there are many DAP solutions, but none or a very few of them are
HCs. In this case the AP and KSP steps may fail, and the SAT part will be invoked to find
a HC or to disprove the existence of a HC.

In the following we will analyze the instances where AP-SAT fails or requires much
time, and analyze the number r of computing variant AP instances (which we had set to
the size of the instance n; see the end of Section 2.3). Therefore we investigated the three
procedures in AP-SAT, namely AP, KSP and SAT. We observed that the SAT part was
invoked only on 14 out of all 4266 instances tested. We considered these 14 and other two
instances (stilt3162 and super3162), on which AP-SAT did not terminate in 1 hour, to be
hard. To further analyze these 16 hard instances we increased the maximal allowed time
from 1 hour to 4 hours. In Table 2 we present the running times of AP, KSP and SAT, and
the number of calls to the three procedures, where the numbers of AP and KSP calls are
given in the same column, as these two numbers are equal or different by only one (see the
pseudo code in the appendix). Furthermore, we add two additional pieces of information:
whether an instance has a HC or whether this is unknown, and whether AP-SAT terminated
on the instance in 4 hours. In Table 2, “Memory” means that this part terminated due to
a high memory requirement. Note that the solution status of the instance stilt316-2 (“no
HC”) was known, since Concorde – in contrast to AP-SAT – was able to solve it.

Table 2 shows that the running time of AP/KSP contributed to the majority of the
total running time of AP-SAT only on 4 out of the 16 hard instances, i.e., coin1000-2 and
rect316-9, and the two instances stilt3162 and super3162 on which SAT is not invoked at
all. On 6 instances, AP-SAT did not terminate. On 5 out of these 6 instances, i.e., stilt316-
2, stilt316-4, stilt316-5, stilt1000-1, and stilt1000-2, the SAT part did not terminate in a
reasonable amount of time or the algorithm stopped due to a high memory requirement of
SAT.

In order to determine r, we re-ran all instances in Table 2 with three different values of
r, i.e., r = 0, r = n/2, and r = 2n. The results (not presented) showed that when AP-SAT
was unable to terminate with r = n (i.e., on the 6 instances stilt316-2, stilt316-4, stilt316-5,
stilt1000-1, stilt1000-2, and stilt3162), it also failed to stop with other values of r. For all
remaining 10 instances, increasing r = n to r = 2n did not reduce the running times. This
is reasonable for the two instances coin1000-2 and rect316-9 with a large AP/KSP time,
as they have no HC. On the other hand, these two instances are the only ones on which
AP-SAT ran faster by using smaller values of r, namely coin1000-2 by using r = n/2 and
rect316-9 by using r = 0.

We thus conclude that r should not be increased, but rather be decreased. As it is hard
to estimate the memory requirements and the time of the SAT part, one alternative for
difficult instances would be to start AP-SAT with a smaller parameter r and then to stop
the SAT part after some time or after one unsuccessful call. After that the complete AP-
SAT algorithm can be restarted with a larger r. For most instances, however, the choice of

677

Jäger & Zhang

Table 2: Comparison of the performance of AP, KSP, and SAT procedures in the AP-SAT
algorithm on 16 hard instances.

Running time Number of calls HC Termin.Instance AP KSP SAT AK/KSP SAT
br17 0 0 4.1 17 138 No Yes

coin1000-2 352.73 47.54 1.82 1000 1 No Yes
rect100-2 0.07 0.01 0.27 100 1 No Yes
rect316-9 3.69 0.61 0.35 316 1 No Yes
stilt100-1 0.17 0 0.07 100 1 No Yes
stilt100-5 0.2 0.01 28.84 100 41 Yes Yes
stilt100-6 0.17 0.02 0.07 100 1 No Yes
stilt100-7 0.17 0.05 0.06 100 1 No Yes
stilt100-8 0.15 0.03 0.07 100 1 No Yes
stilt316-2 20.21 1.37 14378.42 316 1 No No
stilt316-4 13.15 0.71 Memory 316 1 Unknown No
stilt316-5 21.14 1.63 Memory 316 1 Unknown No
stilt1000-1 1446.63 107.06 12846.31 1000 1 Unknown No
stilt1000-2 1457.76 102.21 12840.03 1000 1 Unknown No
stilt3162 13832.40 567.60 0 650 0 Unknown No

super3162 13244.88 441.46 0 1032 0 Yes Yes

Figure 4: Comparison of the performance of AP and KSP procedures in AP-SAT on random
instances of size 1600.

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Degree parameter c

A
ve

ra
ge

 ru
nn

in
g

tim
e

 AP
 KSP

r is not relevant. More difficult problem instances are required to perform a comprehensive
analysis of r.

Finally, in Figure 4 we compare the times used by AP and KSP on random instances of
size 1600 with degree parameter c = 0.5, 0.6, . . . , 1.90, 2.00.

We observe that AP is more time consuming than KSP. With a smaller c this effect is
more obvious because most instances can be solved with a result of “No HC” after the first
AP call, and thus the KSP does not need to be invoked at all.

678

Algorithm for Directed Hamiltonian Cyce Problem

3.3 Phase Transitions of the DHCP

For random undirected graphs Gn,m, where m arcs are randomly chosen from all possible
n(n− 1)/2 arcs over n vertices in the graph, Komlós and Szemerédi (1983) proved a phase
transition of c · dn · (log n+ log log n)/2c with c = 1 for the HCP. Vandegriend and Culber-
son (1998) experimentally verified the theoretical result, where the constant c is between 1.08
and 1.10. For the DHCP, where m arcs are randomly chosen from all possible n(n−1) arcs,
McDiarmid proved a phase transition of m = c·dn·(log n+log log n)c with c = 1 (1980). Our
experiments were aimed to verify this result and determine the multiplicative constant c. As
a directed graph may contain twice as many arcs as the undirected counterpart, we would
expect the number of arcs to be doubled as well at the phase transition point. Therefore
we tested m = dc · n · (log n + log log n)c with c = 0.5, 0.6, 0.7, 0.8, 0.81, 0.82, . . . , 1.19, 1.20,
1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00, where we expected the phase transition to occur
at c = 1. We considered problem instances with n = 128, 256, 512, 1024, 2048, 4096, 8192
vertices and chose 1000 independently generated random graphs for each n and for each c.

The phase transition result is shown in Table 3 and Figure 5, where the first parameter
is c and the second parameter the percentage of Hamiltonian graphs among all graphs
considered. We observe a phase transition of the DHCP similar to that of the HCP. In
particular, it is evident from Figure 5 that the phase transition becomes sharper, i.e., there
is a crossover among the phase transition curves, when the problem size increases, which
is characteristic for phase transitions in complex systems. This crossover occurs around
the degree parameter c = 0.9, which is substantially different from the expected value
of 1. In short, our observations verified the existence of a phase transition of the DHCP,
and the phase transition occurs at dc · n · (log n + log log n)c with approximately c = 0.9.
Furthermore, for the same constant c = 0.9, the probability that Gn,m is Hamiltonian
is 1/2. As a comparison, for undirected graphs, a constant between 1.08 and 1.10 was
found (Vandegriend & Culberson, 1998).

3.4 Asymptotic Behavior of AP-SAT

An interesting characteristic of an algorithm is its asymptotic behavior. To quantify this
behavior for the AP-SAT algorithm, we revisited the experiments of Section 3.3, i.e., the
experiments that verified the phase transitions of the DHCP. As described earlier, we con-
sidered random problem instances with n = 128, 256, 512, 1024, 2048, 4096, 8192 vertices
and chose 1000 independently generated random graphs for each n and for each c. To
measure the worst-case asymptotic behavior of AP-SAT, we only measured the CPU times
of the algorithm on the most difficult instances, i.e., the instances with degree parameter
c = 0.9 (see Section 3.3). The results can be found in Figure 6, where the x-axis is the
problem size and the y-axis the average time required. Since both, x- and y-axis are in
logarithmic scale and the log-log curve in Figure 6 is nearly linear, the average running
time of AP-SAT can be considered to be polynomial on the number n of vertices in the
graph. This is reasonable, as for random instances the SAT part was not called at all (see
Section 3.2), and the AP and KSP combined has a complexity not worse than O(n3).

679

Jäger & Zhang

Table 3: Phase transition of random instances.
Size

c 128 256 512 1024 2048 4096 8192
0.5 0 0 0 0 0 0 0
0.6 0 0 0 0 0 0 0
0.7 5.1 3 2.6 1.3 0.5 0.1 0.2
0.8 23.3 21.9 21.5 18.7 16.3 14.1 12.7
0.81 25.5 24.2 23.9 20.6 20.8 17.9 15.7
0.82 27.8 28.4 27.4 23.1 25 20 18.7
0.83 30.6 28.9 33 25.8 27 23.3 23.9
0.84 32.4 31.8 34.9 32.9 28.5 29 28.9
0.85 33.6 34.1 35.6 30 34.3 33.4 30
0.86 37.6 36.5 36.9 35.4 37.4 34.7 34.1
0.87 39.8 39.1 38.3 40.8 41 35.9 38.7
0.88 44 43.5 42.4 43.8 44.7 40.2 40.6
0.89 46.8 47.3 47.3 45.8 47.9 47.7 44.8
0.9 49 52 49.8 52.5 50.1 48.6 50.5
0.91 52.8 53.2 52.3 54.7 50.3 52.7 54.6
0.92 55.5 54.4 56.9 54.1 54.7 59.4 59.8
0.93 59.2 58.4 59.5 60.8 58.4 60.7 61.5
0.94 60.1 60.1 61.5 63.6 61.4 65.6 65.8
0.95 62.7 61.7 60.8 64.9 68.4 68.3 70.5
0.96 63.6 65.3 64 66.2 66.8 72.7 73.1
0.97 67.2 65 66.2 67.9 71.6 71 71.4
0.98 68.8 67.9 68.3 71.2 72.5 75.7 73.4
0.99 69.4 71.8 72.1 73.8 75 77 76.3
1 71 74 72.1 73.6 77.2 79.8 80
1.01 72.8 74.3 74.5 78.3 80.8 78.7 81.7
1.02 74.2 75.4 76.3 81.1 81.4 82.4 81.9
1.03 75.8 75.4 79 81.9 81 83.4 85.4
1.04 76.9 76.6 82.1 83.2 84.2 85.3 86.5
1.05 77.4 78.6 84.4 85.2 86.3 88.3 88.3
1.06 78.4 79.3 86 85.9 85.6 85.9 90.7
1.07 81.7 79.2 87.3 88.1 89.9 90 92.3
1.08 81.6 82.4 88.4 87.1 89.4 90.3 92
1.09 83.3 83.2 88.6 87.2 89.4 92.6 92.4
1.1 85.1 84.4 88.8 86.8 89.5 92 93.8
1.11 85.4 87 89.3 90.9 92 93.8 93.9
1.12 86.3 87.4 89.7 90.3 92.9 93.3 94
1.13 86.6 88.6 90.1 89.5 93 93.9 94.7
1.14 86.7 88.9 90.7 92.2 93.9 94.1 97.3
1.15 87.3 89.2 90.9 93.2 93.8 94.2 96.4
1.16 88.5 89.2 92.6 93.9 95.1 95.5 97.2
1.17 88.7 91.2 93.1 94.1 95.3 94.7 97.2
1.18 87.8 92.6 93.6 95 0 96.1 95.8 96.4
1.19 88.5 92.9 93 95.5 94.8 97.3 97.2
1.2 89.1 93.8 93.3 96.2 96.2 97.6 97.9
1.3 95.7 97.2 97.5 98.8 98.9 98.7 99.2
1.4 96.4 98.8 99 99.5 99.7 99.5 99.8
1.5 99.1 99.1 99.9 99.9 99.8 99.9 100
1.6 99.7 99.6 99.8 99.9 99.9 100 100
1.7 99.7 99.8 100 100 99.9 99.9 99.9
1.8 99.8 99.8 99.9 99.9 100 100 100
1.9 100 100 99.9 99.9 100 100 100
2 100 100 100 100 100 100 100

680

Algorithm for Directed Hamiltonian Cyce Problem

Figure 5: Phase transition of random instances.

 0

 20

 40

 60

 80

 100

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

E
xi

st
en

ce
 o

f H
C

s
in

 %

Degree parameter c

Size 128
Size 256
Size 512

Size 1024
Size 2048
Size 4096
Size 8192

681

Jäger & Zhang

Figure 6: Asymptotic behavior of the AP-SAT algorithm.

128 256 512 1024 2048 4096 8192
0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Size

A
ve

ra
ge

 ru
nn

in
g

tim
e

 AP−SAT

4. Summary

The Hamiltonian cycle problem (HCP) is an important, canonical combinatorial problem.
Surprisingly, for the HCP in directed graphs, which we called directed HCP or DHCP, no
effective exact algorithm has been developed. Our main result of this work is a novel and
effective exact algorithm for the DHCP. Our algorithm utilizes an existing algorithm for
the assignment problem and an existing method for Boolean satisfiability (SAT). Our work
includes a new SAT formulation of the HCP and the AP, which can be potentially extended
to other problems such as the TSP. Our experimental results on random and real problem
instances showed that our new algorithm is superior to four known algorithms including
one algorithm that takes advantage of the award-winning Concorde TSP algorithm. Fur-
thermore, the first phase transition result on combinatorial problems was done on the HCP
and later was extended to the DHCP. In this paper we experimentally verified the existence
of a phase transition of the DHCP and refined the location where such a phase transition
appears using our new exact DHCP algorithm.

Acknowledgments

We thank David S. Johnson at AT&T Labs - Research and Gregory Gutin at Royal Holloway
University of London for many discussions related to this work and their insightful comments
on our manuscript. This research was supported in part by NSF grants IIS-0535257 and
DBI-0743797 to Weixiong Zhang.

682

Algorithm for Directed Hamiltonian Cyce Problem

Appendix A. Pseudo Code of AP-SAT Algorithm

INPUT Directed non-complete graph G = (V,E) with |V | = n.
1 Define matrix C as in Section 2.1, M := 1.
2 Define subcycle collection set W := ∅.
3 FOR s = 1, . . . , n
4 Solve AP on instance matrix C with solution value g, AP solution

(v1, vi1), (v2, vi2) . . . , (vn−1, vin−1), (vn, vin), number of cycles k.
5 IF g ≥M
6 THEN STOP with No HC.
7 ELSE IF k = 1
8 THEN STOP with HC being the AP solution.
9 Apply KSP to the cycles, and receive solution value h and complete

cycle (w1, w2, . . . , wn, w1).
10 IF h = 0
11 THEN STOP with HC (w1, w2, . . . , wn, w1).
12 FOR t = 1, . . . , n
13 cvt,vit

= cvt,vit
+ 1

14 M = n ·max {ci,j | (i, j) ∈ E}+ 1.
15 ci,j = M for all (i, j) /∈ E.
16 Add each subcycle of AP solution to W .
17 Start with the SAT model explained in Section 2.4.
18 For each subcycle (v1, v2, . . . , vk−1, vk, v1) of W add the clause

¬yv1,v2 ∨ . . . ∨ ¬yvk−1,vk
∨ ¬yvk,v1 to the SAT model.

19 Solve the SAT model.
20 IF Variable setting exists for the model.
21 THEN Add all k subcycles of the solution of the SAT model to W .
22 IF k = 1
23 THEN STOP with HC being the only

subcycle.
24 GOTO 19.
25 ELSE STOP with No HC.
OUTPUT HC of G, or proof that No HC exists in G.

References

Angluin, D. & Valiant, L.G. (1979). Fast Probabilistic Algorithms for Hamiltonian Circuits
and Matchings. J. Comput. System. Sci. 18(2), 155-193.

683

Jäger & Zhang

Applegate, D.L., Bixby, R.E., Chvátal, V. & Cook, W.J. (2005). Concorde Code:

http://www.tsp.gatech.edu/concorde.html

Applegate, D.L., Bixby, R.E., Chvátal, V. & Cook, W.J. (2006). The Traveling Salesman
Problem. A Computational Study. Princeton University Press.

Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J., Espinoza, D., Goycoolea, M.
& Helsgaun, K. (2009): Certification of an Optimal Tour through 85,900 Cities.
Oper. Res. Lett. 37(1), 11-15.

Bang-Jensen, J. & Gutin, G. (2008). Chapter 5 in: Digraphs: Theory, Algorithms and Ap-
plications. Springer, London. Free available:

http://www.cs.rhul.ac.uk/books/dbook/

Bertsekas, D.P. (1981). A New Algorithm for the Assignment Problem. Math. Program. 21,
152-171.

Bollobás, B. (1985). Random Graphs. Academic Press, London.

Bollobás, B., Fenner, T.I. & Frieze, A.M. (1987). An Algorithm for Finding Hamiltonian
Paths and Cycles in Random Graphs. Combinatorica 7(4), 327-341.

Bondy, J.A. (1995). Basic Graph Theory: Paths and Circuits. In Graham, R.L., Grötschel,
M., Lovasz, L. (Eds.): Handbook of Combinatorics I (3-110). North-Holland, Amster-
dam.

Cheeseman, P., Kanefsky, B. & Taylor, W.M. (1991). Where the Really Hard Problems
Are. In Mylopoulos, J., Reiter, R. (Eds.): Proc. 12th International Conference on
Joint Artificial Intelligence (IJCAI), 331-337. Morgan Kaufmann.

Christofides, N. (1975). Graph Theory – An Algorithmic Approach. Academic Press, New
York.

Chvátal, V. (1985). Hamiltonian Cycles. Chapter 11 in Lawler, E.L., Lenstra, J.K., Rinnooy
Kan, A.H.G., Shmoys, D.B. (Eds.): The Traveling Salesman Problem. A Guided Tour
of Combinatorial Optimization. John Wiley & Sons, Chichester.

Cook, S.A. (1971). The Complexity of Theorem-Proving Procedures. Proc. 3rd Ann. ACM
Symp. on Theory of Computing (STOC), 151-158.

Cook, W.J. (2010). TSP Homepage:

http://www.tsp.gatech.edu/

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Dell’Amico, M. & Toth, P. (2000). Algorithms and Codes for Dense Assignment Problems:
the State of the Art. Discrete Appl. Math. 100(1-2), 17-48.

Eén, N. & Sörensson, N. (2003). An Extensible SAT-Solver. In Giunchiglia, E., Tacchella, A.
(Eds.): Proc. 6th International Conference on Theory and Applications of Satisfiability
Testing (SAT). Lecture Notes in Comput. Sci. 2919, 502-518.

Eén, N. & Sörensson, N. (2010). MiniSat Code:

http://minisat.se

684

Algorithm for Directed Hamiltonian Cyce Problem

Frank, J., Gent, I. & Walsh, T. (1998). Asymptotic and Finite Size Parameters for Phase
Transitions: Hamiltonian Circuit as a Case Study. Inform. Process. Lett. 65(5), 241-
245.

Frieze, A.M. (1988a). Finding Hamiltonian Cycles in Sparse Random Graphs. J. Com-
bin. Theory Ser. B 44, 230-250.

Frieze, A.M. (1988b). An Algorithm for Finding Hamilton Cycles in Random Directed
Graphs. J. Algorithms 9, 181-204.

Frieze, A.M. & Suen, S. (1992). Counting Hamilton Cycles in Random Directed Graphs.
Random Structures Algorithms 9, 235-242.

Frost, D. & Dechter, R. (1994). Dead-End Driven Learning. Proc. 12th National Conference
on Artificial Intelligence (AAAI), 294-300. AAAI Press.

Johnson, D.S. (2008). 8th Dimacs Implementation Challenge: The Traveling Salesman Prob-
lem:

http://www.research.att.com/~dsj/chtsp/

Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability. A Guide to the Theory
of NP-Completeness. Freeman, New York.

Glover, F., Gutin, G., Yeo, A. & Zverovich, A. (2001). Construction Heuristics for the
Asymmetric TSP. European J. Oper. Res. 129, 555-568.

Goldberg, A.V. & Kennedy, R. (1995). An Efficient Cost Scaling Algorithm for the Assign-
ment Problem. Math. Program. 71, 153-177.

Goldengorin, B., Jäger, G. & Molitor, P. (2006). Tolerance Based Contract-or-Patch Heuris-
tic for the Asymmetric TSP. In Erlebach, T. (Ed.): Proc. 3rd Workshop on Combi-
natorial and Algorithmic Aspects of Networking (CAAN). Lecture Notes in Com-
put. Sci. 4235, 86-97.

Gomes, C.P., Selman, B. & Kautz, H. (1998). Boosting Combinatorial Search Through
Randomization. Proc. 15th National Conference on Artificial Intelligence (AAAI),
431-437. AAAI Press.

Gould, R.J. (1991). Updating the Hamiltonian Problem – a Survey. J. Graph Theory 15(2),
121-157.

Grebinski, V. & Kucherov, G. (1996). Reconstructing a Hamiltonian Circuit by Querying
the Graph: Application to DNA Physical Mapping. IR 96-R-123, Centre de Recherche
en Informatique de Nancy.

Gutin, G. & Moscato, P. (2000). Hamiltonian Page:

http://alife.ccp14.ac.uk/memetic/~moscato/Hamilton.html

Henderson, R. & Apodaca, E. (2008). A Knight of Egodeth: Zen Raptured Quietude. Book-
Surge Publishing.

Hoos, H.H. (1999). SAT-Encodings, Search Space Structure, and Local Search Performance.
Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI), 296-303.
Morgan Kaufmann.

685

Jäger & Zhang

Jin, H., Han, H. & Somenzi, F. (2005). Efficient Conflict Analysis for Finding All Satisfying
Assignments of a Boolean Circuit. In Halbwachs, N., Zuck, L.D. (Eds.): Proc. 11th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS). Lecture Notes in Comput. Sci. 3440, 287-300.

Johnson, D.S., Gutin, G, McGeoch, L.A., Yeo, A., Zhang, W. & Zverovich, A. (2002).
Experimental Analysis of Heuristics for the ATSP. Chapter 10 in: Gutin, G., Punnen,
A.P. (Eds.): The Traveling Salesman Problem and Its Variations. Kluwer.

Jonker, R. & Volgenant, A. (1983). Transforming Asymmetric into Symmetric Traveling
Salesman Problems. Oper. Res. Lett. 2(4), 161-163.

Jonker, R. & Volgenant, A. (1987). A Shortest Augmenting Path Algorithm for Dense and
Sparse Linear Assignment Problems. Computing 38, 325-340.

Jonker, R. & Volgenant, A. (2004). AP Code:

http://www.magiclogic.com/assignment.html

Kabadi, S.N. & Punnen, A.P. (2002). The Bottleneck TSP. Chapter 15 in: Gutin, G., Pun-
nen, A.P. (Eds.): The Traveling Salesman Problem and Its Variations. Kluwer.

Karp, R.M. (1972). Reducibility Among Combinatorial Problems. In Miller, R.E., Thatcher,
J.W. (Eds.): Complexity of Computer Computations, 85-103. New York: Plenum.

Karp, R.M. & Steele, J.M. (1985). Probabilistic Analysis of Heuristics. Chapter 6 in: Lawler,
E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (Eds.): The Traveling Sales-
man Problem. A Guided Tour of Combinatorial Optimization. John Wiley & Sons,
Chicester.

Kelly, L. (2007). Hamilton Cycles in Directed Graphs. PhD Thesis, University of Birming-
ham, United Kingdom.

Komlós, M. & Szemerédi, E. (1983). Limit Distribution for the Existence of a Hamiltonian
Cycle in a Random Graph. Discrete Math. 43, 55-63.

Kyek, O., Parberry, I. & Wegener, I. (1997). Bounds on the Number of Knight’s Tours.
Discrete Appl. Math. 74(2), 171-181.

Lynce, I. & Marques-Silva, J. (2006). Efficient Haplotype Inference with Boolean Satisfia-
bility. Proc. 21st National Conference on Artificial Intelligence (AAAI). AAAI Press.

Martello, S. (1983). An Enumerative Algorithm for Finding Hamiltonian Circuits in a Di-
rected Graph. ACM Trans. Math. Software 9(1), 131-138.

McDiarmid, C.J.H. (1980). Cluster Percolation and Random Graphs. Math. Pro-
gram. Stud. 13, 17-25.

Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B. & Troyansky, L. (1999). Determin-
ing Computational Complexity from Characteristic ’Phase Transitions’. Nature 400,
133.

Prestwich, S. (2003). SAT Problems with Chains of Dependent Variables. Discrete
Appl. Math. 130(2), 329-350.

Pósa, L. (1976). Hamiltonian Circuits in Random Graphs. Discrete Math. 14, 359-364.

686

Algorithm for Directed Hamiltonian Cyce Problem

Reinelt, G. (1991). TSPLIB – a Traveling Salesman Problem Library. ORSA J. Comput. 3,
376-384.

Reinelt, G. (2008). Tsplib Library:

http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/

Richards, E.T. & Richards, B. (2000). Non-Systematic Search and No-Good Learning.
J. Automat. Reason. 24(4), 483-533.

Skiena, S. (2008). Stony Brook Algorithm Repository:

http://www.cs.sunysb.edu/~algorith/files/hamiltonian-cycle.shtml

Stojaković, M. & Szabó, T. (2005). Positional Games on Random Graphs. Random Struc-
tures Algorithms 26(1-2), 204-223.

Vandegriend, B. (1998). Finding Hamiltonian Cycles: Algorithms, Graphs and Performance.
Master Thesis, University of Alberta, Canada.

Vandegriend, B. & Culberson, J. (1998). The Gn,m Phase Transition is Not Hard for the
Hamiltonian Cycle Problem. J. Artificial Intelligence Res. 9, 219-245.

Velev, M.N. & Gao, P. (2009). Efficient SAT Techniques for Absolute Encoding of Permuta-
tion Problems: Application to Hamiltonian Cycles. Proc. 8th Symposium on Abstrac-
tion, Reformulation and Approximation (SARA), 159-166.

Zhang, W. & Korf, R.E. (1996). A Study of Complexity Transitions on the Asymmetric
Traveling Salesman Problem. Artificial Intelligence 81, 223-39.

Zhang, L., Madigan, C.F., Moskewicz, M.H. & Malik, S. (2009). Efficient Conflict Driven
Learning in a Boolean Satisfiability Solver. Proc. IEEE/ACM International Confer-
ence on Computer Aided Design (ICCAD), 279-285.

687

