
Journal of Artificial Intelligence Research 39 (2010) 51-126 Submitted 4/10; published 9/10

Implicit Abstraction Heuristics

Michael Katz dugi@tx.technion.ac.il

Carmel Domshlak dcarmel@ie.technion.ac.il

Faculty of Industrial Engineering & Management,

Technion, Israel

Abstract

State-space search with explicit abstraction heuristics is at the state of the art of cost-
optimal planning. These heuristics are inherently limited, nonetheless, because the size of
the abstract space must be bounded by some, even if a very large, constant. Targeting
this shortcoming, we introduce the notion of (additive) implicit abstractions, in which
the planning task is abstracted by instances of tractable fragments of optimal planning.
We then introduce a concrete setting of this framework, called fork-decomposition, that is
based on two novel fragments of tractable cost-optimal planning. The induced admissible
heuristics are then studied formally and empirically. This study testifies for the accuracy
of the fork decomposition heuristics, yet our empirical evaluation also stresses the tradeoff
between their accuracy and the runtime complexity of computing them. Indeed, some
of the power of the explicit abstraction heuristics comes from precomputing the heuristic
function offline and then determining h(s) for each evaluated state s by a very fast lookup
in a “database.” By contrast, while fork-decomposition heuristics can be calculated in
polynomial time, computing them is far from being fast. To address this problem, we
show that the time-per-node complexity bottleneck of the fork-decomposition heuristics can
be successfully overcome. We demonstrate that an equivalent of the explicit abstraction
notion of a “database” exists for the fork-decomposition abstractions as well, despite their
exponential-size abstract spaces. We then verify empirically that heuristic search with the
“databased” fork-decomposition heuristics favorably competes with the state of the art of
cost-optimal planning.

1. Introduction

Heuristic search, either through progression in the space of world states or through regres-
sion in the space of subgoals, is a common and successful approach to classical planning.
It is probably the most popular approach to cost-optimal planning, that is, finding a plan
with a minimal total cost of its actions. The difference between various heuristic-search
algorithms for optimal planning is mainly in the admissible heuristic functions they employ.
In state-space search, such a heuristic estimates the cost of achieving the goal from a given
state and guarantees not to overestimate that cost.

A useful heuristic function must be accurate as well as efficiently computable. Improving
the accuracy of a heuristic function without substantially worsening the time complexity
of computing it usually translates into faster search for optimal solutions. During the last
decade, numerous computational ideas evolved into new admissible heuristics for classical
planning; these include the delete-relaxing max heuristic hmax (Bonet & Geffner, 2001), crit-
ical path heuristics hm (Haslum & Geffner, 2000), landmark heuristics hL, hLA (Karpas &
Domshlak, 2009) and hLM-cut (Helmert & Domshlak, 2009), and abstraction heuristics such
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as pattern database heuristics (Edelkamp, 2001) and merge-and-shrink heuristics (Helmert,
Haslum, & Hoffmann, 2007). Our focus in this work is on the abstraction heuristics.

Generally speaking, an abstraction of a planning task is given by a mapping α : S → Sα

from the states of the planning task’s transition system to the states of some “abstract
transition system” such that, for all states s, s′ ∈ S, the cost from α(s) to α(s′) is upper-
bounded by the cost from s to s′. The abstraction heuristic value hα(s) is then the cost from
α(s) to the closest goal state of the abstract transition system. Perhaps the most well-known
abstraction heuristics are pattern database (PDB) heuristics, which are based on projecting
the planning task onto a subset of its state variables and then explicitly searching for optimal
plans in the abstract space. Over the years, PDB heuristics have been shown to be very
effective in several hard search problems, including cost-optimal planning (Culberson &
Schaeffer, 1998; Edelkamp, 2001; Felner, Korf, & Hanan, 2004; Haslum, Botea, Helmert,
Bonet, & Koenig, 2007). The conceptual limitation of these heuristics, however, is that the
size of the abstract space and its dimensionality must be fixed.1 The more recent merge-and-
shrink abstractions generalize PDB heuristics to overcome the latter limitation (Helmert
et al., 2007). Instead of perfectly reflecting just a few state variables, merge-and-shrink
abstractions allow for imperfectly reflecting all variables. As demonstrated by the formal
and empirical analysis of Helmert et al., this flexibility often makes the merge-and-shrink
abstractions much more effective than PDBs. However, the merge-and-shrink abstract
spaces are still searched explicitly, and thus they still have to be of fixed size. While quality
heuristics estimates can still be obtained for many problems, this limitation is a critical
obstacle for many others.

Our goal in this paper is to push the envelope of abstraction heuristics beyond explicit
abstractions. We introduce a principled way to obtain abstraction heuristics that limit nei-
ther the dimensionality nor the size of the abstract spaces. The basic idea behind what we
call implicit abstractions is simple and intuitive: instead of relying on abstract problems
that are easy to solve because they are small, we can rely on abstract problems belonging to
provably tractable fragments of optimal planning. The key point is that, at least theoret-
ically, moving to implicit abstractions removes the requirement on the abstractions size to
be small. Our contribution, however, is in showing that implicit abstractions are far from
being of theoretical interest only. Specifically,

1. We specify acyclic causal-graph decompositions, a general framework for additive im-
plicit abstractions that is based on decomposing the problem at hand along its causal
graph. We then introduce a concrete family of such abstractions, called fork decom-
positions, that are based on two novel fragments of tractable cost-optimal planning.
Following the type of analysis suggested by Helmert and Mattmüller (2008), we for-
mally analyze the asymptotic performance ratio of the fork-decomposition heuristics
and prove that their worst-case accuracy on selected domains is comparable with that
of (even parametric) state-of-the-art admissible heuristics. We then empirically eval-
uate the accuracy of the fork-decomposition heuristics on a large set of domains from
recent planning competitions and show that their accuracy is competitive with the
state of the art.

1. This does not necessarily apply to symbolic PDBs which, on some tasks, may exponentially reduce the
PDB’s representation (Edelkamp, 2002).
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2. The key attraction of explicit abstractions is that state-to-goal costs in the abstract
space can be precomputed and stored in memory in a preprocessing phase so that
heuristic evaluation during search can be done by a simple lookup. A necessary con-
dition for this would seem to be the small size of the abstract space. However, we
show that an equivalent of the PDB and merge-and-shrink’s notion of “database”
exists for the fork-decomposition abstractions as well, despite the exponential-size ab-
stract spaces of the latter. These databased implicit abstractions are based on a proper
partitioning of the heuristic computation into parts that can be shared between search
states and parts that must be computed online per state. Our empirical evaluation
shows that A∗ equipped with the “databased” fork-decomposition heuristics favorably
competes with the state of the art of cost-optimal planning.

This work is a revision and extension of the formulation and results presented by Katz
and Domshlak (2008, 2009), which in turn is based on ideas first sketched also by Katz and
Domshlak (2007a).

2. Preliminaries

We consider classical planning tasks corresponding to state models with a single initial state
and only deterministic actions. Specifically, we consider state models captured by the sas+

formalism (Bäckström & Nebel, 1995) with nonnegative action costs. Such a planning task
is given by a quintuple Π = 〈V,A, I,G, cost〉, where:

• V is a set of state variables, with each v ∈ V being associated with a finite domain
D(v). For a subset of variables V ′ ⊆ V , we denote the set of assignments to V ′ by
D(V ′) = ×v∈V ′D(v). Each complete assignment to V is called a state, and S = D(V )
is the state space of Π. I is an initial state. The goal G is a partial assignment to V ;
a state s is a goal state iff G ⊆ s.

• A is a finite set of actions. Each action a is a pair 〈pre(a), eff(a)〉 of partial assignments
to V called preconditions and effects, respectively. By Av ⊆ A we denote the actions
affecting the value of v. cost : A → R0+ is a real-valued, nonnegative action cost
function.

For a variable v and a value ϑ ∈ D(v), instantiation of v by ϑ is denoted by v : ϑ. For a
partial assignment p, V(p) ⊆ V denotes the subset of state variables instantiated by p. In
turn, for any V ′ ⊆ V(p), by p[V ′] we denote the value of V ′ in p; if V ′ = {v} is a singleton,
we use p[v] for p[V ′]. For any sequence of actions ρ and variable v ∈ V , by ρ↓v we denote the
restriction of ρ to actions changing the value of v; that is, ρ↓v is the maximal subsequence
of ρ consisting only of actions in Av.

An action a is applicable in a state s iff s[v] = pre(a)[v] for all v ∈ V(pre(a)). Applying
a changes the value of v ∈ V(eff(a)) to eff(a)[v]. The resulting state is denoted by sJaK; by
sJ〈a1, . . . , ak〉K we denote the state obtained from sequential application of the (respectively
applicable) actions a1, . . . , ak starting at state s. Such an action sequence is an s-plan if
G ⊆ sJ〈a1, . . . , ak〉K, and it is a cost-optimal (or, in what follows, optimal) s-plan if the
sum of its action costs is minimal among all s-plans. The purpose of (optimal) planning is
finding an (optimal) I-plan. For a pair of states s1, s2 ∈ S, by cost(s1, s2) we refer to the
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Figure 1: Logistics-style example adapted from Helmert (2006) and illustrated in (a). The
goal is to deliver p1 from C to G and p2 from F to E using the cars c1, c2, c3 and
truck t, making sure that c3 ends up at F . The cars may only use city roads (thin
edges); the truck may only use the highway (thick edge). Figures (b), (c), and
(d) depict, respectively, the causal graph of the problem, the domain transition
graphs (labels omitted) of c1 and c2 (left), t (center), and c3 (right), and the
identical domain transition graphs of of p1 and p2.

cost of a cost-optimal plan from s1 to s2; h∗(s) = mins′⊇G cost(s, s
′) is the custom notation

for the cost of the optimal s-plan in Π. Finally, important roles in what follows are played
by a pair of standard graphical structures induced by planning tasks.

• The causal graph CG(Π) of Π is a digraph over nodes V . An arc (v, v′) is in CG(Π)
iff v 6= v′ and there exists an action a ∈ A such that (v, v′) ∈ V(eff(a)) ∪ V(pre(a))×
V(eff(a)). In this case, we say that (v, v′) is induced by a. By succ(v) and pred(v) we
respectively denote the sets of immediate successors and predecessors of v in CG(Π).

• The domain transition graph DTG(v,Π) of a variable v ∈ V is an arc-labeled digraph
over the nodes D(v) such that an arc (ϑ, ϑ′) labeled with pre(a)[V \ {v}] and cost(a)
exists in the graph iff both eff(a)[v] = ϑ′, and either pre(a)[v] = ϑ or v 6∈ V(pre(a)).

To illustrate various constructs, we use a slight variation of a Logistics-style example
from Helmert (2006). This example is depicted in Figure 1a, and in sas+ it has
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V = {p1, p2, c1, c2, c3, t}
D(p1) = D(p2) = {A,B,C,D,E, F,G, c1, c2, c3, t}
D(c1) = D(c2) = {A,B,C,D}
D(c3) = {E,F,G}
D(t) = {D,E}

I = {p1 :C, p2 :F, t :E, c1 :A, c2 :B, c3 :G}
G = {p1 :G, p2 :E, c3 :F},

and actions corresponding to all possible loads and unloads, as well as single-segment move-
ments of the vehicles. For instance, if action a captures loading p1 into c1 at C, then
pre(a) = {p1 :C, c1 :C}, and eff(a) = {p1 : c1}. All actions in the example have unit cost.
The causal graph of this example, as well as the domain transition graphs of the state
variables, are depicted in Figures 1b-1d.

Heuristic functions are used by informed-search procedures to estimate the cost (of the
cheapest path) from a search node to the nearest goal node. Our focus here is on state-
dependent, admissible abstraction heuristics. A heuristic function h is state-dependent if its
estimate for a search node depends only on the problem state associated with that node,
that is, h : S → R0+ ∪ {∞}. Most heuristics in use these days are state-dependent (though
see, e.g., Richter, Helmert, & Westphal, 2008 and Karpas & Domshlak, 2009 for a different
case). A heuristic h is admissible if h(s) ≤ h∗(s) for all states s. If h1 and h2 are two
admissible heuristics, and h2(s) ≤ h1(s) for all states s, we say that h1 dominates h2.

For any set of admissible heuristics h1, . . . , hm, their pointwise maximum is always an
admissible heuristic, dominating each individual heuristic in the set. For some sets of ad-
missible heuristics, their pointwise sum is also admissible and dominates their pointwise
maximum. Many recent works on cost-optimal planning are based on additive ensem-
bles of admissible heuristics, and this includes critical-path heuristics (Haslum, Bonet, &
Geffner, 2005; Coles, Fox, Long, & Smith, 2008), pattern database heuristics (Edelkamp,
2001; Haslum et al., 2007), and landmark heuristics (Karpas & Domshlak, 2009; Helmert &
Domshlak, 2009). In particular, Katz and Domshlak (2007a, 2008) and Yang et al. (2007,
2008) independently introduced a general criterion for admissible additive ensembles of
heuristics, called in the former work action cost partitioning. This criterion can be formal-
ized as follows. Let Π = 〈V,A, I,G, cost〉 be a planning task and {costi : A → R0+}mi=1 a
family of cost functions such that

∑m
i=1 costi(a) ≤ cost(a) for all actions a ∈ A. If {hi}mi=1

is a set of arbitrary admissible heuristic functions for Πi = 〈V,A, I,G, costi〉, respectively,
then

∑m
i=1 hi is also an admissible heuristic for Π. The set of cost functions {costi}mi=1 can

be seen as a partition of the action costs cost.

3. Abstractions and Abstraction Heuristics

The semantics of any planning task Π is given by its induced state-transition model, often
called the transition graph of Π.
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Definition 1 A transition graph is a tuple T = (S,L, Tr, s0, S?, $) where S is a finite
set of states, L is a finite set of transition labels, Tr ⊆ S × L × S is a set of (labeled)
transitions, s0 ∈ S is an initial state, S? ⊆ S is a set of goal states, and $ : L→ R0+ is a
transition cost function.

• For a state s ∈ S and a subset of states S′ ⊆ S in T, cost(s, S′) is the cost (of a
cheapest with respect to $ path) from s to a state in S′ along the transitions of T; if
no state in S′ is reachable from s, then we have cost(s, S′) =∞.

• Any path from s0 to S? is a plan for T, and cheapest such plans are called optimal.

The states of the transition graph T(Π) induced by a planning task Π = 〈V,A, I,G, cost〉
are the states of Π. The transition labels of T(Π) are the actions A; there is a transition
(s, a, sJaK) ∈ Tr iff a is applicable in s; the initial state s0 = I; the set of goal states
S? = {s ∈ S | s ⊇ G}; and the transition cost function $ = cost. We now proceed
with formally specifying the notion of abstraction. Our definition of abstraction resembles
that of Prieditis (1993), and right from the beginning we specify a more general notion of
additive abstraction. Informally, by additive abstraction we refer to a set of abstractions
interconstrained by a requirement to jointly not overestimate the transition-path costs in
the abstracted transition graph.

Definition 2 An additive abstraction of a transition graph T = (S,L, Tr, s0, S?, $) is
a set of pairs {〈Ti, αi〉}mi=1 where, for 1 ≤ i ≤ m,

• Ti = (Si, Li, Tri, s
0
i , S

?
i , $i) is a transition graph,

• αi : S → Si is a function, called abstraction mapping, such that

– αi(s
0) = s0

i , αi(s) ∈ S?i for all s ∈ S?, and,

– for all pairs of states s, s′ ∈ S holds

m∑
i=1

cost(αi(s), αi(s
′)) ≤ cost(s, s′). (1)

A few words on why we use this particular notion of abstraction. The term “abstraction”
is usually associated with simplifying the original system, reducing and factoring out details
less crucial in the given context. Which details can be reduced and which should better
be preserved depends, of course, on the context. For instance, in the context of formal
verification, the abstract transition graphs are required not to decrease the reachability
between the states; that is, if there is a path from s to s′ in the original transition graph,
then there should be a path from α(s) to α(s′) in the abstract transition graph (Clarke,
Grumberg, & Peled, 1999). In addition, the reachability should also be increased as little as
possible. Beyond that, the precise relationship between the path costs in the original and
abstract transition graphs is only of secondary importance. In contrast, when abstractions
are designed to induce admissible heuristic functions for heuristic search, the relationship
between the path costs as captured by Eq. 1 is what must be obeyed. However, requirements
above and beyond the general requirement of Eq. 1 not to overestimate the distances between
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the states are unnecessary. Hence, in particular, Definition 2 generalizes the notion of
abstraction by Helmert et al. (2007) by replacing the condition of preserving individual
transitions and their labels, that is, (α(s), l, α(s′)) if (s, l, s′), with a weaker condition stated
in Eq. 1. The reader, of course, may well ask whether the generality of the condition in
Eq. 1 beyond the condition of Helmert et al. (2007) really delivers any practical gain, and
later we show that the answer to this question is affirmative. For now, we proceed with
adding further requirements essential to making abstraction usable as a basis for heuristic
functions.

Definition 3 Let Π be a planning task over states S, and let {〈Ti, αi〉}mi=1 be an additive
abstraction of the transition graph T(Π). If m = O(poly(||Π||)) and, for all states s ∈ S
and all 1 ≤ i ≤ m, the cost cost(αi(s), S

?
i ) in Ti is computable in time O(poly(||Π||)), then

hA(s) =
∑m

i=1 cost(αi(s), S
?
i ) is an abstraction heuristic function for Π.

Note that admissibility of hA is implied by the cost conservation condition of Eq. 1. To fur-
ther illustrate the connection between abstractions and admissible heuristics, consider three
well-known mechanisms for devising admissible planning heuristics: delete relaxation (Bonet
& Geffner, 2001), critical-path relaxation (Haslum & Geffner, 2000),2 and pattern database
heuristics (Edelkamp, 2001).

First, while typically not considered this way, the delete relaxation of a planning task
Π = 〈V,A, I,G, cost〉 does correspond to an abstraction 〈T+ = (S+, L+, Tr+, s

0
+, S

?
+, $+), α+〉

of the transition graph T(Π). Assuming unique naming of the variable values in Π and de-
noting D+ =

⋃
v∈V D(v), we have the abstract states S+ being the power-set of D+, and the

labels L+ = {a, a+ | a ∈ A}. The transitions come from two sources: for each abstract state
s+ ∈ S+ and each original action a ∈ A applicable in s+, we have both (s+, a, s+JaK) ∈ Tr+

and (s+, a+, s+ ∪ eff(a)) ∈ Tr+. With a minor abuse of notation, the initial state and the
goal states of the abstraction are s0

+ = I and S?+ = {s+ ∈ S+ | s+ ⊇ G}, and the abstraction
mapping α+ is simply the identity function. It is easy to show that, for any state s of our
planning task Π, we have cost(α+(s), S?+) = h+(s), where h+(s) is the delete-relaxation
estimate of the cost from s to the goal. As an aside, we note that this “delete-relaxation
abstraction” 〈T+, α+〉 in particular exemplifies that nothing in Definition 2 requires the
size of the abstract state space to be limited by the size of the original state space. In any
event, however, the abstraction 〈T+, α+〉 does not induce a heuristic in terms of Definition 3
because computing h+(s) is known to be NP-hard (Bylander, 1994).

The situation for critical-path relaxation is exactly the opposite. While computing
the corresponding family of admissible estimates hm is polynomial-time for any fixed m,
this computation is not based on computing the shortest paths in an abstraction of the
planning task. The state graph over which hm is computed is an AND/OR-graph (and not
an OR-graph such as transition graphs), and the actual computation of hm corresponds
to computing a critical tree (and not a shortest path) to the goal. To the best of our
knowledge, the precise relation between critical path and abstraction heuristics is currently
an open question (Helmert & Domshlak, 2009).

Overall, the only abstraction heuristics in the toolbox of planning these days appear to
be the explicit homomorphism abstractions, whose best-known representative is probably

2. We assume the reader is familiar with these two relaxations. If not, their discussion here can be safely
skipped.
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the pattern database (PDB) heuristics. Given a planning task Π over state variables V ,
a PDB heuristic is based on projecting Π onto a subset of its variables V α ⊆ V . Such a
homomorphism abstraction α maps two states s1, s2 ∈ S into the same abstract state iff
s1[V α] = s2[V α]. Inspired by the (similarly named) domain-specific heuristics for search
problems such as (n2 − 1)-puzzles or Rubik’s Cube (Culberson & Schaeffer, 1998; Her-
nadvölgyi & Holte, 1999; Felner et al., 2004), PDB heuristics have been successfully ex-
ploited in domain-independent planning as well (Edelkamp, 2001, 2002; Haslum et al.,
2007). The key decision in constructing PDBs is what sets of variables the problem is
projected to (Edelkamp, 2006; Haslum et al., 2007). However, apart from that need to
automatically select good projections, the two limitations of PDB heuristics are the size of
the abstract space Sα and its dimensionality. First, the number of abstract states should
be small enough to allow reachability analysis in Sα by exhaustive search. Moreover, an
O(1) bound on |Sα| is typically set explicitly to fit the time and memory limitations of
the system. Second, since PDB abstractions are projections, the explicit constraint on |Sα|
implies a fixed-dimensionality constraint |V α| = O(1). In planning tasks with, informally,
many alternative resources, this limitation is a pitfall. For instance, suppose {Πi}∞i=1 is a
sequence of Logistics problems of growing size with |Vi| = i. If each package in Πi can be
transported by some Θ(i) vehicles, then starting from some i, hα will not account at all for
movements of vehicles essential for solving Πi (Helmert & Mattmüller, 2008).

Aiming at preserving the attractiveness of the PDB heuristic while eliminating the bot-
tleneck of fixed dimensionality, Helmert et al. (2007) have generalized the methodology
of Dräger, Finkbeiner, and Podelski (2006) and introduced the so called merge-and-shrink
(MS) abstractions for planning. MS abstractions are homomorphisms that generalize PDB
abstractions by allowing for more flexibility in selection of pairs of states to be contracted.
The problem’s state space is viewed as the synchronized product of its projections onto the
single state variables. Starting with all such “atomic” abstractions, this product can be
computed by iteratively composing two abstract spaces, replacing them with their product.
While in a PDB the size of the abstract space Sα is controlled by limiting the number of
product compositions, in MS abstractions it is controlled by interleaving the iterative com-
position of projections with abstraction of the partial composites. Helmert et al. (2007) have
proposed a concrete strategy for this interleaved abstraction/refinement scheme and empir-
ically demonstrated the power of the merge-and-shrink abstraction heuristics. Like PDBs,
however, MS abstractions are explicit abstractions, and thus computing their heuristic val-
ues is also based on explicitly searching for optimal plans in the abstract spaces. Hence,
while merge-and-shrink abstractions escape the fixed-dimensionality constraint of PDBs,
the constraint on the abstract space to be of a fixed size still holds.

4. Implicit Abstractions

Focusing on the O(1) bound posted by explicit abstractions on the size of the abstract
space, our first observation is that explicit abstractions are not necessarily the only way to
proceed with abstraction heuristics. Given a planning task Π over states S, suppose we can
transform it into a different planning task Πα such that

1. the transformation induces an abstraction mapping α : S → Sα where Sα is the state
space of Πα, and
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2. both the transformation of Π to Πα, as well as computing α for any state in S, can
be done in time polynomial in ||Π||.

Having such planning-task-to-planning-task transformations in mind, we define what we
call (additive) implicit abstractions.

Definition 4 An additive implicit abstraction of a planning task Π is a set of pairs
A = {〈Πi, αi〉}mi=1 such that {Πi}mi=1 are some planning tasks and {〈T(Πi), αi〉}mi=1 is an
additive abstraction of T(Π).

Let us now examine the notion of implicit abstractions more closely. First, implicit
abstractions allow for a natural additive combination of admissible heuristics for the abstract
tasks. This composition is formulated below by Theorem 1, extending the original criterion
for admissibility of additive heuristics described in Section 2. Second, as formulated by
Theorem 2, implicit abstractions can be composed via the functional composition of their
abstraction mappings. These two easy-to-prove properties of implicit abstractions allow us
then to take the desired step from implicit abstractions to implicit abstraction heuristics.

Theorem 1 (Admissibility) Let Π be a planning task and A = {〈Πi, αi〉}mi=1 be an addi-
tive implicit abstraction of Π. If, for each 1 ≤ i ≤ m, hi is an admissible heuristic for Πi,
then the function h(s) =

∑m
i=1 hi(αi(s)) is an admissible heuristic for Π.

Proof: The proof is straightforward. Let T = (S,L, Tr, s0, S?, $) be the transition graph
of Π, and let s be some state in S. For each 1 ≤ i ≤ m, let Ti = (Si, Li, Tri, s

0
i , S

?
i , $i) be

the transition graph of Πi.
First, if hi is an admissible heuristic for Πi, then for all si ∈ S?i ,

hi(αi(s)) ≤ cost(αi(s), si).

Now, for each state s′ ∈ S?, from Definition 2 we have αi(s
′) ∈ S?i , and from Eq. 1 we have

m∑
i=1

cost(αi(s), αi(s
′)) ≤ cost(s, s′),

and thus

h(s) =

m∑
i=1

hi(αi(s)) ≤
m∑
i=1

cost(αi(s), αi(s
′)) ≤ cost(s, s′),

giving us an admissible estimate for h∗(s). �

Theorem 2 (Composition) Let Π be a planning task and A = {〈Πi, αi〉}mi=1 be an addi-
tive implicit abstraction of Π. If, for each 1 ≤ i ≤ m, Ai = {〈Πi,j , αi,j〉}mij=1 is an additive
implicit abstraction of Πi, then A′ =

⋃m
i=1{〈Πi,j , αi,j ◦ αi〉}mij=1 is an additive implicit ab-

straction of Π.

Proof: Let T = (S,L, Tr, s0, S?, $) be the transition graph of Π. For each 1 ≤ i ≤ m,
let Ti = (Si, Li, Tri, s

0
i , S

?
i , $i) be the transition graph of Πi, and for each 1 ≤ j ≤ mi, let

Ti,j = (Si,j , Li,j , Tri,j , s
0
i,j , S

?
i,j , $i,j) be the transition graph of Πi,j . We need to show that

αi,j ◦ αi is an abstraction mapping as in Definition 2. From αi and αi,j being abstraction
mappings, we have
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• s0
i,j = αi,j(s

0
i ) = αi,j(αi(s

0)) = αi,j ◦ αi(s0),

• for all s ∈ S? we have αi(s) ∈ S?i and thus αi,j(αi(s)) = αi,j ◦ αi(s) ∈ S?i,j , and

• for all si, s
′
i ∈ Si, cost(si, s′i) ≥

∑mi
j=1 cost(αi,j(si), αi,j(s

′
i)), and thus for all s, s′ ∈ S,

cost(s, s′) ≥
m∑
i=1

cost(αi(s), αi(s
′)) ≥

m∑
i=1

mi∑
j=1

cost(αi,j(αi(s)), αi,j(αi(s
′)))

=
m∑
i=1

mi∑
j=1

cost(αi,j ◦ αi(s), αi,j ◦ αi(s′)).

�

Together, Theorems 1 and 2 suggest the following scheme for deriving abstraction heuris-
tics. Given an additive implicit abstraction A = {〈Πi, αi〉}mi=1, if all its individual abstract
tasks belong to some tractable fragments of optimal planning, then we can use in practice
the (sum of the) true costs in all Πi as the admissible estimates for the costs in Π. Other-
wise, if optimal planning for some abstract tasks Πi in A cannot be proven polynomial-time
solvable, then we can further abstract these tasks, obtaining admissible estimates for the
true costs in Πi.

Definition 5 Let Π be a planning task over states S, and let A = {〈Πi, αi〉}mi=1 be an
additive implicit abstraction of Π. If m = O(poly(||Π||)), and, for all states s ∈ S and all
1 ≤ i ≤ m, h∗(αi(s)) is polynomial-time computable, then hA(s) =

∑m
i=1 h

∗(αi(s)) is an
implicit abstraction heuristic function for Π.

Compared to explicit abstraction heuristics such as PDB heuristics and merge-and-
shrink heuristics, the direction of implicit abstraction heuristics is, at least in principle,
appealing because neither the dimensionality nor even the size of the state spaces induced
by implicit abstractions are required to be bounded by something restrictive, if at all. The
pitfall, however, is that implicit abstraction heuristics correspond to tractable fragments of
optimal planning, and the palette of such known fragments is extremely limited (Bäckström
& Nebel, 1995; Bylander, 1994; Jonsson & Bäckström, 1998; Jonsson, 2007; Katz & Domsh-
lak, 2007b). In fact, none so far has appeared to us very convenient for automatically devis-
ing useful problem transformations as above. Fortunately, we show next that the boundaries
of tractability can be expanded in the right way, allowing us to successfully materialize the
idea of implicit abstraction heuristics.

In the following, a key role is played by the causal graphs induced by the planning
tasks. Informally, the basic idea behind what we call causal-graph decompositions is to
abstract the given planning task Π along a subgraph of Π’s causal graph, with the goal of
obtaining abstract problems of specific structure. Naturally, there are numerous possibilities
for obtaining such structure-oriented abstractions. We now present one such decomposition
that is tailored to abstractions around acyclic subgraphs. Informally, this decomposition
can be seen as a sequential application of two kinds of task transformations: dropping
preconditions (Pearl, 1984) and (certain form of) breaking actions with conjunctive effects
into single-effect actions.
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Definition 6 Let Π = 〈V,A, I,G, cost〉 be a planning task, and let G = (VG , EG) be an
acyclic subgraph of the causal graph CG(Π). A planning task ΠG = 〈VG , AG , IG , GG , costG〉
is an acyclic causal-graph decomposition of Π with respect to G if

1. IG = I[VG ], GG = G[VG ],

2. AG =
⋃
a∈AAG(a) where each AG(a) = {a1, . . . , al(a)} is a set of actions over VG

such that, for a topological with respect to G ordering of the variables {v1, . . . , vl(a)} =
V(eff(a)) ∩ VG, and 1 ≤ i ≤ l(a),

eff(ai)[v] =

{
eff(a)[v], v = vi

unspecified, otherwise

pre(ai)[v] =


pre(a)[v], (v, vi) ∈ EG ∧ v 6∈ V(eff(a)) or v = vi

eff(a)[v], (v, vi) ∈ EG ∧ v ∈ V(eff(a))

unspecified, otherwise

(2)

3. For each action a ∈ A, ∑
a′∈AG(a)

costG(a′) ≤ cost(a). (3)

It is not hard to verify from Definition 6 that for any planning task Π and any acyclic
causal-graph decomposition ΠG of Π, the causal graph CG(ΠG) is exactly the subgraph G un-
derlying the decomposition. To illustrate the notion of acyclic causal-graph decomposition,
we consider a planning task Π = 〈V,A, I,G, cost〉 over five state variables V = {u, v, x, y, z},
two unit-cost actions A = {a1, a2} as in Figure 2a, initial state I = {u :0, v :0, x :0, y :0, z :0},
and goal G = {u : 1, v : 1, x : 0, y : 1, z : 1}. The causal graph CG(Π) is depicted in Figure 2a.
Figures 2b-c show two subgraphs G1 and G2 of CG(Π), respectively, as well as the ac-
tion sets AG1(a1) = {a1

1, a
2
1, a

3
1} and AG1(a2) = {a1

2, a
2
2, a

3
2} in Figure 2(b), and the action

sets AG2(a1) = {a1
1, a

2
1, a

3
1} and AG2(a2) = {a1

2, a
2
2, a

3
2} in Figure 2(c). For i ∈ {1, 2}, let

Πi = 〈V,Ai, I, G, costi〉 be the planning task with Ai = AGi(a1)∪AGi(a2) and costi(a) = 1/3
for all a ∈ Ai. These two planning tasks Πi (individually) satisfy the conditions of Defini-
tion 6 with respect to Π and Gi, and thus they are acyclic causal-graph decompositions of
Π with respect to Gi.

We now proceed with specifying implicit abstractions defined via acyclic causal-graph
decompositions.

Definition 7 Let Π = 〈V,A, I,G, cost〉 be a planning task over states S, and let G = {Gi =
(VGi , EGi)}mi=1 be a set of acyclic subgraphs of the causal graph CG(Π). A = {〈ΠGi , αi〉}mi=1

is an acyclic causal-graph abstraction of Π over G if, for some set of cost functions
{costi : A→ R0+}mi=1 satisfying

∀a ∈ A :

m∑
i=1

costi(a) ≤ cost(a), (4)

we have, for 1 ≤ i ≤ m,
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a1 =〈{x :0, y :0, z :0}, {x :1, y :1, z :1}〉

a2 =〈{u :0, v :0, x :1}, {u :1, v :1, x :0}〉

a1

a1

a1

a2

a2

a2

v

u

x

y

z

a1
1 =〈{x :0}, {x :1}〉
a2

1 =〈{x :1, y :0}, {y :1}〉
a3

1 =〈{x :1, z :0}, {z :1}〉
a1

2 =〈{x :1}, {x :0}〉
a2

2 =〈{x :0, u :0}, {u :1}〉
a3

2 =〈{x :0, v :0}, {v :1}〉

a2
2 a3

2 a2
1

a3
1

u v

x

y z

a1
1 =〈{y :0}, {y :1}〉
a2

1 =〈{z :0}, {z :1}〉
a3

1 =〈{y :1, z :1, x :0}, {x :1}〉
a1

2 =〈{u :0}, {u :1}〉
a2

2 =〈{v :0}, {v :1}〉
a3

2 =〈{u :1, v :1, x :1}, {x :0}〉

a3
2

a3
2 a3

1 a3
1

u v

x

y z

(a) (b) (c)

Figure 2: (a) The actions and causal graph CG(Π) of the planning graph in the example
illustrating Definition 2. (b) Subgraph G1 of CG(Π) and the induced action sets
AG1(a1) and AG1(a2). (c) Subgraph G2 of CG(Π) and the induced action sets
AG2(a1) and AG2(a2). The arcs of both CG(Π) and its subgraphs G1 and G2 are
labeled with the actions inducing the arcs.

• ΠGi = 〈VGi , AGi , IGi , GGi , costGi〉 is an acyclic causal-graph decomposition of Πi =
〈V,A, I,G, costi〉 with respect to Gi, and

• the abstraction mapping αi : S → Si is the projection mapping αi(s) = s[VGi ].

Theorem 3 Acyclic causal-graph abstractions of the planning tasks are additive implicit
abstractions of these tasks.

Proof: Let Π = 〈V,A, I,G, cost〉 be a planning task, and let A = {〈ΠGi , αi〉}mi=1 be an
acyclic causal-graph abstraction of Π over a set of subgraphs G = {Gi = (VGi , EGi)}mi=1.
Let T = (S,L, Tr, s0, S?, $) be the transition graph of Π, and, for 1 ≤ i ≤ m, Ti =
(Si, Li, Tri, s

0
i , S

?
i , $i) be the transition graph of ΠGi . We need to show that αi is an ab-

straction mapping as in Definition 2.
First, from Definitions 6 and 7, we have

• s0
i = IGi = I[VGi ] = s0[VGi ] = αi(s

0), and

• for all s ∈ S? we have s ⊇ G and thus αi(s) = s[VGi ] ⊇ G[VGi ] = GGi , providing us
with αi(s) ∈ S?i .

Now, if s is a state of Π and a ∈ A is an action with pre(a) ⊆ s, then αi(s) is a state of ΠGi
and pre(a)[VGi ] ⊆ αi(s). Let the action sequence ρ = 〈a1, a2, . . . , al(a)〉 be constructed from
a as in Eq. 2. We inductively prove that ρ is applicable in αi(s). First, for each v ∈ VGi ,
either pre(a1)[v] = pre(a)[v], or pre(a1)[v] is unspecified, and thus ρ1 = 〈a1〉 is applicable in
αi(s). The inductive hypothesis is now that ρj = 〈a1, a2, . . . , aj〉 is applicable in αi(s), and
let s′ = αi(s)JρjK. From Eq. 2, for each 1 ≤ j′ ≤ j, aj′ changes the value of vj′ to eff(a)[vj′ ],
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and that is the only change of vj′ along ρj . Likewise, since all the actions constructed as in
Eq. 2 are unary-effect, {v1, . . . , vj} are the only variables in VGi affected along ρj . Hence,
for all v ∈ VGi , if v = vj′ , 1 ≤ j′ ≤ j, then s′[v] = eff(a)[v] = pre(aj+1)[v], and otherwise,
s′[v] = αi(s)[v], and if pre(aj+1)[v] is specified, then pre(aj+1)[v] = pre(a)[v] = αi(s)[v]. This
implies that aj+1 is applicable in s′ and, as a result, ρj+1 = 〈a1, a2, . . . , aj+1〉 is applicable in
αi(s), finalizing the inductive proof. Likewise, exactly the same arguments on the affect of

{aj}l(a)
j=1 on αi(s) immediately imply that, if ρ = 〈a1, a2, . . . , al(a)〉, then αi(sJaK) = αi(s)JρK.

Next, for each a ∈ A, from Eqs. 3 and 4 we have

m∑
i=1

∑
a′∈AGi (a)

costGi(a
′) ≤

m∑
i=1

costi(a) ≤ cost(a). (5)

Now, let s, s′ ∈ S be a pair of original states such that cost(s, s′) < ∞, and let % =
〈a1, . . . , ak〉 be the sequence of labels along a cheapest path from s to s′ in T. From that,
cost(s, s′) = cost(%) =

∑k
j=1 cost(aj). The decomposition of such a path to the sequences

of actions as in Eq. 2 is a (not neccesarily cheapest) path from αi(s) to αi(s
′) in Ti, and

thus cost(αi(s), αi(s
′)) ≤∑k

j=1

∑
a′∈AGi (aj)

costGi(a
′), providing us with

m∑
i=1

cost(αi(s), αi(s
′)) ≤

m∑
i=1

k∑
j=1

∑
a′∈AGi (aj)

costGi(a
′) =

k∑
j=1

m∑
i=1

∑
a′∈AGi (aj)

costGi(a
′)

(5)

≤
k∑
j=1

cost(aj) = cost(s, s′).

�

Thus, if we can decompose the given task Π into a set of tractable acyclic causal-
graph decompositions Π = {ΠG1 , . . . ,ΠGm}, then we can solve all these tasks in polynomial
time, and derive an additive admissible heuristic for Π. Before we proceed with considering
concrete acyclic causal-graph decomposition, note that Definition 2 leaves the decision about
the actual partition of the action costs rather open. In what follows we adopt the most
straightforward, uniform action cost partition in which the cost of each action a is equally
split among all the non-redundant representatives of a in

⋃m
i=1AGi(a). However, a better

choice of action cost partition can sometimes be made. In fact, sometimes it can even be
optimized (Katz & Domshlak, 2010)

5. Fork Decompositions

We now proceed with introducing two concrete acyclic causal-graph decompositions that,
when combined with certain variable domain abstractions, provide us with implicit ab-
straction heuristics. These so called fork-decomposition heuristics are based on two novel
fragments of tractable cost-optimal planning for tasks with fork and inverted-fork structured
causal graphs.

Definition 8 For a planning task Π over variables V , and a variable v ∈ V ,
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(1) v-fork of Π is the subgraph Gfv of CG(Π) over nodes VGfv = {v} ∪ succ(v) and edges
EGfv = {(v, u) | u ∈ succ(v)}, and

(2) v-ifork (short for inverted fork) of Π is a subgraph G iv of CG(Π) over nodes VG iv =
{v} ∪ pred(v) and edges EG iv = {(u, v) | u ∈ pred(v)}.

The sets of all v-forks and all v-iforks of Π are denoted by GF = {Gfv}v∈V and GI =
{G iv}v∈V , respectively.

For any planning task and each of its state variables v, both v-fork and v-ifork are
acyclic digraphs, allowing us to define our three implicit abstractions as follows.

Definition 9 For any planning task Π = 〈V,A, I,G, cost〉,
(1) any acyclic causal-graph abstraction AF = {〈Πf

v, α
f
v〉}v∈V of Π over GF is called

F-abstraction, and the set of abstract planning tasks ΠF = {Πf
v}v∈V is called

F-decomposition of Π;

(2) any acyclic causal-graph abstraction AI = {〈Πi
v, α

i
v〉}v∈V of Π over GI is called

I-abstraction, and the set of abstract planning tasks ΠI = {Πi
v}v∈V is called

I-decomposition of Π;

(3) any acyclic causal-graph abstraction AFI = {〈Πf
v, α

f
v〉, 〈Πi

v, α
i
v〉}v∈V of Π over

GFI = GF ∪GI is called FI-abstraction, and the set of abstract planning tasks
ΠFI = {Πf

v,Π
i
v}v∈V is called FI-decomposition of Π.

Definition 9 can be better understood by considering the FI-abstraction of the problem
Π from our Logistics example; Figure 3 schematically illustrates the process. To simplify
the example, here we as if eliminate from GFI all the single-node subgraphs, obtaining

AFI = {〈Πf
c1 , α

f
c1〉, {〈Πf

c2 , α
f
c2〉, {〈Πf

c3 , α
f
c3〉, {〈Πf

t, α
f
t〉, {〈Πi

p1
, αi

p1
〉, {〈Πi

p2
, αi

p2
〉}.

Considering the action sets of the problems in ΠFI = {Πf
c1 ,Π

f
c2 ,Π

f
c3 ,Π

f
t,Π

i
p1
,Πi

p2
}, we see

that each original driving action has one nonredundant (that is, “changing some variable”)
representative in three of the abstract planning tasks, while each load/unload action has
one nonredundant representative in five of these tasks. For instance, the action drive-c1-
from-A-to-D has one nonredundant representative in each of the tasks {Πf

c1 ,Π
i
p1
,Πi

p2
}, and

the action load-p1-into-c1-at-A has one nonredundant representative in each of the tasks
{Πf

c1 ,Π
f
c2 ,Π

f
c3 ,Π

f
t,Π

i
p1
}. Since we assume a uniform partition of the action costs, the cost

of each driving and load/unload action in each relevant abstract planning task is thus set
to 1/3 and 1/5, respectively. From Theorem 3 we have AFI being an additive implicit
abstraction of Π, and from Theorem 1 we then have

hFI =
∑
v∈V

(
h∗Πf

v
+ h∗Πi

v

)
, (6)

being an admissible estimate of h∗ in Π. The question now is how good this estimate is.
The optimal cost of solving our running example is 19. Taking as a reference the well-known
admissible heuristics hmax (Bonet & Geffner, 2001) and h2 (Haslum & Geffner, 2000), we
have hmax(I) = 8 and h2(I) = 13. Considering our FI-abstraction, the optimal plans for
the tasks in ΠFI are as follows.
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Πf
c1 : load-p1-into-c2-at-C, unload-p1-from-c2-at-D, load-p1-into-t-at-D,

unload-p1-from-t-at-E, load-p1-into-c3-at-E, unload-p1-from-c3-at-G,
load-p2-into-c3-at-F, unload-p2-from-c3-at-E.

Πf
c2 : load-p1-into-c1-at-C, unload-p1-from-c1-at-D, load-p1-into-t-at-D,

unload-p1-from-t-at-E, load-p1-into-c3-at-E, unload-p1-from-c3-at-G,
load-p2-into-c3-at-F, unload-p2-from-c3-at-E.

Πf
c3 : load-p1-into-c1-at-C, unload-p1-from-c1-at-D, load-p1-into-t-at-D,

unload-p1-from-t-at-E, drive-c3-from-G-to-E, load-p1-into-c3-at-E,
drive-c3-from-E-to-G, unload-p1-from-c3-at-G, drive-c3-from-G-to-E,
drive-c3-from-E-to-F, load-p2-into-c3-at-F, drive-c3-from-F-to-E,
unload-p2-from-c3-at-E, drive-c3-from-E-to-F.

Πf
t : load-p1-into-c1-at-C, unload-p1-from-c1-at-D, drive-t-from-E-to-D,

load-p1-into-t-at-D, drive-t-from-D-to-E, unload-p1-from-t-at-E,
load-p1-into-c3-at-E, unload-p1-from-c3-at-G, load-p2-into-c3-at-F,
unload-p2-from-c3-at-E.

Πi
p1

: drive-c1-from-A-to-D, drive-c1-from-D-to-C, load-p1-into-c1-at-C,
drive-c1-from-C-to-D, unload-p1-from-c1-at-D, drive-t-from-E-to-D,
load-p1-into-t-at-D, drive-t-from-D-to-E, unload-p1-from-t-at-E,
drive-c3-from-G-to-E, load-p1-into-c3-at-E, drive-c3-from-E-to-G,
unload-p1-from-c3-at-G, drive-c3-from-G-to-E, drive-c3-from-E-to-F.

Πi
p2

: drive-c3-from-G-to-E, drive-c3-from-E-to-F, load-p2-into-c3-at-F,
drive-c3-from-F-to-E, unload-p2-from-c3-at-E, drive-c3-from-E-to-F.

Hence, we have

hFI = h∗
Πf
c1

+ h∗
Πf
c2

+ h∗
Πf
c3

+ h∗
Πf
t

+ h∗
Πi
p1

+ h∗
Πf
p2

= 8
5 + 8

5 + 8
5 + 6

3 + 8
5 + 2

3 + 6
5 + 9

3 + 2
5 + 4

3 = 15,
(7)

and so hFI appears at least promising.

Unfortunately, despite the seeming simplicity of the planning tasks in ΠFI, it turns out
that implicit fork-decomposition abstractions as in Definitions 9 do not fit the requirements
of implicit abstraction heuristics as in Definition 5. The causal graphs of the planning
tasks in ΠF and ΠI form directed forks and directed inverted forks, respectively, and, in
general, the number of variables in each such planning task can be as large as Θ(|V |).
The problem is that even satisficing planning for sas+ fragments with fork and inverted
fork causal graphs is NP-complete (Domshlak & Dinitz, 2001). In fact, recent results by
Chen and Gimenez (2008) show that planning for any sas+ fragment characterized by any
nontrivial form of causal graph is NP-hard. Moreover, even if the domain transition graphs
of all the state variables are strongly connected (as in our example), optimal planning for
fork and inverted fork structured problems remain NP-hard (see Helmert 2003, and 2004
for the respective results). Next, however, we show that this is not the end of the story for
fork decompositions.
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Figure 3: Schematic illustration of FI-decomposition for our running Logistics example

While the hardness of optimal planning for problems with fork and inverted fork causal
graphs casts a shadow on the relevance of fork decompositions, a closer look at the proofs of
the corresponding hardness results of Domshlak and Dinitz (2001) and Helmert (2003, 2004)
reveals that they in particular rely on root variables having large domains. Exploiting this
observation, we now show that this reliance is not incidental and characterize two substantial
islands of tractability within the structural fragments of sas+.

Theorem 4 (Tractable Forks) Given a planning task Π = 〈V,A, I,G, cost〉 with a fork
causal graph rooted at r ∈ V , if |D(r)| = 2, the time complexity of the cost-optimal planning
for Π is polynomial in ||Π||.

Proof: Observe that, for any planning task Π as in the theorem, the fork structure of the
causal graph CG(Π) implies that all the actions in Π are unary-effect, and each leaf variable
v ∈ succ(r) preconditions only the actions affecting v itself. The algorithm below is based
on the following three properties satisfied by the optimal plans ρ for Π.

(i) For any leaf variable v ∈ succ(r), the path ρ↓v from I[v] to G[v] induced by ρ in
DTG(v,Π) is either cycle-free or contains only zero-cost cycles. This is the case because
otherwise all the nonzero-cost cycles can be eliminated from ρ↓v while preserving its
validity, violating the assumed optimality of ρ. Without loss of generality, in what
follows we assume that this path ρ↓v in DTG(v,Π) is cycle-free; in the case of fork
causal graphs, we can always select an optimal ρ that satisfies this requirement for all
v ∈ succ(r). Thus, we have |ρ↓v | ≤ |D(v)| − 1.

(ii) Having fixed a sequence of value changes of r, the fork’s leaves become mutually
independent; that is, our ability to change the value of one of them does not affect
our ability to change the value of all the others.
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(iii) Because r is binary-valued, if v ∈ V \ {r} is the “most demanding” leaf variable in
terms of the number of value changes required from r by the action preconditions
along ρ↓v , then these are the only value changes of r along ρ, except for, possibly, a
final value change to G[r]. Thus, in particular, we have |ρ↓r | ≤ maxv∈succ(r) |D(v)|.

We begin with introducing some auxiliary notations. With |D(r)| = 2, let D(r) = {0, 1}
with I[r] = 0. Let σ(r) be an alternating 0/1 sequence starting with 0, and having 0 in
all odd and 1 in all even positions. This sequence σ(r) is such that |σ(r)| = 1 if no action
in A can change r’s value to 1, |σ(r)| = 2 if some action can change r’s value to 1 but no
action can then restore it to value 0, and otherwise, |σ(r)| = 1 + maxv∈succ(r) |D(v)|. Let
�[σ(r)] be the set of all nonempty prefixes of σ(r) if G[r] is unspecified; otherwise, let it
be the set of all nonempty prefixes of σ(r) ending with G[r]. Note that, if �[σ(r)] = ∅,
then the problem is trivially unsolvable; in what follows we assume this is not the case. For
each v ∈ succ(r), let DTG0

v and DTG1
v be the subgraphs of the domain transition graphs

DTG(v,Π), obtained by removing from DTG(v,Π) all the arcs labeled with r : 1 and r : 0,
respectively.

The algorithm below incrementally constructs a set R of valid plans for Π, starting with
R = ∅.

(1) For each v ∈ succ(r), and each pair of v’s values x, y ∈ D(v), compute the cheapest
(that is, cost-minimal) paths π0

v(x, y) and π1
v(x, y) from x to y in DTG0

v and DTG1
v,

respectively. For some pairs of values x, y, one or even both these paths may, of course,
not exist.

(2) For each sequence σ ∈ �[σ(r)], and each v ∈ succ(r), construct a layered digraph Lv(σ)
with |σ|+ 1 node layers L0, . . . , L|σ|, where L0 consists of only I[v], and for 1 ≤ i ≤ |σ|,
Li consists of all nodes y ∈ D(v) for which a path π

σ[i]
v (x, y) from some node x ∈ Li−1

has been constructed in step (1). For each x ∈ Li−1, y ∈ Li, Lv(σ) contains an arc

(x, y) weighted with cost(π
σ[i]
v (x, y)).

(3) For each σ ∈ �[σ(r)], let k = |σ|. A candidate plan ρσ for Π is constructed as follows.

(a) For each v ∈ succ(r), find a cost-minimal path from I[v] to G[v] in Lv(σ). If no such
path exists, then proceed with the next prefix in �[σ(r)]. Otherwise, note that the
i-th edge on this path (taking us from some x ∈ Li−1 to some y ∈ Li) corresponds

to the cost-minimal path π
σ[i]
v (x, y) from x to y. Let us denote this path from x to

y by Siv.

(b) SetR = R∪{ρσ}, where ρσ = S1 ·aσ[2] ·S2 ·. . .·aσ[k] ·Sk, each sequence Si is obtained
by an arbitrary merge of the sequences {Siv}v∈succ(r), and aϑ is the cheapest action
changing the value of r to value ϑ.

(4) If R = ∅, then fail, otherwise return ρ = argminρσ∈R cost(ρσ).

It is straightforward to verify that the complexity of the above procedure is polynomial
in the description size of Π. To prove correctness, we show that the procedure returns a
plan for any solvable task Π, and that the returned plan ρ′ satisfies cost(ρ′) ≤ cost(ρ) for
any optimal plan ρ for Π.
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Given a solvable task Π, let ρ be an optimal plan for Π with all ρ↓v for the leaf variables
v being cycle-free. Let ρ↓r = 〈a2 . . . , ak〉; the numbering of actions along ρ↓r starts with
a2 to simplify indexing later on. For each v ∈ succ(r), the actions of ρ↓r divide ρ↓v into
subsequences of v-changing actions ρ↓v = ρ1

v · . . . · ρkv , separated by the value changes
required from r. That is, for each 1 ≤ i ≤ k, all actions in ρiv are preconditioned by the
same value of r, if any, and if two actions a ∈ ρiv and a′ ∈ ρi+1

v are preconditioned by r, then
pre(a)[r] 6= pre(a′)[r]. Let σ ∈ �[σ(r)] be a value sequence such that |σ| = k = |ρ↓r |+1. For
each v ∈ succ(r), ρ↓v is a path from I[v] to G[v] in Lv(σ), and therefore some ρσ is added
into R by the algorithm, meaning that the algorithm finds a solution. Now, if ρσ ∈ R,
then, for each v ∈ succ(r), let S1

v · S2
v · . . . · Skv be a cost-minimal path from I[v] to G[v] in

Lv(σ) such that Siv is the sequence of actions changing the value of v and preconditioned
either by r :0 or nothing for odd i, and by r :1 or nothing for even i. Thus,

cost(S1
v · S2

v · . . . · Skv ) =

k∑
i=1

cost(Siv) ≤ cost(ρ↓v).

Because sequence Si is obtained by an arbitrary merge of the sequences {Siv}v∈succ(r), and

aϑ is the cheapest action changing the value of r to ϑ, then ρσ = S1 · aσ[2] ·S2 · . . . · aσ[k] ·Sk
is an applicable sequence of actions that achieves the goal values for each v ∈ succ(r) as
well as for r, and

cost(ρσ) = cost(S1 · aσ[2] · S2 · . . . · aσ[k] · Sk) =

k∑
i=2

cost(aσ[i]) +

k∑
i=1

cost(Si) ≤

≤cost(ρ↓r) +
∑

v∈succ(r)

cost(ρ↓v) = cost(ρ).

Hence, if Π is solvable, then the algorithm returns a plan for Π, and this plan must be
optimal. Finally, if Π is not solvable, then R necessarily remains empty, and thus the
algorithm fails. �

While Theorem 4 concerns the tractability tasks with fork-structured causal graphs and
roots with binary domains, in our earlier work we also reported an additional tractability
result for fork-structured causal graphs with the domains of all variables being of a fixed
size, though not necessarily binary-valued (Katz & Domshlak, 2008). We do not discuss
this result here in detail because, at least so far, we have not found it very helpful in the
context of devising effective abstraction heuristics.

Theorem 5 (Tractable Inverted Forks) Given a planning task Π = 〈V,A, I,G, cost〉
with an inverted fork causal graph with sink r ∈ V , if |D(r)| = O(1), the time complexity of
the cost-optimal planning for Π is polynomial in ||Π||.

Proof: Let |D(r)| = d. Observe that the inverted-fork structure of the causal graph CG(Π)
implies all the actions in Π are unary-effect, and that the sink r preconditions only the
actions affecting r itself. Hence, in what follows we assume that G[r] is specified; otherwise
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Given a path 〈a1, . . . , am〉 from I[r] to G[r] in DTG(r,Π):

ρ := 〈〉
am+1 := 〈G[pred(r)], ∅〉
foreach v ∈ pred(r) do xv := I[v]
for i := 1 to m+ 1 do

foreach v ∈ pred(r) do
if pre(ai)[v] is specified and pre(ai)[v] 6= xv then

if pre(ai)[v] is not reachable from xv in DTG(v,Π) then fail
append to ρ the actions induced by some cost-minimal path

from pre(ai)[v] to xv in DTG(v,Π)
xv := pre(ai)[v]

if i < m+ 1 then append to ρ the action ai
return ρ

Figure 4: Detailed outline of step (3) of the planning algorithm for inverted-fork structured
task.

Π breaks down to a set of trivial planning problems over a single variable each. Likewise,
from the above properties of Π it follows that, if ρ is an optimal plan for Π, then the path
ρ↓r from I[r] to G[r] induced by ρ in DTG(r,Π) is either cycle-free or contains only zero-
cost cycles. The latter can be safely eliminated from ρ, and thus we can assume that ρ↓r
is cycle-free. Given that, a simple algorithm that finds a cost-optimal plan for Π in time
Θ(||Π||d + ||Π||3) is as follows.

(1) Create all Θ(|Ar|d−1) cycle-free paths from I[r] to G[r] in DTG(r,Π).

(2) For each variable v ∈ pred(r), and each pair of v’s values x, y ∈ D(v), compute the
cost-minimal path from x to y in DTG(v,Π). The whole set of such cost-minimal paths
can be computed using Θ(d|V |) applications of the Floyd-Warshall algorithm on the
domain transition graphs of the sink’s parents pred(r).

(3) For each I[r]-to-G[r] path in DTG(r,Π) generated in step (1), construct a plan for
Π based on that path for r, and the cheapest paths computed in (2). This simple
construction, depicted in Figure 4, is possible because the values of each parent variable
can be changed independently of the values of all other variables in the inverted fork.

(4) Take the cheapest plan among those constructed in (3). If no plan was constructed in
step (3), then Π is unsolvable.

We have already observed that, for each cost-optimal plan ρ, ρ↓r is one of the I[r]-to-G[r]
paths generated in step (1). For each v ∈ pred(r), let Sv denote the sequence of values from
D(v) that is required by the preconditions of the actions along ρ↓r . For each v ∈ pred(r), we
have ρ↓v corresponding to a (possibly cyclic) path from I[v] to G[v] in DTG(v,Π), traversing
the values (= nodes) from Sv in the order required by Sv. In turn, the plan for Π generated
in (3) consists of cost-minimal such paths for all v ∈ pred(r). Therefore, at least one of the
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plans generated in (3) must be cost-optimal for Π, and the minimization step (4) will select
one of them. �

Theorems 4 and 5 clarify the gap between fork decompositions and implicit abstraction
heuristics, and now we can bridge this gap by further abstracting each task in the given fork
decomposition of Π. We do that by abstracting domains of the fork roots and inverted-fork
sinks to meet the requirements of the tractable fragments. We note that, in itself, the idea
of domain decomposition is not very new in general (Hernadvölgyi & Holte, 1999) and in
domain-independent planning in particular (Domshlak, Hoffmann, & Sabharwal, 2009). In
fact, the shrinking step of the algorithm for building the merge-and-shrink abstractions
is precisely a variable domain abstraction for meta-variables constructed in the merging
steps (Helmert et al., 2007).

Definition 10 Let Π = 〈V,A, I,G, cost〉 be a planning task over states S, v ∈ V be a state
variable, and Φ = {φ1, . . . , φm} be a set of mappings from D(v) to some sets Γ1, . . . ,Γm,
respectively. A = {〈Πφi , αi〉}mi=1 is a domain abstraction of Π over Φ if, for some set of
cost functions {costi : A→ R0+}mi=1 satisfying

∀a ∈ A :
m∑
i=1

costi(a) ≤ cost(a), (8)

we have, for 1 ≤ i ≤ m,

• the abstraction mapping αi of states S is

∀u ∈ V : αi(s)[u] =

{
φi(s[u]), u = v

s[u], u 6= v
,

and, extending αi to partial assignments on V ′ ⊆ V as αi(s[V
′]) = αi(s)[V

′],

• Πφi = 〈V,Aφi , Iφi , Gφi , costφi〉 is a planning task with

1. Iφi = αi(I), Gφi = αi(G),

2. Aφi = {aφi = 〈αi(pre(a)), αi(eff(a))〉 | a ∈ A}, and

3. for each action a ∈ A,
costφi(aφi) = costi(a). (9)

We say that Πφi is a domain decomposition of Πi = 〈V,A, I,G, costi〉 with respect to φi.

Theorem 6 Domain abstractions of the planning tasks are additive implicit abstractions
of these tasks.

Proof: Let Π = 〈V,A, I,G, cost〉 be a planning task and A = {〈Πφi , αi〉}mi=1 be a domain
abstraction of Π over Φ = {φ1, . . . , φm}. Let T = (S,L, Tr, s0, S?, $) be the transition
graph of Π. For each 1 ≤ i ≤ m, let Ti = (Si, Li, Tri, s

0
i , S

?
i , $i) be the transition graph of

Πφi . We need to show that αi is an abstraction mapping as in Definition 2.
First, from Definition 10 we have
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• s0
i = Iφi = αi(I) = αi(s

0), and

• for all s ∈ S? we have s ⊇ G and thus αi(s) ⊇ αi(G) = Gφi , providing us with
αi(s) ∈ S?i .

Now, if s is a state of Π and a ∈ A is an action with pre(a) ⊆ s, then αi(s) is a state of Πφi

and pre(aφi) = αi(pre(a)) ⊆ αi(s). Thus, aφi is applicable in αi(s), and now we show that
applying aφi in αi(s) results in αi(s)JaφiK = αi(sJaK).

1. For the effect variables v ∈ V(eff(a)) = V(eff(aφi)), we have eff(aφi) ⊆ αi(s)JaφiK and
eff(aφi) = αi(eff(a)) ⊆ αi(sJaK).

2. For all other variables v 6∈ V(eff(a)), we have sJaK[v] = s[v] and αi(s)JaφiK[v] =
αi(s)[v], and thus

αi(s)JaφiK[v] = αi(s)[v] = αi(s[v]) = αi(sJaK[v]) = αi(sJaK)[v].

Next, for each a ∈ A, from Eqs. 8 and 9 we have

m∑
i=1

costφi(aφi) =

m∑
i=1

costi(a) ≤ cost(a). (10)

Now, let s, s′ ∈ S be a pair of states such that cost(s, s′) ≤ ∞, and let % = 〈a1, . . . , al〉 be the
sequence of labels along a cheapest path from s to s′ in T. From that, cost(s, s′) = cost(%) =∑l

j=1 cost(a
j). The decomposition of such a path to the actions as in Definition 10 is a

(not neccesarily cheapest) path from αi(s) to αi(s
′) in Ti, and thus cost(αi(s), αi(s

′)) ≤∑l
j=1 costi(a

j), providing us with

m∑
i=1

cost(αi(s), αi(s
′)) ≤

m∑
i=1

l∑
j=1

costφi(a
j
φi

) =
l∑

j=1

m∑
i=1

costφi(a
j
φi

)
(10)

≤
l∑

j=1

cost(aj) = cost(s, s′).

�

Having put the notion of domain abstraction in the framework of implicit abstractions,
we are now ready to connect fork decompositions and implicit abstraction heuristics. Given
a FI-abstraction AFI = {〈Πf

v, α
f
v〉, 〈Πi

v, α
i
v〉}v∈V of a planning task Π = 〈V,A, I,G, cost〉,

• for each Πf
v ∈ ΠFI, we associate the root v of CG(Πf

v) with mappings Φf
v = {φfv,1, . . . , φfv,kv}

such that kv = O(poly(||Π||)) and all φfv,i : D(v)→ {0, 1}, and then abstract Πf
v with

Af
v = {〈Πf

v,i, α
f
v,i〉}kvi=1, and

• for each Πi
v ∈ ΠFI, we associate the sink v of CG(Πi

v) with mappings Φi
v = {φiv,1, . . . , φiv,k′v}

such that k′v = O(poly(||Π||)) and all φiv,i : D(v) → {0, 1, . . . , bv,i}, bv,i = O(1), and

then abstract Πi
v with Ai

v = {〈Πi
v,i, α

i
v,i〉}

k′v
i=1.
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From Theorem 3, Theorem 6, and the composition Theorem 2, we then immediately have

AFI =
⋃
v∈V

 kv⋃
i=1

{〈Πf
v,i, α

f
v,i ◦ αf

v〉} ∪
k′v⋃
i=1

{〈Πi
v,i, α

i
v,i ◦ αi

v〉}

 (11)

being an additive implicit abstraction of Π. Hence, from Theorem 1,

hFI =
∑
v∈V

 kv∑
i=1

h∗
Πf
v,i

+

k′v∑
i=1

h∗
Πi
v,i

 (12)

is an admissible estimate of h∗ for Π, and, from Theorems 4 and 5, hFI is also computable
in time O(poly(||Π||)).

This finalizes our construction of a concrete family of implicit abstraction heuristics. To
illustrate the mixture of acyclic causal-graph and domain abstractions as above, we again
use our running Logistics example. One bothersome question is to what extent further
abstracting fork decompositions using domain abstractions affects the informativeness of
the heuristic estimate. Though generally a degradation here is unavoidable, below we show
that the answer to this question can sometimes be somewhat surprising.

To begin with an extreme setting, let all the domain abstractions for roots of forks and
sinks of inverted forks be to binary-valued domains. Among multiple options for choos-
ing the mapping sets {Φf

v} and {Φi
v}, here we use a simple choice of distinguishing be-

tween different values of each variable v on the basis of their cost from I[v] in DTG(v,Π).
Specifically, for each v ∈ V , we set Φf

v = Φi
v, and, for each value ϑ ∈ D(v) and each

1 ≤ i ≤ maxϑ′∈D(v) d(I[v], ϑ′),

φfv,i(ϑ) = φiv,i(ϑ) =

{
0, d(I[v], ϑ) < i

1, otherwise
(13)

For example, the problem Πf
c1 is decomposed (see the domain transition graph of c1

on the left in Figure 1c) into two problems, Πf
c1,1

and Πf
c1,2

, with the binary abstract
domains of c1 corresponding to the partitions {{A}, {B,C,D}} and {{A,D}, {B,C}} of
D(c1), respectively. As yet another example, the problem Πi

p1
is decomposed (see the

domain transition graph of p1 in Figure 1d) into six problems Πi
p1,1

, . . . ,Πi
p1,6

along the
abstractions of D(p1) depicted in Figure 5a. Now, given the FI-decomposition of Π and
mappings {Φf

v,Φ
i
v}v∈V as above, consider the problem Πi

p1,1
, obtained from abstracting Π

along the inverted fork of p1 and then abstracting D(p1) using

φip1,1(ϑ) =

{
0, ϑ ∈ {C}
1, ϑ ∈ {A,B,D,E, F,G, c1, c2, c3, t}

.

It is not hard to verify that, from the original actions affecting p1, we are left in Πi
p1,1

with

only actions conditioned by c1 and c2. If so, then no information is lost3 if we remove
from Πi

p1,1
both variables c3 and t, as well as the actions changing (only) these variables,

3. No information is lost here because we still keep either fork or inverted fork for each variable of Π.
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at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

(a)

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

at A at B at C at D at E at F at G

in c₂

in c₁ in t

in c₃

D(p1) in Πf
p1,1

D(p1) in Πf
p1,2

D(p1) in Πf
p1,3

(b)

Figure 5: Domain abstractions for D(p1). (a) Binary-valued domain abstractions: the val-
ues inside and outside each dashed contour are mapped to 0 and 1, respectively.
(b) Ternary-valued domain abstractions: values that are mapped to the same
abstract value are shown as nodes with the same color and borderline.

and redistribute the cost of the removed actions between all other representatives of their
originals in Π. The latter revision of the action cost partition can be obtained directly by
replacing the cost-partitioning steps corresponding to Eqs. 3-4 and 8-9 by a single, joint
action cost partitioning applied over the final additive implicit abstraction AFI as in Eq. 11
and satisfying

cost(a) ≥
∑
v∈V

 kv∑
i=1

∑
a′∈AGfv (a)

costfv,i(φ
f
v,i(a

′)) +

k′v∑
i=1

∑
a′∈AGiv (a)

costiv,i(φ
i
v,i(a

′))

 . (14)

In what follows, by uniform action cost partition we refer to a partition in which the cost of
each action is equally split among all its nonredundant representatives in the final additive
implicit abstraction.

Overall, computing hFI as in Eq. 12 under our “all binary-valued domain abstractions”
and such a uniform action cost partition provides us with hFI(I) = 12 7

15 , and knowing that
the original costs are all integers we can safely adjust it to hFI(I) = 13. Hence, even under
the most severe domain abstractions as above, the estimate of hFI in our example task is
not lower than that of h2.

Let us now slightly refine our domain abstractions for the sinks of the inverted forks to
be to a ternary range {0, 1, 2}. While mappings {Φf

v} remain unchanged, {Φi
v} are set to
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∀ϑ ∈ D(v) : φiv,i(ϑ) =


0, d(I[v], ϑ) < 2i− 1

1, d(I[v], ϑ) = 2i− 1

2, d(I[v], ϑ) > 2i− 1

. (15)

For example, the problem Πi
p1

is now decomposed into Πi
p1,1

, . . . ,Πi
p1,3

along the abstractions

of D(p1) depicted in Figure 5b. Applying now the same computation of hFI as in Eq. 12
over the new set of domain abstractions gives hFI(I) = 151

2 , which, again, can be safely
adjusted to hFI(I) = 16. Note that this value is higher than hFI = 15 obtained using the
(generally intractable) “pure” fork-decomposition abstractions as in Eq. 6. At first view,
this outcome may seem counterintuitive as the domain abstractions are applied over the fork
decomposition, and one would expect a coarser abstraction to provide less precise estimates.
This, however, is not necessarily the case when the employed action cost partition is ad hoc.
For instance, domain abstraction for the sink of an inverted fork may create independence
between the sink and its parent variables, and exploiting such domain-abstraction specific
independence relations leads to more targeted action cost partition via Eq. 14.

To see why this surprising “estimate improvement” has been obtained, note that before
the domain abstraction in Eq. 15 is applied on our example, the truck-moving actions
drive-t-from-D-to-E and drive-t-from-E-to-D appear in three abstractions Πf

t, Πi
p1

and Πi
p2

,

while after domain abstraction they appear in five abstractions Πf
t,1, Πi

p1,1
, Πi

p1,2
, Πi

p1,3
and

Πi
p2,1

. However, a closer look at the action sets of these five abstractions reveals that the

dependencies of p1 in CG(Πi
p1,1

) and CG(Πi
p1,3

), and of p2 in CG(Πi
p2,1

) on t are redundant,
and thus keeping representatives of move-D-E and move-E-D in the corresponding abstract
tasks is entirely unnecessary. Hence, after all, the two truck-moving actions appear only in
two post-domain-abstraction tasks. Moreover, in both these abstractions the truck-moving
actions are fully counted, in contrast to the predomain-abstraction tasks where the portion
of the cost of these actions allocated to Πi

p2
simply gets lost.

6. Experimental Evaluation: Take I

To evaluate the practical attractiveness of the fork-decomposition heuristics, we have con-
ducted an empirical study on a wide sample of planning domains from the International
Planning Competitions (IPC) 1998-2006, plus a non-IPC Schedule-STRIPS domain.4

The domains were selected to allow a comparative evaluation with other, both baseline and
state-of-the-art, approaches/planners, not all of which supported all the PDDL features at
the time of our evaluation.

Later we formally prove that, under ad hoc action cost partitions such as our uniform
partition, none of the three fork decompositions as in Definition 9 is dominated by the
other two. Hence, we have implemented three additive fork-decomposition heuristics, hF,
hI, and hFI, within the standard heuristic forward search framework of the Fast Downward
planner (Helmert, 2006) using the A∗ algorithm with full duplicate elimination. The hF

heuristic corresponds to the ensemble of all (not clearly redundant) fork subgraphs of the

4. Schedule-STRIPS appears in the domains’ distribution of IPC-2000. Later we became aware of the
fact that this domain was excluded from the competition because its encoding generated problems for
various planners.
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domain S
hF hI hFI MS -104 MS -105 HSP∗F Gamer blind hmax

s %S s %S s %S s %S s %S s %S s %S s %S s %S
airport-ipc4 21 11 52 14 67 11 52 19 90 17 81 15 71 11 52 18 86 20 95
blocks-ipc2 30 17 57 15 50 15 50 18 60 20 67 30 100 30 100 18 60 18 60
depots-ipc3 7 2 29 2 29 2 29 7 100 4 57 4 57 4 57 4 57 4 57
driverlog-ipc3 12 9 75 10 83 9 75 12 100 12 100 9 75 11 92 7 58 8 67
freecell-ipc3 5 3 60 2 40 2 40 5 100 1 20 5 100 2 40 4 80 5 100
grid-ipc1 2 1 50 1 50 1 50 2 100 2 100 0 0 2 100 1 50 2 100
gripper-ipc1 20 5 25 5 25 5 25 7 35 7 35 6 30 20 100 7 35 7 35
logistics-ipc1 6 3 50 2 33 2 33 4 67 5 83 3 50 6 100 2 33 2 33
logistics-ipc2 22 21 95 15 68 14 64 16 73 21 95 16 73 20 91 10 45 10 45
miconic-strips-ipc2 85 45 53 42 49 40 47 54 64 55 65 45 53 85 100 50 59 50 59
mprime-ipc1 24 17 71 17 71 17 71 21 88 12 50 8 33 9 38 19 79 24 100
mystery-ipc1 21 16 76 15 71 16 76 17 81 13 62 11 52 8 38 18 86 18 86
openstacks-ipc5 7 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100
pathways-ipc5 4 4 100 4 100 4 100 3 75 4 100 4 100 4 100 4 100 4 100
pipes-notank-ipc4 21 9 43 11 52 8 38 20 95 12 57 13 62 11 52 14 67 17 81
pipes-tank-ipc4 14 6 43 6 43 6 43 13 93 7 50 7 50 6 43 10 71 10 71
psr-small-ipc4 50 47 94 48 96 47 94 50 100 50 100 50 100 47 94 48 96 49 98
rovers-ipc5 7 5 71 6 86 6 86 6 86 7 100 6 86 5 71 5 71 6 86
satellite-ipc4 6 6 100 6 100 5 83 6 100 6 100 5 83 6 100 4 67 5 83
schedule-strips 43 42 98 35 81 39 91 22 51 1 2 11 26 3 7 29 67 31 72
tpp-ipc5 6 5 83 5 83 5 83 6 100 6 100 5 83 5 83 5 83 6 100
trucks-ipc5 9 5 56 5 56 5 56 6 67 5 56 9 100 3 33 5 56 7 78
zenotravel-ipc3 11 8 73 9 82 8 73 11 100 11 100 8 73 10 91 7 64 8 73

total 433 294 282 274 332 285 277 315 296 318

Table 1: A summary of the experimental results. Per domain, S denotes the number of
tasks solved by any planner. Per planner/domain, the number of tasks solved by
that planner is given both by the absolute number (s) and by the percentage from
“solved by some planners” (%S). The last row summarize the number of solved
instances.

causal graph, with the domains of the roots being abstracted using the “leave-one-value-out”
binary-valued domain decompositions as follows:

∀ϑi ∈ D(v) : φfv,i(ϑ) =

{
0, ϑ = ϑi

1, otherwise
. (16)

The hI heuristic is the same but for the inverted fork subgraphs, with the domains of the
sinks being abstracted using the “distance-to-goal-value” ternary-valued domain decompo-
sitions5 as in Eq. 17.

∀ϑ ∈ D(v) : φiv,i(ϑ) =


0, d(ϑ,G[v]) < 2i− 1

1, d(ϑ,G[v]) = 2i− 1

2, d(ϑ,G[v]) > 2i− 1

. (17)

The ensemble of the hFI heuristic is the union of these for hF and hI. The action cost
partition in all three heuristics was what we call “uniform.”

We make a comparison with two baseline approaches, namely “blind A∗” with heuristic
value 0 for goal states and 1 otherwise, and A∗ with the hmax heuristic (Bonet & Geffner,
2001), as well as with state-of-the-art abstraction heuristics, represented by the merge-
and-shrink abstractions of Helmert et al. (2007). The latter were constructed under the

5. While “distance-from-initial-value” is reasonable for the evaluation of just the initial state, “leave-one-
value-out” for fork roots and “distance-to-goal-value” for inverted-fork sinks should typically be much
more attractive for the evaluation of all the states examined by A∗.
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linear, f -preserving abstraction strategy proposed by these authors, and this under two
fixed bounds on the size of the abstract state spaces, notably |Sα| < 104 and |Sα| < 105.
These four (baseline and merge-and-shrink) heuristics were implemented by Helmert et al.
(2007) within the same planning system as our fork-decomposition heuristics, allowing for
a fairly unbiased comparison. We also compare to the Gamer (Edelkamp & Kissmann,
2009) and HSP∗F (Haslum, 2008) planners, the winner and the runner-up at the sequential
optimization track of IPC-2008. On the algorithmic side, Gamer is based on a bidirectional
blind search using sophisticated symbolic-search techniques, and HSP∗F uses A∗ with an
additive critical-path heuristic. The experiments were conducted on a 3GHz Intel E8400
CPU with 2 GB memory, using 1.5 GB memory limit and 30 minute timeout. The only
exception was Gamer, for which we used similar machines but with 4 GB memory and 2
GB memory limit; this was done to provide Gamer with the environment for which it was
configured.

Table 1 summarizes our experimental results in terms of the number of tasks solved by
each planner. Our impression of fork-decomposition heuristics from Table 1 is somewhat
mixed. On the one hand, the performance of all three fork-decomposition based planners
was comparable to one of the settings of the merge-and-shrink heuristic, and this clearly
testifies for that the framework of implicit abstractions is not of theoretical interest only.
On the other hand, all the planners, except for A∗ with the merge-and-shrink heuristic with
|Sα| < 104, failed to outperform A∗ with the baseline hmax heuristic. More important for
us is that, unfortunately, all three fork-decomposition based planners failed to outperform
even the basic blind search.

This, however, is not the end of the story for the fork-decomposition heuristics. Some
hope can be found in the detailed results in Tables 9-14 in the appendix. As it appears from
Table 10, on, e.g., the Logistics-ipc2 domain, hF almost consistently leads to expanding
fewer search nodes than the (better between the two merge-and-shrink heuristics on this
domain) MS -105, with the difference hitting four orders of magnitude. However, the time
complexity of hF per search node is substantially higher than that of MS -105, with the
two expanding at a rate of approximately 40 and 100000 nodes per second, respectively.
The outcome is simple: while with no time limits (and only memory limit of 1.5 GB) hF

solves more tasks in Logistics-ipc2 than MS -105 (task 12-1 is solved with hF in 2519.01
seconds), this is not so with a standard time limit of half an hour used for Table 10. In what
follows we examine the possibility of exploiting the informativeness of fork-decomposition
heuristics while not falling into the trap of costly per-node heuristic evaluation.

7. Back to Theory: h-Partitions and Databased Implicit Abstraction

Accuracy and low time complexity are both desired yet competing properties of heuristic
functions. For many powerful heuristics, and abstraction heuristics in particular, computing
h(s) for each state s in isolation is impractical: while computing h(s) is polynomial in the
description size of Π, it is often not efficient enough to be performed at each search node.
However, for some costly heuristics this obstacle can be largely overcome by sharing most
of the computation between the evaluations of h on different states. If that is possible,
the shared parts of computing h for all problem states are precomputed and memorized
before the search, and then reused during the search by the evaluations of h on different
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states. Such a mixed offline/online heuristic computation is henceforth called h-partition,
and we define the time complexity of an h-partition as the complexity of computing h
for a set of states. Given a subset of k problem states S′ ⊆ S, the h-partition’s time
complexity of computing {h(s) | s ∈ S′} is expressed as O(X+kY ), where O(X) and O(Y )
are, respectively, the complexity of the (offline) pre-search and (online) per-node parts of
computing h(s).

These days h-partitions are being adopted by various optimal planners using critical-
path heuristics hm for m > 1 (Haslum et al., 2005), landmark heuristics hL and hLA (Karpas
& Domshlak, 2009), and PDB and merge-and-shrink abstraction heuristics (Edelkamp,
2001; Helmert et al., 2007). Without effective h-partitions, optimal search with these
heuristics would not scale up well, while with such h-partitions it constitutes the state of the
art of cost-optimal planning. For instance, a very attractive property of PDB abstractions
is the complexity of their natural hα-partition. Instead of computing hα(s) = h∗(α(s)) from
scratch for each evaluated state s (impractical for all but tiny projections), the practice is
to precompute and store h∗(s′) for all abstract states s′ ∈ Sα, after which the per-node
computation of hα(s) boils down to a hash-table lookup for h∗(α(s)) with a perfect hash
function. In our terms, the time and space complexity of that PDB hα-partition for a set
of k states is O(|Sα|(log(|Sα|) + |A|) + k) and O(|Sα|), respectively. This is precisely what
makes PDB heuristics so attractive in practice. In that respect, the picture with merge-
and-shrink abstractions is very much similar. While the order in which composites are
formed and the choice of abstract states to contract are crucial to the complexity of their
natural hα-partitions, the time and space complexity for the concrete linear abstraction
strategy of Helmert et al. are respectively O(|V ||Sα|(log(|Sα|) + |A|) + k · |V |) and O(|Sα|).
Similarly to PDB abstractions, the per-node computation of hα(s) with a merge-and-shrink
abstraction α is just a lookup in a data structure storing h∗(α(s)) for all abstract states
α(s) ∈ Sα. Hence, while the pre-search computation with MS abstractions can be more
costly than with PDBs, the online part of computing heuristic values is still extremely
efficient. This per-node efficiency provides the merge-and-shrink heuristics with impressive
practical effectiveness on numerous IPC domains (Helmert et al., 2007).

To sum up, we can say that the fixed size of abstract spaces induced by explicit abstrac-
tions such as PDBs and merge-and-shrink is not only a limitation but also a key to obtaining
effective h-partitions. In contrast, escaping that limitation with implicit abstractions might
trap us into having to pay a high price for each search-node evaluation. We now show, how-
ever, that the time-per-node complexity bottleneck of fork-decomposition heuristics can
be successfully overcome. Specifically, we show that an equivalent of PDB’s and merge-
and-shrink notion of “database” exists for fork-decomposition abstractions as well, despite
their exponential-size abstract spaces. Of course, unlike with PDB and merge-and-shrink
abstractions, the databased fork-decomposition heuristics do not (and cannot) provide us
with a purely lookup online computation of hα(s). The online part of the hα-partition has
to be nontrivial in the sense that its complexity cannot be O(1). In what comes next we
prove the existence of such effective h-partitions for fork and inverted fork abstractions.
In Section 8 we then empirically show that these h-partitions lead to fast pre-search and
per-node computations, allowing the informativeness of the fork-decomposition heuristics
to be successfully exploited in practice.
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Theorem 7 Let Π = 〈V,A, I,G, cost〉 be a planning task with a fork causal graph rooted at a
binary-valued variable r. There exists an h∗-partition for Π such that, for any set of k states,
the time and space complexity of that h∗-partition is, respectively, O(d3|V |+ |Ar|+ kd|V |)
and O(d2|V |), where d = maxv D(v).

Proof: The proof is by a modification of the polynomial-time algorithm for computing
h∗(s) for a state s of such a task Π used in the proof of Theorem 4 (Tractable Forks). Given
a state s, let D(r) = {0, 1}, where s[r] = 0. In what follows, for each of the two root’s
values ϑ ∈ D(r), ¬ϑ denotes the opposite value 1− ϑ; σ(r), �[σ(r)], DTG0

v and DTG1
v are

defined exactly as in the proof of Theorem 4.

(1) For each of the two values ϑr ∈ D(r) of the root variable, each leaf variable v ∈ V \{r},
and each pair of values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′;ϑr be the cost of the cheapest sequence of
actions changing v from ϑ to ϑ′ provided r :ϑr. The whole set {pϑ,ϑ′;ϑr} for all the leaves
v ∈ V \{r} can be computed by a straightforward variant of the all-pairs-shortest-paths,
Floyd-Warshall algorithm on DTGϑr

v in time O(d3|V |).

(2) For each leaf variable v ∈ V \ {r}, 1 ≤ i ≤ d + 1, and ϑ ∈ D(v), let gϑ;i be the cost of
the cheapest sequence of actions changing s[v] to ϑ provided a sequence σ ∈ �[σ(r)],
|σ| = i, of value changes of r. Having the values {pϑ,ϑ′;ϑr} from step (1), the set {gϑ;i}
is given by the solution of the recursive equation

gϑ;i =



ps[v],ϑ;s[r], i = 1

min
ϑ′

[
gϑ′;i−1 + pϑ′,ϑ;s[r]

]
, 1 < i ≤ δϑ, i is odd

min
ϑ′

[
gϑ′;i−1 + pϑ′,ϑ;¬s[r]

]
, 1 < i ≤ δϑ, i is even

gϑ;i−1, δϑ < i ≤ d+ 1

,

where δϑ = |D(v)|+ 1. Given that, we have

h∗(s) = min
σ∈�[σ(r)]

 cost(σ) +
∑

v∈V \{r}

gG[v];|σ|

 ,
with cost(σ) =

∑|σ|
i=2 cost(aσ[i]), where aσ[i] ∈ A is the cheapest action changing the

value of r from σ[i− 1] to σ[i].

Note that step (1) is already state-independent, but the heavy step (2) is not. However,
the state dependence of step (2) can mostly be overcome as follows. For each v ∈ V \ {r},
ϑ ∈ D(v), 1 ≤ i ≤ d+ 1, and ϑr ∈ D(r), let g̃ϑ;i(ϑr) be the cost of the cheapest sequence of
actions changing ϑ to G[v] provided the value changes of r induce a 0/1 sequence of length
i starting with ϑr. The set {g̃ϑ;i(ϑr)} is given by the solution of the recursive equation

g̃ϑ;i(ϑr) =


pϑ,G[v];ϑr , i = 1

min
ϑ′

[
g̃ϑ′;i−1(¬ϑr) + pϑ,ϑ′;ϑr

]
, 1 < i ≤ δϑ

g̃ϑ;i−1(ϑr), δϑ < i ≤ d+ 1

, (18)
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0

1 0 100 ∞ ∞ 0 201 200 101 100 1 0
2 24 100 2 1 0 201 200 101 100 1 0

3 48 100 2 1 0 53 102 3 2 1 0
4 72 100 2 1 0 53 102 3 2 1 0

5 96 3 2 1 0 5 4 3 2 1 0
6 120 3 2 1 0 5 4 3 2 1 0

7 144 3 2 1 0 5 4 3 2 1 0

1

1 0 ∞ ∞ 1 0 ∞ ∞ ∞ ∞ ∞ 0
2 24 100 ∞ 1 0 101 52 51 2 1 0
3 48 3 2 1 0 101 52 51 2 1 0
4 72 3 2 1 0 53 4 3 2 1 0
5 96 3 2 1 0 53 4 3 2 1 0
6 120 3 2 1 0 5 4 3 2 1 0
7 144 3 2 1 0 5 4 3 2 1 0

(a) (b)

Figure 6: The database for a fork-structured problem with a binary-valued root variable r
and two children v and u, and G[r] = 0, G[v] = 3, and G[u] = 5. (a) depicts the
domain transition graphs of r (top), v (middle), and u (bottom); the numbers
above and below each edge are the precondition on r and the cost of the respective
action. (b) depicts the database created by the algorithm. For instance, the entry
in row r :0∧ |σ|=5 and column v :0 captures the value of g̃v:0;5(r :0) computed as
in Eq. 18. The shaded entries are those examined during the online computation
of h∗(r :0, v :0, u :0).

which can be solved in time O(d3|V |). Note that this equation is now independent of the
evaluated state s, and yet {g̃ϑ;i(ϑr)} allow for computing h∗(s) for a given state s via

h∗(s) = min
σ∈�[σ(r|s[r])]

 cost(σ) +
∑

v∈V \{r}

g̃s[v];|σ|(s[r])

 (19)

where σ(r|ϑr) is defined similarly to σ(r) but with respect to the initial value ϑr of r.

With the new formulation, the only computation that has to be performed online, per
search node, is the final minimization over �[σ(r|s[r])] in Eq. 19, and this is the lightest
part of the whole algorithm anyway. The major computations, notably those of {pϑ,ϑ′;ϑr}
and {g̃ϑ;i(ϑr)}, can now be performed offline and shared between the evaluated states. The
space required to store this information is O(d2|V |) as it contains only a fixed amount of
information per pair of values of each variable. The time complexity of the offline compu-
tation is O(d3|V | + |Ar|); the |Ar| component stems from precomputing the costs cost(σ).
The time complexity of the online computation per state is O(d|V |); |V | comes from the
internal summation and d comes from the size of �[σ(r|s[r])].

�

Figure 6b shows the database created for a fork-structured problem with a binary-valued
root r, two children v and u, and G[r] = 0, G[v] = 3, and G[u] = 5; the domain transition
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graphs of v and u are depicted in Figure 6(a). Online computation of h∗(s) as in Eq. 19
for s = (r : 0, v : 0, u : 0) sums over the shaded entries of each of the four rows having such
entries, and minimizes over the resulting four sums, with the minimum being obtained in
the row r :0 ∧ |σ|=5.

Theorem 8 Let Π = 〈V,A, I,G, cost〉 be a planning task with an inverted fork causal graph
with sink r and |D(r)| = b = O(1). There exists an h∗-partition for Π such that, for any set
of k states, the time and space complexity of that h∗-partition is O(b|V ||Ar|b−1 + d3|V | +
k|V ||Ar|b−1) and O(|V ||Ar|b−1 + d2|V |), respectively, where d = maxv D(v).

Proof: Like the proof of Theorem 7, the proof of Theorem 8 is based on a modification
of the polynomial-time algorithm for computing h∗(s) used for the proof of Theorem 5
(Tractable Inverted Forks).

(1) For each parent variable v ∈ V \ {r}, and each pair of its values ϑ, ϑ′ ∈ D(v), let pϑ,ϑ′

be the cost of the cheapest sequence of actions changing ϑ to ϑ′. The whole set {pϑ,ϑ′}
can be computed using the Floyd-Warshall algorithm on the domain transition graph
of v in time O(d3|V |).

(2) Given a state s, for each cycle-free path π = 〈a1, . . . , am〉 from s[r] to G[r] in DTG(v,Π),
let gπ be the cost of the cheapest plan from s in Π based on π, and the cheapest paths
{pϑ,ϑ′} computed in step (1). Each gπ can be computed as

gπ =

m∑
i=1

cost(ai) +

m∑
i=0

∑
v∈V \{r}

pprei[v],prei+1[v],

where pre0, . . . , prem+1 are the values required from the parents of r along the path π.
That is, for each v ∈ V \ {r}, and 0 ≤ i ≤ m+ 1,

prei[v] =


s[v], i = 0

G[v], i = m+ 1, and G[v] is specified

pre(ai)[v], 1 ≤ i ≤ m, and pre(ai)[v] is specified

prei−1[v] otherwise

.

From that, we have h∗(s) = minπ gπ.
Note that step (1) is state-independent, but step (2) is not. However, the dependence

of step (2) on the evaluated state can be substantially relaxed. As there are only O(1)
different values of r, it is possible to consider cycle-free paths to G[r] from all values of r.
For each such path π, and each parent variable v ∈ V \ {r}, we know what the first value of
v required by π would be. Given that, we can precompute the cost-optimal plans induced
by each π assuming the parents start at their first required values. The remainder of the
computation of h∗(s) is delegated to online, and the modified step (2) is as follows.

For each ϑr ∈ D(r) and each cycle-free path π = 〈a1, . . . , am〉 from ϑr to G[r] in
DTG(r,Π), let a “proxy” state sπ be

sπ[v] =


ϑr, v = r

G[v], ∀1 ≤ i ≤ m : pre(ai)[v] is unspecified

pre(ai)[v], i = argminj {pre(aj)[v] is specified}
,
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that is, the nontrivial part of sπ captures the first values of V \{r} required along π.6 Given
that, let gπ be the cost of the cheapest plan from sπ in Π based on π, and the cheapest
paths {pϑ,ϑ′} computed in (1). Each gπ can be computed as

gπ =

m∑
i=1

cost(ai) +
∑

v∈V \{r}

pprei[v],prei+1[v]

 ,
where, for each v ∈ V \ {r}, and 1 ≤ i ≤ m+ 1,

prei[v] =


sπ[v], i = 1

G[v], i = m+ 1, and G[v] is specified

pre(ai)[v], 2 ≤ i ≤ m, and pre(ai)[v] is specified

prei−1[v], otherwise

.

Storing the pairs (gπ, sπ) accomplishes the offline part of the computation. Now, given a
search state s, we can compute

h∗(s) = min
π s.t.

sπ [r]=s[r]

gπ +
∑

v∈V \{r}

ps[v],sπ [v]

. (20)

The number of cycle-free paths to G[r] in DTG(r,Π) is Θ(|Ar|b−1), and gπ for each
such path π can be computed in time O(b|V |). Hence, the overall offline time complexity is
O(b|V ||Ar|b−1 +d3|V |), and the space complexity (including the storage of the proxy states
sπ) is O(|V ||Ar|b−1 + d2|V |). The time complexity of the online computation per state via
Eq. 20 is O(|V ||Ar|b−1); |V | comes from the internal summation and |Ar|b−1 from the upper
bound on the number of cycle-free paths from s[r] to G[r]. �

Figure 7(b) shows the database created for an inverted fork structured problem with a
ternary-valued sink variable r, two parents u and v, and G[r] = 2, G[u] = 0, and G[v] = 2.
The domain transition graphs of u and v are depicted at the top of Figure 7(a); the actual
identities of actions affecting these two parents are not important here. The actions affecting
the sink r are

a1 = 〈{u :1, r :0}, {r :1}〉
a2 = 〈{v :1, r :0}, {r :1}〉
a3 = 〈{u :2, r :1}, {r :2}〉
a4 = 〈{v :1, r :1}, {r :2}〉.

The domain transition graph of r is depicted at the bottom of Figure 7(a). Online compu-
tation of h∗(s) as in Eq. 20 for s = (r : 0, v : 0, u : 0) sums over the shaded entries of each
of the four rows having such entries, and minimizes over the resulting four sums, with the
minimum being obtained in the lowest such row.
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Figure 7: The database for an inverted fork-structured problem with a O(1) bounded sink
variable r and two parents u and v, and G[r] = 2, G[u] = 0, and G[v] = 2.
(a) depicts the domain transition graphs of u (top left), v (top right), and r
(bottom); the numbers above and below each edge are the preconditions and the
cost of the respective action, respectively. (b) depicts the database created by the
algorithm. The shaded entries are those examined during the online computation
of h∗(r :0, u :0, v :0).

8. Experimental Evaluation: Take II

To evaluate the practical attractiveness of the databased fork-decomposition heuristics, we
have repeated our empirical evaluation as in Section 6, but now for the databased versions
of the heuristics. The detailed results of this evaluation are relegated to Tables 15-20 in
the appendix, but they are summarized here in Table 2. For each domain, the S column
captures the number of tasks in that domain that were solved by at least one planner
in the suite. Per planner/domain, the number of tasks solved by that planner is given
both by the absolute number (s) and by the percentage from “solved by some planners”
(%S). Boldfaced results indicate the best performance within the corresponding domain.
The last three rows summarize the performance of the planners via three measures. The
first is the number of tasks solved in all the 23 domains; this is basically the performance
evaluation measure used in the optimization track at IPC-2008. As domains are not equally
challenging and do not equally discriminate between the planners’ performance, the second
is a “domain-normalized” performance measure

ŝ(p) =
∑

domain D

#tasks in D solved by planner p

#tasks in D solved by some planners
.

Finally, the third measure corresponds to the number of domains w in which the planner
in question solved at least as many tasks as any other planner.

Overall, Table 2 clearly suggests that heuristic search with “databased” fork-decomposition
heuristics favorably competes with the state of the art of optimal planning. In particular,

6. For ease of presentation, we omit here the case where v is required neither along π, nor by the goal; such
variables should be simply ignored when accounting for the cost of π.
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domain S
hF hI hFI MS -104 MS -105 HSP∗F Gamer blind hmax
s %S s %S s %S s %S s %S s %S s %S s %S s %S

airport-ipc4 22 22 100 20 91 21 95 19 86 17 77 15 68 11 50 18 82 20 91
blocks-ipc2 30 21 70 18 60 18 60 18 60 20 67 30 100 30 100 18 60 18 60
depots-ipc3 7 7 100 4 57 7 100 7 100 4 57 4 57 4 57 4 57 4 57
driverlog-ipc3 12 12 100 12 100 12 100 12 100 12 100 9 75 11 92 7 58 8 67
freecell-ipc3 5 5 100 4 80 4 80 5 100 1 20 5 100 2 40 4 80 5 100
grid-ipc1 2 2 100 1 50 1 50 2 100 2 100 0 0 2 100 1 50 2 100
gripper-ipc1 20 7 35 7 35 7 35 7 35 7 35 6 30 20 100 7 35 7 35
logistics-ipc2 22 22 100 16 73 16 73 16 73 21 95 16 73 20 91 10 45 10 45
logistics-ipc1 7 6 86 4 57 5 71 4 57 5 71 3 43 6 86 2 29 2 29
miconic-strips-ipc2 85 51 60 50 59 50 59 54 64 55 65 45 53 85 100 50 59 50 59
mprime-ipc1 24 23 96 22 92 21 88 21 88 12 50 8 33 9 38 19 79 24 100
mystery-ipc1 21 21 100 18 86 21 100 17 81 13 62 11 52 8 38 18 86 18 86
openstacks-ipc5 7 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100 7 100
pathways-ipc5 4 4 100 4 100 4 100 3 75 4 100 4 100 4 100 4 100 4 100
pipes-notank-ipc4 21 17 81 15 71 16 76 20 95 12 57 13 62 11 52 14 67 17 81
pipes-tank-ipc4 14 11 79 9 64 9 64 13 93 7 50 7 50 6 43 10 71 10 71
psr-small-ipc4 50 49 98 49 98 49 98 50 100 50 100 50 100 47 94 48 96 49 98
rovers-ipc5 7 6 86 7 100 6 86 6 86 7 100 6 86 5 71 5 71 6 86
satellite-ipc4 6 6 100 6 100 6 100 6 100 6 100 5 83 6 100 4 67 5 83
schedule-strips 46 46 100 40 87 46 100 22 48 1 2 11 24 3 7 29 63 31 67
tpp-ipc5 6 6 100 6 100 6 100 6 100 6 100 5 83 5 83 5 83 6 100
trucks-ipc5 9 6 67 7 78 7 78 6 67 5 56 9 100 3 33 5 56 7 78
zenotravel-ipc3 11 11 100 11 100 11 100 11 100 11 100 8 73 10 91 7 64 8 73

total 438 368 337 350 332 285 277 315 296 318
ŝ 20.56 18.38 19.13 19.07 16.64 15.45 16.66 15.58 17.66
w 14 7 9 11 9 6 8 2 6

Table 2: A summary of the experimental results with databased versions of the fork-
decomposition heuristics. Per domain, S denotes the number of tasks solved by
any planner. Per planner/domain, the number of tasks solved by that planner
is given both by the absolute number (s) and by the percentage from “solved by
some planners” (%S). Boldfaced results indicate the best performance within the
corresponding domain. The last three rows summarize the number of solved in-
stances, the domain-normalized measure of solved instances (ŝ), and the number
of domains in which the planners achieved superior performance (w).

A∗ with the “only forks” heuristic hF exhibited the best overall performance according to
all three measures. In terms of the absolute number of solved instances, A∗ with all three
fork-decomposition heuristics outperformed all other planners in the suite. The contribution
of databasing to the success of the fork-decomposition heuristics was dramatic. Looking
back at the results with “fully online” heuristic computation depicted in Table 1, note that
the total number of solved instances for the fork-decomposition heuristics hF, hI, and hFI

increased by 74, 55, and 76, respectively, and this made the whole difference.

We have also performed a comparative evaluation on the planning domains from the
recent IPC-2008. The IPC-2008 domains differ from the previous domains in that actions
had various costs, and, more importantly, many actions had zero cost. The latter is an
issue for heuristic-search planners because heuristic functions cannot differentiate between
subplans that have the same cost of zero, but differ in length. In any case, the comparative
side of our evaluation on the IPC-2008 domains differ on several points from the previous
one. First, neither for merge-and-shrink nor for hmax heuristics, we had implementation
supporting arbitrary action costs. Hence, our comparison here is only with Gamer, HSP∗F,
and blind search. Second, to ensure admissibility of the blind search, the latter has been
modified to return on non-goal states the cost of the cheapest applicable action. Finally, all
the planners were run on a 3GHz Intel E8400 CPU with 4 GB memory, using 2 GB memory
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domain S
hF hI hFI HSP∗F Gamer blind
s %S s %S s %S s %S s %S s %S

elevators-strips-ipc6 22 18 82 14 64 15 68 7 32 22 100 11 50
openstacks-strips-ipc6 21 19 90 19 90 19 90 21 100 19 90 19 90
parcprinter-strips-ipc6 16 14 88 13 81 13 81 16 100 9 56 10 63
pegsol-strips-ipc6 27 27 100 27 100 27 100 27 100 24 89 27 100
scanalyzer-strips-ipc6 12 12 100 6 50 6 50 6 50 11 92 12 100
sokoban-strips-ipc6 28 25 89 26 93 27 96 13 46 20 71 20 71
transport-strips-ipc6 11 11 100 11 100 11 100 9 82 11 100 11 100
woodworking-strips-ipc6 14 8 57 8 57 8 57 9 64 14 100 7 50

total 152 134 124 126 108 130 117
ŝ 7.06 6.35 6.43 5.74 6.99 6.24
w 3 2 3 3 3 3

Table 3: A summary of the experimental results. Per domain, S denotes the number of
tasks solved by any planner. Per planner/domain, the number of tasks solved by
that planner is given both by the absolute number (s) and by the percentage from
“solved by some planners” (%S). Boldfaced results indicate the best performance
within the corresponding domain. The last three rows summarize the number of
solved instances, the domain-normalized measure of solved instances (ŝ), and the
number of domains in which the planners achieved superior performance (w).

limit and 30 minute timeout. The results of this evaluation are summarized in Table 3; for
the detailed results we refer the reader to Tables 21-22 in the appendix. Overall, these
results show that A∗ with the fork-decomposition heuristics are very much competitive on
the IPC-2008 domains as well.

9. Formal Analysis: Asymptotic Performance Ratios

Empirical evaluation on a concrete set of benchmark tasks is a standard and important
methodology for assessing the effectiveness of heuristic estimates: it allows us to study the
tradeoff between the accuracy of the heuristics and the complexity of computing them.
However, as rightfully noted by Helmert and Mattmüller (2008), such evaluations almost
never lead to absolute statements of the type “Heuristic h is well-suited for solving prob-
lems from benchmark suite X,” but only to relative statements of the type “Heuristic h
expands fewer nodes than heuristic h′ on benchmark suite X.” Moreover, one would prob-
ably like to obtain formal evidence of the effectiveness of a heuristic before proceeding with
its implementation, especially for very complicated heuristic procedures such as those un-
derlying the proofs of Theorems 7 and 8. Our formal analysis of the effectiveness of the
fork-decomposition heuristics using the methodology suggested and exploited by Helmert
and Mattmüller was motivated primarily by this desire for formal evidence.

Given a planning domain D and heuristic h, Helmert and Mattmüller (2008) consider
the asymptotic performance ratio of h in D. The goal is to find a value α(h,D) ∈ [0, 1] such
that

(1) for all states s in all problems Π ∈ D, h(s) ≥ α(h,D) · h∗(s) + o(h∗(s)), and

(2) there is a family of problems {Πn}n∈N ⊆ D and solvable, non-goal states {sn}n∈N such
that sn ∈ Πn, limn→∞ h

∗(sn) =∞, and h(sn) ≤ α(h,D) · h∗(sn) + o(h∗(sn)).
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Domain h+ hk hPDB hPDB
add hF hI hFI

Gripper 2/3 0 0 2/3 2/3 0 4/9

Logistics 3/4 0 0 1/2 1/2 1/2 1/2

Blocksworld 1/4 0 0 0 0 0 0

Miconic-Strips 6/7 0 0 1/2 5/6 1/2 1/2

Satellite 1/2 0 0 1/6 1/6 1/6 1/6

Table 4: Performance ratios of multiple heuristics in selected planning domains; ratios for
h+, hk, hPDB, hPDB

add are by Helmert and Mattmüller (2008).

In other words, h is never worse than α(, domain, ·)h∗ (plus a sublinear term), and it can
become as bad as α(h,D) · h∗ (plus a sublinear term) for arbitrarily large inputs; note that
both the existence and uniqueness of α(h,D) are guaranteed for any h and D.

Helmert and Mattmüller (2008) study the asymptotic performance ratio of some stan-
dard admissible heuristics on a set of well-known benchmark domains from the first four
IPCs. Their results for Gripper, Logistics, Blocksworld, Miconic, and Satellite
are shown in the first four columns of Table 4.

• The h+ estimate corresponds to the optimal cost of solving the well-known “delete
relaxation” of the original planning task, which is generally NP-hard to compute (By-
lander, 1994).

• The hk, k ∈ N+, family of heuristics is based on a relaxation where the cost of
achieving a partial assignment is approximated by the highest cost of achieving its
sub-assignment of size k (Haslum & Geffner, 2000); computing hk is exponential only
in k.

• The hPDB and hPDB
add heuristics are regular (maximized over) and additive pattern

database heuristics where the size of each pattern is assumed to be O(log(n)) where
n = |V |, and, importantly, the choice of the patterns is assumed to be optimal.

These results provide us with a baseline for evaluating our fork-decomposition heuristics
hF, hI, and hFI. First, however, Theorem 9 shows that these three heuristics are worth
analyzing because each alone can be strictly more informative than the other two, depending
on the planning task and/or the state being evaluated.7

Theorem 9 (Undominance) Under uniform action cost partition, none of the heuristic
functions hF, hI, and hFI dominates another.

Proof: The proof is by example of two tasks, Π1 and Π2, which illustrate the following
two cases: hF(I) > hFI(I) > hI(I) and hF(I) < hFI(I) < hI(I). These two tasks
are defined over the same set of binary-valued variables V = {v1, v2, v3, u1, u2, u3}, have
the same initial state I = {v1 : 0, v2 : 0, v3 : 0, u1 : 0, u2 : 0, u3 : 0}, and have the same goal

7. Theorem 9 is formulated and proven under the uniform action cost partition that we use throughout the
paper, including the experiments. For per-step optimal action cost partitions (Katz & Domshlak, 2010),
it is trivial to show that hFI dominates both hF and hI for all planning tasks.
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u1 u2 u3

v1 v2 v3

A1 Π1
F Π1

I Π1
FI

a1 〈{v1 :0, u1 :0, u2 :0, u3 :0}, {v1 :1}〉 1/3 1 1/4
a2 〈{v2 :0, u1 :1, u2 :0, u3 :1}, {v2 :1}〉 1/3 1 1/4
a3 〈{v3 :0, u1 :1, u2 :1, u3 :0}, {v31}〉 1/3 1 1/4
a4 〈{u1 :0}, {u1 :1}〉 1 1/3 1/4
a5 〈{u1 :1}, {u1 :0}〉 1 1/3 1/4
a6 〈{u2 :0}, {u2 :1}〉 1 1/3 1/4
a7 〈{u2 :1}, {u2 :0}〉 1 1/3 1/4
a8 〈{u3 :0}, {u3 :1}〉 1 1/3 1/4
a9 〈{u3 :1}, {u3 :0}〉 1 1/3 1/4

(a) (c)

u1

v1 v2 v3

u2

v1 v2 v3

u3

v1 v2 v3

u1 u2 u3

v1

u1 u2 u3

v2

u1 u2 u3

v3

Gfu1
Gfu2

Gfu3

G iv1
G iv2

G iv3

A2 Π2
F Π2

I Π2
FI

a1 〈{v1 :0, u1 :1}, {v1 :1}〉 1/3 1 1/4
a2 〈{v1 :0, u2 :1}, {v1 :1}〉 1/3 1 1/4
a3 〈{v1 :0, u3 :1}, {v1 :1}〉 1/3 1 1/4
a4 〈{v2 :0, u1 :1}, {v2 :1}〉 1/3 1 1/4
a5 〈{v2 :0, u2 :1}, {v2 :1}〉 1/3 1 1/4
a6 〈{v2 :0, u3 :1}, {v2 :1}〉 1/3 1 1/4
a7 〈{v3 :0, u1 :1}, {v3 :1}〉 1/3 1 1/4
a8 〈{v3 :0, u2 :1}, {v3 :1}〉 1/3 1 1/4
a9 〈{v3 :0, u3 :1}, {v3 :1}〉 1/3 1 1/4
a10 〈{u1 :0}, {u1 :1}〉 1 1/3 1/4
a11 〈{u2 :0}, {u2 :1}〉 1 1/3 1/4
a12 〈{u3 :0}, {u3 :1}〉 1 1/3 1/4

(b) (d)

Figure 8: Illustrations for the proof of Theorem 9: (a) causal graphs of Π1 and Π2, (b) fork
and inverted fork subgraphs of the (same) causal graph of Π1 and Π2, and the
action sets of (c) Π1 and (d) Π2, as well as the costs of the action representatives
in each abstract problem along these subgraphs. Considering for example the
first row of table (c), the action a1 in Π1 has a single representative in each of the
three fork abstractions, as well as a representative in the inverted-fork abstraction
Π1
G iv1

. Hence, the cost of each of its representatives in F-decomposition is 1/3,

while the cost of its sole representative in I-decomposition is 1.

G = {v1 : 1, v2 : 1, v3 : 1}. The difference between Π1 and Π2 is in the action sets, listed in
Figure 8c-d, with all the actions being unit-cost actions. The two tasks induce identical
causal graphs, depicted in Figure 8a. Hence, the collections of v-forks and v-iforks of both
tasks are also identical; these are depicted in Figure 8b. The fractional costs of the tasks’
action representatives in the corresponding abstract problems are given in Figure 8c-d.

Figure 9 shows the optimal plans for all the abstract problems in F-decompositions Π1
F =

{Π1
Gfu1

,Π1
Gfu2

,Π1
Gfu3

} and Π2
F = {Π2

Gfu1

,Π2
Gfu2

,Π2
Gfu3

}, I-decompositions Π1
I = {Π1

G iv1
,Π1
G iv2
,Π1
G iv3
}

and Π2
I = {Π2

G iv1
,Π2
G iv2
,Π2
G iv3
}, and FI-decompositions Π1

FI = Π1
F ∪Π1

I and Π2
FI = Π2

F ∪Π2
I .

The last column in both tables captures the estimates of the three heuristics for the initial
states of Π1 and Π2, respectively. Together, these two cases show that none of the fork-
decomposition heuristic functions hF, hI, and hFI dominates any other, and, since all the
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h task optimal plan cost h(I)

hF

Π1
Gfu1

〈a1, a4, a2, a3〉 2
6Π1

Gfu2

〈a1, a2, a6, a3〉 2

Π1
Gfu3

〈a1, a3, a8, a2〉 2

hI

Π1
Giv1

〈a1〉 1
4 1

3Π1
Giv2

〈a4, a8, a2〉 5/3

Π1
Giv3

〈a4, a6, a3〉 5/3

hFI

Π1
Gfu1

〈a1, a4, a2, a3〉 1

4 3
4

Π1
Gfu2

〈a1, a2, a6, a3〉 1

Π1
Gfu3

〈a1, a3, a8, a2〉 1

Π1
Giv1

〈a1〉 1/4

Π1
Giv2

〈a4, a8, a2〉 3/4

Π1
Giv3

〈a4, a6, a3〉 3/4

h task optimal plan cost h(I)

hF

Π2
Gfu1

〈a2, a5, a8〉 1
3Π2

Gfu2

〈a1, a4, a7〉 1

Π2
Gfu3

〈a1, a4, a7〉 1

hI

Π2
Giv1

〈a10, a1〉 4/3
4Π2

Giv2
〈a10, a4〉 4/3

Π2
Giv3

〈a10, a7〉 4/3

hFI

Π2
Gfu1

〈a2, a5, a8〉 3/4

15/4

Π2
Gfu2

〈a1, a4, a7〉 3/4

Π2
Gfu3

〈a1, a4, a7〉 3/4

Π2
Giv1

〈a10, a1〉 1/2

Π2
Giv2

〈a10, a4〉 1/2

Π2
Giv3

〈a10, a7〉 1/2

(a) (b)

Figure 9: Illustrations for the proof of Theorem 9: Optimal plans for all the abstract prob-
lems of (a) Π1, where we have hF(I) > hFI(I) > hI(I), and (b) Π2, where we have
hF(I) < hFI(I) < hI(I).

variables above are binary-valued, the claim holds in conjunction with arbitrary variable
domain abstractions. �

One conclusion from Theorem 9 is that it is worth studying the asymptotic performance
ratios for all three heuristics. The last three columns of Table 4 present our results for
hF, hI, and hFI for the Gripper, Logistics, Blocksworld, Miconic, and Satellite
domains. We also studied the performance ratios of max{hF, hI, hFI}, and in these five
domains they appear to be identical to those of hF. (Note that “ratio of max” should not
necessarily be identical to “max of ratios,” and thus this analysis is worthwhile.) Taking
a conservative position, the performance ratios for the fork-decomposition heuristics in
Table 4 are “worst-case” in the sense that

(i) here we neither optimize the action cost partition (setting it to uniform as in the rest
of the paper) nor eliminate clearly redundant abstractions, and

(ii) we use domain abstractions to (up to) ternary-valued abstract domains only.

The domains of the fork roots are all abstracted using the “leave-one-out” binary-valued
domain decompositions as in Eq. 16 while the domains of the inverted-fork sinks are all
abstracted using the “distance-from-initial-value” ternary-valued domain decompositions
as in Eq. 15.

Overall, the results for fork-decomposition heuristics in Table 4 are gratifying. First,
note that the performance ratios for hk and hPDB are all 0. This is because every subgoal
set of size k (for hk) and size log(n) (for hPDB) can be reached in the number of steps that
only depends on k (respectively, log(n)), and not n, while h∗(sn) grows linearly in n in
all the five domains. This leaves us with hPDB

add being the only state-of-the-art (tractable
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and) admissible heuristic to compare with. Table 4 shows that the asymptotic performance
ratio of hF heuristic is at least as good as that of hPDB

add in all five domains, while hF is
superior to hPDB

add in Miconic, getting here quite close to h+. When comparing hPDB
add and

fork-decomposition heuristics, it is crucial to recall that the ratios devised by Helmert and
Mattmüller for hPDB

add are with respect to optimal, manually-selected set of patterns. By
contrast, the selection of variable subsets for fork-decomposition heuristics is completely
nonparametric, and thus requires no tuning of the abstraction-selection process.

In the rest of the section we prove these asymptotic performance ratios of hF, hI, and
hFI in Table 4 for the five domains. We begin with a very brief outline of how the results are
obtained. Some familiarity with the domains is assumed. Next, each domain is addressed
in detail: we provide an informal domain description as well as its sas+ representation, and
then prove lower and upper bounds on the ratios for all three heuristics.

Gripper Assuming n > 0 balls should be moved from one room to another, all three
heuristics hF, hI, hFI account for all the required pickup and drop actions, and only for
O(1)-portion of move actions. However, the former actions are responsible for 2/3 of
the optimal-plan length (= cost). Now, with the basic uniform action-cost partition,
hF, hI, and hFI account for the whole, O(1/n), and 2/3 of the total pickup/drop
actions cost, respectively, providing the ratios in Table 4.8

Logistics An optimal plan contains at least as many load/unload actions as move actions,
and all three heuristics hF, hI, hFI fully account for the former, providing a lower bound
of 1/2. An instance on which all three heuristics achieve exactly 1/2 consists of two
trucks t1, t2, no airplanes, one city, and n packages such that the initial and goal
locations of all the packages and trucks are all pair-wise different.

Blocksworld Arguments similar to those of Helmert and Mattmüller (2008) for hPDB
add .

Miconic All three heuristics fully account for all the loads/unload actions. In addition, hF

accounts for the full cost of all the move actions to the passengers’ initial locations,
and for half of the cost of all the other move actions. This provides us with lower
bounds of 1/2 and 5/6, respectively. Tightness of 1/2 for hI and hFI is shown on a
task consisting of n passengers, 2n + 1 floors, and all the initial and goal locations
being pair-wise different. Tightness of 5/6 for hF is shown on a task consisting of n
passengers, n+ 1 floors, the elevator and all the passengers are initially at floor n+ 1,
and each passenger i wishes to get to floor i.

Satellite The length of an optimal plan for a problem with n images to be taken and k
satellites to be moved to some end-positions is ≤ 6n + k. All three heuristics fully
account for all the image-taking actions and one satellite-moving action per satellite
as above, providing a lower bound of 1

6 . Tightness of 1/6 for all three heuristics
is shown on a task as follows: Two satellites with instruments {i}li=1 and {i}2li=l+1,
respectively, where l = n − √n. Each pair of instruments {i, l + i} can take images
in modes {m0,mi}. There is a set of directions {dj}nj=0 and a set of image objectives

8. We note that a very slight modification of the uniform action-cost partition results in a ratio of 2/3 for
all three heuristics. Such optimizations, however, are outside of our scope here.
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right robot left

b1 · · · bn

right

b1 . . . bn

left

b1 . . . bn

robot

b1 . . . bn

right robot left

b

Gfright Gfleft Gfrobot G ib, b ∈ Balls

(a) (b)

Figure 10: Gripper’s (a) causal graph and (b) the corresponding collection of v-forks and
v-iforks

{oi}ni=1 such that, for 1 ≤ i ≤ l, oi = (d0,mi) and, for l < i ≤ n, oi = (di,m0).
Finally, the calibration direction for each pair of instruments {i, l + i} is di.

9.1 Gripper

The domain consists of one robot robot with two arms Arms = {right, left}, two rooms
Rooms = {r1, r2}, and a set Balls of n balls. The robot can pick up a ball with an arm
arm ∈ Arms if arm is empty, release a ball b ∈ Balls from the arm arm if arm currently
holds b, and move from one room to another. All balls and the robot are initially in room
r1, both arms are empty, and the goal is to move all the balls to room r2. A natural
description of this planning task in sas+ is as follows.

• Variables V = {robot}⋃Arms⋃Balls with domains

D(robot) = Rooms

D(left) = D(right) = Balls ∪ {empty}
∀b ∈ Balls : D(b) = Rooms ∪ {robot}.

• Initial state I = {b : r1 | b ∈ Balls} ∪ {robot : r1, right :empty, left :empty}.

• Goal G = {b : r2 | b ∈ Balls}.

• Actions

A ={Move(r, r′) | {r, r′} ⊆ Rooms}
⋃

{Pickup(b, arm, r), Drop(b, arm, r) | b ∈ Balls, arm ∈ Arms, r ∈ Rooms},

where

– move robot: Move(r, r′) = 〈{robot : r}, {robot : r′}〉,
– pickup ball:
Pickup(b, arm, r) = 〈{b : r, arm :empty, robot : r}, {b : robot, arm :b}〉, and

– drop ball: Drop(b, arm, r) = 〈{b : robot, arm :b, robot : r}, {b : r, arm :empty}〉.

The (parametric in n) causal graph of this task is depicted in Figure 10a.
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Action Πf
robot Πf

arm,empty Πf
arm,b Πf

arm,b′ Πf
arm′,ϑ Πi

b Πi
b′ ΠF ΠI ΠFI

Move(r, r′) 1 0 0 0 0 1 1 1 1
n

1
n+1

Pickup(b, arm, r) 1 2 2 1 1 2 1 1
2n+5

1
n+1

1
3n+6

Drop(b, arm, r) 1 2 2 1 1 2 1 1
2n+5

1
n+1

1
3n+6

Table 5: Number of representatives for each original Gripper action in each abstract task,
as well as the partition of the action costs between these representatives

Πf
robot Pickup(b, right, r1) = 〈{robot : r1, b : r1}, {b : robot}〉

Πf
right,empty Pickup(b, right, r1)1 = 〈{right :empty}, {right :b}〉,

Pickup(b, right, r1)2 = 〈{right :b, b : r1}, {b : robot}〉
Πf
right,b Pickup(b, right, r1)1 = 〈{right :empty}, {right :b}〉,

Pickup(b, right, r1)2 = 〈{right :b, b : r1}, {b : robot}〉
Πf
right,b′ Pickup(b, right, r1) = 〈{right :b, b : r1}, {b : robot}〉

Πf
left,ϑ Pickup(b, right, r1) = 〈{right :b, b : r1}, {b : robot}〉
Πi
b Pickup(b, right, r1)1 = 〈{right :empty}, {right :b}〉,

Pickup(b, right, r1)2 = 〈{right :b, robot : r1, b : r1}, {b : robot}〉
Πi
b′ Pickup(b, right, r1) = 〈{right :empty}, {right :b}〉

Table 6: The sets of representatives of the original action Pickup(b, right, r1) in the abstract
tasks

9.1.1 Fork Decomposition

Since the variables robot, right, and left have no goal value, the collection of v-forks and
v-iforks is as in Figure 10b. The domains of inverted fork sinks are ternary valued. The
domains of fork roots are abstracted as in Eq. 16 (“leave one out”), and thus

ΠF = {Πf
robot} ∪ {Πf

right,ϑ,Π
f
left,ϑ | ϑ ∈ {empty} ∪Balls},

ΠI = {Πi
b | b ∈ Balls},

ΠFI = {Πf
robot} ∪ {Πf

right,ϑ,Π
f
left,ϑ | ϑ ∈ {empty} ∪Balls} ∪ {Πi

b | b ∈ Balls}.

For each original action, the number of its representatives in each abstract task, as well as
the cost assigned to each such representative, are listed in Table 5. Table 6 illustrates deriva-
tion of these numbers via decomposition of an example action Pickup(b, right, r1) in each
of the fork decomposition abstractions. That action has one nonredundant representative
in Πf

robot, two such representatives in each of Πf
right,empty and Πf

right,b, one representative in

each Πf
right,b′ for b′ ∈ Balls\{b}, one representative in each Πf

left,ϑ for ϑ ∈ Balls∪{empty},
two representatives in Πi

b, and one representative in each Πi
b′ for b′ ∈ Balls \ {b}. This

results in cost 1
2n+5 for each representative in ΠF, 1

n+1 for each representative in ΠI, and
1

3n+6 for each representative in ΠFI.
Given that, the optimal plans for the abstract tasks are as follows.
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h task optimal plan cost # h(I)

hF

Πf
robot 〈Pickup(b1, right, r1), . . . , P ickup(bn, right, r1), 4n+5

2n+5
1

2n− 2n−5
2n+5

,Move(r1, r2), Drop(b1, right, r2), . . . , Drop(bn, right, r2)〉
Πf

right,ϑ 〈Pickup(b1, left, r1), . . . , P ickup(bn, left, r1), 2n
2n+5

n + 1

, Drop(b1, left, r2), . . . , Drop(bn, left, r2)〉
Πf

left,ϑ 〈Pickup(b1, right, r1), . . . , P ickup(bn, right, r1), 2n
2n+5

n + 1

, Drop(b1, right, r2), . . . , Drop(bn, right, r2)〉
hI Πi

b 〈Pickup(b, right, r1)1, P ickup(b, right, r1)2,Move(r1, r2), Drop(b, left, r2)2〉 3
n+1

+ 1
n

n 4n+1
n+1

hFI

Πf
robot 〈Pickup(b1, right, r1), . . . , P ickup(bn, right, r1),Move(r1, r2), 2n

3n+6
+ 1

n+1
1

4n
3

+ 4n+6
3n+6

, Drop(b1, right, r2), . . . , Drop(bn, right, r2)〉
Πf

right,ϑ 〈Pickup(b1, left, r1), . . . , P ickup(bn, left, r1), 2n
3n+6

n + 1

, Drop(b1, left, r2), . . . , Drop(bn, left, r2)〉
Πf

left,ϑ 〈Pickup(b1, right, r1), . . . , P ickup(bn, right, r1), 2n
3n+6

n + 1

, Drop(b1, right, r2), . . . , Drop(bn, right, r2)〉
Πi

b 〈Pickup(b, right, r1)1, P ickup(b, right, r1)2,Move(r1, r2), Drop(b, left, r2)2〉 3
3n+6

+ 1
n+1

n

Assuming n > 0 balls should be moved from one room to another, the cost of the optimal
plan for the original task is 3n − 1 when n is even, and 3n when n is odd. Therefore, the
asymptotic performance ratios for the heuristics hF, hI, hFI on Gripper are 2/3, 0, and 4/9,
respectively.

9.2 Logistics

Each Logistics task consists of some k cities, x airplanes, y trucks and n packages. Each
city i is associated with a set Li = {l1i . . . , lαii } of locations within that city; the union of

the locations of all the cities is denoted by L =
⋃k
i=1 Li. In addition, precisely one location

in each city is an airport, and the set of airports is LA = {l11 . . . , l1k} ⊆ L. Each truck can
move only within the city in which it is located, and airplanes can fly between airports.
The airplanes are denoted by U = {u1, . . . , ux}, the trucks by T = {t1, . . . , ty}, and the
packages by P = {p1, . . . , pn}. Let Ti = {t ∈ T | I[t] ∈ Li} denote the trucks of city i, and
P = P1 ∪ P2 ∪ P3 ∪ P4 ∪ P5 denote a partition of the packages as follows:

• each package in P1 = {p ∈ P | I[p], G[p] ∈ LA} is both initially at an airport and
needs to be moved to another airport,

• each package in P2 = {p ∈ P | I[p] ∈ LA ∩ Li, G[p] ∈ Lj \ LA, i 6= j} is initially at an
airport and needs to be moved to a non-airport location in another city,

• each package in P3 = {p ∈ P | I[p] ∈ Li, G[p] ∈ Li} needs to be moved within one
city,

• each package in P4 = {p ∈ P | I[p] ∈ Li \LA, G[p] ∈ LA \Li} needs to be moved from
a non-airport location in one city to the airport of some other city, and

• each package in P5 = {p ∈ P | I[p] ∈ Li \LA, G[p] ∈ Lj \LA, i 6= j} needs to be moved
from a non-airport location in one city to a non-airport location in another city.

A natural Logistics task description in sas+ is as follows.

• Variables V = U ∪ T ∪ P with domains

∀u ∈ U : D(u) = LA,

∀1 ≤ i ≤ k, ∀t ∈ Ti : D(t) = Li,

∀p ∈ P : D(p) = L ∪ U ∪ T.
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u1 · · · ux t1 · · · ty

p1 · · · pi · · · pn

u

p1 . . . pn

t

p1 . . . pn p

u1 . . . ux t1 . . . ty

Gfu, u ∈ U Gft , t ∈ T G ip, p ∈ P
(a) (b)

Figure 11: Logistics’s (a) causal graph and (b) the corresponding collection of v-forks and
v-iforks

• Initial state I ∈ (LA)x × L1 × · · · × Lk × (L)n.

• Goal G = {p1 : l1, . . . , pn : ln} ∈ (L)n.

• Actions

A =
k⋃
i=1

⋃
l∈Li

⋃
t∈Ti

[
{Lt(p, t, l), Ut(p, t, l) | p ∈ P} ∪ {Mt(t, l, l′) |, l′ ∈ Li \ {l}}

]
∪
⋃
l∈LA

⋃
u∈U

[
{La(p, u, l), Ua(p, u, l) | p ∈ P} ∪ {Ma(u, l, l′) | l′ ∈ LA \ {l}}

]
,

where

– load package p onto truck t in location l: Lt(p, t, l) = 〈{p : l, t : l}, {p : t}〉,

– unload package p from truck t in location l: Ut(p, t, l) = 〈{p : t, t : l}, {p : l}〉,

– move truck t from location l to location l′: Mt(t, l, l′) = 〈{t : l}, {t : l′}〉,

– load package p onto airplane u in l: La(p, u, l) = 〈{p : l, u : l}, {p :u}〉,

– unload package p from airplane u into l: Ua(p, u, l) = 〈{p :u, u : l}, {p : l}〉, and

– move airplane u from location l to l′: Ma(u, l, l′) = 〈{u : l}, {u : l′}〉.

The (parametrized in n, x, and y) causal graph of Logistics tasks is depicted in Figure 11a.

9.2.1 Fork Decomposition

Since the variables u ∈ U and t ∈ T have no goal value, the collection of v-forks and v-
iforks is as in Figure 11b. The domains of the inverted-fork sinks are all abstracted as in
Eq. 15 (“distance-from-initial-value”), while the domains of the fork roots are abstracted
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Action Πf
u,lΠ

f
u,l′Π

f
u,l′′Π

f
u′,lΠ

f
t,lΠ

f
t,l′Π

f
t,l′′Π

f
t′,lΠ

i
p,m ΠFΠI ΠFI

Mt(t, l, l′) 0 0 0 0 1 1 0 0 1 1
2

1
ni

1
2+ni

Ma(u, l, l′) 1 1 0 0 0 0 0 0 1 1
2

1
ni

1
2+ni

(a)

I[p] ∈ LA ∩ Li I[p] ∈ Li \ LA
p ∈ P1 p ∈ P2 p ∈ P3p ∈ P3 p ∈ P4 p ∈ P5

Action Πf
u,lΠ

f
t,lΠ

i
p′,m Πi

p,1 Πi
p,1Πi

p,2 Πi
p,1 Πi

p,1 Πi
p,1Πi

p,2Πi
p,1Πi

p,2Πi
p,3 ΠFΠI ΠFI

Lt(p, t, l), Ut(p, t, l)
l ∈ Li 1 1 0 1 1 0 1 1 1 0 1 0 0 1

nf 1 1
nf+1

l ∈ Lj 1 1 0 0 0 1 0 0 0 0 0 0 1 1
nf 1 1

nf+1

La(p, u, l), Ua(p, u, l) 1 1 0 1 1 0 1 0 0 1 0 1 0 1
nf 1 1

nf+1

(b)

Figure 12: Number of representatives of each original Logistics action in each abstract
task, as well as the partition of the action costs between these representatives;
tables (a) and (b) capture the move and load/unload actions, respectively

as in Eq. 16 (“leave-one-out”). Thus, we have

ΠF =
⋃
u∈U

⋃
l∈LA
{Πf

u,l} ∪
k⋃
i=1

⋃
t∈Ti

⋃
l∈Li

{Πf
t,l},

ΠI =
⋃
p∈P
{Πi

p,1} ∪
⋃

p∈P2∪P4∪P5

{Πi
p,2} ∪

⋃
p∈P5

{Πi
p,3},

ΠFI =
⋃
u∈U

⋃
l∈LA
{Πf

u,l} ∪
k⋃
i=1

⋃
t∈Ti

⋃
l∈Li

{Πf
t,l} ∪

⋃
p∈P
{Πi

p,1} ∪
⋃

p∈P2∪P4∪P5

{Πi
p,2} ∪

⋃
p∈P5

{Πi
p,3}.

The total number of forks is nf = |ΠF| = |U | · |LA|+
∑k

i=1 |Ti| · |Li|, and the total number
of inverted forks is ni = |ΠI| = |P1| + 2 · |P2| + |P3| + 2 · |P4| + 3 · |P5|. For each action
a ∈ A, the number of its representatives in each abstract task, as well as the cost assigned
to each such representative, are given in Figure 12. Each row in the tables of Figure 12
corresponds to a certain Logistics action, each column (except for the last three) represents
an abstract task, and each entry captures the number of representatives an action has in
the corresponding task. The last three columns show the portion of the total cost that is
given to an action representative in each task, in each of the three heuristics in question.

9.2.2 Lower Bound

Note that any optimal plan for a Logistics task contains at least as many load/unload
actions as move actions. Thus, the following lemma provides us with the lower bound of
1/2 for all three heuristics in question.
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Lemma 1 For any Logistics task, hF, hI, and hFI account for the full cost of the load/unload
actions required by any optimal plan for that task.

Proof: For any Logistics task, all the optimal plans for that task contain the same amount
of load/unload actions for each package p ∈ P as follows.

p ∈ P1: 2 actions — one load onto an airplane, and one unload from that airplane,

p ∈ P2: 4 actions — one load onto an airplane, one unload from that airplane, one load
onto a truck, and one unload from that truck,

p ∈ P3: 2 actions — one load onto a truck, and one unload from that truck,

p ∈ P4: 4 actions — one load onto a truck, one unload from that truck, one load onto an
airplane, and one unload from that airplane, and

p ∈ P5: 6 actions — two loads onto some trucks, two unloads from these trucks, one load
onto an airplane, and one unload from that airplane.

Consider the fork-decomposition ΠF. Any optimal plan for each of the abstract tasks
will contain the number of load/unload actions exactly as above (the effects of these actions
remain unchanged in these tasks). The cost of each representative of each load/unload
action is 1

nf , and there are nf abstract tasks. Therefore, the heuristic hF fully accounts for
the cost of the required load/unload actions.

Now consider the fork-decomposition ΠI. With m being the domain-decomposition
index of the abstraction, any optimal plan for the abstract task Πi

p,m will include one load
and one unload actions as follows.

p ∈ P1: one load onto an airplane and one unload from that airplane,

p ∈ P2,m=1: one load onto an airplane and one unload from that airplane,

p ∈ P2,m=2: one load onto a truck and one unload from that truck,

p ∈ P3: one load onto a truck and one unload from that truck,

p ∈ P4,m=1: one load onto a truck and one unload from that truck,

p ∈ P4,m=2: one load onto an airplane, and one unload from that airplane,

p ∈ P5,m=1: one load onto a truck and one unload from that truck,

p ∈ P5,m=2: one load onto an airplane and one unload from that airplane, and

p ∈ P5,m=3: one load onto a truck and one unload from that truck.

The cost of each representative of load/unload actions is 1, and thus the heuristic hI fully
accounts for the cost of the required load/unload actions.

Finally, consider the fork-decomposition ΠFI. Any optimal plan for each of the fork-
structured abstract tasks will contain the same number of load/unload actions as for ΠF.
The cost of each representative of load/unload actions is 1

nf+1
and there are nf such abstract

tasks. In addition, each of these load/unload actions will also appear in exactly one inverted
fork-structured abstract task. Therefore the heuristic hFI also fully accounts for the cost of
the required load/unload actions. �
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t1

p1 . . . pn

t2

p1 . . . pn p

t1 t2

Gft1 Gft2 G ip, p ∈ P

Figure 13: Collection of v-forks and v-iforks for the Logistics task used for the proof of
the upper bound of 1/2

9.2.3 Upper Bound

An instance on which all three heuristics achieve exactly 1/2 consists of two trucks t1, t2, no
airplanes, one city, and n packages such that the initial and goal locations of all the packages
are all pairwise different, and both trucks are initially located at yet another location. More
formally, if L = {li}2ni=0, and T = {t1, t2}, then the sas+ encoding for this Logistics task
is as follows.

• Variables V = {t1, t2, p1, . . . , pn} with domains

∀t ∈ T : D(t) = L,

∀p ∈ P : D(p) = L ∪ T.

• Initial state I = {t1 : l0, t2 : l0, p1 : l1, . . . , pn : ln}.

• Goal G = {p1 : ln+1, . . . , pn : l2n}.

• Actions A = {Lt(p, t, l), Ut(p, t, l) | l ∈ L, t ∈ T, p ∈ P} ∪ {Mt(t, l, l′) | t ∈ T, {l, l′} ⊆
L}.

The collection of v-forks and v-iforks for this task is depicted in Figure 13. The domains of
the inverted-fork sinks are all abstracted as in Eq. 15 (“distance-from-initial-value”), while
the domains of the fork roots are abstracted as in Eq. 16 (“leave-one-out”), and therefore
we have

ΠF = {Πf
t1,lΠ

f
t2,l | l ∈ L},

ΠI = {Πi
p,1 | p ∈ P},

ΠFI = {Πf
t1,lΠ

f
t2,l | l ∈ L} ∪ {Πi

p,1 | p ∈ P}.

The total number of forks is thus nf = 4n + 2 and the total number of inverted forks is
ni = n. The partition of the action costs for Logistics tasks is described in Figure 12.
Here we have P = P3 and thus the action cost partition is as follows.

Action Πf
t,l Πf

t,l′ Πf
t,l′′ Πf

t′,l∗ Πi
p,1 Πi

p′,1 ΠF ΠI ΠFI

Mt(t, l, l′) 1 1 0 0 1 0 1
2

1
n

1
n+2

Lt(p, t, l) 1 1 1 1 1 0 1
4n+2

1 1
4n+3

Ut(p, t, l) 1 1 1 1 1 0 1
4n+2

1 1
4n+3
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Given that, the optimal plans for the abstract task are

h task optimal plan cost # h(I)

hF
Πf
t1,l

〈Lt(p1, t2, l1), . . . , Lt(pn, t2, ln), Ut(p1, t2, ln+1), . . . , Ut(pn, t2, l2n)〉 2n
4n+2

2n+ 1
2n

Πf
t2,l

〈Lt(p1, t1, l1), . . . , Lt(pn, t1, ln), Ut(p1, t1, ln+1), . . . , Ut(pn, t1, l2n)〉 2n
4n+2

2n+ 1

hI Πi
pi,1

〈Mt(t1, l0, li), Lt(pi, t1, li),Mt(t1, li, ln+i), Ut(pi, t1, ln+i)〉 2
n

+ 2 n 2n+ 2

hFI
Πf
t1,l

〈Lt(p1, t2, l1), . . . , Lt(pn, t2, ln), Ut(p1, t2, ln+1), . . . , Ut(pn, t2, l2n)〉 2n
4n+3

2n+ 1
2n+ 2n

n+2Πf
t2,l

〈Lt(p1, t1, l1), . . . , Lt(pn, t1, ln), Ut(p1, t1, ln+1), . . . , Ut(pn, t1, l2n)〉 2n
4n+3

2n+ 1

Πi
pi,1

〈Mt(t1, l0, li), Lt(pi, t1, li),Mt(t1, li, ln+i), Ut(pi, t1, ln+i)〉 2
n+2

+ 2
4n+3

n

while an optimal plan for the original task, e.g., 〈Mt(t1, l0, l1), Lt(p1, t1, l1),Mt(t1, l1, l2), Lt(p2, t1, l2),

Mt(t1, l2, l3), . . . , Lt(pn, t1, ln),Mt(t1, ln, ln+1), Ut(p1, t1, ln+1),Mt(t1, ln+1, ln+2), Ut(p2, t1, ln+2),

Mt(t1, ln+2, ln+3), . . . , Ut(pn, t1, l2n)〉, has the cost of 4n, providing us with the upper bound of
1/2 for all three heuristics. Putting our lower and upper bounds together, the asymptotic
ratio of all three heuristics in question is 1/2.

9.3 Blocksworld

Each Blocksworld task consists of a table table, a crane c, and n + 1 blocks B =
{b1, . . . , bn+1}. Each block can be either on the table, or on top of some other block,
or held by the crane. The crane can pick up a block if it currently holds nothing, and that
block has no other block on top of it. The crane can drop the held block on the table or on
top of some other block.

Consider now a Blocksworld task as follows. The blocks initially form a tower
b1, . . . , bn, bn+1 with bn+1 being on the table, and the goal is to move them to form a
tower b1, . . . , bn−1, bn+1, bn with bn being on the table. That is, the goal is to swap the
lowest two blocks of the tower. A natural description of this task in sas+ is as follows.

• Variables V = {b, clearb | b ∈ B} ∪ {c} with domains

D(c) = {empty} ∪B,
∀b ∈ B : D(b) = {table, c} ∪B \ {b},
D(clearb) = {yes, no}.

• Initial state

I = {c :empty, bn+1 : table, clearb1 :yes}
⋃

{bi :bi+1 | 1 ≤ i ≤ n}
⋃

{clearb :no | b ∈ B \ {b1}} .

• Goal G = {bn : table, bn+1 :bn, bn−1 :bn+1} ∪ {bi :bi+1 | 1 ≤ i ≤ n− 2}.

• Actions A = {PT (b), DT (b) | b ∈ B} ∪ {P (b, b′), D(b, b′) | {b, b′} ⊆ B} where

– pick block b from the table: PT (b) = 〈{c :empty, b : table, clearb :yes}, {cb, b :c}〉,
– pick block b from block b′:
P (b, b′) = 〈{c :empty, b :b′, clearb :yes, clearb′ :no}, {c :b, b :c, clearb′ :yes}〉,
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b b′

clearb clearb′

c

bn−1 bn bn+1

c

bn−1 bn bn+1

clearb

b

clearb1 . . . clearbn+1c

G ib, b ∈ {bn−1, bn, bn+1}

Gfc Gfclearb , b ∈ B

(a) (b)

Figure 14: (a) Causal graph and (b) the corresponding collection of v-forks and v-iforks for
the Blocksworld task used in the proof

– drop block b on the table: DT (b) = 〈{c :b, b :c}, {c :empty, b : table}〉, and

– drop block b on block b′:
D(b, b′) = 〈{c :b, b :c, clearb′ :yes}, {c :empty, b :b′, clearb′ :no}〉.

A schematic version of the causal graph of this task is depicted in Figure 14a. Since only
the variables bn−1, bn, bn+1 have goal values that are different from their values in the initial
state, the collection of v-forks and v-iforks is as in Figure 14b. After the (“leave-one-out,”
Eq. 16) domain abstraction of the variable c, c-fork Gfc breaks down into n + 2 abstract
tasks. The sinks of v-iforks G ibn−1

, G ibn , and G ibn+1
also go through the process of domain

decomposition (“distance-from-initial-value,” Eq. 15). However, due to the structure of the
domain transition graphs of the block variables, domain decomposition here results in only
a single abstract task for each of the v-iforks. Thus we have

ΠF ={Πf
c,empty} ∪ {Πf

c,b | b ∈ B} ∪ {Πf
clearb

| b ∈ B},
ΠI ={Πi

bn−1,1,Π
i
bn,1,Π

i
bn+1,1},

ΠFI ={Πf
c,empty} ∪ {Πf

c,b | b ∈ B} ∪ {Πf
clearb

| b ∈ B} ∪Πi
bn−1,1,Π

i
bn,1,Π

i
bn+1,1}.

It is technically straightforward to verify that, for each abstract task in ΠF, ΠI, and ΠFI,
there exists a plan that (i) involves only the representatives of the actions

{P (bn−1, bn), DT (bn−1), P (bn, bn+1), DT (bn), PT (bn+1), D(bn+1, bn), PT (bn−1), D(bn−1, bn+1)} ,
(21)

and (ii) involves each representative of each original action at most once. Even if together
these plans account for the total cost of all eight actions in Eq. 21, the total cost of all these
plans (and thus the estimates of all the three heuristics) is upper-bounded by 8, while an
optimal plan for the original task, e.g., 〈P (b1, b2), DT (b1), P (b2, b3), DT (b2), . . . , P (bn, bn+1), DT (bn),

PT (bn+1), D(bn+1, bn), PT (bn−1), D(bn−1, bn+1), PT (bn−2), D(bn−2, bn−1), . . . , PT (b1), D(b1, b2)〉, has a cost
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e

p1 · · · pn
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e
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Figure 15: Miconic’s (a) causal graph and (b) the corresponding collection of v-forks and
v-iforks

of 4n. Hence, the asymptotic performance ratio of all three heuristics on the Blocksworld
domain is 0.

9.4 Miconic

Each Miconic task consists of one elevator e, a set of floors F , and the passengers P . The
elevator can move between |F | floors and on each floor it can load and/or unload passengers.
A natural sas+ description of a Miconic task is as follows.

• Variables V = {e} ∪ P with domains

D(e) = F,

∀p ∈ P : D(p) = F ∪ {e}.

• Initial state I = {e :fe} ∪ {p :fp | p ∈ P} ∈ (F )|P |+1.

• Goal G = {p :f ′p | p ∈ P} ∈ (F )|P |.

• Actions A = {In(p, f), Out(p, f) | f ∈ F, p ∈ P} ∪ {Move(f, f ′) | {f, f ′} ⊆ F}, where

– load passenger p into e on floor f : In(p, f) = 〈{e :f, p :f}, {p :e}〉,
– unload passenger p from e to floor f : Out(p, f) = 〈{e :f, p :e}, {p :f}〉, and

– move elevator from floor f to floor f ′: Move(f, f ′) = 〈{e :f}, {e :f ′}〉.
The (parametrized in n) causal graph of Miconic tasks is depicted in Figure 15a, and

Figure 15b depicts the corresponding collection of v-forks and v-iforks. The domains of the
inverted-fork sinks are all abstracted as in Eq. 15 (“distance-from-initial-value”), and the
domains of the fork roots are abstracted as in Eq. 16 (“leave-one-out”). Thus, we have

ΠF = {Πf
e,f | f ∈ F},

ΠI = {Πi
p,1 | p ∈ P},

ΠFI = {Πf
e,f | f ∈ F} ∪ {Πi

p,1 | p ∈ P}.
The total number of the fork-structured abstract tasks is thus nf = |ΠF| = |F | and the
total number of the inverted fork structured abstract tasks is ni = |ΠI| = |P |. For each
action a ∈ A, the number of its representatives in each abstract task, as well as the cost
assigned to each such representative, are given in Table 7.
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Action Πf
e,fΠf

e,f ′Π
f
e,f ′′Π

i
p,1Πi

p′,1 ΠFΠI ΠFI

Move(f, f ′) 1 1 0 1 1 1
2

1
ni

1
2+ni

In(p, f) 1 1 1 1 0 1
nf 1 1

nf+1

In(p′, f) 1 1 1 0 1 1
nf 1 1

nf+1

Out(p, f) 1 1 1 1 0 1
nf 1 1

nf+1

Out(p′, f) 1 1 1 0 1 1
nf 1 1

nf+1

Table 7: Number of representatives for each original Miconic action in each abstract task,
as well as the partition of the action costs among these representatives

9.4.1 Lower Bounds

First, as Miconic is a special case of the Logistics domain, Lemma 1 applies here anal-
ogously, with each package in P3 corresponding to a passenger. Thus, for each p ∈ P , all
three heuristics account for the full cost of the load/unload actions required by any optimal
plan for that task.

Let us now focus on the abstract tasks ΠF = {Πf
e,f | f ∈ F}. Recall that the task Πf

e,f

is induced by an e-fork and, in terms of domain decomposition, distinguishes between being
at floor f and being somewhere else. Without loss of generality, the set of floors F can be
restricted to the initial and the goal values of the variables, and this because no optimal
plan will move the elevator to or from a floor f that is neither an initial nor a goal location
of a passenger or the elevator. Let FI = {I[p] | p ∈ P} and FG = {G[p] | p ∈ P}. The costs
of the optimal plans for each abstract task Πf

e,f are as follows.

f ∈ FI ∩ FG : Let p, p′ ∈ P be a pair of passengers with initial and goal locations in f ,
respectively; that is, I[p] = G[p′] = f . If f = I[e], then any plan for Πf

e,f has to move
the elevator from f in order to load passenger p′, and then move the elevator back
to f in order to unload passenger p′. Therefore the cost of any plan for Πf

e,f is at

least 2|P |
|F | + 1, where (see the last three columns of Table 7) the first component of the

summation comes from summing the costs of the representatives of the load/unload
actions for all the passengers, and the second component is the sum of the costs of
representatives of the two respective move actions. Similarly, if f 6= I[e], then any
plan for Πf

e,f has to move the elevator to f in order to load passenger p, and then
move the elevator from f in order to unload p. Therefore, here as well, the cost of
any plan for Πf

e,f is at least 2|P |
|F | + 1.

f ∈ FI \ FG : Let p ∈ P be a passenger initially at f , that is, I[p] = f . If f = I[e], then
any plan for Πf

e,f has to move the elevator from f in order to unload p, and thus the

cost of any plan for Πf
e,f is at least 2|P |

|F | + 1
2 . Otherwise, if f 6= I[e], then any plan

for Πf
e,f has to move the elevator to f in order to load p, and then move the elevator

from f in order to unload p. Hence, in this case, the cost of any plan for Πf
e,f is at

least 2|P |
|F | + 1.
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f ∈ FG \ FI : Let p ∈ P be a passenger who must arrive at floor f , that is, G[p] = f . If
f = I[e], then any plan for Πf

e,f has to move the elevator from f in order to load p,
and then move the elevator back to f in order to unload p. Hence, here as well, the
cost of any plan for Πf

e,f is at least 2|P |
|F | + 1. Otherwise, if f 6= I[e], then any plan for

Πf
e,f has to move the elevator to f in order to unload p, and thus the cost of any plan

for Πf
e,f is at least 2|P |

|F | + 1
2 .

f 6∈ FG ∪ FI : If f = I[e], then any plan for Πf
e,f has to include a move from f in order to

load/unload the passengers, and thus the cost of any plan for Πf
e,f is at least 2|P |

|F | + 1
2 .

Otherwise, if f 6= I[e], the elevator is initially “in the set of all other locations,” and

thus the cost of any plan for Πf
e,f is at least 2|P |

|F | .

Putting this case-by-case analysis together, we have

hF(I) ≥


2|P |+ |FI ∩ FG|+ |FI \ FG|+ |FG\FI |

2 , I[e] ∈ FI ∩ FG
2|P |+ |FI ∩ FG|+ |FI \ FG| − 1 + 1

2 + |FG\FI |
2 , I[e] ∈ FI \ FG

2|P |+ |FI ∩ FG|+ |FI \ FG|+ 1 + |FG\FI |−1
2 , I[e] ∈ FG \ FI

2|P |+ |FI ∩ FG|+ |FI \ FG|+ |FG\FI |−1
2 + 1

2 , I[e] 6∈ FG ∪ FI

.

Note that the value in the second case is the lowest. This gives us a lower bound on the hF

estimate as in Eq. 22.

hF(I) ≥ 2|P |+ |FI \ FG|+
|FG \ FI |

2
+ |FI ∩ FG| −

1

2
. (22)

Now, let us provide an upper bound on the length (= cost) of the optimal plan for a
Miconic task. First, let P ′ ⊆ P denote the set of passengers with both initial and goal
locations in FI ∩ FG. Let m(P ′, FI ∩ FG) denote the length of the optimal traversal of the
floors FI ∩FG such that, for each passenger p ∈ P ′, a visit of I[p] comes before some visit of
G[p]. Given that, on a case-by-case basis, a (not necessarily optimal) plan for the Miconic
task at hand is as follows.

I[e] ∈ FI ∩ FG : Collect all the passengers at I[e] if any, then traverse all the floors in
FI \ FG and collect passengers from these floors, then move the elevator to the first
floor f on the optimal path π traversing the floors FI ∩ FG, drop off the passengers
whose destination is f , collect the new passengers if any, keep moving along π while
collecting and dropping off passengers at their initial and target floors, and then
traverse FG \ FI , dropping off the remaining passengers at their destinations. The
cost of such a plan (and thus of the optimal plan) is upper-bounded as in Eq. 23
below.

h∗(I) ≤ 2|P |+ |FI \ FG|+m(P ′, FI ∩ FG) + |FG \ FI |. (23)

I[e] ∈ FI \ FG : Collect all the passengers at I[e] if any, then traverse all the floors in
FI \FG and collect passengers from these floors while making sure that this traversal
ends up at the first floor f of the optimal path π traversing the floors FI ∩ FG, then
follow π while collecting and dropping passengers off at their initial and target floors,
and then traverse FG\FI , dropping the remaining passengers off at their destinations.
As in the first case, the cost of such a plan is upper-bounded as in Eq. 23.
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I[e] 6∈ FI : Traverse the floors FI \FG and collect all the passengers from these floors, then
move along the optimal path π traversing the floors FI ∩ FG while collecting and
dropping off passengers at their initial and target floors, and then traverse the floors
FG \FI , dropping the remaining passengers off at their destinations. Here as well, the
cost of such a plan is upper-bounded by the expression in Eq. 23.

Lemma 2 For any Miconic task with passengers P , we have hF(I)
h∗(I) ≥

5|P |−1
6|P | .

Proof: Recall that P ′ ⊆ P is the set of all passengers with both initial and goal locations
in FI ∩ FG. First we give two upper bounds on the length of the optimal traversal of the
floors FI ∩ FG such that, for each passenger p ∈ P ′, a visit of I[p] comes before some visit
of G[p]. From Theorem 5.3.3 of Helmert (2008) we have

m(P ′, FI ∩ FG) = |FI ∩ FG|+m∗(G′), (24)

where m∗(G′) is the size of the minimum feedback vertex set of the directed graph G′ =
(V ′, E ′), with V ′ = FI ∩ FG and E ′ containing an arc from f to f ′ if and only if a passenger
p ∈ P ′ is initially at floor f and should arrive at floor f ′.

Note that m∗(G′) is trivially bounded by the number of graph nodes V ′. In addition,
observe that, for any order of the nodes V ′, the arcs E ′ can be partitioned into “forward” and

“backward” arcs, and one of these subsets must contain no more than |E
′|

2 arcs. Removing
from G′ all the nodes that are origins of the arcs in that smaller subset of E ′ results in a
directed acyclic graph. Hence, the set of removed nodes is a (not necessarily minimum)

feedback vertex set of G′, and the size of this set is no larger than |E
′|

2 . Putting these two
bounds on m∗(G′) together with Eq. 24 we obtain

m(P ′, FI ∩ FG) ≤ min

{
2|FI ∩ FG|, |FI ∩ FG|+

|P ′|
2

}
. (25)

From the disjointness of FG \ FI and FI ∩ FG, and the fact that the goal of all the
passengers in P ′ is in FI , we have |FG \ FI | ≤ |P | − |P ′|. From Eqs. 22 and 23 we have

hF

h∗
≥ 2|P |+ |FI \ FG|+ |FG\FI |

2 + |FI ∩ FG| − 1
2

2|P |+ |FI \ FG|+ |FG \ FI |+m(P ′, FI ∩ FG)
. (26)

As we are interested in a lower bound on the ratio hF

h∗ , the right-hand side of the
inequality should be minimized, and thus we can safely set |FI \ FG| = 0 and |FG \ FI | =
|P | − |P ′|, obtaining

hF

h∗
≥ 2|P |+ |P |−|P ′|

2 + |FI ∩ FG| − 1
2

2|P |+ |P | − |P ′|+m(P ′, FI ∩ FG)
=

5|P | − |P ′|+ 2|FI ∩ FG| − 1

6|P | − 2|P ′|+ 2m(P ′, FI ∩ FG)
. (27)

Let us examine the right-most expression in Eq. 27 with respect to the two upper bounds
on m(P ′, FI ∩ FG) as in Eq. 25.

• If the minimum is obtained on 2|FI ∩ FG|, then m(P ′, FI ∩ FG) ≤ 2|FI ∩ FG| ≤
|FI ∩ FG|+ |P ′|

2 , where the last inequality can be reformulated as

2|FI ∩ FG| − |P ′| ≤ 0.
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This allows us to provide a lower bound on the right-most expression in Eq. 27, and
thus on hF

h∗ as

hF

h∗
≥ 5|P | − |P ′|+ 2|FI ∩ FG| − 1

6|P | − 2|P ′|+ 2m(P ′, FI ∩ FG)
≥ 5|P |+ (2|FI ∩ FG| − |P ′|)− 1

6|P |+ 2(2|FI ∩ FG| − |P ′|)
≥ 5|P | − 1

6|P | .

(28)

• If the minimum is obtained on |FI∩FG|+ |P
′|

2 , then m(P ′, FI∩FG) ≤ |FI∩FG|+ |P
′|

2 <
2|FI ∩ FG|, where the last inequality can be reformulated as

2|FI ∩ FG| − |P ′| > 0.

This again allows us to provide a lower bound on hF

h∗ via Eq. 27 as

hF

h∗
≥ 5|P | − |P ′|+ 2|FI ∩ FG| − 1

6|P | − 2|P ′|+ 2m(P ′, FI ∩ FG)
≥ 5|P |+ (2|FI ∩ FG| − |P ′|)− 1

6|P |+ (2|FI ∩ FG| − |P ′|)
≥ 5|P | − 1

6|P | .

(29)

Note that both lower bounds on hF

h∗ in Eq. 28 and Eq. 29 are as required by the claim of
the lemma. �

9.4.2 Upper Bounds

A Miconic task on which the heuristic hF achieves the performance ratio of exactly 5/6
consists of an elevator e, floors F = {fi}ni=0, passengers P = {pi}ni=1, all the passengers and
the elevator being initially at f0, and the target floors of the passengers all being pairwise
disjoint. The sas+ encoding for the Miconic task is as follows.

• Variables V = {e} ∪ P with the domains D(e) = F and ∀p ∈ P : D(p) = F ∪ {e}.

• Initial state I = {e :f0, p1 :f0, . . . , pn :f0}.

• Goal G = {p1 :f1, . . . , pn :fn}.

• Actions A = {In(p, f), Out(p, f) | f ∈ F, p ∈ P} ∪ {Move(f, f ′) | {f, f ′} ⊆ F}.

The causal graph of this task and the corresponding collection of v-forks (consisting of
only one e-fork) are depicted in Figure 15. The domain of e is abstracted as in Eq. 16
(“leave-one-out”), providing us with

ΠF = {Πf
e,f0

,Πf
e,f1

, . . . ,Πf
e,fn}.

The costs of the action representatives in these abstract tasks are given in Table 7 with
nf = n+ 1. The optimal plans for the abstract tasks in ΠF are

task optimal plan cost # hF(I)

Πf
e,f0

〈In(p1, f0), . . . , In(pn, f0),Move(f0, f1), Out(p1, f1), . . . , Out(pn, fn)〉 1
2

+ 2n
n+1

n+ 1 5n+1
2Πf

e,f1
〈In(p1, f0), . . . , In(pn, f0), Out(p2, f2), . . . , Out(pn, fn),Move(f0, f1), Out(p1, f1)〉 1

2
+ 2n
n+1

Πf
e,fn

〈In(p1, f0), . . . , In(pn, f0), Out(p1, f1), . . . , Out(pn−1, fn−1),Move(f0, fn), Out(pn, fn)〉 1
2

+ 2n
n+1

102



Implicit Abstraction Heuristics

while an optimal plan for the original task, 〈In(p1, f0), . . . , In(pn, f0),Move(f0, f1), Out(p1, f1),

Move(f1, f2), Out(p2, f2),Move(f2, f3), . . . , Out(pn, fn)〉, has a cost of 3n, providing us with the
upper bound of 5/6 for the hF heuristic in Miconic. Putting this upper bound together with
the previously obtained lower bound of 5/6, we conclude that the asymptotic performance
ratio of hF in Miconic is 5/6.

A Miconic task on which the heuristics hI and hFI achieve exactly 1/2 consists of an
elevator e, floors F = {fi}2ni=0, passengers P = {pi}ni=1, and the initial and target floors for
all the passengers and the elevator being pairwise disjoint. The task description in sas+ is
as follows.

• Variables V = {e} ∪ P with the domains D(e) = F and ∀p ∈ P : D(p) = F ∪ {e}.

• Initial state I = {e :f0, p1 :f1, . . . , pn :fn}.

• Goal G = {p1 :fn+1, . . . , pn :f2n}.

• Actions A = {In(p, f), Out(p, f) | f ∈ F, p ∈ P} ∪ {Move(f, f ′) | {f, f ′} ⊆ F}.

The causal graph of this task and the corresponding collection of v-forks and v-iforks are
depicted in Figure 15. The domains of the inverted-fork sinks are all abstracted as in Eq. 15
(“distance-from-initial-value”), and the domains of the fork roots are all abstracted as in
Eq. 16 (“leave-one-out”). This provides us with

ΠI = {Πi
p1,1, . . . ,Π

i
pn,1},

ΠFI = {Πf
e,f0

,Πf
e,f1

, . . . ,Πf
e,fn ,Π

f
e,fn+1

, . . . ,Πf
e,f2n

,Πi
p1,1, . . . ,Π

i
pn,1}.

The costs of the action representatives in these abstract tasks are given in Table 7 with
nf = 2n+ 1 and ni = n. The optimal plans for the abstract tasks in ΠI and ΠFI are

h task optimal plan cost # h(I)

hI Πi
pi,1

〈Move(f0, fi), In(pi, fi),Move(fi, fn+i), Out(pi, fn+i)〉 2
n

+ 2 n 2n+ 2

hFI
Πf
e,f0

〈Move(f0, f1), In(p1, f1), . . . , In(pn, fn),
Out(p1, fn+1), . . . , Out(pn, f2n)〉

1
n+2

+ 2n
2n+2

1
2n+ 5n+1

n+2
Πf
e,f1

〈Move(f0, f1), In(p1, f1),Move(f1, f2), In(p2, f2), . . . , In(pn, fn),
Out(p1, fn+1), . . . , Out(pn, f2n)〉

2
n+2

+ 2n
2n+2 n

Πf
e,fn

〈Move(f0, fn), In(pn, fn),Move(fn, f1),
In(p1, f1), . . . , In(pn−1, fn−1), Out(p1, fn+1), . . . , Out(pn, f2n)〉

2
n+2

+ 2n
2n+2

Πf
e,fn+1

〈In(p1, f1), . . . , In(pn, fn), Out(p2, fn+2), . . . , Out(pn, f2n),
Move(f0, fn+1), Out(p1, fn+1)〉

1
n+2

+ 2n
2n+2 n

Πf
e,f2n

〈In(p1, f1), . . . , In(pn, fn), Out(p1, fn+1), . . . , Out(pn−1, f2n−1),
Move(f0, f2n), Out(pn, f2n)〉

1
n+2

+ 2n
2n+2

Πi
pi,1

〈Move(f0, fi), In(pi, fi),Move(fi, fn+i), Out(pi, fn+i)〉 2
n+2

+ 2
2n+2

n

while an optimal plan for the original task, 〈Move(f0, f1), In(p1, f1),Move(f1, f2), In(p2, f2),

Move(f2, f3), . . . , In(pn, fn),Move(fn, fn+1), Out(p1, fn+1),Move(fn+1, fn+2), Out(p2, fn+2),

Move(fn+2, fn+3), . . . , Out(pn, f2n)〉, has the cost of 4n, providing us with the upper bound of
1/2 for the hI and hFI heuristics in Miconic. Putting this upper bound together with the
previously obtained lower bound of 1/2, we conclude that the asymptotic performance ratio
of hI and hFI in Miconic is 1/2.
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9.5 Satellite

The Satellite domain is quite complex. A Satellite tasks consists of some satellites S,
each s ∈ S with a finite set of instruments Is onboard, I =

⋃
s∈S Is. There is a set of image

modes M, and for each mode m ∈ M, there is a set Im ⊆ I of instruments supporting
mode m. Likewise, there is a set of directions L, image objectives O ⊆ L×M, and functions
cal : I 7→ L, p0 : S 7→ L, and p∗ : S0 7→ L with S0 ⊆ S, where cal is the calibration target
direction function, p0 is the initial direction function, and p∗ is the goal pointing direction
function.

Let us denote by Oi = {o = (d,m) ∈ O | i ∈ Im} the subset of all images that can
be taken by instrument i, by Os =

⋃
i∈Is Oi the subset of all images that can be taken by

instruments on satellite s, and by Sm = {s | Is ∩ Im 6= ∅} the subset of all satellites that
can take images in mode m. The problem description in sas+ is as follows.

• Variables V = S ∪ {Oni,Ci | i ∈ I} ∪ O with domains

∀s ∈ S : D(s) = L,
∀i ∈ I : D(Oni) = D(Ci) = {0, 1},
∀o ∈ O : D(o) = {0, 1}.

• Initial state I = {s :p0(s) | s ∈ S} ∪ {Oni :0,Ci :0 | i ∈ I} ∪ {o :0 | o ∈ O}.

• Goal G = {s :p∗(s) | s ∈ S0} ∪ {o :1 | o ∈ O}.

• Actions

A =
⋃
s∈S

(
{Turn(s, d, d′) | {d, d′} ⊆ L} ∪ {SwOn(i, s), Cal(i, s), SwOff(i) | i ∈ Is}

)
∪

{TakeIm(o, d, s, i) | o = (d,m) ∈ O, s ∈ Sm, i ∈ Im ∩ Is},

where

– turn satellite: Turn(s, d, d′) = 〈{s :d}, {s :d′}〉,
– power on instrument: SwOn(i, s) = 〈{Oni′ :0 | i′ ∈ Is}, {Oni :1}〉,
– power off instrument: SwOff(i) = 〈{Oni :1}, {Oni :0,Ci :0}〉,
– calibrate instrument: Cal(i, s) = 〈{Ci :0, Oni :1, s :cal(i)}, {Ci :1}〉, and

– take an image: TakeIm(o, d, s, i) = 〈{o :0,Ci :1, s :d}, {o :1}〉.

9.5.1 Fork Decomposition

The causal graph of an example Satellite task and a representative subset of the collection
of v-forks and v-iforks are depicted in Figure 16. Since the variables {Oni,Ci | i ∈ I}∪S\S0

have no goal value, the collection of v-forks and v-iforks will be as follows in the general
case.

• For each satellite s ∈ S, an s-fork with the leaves Os.
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o1 o2 o3 o4

s1 s2

C1 C2C3 C4 C5 C6C7

On1 On2

On3 On4 On5 On6

On7

o1 o3 o4

s2

o3

C5

o1 o3

C6

o4

C7

o4

s1 s2 C2 C4 C7

(a) (b)

Gfs2 GfC5
GfC6

GfC7

G io4

Figure 16: Satellite example task (a) causal graph and (b) a representative subset of the
collection of v-forks and v-iforks

• For each instrument i ∈ I, a Ci-fork with the leaves Oi.

• For each image objective o = (d,m) ∈ O, a o-ifork with the parents {Ci | i ∈ Im}∪Sm.

The root domains of all forks rooted at instruments i ∈ I and of all the inverted-fork sinks
are binary in the first place, and the root domains of the forks rooted at satellites s ∈ S are
abstracted as in Eq. 16 (“leave-one-out”). This provides us with

ΠF = {Πf
s,d | s ∈ S, d ∈ L} ∪ {Πf

Ci | i ∈ I},
ΠI = {Πi

o | o ∈ O},
ΠFI = {Πf

s,d | s ∈ S, d ∈ L} ∪ {Πf
Ci | i ∈ I} ∪ {Πi

o | o ∈ O}.

The total number of forks is thus nf = |S| · |L| + |I| and the total number of inverted
forks is ni = |O|. For each action a ∈ A, the number of its representatives in each abstract
task, as well as the cost assigned to each such representative, are given in Figure 17.

9.5.2 Lower Bounds

First, note that any optimal plan for a Satellite task contains at most 6 actions per image
objective o ∈ O and one action per satellite s ∈ S0 such that I[s] 6= G[s]. Now we show
that each of the three heuristics fully account for the cost of at least one action per image
objective o ∈ O and one action per such a satellite. This will provide us with the lower
bound of 1/6 on the asymptotic performance ratios of our three heuristics.

Lemma 3 For any Satellite task, hF, hI, and hFI fully account for the cost of at least
one Take Image action TakeIm(o, d, s, i) for each image objective o ∈ O.

Proof: For an image objective o = (d,m) ∈ O, some actions TakeIm(o, d, s, i) = 〈{o :
0,Ci : 1, s : d}, {o : 1}〉 will appear in optimal plans for |Sm| · |L| fork abstract tasks rooted
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o ∈ Oi o ∈ Os \ Oi o 6∈ Os

Action Πf
s,d Πf

s,d′ Πf
s,d′′ Πf

s′,d∗ Πf
Ci

Πf
Ci′

Πi
o Πi

o Πi
o ΠF ΠI ΠFI

Turn(s, d, d′) 1 1 0 0 0 0 1 1 0 1
2

1
|Os|

1
|Os|+2

SwOn(i, s) 0 0 0 0 0 0 0 0 0 0 0 0

Cal(i, s) 0 0 0 0 1 0 1 0 0 1 1
|Oi|

1
|Oi|+1

SwOff(i) 0 0 0 0 1 0 1 0 0 1 1
|Oi|

1
|Oi|+1

(a)

s′ ∈ Sm s′ 6∈ Sm i′ ∈ Im i′ 6∈ Im
Action Πf

s′,d′ Πf
s′,d′ Πf

Ci′
Πf

Ci′
Πi
o Πi

o′ ΠF ΠI ΠFI

TakeIm(o, d, s, i),
o = (d,m)

1 0 1 0 1 0 1
|Sm|·|L|+|Im| 1 1

|Sm|·|L|+|Im|+1

(b)

Figure 17: Number of representatives for each original Satellite action in each abstract
task, as well as the partition of the action costs between these representatives;
table (a) shows Turn, Switch On, Switch Off, and Calibrate actions, and
table (b) shows Take Image actions

in satellites, |Im| fork abstract tasks rooted in instrument calibration status variables Ci,
and one inverted-fork abstract task with sink o. Together with the costs of the action
representatives in the abstract problems (see Figure 17), we have

hF : cost of each representative is 1
|Sm|·|L|+|Im| and there are |Sm| · |L|+ |Im| fork abstract

tasks,

hI : cost of each representative is 1 and there is one inverted fork abstract task, and

hFI : cost of each representative is 1
|Sm|·|L|+|Im|+1 and there are |Sm| · |L|+ |Im|+ 1 abstract

tasks.

Therefore, for each o ∈ O, the cost of one TakeIm(o, d, s, i) action will be fully accounted
for by each of the three heuristics. �

Lemma 4 For any Satellite task, hF, hI, and hFI fully account for the cost of at least
one Turn action Turn(s, d, d′) for each s ∈ S0 such that I[s] 6= G[s].

Proof: If s ∈ S0 is a satellite with I[s] 6= G[s], then an action Turn(s, I[s], d′) will appear
in any optimal plan for Πf

s,I[s], an action Turn(s, d,G[s]) will appear in any optimal plan

for Πf
s,G[s], and for each o ∈ Os, an action Turn(s, d,G[s]) will appear in any optimal plan

for Πi
o. Together with the costs of the action representatives in the abstract problems (see

Figure 17) we have

hF : cost of each representative is 1
2 and there are 2 fork abstract tasks,
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hI : cost of each representative is 1
|Os| and there are |Os| inverted fork abstract tasks, and

hFI : cost of each representative is 1
|Os|+2 and there are |Os|+ 2 abstract tasks.

Therefore, for each s ∈ S0 such that I[s] 6= G[s], the cost of one Turn(s, d, d′) action will
be fully accounted for by each of the three heuristics. �

Together, Lemmas 3 and 4 imply that, for h ∈ {hF, hI, hFI}, on Satellite we have
h
h∗ ≥ 1/6.

9.5.3 Upper Bound

A Satellite task on which all three heuristics achieve the ratio of exactly 1/6 consists of
two identical satellites S = {s, s′} with l instruments each, I = Is ∪ Is′ = {1, . . . , l} ∪ {l +
1, . . . , 2l}, such that instruments {i, l+i} have two modes each: m0 and mi. There is a set of
n+ 1 directions L = {dI , d1, . . . , dn} and a set of n image objectives O = {o1, . . . , on}, oi =
(dI ,mi) for 1 ≤ i ≤ l and oi = (di,m0) for l < i ≤ n. The calibration direction of
instruments {i, l + i} is di. The sas+ encoding for this planning task is as follows.

• Variables V = S ∪ O ∪ {Oni,Ci | i ∈ I}.

• Initial state I = {s :dI | s ∈ S} ∪ {Oni :0,Ci :0 | i ∈ I} ∪ {o :0 | o ∈ O}.

• Goal G = {o :1 | o ∈ O}.

• Actions

A =
⋃
s∈S

(
{Turn(s, d, d′) | {d, d′} ⊆ L} ∪ {SwOn(i, s), Cal(i, s), SwOff(i) | i ∈ Is}

)
∪

⋃
s∈S

{TakeIm((dI ,mi), dI , s, i) | i ∈ Is} ∪
n⋃

j=l+1

{TakeIm((dj ,m0), dj , s, i) | i ∈ Is}

 .

The causal graph of this task is depicted in Figure 18a. The state variables {Oni,Ci |
i ∈ I} ∪ S have no goal value, and thus the collection of v-forks and v-iforks for this task
is as in Figure 18b. The domains of the inverted-fork sinks are binary, and the domains of
the fork roots are abstracted as in Eq. 16 (“leave-one-out”). This provides us with

ΠF = {Πf
s,d,Π

f
s′,d | d ∈ L} ∪ {Πf

Ci | i ∈ I},
ΠI = {Πi

o | o ∈ O},
ΠFI = {Πf

s,d,Π
f
s′,d | d ∈ L} ∪ {Πf

Ci | i ∈ I} ∪ {Πi
o | o ∈ O}.

The total number of forks in this task is nf = 2n+ 2l+ 2 and the total number of inverted
forks is ni = n. The costs of the action representatives in each abstract task are given in
Figure 17, where |Os| = |Os′ | = |O| = n, |Oi| = n− l + 1, |Sm| = 2, |Im0 | = 2l, |Imi | = 2,
and |L| = n+ 1.

The optimal plans per abstract task are depicted in Table 8, while an optimal plan for
the original problem, 〈SwOn(1, s), Turn(s, dI , d1), Cal(1, s), Turn(s, d1, dI), TakeIm(o1, dI , s, 1),
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o1 oi ok ol+1 on

s s′

C1 ClCi Cl+1 C2lCl+i

On1 Onl

Oni

Onl+1 On2l

Onl+i

o1 . . . on

s

o1 . . . on

s′

oi ol+1 . . . on

Ci

oi

s s′ Ci Cl+i

oi

s s′ C1
. . . C2l

(a) (b)

Gfs Gfs′ GfCi
, i ∈ I

G ioi , 1 ≤ i ≤ l G ioi , l < i ≤ n

Figure 18: (a) Causal graph and (b) the corresponding collection of v-forks and v-iforks for
the Satellite task used in the proof of the upper bound of 1/6

h task optimal plan cost # h(I)

hF

Πf
s,d

〈TakeIm(o1, dI , s
′, l+1), . . . , TakeIm(ol, dI , s

′, 2l), l
2n+4

+ n−l
2n+2l+2

n+ 1

n

TakeIm(ol+1, dl+1, s
′, 2l), . . . , TakeIm(on, dn, s′, 2l)〉

Πf
s′,d

〈TakeIm(o1, dI , s, 1), . . . , TakeIm(ol, dI , s, l), l
2n+4

+ n−l
2n+2l+2

n+ 1
TakeIm(ol+1, dl+1, s, l), . . . , TakeIm(on, dn, s, l)〉

Πf
Ci
, i ∈ Is 〈TakeIm(oi, dI , s

′, l + i), 1
2n+4

+ n−l
2n+2l+2

l
TakeIm(ol+1, dl+1, s

′, 2l), . . . , TakeIm(on, dn, s′, 2l)〉

Πf
Ci
, i ∈ Is′

〈TakeIm(oi, dI , s, i), 1
2n+4

+ n−l
2n+2l+2

l
TakeIm(ol+1, dl+1, s, l), . . . , TakeIm(on, dn, s, l)〉

hI
Πi
oj
, 1 ≤ j ≤ l 〈Turn(s, dI , dj), Cal(j, s), Turn(s, dj , dI), TakeIm(oj , dI , s, j)〉 2

n
+ 1
n−l+1

+ 1 l n+ 2+
n

n−l+1Πi
oj
, l < j ≤ n 〈Turn(s, dI , d1), Cal(1, s), Turn(s, d1, dj), TakeIm(oj , dI , s, 1)〉 2

n
+ 1
n−l+1

+ 1 n− l

hFI

Πf
s,d

〈TakeIm(o1, dI , s
′, l + 1), . . . , TakeIm(ol, dI , s

′, 2l), l
2n+5

+ n−l
2n+2l+3

n+ 1

n +

2n
n+2

+

n
n−l+2

TakeIm(ol+1, dl+1, s
′, 2l), . . . , TakeIm(on, dn, s′, 2l)〉

Πf
s′,d

〈TakeIm(o1, dI , s, 1), . . . , TakeIm(ol, dI , s, l), l
2n+5

+ n−l
2n+2l+3

n+ 1
TakeIm(ol+1, dl+1, s, l), . . . , TakeIm(on, dn, s, l)〉

Πf
Ci
, i ∈ Is 〈TakeIm(oi, dI , s

′, l + i), 1
2n+5

+ n−l
2n+2l+3

l
TakeIm(ol+1, dl+1, s

′, 2l), . . . , TakeIm(on, dn, s′, 2l)〉

Πf
Ci
, i ∈ Is′

〈TakeIm(oi, dI , s, i), 1
2n+5

+ n−l
2n+2l+3

l
TakeIm(ol+1, dl+1, s, l), . . . , TakeIm(on, dn, s, l)〉

Πi
oj
, 1 ≤ j ≤ l 〈Turn(s, dI , dj), Cal(j, s), Turn(s, dj , dI), TakeIm(oj , dI , s, j)〉 2

n+2
+ 1
n−l+2

+
1

2n+5

l

Πi
oj
, l < j ≤ n 〈Turn(s, dI , d1), Cal(1, s), Turn(s, d1, dj), TakeIm(oj , dI , s, 1)〉 2

n+2
+ 1
n−l+2

+
1

2n+2l+3

n− l

Table 8: Optimal plans for the abstract tasks and the overall heuristic estimates for the
Satellite task used in the proof of the upper bound of 1/6

SwOff(1), . . . SwOn(l − 1, s), Turn(s, dI , dl−1), Cal(l − 1, s), Turn(s, dl−1, dI), TakeIm(ol−1, dI , s, l − 1),

SwOff(l − 1), SwOn(l, s), Turn(s, dI , dl), Cal(l, s), Turn(s, dl, dI), TakeIm(ol, dI , s, l), Turn(s, dI , dl+1),

TakeIm(ol+1, dl+1, s, l), . . . , Turn(s, dn−1, dn), TakeIm(on, dn, s, l)〉, has the cost of 4l + 2n − 1. For
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l = n − √n, this provides us with the asymptotic performance ratio of 1/6 for all three
heuristics.

10. Summary

We considered heuristic search for cost-optimal planning and introduced a domain-independent
framework for devising admissible heuristics using additive implicit abstractions. Each such
implicit abstraction corresponds to abstracting the planning task at hand by an instance of a
tractable fragment of optimal planning. The key motivation for our investigation was to es-
cape the restriction of explicit abstractions, such as pattern-database and merge-and-shrink
abstractions, to abstract spaces of a fixed size. We presented a concrete scheme for additive
implicit abstractions by decomposing the planning task along its causal graph and suggested
a concrete realization of this idea, called fork-decomposition, that is based on two novel frag-
ments of tractable cost-optimal planning. We then studied the induced admissible heuristics
both formally and empirically, and showed that they favorably compete in informativeness
with the state-of-the-art admissible heuristics both in theory and in practice. Our empirical
evaluation stressed the tradeoff between the accuracy of the heuristics and runtime com-
plexity of computing them. To alleviate the problem of expensive per-search-node runtime
complexity of fork-decomposition heuristics, we showed that an equivalent of the explicit
abstractions’ notion of “database” exists also for the fork-decomposition abstractions, and
this despite their exponential-size abstract spaces. Our subsequent empirical evaluation of
heuristic search with such databases for the fork-decomposition heuristics showed that it
favorably competes with the state of the art of cost-optimal planning.

The basic principles of the implicit abstraction framework motivate further research
in numerous directions, most importantly in (i) discovering new islands of tractability of
optimal planning, and (ii) abstracting the general planning tasks into such islands. Like-
wise, there is promise in combining implicit abstractions with other techniques for deriv-
ing admissible heuristic estimates. A first step towards combining implicit abstractions
with polynomial-time discoverable landmarks of the planning tasks has recently been taken
by Domshlak, Katz, and Lefler (2010). We believe that various combinations of such tech-
niques might well improve the informativeness of the heuristics, and this without substan-
tially increasing their runtime complexity.
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Appendix A. Detailed Results of Empirical Evaluation

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

airport-ipc4
01 8 10 0.01 9 0.00 9 0.00 9 0.00 9 0.00 9 0.72 11 0.00 9 0.00
02 9 12 0.03 15 0.01 15 0.03 10 0.00 10 0.00 10 1.23 13 0.00 10 0.00
03 17 86 0.25 133 0.07 93 0.31 18 0.04 18 0.03 29 5.10 164 0.00 57 0.00
04 20 22 0.02 21 0.02 21 0.02 21 0.02 21 0.01 21 1.32 23 0.00 21 0.00
05 21 23 1.29 30 0.06 27 1.43 22 0.01 22 0.01 22 46.54 27 0.00 22 0.00
06 41 51336.72 639 1.54 567 45.25 42 0.16 42 0.17 42 123.13 738 0.01 418 0.02
07 41 51437.00 632 1.53 550 44.15 42 0.17 42 0.17 42 117.56 742 0.01 405 0.02
08 62 21544166.51 24372 25.42 96231549.13 203 602.09 27032 0.28 9687 0.90
09 71 152408 64.92 89525 466.14 12956 993.07 175717 2.47 56484 7.62
10 18 19 0.02 19 0.02 19 0.03 19 0.02 19 0.01 19 2.45 21 0.00 19 0.00
11 21 23 1.90 30 0.08 27 2.13 22 0.02 22 0.01 22 65.36 27 0.00 22 0.01
12 39 47554.18 728 2.76 568 71.23 40 0.21 40 0.21 40 169.02 873 0.01 392 0.03
13 37 43447.48 663 2.60 479 59.82 38 0.20 38 0.21 38 134.87 822 0.01 342 0.03
14 60 25110334.72 30637 51.23 8968 238.16 62 714.76 35384 0.39 9196 1.11
15 58 23317307.60 28798 46.20 8931 267.81 59 647.05 33798 0.38 8200 1.01
16 79 1031524200.95 3053401077.90 124746719.72 221993 49.03
17 88 1043661310.89
19 90 831632253.21
21 101 7326372.92 102 10.28 18809 0.42 3184 1.12
22 148 1119943762.02 159967105.29
36 109 34365853.70 63061 1.44

blocks-ipc2
04-0 6 15 0.01 46 0.01 17 0.01 7 0.03 7 0.03 7 0.36 93 0.00 25 0.00
04-1 10 14 0.01 31 0.00 15 0.00 11 0.04 11 0.03 11 0.39 66 0.00 23 0.00
04-2 6 7 0.01 26 0.00 10 0.00 7 0.04 7 0.03 7 0.38 63 0.00 18 0.00
05-0 12 32 0.03 302 0.06 113 0.08 13 0.30 13 0.96 13 1.32 467 0.00 145 0.00
05-1 10 37 0.03 280 0.06 98 0.07 11 0.29 11 0.96 11 1.36 567 0.00 135 0.00
05-2 16 152 0.09 596 0.10 348 0.18 17 0.29 17 0.95 17 1.49 792 0.00 297 0.00
06-0 12 33 0.04 766 0.27 207 0.25 13 0.95 13 8.56 13 4.10 1826 0.00 276 0.00
06-1 10 41 0.07 2395 0.74 578 0.78 11 0.90 11 8.34 11 4.17 4887 0.01 755 0.01
06-2 20 855 0.80 5444 1.23 3352 2.88 733 0.87 85 8.84 31 4.29 6385 0.02 2556 0.03
07-0 20 278 0.56 20183 8.26 4022 8.18 577 1.93 144 23.32 22 11.47 37157 0.14 5943 0.11
07-1 22 691011.22 59207 17.37 38539 49.71 10071 1.70 1835 21.05 174 11.25 63376 0.21 33194 0.46
07-2 20 1458 2.85 46009 15.05 18854 29.61 1855 1.59 782 20.37 90 10.99 55218 0.19 18293 0.29
08-0 18 1533 4.79344157179.42 69830208.07 5557 3.67 678 36.80 25 26.00 519107 2.28 94671 2.07
08-1 20 1004027.97517514236.64191352475.33 45711 3.88 11827 33.49 151 26.57 636498 2.60 199901 3.85
08-2 16 479 1.79237140136.18 32567110.76 277 3.63 54 32.53 17 25.85 433144 1.93 52717 1.30
09-0 30 1233374 16.00 971409 77.74 464 56.76798464936.763840589 85.00
09-1 28 343518.17 95068 7.35 58873 63.15 82 56.98591457229.731200345 32.06
09-2 26 637935.22 161719 13.54 20050 82.45 81 57.02596316030.021211463 32.15
10-0 34 1800 114.26
10-1 32 12063665 228.76 1835 115.19
10-2 34 3685 116.75
11-0 32 7046739 141.44 2678 213.32
11-1 30 1510 203.79
11-2 34 3984 213.97
12-0 34 1184 370.06
12-1 34 614 382.34
13-0 42 83996 860.45
13-1 44 1634381104.27
14-0 38 27791063.02
14-1 36 71541087.40

depots-ipc3
01 10 114 0.24 279 0.11 161 0.32 11 0.00 11 0.00 45 0.77 329 0.00 136 0.00
02 15 113410.82 9344 12.40 2638 22.68 738 3.24 16 1.14 898 11.56 15404 0.11 3771 0.17
03 27 348288 20.69 239313 222.35 103089 247.13293039827.201204646 97.62
04 30 1284048 52.05 1273762 529.34
07 21 211820 37.54 41328 324.19650110071.581331701166.76
10 24 3241083157.52
13 25 1427824116.06

grid-ipc1
01 14 57160.28 1117 9.49 472 55.87 660 8.63 467 121.10 6446 0.08 190 0.10
02 26 3392724 50.35 3244132 241.94 664016231.26

Table 9: Runtimes of cost-optimal heuristic-search planners on the Airport,
Blocksworld, Depots, and Grid domains. The description of the plan-
ners is given in Section 6; here the fork-decomposition heuristics are computed
fully online. Column task denotes problem instance, column h∗ denotes optimal
solution length. Other columns capture the run time and number of expanded
nodes.
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hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

driverlog-ipc3
01 7 49 0.05 37 0.01 37 0.04 8 0.04 8 0.03 44 0.47 182 0.00 20 0.00
02 19 15713 18.27 18452 10.29 15794 23.80 20 0.13 20 0.26 15998 4.55 68927 0.36 54283 0.52
03 12 164 0.25 190 0.13 163 0.31 13 0.16 13 0.25 863 1.25 16031 0.09 2498 0.03
04 16 6161 19.15 10778 17.14 7665 29.88 17 0.49 17 2.41 22933 12.20 999991 8.12 393673 6.56
05 18 13640 45.02 11400 18.91 10984 46.16 2614 0.60 19 4.58 24877 18.77 6290803 61.57 1724611 34.73
06 11 608 5.21 795 3.60 492 6.05 291 1.35 12 9.72 3804 10.08 681757 7.64 54451 1.71
07 13 864 9.56 1730 7.71 1006 13.80 14 1.42 14 15.35 25801 41.34 6349767 81.53 493480 17.31
08 22 287823 7.34 2952 20.31
09 22 198651 849.04 15504 1.70 23 10.43
10 17 4304 199.81 16099 85.74 4037 200.52 18 1.64 18 18.54 18234 68.22
11 19 433951421.90 41445 186.53 390691395.51 34137 1.99 10790 17.01 5596231193.00 6141130 330.22
13 26 1298884 19.52 870875 35.33

freecell-ipc3
01 8 234 1.54 974 4.88 274 3.25 87 3.12 9 38.74 9 13.01 3437 0.03 1043 0.15
02 14 30960 107.07 75150 230.54 37131 224.62 31487 40.40 466 70.29 130883 1.46 41864 10.77
03 18 197647 877.16 95805140.96 1589 169.39 944843 11.45 210503 75.62
04 26 943074 86.78 15848 341.02 3021326 38.80 600525 247.70
05 30 5950977243.74 40642 916.44 14080351062.25

gripper-ipc1
01 11 214 0.04 240 0.02 214 0.05 12 0.00 12 0.00 33 0.11 236 0.00 208 0.00
02 17 1768 0.54 1832 0.36 1803 0.75 18 0.11 18 0.08 680 0.37 1826 0.01 1760 0.01
03 23 11626 5.38 11736 4.05 11689 8.11 11514 0.47 2094 1.75 7370 1.52 11736 0.04 11616 0.08
04 29 68380 43.58 68558 35.24 68479 70.72 68380 1.24 68190 8.05 55568 10.29 68558 0.27 68368 0.56
05 35 376510 328.10 376784 296.59376653 560.93 376510 3.52 376510 19.46 344386 79.96 376772 1.59 376496 3.51
06 41 1982032 13.42 1982032 42.16 1911592 577.49 1982394 9.59 1982016 21.57
07 47 10091986 61.6610091986106.84 10092464 51.1010091968 119.64

logistics-ipc1
01 26 1918881 41.03 949586 34.82 2119551700.26
05 22 3293 945.35 768161 18.69 609393 35.27
31 13 436 9.67 1981 2.53 1284 21.84 494 0.42 14 2.11 481 6.58 155645 1.66 32282 0.57
32 20 392 2.57 2704 2.24 962 5.53 21 0.16 21 0.72 9598 7.08 245325 2.07 81156 1.00
33 27 529338 32.55

logistics-ipc2
04-0 20 21 0.02 193 0.06 65 0.06 21 0.03 21 0.05 21 0.34 11246 0.05 4884 0.03
04-1 19 20 0.03 570 0.13 293 0.16 20 0.03 20 0.04 20 0.37 9249 0.04 4185 0.03
04-2 15 16 0.02 117 0.03 79 0.05 16 0.04 16 0.05 16 0.36 4955 0.02 1205 0.01
05-0 27 28 0.05 2550 0.98 1171 1.09 28 0.10 28 0.38 28 0.58 109525 0.64 74694 0.59
05-1 17 18 0.03 675 0.19 427 0.31 18 0.10 18 0.38 18 0.72 22307 0.13 6199 0.05
05-2 8 9 0.02 24 0.01 13 0.02 9 0.09 9 0.38 9 0.78 1031 0.00 280 0.00
06-0 25 26 0.06 4249 1.85 2461 2.54 26 0.18 26 1.23 26 1.03 490207 3.40 202229 1.92
06-1 14 15 0.03 181 0.09 99 0.13 15 0.18 15 1.26 15 1.16 24881 0.16 3604 0.03
06-2 25 26 0.05 2752 1.22 1394 1.51 26 0.19 26 1.26 26 1.03 476661 3.32 200012 1.98
06-9 24 25 0.04 2395 0.94 1428 1.34 25 0.18 25 1.22 25 1.02 422557 2.95 133521 1.29
07-0 36 37 0.42 251287 203.64 98053 386.80 525 0.65 37 4.87 24317 35.46
07-1 44 1689 10.08 666324 8.83 49 4.94 362179 453.06
08-0 31 32 0.42 82476 78.73 35805 161.33 1042 0.96 32 6.90 14890 33.50
08-1 44 45 0.6611836081306.92 16708 1.15 45 7.21 114155 198.84
09-0 36 37 0.54 351538 407.06167038 883.68 20950 1.56 37 9.46 32017 83.16
09-1 30 31 0.50 59336 80.88 25359 168.73 31 1.27 31 9.43 6720 26.48
10-0 45 46 2.26 668834 29.73
10-1 42 43 2.10 1457130 43.00
11-0 48 697 26.78 701106 37.42
11-1 60 21959 696.23
12-0 42 43 2.78 775996 43.56
12-1 68 2222340 87.47

mprime-ipc1
01 5 196 0.19 10 0.03 24 0.07 6 2.00 6 20.45 108 49.59 3636 0.07 68 0.04
02 7 11604 422.83 440451620.68 2565 242.83 3317 88.58 12606 36.65
03 4 427 35.09 7 0.50 11 3.15 36 33.64 5463.85 9868 0.67 5 0.07
04 8 3836 6.62 1775 1.17 1093 3.44 9 6.09 9 82.71 19076 781.74 599590 23.58 200 0.24
05 11 1705009127.53 14881571638.78
07 5 3314 14.91 47 0.15 346 3.07 1667 46.72 18744 0.56 11 0.04
08 6 1469752403.45 7650 84.33
09 8 19838 454.91 1001881798.69 5227 284.13 21993 36.25 2197646 71.69 19023 30.26
11 7 9 0.16 219 0.54 8 0.16 8 4.69 8 62.68 22 394.26 73260 2.21 915 0.54
12 6 16320 192.10 8118 46.69 5243 95.01 34763 11.45 42055143.27 25665 724.12 108652 3.50 1520 1.78
15 6 1039 178.55
16 6 252 171.97 448 447.49 473 81.42 425144 32.17 7962 35.65
17 4 453 671.03 172736 42.48 5 1.06
19 6 123039313.25 36013 533.75
21 6 1503293103.23 15250 101.75
25 4 75 0.10 30 0.04 29 0.08 5 0.48 5 2.75 85 8.71 383 0.00 6 0.00
26 6 172432 46.33 189154454.69 819590 61.01 440 2.69
27 5 54 2.28 1772 33.82 9 1.31 6 11.59 6154.43 84079 3.50 831 2.08
28 7 8 0.03 403 0.23 37 0.08 8 1.88 8 22.55 128 146.80 17333 0.25 211 0.06
29 4 182 4.53 56 1.11 32 1.79 5 14.92 5201.40 3187 0.17 7 0.10
31 4 248 52.86 46 7.83 19 11.79 419 99.87 3584 0.19 11 0.17
32 7 31759 133.33 12436 34.94 11839 95.52 19429 21.61 7269292.37 110731701.00 115479 2.75 3096 1.74
34 4 234 11.65 46 2.13 23 3.08 450151.69 3618 0.19 11 0.18
35 5 392 3.09 290 2.54 84 1.89 359 3.63 6 43.43 706 96.55 2476 0.05 44 0.03

Table 10: Similar to Table 9 for the Driverlog, Freecell, Gripper, Logistics-ipc1,
Logistics-ipc2, and Mprime domains.
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hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

miconic-strips-ipc2
01-0 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-1 3 5 0.00 5 0.00 5 0.00 4 0.00 4 0.00 4 0.00 5 0.00 4 0.00
01-2 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-3 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00
01-4 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
02-0 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 26 0.01 30 0.00 20 0.00
02-1 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 26 0.01 30 0.00 22 0.00
02-2 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 27 0.00 30 0.00 22 0.00
02-3 7 24 0.01 24 0.00 24 0.00 8 0.00 8 0.00 20 0.01 26 0.00 17 0.00
02-4 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 23 0.01 31 0.00 20 0.00
03-0 10 86 0.01 129 0.01 98 0.01 11 0.00 11 0.00 100 0.03 193 0.00 105 0.00
03-1 11 120 0.01 168 0.01 147 0.01 12 0.00 12 0.00 140 0.02 218 0.00 150 0.00
03-2 10 137 0.01 143 0.01 137 0.01 11 0.00 11 0.00 122 0.02 164 0.00 92 0.00
03-3 10 96 0.01 153 0.01 117 0.01 11 0.00 11 0.00 131 0.02 197 0.00 130 0.00
03-4 10 103 0.01 149 0.01 115 0.01 11 0.00 11 0.00 114 0.02 190 0.00 114 0.00
04-0 14 524 0.06 843 0.08 686 0.12 15 0.01 15 0.01 669 0.10 1182 0.00 866 0.00
04-1 13 505 0.06 817 0.08 663 0.12 14 0.01 14 0.01 634 0.11 1176 0.00 860 0.00
04-2 15 685 0.08 942 0.09 802 0.13 16 0.01 16 0.01 822 0.12 1277 0.00 969 0.00
04-3 15 681 0.07 942 0.09 798 0.13 16 0.01 16 0.01 820 0.12 1319 0.00 970 0.00
04-4 15 685 0.07 942 0.09 802 0.13 16 0.01 16 0.01 821 0.12 1334 0.00 969 0.00
05-0 17 2468 0.37 4009 0.66 3307 0.93 18 0.06 18 0.05 2829 0.44 6350 0.03 4387 0.03
05-1 17 2807 0.42 4345 0.71 3677 1.01 18 0.06 18 0.05 3260 0.49 6602 0.03 4664 0.03
05-2 15 1596 0.29 2981 0.55 2275 0.73 16 0.06 16 0.05 1594 0.32 5565 0.03 3524 0.03
05-3 17 2256 0.36 3799 0.62 3104 0.87 18 0.06 18 0.05 2568 0.42 5944 0.03 4140 0.03
05-4 18 3210 0.46 4732 0.78 4267 1.11 19 0.06 19 0.05 3953 0.55 6949 0.04 5268 0.04
06-0 19 9379 1.98 17665 4.74 13531 5.90 20 0.18 20 0.32 9312 1.76 30786 0.20 21194 0.20
06-1 19 9106 1.93 18134 4.75 14052 5.94 20 0.18 20 0.32 10252 1.96 30093 0.20 21255 0.20
06-2 20 10900 2.19 19084 4.90 15111 6.28 21 0.18 21 0.32 11247 2.11 32390 0.21 21694 0.21
06-3 20 12127 2.43 21708 5.69 17807 7.19 21 0.17 21 0.32 14216 2.56 32574 0.21 24552 0.23
06-4 21 13784 2.62 23255 5.93 19536 7.66 22 0.17 22 0.32 16880 3.04 33793 0.22 26167 0.24
07-0 23 53662 13.29 96092 37.56 79449 46.76 24 0.32 24 1.75 56686 14.31 155466 1.22 116685 1.32
07-1 24 56328 13.86 99109 38.56 83677 47.49 7001 0.38 25 1.75 63035 16.33 164470 1.29 118494 1.33
07-2 22 48141 12.52 96139 38.02 78471 46.17 1646 0.33 23 1.71 55751 13.98 161342 1.27 119688 1.36
07-3 22 46867 12.11 93117 36.63 75424 44.43 1861 0.33 23 1.74 53121 13.27 155176 1.23 114649 1.30
07-4 25 84250 18.24 126595 46.11111984 61.34 23159 0.52 26 1.71 96327 24.76 168219 1.33 140128 1.58
08-0 27 272580 81.51 485051 267.27408114317.78 41629 0.91 28 4.18 290649 104.18 755255 7.16 594032 7.95
08-1 27 284415 86.93 527216 288.07446837347.43 42679 0.90 28 4.25 339177 123.10 794365 7.56 636587 8.66
08-2 26 207931 66.37 414294 235.89330993271.03 37744 0.86 27 4.25 204614 73.39 731622 6.92 534711 7.37
08-3 28 369479104.29 598031 320.33527216392.87 140453 1.94 29 4.21 435617 160.49 833421 7.97 690267 9.29
08-4 27 297516 87.65 507910 278.64431432333.91 62933 1.16 28 4.12 315339 111.84 771608 7.33 613253 8.43
09-0 31 1461729497.72 684737 9.07 126918 8.89 1555286 794.93 3685552 41.04 3006991 49.12
09-1 30 1207894438.6923351661787.13 406041 5.61 100937 8.73 1344815 683.05 3649801 40.32 2893803 47.54
09-2 30 1294691460.1123404111791.16 442547 6.06 82946 8.63 1357681 692.11 3576134 39.61 2895182 47.26
09-3 32 1840936589.09 765455 10.00 277302 11.14 20831681051.95 3796035 42.13 3304570 53.29
09-4 28 1252484467.94 317692 4.65 29 7.03 1231554 605.01 3589382 39.29 2956995 48.84
10-0 33 2436164 35.24 863244 23.76 15804498200.9013267920250.58
10-1 32 2340169 34.09 335745 15.68 16472633208.3913720664256.89
10-2 32 1735477 25.29 486286 17.72 15867374201.0112497087236.89
10-3 34 3952148 55.86 940556 24.24 16309701208.4213801989262.53
10-4 33 2715866 39.44 625559 19.91 16472551209.1313925654262.57
11-0 37 11473359183.604724980 93.56
11-1 34 7535468124.801934943 47.91
11-2 38 14645785233.686330198120.71
11-3 38 5809711110.10
11-4 35 5853546 95.561082086 32.22

mystery-ipc1
01 5 7 0.01 6 0.00 6 0.01 6 0.20 6 1.79 10 5.38 30 0.00 8 0.00
02 7 2404 64.94 8012 234.10 722 47.50 1672 82.70 770852 21.85 2368 4.47
03 4 73 1.92 7 0.12 11 0.59 5 16.46 5193.75 65 811.87 507 0.02 5 0.03
04 ∞ 0 0.01 0 0.00
07 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
09 8 3049 47.68 10764 137.61 1215 40.75 3165 29.34 3868 670.08 138289 2.18 1458 1.44
11 7 9 0.02 33 0.03 8 0.02 8 1.51 8 16.59 34 41.20 426 0.00 19 0.00
12 ∞ 2093419 938.05 2102777 14.612102729 27.84 2102777 15.09 1177842 21.87
15 6 279973 13.21 135 2.62
16 ∞ 0 0.14 0 0.19
17 4 354200.98 85 26.31 83 90.17 198445.85 5400 0.41 5 0.35
18 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
19 6 4968 183.24 12478 96.38 133871 3.65 1516 5.44
20 7 285069 59.22 547246578.39 686125 23.28 718 3.76
24 ∞ 0 0.13 0 0.30
25 4 9 0.02 10 0.01 9 0.02 5 0.10 5 0.10 14 1.22 31 0.00 6 0.00
26 6 1807 50.40 1835 25.34 1344 60.20 2526 5.94 346 70.78 3107 291.36 8455 0.10 37 0.05
27 5 14 0.27 159 1.61 6 0.22 6 4.80 6 80.48 7 243.78 2174 0.03 73 0.04
28 7 8 0.01 47 0.02 15 0.02 8 0.63 8 6.77 31 16.67 843 0.00 32 0.00
29 4 31 0.26 14 0.10 10 0.17 5 8.94 5107.10 27 536.30 153 0.01 7 0.02
30 9 42112 28.07 44893357.07 1977063 38.26 26686 28.27

Table 11: Similar to Table 9 for the Miconic and Mystery domains.
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Implicit Abstraction Heuristics

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

openstacks-ipc5
01 23 2264 0.49 3895 1.19 3070 1.36 24 0.05 24 0.06 2000 1.02 4822 0.01 4016 0.03
02 23 2617 0.56 4485 1.32 3561 1.57 24 0.06 24 0.06 2378 1.07 5501 0.02 4594 0.04
03 23 2264 0.49 3895 1.15 3070 1.36 24 0.06 24 0.06 2000 1.02 4822 0.01 4016 0.03
04 23 2264 0.49 3895 1.15 3070 1.36 24 0.06 24 0.06 2000 1.02 4822 0.02 4016 0.03
05 23 2264 0.48 3895 1.15 3070 1.35 24 0.06 24 0.05 2000 1.02 4822 0.01 4016 0.03
06 45 366768 255.00 7797101599.86 5874821498.20 621008 4.85 279614 7.86 379735 217.37 882874 4.91 822514 18.71
07 46 410728 277.99 7606681546.44 6067821515.46 594758 4.69 264535 7.34 405564 226.32 836647 4.62 787163 17.81

pathways-ipc5
01 6 1624 0.03 1299 0.02 1299 0.03 7 1.14 7 0.79 1405 0.28 1624 0.00 36 0.00
02 12 2755 0.08 2307 0.06 2437 0.09 1946 2.56 13 42.11 990 0.29 2984 0.02 348 0.01
03 18 44928 2.59 20416 1.06 29106 2.14 21671 6.43 14901129.23 14772 6.99 87189 1.06 4346 0.16
04 17 126950 11.45 33788 2.97 58738 7.07 98484288.39 34206 27.00 456143 8.22 104068 2.61

pipesworld-notankage-ipc4
01 5 121 0.15 109 0.05 121 0.18 6 0.04 6 0.04 6 2.79 121 0.00 13 0.00
02 12 1413 2.05 1542 0.86 1413 2.42 169 0.30 13 0.17 435 3.07 1808 0.01 792 0.02
03 8 1742 5.26 3001 3.31 1742 6.43 9 1.15 9 0.69 128 3.84 3293 0.02 262 0.02
04 11 7007 24.71 8911 12.43 7007 30.79 651 1.95 12 7.05 812 8.84 16088 0.11 2925 0.13
05 8 4093 27.45 6805 19.74 4093 35.40 77 5.63 9 21.15 155 16.53 11128 0.12 1121 0.15
06 10 12401 105.37 27377 103.75 12401 140.53 1299 5.26 61 39.31 1151 23.41 49905 0.48 7102 0.72
07 8 4370 71.75 9168 68.10 4370 105.53 233 19.78 9 59.70 185 29.88 46502 0.57 2631 0.48
08 10 18851 406.67 56189 483.28 20584 600.94 561 12.42 497 94.69 1673 48.84 273585 3.39 22874 3.58
09 13 104875 25.48 10478 74.26 5513309 80.62 321861 68.99
10 18 2982520 66.89 6898321439.64 111212451579.77
11 20 4729501577.22 90598 9.20 52159 43.24 108503 625.52 710123 3.86 107061 14.51
12 24 594661 12.41 416184109.43 4332961117.57 2467804 13.83 464982 56.82
13 16 117475 899.72 12835 34.28 242241019.65 481045 3.14 33417 6.38
14 30 13255718119.54
15 26 648132 65.43 4921698 34.90 555619 105.49
17 22 3200672 90.07
19 24 8767431150.88
21 14 238331663.46 49035 495.53 3992 18.13 948159.63 157782 1.31 8966 2.42
23 18 296506 49.11 104750256.13 481859 229.00
24 24 7315150142.82
41 12 114257 250.18

pipesworld-tankage-ipc4
01 5 77 0.13 126 0.07 105 0.20 6 3.54 6 0.13 6 3.88 128 0.00 13 0.01
02 12 960 1.20 1005 0.60 960 1.55 110 3.04 13 0.20 179 6.04 1012 0.01 659 0.02
03 8 20803 155.53 52139 158.91 20803 207.57 244 22.64 9 36.89 818 24.47 52983 0.77 1802 1.33
04 11 1102841004.10 157722 668.67 1102841408.50 3892 16.68 12155.03 8116 64.68 221429 3.06 41540 14.49
05 8 6531 73.63 13148 79.04 6531 112.61 376 15.46 9120.06 313 59.99 12764 0.21 2834 1.61
06 10 20171 329.40 43583 310.24 20171 460.45 1794328.18 11201.44 3102 97.31 58487 0.87 15746 6.61
07 8 2695 339.76 5404036198.08 104531 420.47
08 11 96043191.77
11 22 660104 28.60 660102162.93 4116344 30.67 752867 334.42
13 16 188517122.11
15 30 2546587141.12
17 44 12850247352.46
21 14 13241 69.80 4423951 65.44 126845 222.23
31 39 1357801124.64 1726598 13.56 919764 381.66

tpp-ipc5
01 5 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.01 7 0.00 6 0.00
02 8 9 0.00 11 0.00 9 0.00 9 0.00 9 0.00 9 0.01 26 0.00 16 0.00
03 11 12 0.00 27 0.00 16 0.00 12 0.00 12 0.00 12 0.03 116 0.00 83 0.00
04 14 15 0.01 78 0.01 47 0.01 15 0.01 15 0.00 15 0.07 494 0.00 430 0.00
05 19 623 0.52 5110 1.36 1455 1.21 20 0.36 20 0.77 624 0.48 24698 0.12 17398 0.15
06 25 947059 14.22 74798 23.97 9267024 216.69

trucks-ipc5
01 13 1691 0.41 1027 0.22 1039 0.40 14 0.03 14 0.02 285 0.56 5774 0.02 402 0.01
02 17 9624 2.68 2898 0.57 2957 1.35 4192 0.22 18 0.17 1413 1.04 28348 0.14 939 0.03
03 20 80693 71.37 20752 19.93 22236 31.25 199405 2.89 173790 6.88 4049 4.43 379582 2.97 9465 0.40
04 23 17538661237.601205793 850.3413156721394.88 2591561 29.172568634 56.96 8817 7.75 2990366 26.65 209140 9.43
05 25 23444940392.99 14744 23.12 1248571 90.78
06 30 308920 343.47
07 23 21347281313.60 719751 408.75 755608 820.55 7575415 88.918080496117.13 43270 27.6212410588117.92 223011 19.34
08 25 49663 47.61 3106944 403.36
09 28 233577 248.21

Table 12: Similar to Table 9 for the Openstacks, Pathways, Pipesworld-NoTankage,
Pipesworld-Tankage, TPP, and Trucks domains.

113



Katz & Domshlak

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

psr-small-ipc4
01 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
02 11 52 0.01 55 0.00 52 0.01 12 0.00 12 0.00 20 0.08 71 0.00 47 0.00
03 11 31 0.01 31 0.00 31 0.00 12 0.00 12 0.00 20 0.04 33 0.00 28 0.00
04 10 66 0.04 91 0.03 73 0.06 11 0.00 11 0.00 12 0.34 332 0.00 102 0.00
05 11 75 0.01 79 0.01 75 0.02 12 0.00 12 0.00 23 0.11 154 0.00 69 0.00
06 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
07 11 61 0.01 61 0.00 61 0.01 12 0.00 12 0.00 26 0.09 122 0.00 62 0.00
08 8 24 0.01 29 0.00 25 0.01 9 0.00 9 0.00 9 0.12 128 0.00 52 0.00
09 8 18 0.01 19 0.00 18 0.00 9 0.00 9 0.00 9 0.06 49 0.00 20 0.00
10 7 131 0.20 183 0.18 155 0.32 8 0.04 8 0.04 18 1.04 1358 0.00 376 0.01
11 19 149 0.03 149 0.02 149 0.04 20 0.00 20 0.00 96 0.19 153 0.00 142 0.00
12 16 120 0.03 123 0.02 120 0.04 17 0.00 17 0.00 40 0.17 153 0.00 113 0.00
13 15 90 0.02 90 0.01 90 0.02 16 0.00 16 0.00 59 0.16 95 0.00 86 0.00
14 9 19 0.00 19 0.00 19 0.00 10 0.00 10 0.00 13 0.06 27 0.00 18 0.00
15 10 1200 6.55 708 6.25 769 9.91 11 0.46 11 2.58 356 18.99 3562 0.02 324 0.02
16 25 2328 0.65 2158 0.34 2176 0.85 975 0.11 26 0.12 2287 1.34 2742 0.01 1876 0.01
17 9 15 0.00 15 0.00 15 0.00 10 0.00 10 0.00 13 0.03 16 0.00 14 0.00
18 12 85 0.03 90 0.01 85 0.03 13 0.00 13 0.00 29 0.21 158 0.00 91 0.00
19 25 8025 4.31 7856 2.19 7876 5.80 2910 0.27 26 0.77 6338 4.46 9009 0.04 6925 0.08
20 17 80 0.02 80 0.01 80 0.02 18 0.00 18 0.00 52 0.18 84 0.00 75 0.00
21 10 28 0.01 28 0.00 28 0.01 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
22 33 163299 405.65 176058 245.42 168685 617.45 34 0.28 34 0.87 22315 8.16 189516 0.67 177138 1.43
23 12 77 0.04 93 0.03 77 0.06 13 0.00 13 0.01 30 0.43 200 0.00 116 0.00
24 10 28 0.01 28 0.00 28 0.01 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
25 9 485 84.24 463 145.38 482 213.42 10 5.42 10 37.93 28 780.38 8913 0.12 854 0.18
26 17 144 0.05 150 0.03 146 0.06 18 0.00 18 0.00 52 0.28 182 0.00 142 0.00
27 21 616 0.33 675 0.21 650 0.49 22 0.01 22 0.01 179 0.85 773 0.00 616 0.00
28 14 79 0.02 79 0.01 79 0.02 15 0.00 15 0.00 49 0.29 95 0.00 79 0.00
29 21 142772 436.34 187319 307.77 159325 709.89 22 0.39 22 1.43 3337 7.12 244499 1.27 192459 2.32
30 22 1791 1.25 1982 0.80 1883 1.90 23 0.01 23 0.02 393 1.35 2295 0.01 1834 0.01
31 19 11278 25.93 6810 38.66 8297 53.43 2647 0.89 723 6.55 7530 32.97 53911 0.25 16766 0.36
32 24 431 0.17 431 0.10 431 0.25 25 0.00 25 0.00 352 0.74 435 0.00 424 0.00
33 21 1480 0.84 1436 0.30 1391 1.00 446 0.26 22 0.63 947 2.29 2291 0.01 1073 0.01
34 21 223 0.07 223 0.04 223 0.09 22 0.00 22 0.00 158 0.50 227 0.00 216 0.00
35 22 65965 160.36 63186 39.55 68281 199.30 24021 0.83 11113 6.36 7448 8.27 165170 0.63 61548 1.06
36 22 571766 392.49 371834 786.06 4584021094.61 48350 2.98 2783 14.07 188564 111.991669788 9.44 717884 18.27
37 23 1307 1.29 1417 0.95 1363 2.10 24 0.02 24 0.01 277 2.10 1532 0.00 1342 0.01
38 13 301 0.20 372 0.15 326 0.32 14 0.01 14 0.01 33 0.74 562 0.00 357 0.00
39 23 2486 2.49 2942 1.64 2682 3.91 24 0.08 24 0.07 146 1.78 4103 0.01 2597 0.02
40 20 1826081384.90 38837 1.88 7767 12.86 23371 87.911036992 6.74 229210 9.51
41 10 31 0.01 34 0.00 31 0.01 11 0.00 11 0.00 21 0.16 54 0.00 35 0.00
42 30 1855 0.50 1747 0.17 1739 0.59 1117 0.18 31 0.18 1773 1.29 1908 0.01 1636 0.01
43 20 328 0.09 328 0.05 328 0.12 21 0.00 21 0.00 256 0.50 333 0.00 315 0.00
44 19 2990 3.25 3430 2.30 3121 5.24 20 0.05 20 0.05 407 2.18 4142 0.01 3235 0.02
45 20 347 0.16 376 0.11 359 0.25 21 0.01 21 0.00 121 0.74 434 0.00 358 0.00
46 34 60888 51.77 61842 21.14 61563 68.33 36941 0.67 32582 4.05 19865 6.91 80785 0.25 65984 0.63
47 27 4104 5.27 4522 3.93 4284 8.70 28 0.04 28 0.04 515 2.32 5075 0.01 4406 0.02
48 37 129627 2.37 2500 11.08 200559 101.21 19020089286.02
49 47 204836815.84 594399 23.32 27728751408.64
50 23 637 0.39 659 0.26 645 0.60 24 0.02 24 0.02 390 1.40 690 0.00 642 0.00

rovers-ipc5
01 10 147 0.01 147 0.01 147 0.02 11 0.03 11 0.03 48 0.07 1104 0.00 283 0.00
02 8 44 0.01 44 0.01 44 0.01 9 0.00 9 0.00 16 0.03 254 0.00 129 0.00
03 11 672 0.11 419 0.05 448 0.10 12 0.11 12 0.12 804 0.16 3543 0.02 757 0.00
04 8 47 0.02 20 0.00 24 0.01 9 0.04 9 0.04 58 0.08 897 0.00 223 0.00
05 22 808084 237.13 410712 123.64 522937 231.28 61726711.48 375808 18.46 298400 101.658559690126.19 4318309 81.53
07 18 741649 517.1816822451780.27 328088451.022212903 59.20 1459792 866.93 9618062199.91
12 19 5187273166.77

satellite-ipc4
01 9 24 0.00 32 0.00 29 0.00 10 0.00 10 0.00 46 0.06 89 0.00 59 0.00
02 13 86 0.02 337 0.10 241 0.13 14 0.01 14 0.01 646 0.21 1728 0.01 940 0.00
03 11 2249 1.24 656 0.53 728 0.82 12 0.56 12 0.64 1945 0.93 15185 0.17 6822 0.11
04 17 9817 10.65 14860 24.90 11250 26.18 4152 0.99 18 4.43 15890 9.50 345663 4.70 180815 3.37
05 15 2795691251.83 46453 515.80 61692 877.26 81972 7.26 148667 69.28 267513 565.18
06 20 1496577 968.2415723271721.87 276922974.73 307962 32.52 10751017371.43

zenotravel-ipc3
01 1 2 0.01 2 0.00 2 0.01 2 0.00 2 0.00 2 0.45 2 0.00 2 0.00
02 6 17 0.02 18 0.02 17 0.02 7 0.00 7 0.00 9 0.46 58 0.00 22 0.00
03 6 28 0.08 18 0.12 12 0.11 7 0.21 7 0.90 40 3.42 5160 0.04 492 0.02
04 8 99 0.15 88 0.26 81 0.30 9 0.20 9 0.89 215 3.44 5256 0.03 665 0.01
05 11 177 0.32 220 0.22 136 0.36 12 0.25 12 1.90 422 7.70 82289 0.63 12466 0.33
06 11 2287 5.51 1144 2.00 504 2.40 12 0.38 12 3.54 1957 11.81 596531 5.90 85931 2.47
07 15 5088 9.63 4234 5.56 4199 10.58 16 0.38 16 3.48 34890 30.36 405626 3.56 115348 2.60
08 11 3268 43.96 1026 8.92 1655 30.06 14354 2.00 12 14.48 83533 292.05 687846 50.76
09 21 251703551.18 611457 30.47
10 22 132287134.84 137872 25.44
11 14 769041090.67 31003011.28 110726 26.65

Table 13: Similar to Table 9 for the PSR, Rovers, Satellite, and Zenotravel domains.
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Implicit Abstraction Heuristics

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes timenodes timenodes time nodes timenodes time nodes time nodes time nodes time

schedule-strips
02-0 3 5 0.15 5 0.14 5 0.22 4 511.10 41743.32 5 577.39 76 0.02 5 0.09
02-1 2 3 0.16 4 0.11 3 0.18 3 104.98 3 754.26 6 0.02 3 0.07
02-2 2 3 0.32 3 0.17 3 0.40 3 231.99 3 495.56 5 0.02 3 0.07
02-3 3 26 0.50 37 0.76 26 0.61 4 56.51 4 658.90 529 0.03 95 0.45
02-4 3 68 1.34 188 2.24 220 7.20 4 484.62 543 0.03 108 0.44
02-5 2 3 0.33 3 0.14 3 0.38 3 363.11 3 667.32 3 0.03 3 0.07
02-6 2 3 0.14 5 0.12 3 0.17 3 121.84 3 697.42 6 0.02 3 0.06
02-7 2 3 0.30 3 0.13 3 0.34 3 323.77 3 604.06 13 0.02 3 0.07
02-8 2 3 0.32 3 0.14 3 0.38 3 316.53 3 668.79 8 0.02 3 0.07
02-9 3 5 0.15 5 0.14 5 0.22 4 251.46 5 577.16 76 0.03 5 0.09
03-0 4 40 2.72 407 12.16 140 14.55 11915 0.60 1127 8.98
03-1 2 3 0.51 3 0.35 3 0.72 31 0.04 25 0.37
03-2 4 27 1.16 50 1.83 33 2.33 5 191.03 3617 0.23 1228 9.56
03-3 4 15 0.79 91 2.39 15 0.96 5 259.13 3379 0.23 170 1.85
03-4 3 4 1.11 16 2.08 4 1.52 41223.90 301 0.06 22 0.27
03-5 4 73 6.13 471 16.71 74 8.32 5 682.30 12217 0.64 1175 12.43
03-6 4 72 1.27 75 1.80 69 1.33 5 121.58 2663 0.19 1542 11.73
03-7 4 28 1.05 50 1.83 28 1.43 5 195.72 12859 0.68 1323 13.47
03-8 4 273 11.53 266 11.46 273 17.48 12616 0.65 1590 11.13
03-9 4 8 0.96 31 1.77 14 2.13 5 235.48 4339 0.27 913 7.69
04-0 5 373 13.91 1498 74.46 167 24.60 31219326.88 22993 273.38
04-1 6 175591373.8010707 626.54 71115.76 55206949.79
04-2 5 209 9.88 406 20.85 66 5.30 47696 4.97 9703 131.69
04-3 5 142 10.47 674 33.29 251 29.28 6 267.29 89272 8.74 12941 163.84
04-4 5 921 64.48 450 46.95 574 116.65 62013 6.03 13614 168.07
04-5 6 483 47.25 4544 268.77 850 187.46 7 837.68 1079781399.99
04-6 6 779 27.0911610 361.74 1834 102.68 7 459.19 1071151001.40
04-7 5 99 18.48 424 38.04 163 40.04 6 936.68 61327 5.97 8683 103.50
04-8 5 102 16.01 573 31.87 111 23.35 6 711.65 34046729.56 15122 181.98
04-9 4 1043 80.06 996 76.64 1050 143.48 5 316.22 41673 4.27 5480 83.69
05-0 5 163 41.61 483 63.23 167 62.53 14335022.71 43336 751.35
05-1 6 2701 213.92 1257 286.28
05-3 7 136221693.68
05-4 6 989 100.02 3433 229.05 582 100.05
05-5 6 198 21.67 9550 767.94 347 68.64 120602 989.42
05-6 7 6033 743.61 103251508.56
05-7 6 944 131.19175621446.20 2107 379.70
05-8 7 1190 172.59 2709 730.54
05-9 6 1537 140.49158291248.19 2717 547.56
06-2 6 888 243.14 1709 730.36
06-4 8 115351776.87
07-0 7 2489 786.76
07-9 8 68291559.86

Table 14: Similar to Table 9 for the (non-IPC) Schedule-STRIPS domain.
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hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

airport-ipc4
01 8 10 0.01 9 0.00 9 0.00 9 0.00 9 0.00 9 0.72 11 0.00 9 0.00
02 9 12 0.01 15 0.00 15 0.01 10 0.00 10 0.00 10 1.23 13 0.00 10 0.00
03 17 86 0.02 133 0.01 93 0.02 18 0.04 18 0.03 29 5.10 164 0.00 57 0.00
04 20 22 0.01 21 0.00 21 0.01 21 0.02 21 0.01 21 1.32 23 0.00 21 0.00
05 21 23 0.08 30 0.02 27 0.09 22 0.01 22 0.01 22 46.54 27 0.00 22 0.00
06 41 513 0.16 639 0.06 567 0.19 42 0.16 42 0.17 42 123.13 738 0.01 418 0.02
07 41 514 0.15 632 0.05 550 0.19 42 0.17 42 0.17 42 117.56 742 0.01 405 0.02
08 62 12733 1.89 21544 1.36 14398 4.02 24372 25.42 96231549.13 203 602.09 27032 0.28 9687 0.90
09 71 88670 16.58 136717 9.60 90412 38.78 152408 64.92 89525 466.14 12956 993.07 175717 2.47 56484 7.62
10 18 19 0.01 19 0.01 19 0.01 19 0.02 19 0.01 19 2.45 21 0.00 19 0.00
11 21 23 0.10 30 0.03 27 0.12 22 0.02 22 0.01 22 65.36 27 0.00 22 0.01
12 39 475 0.20 728 0.07 568 0.25 40 0.21 40 0.21 40 169.02 873 0.01 392 0.03
13 37 434 0.20 663 0.07 479 0.24 38 0.20 38 0.21 38 134.87 822 0.01 342 0.03
14 60 12040 2.90 25110 1.86 15948 4.64 30637 51.23 8968 238.16 62 714.76 35384 0.39 9196 1.11
15 58 11477 2.74 23317 1.71 14557 4.25 28798 46.20 8931 267.81 59 647.05 33798 0.38 8200 1.01
16 79 267277 77.39 824491 97.12 353592 114.58 1031524200.95 3053401077.90 124746719.72 221993 49.03
17 88 2460667 708.82 26786891235.79 1043661310.89
19 90 1354353 592.533400142492.061462739 660.17 831632253.21
21 101 5156 48.29 11259 3.72 4773 51.13 7326372.92 102 10.28 18809 0.42 3184 1.12
22 148 6066481110.091063668318.90 4778361082.91 1119943762.02 159967105.29
36 109 9504 129.73 34986 14.41 9436 140.75 34365853.70 63061 1.44
37 142 37873 820.33

blocks-ipc2
04-0 6 15 0.00 46 0.00 17 0.00 7 0.03 7 0.03 7 0.36 93 0.00 25 0.00
04-1 10 14 0.00 31 0.00 15 0.00 11 0.04 11 0.03 11 0.39 66 0.00 23 0.00
04-2 6 7 0.00 26 0.00 10 0.00 7 0.04 7 0.03 7 0.38 63 0.00 18 0.00
05-0 12 32 0.00 302 0.01 113 0.00 13 0.30 13 0.96 13 1.32 467 0.00 145 0.00
05-1 10 37 0.00 280 0.00 98 0.00 11 0.29 11 0.96 11 1.36 567 0.00 135 0.00
05-2 16 152 0.00 596 0.00 348 0.01 17 0.29 17 0.95 17 1.49 792 0.00 297 0.00
06-0 12 33 0.00 766 0.01 207 0.01 13 0.95 13 8.56 13 4.10 1826 0.00 276 0.00
06-1 10 41 0.00 2395 0.03 578 0.02 11 0.90 11 8.34 11 4.17 4887 0.01 755 0.01
06-2 20 855 0.01 5444 0.05 3352 0.06 733 0.87 85 8.84 31 4.29 6385 0.02 2556 0.03
07-0 20 278 0.01 20183 0.28 4022 0.12 577 1.93 144 23.32 22 11.47 37157 0.14 5943 0.11
07-1 22 6910 0.10 59207 0.60 38539 0.67 10071 1.70 1835 21.05 174 11.25 63376 0.21 33194 0.46
07-2 20 1458 0.02 46009 0.52 18854 0.39 1855 1.59 782 20.37 90 10.99 55218 0.19 18293 0.29
08-0 18 1533 0.03 344157 5.46 69830 2.09 5557 3.67 678 36.80 25 26.00 519107 2.28 94671 2.07
08-1 20 10040 0.17 517514 7.22 191352 4.91 45711 3.88 11827 33.49 151 26.57 636498 2.60 199901 3.85
08-2 16 479 0.02 237140 4.08 32567 1.09 277 3.63 54 32.53 17 25.85 433144 1.93 52717 1.30
09-0 30 134185 3.107405904117.144346535 118.23 1233374 16.00 971409 77.74 464 56.76798464936.763840589 85.00
09-1 28 3435 0.094145371 77.54 917197 33.32 95068 7.35 58873 63.15 82 56.98591457229.731200345 32.06
09-2 26 6379 0.174145278 78.21 923365 33.79 161719 13.54 20050 82.45 81 57.02596316030.021211463 32.15
10-0 34 1524599 36.52 1800 114.26
10-1 32 610206 15.79 12063665 228.76 1835 115.19
10-2 34 1516087 37.71 3685 116.75
11-0 32 7046739 141.44 2678 213.32
11-1 30 1510 203.79
11-2 34 3984 213.97
12-0 34 1184 370.06
12-1 34 614 382.34
13-0 42 83996 860.45
13-1 44 1634381104.27
14-0 38 27791063.02
14-1 36 71541087.40

depots-ipc3
01 10 114 0.01 279 0.01 161 0.02 11 0.00 11 0.00 45 0.77 329 0.00 136 0.00
02 15 1134 0.08 9344 0.31 2638 0.22 738 3.24 16 1.14 898 11.56 15404 0.11 3771 0.17
03 27 134428 8.592520703159.84 581726 66.43 348288 20.69 239313 222.35 103089 247.13293039827.201204646 97.62
04 30 1254545 101.18 5835295 923.87 1284048 52.05 1273762 529.34
07 21 109765 9.174271196336.59 487961 76.02 211820 37.54 41328 324.19650110071.581331701166.76
10 24 2964635 283.55 60814781187.66 3241083157.52
13 25 1003709 152.30 81618721559.21 1427824116.06

driverlog-ipc3
01 7 49 0.00 37 0.00 37 0.00 8 0.04 8 0.03 44 0.47 182 0.00 20 0.00
02 19 15713 0.42 18452 0.27 15794 0.55 20 0.13 20 0.26 15998 4.55 68927 0.36 54283 0.52
03 12 164 0.00 190 0.00 163 0.01 13 0.16 13 0.25 863 1.25 16031 0.09 2498 0.03
04 16 6161 0.42 10778 0.30 7665 0.62 17 0.49 17 2.41 22933 12.20 999991 8.12 393673 6.56
05 18 13640 1.01 11400 0.36 10984 1.07 2614 0.60 19 4.58 24877 18.77629080361.571724611 34.73
06 11 608 0.09 795 0.06 492 0.11 291 1.35 12 9.72 3804 10.08 681757 7.64 54451 1.71
07 13 864 0.14 1730 0.11 1006 0.21 14 1.42 14 15.35 25801 41.34634976781.53 493480 17.31
08 22 669994 75.741181268 61.32 694996 104.59 287823 7.34 2952 20.31
09 22 150255 14.72 198651 11.44 164109 23.06 15504 1.70 23 10.43
10 17 4304 0.44 16099 1.21 4037 0.69 18 1.64 18 18.54 18234 68.22
11 19 43395 4.99 41445 2.22 39069 5.90 34137 1.99 10790 17.01 5596231193.00 6141130330.22
13 26 1303099 325.711014865144.641098694 422.20 1298884 19.52 870875 35.33

Table 15: Runtimes of cost-optimal heuristic-search planners on the Airport,
Blocksworld, Depots, and Driverlog domains. The description of
the planners is given in Section 6; here the fork-decomposition heuristics are via
structural-pattern databases. Column task denotes problem instance, column
h∗ denotes optimal solution length. Other columns capture the run time and
number of expanded nodes.
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Implicit Abstraction Heuristics

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
taskh∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

freecell-ipc3
01 8 234 0.10 974 0.15 274 0.17 87 3.12 9 38.74 9 13.01 3437 0.03 1043 0.15
02 14 30960 1.95 75150 5.53 37131 4.79 31487 40.40 466 70.29 130883 1.46 41864 10.77
03 18 197647 14.41 533995 78.27 240161 51.24 95805140.96 1589 169.39 944843 11.45 210503 75.62
04 26 997836 60.67 1921470 232.95 1218329213.02 943074 86.78 15848 341.02 3021326 38.80 600525 247.70
05 30 6510089 448.22 5950977243.74 40642 916.44 14080351062.25

grid-ipc1
01 14 571 0.60 1117 0.34 472 0.78 660 8.63 467121.10 6446 0.08 190 0.10
02 26 33302741078.55 3392724 50.35 3244132241.94 664016 231.26

gripper-ipc1
01 11 214 0.00 240 0.00 214 0.00 12 0.00 12 0.00 33 0.11 236 0.00 208 0.00
02 17 1768 0.02 1832 0.01 1803 0.03 18 0.11 18 0.08 680 0.37 1826 0.01 1760 0.01
03 23 11626 0.19 11736 0.08 11689 0.22 11514 0.47 2094 1.75 7370 1.52 11736 0.04 11616 0.08
04 29 68380 1.46 68558 0.51 68479 1.63 68380 1.24 68190 8.05 55568 10.29 68558 0.27 68368 0.56
05 35 376510 10.07 376784 3.20 376653 11.11 376510 3.52 376510 19.46 344386 79.96 376772 1.59 376496 3.51
06 41 1982032 70.91 1982408 19.08 1982227 77.81 1982032 13.42 1982032 42.16 1911592 577.49 1982394 9.59 1982016 21.57
07 47 10091986 438.4110092464 105.6710092241478.67 10091986 61.6610091986106.84 10092464 51.1010091968 119.64

logistics-ipc1
01 26 77763 7.14 1469610 95.49 830292 98.59 1918881 41.03 949586 34.82 2119551700.26
05 22 3293 0.46 850312 42.43 173477 18.19 768161 18.69 609393 35.27
31 13 436 0.03 1981 0.07 1284 0.09 494 0.42 14 2.11 481 6.58 155645 1.66 32282 0.57
32 20 392 0.01 2704 0.07 962 0.05 21 0.16 21 0.72 9598 7.08 245325 2.07 81156 1.00
33 27 312180 27.19 3617185427.52 529338 32.55
35 30 477883 183.08

logistics-ipc2
04-020 21 0.00 193 0.00 65 0.00 21 0.03 21 0.05 21 0.34 11246 0.05 4884 0.03
04-119 20 0.00 570 0.01 293 0.00 20 0.03 20 0.04 20 0.37 9249 0.04 4185 0.03
04-215 16 0.00 117 0.00 79 0.00 16 0.04 16 0.05 16 0.36 4955 0.02 1205 0.01
05-027 28 0.00 2550 0.05 1171 0.03 28 0.10 28 0.38 28 0.58 109525 0.64 74694 0.59
05-117 18 0.00 675 0.01 427 0.01 18 0.10 18 0.38 18 0.72 22307 0.13 6199 0.05
05-2 8 9 0.00 24 0.00 13 0.00 9 0.09 9 0.38 9 0.78 1031 0.00 280 0.00
06-025 26 0.00 4249 0.09 2461 0.07 26 0.18 26 1.23 26 1.03 490207 3.40 202229 1.92
06-114 15 0.00 181 0.00 99 0.00 15 0.18 15 1.26 15 1.16 24881 0.16 3604 0.03
06-225 26 0.00 2752 0.06 1394 0.04 26 0.19 26 1.26 26 1.03 476661 3.32 200012 1.98
06-924 25 0.00 2395 0.04 1428 0.04 25 0.18 25 1.22 25 1.02 422557 2.95 133521 1.29
07-036 37 0.00 251287 7.52 98053 4.59 525 0.65 37 4.87 24317 35.46
07-144 1689 0.07 3532213 99.33 1705009 72.35 666324 8.83 49 4.94 362179 453.06
08-031 32 0.00 82476 2.69 35805 1.78 1042 0.96 32 6.90 14890 33.50
08-144 45 0.01 1183608 45.72 462244 25.36 16708 1.15 45 7.21 114155 198.84
09-036 37 0.00 351538 13.75 167038 9.76 20950 1.56 37 9.46 32017 83.16
09-130 31 0.00 59336 2.48 25359 1.73 31 1.27 31 9.43 6720 26.48
10-045 46 0.01 668834 29.73
10-142 43 0.01 1457130 43.00
11-048 697 0.09 701106 37.42
11-160 21959 2.22
12-042 43 0.02 775996 43.56
12-168 106534 11.64 2222340 87.47

mprime-ipc1
01 5 196 0.02 10 0.01 24 0.01 6 2.00 6 20.45 108 49.59 3636 0.07 68 0.04
02 7 11604 2.72 44045 80.68 2565 4.20 3317 88.58 12606 36.65
03 4 427 0.27 7 0.08 11 0.16 36 33.64 5463.85 9868 0.67 5 0.07
04 8 3836 0.22 1775 0.10 1093 0.09 9 6.09 9 82.71 19076 781.74 599590 23.58 200 0.24
05 11 1745027 195.08 604756592.60 1705009127.53 14881571638.78
07 5 3314 0.25 47 0.03 346 0.08 1667 46.72 18744 0.56 11 0.04
08 6 485381 491.53 13767801426.21 1469752403.45 7650 84.33
09 8 19838 2.92 100188 74.85 5227 6.31 21993 36.25 2197646 71.69 19023 30.26
11 7 9 0.02 219 0.03 8 0.03 8 4.69 8 62.68 22 394.26 73260 2.21 915 0.54
12 6 16320 1.89 8118 0.73 5243 1.13 34763 11.45 42055143.27 25665 724.12 108652 3.50 1520 1.78
15 6 1039 178.55
16 6 252 0.76 51590 135.00 448 2.76 473 81.42 425144 32.17 7962 35.65
17 4 2746 10.47 453 18.78 451 21.40 172736 42.48 5 1.06
19 6 727401 521.78 95361 485.79 123039313.25 36013 533.75
21 6 174221 55.09 34022 47.43 169400392.30 1503293103.23 15250 101.75
25 4 75 0.01 30 0.01 29 0.01 5 0.48 5 2.75 85 8.71 383 0.00 6 0.00
26 6 77622 24.69 147854 48.25 68239106.35 172432 46.33 189154454.69 819590 61.01 440 2.69
27 5 54 0.16 1772 1.50 9 0.18 6 11.59 6154.43 84079 3.50 831 2.08
28 7 8 0.01 403 0.02 37 0.02 8 1.88 8 22.55 128 146.80 17333 0.25 211 0.06
29 4 182 0.12 56 0.08 32 0.11 5 14.92 5201.40 3187 0.17 7 0.10
31 4 248 0.51 46 0.68 19 1.00 419 99.87 3584 0.19 11 0.17
32 7 31759 1.73 12436 1.46 11839 1.93 19429 21.61 7269292.37 110731701.00 115479 2.75 3096 1.74
34 4 234 0.26 46 0.16 23 0.28 450151.69 3618 0.19 11 0.18
35 5 392 0.07 290 0.06 84 0.08 359 3.63 6 43.43 706 96.55 2476 0.05 44 0.03

Table 16: Similar to Table 15 for the Freecell, Grid, Gripper, Logistics-ipc1,
Logistics-ipc2, and Mprime domains.
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hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

miconic-strips-ipc2
01-0 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-1 3 5 0.00 5 0.00 5 0.00 4 0.00 4 0.00 4 0.00 5 0.00 4 0.00
01-2 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
01-3 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00
01-4 4 5 0.00 5 0.00 5 0.00 5 0.00 5 0.00 5 0.01 5 0.00 5 0.00
02-0 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 26 0.01 30 0.00 20 0.00
02-1 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 26 0.01 30 0.00 22 0.00
02-2 7 21 0.00 23 0.00 21 0.00 8 0.00 8 0.00 27 0.00 30 0.00 22 0.00
02-3 7 24 0.00 24 0.00 24 0.00 8 0.00 8 0.00 20 0.01 26 0.00 17 0.00
02-4 7 19 0.00 22 0.00 19 0.00 8 0.00 8 0.00 23 0.01 31 0.00 20 0.00
03-0 10 86 0.00 129 0.00 98 0.00 11 0.00 11 0.00 100 0.03 193 0.00 105 0.00
03-1 11 120 0.00 168 0.00 147 0.00 12 0.00 12 0.00 140 0.02 218 0.00 150 0.00
03-2 10 137 0.00 143 0.00 137 0.00 11 0.00 11 0.00 122 0.02 164 0.00 92 0.00
03-3 10 96 0.00 153 0.00 117 0.00 11 0.00 11 0.00 131 0.02 197 0.00 130 0.00
03-4 10 103 0.00 149 0.00 115 0.00 11 0.00 11 0.00 114 0.02 190 0.00 114 0.00
04-0 14 524 0.00 843 0.00 686 0.01 15 0.01 15 0.01 669 0.10 1182 0.00 866 0.00
04-1 13 505 0.00 817 0.00 663 0.01 14 0.01 14 0.01 634 0.11 1176 0.00 860 0.00
04-2 15 685 0.00 942 0.00 802 0.01 16 0.01 16 0.01 822 0.12 1277 0.00 969 0.00
04-3 15 681 0.00 942 0.00 798 0.01 16 0.01 16 0.01 820 0.12 1319 0.00 970 0.00
04-4 15 685 0.00 942 0.00 802 0.01 16 0.01 16 0.01 821 0.12 1334 0.00 969 0.00
05-0 17 2468 0.03 4009 0.03 3307 0.05 18 0.06 18 0.05 2829 0.44 6350 0.03 4387 0.03
05-1 17 2807 0.04 4345 0.03 3677 0.06 18 0.06 18 0.05 3260 0.49 6602 0.03 4664 0.03
05-2 15 1596 0.02 2981 0.02 2275 0.04 16 0.06 16 0.05 1594 0.32 5565 0.03 3524 0.03
05-3 17 2256 0.03 3799 0.03 3104 0.05 18 0.06 18 0.05 2568 0.42 5944 0.03 4140 0.03
05-4 18 3210 0.04 4732 0.03 4267 0.06 19 0.06 19 0.05 3953 0.55 6949 0.04 5268 0.04
06-0 19 9379 0.18 17665 0.15 13531 0.26 20 0.18 20 0.32 9312 1.76 30786 0.20 21194 0.20
06-1 19 9106 0.17 18134 0.15 14052 0.27 20 0.18 20 0.32 10252 1.96 30093 0.20 21255 0.20
06-2 20 10900 0.20 19084 0.16 15111 0.28 21 0.18 21 0.32 11247 2.11 32390 0.21 21694 0.21
06-3 20 12127 0.23 21708 0.18 17807 0.33 21 0.17 21 0.32 14216 2.56 32574 0.21 24552 0.23
06-4 21 13784 0.24 23255 0.19 19536 0.35 22 0.17 22 0.32 16880 3.04 33793 0.22 26167 0.24
07-0 23 53662 1.19 96092 0.97 79449 1.76 24 0.32 24 1.75 56686 14.31 155466 1.22 116685 1.32
07-1 24 56328 1.24 99109 0.96 83677 1.83 7001 0.38 25 1.75 63035 16.33 164470 1.29 118494 1.33
07-2 22 48141 1.10 96139 0.94 78471 1.77 1646 0.33 23 1.71 55751 13.98 161342 1.27 119688 1.36
07-3 22 46867 1.08 93117 0.92 75424 1.69 1861 0.33 23 1.74 53121 13.27 155176 1.23 114649 1.30
07-4 25 84250 1.70 126595 1.22 111984 2.36 23159 0.52 26 1.71 96327 24.76 168219 1.33 140128 1.58
08-0 27 272580 7.05 485051 5.51 408114 10.53 41629 0.91 28 4.18 290649 104.18 755255 7.16 594032 7.95
08-1 27 284415 7.56 527216 6.01 446837 11.58 42679 0.90 28 4.25 339177 123.10 794365 7.56 636587 8.66
08-2 26 207931 5.60 414294 4.79 330993 8.90 37744 0.86 27 4.25 204614 73.39 731622 6.92 534711 7.37
08-3 28 369479 9.25 598031 6.74 527216 13.30 140453 1.94 29 4.21 435617 160.49 833421 7.97 690267 9.29
08-4 27 297516 7.74 507910 5.79 431432 11.04 62933 1.16 28 4.12 315339 111.84 771608 7.33 613253 8.43
09-0 31 1461729 43.82 2491975 32.672138656 63.58 684737 9.07 126918 8.89 1555286 794.93 3685552 41.04 3006991 49.12
09-1 30 1207894 37.47 2335166 30.761952916 59.39 406041 5.61 100937 8.73 1344815 683.05 3649801 40.32 2893803 47.54
09-2 30 1294691 40.03 2340411 30.971972234 59.25 442547 6.06 82946 8.63 1357681 692.11 3576134 39.61 2895182 47.26
09-3 32 1840936 52.68 2889342 38.122571844 74.47 765455 10.00 277302 11.14 20831681051.95 3796035 42.13 3304570 53.29
09-4 28 1252484 40.34 2352633 31.351944297 59.37 317692 4.65 29 7.03 1231554 605.01 3589382 39.29 2956995 48.84
10-0 33 5716041202.3710316603153.808774563300.08 2436164 35.24 863244 23.76 15804498200.9013267920250.58
10-1 32 5601282201.4310789013162.699144153315.23 2340169 34.09 335745 15.68 16472633208.3913720664256.89
10-2 32 4153191155.86 9148616138.697466572265.86 1735477 25.29 486286 17.72 15867374201.0112497087236.89
10-3 34 6108094214.6810960203167.109400386320.13 3952148 55.86 940556 24.24 16309701208.4213801989262.53
10-4 33 5920127211.4011075136170.829448049322.74 2715866 39.44 625559 19.91 16472551209.1313925654262.57
11-0 37 11473359183.604724980 93.56
11-1 34 15349953668.77 7535468124.801934943 47.91
11-2 38 14645785233.686330198120.71
11-3 38 5809711110.10
11-4 35 5853546 95.561082086 32.22

mystery-ipc1
01 5 7 0.00 6 0.00 6 0.00 6 0.20 6 1.79 10 5.38 30 0.00 8 0.00
02 7 2404 0.50 8012 11.19 722 1.01 1672 82.70 770852 21.85 2368 4.47
03 4 73 0.08 7 0.04 11 0.10 5 16.46 5193.75 65 811.87 507 0.02 5 0.03
04 ∞ 0 0.00 0 0.00
07 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
09 8 3049 0.37 10764 5.66 1215 1.01 3165 29.34 3868 670.08 138289 2.18 1458 1.44
11 7 9 0.01 33 0.01 8 0.01 8 1.51 8 16.59 34 41.20 426 0.00 19 0.00
12 ∞ 2102777 33.84 2093419 55.582093419 76.80 2102777 14.612102729 27.84 2102777 15.09 1177842 21.87
15 6 28271 20.21 21572 41.22 5079 44.42 279973 13.21 135 2.62
16 ∞ 0 0.15 0 0.27
17 4 354 1.32 85 2.74 83 3.59 198445.85 5400 0.41 5 0.35
18 ∞ 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
19 6 21717 4.87 4968 5.26 16276 29.28 12478 96.38 133871 3.65 1516 5.44
20 7 89887 46.32 84572153.53 53114173.34 285069 59.22 547246578.39 686125 23.28 718 3.76
24 ∞ 0 0.13 0 0.30
25 4 9 0.00 10 0.00 9 0.01 5 0.10 5 0.10 14 1.22 31 0.00 6 0.00
26 6 1807 0.27 1835 0.30 1344 0.69 2526 5.94 346 70.78 3107 291.36 8455 0.10 37 0.05
27 5 14 0.05 159 0.09 6 0.07 6 4.80 6 80.48 7 243.78 2174 0.03 73 0.04
28 7 8 0.00 47 0.00 15 0.00 8 0.63 8 6.77 31 16.67 843 0.00 32 0.00
29 4 31 0.04 14 0.03 10 0.06 5 8.94 5107.10 27 536.30 153 0.01 7 0.02
30 9 23175 5.16 76480169.86 7232 13.30 42112 28.07 44893357.07 1977063 38.26 26686 28.27

Table 17: Similar to Table 15 for the Miconic and Mystery domains.
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Implicit Abstraction Heuristics

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

openstacks-ipc5
01 23 2264 0.02 3895 0.03 3070 0.05 24 0.05 24 0.06 2000 1.02 4822 0.01 4016 0.03
02 23 2617 0.03 4485 0.04 3561 0.05 24 0.06 24 0.06 2378 1.07 5501 0.02 4594 0.04
03 23 2264 0.02 3895 0.03 3070 0.05 24 0.06 24 0.06 2000 1.02 4822 0.01 4016 0.03
04 23 2264 0.02 3895 0.03 3070 0.05 24 0.06 24 0.06 2000 1.02 4822 0.02 4016 0.03
05 23 2264 0.02 3895 0.03 3070 0.05 24 0.06 24 0.05 2000 1.02 4822 0.01 4016 0.03
06 45 366768 7.52 779710 18.93 587482 22.20 621008 4.85 279614 7.86 379735 217.37 882874 4.91 822514 18.71
07 46 410728 8.23 760668 18.33 606782 22.53 594758 4.69 264535 7.34 405564 226.32 836647 4.62 787163 17.81

pathways-ipc5
01 6 1624 0.00 1299 0.00 1299 0.00 7 1.14 7 0.79 1405 0.28 1624 0.00 36 0.00
02 12 2755 0.02 2307 0.01 2437 0.02 1946 2.56 13 42.11 990 0.29 2984 0.02 348 0.01
03 18 44928 0.62 20416 0.25 29106 0.43 21671 6.43 14901129.23 14772 6.99 87189 1.06 4346 0.16
04 17 126950 2.66 33788 0.59 58738 1.31 98484288.39 34206 27.00 456143 8.22 104068 2.61

pipesworld-notankage-ipc4
01 5 121 0.02 109 0.01 121 0.02 6 0.04 6 0.04 6 2.79 121 0.00 13 0.00
02 12 1413 0.06 1542 0.02 1413 0.08 169 0.30 13 0.17 435 3.07 1808 0.01 792 0.02
03 8 1742 0.14 3001 0.07 1742 0.18 9 1.15 9 0.69 128 3.84 3293 0.02 262 0.02
04 11 7007 0.45 8911 0.22 7007 0.59 651 1.95 12 7.05 812 8.84 16088 0.11 2925 0.13
05 8 4093 0.49 6805 0.26 4093 0.65 77 5.63 9 21.15 155 16.53 11128 0.12 1121 0.15
06 10 12401 1.44 27377 1.34 12401 2.03 1299 5.26 61 39.31 1151 23.41 49905 0.48 7102 0.72
07 8 4370 0.97 9168 0.77 4370 1.34 233 19.78 9 59.70 185 29.88 46502 0.57 2631 0.48
08 10 18851 3.84 56189 6.21 20584 6.42 561 12.42 497 94.69 1673 48.84 273585 3.39 22874 3.58
09 13 1092472 160.712419903 151.991092472 219.75 104875 25.48 10478 74.265513309 80.62 321861 68.99
10 18 2982520 66.89 6898321439.64 111212451579.77
11 20 313952 27.68 472950 29.55 313952 43.90 90598 9.20 52159 43.24 108503 625.52 710123 3.86 107061 14.51
12 24 684234 75.721319980 133.58 686186 145.41 594661 12.41 416184109.43 4332961117.572467804 13.83 464982 56.82
13 16 39998 6.02 117475 18.08 40226 12.69 12835 34.28 242241019.65 481045 3.14 33417 6.38
14 30 13255718119.54
15 26 1594863 254.432588849 192.901594863 353.40 648132 65.43 4921698 34.90 555619 105.49
17 22 54373931588.68 3200672 90.07
19 24 8767431150.88
21 14 23833 4.02 49035 7.76 23833 7.87 3992 18.13 948159.63 157782 1.31 8966 2.42
23 18 2285790 568.937047138 871.032282678 843.28 296506 49.11 104750256.13 481859 229.00
24 24 7315150142.82
41 12 502308 370.68 5023081092.50 114257 250.18

pipesworld-tankage-ipc4
01 5 77 0.02 126 0.01 105 0.02 6 3.54 6 0.13 6 3.88 128 0.00 13 0.01
02 12 960 0.05 1005 0.02 960 0.06 110 3.04 13 0.20 179 6.04 1012 0.01 659 0.02
03 8 20803 1.89 52139 2.46 20803 2.82 244 22.64 9 36.89 818 24.47 52983 0.77 1802 1.33
04 11 110284 8.06 157722 9.60 110284 14.05 3892 16.68 12155.03 8116 64.68 221429 3.06 41540 14.49
05 8 6531 0.86 13148 1.03 6531 1.32 376 15.46 9120.06 313 59.99 12764 0.21 2834 1.61
06 10 20171 2.41 43583 4.32 20171 4.41 1794328.18 11201.44 3102 97.31 58487 0.87 15746 6.61
07 8 202706 73.8326437521379.11 202706 208.81 2695 339.765404036198.08 104531 420.47
08 11 96043191.77
11 22 2345399 296.872629204 662.942365735 838.85 660104 28.60 660102162.93 4116344 30.67 752867 334.42
13 16 188517122.11
15 30 96520911721.67 2546587141.12
17 44 12850247352.46
21 14 839847 250.39 13241 69.80 4423951 65.44 126845 222.23
31 39 1501847 240.381568963 661.881504072 850.16 1357801124.64 1726598 13.56 919764 381.66

rovers-ipc5
01 10 147 0.00 147 0.00 147 0.00 11 0.03 11 0.03 48 0.07 1104 0.00 283 0.00
02 8 44 0.00 44 0.00 44 0.00 9 0.00 9 0.00 16 0.03 254 0.00 129 0.00
03 11 672 0.01 419 0.00 448 0.01 12 0.11 12 0.12 804 0.16 3543 0.02 757 0.00
04 8 47 0.00 20 0.00 24 0.00 9 0.04 9 0.04 58 0.08 897 0.00 223 0.00
05 22 808084 22.61 410712 9.23 522937 18.29 617267 11.48 375808 18.46 298400 101.658559690126.19 4318309 81.53
07 18 4546797 191.34 741649 21.011682245 102.77 3280884 51.022212903 59.20 1459792 866.93 9618062 199.91
12 19 1529551 76.46 5187273166.77

satellite-ipc4
01 9 24 0.00 32 0.00 29 0.00 10 0.00 10 0.00 46 0.06 89 0.00 59 0.00
02 13 86 0.00 337 0.00 241 0.01 14 0.01 14 0.01 646 0.21 1728 0.01 940 0.00
03 11 2249 0.08 656 0.01 728 0.04 12 0.56 12 0.64 1945 0.93 15185 0.17 6822 0.11
04 17 9817 0.57 14860 0.38 11250 0.76 4152 0.99 18 4.43 15890 9.50 345663 4.70 180815 3.37
05 15 279569 49.47 46453 4.92 61692 18.85 81972 7.26 148667 69.28 267513 565.18
06 20 1496577 92.221572327 51.681518261 105.65 2769229 74.73 307962 32.52 10751017 371.43

Table 18: Similar to Table 15 for the Openstacks, Pathways, Pipesworld-
NoTankage, Pipesworld-Tankage, Rovers, and Satellite domains.
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hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time

psr-small-ipc4
01 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
02 11 52 0.00 55 0.00 52 0.00 12 0.00 12 0.00 20 0.08 71 0.00 47 0.00
03 11 31 0.00 31 0.00 31 0.00 12 0.00 12 0.00 20 0.04 33 0.00 28 0.00
04 10 66 0.00 91 0.00 73 0.00 11 0.00 11 0.00 12 0.34 332 0.00 102 0.00
05 11 75 0.00 79 0.00 75 0.00 12 0.00 12 0.00 23 0.11 154 0.00 69 0.00
06 8 10 0.00 10 0.00 10 0.00 9 0.00 9 0.00 9 0.01 11 0.00 9 0.00
07 11 61 0.00 61 0.00 61 0.00 12 0.00 12 0.00 26 0.09 122 0.00 62 0.00
08 8 24 0.00 29 0.00 25 0.00 9 0.00 9 0.00 9 0.12 128 0.00 52 0.00
09 8 18 0.00 19 0.00 18 0.00 9 0.00 9 0.00 9 0.06 49 0.00 20 0.00
10 7 131 0.01 183 0.00 155 0.01 8 0.04 8 0.04 18 1.04 1358 0.00 376 0.01
11 19 149 0.00 149 0.00 149 0.00 20 0.00 20 0.00 96 0.19 153 0.00 142 0.00
12 16 120 0.00 123 0.00 120 0.00 17 0.00 17 0.00 40 0.17 153 0.00 113 0.00
13 15 90 0.00 90 0.00 90 0.00 16 0.00 16 0.00 59 0.16 95 0.00 86 0.00
14 9 19 0.00 19 0.00 19 0.00 10 0.00 10 0.00 13 0.06 27 0.00 18 0.00
15 10 1200 0.08 708 0.03 769 0.09 11 0.46 11 2.58 356 18.99 3562 0.02 324 0.02
16 25 2328 0.02 2158 0.01 2176 0.03 975 0.11 26 0.12 2287 1.34 2742 0.01 1876 0.01
17 9 15 0.00 15 0.00 15 0.00 10 0.00 10 0.00 13 0.03 16 0.00 14 0.00
18 12 85 0.00 90 0.00 85 0.00 13 0.00 13 0.00 29 0.21 158 0.00 91 0.00
19 25 8025 0.11 7856 0.05 7876 0.12 2910 0.27 26 0.77 6338 4.46 9009 0.04 6925 0.08
20 17 80 0.00 80 0.00 80 0.00 18 0.00 18 0.00 52 0.18 84 0.00 75 0.00
21 10 28 0.00 28 0.00 28 0.00 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
22 33 163299 4.17 176058 1.56 168685 5.01 34 0.28 34 0.87 22315 8.16 189516 0.67 177138 1.43
23 12 77 0.00 93 0.00 77 0.00 13 0.00 13 0.01 30 0.43 200 0.00 116 0.00
24 10 28 0.00 28 0.00 28 0.00 11 0.00 11 0.00 21 0.12 42 0.00 31 0.00
25 9 485 3.06 463 0.58 482 3.28 10 5.42 10 37.93 28 780.38 8913 0.12 854 0.18
26 17 144 0.00 150 0.00 146 0.00 18 0.00 18 0.00 52 0.28 182 0.00 142 0.00
27 21 616 0.01 675 0.00 650 0.01 22 0.01 22 0.01 179 0.85 773 0.00 616 0.00
28 14 79 0.00 79 0.00 79 0.00 15 0.00 15 0.00 49 0.29 95 0.00 79 0.00
29 21 142772 4.55 187319 2.12 159325 5.80 22 0.39 22 1.43 3337 7.12 244499 1.27 192459 2.32
30 22 1791 0.03 1982 0.01 1883 0.04 23 0.01 23 0.02 393 1.35 2295 0.01 1834 0.01
31 19 11278 0.25 6810 0.08 8297 0.24 2647 0.89 723 6.55 7530 32.97 53911 0.25 16766 0.36
32 24 431 0.01 431 0.00 431 0.01 25 0.00 25 0.00 352 0.74 435 0.00 424 0.00
33 21 1480 0.02 1436 0.01 1391 0.03 446 0.26 22 0.63 947 2.29 2291 0.01 1073 0.01
34 21 223 0.00 223 0.00 223 0.00 22 0.00 22 0.00 158 0.50 227 0.00 216 0.00
35 22 65965 1.43 63186 0.46 68281 1.70 24021 0.83 11113 6.36 7448 8.27 165170 0.63 61548 1.06
36 22 571766 12.62 371834 3.41 458402 11.77 48350 2.98 2783 14.07 188564 111.99 1669788 9.44 717884 18.27
37 23 1307 0.03 1417 0.01 1363 0.03 24 0.02 24 0.01 277 2.10 1532 0.00 1342 0.01
38 13 301 0.01 372 0.00 326 0.01 14 0.01 14 0.01 33 0.74 562 0.00 357 0.00
39 23 2486 0.05 2942 0.02 2682 0.07 24 0.08 24 0.07 146 1.78 4103 0.01 2597 0.02
40 20 259683 8.59 182608 2.70 270195 11.73 38837 1.88 7767 12.86 23371 87.91 1036992 6.74 229210 9.51
41 10 31 0.00 34 0.00 31 0.00 11 0.00 11 0.00 21 0.16 54 0.00 35 0.00
42 30 1855 0.02 1747 0.01 1739 0.02 1117 0.18 31 0.18 1773 1.29 1908 0.01 1636 0.01
43 20 328 0.00 328 0.00 328 0.00 21 0.00 21 0.00 256 0.50 333 0.00 315 0.00
44 19 2990 0.07 3430 0.03 3121 0.08 20 0.05 20 0.05 407 2.18 4142 0.01 3235 0.02
45 20 347 0.00 376 0.00 359 0.01 21 0.01 21 0.00 121 0.74 434 0.00 358 0.00
46 34 60888 0.86 61842 0.31 61563 0.99 36941 0.67 32582 4.05 19865 6.91 80785 0.25 65984 0.63
47 27 4104 0.09 4522 0.03 4284 0.11 28 0.04 28 0.04 515 2.32 5075 0.01 4406 0.02
48 37 12080249604.4317435137247.2013514084784.80 129627 2.37 2500 11.08 200559 101.21 19020089286.02
49 47 2048368 15.84 594399 23.32 27728751408.64
50 23 637 0.01 659 0.01 645 0.02 24 0.02 24 0.02 390 1.40 690 0.00 642 0.00

tpp-ipc5
01 5 6 0.00 6 0.00 6 0.00 6 0.00 6 0.00 6 0.01 7 0.00 6 0.00
02 8 9 0.00 11 0.00 9 0.00 9 0.00 9 0.00 9 0.01 26 0.00 16 0.00
03 11 12 0.00 27 0.00 16 0.00 12 0.00 12 0.00 12 0.03 116 0.00 83 0.00
04 14 15 0.00 78 0.00 47 0.00 15 0.01 15 0.00 15 0.07 494 0.00 430 0.00
05 19 623 0.02 5110 0.08 1455 0.05 20 0.36 20 0.77 624 0.48 24698 0.12 17398 0.15
06 25 5843306179.03 6916518 95.86 6153923222.35 947059 14.22 74798 23.97 9267024216.69

trucks-ipc5
01 13 1691 0.03 1027 0.01 1039 0.03 14 0.03 14 0.02 285 0.56 5774 0.02 402 0.01
02 17 9624 0.23 2898 0.04 2957 0.11 4192 0.22 18 0.17 1413 1.04 28348 0.14 939 0.03
03 20 80693 2.99 20752 0.44 22236 1.14 199405 2.89 173790 6.88 4049 4.43 379582 2.97 9465 0.40
04 23 1753866 48.55 1205793 23.48 1315672 50.35 2591561 29.172568634 56.96 8817 7.75 2990366 26.65 209140 9.43
05 25 12472562515.50 8007189242.98 9483222512.55 23444940392.99 14744 23.12 1248571 90.78
06 30 308920 343.47
07 23 2134728 96.15 719751 16.91 755608 50.72 7575415 88.918080496117.13 43270 27.6212410588117.92 223011 19.34
08 25 5199440221.76 6630689687.95 49663 47.61 3106944403.36
09 28 233577 248.21

zenotravel-ipc3
01 1 2 0.00 2 0.00 2 0.00 2 0.00 2 0.00 2 0.45 2 0.00 2 0.00
02 6 17 0.00 18 0.00 17 0.00 7 0.00 7 0.00 9 0.46 58 0.00 22 0.00
03 6 28 0.01 18 0.01 12 0.01 7 0.21 7 0.90 40 3.42 5160 0.04 492 0.02
04 8 99 0.01 88 0.01 81 0.01 9 0.20 9 0.89 215 3.44 5256 0.03 665 0.01
05 11 177 0.01 220 0.01 136 0.02 12 0.25 12 1.90 422 7.70 82289 0.63 12466 0.33
06 11 2287 0.10 1144 0.05 504 0.05 12 0.38 12 3.54 1957 11.81 596531 5.90 85931 2.47
07 15 5088 0.16 4234 0.09 4199 0.19 16 0.38 16 3.48 34890 30.36 405626 3.56 115348 2.60
08 11 3268 0.35 1026 0.12 1655 0.32 14354 2.00 12 14.48 83533 292.05 687846 50.76
09 21 2844771177.70 2842546176.05 2433822262.84 2517035 51.18 611457 30.47
10 22 2283679295.65 1921903196.38 1832871383.99 1322871 34.84 137872 25.44
11 14 139687 18.63 76904 8.20 93782 19.51 310030 11.28 110726 26.65

Table 19: Similar to Table 15 for the PSR, TPP, Trucks, and Zenotravel domains.
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Implicit Abstraction Heuristics

hF hI hFI MS-104 MS-105 HSP∗F blind hmax
task h∗ nodes timenodes time nodes time nodes timenodes time nodes time nodes time nodes time

schedule-strips
02-0 3 5 0.07 5 0.04 5 0.08 4 511.10 41743.32 5 577.39 76 0.02 5 0.09
02-1 2 3 0.08 4 0.05 3 0.10 3 104.98 3 754.26 6 0.02 3 0.07
02-2 2 3 0.17 3 0.06 3 0.19 3 231.99 3 495.56 5 0.02 3 0.07
02-3 3 26 0.17 37 0.06 26 0.18 4 56.51 4 658.90 529 0.03 95 0.45
02-4 3 68 0.17 188 0.07 220 0.26 4 484.62 543 0.03 108 0.44
02-5 2 3 0.17 3 0.05 3 0.19 3 363.11 3 667.32 3 0.03 3 0.07
02-6 2 3 0.07 5 0.04 3 0.09 3 121.84 3 697.42 6 0.02 3 0.06
02-7 2 3 0.15 3 0.05 3 0.17 3 323.77 3 604.06 13 0.02 3 0.07
02-8 2 3 0.17 3 0.05 3 0.19 3 316.53 3 668.79 8 0.02 3 0.07
02-9 3 5 0.07 5 0.04 5 0.08 4 251.46 5 577.16 76 0.03 5 0.09
03-0 4 40 0.31 407 0.16 140 0.45 11915 0.60 1127 8.98
03-1 2 3 0.22 3 0.08 3 0.25 31 0.04 25 0.37
03-2 4 27 0.21 50 0.09 33 0.25 5 191.03 3617 0.23 1228 9.56
03-3 4 15 0.13 91 0.09 15 0.15 5 259.13 3379 0.23 170 1.85
03-4 3 4 0.39 16 0.10 4 0.44 41223.90 301 0.06 22 0.27
03-5 4 73 0.38 471 0.14 74 0.43 5 682.30 12217 0.64 1175 12.43
03-6 4 72 0.12 75 0.08 69 0.13 5 121.58 2663 0.19 1542 11.73
03-7 4 28 0.23 50 0.09 28 0.25 5 195.72 12859 0.68 1323 13.47
03-8 4 273 0.43 266 0.14 273 0.48 12616 0.65 1590 11.13
03-9 4 8 0.23 31 0.09 14 0.27 5 235.48 4339 0.27 913 7.69
04-0 5 373 0.45 1498 0.50 167 0.54 31219326.88 22993 273.38
04-1 6 1755915.4510707 3.48 17686 17.58 71115.76 55206949.79
04-2 5 209 0.40 406 0.19 66 0.34 47696 4.97 9703 131.69
04-3 5 142 0.40 674 0.25 251 0.58 6 267.29 89272 8.74 12941 163.84
04-4 5 921 1.14 450 0.31 574 1.39 62013 6.03 13614 168.07
04-5 6 483 0.95 4544 1.11 850 2.11 7 837.68 1079781399.99
04-6 6 779 0.5611610 2.44 1834 1.43 7 459.19 1071151001.40
04-7 5 99 0.58 424 0.31 163 0.78 6 936.68 61327 5.97 8683 103.50
04-8 5 102 0.52 573 0.24 111 0.60 6 711.65 34046729.56 15122 181.98
04-9 4 1043 1.27 996 0.67 1050 1.66 5 316.22 41673 4.27 5480 83.69
05-0 5 163 0.86 483 0.51 167 1.05 14335022.71 43336 751.35
05-1 6 2701 2.951887811.36 1257 3.10
05-2 7 11885586.65 158640178.66
05-3 7 2715924.884144713.08 13622 16.72
05-4 6 989 1.63 3433 1.29 582 1.36
05-5 6 198 0.61 9550 4.61 347 1.05 120602 989.42
05-6 7 603311.164987316.17 10325 16.63
05-7 6 944 1.9217562 9.03 2107 4.10
05-8 7 1190 2.436153920.22 2709 7.24
05-9 6 1537 2.2415829 6.85 2717 5.45
06-2 6 888 3.292698622.47 1709 6.91
06-4 8 1153520.81 56273131.69
06-6 8 1558946.68 41764133.76
07-0 7 2489 9.10 6995 25.49
07-7 8 1072641.01 38251154.49
07-9 8 682919.20 30148109.49

Table 20: Similar to Table 15 for the (non-IPC) Schedule-STRIPS domain.
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hF hI hFI HSP∗F blind
task h∗ nodes time nodes time nodes time nodes time nodes time

elevators-strips-ipc6
01 42 7483 0.39 10507 0.84 8333 1.03 12935 30.55 26670 0.40
02 26 2898 0.45 5184 1.12 4044 1.46 4810 42.63 16162 0.49
03 55 61649 4.00 219439 13.43 139760 15.62 276441 469.96 650316 11.32
04 40 60039 10.59 294029 74.29 146396 62.26 278087 885.94 1025329 29.51
05 55 909822 68.19 3269854 290.07 2113017 317.53 9567169 174.38
06 53 716238 125.83 3869775 1167.78 1965371 965.39
11 56 18313 1.34 50734 4.64 31545 5.00 72109 190.25 145170 2.53
12 54 21812 3.39 78362 23.84 46386 21.36 74663 325.43 152021 4.47
13 59 186526 18.43 432280 66.00 297147 68.80 1426461 32.06
14 63 248709 43.80 1325517 337.57 687420 290.86 6238743 199.63
15 66 201777 31.37 2823019 570.43 1255479 425.27
18 61 1057327 327.82
21 48 71003 5.99 79574 9.93 66582 13.62 123510 443.99 194669 4.28
22 54 890048 112.11 859710 349.90 757718 395.63 1633295 57.19
23 69 4089071 335.39 10935187 1208.05 7542146 1319.93
24 56 1430559 291.88
25 63 1384406 203.57 4430537 1578.04
26 48 699757 249.28

openstacks-strips-ipc6
01 2 209 0.00 209 0.00 209 0.00 49 0.37 193 0.00
02 2 769 0.02 769 0.00 769 0.02 144 0.73 769 0.00
03 2 1729 0.04 1729 0.01 1729 0.04 317 1.32 1665 0.01
04 3 8209 0.17 8209 0.07 8209 0.20 2208 2.63 8113 0.06
05 4 16705 0.41 16705 0.18 16705 0.48 4220 4.87 17151 0.16
06 2 3658 0.11 3658 0.04 3658 0.13 998 5.66 3288 0.02
07 5 195109 5.85 195109 2.45 195109 6.85 61253 40.74 201137 2.31
08 5 228847 7.77 228847 3.23 228847 9.06 70808 57.12 234328 2.92
09 3 116425 5.03 116425 1.61 116425 5.77 4920 18.26 114281 1.32
10 3 77681 3.57 77681 1.10 77681 4.14 5261 23.40 72673 0.76
11 4 575677 28.75 575677 9.11 575677 32.97 98783 105.44 563261 7.17
12 3 354913 19.85 354913 5.63 354913 22.85 10580 43.05 341169 4.11
13 4 2596593 150.86 2596593 46.30 2596593 172.13 398023 443.57 2547985 35.07
14 4 1260363 81.43 1260363 23.36 1260363 93.01 157304 222.14 1233115 17.19
15 4 11995225 867.27 11995225 245.32 11995225 987.24 711526 1034.92 11926297 184.57
16 4 5064737 379.45 5064737 104.37 5064737 432.44 411732 671.53 4928793 75.73
17 4 8193065 673.91 8193065 179.00 8193065 765.15 421646 745.34 8065113 128.80
18 3 1020905 88.15 1020905 22.24 1020905 99.67 34754 186.40 953049 14.32
19 4 812451 1731.49
21 3 473553 1018.62
22 4 1805050 204.83 1805050 48.73 1805050 233.98 173929 651.93 1536764 27.62

parcprinter-strips-ipc6
01 169009 19 0.01 15 0.00 15 0.00 12 0.20 20 0.00
02 438047 240 0.02 183 0.01 179 0.02 19 1.44 1375 0.01
03 807114 880 0.04 821 0.01 668 0.03 334 0.72 4903 0.03
04 876094 142314 13.85 77520 2.28 68116 7.56 993 11.21 12302518 126.46
05 1145132 1780073 219.49 892002 31.78 822442 115.96 6922 35.00
06 1514200 4113487 613.02 3529327 148.95 3443221 557.75 19613 115.36
11 182808 25 0.01 24 0.00 24 0.01 10 0.55 23 0.00
12 510256 1183 0.07 1243 0.04 1135 0.08 153 3.39 5138 0.05
13 693064 74201 5.83 144084 4.27 97683 9.25 8348 18.14 1130810 12.72
14 1020512 4491265 463.93 422571 792.78
21 143411 13 0.00 13 0.00 13 0.00 9 0.09 16 0.00
22 375821 225 0.01 303 0.01 282 0.02 22 0.51 2485 0.02
23 519232 4376 0.28 15825 0.47 8778 0.63 260 2.03 285823 3.32
24 751642 96748 8.49 694503 24.62 316839 31.37 2281 6.38
25 1215840 68293 145.47
26 1216460 121897 404.98

scanalyzer-strips-ipc6
01 18 19788 1.68 22012 5.20 19809 6.39 21259 13.69 44047 0.68
02 22 37182 1.88 37569 4.36 37524 6.07 29253 13.92 45529 0.54
03 26 43115 1.90 43298 4.02 43298 5.71 37754 14.05 45882 0.49
04 24 3947796 687.38 10175657 314.87
05 30 9193480 870.50 10310817 242.27
06 36 10140909 869.52 10321465 222.66
22 13 46 0.14 51 0.08 46 0.20 6 0.05 54 0.01
23 13 46 0.15 51 0.08 46 0.19 6 0.05 54 0.01
24 13 46 0.14 51 0.08 46 0.19 6 0.05 54 0.01
25 26 8974317 834.36 10170980 113.29
26 30 9936832 720.23 10254740 95.91
27 34 10202674 643.41 10294023 88.03

Table 21: Runtimes of cost-optimal heuristic-search planners on the Elevators,
Openstacks-strips-08, Parcprinter, and Scanalyzer domains. The de-
scription of the planners is given in Section 6; here the fork-decomposition heuris-
tics are via structural-pattern databases. Column task denotes problem instance,
column h∗ denotes optimal solution length. Other columns capture the run time
and number of expanded nodes.

122



Implicit Abstraction Heuristics

hF hI hFI HSP∗F blind
task h∗ nodes time nodes time nodes time nodes time nodes time

pegsol-strips-ipc6
01 2 12 0.02 10 0.02 10 0.03 6 0.16 11 0.00
02 5 84 0.07 83 0.12 83 0.18 20 5.17 66 0.01
03 4 208 0.07 209 0.12 209 0.19 50 6.91 174 0.00
04 4 193 0.07 181 0.12 181 0.19 15 1.82 192 0.01
05 4 266 0.03 251 0.02 251 0.04 43 5.62 242 0.01
06 4 1343 0.16 901 0.14 901 0.27 247 25.68 1265 0.01
07 3 217 0.08 110 0.12 110 0.18 26 11.67 215 0.01
08 6 31681 2.56 25253 0.71 25253 2.89 7898 28.50 30776 0.15
09 5 3743 0.36 3951 0.20 3951 0.53 757 23.02 3538 0.03
10 6 29756 2.45 28241 0.77 28241 3.21 7522 28.25 29658 0.14
11 7 13832 1.08 12881 0.38 12881 1.36 5979 20.60 13430 0.06
12 8 39340 2.98 37358 0.86 37358 3.63 21133 32.73 38561 0.18
13 9 33379 2.51 33374 0.76 33374 3.09 25897 33.29 32370 0.15
14 7 63096 4.82 55127 1.29 55127 5.63 17144 32.20 62047 0.29
15 8 77932 5.84 73733 1.67 73733 7.09 37810 38.72 76150 0.35
16 8 10491 0.83 10598 0.33 10598 1.10 7939 27.70 10090 0.05
17 10 299676 22.38 300972 6.38 300972 27.00 282810 124.39 294396 1.44
18 7 63247 4.93 50222 1.37 50222 5.55 10358 29.81 62726 0.29
19 8 279822 20.71 257988 5.62 257988 24.49 90950 61.77 275969 1.29
20 7 329570 27.36 293860 8.56 293860 36.43 83693 63.99 328583 1.63
21 8 548254 41.78 494477 11.49 494477 50.51 141906 87.89 545896 2.64
22 6 69922 5.66 48190 1.43 48190 5.95 13123 30.94 69465 0.33
23 8 1262645 97.46 954593 25.16 954593 108.53 181830 114.89 1258767 6.17
24 8 1326517 106.00 1219589 31.83 1219589 136.27 271157 157.50 1324907 6.69
25 8 830637 68.95 899323 25.33 899323 107.61 201932 122.27 830182 4.33
26 9 7196836 553.11 6943124 177.06 6943124 719.81 2031156 1024.04 7178802 37.78
27 7 6092258 523.12 2121936 82.61 2121936 339.83 132701 118.20 6091864 34.53

sokoban-strips-ipc6
01 11 372 0.03 287 0.01 269 0.02 1079 6.17 1762 0.01
02 9 551 0.02 497 0.01 509 0.02 700 4.57 1348 0.00
03 10 394 0.01 177 0.00 173 0.01 621 2.63 1165 0.00
04 29 130524 5.57 45048 0.28 44198 2.07 282895 177.07 320446 1.43
05 8 50 0.32 203202 7.28 3073 0.96 9607487 81.84
06 9 526 0.04 534 0.01 526 0.04 6815 6.83 10526 0.04
07 15 47522 2.81 42195 0.38 28163 1.84 75669 174.92 315405 1.49
08 31 2114443 135.12 1204212 11.27 1080337 74.55 13329538 77.70
09 19 23083 1.47 26189 0.26 16013 1.12 459188 400.45 818693 4.09
10 30 69797 3.17 21291 0.18 20741 1.07 620685 315.43 852150 4.07
11 35 271598 15.63 282061 2.09 271598 16.87 440869 586.91 531305 2.71
12 32 155166 10.98 60655 0.70 46865 3.69 4705742 25.21
13 20 169436 8.93 294710 3.63 169436 10.26 1631677 994.61 2363177 12.60
14 29 20737 1.05 6984 0.07 6952 0.41 178574 121.96 255203 1.17
15 76 7943562 602.99 7742698 84.75 7456505 622.89 21598353 120.25
16 50 335238 20.20 242778 1.66 240912 15.14 852948 859.44 935561 4.74
17 37 80459 4.17 40425 0.29 36889 2.05 239522 220.86 317984 1.43
18 49 2109516 156.88 119938 0.97 119784 9.18 7219504 39.20
19 47 5238957 354.84 3558809 33.60 3459314 251.38 23255133 130.46
20 2 648 0.14 648 0.69 648 0.79 649 0.01
21 10 337852 74.21 450027 14.64 76647 16.85
22 44 5866700 473.77 4053413 45.18 3868663 335.31
23 31 3565151 222.48 3613835 50.31 2563159 181.66
24 50 14504610 1151.55 2244156 30.10 1759660 154.33
25 39 23044275 275.91 17832156 1612.04
26 33 12138101 152.95 10473204 996.25
27 23 8738457 1131.26
30 14 2074534 679.61

transport-strips-ipc6
01 54 60 0.01 12 0.00 16 0.01 60 0.48 64 0.00
02 131 1558 0.06 874 0.10 998 0.15 1567 6.36 2093 0.01
03 250 380375 10.47 225310 48.69 257608 59.28 380982 274.86 408643 3.69
04 318 3526204 164.35 1462063 714.49 1660874 856.87 4204372 50.69
11 456 135 0.02 111 0.01 103 0.02 135 0.94 164 0.00
12 594 14873 0.37 9976 1.41 11130 1.70 14874 19.85 14796 0.12
13 550 372845 15.07 224986 74.09 246069 89.04 373133 454.55 408449 4.36
21 478 62 0.01 67 0.00 62 0.01 62 0.50 112 0.00
22 632 7544 0.18 4455 0.37 5408 0.54 7544 7.71 7610 0.06
23 630 100269 3.65 56897 13.82 70579 19.32 100347 92.93 106548 1.07
24 614 1587821 77.96 292004 120.98 382588 196.82 1663856 19.29

woodworking-strips-ipc6
01 170 4313 0.23 3716 0.10 4157 0.28 119 0.85 9086 0.09
02 185 5550 0.34 5054 0.14 5408 0.41 409 3.03 21076 0.30
03 275 80794 136.95
11 130 860 0.10 987 0.05 897 0.13 50 0.93 3487 0.05
12 225 328229 41.44 328728 16.57 328930 52.03 11665 18.49 1862476 37.91
13 215 4413726 954.34 4125788 455.35 4404104 1297.06 113386 273.76
21 95 54 0.02 54 0.02 53 0.03 16 0.91 227 0.00
22 185 31189 4.66 67528 3.26 38912 6.83 1931 5.96 177942 3.97
23 195 44641 8.39 155426 9.71 64840 14.42 4673 9.05 962698 23.76

Table 22: Similar to Table 21 for the Pegsol, Sokoban, Transport, and Woodwork-
ing domains.
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