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Abstract

Model-based diagnostic reasoning often leads to a large number of diagnostic hypothe-
ses. The set of diagnoses can be reduced by taking into account extra observations (passive
monitoring), measuring additional variables (probing) or executing additional tests (se-
quential diagnosis/test sequencing). In this paper we combine the above approaches with
techniques from Automated Test Pattern Generation (ATPG) and Model-Based Diagnosis
(MBD) into a framework called Fractal (FRamework for ACtive Testing ALgorithms).
Apart from the inputs and outputs that connect a system to its environment, in active
testing we consider additional input variables to which a sequence of test vectors can be
supplied. We address the computationally hard problem of computing optimal control as-
signments (as defined in Fractal) in terms of a greedy approximation algorithm called
FractalG. We compare the decrease in the number of remaining minimal cardinality
diagnoses of FractalG to that of two more Fractal algorithms: FractalATPG and
FractalP. FractalATPG is based on ATPG and sequential diagnosis while FractalP is
based on probing and, although not an active testing algorithm, provides a baseline for com-
paring the lower bound on the number of reachable diagnoses for the Fractal algorithms.
We empirically evaluate the trade-offs of the three Fractal algorithms by performing
extensive experimentation on the ISCAS85/74XXX benchmark of combinational circuits.

1. Introduction

Combinational Model-Based Diagnosis (MBD) approaches (de Kleer & Williams, 1987)
often lead to a large number of diagnoses, which is exponential in the number of components,
in the worst-case. Combining multiple sensor readings (observation vectors) (Pietersma &
van Gemund, 2006) helps in a limited number of cases because the approach is inherently
passive, i.e., there are situations in which the observations repeat themselves (for example,
in systems that are stationary, pending a reconfiguration).

Sequential diagnosis algorithms (Shakeri, 1996) can be used as an alternative to the
above passive approach, with better decay of the number of diagnostic hypotheses. The
decay rate depends on the tests and test dictionary matrix, and is bounded from below
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by results for tests with binary outcomes. Algorithms for sequential diagnosis suffer from
a number of other limitations. Early approaches assume single-faults while multiple-fault
sequential diagnosis is super-exponential (Σp

2 or harder) (Shakeri, Raghavan, Pattipati, &
Patterson-Hine, 2000).

As observations (test outcomes) are not known in advance, the goal of a diagnostician
is to create a policy that minimizes the diagnostic uncertainty on average, i.e., one aims at
minimizing the average depth of a test tree. Pattipati and Alexandridis (1990) have shown
that under certain conditions (e.g., unit test costs and equal prior fault probabilities) a one-
step look-ahead policy leads to an optimal average depth of the test tree; de Kleer, Raiman,
and Shirley (1992) have shown that one-step look-ahead delivers good practical results for
a range of combinational circuits.

This paper proposes a framework, called Fractal (FRamework for ACtive Testing
ALgorithms) for comparing different computational vs. optimality trade-offs in various
techniques for reducing the diagnostic uncertainty. All Fractal algorithms start from an
initial set of multiple-fault diagnostic hypotheses (this initial set can contain all possible hy-
potheses) and compute actions for reducing this initial set to, if possible, a single diagnostic
hypothesis (candidate). In the case of probing (de Kleer & Williams, 1987), this action con-
sists of measuring an internal (hidden) variable. In the case of sequential diagnosis (ATPG),
the action consists of applying a set of input (control) assignments that disambiguate the
health state of the component that appears faulty in most of the initial diagnostic hypothe-
ses. In the case of active testing the action consists of applying a set of input (control)
assignments that optimally reduce the initial set of hypotheses. In our framework the ac-
tive testing and sequential diagnosis approaches differ only in how they compute the input
(control) assignments. We measure the optimality of the algorithms by computing the speed
with which they decay the initial set of hypotheses and the computational efficiency.

FRACTAL

system

environment

IN OUT

CTL

Figure 1: Active testing dataflow for Fractal

In Fractal, we study the influence of not just the input (IN) and output (OUT) variables,
but also control (CTL) variables. Controls are similar to inputs, except they can be modified
by users while the system is connected to its environment. Use of models from first principles
and controls in Fractal allows us to eliminate the need of designing explicit tests and test
dictionaries. Our algorithms implicitly create test matrices leading to optimal decay based
on the built-in testing capabilities of the system. We call the above approach active testing;
it is a technique using models from first principles and controls for creating test sequences
that reduce the diagnostic uncertainty of a system. The architecture in which we use
Fractal and active testing is shown in Fig. 1.
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As reliable component failure rates may be problematic to obtain, we assume equally
likely and small prior probabilities of failure and measure the diagnostic uncertainty as the
number of Minimal Cardinality (MC) diagnoses. Fractal can be modified to use arbitrary
failure probabilities and even components that are more likely to be faulty than healthy.
This would necessitate modifications of some of the algorithms (e.g., change of bias in the
importance sampling, etc.). In addition to simplifying the modeling, the equiprobable failure
rates assumption also has computational advantages. It can be shown that with equal and
small prior probabilities of failure, the diagnostic entropy, e.g., as used by de Kleer and
Williams (1987), can be computed directly from the number of MC diagnoses.

The computational complexity of deterministic algorithms for sequential diagnosis in-
creases with respect to both the fault-cardinality and the number of tests (the size of the
test dictionary). To enable performance to scale up to real-world problems, which may have
high fault-cardinality and a large number of tests, we propose FractalG–a low-cost greedy
stochastic approach that maintains exponential decay of the number of MC diagnoses. In-
stead of assuming single faults or timing out, FractalG may result in suboptimal but still
exponential decay.

We study the performance of FractalG compared to two alternatives: (1) Frac-

talATPG, which implements sequential diagnosis based on Automated Test Pattern Gener-
ation (ATPG), and (2) FractalP, which implements probing (de Kleer & Williams, 1987).
ATPG has been successfully used in the electronic industry to compute sets of inputs that
test each component in a VLSI circuit. We have considered an ATPG-based approach be-
cause it is natural to attempt to reduce the diagnostic ambiguity by computing inputs that
can disambiguate the status of the single component that appears in the majority of the
diagnostic hypotheses.

FractalATPG is derived from sequential testing, is deterministic and myopic, and al-
lows us to evaluate how well a single-step lookahead approach works on the given model.
Although probing is not classified as a technique for sequential diagnosis, it can be viewed
as a process for generating tests using additional control circuitry (machine or human) to
execute a probe such that some output reveals the internal variable. Its significance is that
it shows a lower bound on the number of diagnoses achievable for a model extended with
unlimited CTL circuitry.

Our contributions are as follows:

• We devise an approach for reducing the diagnostic uncertainty, called active testing,
that generalizes sequential diagnosis and MBD, allows combination of multiple passive
sensor readings, and does not require explicit tests and test dictionaries.

• We design FractalATPG—a single-step look-ahead algorithm based on ATPG—for
solving the active testing problem.

• We design and implement FractalG–a greedy approximation algorithm for active
testing that overcomes the limitations of FractalATPG and offers a trade-off in com-
putational complexity vs. optimality for reducing the diagnostic uncertainty. We
compare FractalG and FractalATPG.

• We implement FractalP and use it as a computationally efficient, myopic (one-step
lookahead), easy-to-analyze baseline technique for reducing diagnostic uncertainty.
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Although FractalP is technically not an active testing algorithm, the implementation
of probing and active testing in a common framework and the unified experimentation
help to understand the cost vs. performance trade-offs in (active and passive) testing
vs. probing strategies.

• We present extensive empirical data on 74XXX/ISCAS85 circuits, which enable us
to evaluate FractalATPG, FractalG, and FractalP in terms of their ability to
reduce the number of remaining diagnoses according to a geometric decay function.

This paper is organized as follows. Section 2 introduces related work. Section 3 presents ba-
sic MBD notions, the concept of remaining number of diagnoses and a framework for sequen-
tial diagnosis. Section 4 introduces a stochastic sampling-based algorithm for computing the
expected number of cardinality-minimal diagnoses. Section 5 describes the FractalATPG,
FractalG, and FractalP algorithms. Section 6 shows experimental results. Finally,
Sec. 7 summarizes this paper and discusses future work.

2. Related Work

Early work aimed at diagnostic convergence by de Kleer and Williams (1987) compute
a probe sequence for reducing diagnostic entropy using a myopic search strategy. Unlike
their work, in active testing we assume that probes are not available, other than indirectly
exposed through diagnosis based on test vectors, which offers an automated solution.

Generating test vectors to deduce faults has received considerable attention. Automatic
test pattern generation (ATPG) aims at verifying particular, single-faults (Stephan, Bray-
ton, & Sangiovanni-Vincentelli, 1996). ATPG differs from active testing in that the vectors
are specific for particular single-faults, whereas active testing generates a sequence of vectors
to isolate unknown, multiple-faults, a much harder problem.

Table 1: Properties of techniques for sequential diagnosis

Technique Model User Actions Automatic Performance Cost
Tests

Passive monitoring first principles - - variable1 low
Sequential diagnosis test dictionary apply test no good variable2

FractalATPG first principles apply controls yes variable3 medium
FractalG first principles apply controls yes good high
Probing (FractalP) first principles measure internals - binary search medium

1 Depends on the environment (IN/OUT data).
2 Speed deteriorates rapidly with multiple-faults.
3 Depends on the model topology.

Table 1 summarizes the properties of the various techniques for sequential diagnosis dis-
cussed in this paper. Fractal eliminates the need for using tools for building tests and test
dictionaries, such as the ones proposed by Deb, Ghoshal, Malepati, and Kleinman (2000).
In our approach tests and test dictionaries are automatically constructed from design speci-
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fications and models. At the same time, Fractal delivers comparable or better diagnostic
convergence at reasonable computational price.

Active testing bears some resemblance with sequential diagnosis, which also generates a
sequence of test vectors (Pattipati & Alexandridis, 1990; Raghavan, Shakeri, & Pattipati,
1999; Tu & Pattipati, 2003; Kundakcioglu & Ünlüyurt, 2007). The principal difference is
that in sequential diagnosis a fault dictionary is used (“fault matrix”). This pre-compiled
dictionary has the following drawback: in order to limit the (exponential) size of the dic-
tionary, the number of stored test vectors is extremely small compared to the test vector
space. This severely constrains the optimality of the vector sequence that can be generated;
in contrast, active testing computes arbitrary test vectors on the fly using a model-based
approach. Furthermore, the matrix specifies tests that only have a binary (pass/fail) out-
come, whereas active testing exploits all the system’s outputs, leading to faster diagnostic
convergence. In addition, we allow the inputs to be dynamic, which makes our framework
suitable for online fault isolation.

The sequential diagnosis problem studies optimal trees when there is a cost associated
with each test (Tu & Pattipati, 2003). When costs are equal, it can be shown that the
optimization problem reduces to a next best control problem (assuming one uses informa-
tion entropy). In this paper a diagnostician who is given a sequence S and who tries to
compute the next optimal control assignment would try to minimize the expected number
of remaining diagnoses |Ω(S)|.

Our task is harder than that of Raghavan et al. (1999), since the diagnosis task is NP-
hard, even though the diagnosis lookup uses a fault dictionary; in our case we compute a
new diagnosis after every test. Hence we have an NP-hard sequential problem interleaved
with the complexity of diagnostic inference at each step (in our case the complexity of
diagnosis is Σp

2-hard). Apart from the above-mentioned differences, we note that optimal
test sequencing is infeasible for the size of problems in which we are interested.

Model-Based Testing (MBT) (Struss, 1994) is a generalization of sequential diagnosis.
The purpose of MBT is to compute inputs manifesting a certain (faulty) behavior. The main
differences from our active testing approach are that MBT (1) assumes that all inputs are
controllable and (2) MBT aims at confirming single-fault behavior as opposed to maximally
decreasing the diagnostic uncertainty.

Brodie, Rish, Ma, and Odintsova (2003) cast their models in terms of Bayesian networks.
Our notion of entropy is the size of the diagnosis space, whereas Brodie et al. use decision-
theoretic notions of entropy to guide test selection. Brodie et al. extend their past Bayesian
diagnostic approach (Rish, Brodie, & Ma, 2002) with sequential construction of probe sets
(probe sets are collections of, for example, pings to a subset of the nodes in a computer net-
work). The approach of Brodie et al. is limited to networks although it can be extended by
modifying the type of Bayesian network shown by Rish et al.; such a modification, however,
would necessitate more computationally expensive Bayesian reasoning for achieving good
approximation results for the most probable explanations.

The approach of Brodie et al. (2003) does not compute modifications in the target
network topology and does not propose control actions (for example, a network server
that fails to respond can be dialed-up through a modem or checked by a technician at a
higher cost). The similarity between Fractal and active probing is that both approaches
attempt at reducing the diagnostic uncertainty by analyzing the future state of the system
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as a function of some action (sending a set of probes for active probing or an application of
control inputs for FractalG and FractalATPG).

We solve a different problem than that of Heinz and Sachenbacher (2008), Alur, Cour-
coubetis, and Yannakakis (1995). Both of these approaches assume a non-deterministic
model defined as an automaton. In contrast, our framework assumes a static system (plant
model) for which we must compute a temporal sequence of tests to best isolate the diagnosis.

Esser and Struss (2007) also adopt an automaton framework for test generation, ex-
cept that, unlike Heinz and Sachenbacher (2008) or Alur et al. (1995), they transform this
automaton to a relational specification, and apply their framework to software diagnosis.
This automaton-based framework accommodates more general situations than does ours,
such as the possibility that the system’s state after a transition may not be uniquely de-
termined by the state before the transition and the input, and/or the system’s state may
be associated with several possible observations. In our MBD framework, a test consists
of an instantiation of several variables, which corresponds to the notion of test sequence
within the automaton framework of Heinz and Sachenbacher. The framework of Esser and
Struss requires modeling of the possible faults, whereas Fractal works both with weak
and strong-fault models1. Interestingly, as shown by Esser and Struss, modeling of abnor-
mal software behavior can be derived to some extent from software functional requirements.
This makes their framework suitable for software systems.

A recent approach to active diagnosis is described by Kuhn, Price, de Kleer, Do, and
Zhou (2008), where additional test vectors are computed to optimize the diagnosis while the
system (a copier) remains operational. Their work differs from ours in that plans (roughly
analogous to test sequences) with a probability of failure T are computed statically, and
a plan remains unmodified even if it fails to achieve its desired goal (a manifestation of a
failure with probability close to T ). Conversely, Fractal dynamically computes next-best
control settings in a game-like manner. The biggest difference between Fractal and the
approach of Kuhn et al. is in the use of models. Fractal is compatible with traditional
MBD (de Kleer & Williams, 1987) and can reuse existing models from first principles while
the pervasive approach of Kuhn et al. uses an automaton and a set of possible actions.

The approach of Kuhn et al. (2008) uses existing MBD and planning algorithms, and as
such integrates existing approaches; in contrast, Fractal introduces new control algorithms
and reuses an external diagnostic oracle. An advantage of the pervasive diagnosis approach
is that the use of a planning engine generates a complete sequence of actions, as opposed to
the one-step lookahead of FractalG. Depending on the planning formalism, the complexity
of pervasive diagnosis can be dominated by the planning module, while the most complex
computational task in Fractal is that of diagnosis. Both pervasive diagnosis and this
paper, however, report good average-case computational efficiency for benchmark problems.
Last, the paper of Kuhn et al. is limited to single-fault diagnoses, although the pervasive
diagnosis framework can be generalized to multiple faults.

Feldman, Provan, and van Gemund (2009a) introduce an early version of FractalG.
This paper (1) generalizes the Fractal framework, (2) introduces FractalATPG and
FractalP, (3) extends the experimental results, and (4) provides a comparison of the
different Fractal approaches.

1. Weak-fault models (also known as models with ignorance of abnormal behavior) and strong-fault models
are discussed by Feldman, Provan, and van Gemund (2009b).
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3. Concepts and Definitions

Our discussion starts by introducing relevant MBD notions. Central to MBD, a model of
an artifact is represented as a propositional Wff over a set of variables V . We will define
four subsets of these variables: assumable, observable2, control, and internal variables. This
gives us our initial definition:

Definition 1 (Active Testing System). An active testing system ATS is defined as ATS =
〈SD, COMPS, CTL, OBS〉, where SD is a propositional Wff over a variable set V , COMPS∪
OBS ∪ CTL ⊆ V , and COMPS, OBS, and CTL are subsets of V containing assumable,
observable, and control variables, respectively.

The set of internal variables is denoted as INT, INT = V \ {COMPS ∪ OBS ∪ CTL}.
Throughout this paper we assume that OBS, COMPS, and CTL are disjoint, and SD 6|=⊥.
Sometimes it is convenient (but not necessary) to split OBS into non-controllable inputs IN
and outputs OUT (OBS = IN ∪OUT, IN ∩OUT = ∅).

3.1 Running Example

We will use the Boolean circuit shown in Fig. 2 as a running example for illustrating all
notions and the algorithm shown in this paper. The 2-to-4 line demultiplexer consists of
four Boolean inverters and four and-gates.

b
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i
o1

o2

o3

o4

h2

h3 h4

h1
p

s

r

q

h5

h6

h7

h8

Figure 2: A demultiplexer circuit

The expression h ⇒ (o⇔ ¬i) models an inverter, where the variables i, o, and h rep-
resent input, output, and health respectively. Similarly, an and-gate is modeled as h ⇒
(o⇔ i1 ∧ i2 ∧ i3). The above propositional formulae are copied for each gate in Fig. 2 and
their variables subscripted and renamed in such a way as to ensure a proper disambiguation

2. In the MBD literature the assumable variables are also referred to as “component”, “failure-mode”, or
“health” variables. Observable variables are also called “measurable” variables.
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and to connect the circuit. The result is the following propositional model:

SD =































[h1 ⇒ (a⇔ ¬p)] ∧ [h2 ⇒ (p⇔ ¬r)]
[h3 ⇒ (b⇔ ¬q)] ∧ [h4 ⇒ (q ⇔ ¬s)]
h5 ⇒ (o1 ⇔ i ∧ p ∧ q)
h6 ⇒ (o2 ⇔ i ∧ r ∧ q)
h7 ⇒ (o3 ⇔ i ∧ p ∧ s)
h8 ⇒ (o4 ⇔ i ∧ r ∧ s)

(1)

The set of assumable variables is COMPS = {h1, h2, . . . , h8}, the observable variables are
OBS = {a, b, o1, o2, o3, o4}, and the set of control variables is the singleton CTL = {i}. Note
the conventional selection of the sign of the “health” variables h1, h2, . . . , hn. Other authors
use “ab” for abnormal.

3.2 Diagnosis

The traditional query in MBD computes terms of assumable variables, which are explana-
tions for the system description and an observation.

Definition 2 (Diagnosis). Given a system ATS, an observation α over some variables in
OBS, and an assignment ω to all variables in COMPS, ω is a diagnosis iff SD ∧ α ∧ ω 6|=⊥.

The set of all diagnoses of SD and an observation α is denoted as Ω(SD, α). The cardinality
of a diagnosis, denoted as |ω|, is defined as the number of negative literals in ω.

Continuing our running example, consider an observation vector α1 = ¬a ∧ ¬b ∧ i ∧ o4.
There are a total of 256 possible assignments to all variables in COMPS and |Ω(SD, α1)| =
200. Example diagnoses are ω1 = h1 ∧ h2 ∧ . . . ∧ h7 ∧ ¬h8 and ω2 = ¬h1 ∧ h2 ∧ h3 ∧ ¬h4 ∧
h5 ∧ h6 ∧ h7 ∧ h8. We will write sometimes a diagnosis in a set notation, specifying the set
of negative literals only. Thus ω2 would be represented as D2 = {¬h1,¬h4}.

Definition 3 (Minimal-Cardinality Diagnosis). A diagnosis ω≤ is defined as Minimal-
Cardinality (MC) if no diagnosis ω̃≤ exists such that |ω̃≤| < |ω≤|.

Our selection of minimality criterion is such that it is impossible to compute all diagnoses
from the set of all MC diagnoses without further inference. MC diagnoses, however, are often
used in practice due to the prohibitive cost of computing a representation of all diagnoses
of a system and an observation (e.g., all subset-minimal diagnoses).

Consider an observation vector α2 = ¬a ∧ ¬b ∧ i ∧ ¬o1 ∧ o4. There are 6 MC diagnoses
of cardinality 2 consistent with SD ∧ α2, and counting these MC diagnoses is a common
problem in MBD.

The number of MC diagnoses of a system ATS and an observation α is denoted as
|Ω≤(SD, α)|, where Ω≤(SD, α) is the set of all MC diagnoses of SD ∧ α. Given a system
ATS, an observation sequence S is defined as a k-tuple of terms S = 〈α1, α2, . . . , αk〉, where
αi (1 ≤ i ≤ k) is an instantiation of variables in OBS.

Throughout this paper, we assume that the health of the system under test does not
change during the test (i.e., the same inputs and a fault produce the same outputs) and call
this assumption stationary health.
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Lemma 1. Given a system ATS, a stationary health state for its components ω, and an

observation sequence S, it follows that ω ∈ Ω(SD, α1) ∩ Ω(SD, α2) ∩ . . . ∩ Ω(SD, αk).

Proof. The above statement follows immediately from the stationary health assumption and
Def. 2.

Lemma 1 can be applied only in the cases in which all diagnoses are considered. If we
compute subset-minimal diagnoses in a weak-fault model, for example, the intersection
operator has to be redefined to handle subsumptions. To handle non-characterizing sets of
diagnoses3 (e.g., MC or first m diagnoses), we provide the following definition.

Definition 4 (Consistency-Based Intersection). Given a set of diagnoses D of SD∧α, and
an a posteriori observation α′, the intersection of D with the diagnoses of SD∧α′, denoted
as Ω∩(D,α′), is defined as the set D′ (D′ ⊆ D) such that for each ω ∈ D′ it holds that
SD ∧ α′ ∧ ω 6|=⊥.

It is straightforward to generalize the above definition to an observation sequence S.

Definition 5 (Remaining Minimal-Cardinality Diagnoses). Given a diagnostic system ATS
and an observation sequence S, the set of remaining diagnoses Ω(S) is defined as Ω(S) =
Ω∩(Ω∩(· · ·Ω∩(Ω≤(SD, α1), α2), · · · ), αk).

We use |Ω(S)| instead of the more precise diagnostic entropy as defined by de Kleer and
Williams (1987) and subsequent works, as this allows low-complexity estimations (discussed
in Sec. 4). In particular, if all diagnoses are of minimal-cardinality and the failure probability
of each component is the same, then the gain in the diagnostic entropy can be directly
computed from |Ω(S)|.

4. Computing the Expected Number of MC Diagnoses

Active testing aims to minimize the expected number of diagnoses that result from the
possible set of outputs that may occur from a given control vector. In this section we
present an algorithm to approximate this expectation.

We will compute the expected number of diagnoses for a set of observable variables M
(M ⊆ OBS). The initial observation α and the set of MC diagnoses D = Ω≤(SD, α) modify
the probability density function of subsequent outputs (observations), i.e., a subsequent
observation α′ changes its likelihood. The (non-normalized) a posteriori probability of an
observation α′, given a function Ω≤ that computes the set of MC diagnoses and an initial
observation α, is:

Pr(α′|SD, α) =
|Ω∩(Ω≤(SD, α), α′)|
|Ω≤(SD, α)| (2)

The above formula computes the probability of a given a priori set of diagnoses restricting
the possible outputs, i.e., we assume that the probability is the ratio of the number of

3. A characterizing set of diagnoses, for example the set of all subset-minimal diagnoses, is loosely defined
as a set of diagnoses from which the (complete) set of all diagnoses can be constructed without using the
system description or any other information.

309



Feldman, Provan, & van Gemund

remaining diagnoses to the number of initial diagnoses. In practice, there are many α for
which Pr(α′|SD, α) = 0, because a certain fault heavily restricts the possible outputs of a
system (i.e., the set of the remaining diagnoses in the numerator is empty).

The expected number of remaining MC diagnoses for a variable set M , given an initial
observation α, is then the weighted average of the intersection sizes of all possible instanti-
ations over the variables in M (the weight is the probability of an output):

E≤(SD,M |α) =

∑

α′∈M∗

|Ω∩(D,α′)| · Pr(α′|SD, α)

∑

α′∈M∗

Pr(α′|SD, α)
(3)

where D = Ω≤(SD, α) and M∗ is the set of all possible assignments to the variables in M .
Replacing (2) in (3) and simplifying gives us the following definition:

Definition 6 (Expected Minimal-Cardinality Diagnoses Intersection Size). Given a sys-
tem ATS and an initial observation α, the expected remaining number of MC diagnoses
E≤(SD,OBS|α) is defined as:

E≤(SD,OBS|α) =

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|2

∑

α′∈OBS∗

|Ω∩(Ω≤(SD, α), α′)|
(4)

where OBS∗ is the set of all possible assignments to all variables in OBS.

Two of the algorithms presented in this paper compute the expected number of remaining
MC diagnoses for one variable. As a result the expectation expression in (4) simplifies to:

E≤(SD, v|α) =
|Ω∩(Ω≤(SD, α), v)|2 + |Ω∩(Ω≤(SD, α),¬v)|2
|Ω∩(Ω≤(SD, α), v)| + |Ω∩(Ω≤(SD, α),¬v)| (5)

The complexity of computing (5) depends only on the length of the sequence S, the com-
plexity of the MC oracle computing Ω≤(SD, α), and the complexity of the intersection
algorithm.

4.1 Computing the Expectation Using Importance Sampling

To overcome the computational complexity of evaluating an expectation, we employ a
stochastic algorithm based on importance sampling. The key insight that allows us to
build a fast method for computing the expected number of remaining diagnoses is that the
prior observation (and respectively the set of MC diagnoses) shifts the probability of the
outputs. Hence, an algorithm that samples the possible input assignments (recall that it
is a basic modeling assumption that inputs are equally likely) and counts the number of
different observations, given the set of prior diagnoses, can produce a good approximation.

We next introduce an algorithm for approximating the expected number of remaining
diagnoses.
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Algorithm 1 Approximate expectation of Ω(S)

1: function Expectation(ATS, γ,D) returns a real

inputs: ATS (active testing system): model
γ (term): control vector
D (set of diagnoses): prior diagnoses

local variables: α, β, ω (terms): observation
s (integer): sum of the remaining diagnoses, initially 0
q (integer): sum of squares of the remaining diagnoses, initially 0
Z (set of terms): samples

Ê (real): expectation

2: Z ← ∅
3: repeat

4: α← RandomInputs(SD, IN)
5: for all ω ∈ D do

6: β ← InferOutputs(SD,OUT, α ∧ γ, ω)
7: if α ∧ β 6∈ Z then

8: Z ← Z ∪ {α ∧ β}
9: q ← q + |Ω∩(D,α ∧ β ∧ γ)|2

10: s← s+ |Ω∩(D,α ∧ β ∧ γ)|
11: Ê ← q/s
12: end if

13: end for

14: until Terminate(Ê)
15: return Ê
16: end function

Algorithm 1 uses a couple of auxiliary functions: RandomInputs assigns random values to
all inputs and InferOutputs computes all outputs from the system model, all inputs and
a diagnosis.4 The computation of the intersection size |Ω∩(D,α∧β∧γ)| can be implemented
by counting those ω ∈ D for which SD ∧ α ∧ β ∧ γ ∧ ω 6|=⊥.

The algorithm terminates when a termination criterion (checked by Terminate) is
satisfied. In our implementation, Terminate returns success when the last n iterations
(where n is a small constant) leave the expected number of diagnoses, Ê, unchanged, in
terms of its integer representation. Our experiments show that for all problems considered,
n < 100 yields a negligible error.

The complexity of Alg. 1 is determined by the complexity of consistency checking (line
9 – 10) and the size of D. If we denote the complexity of a single consistency check with
Υ, then the complexity of Alg. 1 becomes O(|D|Υ). Although consistency checking for
diagnostic problems is NP -hard in the worst case, for average-case problems it is easy. In
our implementation of Expectation we overcome the complexity of consistency checking

4. This is not always possible in the general case. In our framework, we have a number of assumptions,
i.e., a weak-fault model, well-formed circuit, etc. The complexity of InferOutputs thus depends on
the framework and the assumptions.
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by using an incomplete Logic-Based Truth Maintenance System (LTMS) (Forbus & de Kleer,
1993).

5. Algorithms for Reducing the Diagnostic Uncertainty

In this section we introduce three algorithms: FractalATPG, FractalG, and FractalP.

5.1 Problem Definition and Exhaustive Search

Our AT problem is defined as follows:

Problem 1 (Optimal Control Sequence). Given a system ATS, a sequence (of past obser-
vations and controls) S = 〈α1 ∧ γ1, α2 ∧ γ2, · · · , αk ∧ γk〉, where αi (1 ≤ i ≤ k) are OBS
assignments and γj (1 ≤ j ≤ k) are CTL assignments, compute a new CTL assignment
γk+1, such that:

γk+1 = argmin
γ∈CTL⋆

E≤(Ω∩(SD, S), {IN ∪OUT}|γ) (6)

where CTL⋆ is the space of all possible control assignments.

Problem 1 is different from the general sequential testing problem, as formulated by Shakeri
(1996). In the Shakeri formulation, there are different test costs and different prior failure
probabilities, where Problem 1 assumes equal costs and equal small prior probabilities of
failure. Pattipati and Alexandridis (1990) show that under those assumptions, minimizing
the test cost at each step constitutes an optimal policy for minimizing the expected test cost.
Hence, solving Problem 1 is solving the lesser problem of generating an optimal test strategy
given unit costs and equal prior failure probability. Note that we can use an algorithm that
optimizes Problem 1 as a heuristic algorithm for solving the sequential testing problem. In
this case the expected cost would be arbitrarily far from the optimum one, depending on
the cost distribution and the tests.

Consider our running example with an initial observation vector (and control assign-
ment) α3 ∧ γ3 = a ∧ b ∧ i ∧ o1 ∧ ¬o2 ∧ ¬o3 ∧ ¬o4, where γ3 = i is chosen as the initial
control input. The four MC diagnoses of SD ∧ α3 ∧ γ3 are Ω≤ = {{¬h1,¬h3}, {¬h2,¬h5},
{¬h4,¬h5}, {¬h5,¬h8}}.

An exhaustive algorithm would compute the expected number of diagnoses for each of
the 2|CTL| next possible control assignments. In our running example we have one control
variable i and two possible control assignments (γ5 = i and γ6 = ¬i). To compute the
expected number of diagnoses, for each possible control assignment γ and for each possible
observation vector α, we have to count the number of initial diagnoses which are consistent
with α ∧ γ.

Computing the intersection sizes for our running example gives us Table 2. Note that,
in order to save space, Table 2 contains rows only for those α ∧ γ for which Pr(α ∧ γ) 6= 0,
given the initial diagnoses Ω≤ (and, as a result, |Ω∩(Ω≤(SD, α3 ∧ γ3), α ∧ γ)| 6= 0). It is
straightforward to compute the expected number of diagnoses for any control assignment
with the help of this marginalization table. In order to do this we have to (1) filter out
those lines which are consistent with the control assignment γ and (2) compute the sum
and the sum of the squares of the intersection sizes (the rightmost column of Table 2).

312



A Model-Based Active Testing Approach to Sequential Diagnosis

Table 2: Marginalization table for SD and α3

i a b o1 o2 o3 o4 Pr |Ω∩| i a b o1 o2 o3 o4 Pr |Ω∩|
F F F F F F F 0.03125 1 F T T T F F T 0.03125 1
F F F T F F F 0.0625 2 T F F F F F T 0.0625 2
F F F T F F T 0.03125 1 T F F F F T F 0.03125 1
F F T F F F F 0.03125 1 T F F F T F F 0.03125 1
F F T T F F F 0.0625 2 T F T F T F F 0.03125 1
F F T T F F T 0.03125 1 T F T T F F F 0.03125 1
F T F F F F F 0.03125 1 T F T T F T T 0.0625 2
F T F T F F F 0.0625 2 T T F F F T F 0.03125 1
F T F T F F T 0.03125 1 T T F T F F F 0.03125 1
F T T F F F F 0.03125 1 T T F T T F T 0.0625 2
F T T T F F F 0.0625 2 T T T T F F F 0.125 4

To compute E(SD,OBS|α3 ∧ ¬i), we have to find the sum and the sum of the squares of
the intersection sizes of all rows in Table 2 for which column i is F. It can be checked that
E(SD,OBS|α3,¬i) = 24/16 = 1.5. Similarly, E(SD,OBS|α3 ∧ i) = 34/16 = 2.125. Hence
an optimal diagnostician would consider a second measurement with control setting γ = i.

The obvious problem with the above brute-force approach is that the size of the marginal-
ization table is, in the worst-case, exponential in |OBS|. Although many of the rows in the
marginalization table can be skipped as the intersections are empty (there are no consis-
tent prior diagnoses with the respective observation vector and control assignment), the
construction of this table is computationally so demanding that we will consider an approx-
imation algorithm (to construct Table 1 for our tiny example, the exhaustive approach had
to perform a total of 512 consistency checks).

5.2 FractalATPG

Consider the running example from Sec. 3 and an observation α4 = a∧ b∧ i∧o1∧¬o4. This
leads to the 6 double-fault MC diagnoses, shown in Fig. 3.
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Figure 3: ATPG-Based active testing example

Instead of searching through the space of all possible control assignments, we directly com-
pute a control assignment that tests a specific component c by using an approach from
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ATPG. We choose this component c to be the one that most decreases the expected num-
ber of remaining MC diagnoses by minimizing E≤(SD, c|α∧ γ). If we look at Fig. 3 we can
see that knowing the health of h1 and h3 leads to E≤ ≈ 3.33, for h2, h4, h5, and h7, we have
E≤ ≈ 4.33, and for h6 and h7 we have E≤ = 6. Choosing a control setting that computes
the state of h1 or h3 is intuitive as the state of this component makes the most balanced
partition of the prior diagnoses.

We next present the FractalATPG algorithm that uses the approach illustrated above.

Algorithm 2 ATPG-Based active testing algorithm

1: function FractalATPG(ATS, α, γ) returns a control term

inputs: ATS (active testing system): model
α (term): initial (non-modifiable) observation
γ (term): initial control

local variables: c (variable): component
f (integer): remaining diagnoses
d (term): diagnosis
γ (term): control setting
H (set of pairs): component/expectation pairs
D (set of terms): diagnoses

2: D ← Ω≤(SD, α ∧ γ)
3: for all c ∈ COMPS do

4: f ← 0
5: for all d ∈ D do

6: if c ∈ d then

7: f ← f + 1
8: end if

9: end for

10: H ← 〈c, f2 + (|D| − f)2〉
11: end for

12: H ← SortByExpectation(H)
13: for i = 1 . . . |H| do

14: if γ ← ATPG(ATS, α,Hi〈c〉) then

15: return γ
16: end if

17: end for

18: return RandomControls()
19: end function

Algorithm 2 counts the number of prior diagnoses that each component appears in (lines
4 - 8) and the result is saved in the variable f . This number is then used to compute the
expected number of remaining MC diagnoses given the component health (line 10). For
each component the expected number of diagnoses is stored in the set H (line 10). The set
H is then sorted in increasing order of expectation (line 12). We then iterate over the set of
components in order of expectation (lines 13 – 17). For each component we try to compute
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an ATPG vector that tests it. In some cases such a vector may not exist. In the worst case
there is no ATPG vector that can test any component, and Alg. 2 has no better strategy
but to return a random control assignment (line 18).

The time complexity of Alg. 2 is determined by the complexity of the diagnostic search
(line 2) and the complexity of ATPG (line 14). If we denote the former with Ψ and the
latter with Φ then the complexity of FractalATPG becomes O(ΦΨ|COMPS|). As the
complexity of ATPG is usually lower than that of diagnosis (abductive reasoning) (Φ < Ψ),
the complexity of FractalATPG is determined by the time for computing MC diagnoses.

Computing ATPG vectors has been extensively studied (Bushnell & Agrawal, 2000)
and although it is known to be an NP -hard problem (Ibarra & Sahni, 1975), there exists
evidence that ATPG is easy for practical problems (Prasad, Chong, & Keutzer, 1999). Some
efficient ATPG algorithms integrate randomized approach and Boolean difference (Bushnell
& Agrawal, 2000). The former approach efficiently computes test vectors for the majority of
components, while the latter computes test vectors for the remaining components by using
a DPLL-solver.

We implement ATPG as follows. First we duplicate the system description SD by
renaming each variable v : v 6∈ {IN ∪ CTL} to v′, thus generating SD′ (SD and SD′ share
the same input and control variables). Then we create the all healthy assignment (for all
assumable variables) ω0 and the single fault assignment ωI such that ω0 and ωI differ only in
the sign of the literal whose component we want to test. Finally, we construct the following
propositional expression:

∆ ≡ α ∧ SD ∧ SD′ ∧ ω0 ∧ ωI ∧
[

∨

o∈OUT

o⊕ o′
]

(7)

where the operator ⊕ denotes an exclusive or, hence o⊕ o′ ≡ (¬o ∧ o′) ∨ (o ∧ ¬o′).
The propositional expression in (7) leaves unconstrained only the controls γ that we

need. There are two “instances” of the system: healthy (SD and ω0) and faulty (SD and
ωI). The last term in ∆ forces the output of the healthy and the faulty system to be
different in at least one bit. To compute an ATPG control vector we need one satisfiable
solution of ∆. Note that an ATPG control vector may not exist (∆ |=⊥), i.e., a component
may not be testable given CTL and SD ∧ α. Often there are multiple satisfying control
assignments. In this case FractalATPG chooses an arbitrary one. The latter does not
mean that all satisfiable ATPG control vectors achieve the same uncertainty reduction.
FractalATPG becomes suboptimal when there is no control testing a given component, or
when there are multiple controls. FractalATPG becomes completely random when there
are no components that can be tested with the given choice of controls.

There are two problems with FractalATPG. First, FractalATPG assumes stationary
inputs, i.e., FractalATPG ignores a source of uncertainty. The non-modifiable inputs, how-
ever, can only help in the decay process, hence FractalATPG is “conservative” in choosing
the control assignments–a feature that leads to suboptimality. A bigger problem is that
FractalATPG decreases the expected number of remaining MC diagnoses by computing
the exact health of one component. Here, the problem is not that FractalATPG tests one

component per step, but that it tries to compute a control assignment that computes the
exact state of this component. An active testing algorithm can decrease the diagnostic un-
certainty by computing a probability distribution function for the state of each component.
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A natural extension of FractalATPG is an algorithm that computes the state of k
components simultaneously. The latter approach assumes that the system is k-component
testable–an unrealistic assumption. In our experiments we have seen that systems are often
even not single-component testable. Note that computing the exact states of components
is not a requirement for decreasing the diagnostic uncertainty. Instead of computing the
exact state of one or more components, the algorithm shown in the next section implicitly
builds a probability density function for the health state of each component, and does not
suffer from the problems of FractalATPG.

5.3 FractalG

Consider SD from the example started in Sec. 3, input variables IN = {i}, control vari-
ables CTL = {a, b}, initial input values β = i, and an initial observation α3 = β ∧ (¬a ∧
¬b) ∧ (¬o1 ∧ o2 ∧ o3 ∧ o4). The initial observation α3 leads to 5 triple-fault MC diag-
noses: Ω≤(SD, α3) = {{¬h1, ¬h4,¬h7}, {¬h1,¬h7,¬h8}, {¬h2,¬h3,¬h6}, {¬h2,¬h4,¬h5},
{¬h3,¬h6,¬h8}}. We also write D = Ω≤(SD, α3) and choose one of the faults in D to be
the truly injected fault ω∗ (let ω∗ = {¬h1,¬h7,¬h8}).

Exhaustive Greedy

k γ1 E≤(SD, IN|γ1) k γ1 E≤(SD, IN|γ1)

1 ¬a ∧ ¬b 4.33 1 ¬a ∧ ¬b 4.33
2 a ∧ ¬b 1.57 2 a ∧ ¬b 1.57
3 ¬a ∧ b 1.57 3 a ∧ b 1.33
4 a ∧ b 1.33

|Ω∩(D,β ∧ γ1)| = 2 |Ω∩(D,β ∧ γ1)| = 2

k γ2 E≤(SD, IN|γ2) k γ2 E≤(SD, IN|γ2)

1 ¬a ∧ ¬b 1.67 1 ¬a ∧ ¬b 1.67
2 a ∧ ¬b 1 2 ¬a ∧ b 1
3 ¬a ∧ b 1 3 a ∧ b 1.67
4 a ∧ b 1.67

|Ω∩(Ω∩(D,β ∧ γ1), β ∧ γ2)| = 1 |Ω∩(Ω∩(D,β ∧ γ1), β ∧ γ2)| = 1

Figure 4: Exhaustive and greedy search for an optimal control assignment

The left and right parts of Fig. 4 show two possible scenarios for locating ω∗. On the left
we have an exhaustive approach which considers all the 2|CTL| control assignments, hence it
cannot be used to solve practical problems. The greedy scenario on the right side of Fig. 4
decreases the number of computations of expected number of remaining MC diagnoses from
2|CTL| to |CTL|. The idea is to flip one control variable at a time, to compute the expected
number of remaining MC diagnoses and to keep the flip (shown in bold in Fig. 4) if E≤

decreases. Given an initial control assignment γ we consider the space of possible control
flips. This space can be visualized as a lattice (Fig. 5 shows a small example). Figure 5
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shows the expected number of MC diagnoses for each control assignment. Note that probing
can be visualized in a similar way.

{i2} 21.05 {i4} 18.84 {i6} 25 {i7} 25

{} 25

{i2, i4, i6, i7} 17.54

{i2, i4} 14.65 {i2, i6} 21.05 {i2, i7} 21.05 {i4, i6} 21.05 {i4, i7} 18.84 {i6, i7} 25

{i2, i4, i6} 17.54 {i2, i4, i7} 14.5 {i2, i6, i7} 21.05 {i4, i6, i7} 21.05

Figure 5: Example of an expectation optimization lattice (74182, |CTL| = 4, |IN| = 5).
Each node shows the set of control flips and the expected number of MC diagnoses.

In practice, control literals are mostly independent and even though the space of control
assignments is not continuous in general, it has large continuous subspaces. The greedy
approach is shown in Alg. 3, which computes a control assignment for a given active testing
system and a prior observation.

Algorithm 3 Greedy active testing algorithm

1: function Fractal(ATS, α) returns a control term

inputs: ATS (active testing system): model
α (term): initial observation

local variables: γ, γ′ (terms): control configurations
E,E′ (reals): expectations
D (set of terms): diagnoses
l (literal): control literal

2: D ← Ω≤(SD, α)
3: E ← Expectation(ATS, γ,D)
4: for all l ∈ γ do

5: γ′ ← FlipLiteral(γ, l)
6: E′ ← Expectation(ATS, γ′,D)
7: if E′ < E then

8: γ ← γ′

9: E ← E′

10: end if

11: end for

12: return γ
13: end function
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The set of initial diagnoses is computed from the initial observation in line 2. In line 5,
Alg. 3 “flips” the next literal in the current control assignment. The auxiliary FlipLiteral

subroutine simply changes the sign of a specified literal in a term. After each “flip” the
expected intersection size is computed with a call to Expectation (cf. Alg. 1). If the
new expected intersection size is smaller than the current one, then the proposed control
assignment is accepted as the current control assignment, and the search continues from
there.

The complexity of FractalG is determined by the complexity of the diagnostic search
(line 2) and the complexity of Expectation (line 3 and line 6). If we denote the former
with Ψ and the latter with Ξ then the complexity of FractalG becomes O(ΦΞ|CTL|). As
Φ ∼ Ξ, the complexity of FractalG is the same as FractalG. In practice FractalG

requires more computation to compute a sufficient decay. This is due to the design of
Expectation (Alg. 1).

While the active-testing problem is worst-case NP -hard (it can be reduced to computing
a diagnosis), as we will see in the experimentation section, it is possible to achieve very good
average-case performance by choosing an appropriate MBD oracle. The advantage of the
greedy approach, in particular, is that the number of computations of the expected number
of diagnoses is linear in the number of literals in the control assignment. This is done at
the price of some optimality (i.e., the effect of combinations of controls is neglected).

5.4 FractalP

Probing is related to active testing as measuring internal variables can be thought of as
revealing internal control circuits. Alternatively, one can add control circuitry to a model
that reveals the values of internal variables. To reveal this hidden control potential we
implement GDE probing (de Kleer & Williams, 1987) in FractalP. Our approach is
different from GDE in two ways. First, we compute the expected number of remaining
MC diagnoses instead of expected diagnostic entropy. Second, Fractal does not use an
Assumption-Based Truth Maintenance System (ATMS) (de Kleer, 1986).

Consider the running example from Sec. 3 and an observation α5 = ¬a∧ ¬b∧ i ∧ ¬o1 ∧
o2 ∧ o3 ∧ o4. This leads to 5 triple-fault MC diagnoses: Ω≤(SD, α3) = {{¬h1, ¬h4,¬h7},
{¬h1,¬h7,¬h8}, {¬h2,¬h3,¬h6}, {¬h2,¬h4,¬h5}, {¬h3,¬h6,¬h8}}. Subsequent measure-
ment of p gives us |Ω∩(Ω≤(SD, α3), p)| = 3 if p is positive and |Ω∩(Ω≤(SD, α5),¬p)| = 2
otherwise. The expected number of MC diagnoses is E≤(SD, {p}|α3) = 2.6. Repeating this
for the remaining internal variables results in E≤(SD, {q}|α3) = 2.6, E≤(SD, {r}|α3) = 3.4,
and E≤(SD, {s}|α3) = 3.4. As a result we can see that measuring p and q is less informative
than measuring r and s, which is intuitive as r and s give a more balanced partitioning of
the circuit.

Problem 2 (Probe Sequencing). Given a system ATS, an observation α and a partial
assignment to the internal variables ψ, choose a variable p∗ from the set U of unassigned
internal variables ψ, such that:

p∗ = argmin
p∈U

E≤(SD, p|α ∧ ψ) (8)

Algorithm 4 solves Problem 2. Algorithm 4 computes the expected number of diagnoses
for each unobserved variable (lines 3 - 11). Starting from the set D of initial diagnoses
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(computed in line 2), Alg. 4 perform a total of 2|D||V \{OBS∪COMPS}| consistency checks
(lines 4 and 5) to determine the expected number of MC diagnoses for each unobserved
variable.

We next show the probing algorithm as introduced by de Kleer and Williams (1987) and
adapted for the Fractal framework.

Algorithm 4 Probing algorithm

1: function FractalP(ATS, α) returns a variable

inputs: ATS (active testing system): model
α (term): observation

local variables: v,R (variables): probes
E,E′ (reals): expectations
p, q (reals): remaining diagnoses
D (set of terms): diagnoses

2: D ← Ω≤(SD, α)
3: for all v ∈ V \ {COMPS ∪OBS} do

4: p← |Ω∩(D,α ∧ v)|
5: q ← |Ω∩(D,α ∧ ¬v)|
6: E′ ← (p2 + q2)/(p + q)
7: if E′ < E then

8: R← v
9: E ← E′

10: end if

11: end for

12: return R
13: end function

Instead of computing the expected number of remaining MC diagnoses for a single variable
p, it is possible to consider measuring all pairs of variables 〈p1, p2〉, or in general, all k-tuples
of internal variables 〈p1, p2, . . . , pm〉 for m ≤ |V \{OBS∪COMPS}|. We will refer to probing
involving more than 1 variable as k-probing. Although it has been shown that users do not
significantly benefit in terms of diagnostic uncertainty by performing k-probing (de Kleer
et al., 1992), we can easily modify FractalP to consider multiple probes. Note that for
m = |V \ {OBS ∪ COMPS}| there is no probing problem, as there is only one way to pick
all internal variables.

The most complex operation in FractalP is again computing the initial set of MC
diagnoses. In addition to that, we have |V \ {COMPS ∪ OBS}| consistency checks. Con-
sistency checking is, in general, easier than diagnosis. Note that all Fractal algorithms
(FractalATPG, FractalG, and FractalP) start with computing the set of initial MC
diagnoses. Hence, the difference in their performance is determined by the complexity of
reducing the initial set Ω≤(SD, α). According to this criterion, the fastest algorithm is
FractalP as it only performs a small number of consistency checks, followed closely by
FractalATPG (computing ATPG vectors). The slowest algorithm is FractalG, as it
computes the expected number of MC diagnoses given multiple variables.
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6. Experimental Results

We have implemented Fractal in approximately 3 000 lines of C code (excluding the
diagnostic engine and the Logic Based Truth Maintenance System). All experiments were
run on a 64-node dual-CPU cluster (each node configured with two 2.4 GHz AMD Opteron
DP 250 processors and 4 Gb of RAM).

6.1 Experimental Setup

We have experimented on the well-known benchmark models of ISCAS85 combinational
circuits (Brglez & Fujiwara, 1985). As models derived from the ISCAS85 circuits are com-
putationally intensive (from a diagnostic perspective), we have also considered four medium-
sized circuits from the 74XXX family (Hansen, Yalcin, & Hayes, 1999). In order to use the
same system model for both MC diagnosis counting and simulation, the fault mode of each
logic gate is “stuck-at-opposite”, i.e., when faulty, the output of a logic gate assumes the
opposite value from the nominal. Without loss of generality, only gates are allowed to fail
in our models. This is different from ATPG where gates typically do not fail but wires are
modeled as components that can fail with failure modes “stuck-at-zero” and “stuck-at-one”.
The ATPG and MBD modeling approaches achieve the same results.

Table 3: An overview of the 74XXX/ISCAS85 circuits (V is the total number of variables
and C is the number of clauses)

Original Reduced
Name Description |IN| |OUT| |COMPS| V C |COMPS|
74182 4-bit CLA 9 5 19 47 150 6
74L85 4-bit comparator 11 3 33 77 236 15
74283 4-bit adder 9 5 36 81 244 14
74181 4-bit ALU 14 8 65 144 456 21

c432 27-channel interrupt ctl. 36 7 160 356 514 59
c499 32-bit SEC circuit 41 32 202 445 714 58
c880 8-bit ALU 60 26 383 826 1 112 77
c1355 32-bit SEC circuit 41 32 546 1 133 1 610 58
c1908 16-bit SEC/DEC 33 25 880 1 793 2 378 160
c2670 12-bit ALU 233 140 1 193 2 695 3 269 167
c3540 8-bit ALU 50 22 1 669 3 388 4 608 353
c5315 9-bit ALU 178 123 2 307 4 792 6 693 385
c6288 32-bit multiplier 32 32 2 416 4 864 7 216 1 456
c7552 32-bit adder 207 108 3 512 7 232 9 656 545

In addition to the original 74XXX/ISCAS85 models, we have performed cone reductions as
described by Siddiqi and Huang (2007) and de Kleer (2008). Recall that from the perspective
of the MBD diagnostic engine, faults inside a cone (where a cone is a set of components)
cannot be distinguished, hence it is enough to provide a single health variable per cone. We
call models with a single health variable per cone “reduced”. Table 3 describes all models.
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Both initial observation vectors and control settings are used in the first step of the
Fractal inference. To illustrate the significant diagnostic convergence that is possible, we
use initial observations leading to high numbers of initial MC diagnoses.

To average over the diagnostic outcomes of the observations, we repeat each experiment
with a range of initial observation vectors. The cardinality of the MC diagnosis is of no
significance to Fractal, but it produces a significant burden on the diagnostic oracle (Feld-
man, Provan, & van Gemund, 2008). In order to overcome this computational difficulty, we
have limited our experiments to observation vectors leading to double faults only.

For each circuit we have generated 1 000 non-masking double-faults, and for each obser-
vation we have computed the number of initial MC diagnoses. From the 1 000 observation
vectors we have taken the 100 with the largest number of MC diagnoses. The resulting
observations are summarized in Table 4. For example, we can see a staggering number of
46 003 double faults for the most under-constrained c7552 observation.

Table 4: Number of MC diagnoses per observation vector

Original Reduced
Name Min Max Mean Min Max Mean

74182 25 25 25 2 2 2
74L85 32 88 50.2 5 13 7
74283 48 60 51.8 6 9 7
74181 93 175 113.5 10 19 13.3

c432 88 370 165.8 21 127 47.5
c499 168 292 214.1 4 31 15.8
c880 783 1 944 1 032.5 20 190 39.7
c1355 1 200 1 996 1 623.3 4 31 15
c1908 1 782 5 614 2 321.9 40 341 84.8
c2670 2 747 7 275 3 621.7 10 90 21.3
c3540 1 364 2 650 1 642.2 158 576 226
c5315 3 312 17 423 6 202.1 15 192 34.5
c6288 6 246 15 795 8 526.1 2 928 6 811 3 853
c7552 16 617 46 003 23 641.2 45 624 121.6

Since the 74XXX/ISCAS85 circuits have no control variables we “abuse” the benchmark by
designating a fraction of the input variables as controls.

We define two policies for generating next inputs: random and stationary. The latter
input policy (where the input values do not change in time) is a typical diagnostic worst-case
for system environments which are, for example, paused pending diagnostic investigation,
and it provides us with useful bounds for analyzing Fractal’s performance.

Note that the use of non-characterizing sets of diagnoses (see Def. 4) may lead to a situa-
tion in which the real (injected) fault is not in the initial set of diagnoses. In such a case the
set of remaining diagnoses Ω(S) may become an empty set after some number of Fractal

steps. Although this gives us some diagnostic information, this is an undesirable situation
and non-characterizing sets of diagnoses should represent most of the diagnostic probabil-
ity mass to minimize the likelihood of such cases. We have constructed our experimental
benchmark of initial observations in such a way as to avoid such cases.
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6.2 Expected Number of MC Diagnoses

We have observed that the error of Alg. 1 is insensitive to the number or the composition
of the input variables. It can be seen that the value of the expected number of diagnoses
Ê approaches the exact value E when increasing the number of samples n. In particular,
Ê is equal to the exact value of the expected number of MC diagnoses E, when all possible
input values are considered. Figure 6 shows examples of Ê approaching E for three of our
benchmark models.
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Figure 6: Convergence of expected number of MC diagnoses with increasing sample size

Terminate approximates the intermediate value of Ê by computing the sequence E = 〈Ê1,
Ê2, . . ., Ên〉. The standard error of the mean of E is defined as:

SEME =
s√
n
, (9)

where s is the standard deviation of E. We have set Terminate to terminate Alg. 1 when
n > 15 and SEME < θ, where θ is a circuit-dependent threshold constant. Table 5 shows θ
for the various circuits we have experimented on.

Table 5: Termination parameters for Alg. 1

Original Reduced
Name θ Mean n Max n θ Mean n Max n

74182 0.1 52.7 110 0.01 151.6 223
74L85 0.11 176.2 246 0.03 170.3 212
74283 0.2 139.9 225 0.01 211.3 243
74181 0.4 169.1 203 0.07 143.2 181

c432 0.72 48.2 99 0.18 108.6 158
c499 0.77 36.4 61 0.02 55.7 92
c880 3.57 93.9 163 0.1 156.3 204
c1355 4.3 51.3 93 0.01 121.4 148
c1908 14.01 19.5 35 0.62 18.8 25
c2670 12.77 40.5 78 0.1 65.2 102
c3540 13.6 78.9 196 0.66 89.6 132
c5315 23.35 34.2 39 0.09 36.0 48
c6288 33.18 37.2 144 19.1 39.4 74
c7552 68.11 68.7 91 3.73 73 122
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We have determined θ using the following procedure. First, for each circuit, we choose an
arbitrary initial observation and a small set IN of input variables (|IN| = 8). The small
cardinality of IN allows us to compute true values of E. Next, for each circuit we run 10
pseudo-random experiments. For θ we choose the smallest value of SEME such that its
corresponding Ê is within 95% of E. Table 5 shows the average and maximum number of
steps in which Alg. 1 reaches this value. In all cases an upper bound of n = 100 is a safe
termination criterion.

6.3 Comparison of Algorithms

Consider a weak-fault model of a chain of n inverters and a set of MC diagnoses D (initially,
|D| = n). At each step single-variable probing can eliminate at most 0.5|D| diagnoses. It can
also be shown that halving the expected number of remaining MC diagnoses is a theoretical
bound of any one-step lookahead strategy. As a result we use the geometric decay curve

N(k) = N0p
k +N∞ (10)

as a model of the diagnosis decay. In this case, N0 is the initial number of diagnoses, N∞ is
the value to which |Ω(S)| converges, and p is the decay rate constant. For probing, N∞ = 1.
In all our experiments we will fit both the expected number of remaining MC diagnoses E
and the actual number or remaining MC diagnoses Ω(S) to Eqn. 10.

6.3.1 FractalATPG

Figure 7 shows the reduction of the expected number of MC diagnoses as a function of (1)
the number of control variables |CTL| and (2) the time k. One can easily see that a global
optimum is reached quickly on both independent axes. This decay is shown for both c432
(Fig. 7, left) and the reduced c880 (Fig. 7, right). The number of control variables |CTL|
varies from 0 to 36 for c432 (|IN| = 36) and from 0 to 60 for c880 (|IN| = 60).
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Figure 7: Decay of E, stationary inputs, FractalATPG

Using |Ω(S)| instead of E results in similar plots (there is high correlation between E
and |Ω(S)|), hence we have omitted the |Ω(S)| plots. The minimum, maximum and mean
Pearson’s linear correlation coefficient between E from Fig. 7 and the respective |Ω(S)| for
each number of control variables in c432 is ρmin = 0.713, ρmax = 0.999, and ρavg = 0.951,
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respectively. The corresponding correlation coefficients for the reduced c880 are ρmin =
0.834, ρmax = 1, and ρavg = 0.972.

It can be seen that the expected number of remaining diagnoses E quickly reaches a
global optimum when increasing |CTL|, which means that turning even a small number of
input variables into controls allows for a geometric decay of the diagnostic entropy. The
results for the reduced c880 are similar to the non-reduced c432. Hence, identification of
cones helps the performance of the diagnostic oracle, but does not change the convergence
behavior or the effect of the control variables.

Fitting geometric decay curves (Eqn. 10) on the |CTL| axes of Fig. 7 produces better
fits for c880 than for c432. Similarly, the values of N∞ for fits alongside the k-axis are
larger for c432 than for c880. The reason for that is the small number of outputs in c432
(cf. Table 3). In circuits with few outputs, randomly turning a limited number of inputs
into controls may not lead to a fast decay or a small N∞, as the control-output connectivity
of a model is essential for decreasing the diagnostic uncertainty.

Table 6 and Table 7 summarize a total of 14 000 FractalATPG experiments over the
whole 74XXX/ISCAS85 benchmark. Table 6 shows the correlation between the expected
number of remaining MC diagnoses and the actual number of remaining MC diagnoses. In
the second and third columns of Table 6 we can see the minimum and average correlations
between E and Ω≤(S). The third and fourth cases specify the fraction of observations for
which we have ρ > 0.95 and ρ > 0.975, respectively. Columns 6 – 9 repeat this data for the
reduced 74XXX/ISCAS85 circuits.

Table 6: Linear correlation coefficient ρ of the expected number of remaining MC diagnoses
E and the actual number of remaining diagnoses Ω≤(S), |CTL| = 1

4 |IN|, stationary
inputs, FractalATPG

Original Reduced
Name ρmin ρavg ρ > 0.95 ρ > 0.975 ρmin ρavg ρ > 0.95 ρ > 0.975

74182 0.55 0.98 0.82 0.79 1 1 1 1
74L85 0.46 0.91 0.52 0.44 0.45 0.81 0.4 0.39
74283 0.46 0.91 0.69 0.61 0.45 0.84 0.38 0.31
74181 0.46 0.88 0.48 0.39 0.45 0.86 0.44 0.35

c432 0 0.83 0.24 0.16 0 0.81 0.29 0.23
c499 0.5 0.87 0.32 0.15 0 0.86 0.42 0.33
c880 0.51 0.86 0.28 0.18 0.51 0.85 0.3 0.19
c1355 0 0.88 0.32 0.18 0 0.87 0.47 0.34
c1908 0.38 0.87 0.31 0.18 0 0.79 0.22 0.15
c2670 0 0.89 0.31 0.16 0 0.79 0.19 0.12
c3540 0.48 0.86 0.29 0.19 0.06 0.82 0.3 0.23
c5315 0.54 0.93 0.48 0.39 0.47 0.88 0.44 0.32
c6288 0.42 0.9 0.41 0.24 0.4 0.9 0.36 0.21
c7552 0.62 0.88 0.44 0.13 0.45 0.89 0.43 0.23

Table 7 summarizes the parameters of the geometric decay curves fitted to Ω(S). We can see
that although Ω(S) is well approximated by a geometric decay curve (the average goodness-
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of-fit criterion R2 is 0.84) the average decay constant p is low (0.13 for the non-reduced and
0.22 for the reduced 74XXX/ISCAS85 circuits).

Table 7: Decay rate p (minimal, maximal, and average) and goodness-of-fit R2 (average) of
geometric decay best-fit to Ω(S), |CTL| = 1

4 |IN|, stationary inputs, FractalATPG

Original Reduced
Name pmin pmax pavg R2

avg pmin pmax pavg R2
avg

74182 0.3 0.52 0.43 0.95 0.5 0.5 0.5 1
74L85 0.06 0.75 0.48 0.88 0.35 0.64 0.5 0.92
74283 0.18 0.68 0.57 0.78 0.31 0.6 0.48 0.94
74181 0.11 0.71 0.5 0.86 0.18 0.64 0.5 0.9

c432 0.03 0.8 0.56 0.81 0.03 0.79 0.52 0.82
c499 0.1 0.79 0.64 0.84 0.48 0.76 0.65 0.84
c880 0.06 0.84 0.54 0.83 0.06 0.8 0.53 0.87
c1355 0.03 0.9 0.62 0.81 0.39 0.76 0.63 0.85
c1908 0.02 0.93 0.65 0.68 0.51 0.74 0.64 0.77
c2670 0.05 0.91 0.63 0.77 0.14 0.75 0.6 0.8
c3540 0.02 0.87 0.52 0.85 0.04 0.76 0.45 0.89
c5315 0.22 0.91 0.65 0.8 0.06 0.79 0.54 0.84
c6288 0.02 0.91 0.52 0.88 0.02 0.9 0.51 0.89
c7552 0.56 0.95 0.76 0.61 0.01 0.88 0.58 0.85

Average 0.13 0.82 0.58 0.81 0.22 0.74 0.55 0.87

The decay rate p depends mostly on the circuit topology, hence the large variance in Table 7.
Consider, for example, an artificial topology, where there are n components, and n output
variables that produce the health-state of each component for a specific control assignment
(e.g., a self-test). In this topology p would be very small as a diagnostician needs at most
one test (control assignment) to decrease the number of MC diagnoses to one.

The performance of FractalATPG is determined by the size of the model and the
diagnostic oracle. In the above experiments the overall time for executing a single scenario
varied from 3.4 s for 74182 to 1 015 s for c6288. The satisfiability problems in the ATPG part
were always easy and the DPLL solver spent milliseconds in computing control assignments.

The decay rate of FractalATPG depends on the number and composition of controls.
In what follows we will see that FractalG can achieve a similar decay rate with a smaller
number of control variables.

6.3.2 FractalG

Figure 8 shows the decay in the expected number of remaining MC diagnoses for FractalG.
While the reduction is similar for c432, we can see a steeper reduction in the number of
remaining MC diagnoses on both independent axes. Hence, the greedy algorithm is better
than FractalATPG in identifying control combinations of small size, thereby leading to a
better decay rate.
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Figure 8: Decay of E (left) and Ω(S) (right), stationary inputs, FractalG

Table 8 and Table 9 summarize the whole 74XXX/ISCAS85 benchmark. Table 8 shows that
FractalG, similar to FractalATPG, results in high average correlation between Ω(S) and
Ê (ρavg > 0.79 for all circuits).

Table 8: Linear correlation coefficient ρ of the expected number of remaining MC diagnoses
E and the actual number of remaining diagnoses Ω≤(S), |CTL| = 1

4 |IN|, stationary
inputs, FractalG

Original Reduced
Name ρmin ρavg ρ > 0.95 ρ > 0.975 ρmin ρavg ρ > 0.95 ρ > 0.975

74182 0.03 0.88 0.39 0.18 1 1 1 1
74L85 0 0.72 0.12 0.06 0.01 0.66 0.16 0.14
74283 0 0.5 0.08 0.03 0 0.48 0.12 0.11
74181 0 0.56 0.05 0.02 0 0.55 0.09 0.07

c432 0.01 0.75 0.07 0.02 0.01 0.68 0.07 0.05
c499 0.01 0.88 0.29 0.08 0 0.85 0.33 0.2
c880 0.05 0.77 0.09 0.06 0 0.73 0.08 0.04
c1355 0.08 0.86 0.36 0.21 0.42 0.9 0.39 0.16
c1908 0.05 0.81 0.25 0.14 0 0.8 0.4 0.3
c2670 0.01 0.83 0.38 0.22 0.01 0.76 0.37 0.26
c3540 0.34 0.73 0.09 0.05 0 0.7 0.04 0.01
c5315 0.27 0.78 0.05 0 0 0.6 0.1 0.07
c6288 0.09 0.81 0.11 0.05 0.1 0.78 0.09 0.04
c7552 0.78 0.86 0.06 0.06 0.21 0.83 0.13 0.01

The decay rates of FractalATPG and FractalG are similar (cf. Table 7 and Table 9),
but, as is visible from Fig. 8, FractalG reduces the number of remaining MC diagnoses
more quickly, with fewer control variables. The c432 combinational circuit is difficult for
active testing because it has a small number of outputs compared to the number of inputs
(cf. Table 3), hence reducing the diagnostic utility.

To summarize the effect of the number of controls on the diagnostic convergence, we
again fit the geometric decay curve (Eqn. 10) to Ω(S) for each of the 100 initial observation
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Table 9: Decay rate p (minimal, maximal, and average) and goodness-of-fit R2 (average) of
geometric decay best-fit to Ω(S), |CTL| = 1

4 |IN|, stationary inputs, FractalG

Original Reduced
Name pmin pmax pavg R2

avg pmin pmax pavg R2
avg

74182 0.24 0.53 0.43 0.95 0.5 0.5 0.5 1
74L85 0.05 0.74 0.47 0.9 0.25 0.65 0.49 0.93
74283 0.12 0.67 0.42 0.9 0.35 0.58 0.44 0.96
74181 0.15 0.75 0.48 0.9 0.15 0.69 0.44 0.93

c432 0.04 0.88 0.56 0.83 0.03 0.86 0.59 0.8
c499 0.09 0.88 0.71 0.81 0.34 0.85 0.68 0.85
c880 0.12 0.67 0.42 0.9 0.07 0.83 0.52 0.88
c1355 0.19 0.87 0.63 0.87 0.11 0.82 0.68 0.85
c1908 0.32 0.73 0.53 0.87 0.05 0.84 0.59 0.83
c2670 0.21 0.74 0.53 0.87 0.15 0.81 0.6 0.8
c3540 0.34 0.63 0.53 0.91 0.01 0.8 0.44 0.9
c5315 0.3 0.83 0.61 0.83 0.06 0.86 0.58 0.82
c6288 0.04 0.81 0.5 0.9 0.08 0.77 0.47 0.89
c7552 0.08 0.54 0.34 0.92 0.16 0.83 0.59 0.84

Average 0.16 0.73 0.51 0.88 0.17 0.76 0.54 0.88

vectors and various |CTL|. In this case, N0 is the initial number of diagnoses, N∞ is the
value to which |Ω(S)| converges, and p is the decay constant (the most important parameter
of our fits). For an “easy” circuit with chain topology, for p = 1

2 , N0 halves every k steps,
as in binary search, hence p corresponds to one bit. For p = 1

4 , p corresponds to two bits.

Table 10: Mean p for various numbers of control bits, stationary input policy, FractalG

Original Reduced
Name 3 bits 4 bits 5 bits 3 bits 4 bits 5 bits

c432 0.61 0.69 0.42 0.7 0.71 0.57
c499 0.79 0.83 0.77 0.58 0.62 0.52
c880 0.5 0.55 0.62 0.49 0.47 0.44
c1355 0.71 0.72 0.59 0.8 0.82 0.75
c1908 0.68 0.7 0.41 0.54 0.52 0.3
c2670 0.45 0.49 0.39 0.39 0.44 0.42
c3540 0.39 0.38 0.43 0.79 0.8 0.61
c5315 0.52 0.62 0.67 0.81 0.72 0.79
c6288 0.31 0.41 0.23 0.64 0.7 0.59
c7552 0.62 0.77 0.3 0.59 0.34 0.38

Table 10 shows the average p over all initial observations and for various numbers of control
bits b = lg |CTL|. Table 10 does not include data for the 74XXX circuits as they do not
have enough inputs (we need circuits with at least 32 inputs). From Table 10 it is visible
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that an exponential increase in the number of control variables does not lead to a significant
decrease in p. Hence, for ISCAS85, even turning a small number of the input variables into
controls leads to a near-optimal decrease in the number of remaining MC diagnoses.

The performance of FractalG was worse than that of FractalATPG due to the multi-
variable expectation. The running time varied between 7.1 s for 74182 and 2 382 s for
c6288. Most of the CPU time was spent in the Expectation subroutine (cf. Alg. 1).
Each consistency check was computationally easy, but for each circuit there were thousands
of them. Hence, improving the performance of LTMS would lead to an increase of the
performance of FractalG.

6.3.3 FractalP

We next discuss FractalP. As mentioned earlier, probing is different from active testing
as it assumes full observability of the model, i.e., all internal variables can be measured (cf.
Sec. 5). Furthermore, probing considers one internal variable per step, while active testing
assigns value to all control variables.5

The value of the decay rate p depends on (1) the topology of the circuit, (2) the initial
observation and (3) the values of the subsequent probes. For probing in ISCAS85 we see
that the values of the decay rate p are close to 0.5 for both Ω(S) and E. Figure 9 shows
the actual and expected number of remaining MC diagnoses (Ω≤(S) and E, respectively)
and a geometric fit to E for three probing scenarios.
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Figure 9: Actual number of remaining MC diagnoses Ω(S), expected number of remaining
MC diagnoses E, and a geometric decay fit to Ω(S), stationary inputs, FractalP

Each plot in Fig. 9 shows a single probing session with a single initial observation. Figure 10
shows the goodness-of-fit criterion R2 vs. the decay rate constant p for all 100 observations
and each of the 10 multiple runs of the Fig. 9 circuits.

It is visible from Fig. 10 that the absolute values of R2 are (in most of the cases) close
to 1. This is an indicator that the probing experiments fit the geometric decay model given
in Eqn. 10 well. Figure 10 shows a “bad” topology (c432 on the left), and a “good” topology
(c5315 on the right) that achieves decay rate p close to 0.5 (0.38 < p < 0.58) with very high
accuracy of the fit (0.9896 ≤ R2 ≤ 1).
The expected number of remaining MC diagnoses is a good predictor of the actual number of
MC diagnoses for all ISCAS85 circuits, as is shown in Table 11. The absolute values, again

5. There exist multi-probe generalizations of probing (de Kleer et al., 1992).
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Figure 10: Geometric decay rate vs. goodness-of-fit for Ω(S), FractalP

depend on the topology, and we can see a smaller correlation ρ for some c432 observations. In
most of the cases, however, the correlation is significant, e.g., for all circuits and observations
except c432 we have ρ > 0.95.

Table 11: Linear correlation coefficient ρ of the expected number of remaining MC diag-
noses E and the actual number of remaining diagnoses Ω≤(S), stationary inputs,
FractalP

Original Reduced
Name ρmin ρavg ρ > 0.95 ρ > 0.975 ρmin ρavg ρ > 0.95 ρ > 0.975

74182 0.83 0.95 0.64 0.6 1 1 1 1
74L85 0.77 0.97 0.87 0.67 0.83 0.99 0.92 0.87
74283 0.97 0.99 1 1 0.83 0.98 0.83 0.76
74181 0.96 0.99 1 0.97 0.92 0.99 0.95 0.92

c432 0.66 0.97 0.83 0.67 0.62 0.96 0.76 0.62
c499 0.97 1 1 1 0.91 0.98 0.87 0.76
c880 0.98 1 1 1 0.92 0.99 0.99 0.96
c1355 0.99 1 1 1 0.86 0.98 0.88 0.79
c1908 0.98 1 1 1 0.65 0.97 0.86 0.68
c2670 0.98 1 1 1 0.7 0.96 0.72 0.55
c3540 0.97 1 1 1 0.97 1 1 1
c5315 0.99 1 1 1 0.7 0.98 0.91 0.81
c6288 0.92 1 1 1 0.98 1 1 1
c7552 0.95 1 1 0.99 0.82 0.96 0.7 0.51

In the second and third columns of Table 11 we can see the minimum and average correla-
tions between E and Ω≤(S). The third and fourth cases specify the fraction of observations
for which we have ρ > 0.95 and ρ > 0.975, respectively. Columns 6 – 9 repeat this data for
the reduced 74XXX/ISCAS85 circuits.

Table 12 summarizes the decay rate p and the goodness-of-fit criterion R2 for all ob-
servations and circuits. For c432, the values of p and R2 are more dispersed, while in the
other experiments p strongly resembles that of “chained-elements” (i.e., p is close to 0.5).
The minimum, maximum and average values of p (per circuit) are given in columns pmin,
pmax, and pavg, respectively.

329



Feldman, Provan, & van Gemund

Table 12: Decay rate p (minimal, maximal, and average) and goodness-of-fit R2 (average)
of geometric decay best-fit to Ω(S), stationary inputs, FractalP

Original Reduced
Name pmin pmax pavg R2

avg pmin pmax pavg R2
avg

74182 0.26 0.64 0.54 0.95 0.5 0.5 0.5 1
74L85 0.21 0.7 0.52 0.97 0.25 0.55 0.45 0.97
74283 0.31 0.64 0.49 0.99 0.4 0.58 0.49 0.96
74181 0.3 0.66 0.5 0.99 0.27 0.56 0.42 0.99

c432 0.1 0.82 0.58 0.96 0.11 0.84 0.55 0.95
c499 0.4 0.57 0.5 1 0.25 0.6 0.46 0.98
c880 0.36 0.61 0.51 1 0.2 0.67 0.46 0.99
c1355 0.39 0.6 0.51 1 0.25 0.59 0.46 0.98
c1908 0.39 0.58 0.5 1 0.13 0.81 0.55 0.96
c2670 0.37 0.6 0.51 1 0.22 0.85 0.65 0.89
c3540 0.38 0.58 0.5 1 0.37 0.59 0.49 1
c5315 0.4 0.59 0.5 1 0.18 0.89 0.52 0.96
c6288 0.92 1 1 1 0.98 1 1 1
c7552 0.95 1 1 0.99 0.82 0.96 0.7 0.51

Average 0.41 0.69 0.58 0.99 0.35 0.71 0.55 0.94

6.4 Experimental Summary

If we compare Table 6 and Table 11 we can see that the average correlation ρavg decreases
significantly. Hence, assuming limited observability (i.e., assuming that not all internals are
measurable) decreases the quality of E as a predictor of Ω(S). The increased statistical
dispersion of ρ is visible from the increased range ρmax − ρmin (cf. Table 6, where ρmax is
always 1). For example, if we consider c2670, the standard deviation of all E vs. Ω(S)
correlation coefficients ρ is σρ = 0.0031 for FractalP and σρ = 0.0783 for FractalATPG.
The difference in dispersion of correlation coefficients is significant for all circuits, with
smallest values for c432, where it is 0.0038 for FractalP and 0.0825 for FractalATPG.

By comparing Table 7, Table 9, and Table 12 we can see that the mean decay rates
of FractalATPG, FractalG, and FractalP are similar (the average p of FractalG is
0.7 while the average p of FractalATPG is 0.73). The average goodness-of-fit criterion R2

for exponential decays is always good (0.88 for FractalG, 0.84 for FractalATPG), and
almost perfect in probing (0.97).

The summary of our experiments is best shown in Fig. 11. To factor out sampling
error and to be able to perform exhaustive computations, we have chosen the smallest
74182 circuit. The original 74182 (a 4-bit carry-lookahead generator) has 19 components,
9 inputs, and 5 outputs. We have turned four of the inputs into controls (hence, |IN| = 4
and |CTL| = 4).

We have considered a random control policy in addition to FractalP, FractalATPG,
and FractalG. With a random control policy, at each step, a random value is assigned to
each control variable. We have also shown an exhaustive control search where the expected
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number of remaining MC diagnoses is computed at each step, and for each possible control
combination. This works with 74182 but leads to a combinatorial blow-up with any other
(larger) circuit.
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Figure 11: Comparison of all control policies

To reduce the stochastic error when plotting Fig. 11, we have replaced the sampling (for
computing an expected number of remaining MC diagnoses) with an exhaustive method;
this is possible as |IN| = 5. The only randomized decision is to choose the actual fault from
the initial ambiguity group. To reduce the error due to this stochastic fault injection, we
have tested each of the 5 control policies 100 times.

We can see in Fig. 11 that the least informed control policy (the random control policy
simply does not use E) shows the worst decay in the number of remaining diagnoses. On
the other extreme, the exhaustive control policy achieves the best decay. The price for
this policy in terms of computational effort, however, is prohibitive. FractalG achieves
decay rates comparable to the exhaustive policy with affordable average-case complexity.
FractalATPG has better complexity than FractalG, but the whole decay rate curve of
FractalATPG is bounded from below by the one computed by FractalG.

Probing does not compare to active testing as both approaches have different assump-
tions on the observability of the model. Figure 11 shows the decay rate of probing to
illustrate the different decay curves depending on the observability assumptions. In this
experiment the probing decay rate geometric fit with p = 1

2 almost perfectly fits the actual
number of remaining MC diagnoses.

7. Conclusions

We have devised an algorithm, FractalG, for active testing that is (1) computationally
efficient and (2) rapidly reduces the diagnostic uncertainty (measured as the number of
remaining MC diagnoses) by manipulating a set of control variables. As fully optimizing (2)
leads to a combinatorial blow-up, FractalG achieves a compromise between (1) and (2) by
using a greedy approximation approach for searching over the space of control assignments
and a stochastic sampling method for computing the number of remaining MC diagnoses.
The result is a fast algorithm (optimizing a whole Fractal scenario takes between 1 s
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for 74182 and 40 min for c6288) that decreases the diagnostic uncertainty according to
a geometric decay curve. This geometric decay curve fits the Fractal data well (the
goodness-of-fit criterion R2 is 0.88 on average) and provides steep decay (the average decay
rate p is 0.7).

We have applied FractalG to the real-world problem of reducing the diagnostic un-
certainty of a heavy-duty printer (Feldman, 2010). For that purpose, we have modeled the
Paper Input Module (PIM). In the PIM case-study, FractalG computed the most infor-
mative tests in troubleshooting multiple sensor and component failures. This happens even
with a coarse-grained device model (only a few constraints per component), which shows
an unexpected benefit of Fractal: trade-off of modeling complexity vs. test effort.

The optimality of FractalG depends on the topology of and constraints on the input
model. We can create models leading to arbitrarily bad optimality of FractalG by, for
example, directly encoding truth tables in SD. In practical situations, however, controls are
independent. That means that applying a single control rarely “undoes” the effect of the
previous ones. This also happens when arbitrary inputs are converted to controls, as in our
experimentation benchmark. Consider, for example, a multiplier (c6288). Leaving out some
of the inputs leads to “don’t cares” in the output and hence some components (full-adders,
and-gates) will remain untested. Subsequently assigning values to these left-out inputs will
unambiguously exonerate or blame these untested components, which will help narrowing
down the set of diagnostic hypotheses.

The most important benefit in applying Fractal to industrial cases is that active
testing “trade-offs” modeling fidelity for computational complexity and extra testing. This
enables users to achieve good diagnostic certainty without the large cost traditionally asso-
ciated with developing high fidelity models based on physics of failure and other precision
approaches.

We have compared the optimality and performance of FractalG to an ATPG-based
algorithm for sequential diagnosis, FractalATPG. While the average decay rate of both
algorithms is similar (average p of FractalATPG is 0.73), the average goodness-of-fit cri-
terion R2 of FractalATPG is lower (0.84), which means that FractalG is consistently
closer to the optimal solution than is FractalATPG. FractalG has achieved better ex-
ponential decay compared to all algorithms except exhaustive control search. For example,
the difference in the decay rate p between FractalG and exhaustive search for 74182 is
5.4%. The exhaustive control approach, however, takes minutes to complete even for a
circuit as simple as 74182, and times-out with any model having more than 20 controls. As
a result, we can conclude that FractalG trades off a small decrease in p for a significant
performance speedup.
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