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Abstract

The Aviation Safety Reporting System collects voluntarily submitted reports on avia-
tion safety incidents to facilitate research work aiming to reduce such incidents. To effec-
tively reduce these incidents, it is vital to accurately identify why these incidents occurred.
More precisely, given a set of possible causes, or shaping factors, this task of cause iden-
tification involves identifying all and only those shaping factors that are responsible for
the incidents described in a report. We investigate two approaches to cause identification.
Both approaches exploit information provided by a semantic lexicon, which is automati-
cally constructed via Thelen and Riloff’s Basilisk framework augmented with our linguistic
and algorithmic modifications. The first approach labels a report using a simple heuris-
tic, which looks for the words and phrases acquired during the semantic lexicon learning
process in the report. The second approach recasts cause identification as a text classi-
fication problem, employing supervised and transductive text classification algorithms to
learn models from incident reports labeled with shaping factors and using the models to
label unseen reports. Our experiments show that both the heuristic-based approach and
the learning-based approach (when given sufficient training data) outperform the baseline
system significantly.

1. Introduction

Safety is of paramount importance when it comes to the aviation industry. In 2007 alone,
there were 4659 incidents1, including 26 fatal accidents with 750 casualties2. To improve the
aviation safety situation, the Aviation Safety Reporting System (ASRS) was established in
1976 to make safety incident data available to researchers. ASRS collects voluntarily sub-
mitted reports about aviation safety incidents written by flight crews, attendants, controllers
and other related parties. The reports contain a number of fixed fields and a free text nar-
rative describing the incident. However, the data has grown to be quite large over the years
and it is getting increasingly difficult, if not impossible, to analyze these reports by human
means. It has become necessary that these reports be analyzed through automated means.

1. http://asrs.arc.nasa.gov/

2. http://www.flightsafety.gov/
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To take full advantage of this data to reduce safety incidents, it is necessary to extract
from the reports both what happened and why. Once both are known, then it is possible to
identify the correlations between the incidents and their causes, and take fruitful measures
toward eliminating the causes. However, the fixed fields in the reports are devoted to various
aspects of what happened during the incidents, and there is no fixed field that indicates
the incidents’ causes. Instead, the reporter discusses in the report narrative what he thinks
caused the incident, along with the incident description. Thus the cause of the incident has
to be extracted by analyzing the free text narrative. As an example, a report is shown next
to illustrate the task:

Report#424362. WHILE descending into lit we encountered Instrument Me-
teorological Conditions; rime ice; rain; and moderate chop. as I turned to
a heading with the Auto-Pilot direct lit the attitude indicator remained in a
bank. XCHKING; I noticed the Radio Magnetic Indicator’S were 55 degree off
headings. I switched to #2 and corrected the course. the Auto-Pilot and flight
director were kicked off. I continued to have problems with the altitude select
and Auto-Pilot as I attempted to re-engage it. it was during radar vectors to
the approach and descent to 2300 feet that we noticed our altitude at 2000 feet
Mean Sea Level. we stopped the descent and climbed to 2300 feet Mean Sea
Level. Air Traffic Control noted our altitude deviation at the time we noticed.
we were thankful for their backup during a time of flight director problems in
our cockpit. this occurred at the end of a 13 hour crew day; bad weather; in-
strument problems; and lack of crew rest. the First Officer (Pilot Not Flying)
in the right seat; had only 4 hours of rest due to inability to go to sleep the
night before. we were tired from a trip lit-ORL-lit. we had not eaten in about
7 hours.3

Posse et al. (2005) identify 14 most important cause types, or shaping factors, that can
influence the occurrence of the aviation safety incident described in an ASRS report. These
shaping factors are the contextual factors that influenced the reporter’s behavior in the
incident and thus contributed to the occurrence of the incident. Some of these factors can
be attributed to humans (e.g., a pilot or a flight attendant has psychological Pressure, an
overly heavy Taskload, or an unprofessional Attitude that impacts his performance), while
some are related to the surrounding environment (e.g., Physical Environment such as snow,
and Communication Environment such as auditory interference). A detailed description of
these 14 shaping factors can be found in Section 2.1.

In the above report, we find that the incident was influenced by three shaping factors,
namely Physical Environment (which concerns bad weather, as mentioned above), Resource
Deficiency (which concerns problems with the equipment), and Duty Cycle (which refers
to physical exhaustion due to long hours of duty without adequate rest or replenishment).
These three shaping factors are indicated by different words and phrases in the report. For
instance, the bad weather condition is expressed using phrases such as rime ice, rain and
moderate chop, while the details of the equipment problem appear as sentence fragments like

3. To improve readability, the report has been preprocessed from its original form using the steps described
in Section 2.2.
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attitude indicator remained in a bank, 55 degree off headings and flight director problems.
The issue with the long hours of duty is illustrated by the sentence fragments like 13 hour
crew day and tired from a trip. The goal of our cause identification task for the aviation
safety domain, then, is to identify which of the 14 shaping factors contributed to the incident
described in a report using the lexical cues appearing in the report narrative.

However, as mentioned earlier, the sheer volume of the data makes it prohibitive to
analyze all the reports manually and identify the associated shaping factors. Thus, the
focus of our research is automated cause identification from the ASRS reports, which involves
automatically analyzing the report narrative and identifying the responsible shaping factors.
This brings our problem into the domain of Natural Language Processing (NLP).

Since we have a set of texts (i.e., the report narratives) and a set of possible labels for
these texts (i.e., the shaping factors), this task is most naturally cast as a text classification
task. However, unlike topic-based text classification, cause-based text classification has not
been addressed extensively in the NLP community. Previous work on causal analysis is quite
different in nature from our cause-based text classification task. More specifically, previous
cause analysis works do not involve text classification, focusing instead on determining
the existence of a causal relation between two sentences or events. For instance, there has
been some work on causal analysis for question answering, where a question may involve the
cause(s) of an event (e.g., Kaplan & Berry-Rogghe, 1991; Garcia, 1997; Khoo, Chan, & Niu,
2000; Girju, 2003). Here, the focus is on finding causal relationship between two sentence
components. As another example, causal analysis on equipment malfunction reports have
been attempted by Grishman and Ksiezyk (1990), whose work is restricted to the analysis
of reports related to one specific piece of equipment they studied. They analyze cause-effect
relations between events leading to the malfunction described in the reports.

Cause identification from aviation safety reports is a rather challenging problem, as a
result of a number of factors specific to the ASRS dataset. First, unlike many NLP problems
where the underlying corpus is composed of a set of well-edited texts such as newspaper
reports, reviews, legal and medical documents4, the ASRS reports are mostly written in
informal manner, and since they have not been edited except for removing author-identity
information, the reports tend to contain spelling and grammatical mistakes. Second, they
employ a large amount of domain-specific acronyms, abbreviations and terminology. Third,
the incident described in a report may have been caused by more than one shaping factor.
Thus reports can have multiple shaping factor labels, making the task more challenging
than binary classification, or even multi-class problems where each instance has only one
label. Above all, the scarcity of labeled data for this task, coupled with highly imbalanced
class distributions, makes it difficult to acquire an accurate classifier via supervised learning.

Previous work on cause identification for the ASRS reports was done primarily by the
researchers at NASA (see Posse et al., 2005) and, to our knowledge, has involved manual
analysis of the reports. Specifically, NASA brought together experts on aviation safety,
human factors, linguistics and English language to participate in a series of brainstorming
sessions, and generated a collection of seed keywords, simple expressions and template
expressions related to each shaping factor. Then they labeled the reports with the shaping
factors by looking for the related expressions in the report narrative. However, there is a

4. Recently, work has started on processing blogs, which may not be so grammatical either, but blogs
typically are not full of domain-specific terminology.
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major weakness associated with this approach: it involves a large amount of human effort
on identifying the relevant keywords and expressions, and yet the resulting list of keywords
and expressions is by no means exhaustive. Moreover, they evaluated their approach on
only 20 manually labeled reports. Such a small-scale evaluation is by no means satisfactory
as judged by current standard in NLP research. One of our contributions in this research
is the annotation of 1333 ASRS reports with shaping factors, which serve as a standard
evaluation dataset against which different cause identification methods can be compared.

In this paper, we investigate two alternative approaches to cause identification, both
of which exploit information provided by an automatically constructed semantic lexicon.
More specifically, in view of the large amount of human involvement in NASA’s work, we
aim to replace the manual selection of seed words with a bootstrapping approach that
automatically constructs a semantic lexicon. Specifically, motivated by Thelen and Riloff’s
(2002) Basilisk framework, we learn a semantic lexicon, which consists of a set of words and
phrases semantically related to each of the shaping factors, as follows. Starting from a small
set of seed words and phrases, we augment these seeds in each iteration by automatically
finding a fixed number of words and phrases related to the seeds from the corpus and adding
them to the seed list. Most importantly, however, we propose four modifications to the
Basilisk framework that can potentially improve the quality of the generated lexicon. The
first is a linguistic modification: in addition to using parse-based features (e.g., subject-
verb and verb-object features) as in Basilisk, we employ features that can be computed
more robustly (e.g., N-grams). The remaining three are all algorithmic modifications to the
Basilisk framework, involving (1) the use of a probabilistic semantic similarity measure, (2)
the use of a common word pool, and (3) the enforcement of minimum support and maximum
generality constraints for words and their extraction patterns, which favors the addition of
frequently-occurring content-bearing words and disfavors overly-general extraction patterns.

As mentioned above, we investigate two approaches to cause identification that exploit
the automatically learned semantic lexicon. The first approach is a heuristic approach,
which, motivated by Posse et al. (2005), labels a report with a shaping factor if it contains
at least a word or a phrase that is relevant to the shaping factor. Unlike Posse et al.’s
work, where these relevant words and phrases employed by the heuristic procedure are
all manually identified, we automatically acquire these words and phrases via the semi-
supervised semantic lexicon learning procedure described above. The second approach is
a machine-learning approach that is somewhat orthogonal to NASA’s approach: instead
of having a human identify seed words and phrases relevant to each shaping factor, we
have humans annotate a small subset of the available incident reports with their shaping
factors, and then apply a machine learning algorithm to train a classifier to automatically
label an unseen report, using combinations of N-gram features and words and phrases
automatically acquired by the aforementioned semantic lexicon learning procedure. As we
will see, we acquire this cause identifier using Support Vector Machines (SVMs), which have
been shown to be effective for topic-based text classification. Since we only have a small
number of labeled reports, we also attempt to combine labeled and unlabeled reports using
the transductive version of SVMs.

Since our approaches rely on simple linguistic knowledge sources that involve N-grams
and words and phrases automatically acquired during the semantic lexicon learning pro-
cedure, one may argue that the use of these simple features are not sufficient for cause
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identification. It is important to point out that we are by no means arguing that these
features are sufficient for cause identification. However, the use of these simple features is
relevant for the task and is motivated by the work performed by the NASA researchers,
who, as mentioned above, have manually identified seed words and phrases for each shaping
factor (Posse et al., 2005). Our semantic lexicon learning procedure precisely aims to learn
such words and phrases. While our error analysis reveals that these simple linguistic features
are not sufficient for learning cause identification (and that more sophisticated knowledge
sources are needed to improve performance), as one of the first attempts to tackle this cause
identification task, we believe that the use of these simple features is a good starting point
and establishes a baseline against which future studies on this domain-specific problem can
be compared.

We evaluate the aforementioned two approaches on our manually annotated ASRS re-
ports. Our experiments show a number of interesting results. First, the best performance is
achieved using the heuristic approach, where we label a report on the basis of the presence of
the automatically acquired lexicon words and phrases in the report, achieving an F-measure
of 50.21%. More importantly, this method significantly surpasses the performance of our
baseline system, which labels a report on the basis of the presence of a small set of manually
identified seed words and phrases. These results suggest that employing an automatically
acquired semantic lexicon is relevant and useful for cause-based text classification of the
ASRS reports. Second, the words and phrases in the learned semantic lexicon, when used
as features for training SVMs in the classification approach, do not improve the performance
of an SVM classifier that is trained solely on N-gram based features when the amount of
training data is small. However, when we increase the amount of training data (by cross-
validation), using the lexicon words and phrases as features in addition to unigrams and
bigrams helps improve classifier performance statistically significantly. In particular, we
have observed an F-measure of 53.66% from the SVM classifiers using a combination of
unigrams, bigrams and lexicon words and phrases as features. These results again confirm
that the words and phrases from the learned semantic lexicon are relevant and valuable
features for identifying the responsible shaping factors. Nevertheless, the magnitude of
the improvement indicates that there is still much room for improvement, which may be
achieved by using deeper semantic features.

In summary, we believe that our work on automated cause identification makes five
primary contributions:

• We show that instead of manually analyzing all the incident reports to identify the
relevant shaping factors, it is possible to reduce the amount of human effort required
for this task by manually analyzing only a small subset of the reports and identifying
the shaping factors of the rest of the reports by using automated methods.

• We propose several modifications to Thelen and Riloff’s (2002) semi-supervised lex-
icon learning framework, and show that our Modified Basilisk framework allows us
to acquire a semantic lexicon that yields significantly better performance for cause
identification than the original Basilisk framework. Equally importantly, none of
our modifications are geared towards the cause identification task, and hence they
are applicable more generally to the semantic lexicon learning task. In fact, our addi-
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tional experiments suggest that Modified Basilisk yields better accuracy than Original
Basilisk when bootstrapping general semantic categories.

• We show that semantic lexicon learning is useful for cause identification from the ASRS
reports. In particular, the words and phrases from the learned semantic lexicon can
be profitably used to improve both a heuristic-based approach and a learning-based
approach (when given sufficient training data) to cause identification. In addition, we
believe that in any similar cause identification task where the causes are described
in the text, it may be useful to learn a semantic lexicon containing key words and
phrases related to the different types of possible causes and use these key words and
phrases as features for machine learning.

• In an attempt to deduce the weaknesses of our approaches and help direct future
research, we have performed an analysis of the errors made by the best-performing
system, namely the heuristic approach using the semantic lexicon learned by our
modified Basilisk method on a randomly chosen subset of the test reports.

• We have manually annotated a subset of the reports with the relevant shaping factors.
This set of annotated reports, which have been made publicly available, can serve as
a standard evaluation set for this task in future research and also for comparing to
other approaches to cause identification.

The rest of the paper is organized as follows. In Section 2, we discuss the dataset, the
shaping factors, and how the reports were preprocessed and annotated. Section 3 defines
the baseline, which simply looks for a small set of manually extracted seed words and
phrases in the report narratives. In Section 4, we describe our semantic lexicon learning
procedure, which is based on the Basilisk lexicon learning procedure (Thelen & Riloff,
2002) augmented with our modifications. In Section 5, we discuss our heuristic-based and
learning-based approaches to cause identification. We evaluate these two approaches in
Section 6 and discuss related work in Section 7. Finally, in Section 8, we summarize our
conclusions and discuss future work.

2. Dataset

The dataset used in this research is the aviation safety incident reports publicly available
from the website of Aviation Safety Reporting System5. We used all 140,599 reports col-
lected during the period from January 1998 to December 2007. Each report contains a
free text narrative written by the reporter and several fixed fields about the incident like
the time and place of the incident, environment information, details about the aircrafts
involved, the reporting persons’ credentials, details like anomaly, detector, resolution and
consequence about the incident itself, and a description of the situation. In other words,
the fixed fields in a report contain various information about what happened, and under
what physical circumstances, but do not cover why the incident took place. As discussed
by Posse et al. (2005) and Ferryman, Posse, Rosenthal, Srivastava, and Statler (2006), only
the narrative of a report contains information on the shaping factors of the incident. For

5. Available at http://asrs.arc.nasa.gov/search/database.html
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this reason, we decided to analyze only the free-text narrative of a report using NLP tech-
niques to identify what the shaping factor(s) of the incident may be, and we constructed
the corpus for this task by combining the narratives of these 140,599 reports.

2.1 Shaping Factors

The incidents described in the ASRS reports happen for a variety of reasons. Posse et al.
(2005) focus on the 14 shaping factors, or simply shapers. Following is a short description
of these shaping factors, taken verbatim from the work of Posse et al..

1. Attitude: Any indication of unprofessional or antagonistic attitude by a controller
or flight crew member.

2. Communication Environment: Interferences with communications in the cockpit
such as noise, auditory interference, radio frequency congestion, or language barrier.

3. Duty Cycle: A strong indication of an unusual working period e.g., a long day, flying
very late at night, exceeding duty time regulations, having short and inadequate rest
periods.

4. Familiarity: Any indication of a lack of factual knowledge, such as new to or unfa-
miliar with company, airport, or aircraft.

5. Illusion: Illusions include bright lights that cause something to blend in, black hole,
white out, or sloping terrain.

6. Physical Environment: Unusual physical conditions that could impair flying or
make things difficult, such as unusually hot or cold temperatures inside the cockpit,
cluttered workspace, visual interference, bad weather, or turbulence.

7. Physical Factors: Pilot ailment that could impair flying or make things more dif-
ficult, such as being tired, fatigued, drugged, incapacitated, influenced by alcohol,
suffering from vertigo, illness, dizziness, hypoxia, nausea, loss of sight, or loss of hear-
ing.

8. Preoccupation: A preoccupation, distraction, or division of attention that creates
a deficit in performance, such as being preoccupied, busy (doing something else), or
distracted.

9. Pressure: Psychological pressure, such as feeling intimidated, pressured, pressed for
time, or being low on fuel.

10. Proficiency: A general deficit in capabilities, such as inexperience, lack of training,
not qualified, not current, or lack of proficiency.

11. Resource Deficiency: Absence, insufficient number, or poor quality of a resource,
such as overworked or unavailable controller, insufficient or out-of-date chart, equip-
ment malfunction, inoperative, deferred, or missing equipment.
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12. Taskload: Indicators of a heavy workload or many tasks at once, such as short-
handed crew.

13. Unexpected: Something sudden and surprising that is not expected.

14. Other: Anything else that could be a shaper, such as shift change, passenger discom-
fort, or disorientation.

2.2 Preprocessing

For our semantic lexicon learning approach to cause identification, we need to identify
(1) the part-of-speech (POS) of each word in the text, (2) the phrases or chunks in the
sentences, and (3) the grammatical roles of the words and their governing words. Ideally, to
achieve high accuracies on these three tagging tasks, we would manually annotate a section
of the ASRS corpus with the appropriate annotations (e.g., POS tags, chunks) and train
appropriate taggers on it to tag the rest of the corpus. However, this by itself is a labor-
intensive task, and is beyond the scope of this paper. Therefore, we have used publicly
available tools trained on standard corpora for these three tasks. It is inevitable that this
will not produce the most accurate automatic annotations of our corpus, but as we will see,
this has not caused problem in this task.

From our corpus, we first identify sentence boundaries using the tool MXTERMINA-
TOR6. Second, we run the POS tagger CRFTagger (Phan, 2006b), which uses the Penn
Treebank tag set (Marcus, Santorini, & Marcinkiewicz, 1993), on the sentences detected by
MXTERMINATOR. Third, we run the chunker CRFChunker (Phan, 2006a) on the tagged
text to identify different types of phrases. Also, the Minipar parser (Lin, 1998) is run on the
sentences to identify the grammatical roles of the words. However, the report text has to be
preprocessed before applying these tools for reasons described in the following paragraphs.

The reports in the ASRS data set are usually informally written, using various domain
specific abbreviations and acronyms. In general, as observed by van Delden and Gomez
(2004), Posse et al. (2005) and Ferryman et al. (2006), these narratives tend to be written
in short, abbreviated manner, and tend to contain poor grammar. Also, the text has been
converted to all upper-case. Following is an example of the narrative of a report:

TAXIING FROM THE RAMP AT LAF AT NIGHT. MADE A WRONG TURN
AND CROSSED RWY 10/28; THE ACTIVE AT THE TIME. THERE WAS
NO SIGN TO INDICATE WHICH RWY I WAS XING. I CLRED BOTH DI-
RECTIONS BEFORE XING. WE WERE THE ONLY ACFT ON THE FIELD
AT THE TIME. NO MENTION ON THE ATIS OF SIGNS BEING OUT OR
CONSTRUCTION ON THE RAMP AREA. THE CTLR DIDN’T QUESTION
US; IT WAS I WHO BROUGHT THE SIT UP AFTER I HAD CROSSED
THE ACTIVE RWY. COMMUTER OPS OF 3 DAYS OF HVY FLYING;
REDUCED REST; NO RWY SIGNS AND BUSY DOING LAST MIN COM-
MUTER PAPER WORK CHANGES; ALL CONTRIBUTED TO THE RWY
INCURSION. 12 HR DAY 6 HR FLT TIME.

6. ftp://ftp.cis.upenn.edu/pub/adwait/jmx/, trained on the Wall Street Journal corpus
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These reports need some preprocessing before NLP techniques can be applied to them,
since these off-the-shelf tools (e.g., the POS tagger) were all trained on mixed-case texts.
For example, running CRFTagger (which was trained on the WSJ corpus with correct cases)
on the first two sentences yield the following:

1. TAXIING/NNP FROM/NNP THE/DT RAMP/NNP AT/IN LAF/NNP AT/IN
NIGHT/NN ./.

2. MADE/NNP A/DT WRONG/NNP TURN/NNP AND/CC CROSSED/VBD
RWY/NNP 10/28/CD ;/: THE/DT ACTIVE/NNP AT/IN THE/DT TIME/NN ./.

As can be seen, the tagger mislabels the words TAXIING, FROM, MADE, WRONG
and ACTIVE as proper nouns (NNP), instead of tagging them as verb, preposition, verb,
adjective and adjective respectively. This occurs because a good feature for detecting proper
nouns in a sentence is the case of its first character. Since all the words begin with a capital
letter, the tagger mistakes a significant portion of these words as NNP. Another reason that
the tagger performs poorly on this corpus is that a lot of abbreviations appear in the text.
For example, XING and HVY are short for crossing and heavy. But since they are not
likely to be known to a POS tagger trained on a standard well-edited corpus, they would
be identified as unknown words, and most likely be tagged as nouns instead of verb and
adjective respectively. Similar problems have been observed for the parsers and chunkers.
For this reason, we decided to preprocess the text by expanding the abbreviations and
restoring the cases of the words.

To expand the acronyms and abbreviations, we rely on the official list of acronyms and
abbreviations used in the ASRS reports7. In a small number of cases, the same abbreviation
or acronym may have more than one expansion. For example, ARR may mean either arrival
or arrive. In such cases we arbitrarily chose one of the possibilities8. Then, to restore case,
a set of English word lists, place names and person names9 were applied to the text to
identify the known words. If a word in the report text appeared in the word lists, then it
was converted to lower case. All the other unknown words were left uppercase. The result
of this process on the aforementioned narrative is as follows:

TAXIING from the ramp at LAF at night. made a wrong turn and crossed
runway 10/28; the active at the time. there was no sign to indicate which
runway I was crossing. I cleared both directions before crossing. we were the
only aircraft on the field at the time. no mention on the Automatic Terminal
Information Service of signs being out or construction on the ramp area. the
controller DIDN’t question us; it was I who brought the situation up after I
had crossed the active runway. commuter operations of 3 days of heavy flying;

7. See http://akama.arc.nasa.gov/ASRSDBOnline/pdf/ASRS_Decode.pdf.
8. A better option would be to disambiguate between the alternative expansions based on context (e.g.,

the method followed by Banko & Brill, 2001). However, the number of such ambiguities in the acronyms
and abbreviations list is small (10, to be exact), and they are either the same POS or variations of the
same word. Thus the effect of these ambiguities on the performance of the NLP tools is expected to be
minimal.

9. http://wordlist.sourceforge.net/

577



Abedin, Ng & Khan

reduced rest; no runway signs and busy doing last minute commuter paper work
changes; all contributed to the runway incursion. 12 hour day 6 hour flight time.

We ran the POS tagger, CRFTagger, on this processed text and did not observe any
errors. For example, the tagged version of the aforementioned two sentences are:

1. TAXIING/VBG from/IN the/DT ramp/NN at/IN LAF/NNP at/IN night/NN ./.

2. made/VBN a/DT wrong/JJ turn/NN and/CC crossed/VBD runway/NN 10/28/CD
;/: the/DT active/JJ at/IN the/DT time/NN ./.

Both sentences have been correctly tagged. However, our case restoration method is
arguably too simplistic. Hence, to determine if we need to perform more fine-grained case
restoration, we sought a measure of how much would we gain from accurately restoring
the case of the words in the sentences over the present heuristic method. To check this,
we randomly picked 100 sentences from the corpus. We first ran the POS tagger on these
sentences after they were case-restored by the aforementioned heuristic case restoration
method. Then, we manually corrected the capitalization of these sentences and re-ran the
POS tagger on the case-restored sentences. When the tags thus generated were compared,
we found 99.7% agreement, which means that we are not likely to gain much in terms of
POS tagging accuracy from correctly case restored text than the heuristically case restored
text. Of the five differences out of 2049 words, three were NNPs mislabeled as NNs, which
essentially has no effect on outcomes of our research. Therefore, the marginal utility from
applying more sophisticated case restoration methods does not seem enough to justify the
additional effort necessary, and we limit our preprocessing step to the expansion of abbrevi-
ations and acronyms followed by the heuristic case restoration procedure described above.
The complete flow of preprocessing is shown in Figure 1.

2.3 Human Annotation Procedure

Recall that we need reports labeled with the shaping factors for training the cause identifi-
cation classifiers and testing the performance of our two approaches to cause identification.
Additionally, in order to learn a semantic lexicon via bootstrapping, we need a small set of
seed words and phrases related to each shaping factor as a starting point. As a result, after
performing language normalization, we performed two types of annotations: (1) labeling a
set of reports with shaping factors, and (2) identifying a set of seed words and phrases from
the reports. The annotation procedure is described in more detail in the following sections.

2.3.1 Annotating Reports with Shaping Factors

While NASA has previously developed a heuristic approach to tackle the cause identification
task (Posse et al., 2005), this approach was evaluated on only 20 manually annotated reports,
which is far from satisfactory as far as establishing a strong baseline method is concerned.
Thus we decided to annotate a set of reports ourselves for evaluating our automatic cause
identification methods.

Out of the complete set of 140,599 reports, we chose a random set of 1333 reports for
annotation. This subset was divided into two parts. The first part, consisting of 233 reports,
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Figure 1: Flow chart of text preprocessing

was annotated by two persons (one undergraduate student and one graduate student). For
each report, they were asked to answer the following question:

Which shaping factor(s) were responsible for the incident described in the re-
port?

Our annotators were trained in a similar way as those who labeled the 20 reports used in
the evaluation by the NASA researchers (see Posse et al., 2005). Specifically, as background
reading, the annotators were referred to the works of Posse et al. and Ferryman et al. (2006),
both of which describe the shaping factors, and also give some examples of the words and
phrases that indicate the influence of the shaping factors on the described incidents. The
definitions of the shapers are repeated in Section 2.1. Following Posse et al.’s method,
our annotators were explicitly instructed to adhere to these definitions as much as possible
when annotating the reports with shaping factors. After the annotations were completed,
the inter-annotator agreement was computed using the Krippendorff’s (2004) α statistics
as described by Artstein and Poesio (2008), using the Measuring Agreement on Set-valued
Items (MASI) scoring metric (Passonneau, 2004). The observed inter-annotator agreement,
α, in this case was found to be 0.72, which indicates reliable agreement. Out of the 233
reports, they completely agreed on the annotations of 80 reports, completely disagreed on
100 reports and partially agreed on 53 reports. The annotators were then asked to discuss
the discrepancies. During the discussion, it was found that the discrepancies could be
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primarily attributed to the vagueness of the descriptions of the shaping factors in Posse et
al.’s paper, some of which were interpreted differently by the two annotators.

The annotators then agreed on how the descriptions of the shapers should be interpreted,
and resolved all the differences in their annotation. After the discussion, the remaining 1100
reports were annotated by one of the annotators. The other annotator was also asked to
annotate a subset of these reports (100 reports) for cross-verification purpose10, and the
inter-annotator agreement, α, in this case was observed to be 0.66. The 1333 reports
annotated by the first annotator were divided into three sets: a training set (233 reports)
for training the cause identification classifiers, a held-out development set (100 reports)
for parameter tuning, and a test set (1000 reports) for evaluating the performance of our
approaches to cause identification. The distribution of the shaping factors in the training,
development and test sets are shown in the second, third and fourth columns of Table 1.

2.3.2 Extracting Seed Words and Phrases

In a separate process, the first author went through the first 233 reports that both annotators
worked on, and selected words and phrases relevant to each of the shaping factors. His
judgment of whether a word or phrase is relevant to a shaping factor was based on a careful
reading of the description of the shaping factors in the works of Posse et al. (2005) and
Ferryman et al. (2006), as well as the example seed words selected by the NASA experts
that were shown in these two papers. The specific task in this case was:

In each report, is there any word or phrase that is indicative of any of the
shaping factors? If there is, then identify it and assign it to the appropriate
shaping factor.

Note that these seed words and phrases were chosen without regard to the shaping factor
annotation of the document; they were picked on the possibility of their being relevant to
the respective shaping factors. The number of seed words and phrases for each shaping
factor is shown in the last column of Table 1. As we can see, 177 seed words and phrases
were manually selected from the 233 training reports. For completeness, we also show all the
seed words and phrases extracted from these reports in Appendix A. To facilitate further
research on this topic, the annotated data we have used in this research is made available
at http://www.utdallas.edu/~maa056000/asrs.html.

Since there is no gold standard against which we can compare this list of annotated
words and phrases, it is difficult to directly compute its precision. However, to get a rough
idea of its precision, we asked one of the annotators to examine the list and identify all and
only those words and phrases in the list that he believes are correct. There was disagreement
over only one word. This yields a precision of 99.44%, which provides suggestive evidence
that the annotation is fairly reliable. These manually identified words and phrases were
used by our baseline cause identification system (see Section 3) and also served as seeds for
our semantic lexicon learning procedure (see Section 4).

10. It is a fairly standard procedure in NLP research to cross-annotate only a subset of the data when
complexity and cost of individual annotation is high. See the works of Zaidan, Eisner, and Piatko (2007)
and Kersey, Di Eugenio, Jordan, and Katz (2009), for instance.
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Table 1: Distribution of shaping factors in the training, test and development sets
Shaping factor Reports in Reports in Reports in Seed

training set test set development words
test set

Attitude 17 30 5 8
Communication Environment 11 90 18 5
Duty Cycle 9 26 3 10
Familiarity 12 50 8 9
Illusion 1 2 0 1
Other 36 217 36 8
Physical Environment 43 265 40 45
Physical Factors 10 35 3 8
Preoccupation 25 110 10 9
Pressure 5 30 3 10
Proficiency 43 247 23 12
Resource Deficiency 112 507 33 47
Taskload 6 29 7 2
Unexpected 3 10 1 3

Total 233 1000 100 177

3. Baseline System For Cause Identification

As discussed in the introduction, the goal of our research is to label the incident reports with
the shaping factors that caused the incidents. To evaluate the performance of our cause
identification methods, we need a baseline that uses the same amount of training data
as all the methods described in this paper and performs reasonably well on the test set.
Given that cause identification is a relatively new and under-investigated task, no standard
baseline has been adopted for this task. In fact, to our knowledge, the only related works
on cause identification for the aviation safety domain were conducted by the researchers at
NASA (see Posse et al., 2005; Ferryman et al., 2006). As a result, we construct a baseline
system motivated by Posse et al.’s work. Specifically, the baseline takes as input a set of
seed words and phrases manually collected for each of the shaping factors (see Section 2.3.2),
and labels a report with the Occurrence Heuristic: for each seed word and phrase found
in the report, the baseline annotates the report with the shaping factor associated with
the seed. For example, “11 hour duty day” is a seed phrase associated with the shaping
factor Duty Cycle. Then, the Occurrence Heuristic will label any report that contains the
phrase “11 hour duty day”with Duty Cycle. This approach is simple but attractive because
(1) it does not need any training, (2) it can be evaluated very easily, by searching for the
seed words in the narrative of the report being labeled, and (3) a report can potentially
be labeled with more than one shaping factors. If the seed words and phrases are indeed
relevant to their respective shaping factors, then they should identify the reports related to
the shaping factors with a high degree of precision.
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4. Semantic Lexicon Learning

As described in Section 3, the baseline uses the seed words and phrases manually extracted
from 233 reports in combination with the Occurrence Heuristic to label the reports with
shaping factors. However, the reports used for evaluation may not contain exactly the
same words and phrases, but they may contain different variations, synonyms, or words
and phrases that are semantically similar to the seed words and phrases. Thus the baseline
may not be able to label these reports correctly by only looking for the words and phrases
in the seed words list.

To address this potential problem, we propose to use semantic lexicon learning algo-
rithms to learn more words and phrases semantically similar to the seed words and phrases
from the reports corpus containing narratives from 140,599 reports. Using a weakly super-
vised bootstrapping algorithm may allow us to learn a large number of useful words and
phrases from the corpus that would have required huge amounts of human effort had it been
done manually. Below, we first describe the general bootstrapping approach in Section 4.1.
Then, in Section 4.2, we describe the Basilisk framework for learning the semantic lexicon
from an unannotated corpus (Thelen & Riloff, 2002). Finally, in Section 4.3, we discuss our
modifications to the Basilisk framework.

4.1 Weakly Supervised Lexicon Learning

As mentioned earlier, we employ a weakly supervised bootstrapping approach for building
the semantic lexicon. We use the manually extracted seed words and phrases for each
shaping factor (described in Section 2.3.2) to create the initial semantic lexicon. Then we
select words and phrases from the unannotated reports that are semantically similar to the
words already appearing in the semantic lexicon. The reports in the corpus do not need to
be labeled with shaping factors. The semantic similarity between two words is measured
using features extracted from the corpus for each word. This process is repeated iteratively:
in each iteration, a certain number of words are added to the semantic lexicon, and the
words in this augmented lexicon are used as the seeds for the following iteration. This
process is shown in Figure 2.

Figure 2: Flow chart of the lexicon learning procedure
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4.2 Basilisk Framework

Basilisk (Bootstrapping Approach to SemantIc Lexicon Induction using Semantic Knowledge)
is an instantiation of the aforementioned generic semantic lexicon learning framework (The-
len & Riloff, 2002). The Basilisk framework works by first identifying all the patterns for
extracting all the noun phrases in the corpus that appear in one of three syntactic roles:
subject, direct object, or prepositional phrase object. For example, as discussed by The-
len and Riloff, in the sentence “John was arrested because he collaborated with Smith and
murdered Brown”, the extraction patterns are “<subject> was arrested”, which extracts
John, “murdered <object>” which extracts Brown and “collaborated with <pp object>”
which extracts Smith. Then, for each semantic category Sk, a pattern pool is constructed
with patterns that tend to extract words in Sk. To measure the tendency of a pattern Pj

to extract words in Sk, the R log F metric is used, which is defined as:

R log F (Pj) =
Fj

Nj

× log (Fj) (1)

Here, Fj is the number of (distinct) words in Sk that pattern Pj extracts, and Nj is the
total number of (distinct) words in the corpus that Pj extracts. This metric is high for both
high precision patterns (i.e., patterns that extract primarily words in Sk) and high recall
patterns (i.e., patterns that extract a large number of words in Sk). At each iteration i, the
top (20 + i) patterns (in terms of their R log F scores) are put into the pattern pool for Sk.
Depleted patterns (i.e., patterns that have all their extracted words already in the semantic
lexicon) are not considered in this step. Then, the head nouns of all the phrases extracted
by the resulting patterns in the pattern pool are put into the word pool of Sk.

Next, a subset of the words in the word pool is selected to be added to the seed words
list. Those words from the word pool are chosen that are most relevant to Sk. More
specifically, for each word Wi in the word pool for Sk, first the AvgLog score is calculated,
which is defined as follows:

AvgLog (Wi, Sk) =

WPi
∑

j=1

log2 (Fj + 1)

WPi

(2)

Here, WPi is the number of patterns that extract word Wi, and for each pattern Pj that
extracts Wi, Fj is the number of words extracted by Pj that belong to Sk. Then, for each
semantic category Sk, five words are chosen that have the highest AvgLog score for the
category Sk.

For multi-category learning, Thelen and Riloff (2002) experimented with different scor-
ing metrics and reported that they achieved the best performance by calculating the diff
score for each word. For a given word in the word pool for a semantic category, the diff
score takes into consideration what score this word gets for the other categories, and returns
a score based on the word’s score for this semantic category relative to the other categories.
More precisely, the diff score is defined as follows:

diff (Wi, Sk) = AvgLog (Wi, Sk) − max
l 6=k

(AvgLog (Wi, Sl)) (3)
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Here, Sk is the semantic category for which Wi is being evaluated. Thus the diff score is
high if there is strong evidence that Wi belongs to semantic category Sk but little evidence
that it belongs to the other semantic categories. For each semantic category, the diff score
is calculated for each word in the category’s word pool, and the top five words with the
highest diff score are added to the lexicon for that category. Two additional checks are
made at this stage: (1) if a word in the word pool has been added to some other category in
an earlier iteration, that word is discarded, and (2) if the same word is found in more than
one word pool then it is added to the category for which it has the highest score11. When
this is completed for all the semantic categories, the iteration ends, and the next iteration
begins with the augmented lexicon.

4.3 Modifications to the Basilisk Framework

As we will see later in this subsection, an analysis of the framework reveals that in some
cases the words selected by Basilisk may not be the most relevant ones. For this reason, we
propose three algorithmic modifications to the Basilisk framework: (1) using a new semantic
similarity measure, (2) merging the word pools to one single pool for assigning words to the
semantic categories, and (3) imposing minimum support and maximum generality criteria on
patterns and words added to the pattern pools and the word pools. In addition, we propose
one linguistic modification, in which we employ a type of feature that can be computed in
a robust manner from the words and phrases in the corpus, namely, the N-gram features.
The rest of this subsection discusses these modifications.

4.3.1 Modification 1: New Semantic Similarity Measure

As seen in Section 4.2, the Basilisk framework uses the AvgLog scoring function to measure
the semantic similarity between words. The diff score for multi-category learning also uses
the AvgLog function to compute the evidence for a word belonging to a semantic category
relative to the other categories. However, a closer examination of the AvgLog function shows
that it may not be able to properly predict semantic similarity under all circumstances. To
understand the reason, let us first make the following observations: if pattern Pj occurs
1000 times, but extracts words in category Sk only 5 times, it is unlikely that Pj is strongly
related to Sk. Similarly, if word Wi occurs 1000 times, but is extracted by pattern Pj only 5
times, Pj should have small influence on the classification of Wi. However, the AvgLog score
will not be able to take these factors into consideration, precisely because it considers only
the absolute number of semantic category members extracted by the patterns that extract
the word but not the frequency of extraction. To see why this is the case, let us consider the
word Wi that is extracted by three patterns P1, P2 and P3, with the frequencies as shown in
Table 2. If each of P1, P2 and P3 extract five distinct seed words, then the AvgLog score for
the word W would be 2.32, irrespective of the fact that the patterns actually extract a word
in the seed words list only a tiny fraction of their occurrence in the corpus. P1 extracts a
seed word 5% of its occurrence, P2 does so 1% time, and P3, the pattern that extracts W

most often, extracts a lexicon word only 0.5% of the times it appears in the text. Clearly,

11. This approach effectively assumes that each word can belong to at most one category. This is a reasonable
assumption in this specific task since the shaping factors have very distinct meanings.
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the patterns would not suggest that Wi is related to the semantic category, yet it gets a
good score.

Table 2: Illustration of the problem with AvgLog : How unrelated words may have a high
similarity score. Here Wi is a word that appears in the corpus and is extracted by
the patterns P1, P2 and P3

Patterns that extract Wi P1 P2 P3

Number of times Wi is extracted by the pattern Pj 10 20 70

Number of times pattern Pj occurs in the text 100 500 1000

Number of times a word in category Sk is extracted by the pattern Pj 5 5 5

Number of category words extracted by the pattern Pj 5 5 5

log2 (Fj + 1) 2.32 2.32 2.32

AvgLog (Wi) 2.32

Keeping this in mind, we propose our probabilistic metric, SemProb, which computes the
probability that the word Wi belongs to the semantic category Sk given that it is extracted
by the patterns P1, P2, . . . , Pn. More specifically, SemProb is calculated as follows:

SemProb (Wi, Sk) = Prob (Sk|Wi)

=
∑

Pj

Prob (Sk|Pj) × Prob (Pj |Wi) (4)

In other words, SemProb assumes that the semantic category Sk and the word Wi are
conditionally independent given Pj , a pattern that extracts Wi. The probabilities in this
equation are estimated using maximum likelihood estimation from the corpus. Specifically,
to compute Prob (Pj |Wi), we divide the number of times Pj extracts Wi in the corpus by the
total number of times that Wi appears in the corpus. To compute Prob (Sk|Pj), we divide
the number of times Pj extracts a word in the semantic category Sk by the total number
of times Pj appears in the corpus. For a given word Wi and a given semantic category
Sk, the sum of the products of these two quantities over all the patterns that extract Wi

gives the probability of category Sk given word Wi. This method does not suffer from the
problem faced by AvgLog since it depends on the probability of the word being extracted
by the patterns and the patterns’ probability of extracting words in the category. For the
same example in Table 2, the SemProb metric for the word Wi is 0.0105, illustrating how
low the probability of Wi’s belonging to the semantic category Sk is. The details are given
in Table 3.

4.3.2 Modification 2: Common Word Pool

Since we have to compute Eqn (4) for every word in the word pool for each of the categories
and assign the word to the semantic category for which the probability is highest, we change
the framework so that we have only one common word pool for all the semantic categories.
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Table 3: Illustration of the effectiveness of SemProb: How unrelated words get low similarity
score.

Patterns that extract Wi P1 P2 P3

Number of times that Wi is extracted by the pattern Pj 10 20 70

Number of times pattern Pj occurs in the text 100 500 1000

Number of times a word in category Sk is extracted by the pattern Pj 5 5 5

Prob (Wiis extracted by Pj) 0.1 0.2 0.7

Prob (Pj extracts a word in Sk) 0.05 0.01 0.005

Prob (Wiis extracted by Pj) × Prob (Pj extracts a word in Sk) 0.005 0.002 0.0035

SemProb (Wi, Sk) = Prob (Wi belongs to semantic category Sk) 0.0105

We still have separate pattern pools for different semantic categories, but the words related
to patterns in the pattern pools will be put into the same common word pool, and allocated
to the most probable semantic category from there. If there are separate word pools for each
semantic category, then we have to add a fixed number of words to each category in each
iterations. Such a constraint may undesirably cause a word to be added to a category that
is not the most likely. However, since we have only one word pool after our modification, we
do not have the constraint that we have to add a fixed number of words to each category,
and we can assign each word to its most likely category. Thus the number of words added
to different categories may vary in the same iteration.

4.3.3 Modification 3: Minimum Support and Maximum Generality

There are some scenarios in which the SemProb metric can produce undesirable results. For
example, consider a very infrequent word Wi that occurs in the entire corpus exactly once.
Assume that pattern Pj , which extracts Wi, extracts words in semantic category Sk with
70% probability. So, according to SemProb, the probability that Wi belongs to Sk becomes
70%. However, this is not sufficient evidence for Wi to belongs Sk. Such cases not being too
uncommon, we have imposed a minimum word frequency constraint on the words that are
put into the word pool, so that words that appear less than a certain number of times are
not considered. A pattern that appears too infrequently in the corpus can also lead to such
a problem. Consider a very infrequent pattern, Pj , that appears exactly twice in the corpus
and extracts two words. If one of these words happen to be a seed word, then the other
word will have a 50% probability to belong to the category of the seed word and Pj will have
R log F value of 0.5. However, since Pj is so infrequent, it does not convey a good evidence
for membership in the semantic category, and we should not allow Pj to put words into the
word pool. Therefore, we disallow such low frequency patterns from being included in the
pattern pool by adding the constraint that the patterns put into the pattern pool must also
have a minimum pattern frequency. Besides these two constraints imposed on the frequency
of occurrence of the words and the patterns, we employ two additional constraints. The first
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is the maximum pattern generality constraint: motivated by Rychlý and Kilgarriff (2007),
we remove from consideration patterns that are too general (i.e., patterns that extract too
many words), by imposing an upper limit on the number of distinct words that a pattern
to be added to a pattern pool can extract. The second is the maximum word frequency
constraint: since content-bearing words are likely to have a lower frequency (see Davidov
& Rappoport, 2006), we impose an upper limit on the maximum number of times a word
appears in the corpus. The four thresholds associated with these four frequency-based
constraints will be tuned automatically using the held-out development set.

4.3.4 Modification 4: N-gram Patterns

In addition to the parse-tree-based subject-verb and verb-object patterns already employed
by Basilisk, we also employ N-gram-based extraction patterns, with the goal of more ro-
bustly capturing the context in which the words appear. We construct N-gram extraction
patterns as follows. For each noun and adjective, X, in the corpus, we create two N-gram
patterns for extracting X: (a) the preceding N words + 〈X〉, and (b) 〈X〉 + the succeeding
N words. For example, in the sentence “... a solid line of thunderstorms was detected ...”,
the bigram patterns for “thunderstorms” would be: “line of 〈X〉” and “〈X〉 was detected”.
The complete sentence is “approaching the ATL area a solid line of thunderstorms was
detected in the vicinity of the airport,” and the words and their extracting bigram patterns
would be:

• ATL: approaching the 〈X〉, 〈X〉 area a

• area: the ATL 〈X〉, 〈X〉 a solid

• solid : area a 〈X〉, 〈X〉 line of

• line: a solid 〈X〉, 〈X〉 of thunderstorms

• thunderstorms: line of 〈X〉, 〈X〉 was detected

• vicinity : in the 〈X〉, 〈X〉 of the

• airport : of the 〈X〉

In addition to constructing N-gram patterns for extracting words, we also construct
N-gram patterns for extracting phrases. To do so, we first remove articles (a, an, the) and
possessive pronouns and adjectives (e.g., my, his) from the beginning of the phrases in the
corpus. For each noun phrase and adjective phrase, X, that appears in the corpus, we
create two N-gram patterns for extracting X: (a) The preceding N words + 〈X〉, and (b)
〈X〉 + the succeeding N words. For example, from the sentence “this was the last of 5 legs
and approaching the end of an 8 hour duty day and 7 hour hard time flying day”, we would
extract the following phrases with the following bigram patterns:

• 5 legs: last of 〈X〉, 〈X〉 and approaching

• end : and approaching 〈X〉, 〈X〉 of an
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• 8 hour duty day : end of 〈X〉, 〈X〉 and 7

• 7 hour hard time flying day : day and 〈X〉

Thus we use three types of patterns in our experiments: bigram patterns for extracting
words, bigram patterns for extracting phrases, and parse-tree-based subject-verb and verb-
object patterns. All these patterns were generated from the reports corpus generated by
combining the narratives of the 140,599 unlabeled reports described in Section 2.2. As
we will see, not all three types of patterns are beneficial to use as far as performance
is concerned. In Section 6, we will show how to automatically select the best subset of
patterns to use based on the development set.

5. Semantic Lexicon-Based Approaches to Cause Identification From

ASRS Reports

We investigate a heuristic-based approach and a learning-based approach to cause identifi-
cation, both of which exploit information provided by an automatically acquired semantic
lexicon. This section describes the details of these two approaches.

5.1 Heuristic-Based Approach

The heuristic-based approach operates in essentially the same way as the baseline cause
identification system described in Section 3, where the Occurrence Heuristic is used to label
a report with shaping factors. The only difference is that the words and phrases used
by the Occurrence Heuristic in the baseline are manually identified, whereas those in our
heuristic-based approach are acquired by our Modified Basilisk procedure.

5.2 Learning-Based Approach

Our learning-based approach to the cause identification problem is to recast it as a classifi-
cation task. Note that we have a multi-class multi-labeled classification task: there are 14
classes and each report can be labeled with more than one class. A number of approaches
have been proposed to tackle multi-class multi-labeled classification tasks. In the rest of
this section, we describe the three existing approaches to multi-class multi-labeled text clas-
sification that we explore in our experiments (Section 5.2.1), and provide an overview of
the theory of Support Vector Machines (SVMs), the underlying learning algorithm we use
to train classifiers employed by these three approaches (Section 5.2.2).

5.2.1 Three Approaches to Multi-Class Multi-Labeled Text Classification

One-Versus-All. In this approach, we train one binary classifier for each shaping factor
Sk to determine whether a report will be labeled with Sk. More specifically, we follow the
One-Versus-All classification scheme: for a given Sk, the reports in the training set that
contains Sk in its set of labels (assigned by the annotator) are the positive instances for the
binary classifier and the rest of the reports in the training set are the negative instances.
After training, we apply the classifiers to a report in the test set independently of other
reports, and label the report with each Sk for which the corresponding classifier classifies
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the report as positive. Thus we convert cause identification to a multi-class multi-labeled
document classification task.

While any learning algorithm can be used in principle to train classifiers for this One-
Versus-All scheme, we use Support Vector Machines12 for training and testing the classifiers,
primarily due to its successes in various text classification tasks. Each classifier is trained
with two types of features: (1) unigrams and bigrams from the report narratives, and (2)
words and phrases from the semantic lexicon. The feature values are TF*IDF values.

While our shaping factor-labeled data set of 1333 reports is substantially larger than the
set of 20 reports annotated by the NASA researchers (see Section 1), it is arguably fairly
small from a machine learning perspective. Hence, it is conceivable that the performance
of our SVM classifiers would be limited by the small size of the training data. As a result,
we investigate whether we can improve the One-Versus-All approach using a transductive
SVM, which is a version of the inductive SVM described above that attempts to improve
classifier performance by combining both labeled and unlabeled data (see Section 5.2.2
for an overview of transductive learning). For our cause identification task, the unlabeled
reports in the test set serve as unlabeled data in the transductive learning procedure.

MetaLabeler. As our second approach, we employ MetaLabeler (Tang, Rajan, & Narayanan,
2009) for classifying multi-class multi-labeled text data. Here, a model is first learned that
predicts the number of labels that an instance may have. In addition, a set of binary clas-
sifier models, one for each possible label, are learned to predict the likelihood of each label
for an instance. When an instance is classified, the first model predicts K, the number of
possible labels for that instance, and from the output of the second set of classifiers, K

labels are chosen with the highest likelihood for that instance.
In our implementation of this approach, the first model is learned using SVMmulticlass,

which is an implementation of multi-class SVM described by Crammer and Singer (2002)13.
The second set of classifiers are the same set described in Section 5.2.2. But in this case,
for a given instance x, the decision functions f(x) = w · x− b for each of the classifiers are
evaluated, and the positive decision values are sorted. Then the top K labels corresponding
to the highest values of the decision functions are assigned to the instance. Both the
multiclass classifier and the set of binary classifiers are trained using the same types of
features as in the One-Versus-All approach, namely unigrams and bigrams from the reports,
and words and phrases from the semantic lexicon. The feature values are also the same as
in One-Versus-All approach, namely TF*IDF values.

Ensembles of Pruned Sets. In the Pruned Sets approach (Read, Pfahringer, & Holmes,
2008), the multi-class multi-label text classification problem is transformed into a multi-
class single-label text classification problem by selecting a subset of the label combinations
most frequently occurring in the dataset and assigning a unique pseudo-label to each chosen
label combination.

The first step in this algorithm is to choose the label sets for training. In this step,
those label sets are chosen that meet the minimum frequency requirement in the training
set. Using the minimum frequency constraint prunes away infrequently occurring label sets
that have frequency less than p, leaving only label combinations that are frequent and thus

12. As implemented in the SVMlight software package by Joachims (1999)
13. Available at http://svmlight.joachims.org/svm_multiclass.html
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more important. The training instances that are labeled with the pruned label sets are
also removed from the training set. The minimum cardinality parameter, b, is then used
to reintroduce some of the pruned instances back to the training set in order to minimize
the information loss from the pruning process. First the label sets of the rejected instances
are broken down into smaller subsets of at least size b. Then those new subsets that have
frequency higher than p are reintroduced, and the pruned training instances whose label
sets are supersets of these newly accepted label sets are reinstated into the training set. The
role of the parameter b in this case is to ensure that not too many such instances with small
label sets are put back, because that will cause the average number of labels to reduce,
resulting in smaller number of labels per instance at classification time.

The next step is to learn classifiers on the selected label sets. First, each accepted label
set is assigned a unique pseudo-label, thus transforming the multi-label classification prob-
lem into a single-label classification problem. Then an ensemble of M classifiers is learned
to predict these pseudo-labels given an instance (using the same multi-class SVM imple-
mentation as in MetaLabeler), where each classifier in the ensemble is trained on a different
random sample of the training data. Since (1) the label sets for training the classifiers
represent only a subset of all the label combinations present in the original training data
and (2) the test data may contain label combinations that are not present in the training
data, having an ensemble of classifiers allows the system to generate label combinations not
observed at training time. For example, let the label combinations {l1, l3} and {l2, l3} be
present in the training data. Then, if one classifier in the ensemble labels a test instance
with {l1, l3} and another classifier in the ensemble labels the same instance with {l2, l3},
then that instance may be labeled with {l1, l2, l3} (depending on the actual voting policy in
effect at classification time) even if this combination is not present in the training data. The
classifiers in the ensemble are built using the same two types of features as the One-Versus-
All approach, namely unigrams and bigrams from the reports and words and phrases from
the semantic lexicon learned by our modified Basilisk framework.

Finally, when classifying an instance, each of the M classifiers assigns one pseudo-label
to the instance. These pseudo-labels are then mapped back to the original label combination
and the vote for each actual label is counted and normalized by dividing by the number of
classifiers, M , in order to bring the prediction for each possible label to the range between
0.0 and 1.0. Then a threshold t is used such that each label that has a prediction value
greater than or equal to t is assigned to the instance. This scheme is used to make it possible
to assign label combinations unseen at training time to the test instances.

5.2.2 An Overview of Support Vector Machines

SVMs have been shown to be very effective in text classification (Joachims, 1999). Below
we describe two versions of SVMs: (1) inductive SVMs, which learn a classifier solely from
labeled data, and (2) transductive SVMs, which learn a classifier from both labeled and
unlabeled data.

Inductive SVMs. Given a training set consisting of data points belonging to two classes,
an inductive SVM aims to find a separating hyperplane that maximizes the distance from
the separating hyperplane to the nearest data points. These nearest data points act as the
support vectors for the plane.
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More formally, let D be the data set with m data points where

D = {(xi, ci) |xi ∈ Rn, ci ∈ {−1, 1} , 1 ≤ i ≤ m} (5)

Each point xi is represented as an n-dimensional vector and is associated with a class label
ci. The inductive SVM classifier attempts to find a hyperplane w · x− b = 0 that is at the
maximum distance from the nearest data points of opposite labels. This hyperplane would
be in the middle of the two hyperplanes containing the support vectors of each class. These
two hyperplanes are w ·x−b = 1 and w ·x−b = −1, and their distance is 2

|w| . Therefore, the
desired separating hyperplane can be found by solving the following quadratic programming
optimization problem:

Minimize
1

2
|w|2

subject to ci (w · xi − b) ≥ 1, 1 ≤ i ≤ m (6)

However, in practice many classes are not linearly separable. To handle these cases, a set
of slack variables is used to represent the misclassification of point xi. Then the problem
becomes:

Minimize
1

2
|w|2 + C

∑

i

ξi

subject to ci (w · xi − b) ≥ 1 − ξi, ξi > 0, 1 ≤ i ≤ m (7)

where the ξi are additional variables representing training errors and C is a constant rep-
resenting trade-off between training error and margin. More details can be found in Cortes
and Vapnik (1995). In our experiments, we use the radial basis function (RBF) kernel,
where every dot product is replaced by the function k (x,x′) = exp

(

−γ|x,x′|2
)

, for γ > 0.
In addition, both γ and C are chosen by cross-validation on the training set.

Transductive SVMs. In the transductive setting, in addition to the set of labeled data
points, we also exploit a set of unlabeled data points, T = {x∗

i |x
∗
i ∈ Rn, 1 ≤ i ≤ k}, that

are taken from the test set. As described by Joachims (1999), the goal is then to minimize
the expected number of classification errors over the test set. The expected error rate is
defined in Vapnik (1998) as follows:

R (L) =

∫

1

k

∑

i

Θ (hL (x∗
i ) , c∗i ) dP (x1, c1) . . . dP (x∗

k, c
∗
k) (8)

where L = D ∪ T , hL is the hypothesis learned from L, and Θ (a, b) is zero if a = b

and one otherwise. The labeling c∗i of the test data and the hyperplane that maximizes the
separations of both training and testing positive and negative instances are found by solving
the following quadratic programming optimization problem, which is a modified version of
Eqn (7):

Minimize
1

2
|w|2 + C

∑

i

ξi + C∗
∑

j

ξ∗j

subject to ci (w · xi − b) ≥ 1 − ξi, ξi > 0, 1 ≤ i ≤ m

c∗j
(

w · x∗
j − b

)

≥ 1 − ξ∗j , ξ∗j > 0, 1 ≤ j ≤ k (9)
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Similar to the inductive SVM in Section 5.2.2, we use the RBF kernel in our experiments
involving the transductive SVM.

6. Evaluation

The goal of our evaluation is to study the effectiveness of our two approaches to cause iden-
tification, namely the semantic lexicon learning approach and the classification approach.
We do so by testing the performance of the approaches on a randomly chosen set of reports
that have been manually annotated with the shaping factors that caused the incidents de-
scribed in them (Section 2.3.1). We start by describing the experimental setup (Section 6.1),
followed by the baseline results (Section 6.2) and the performance of our two approaches
(Sections 6.3 and 6.4). We then describe the experiment where we increase the amount
of training data available to the classification approach and investigate how this impacts
performance (Section 6.5). After that, we perform an analysis of the errors of the best-
performing approach (Section 6.6) and conduct additional experiments in an attempt to
gain a better insight into the cause identification task that can help direct future research
(Section 6.7). Finally, we present a summary of the major conclusions that we draw from
the experiments (Section 6.8).

6.1 Experimental Setup

As described in Section 2.3, out of the 140,599 reports in the entire corpus, we have manually
annotated 1333 incident reports with the shaping factors. We have used the first 233 of
them to (1) manually extract the initial seed words and phrases for the semantic lexicon
learning procedure, and (2) train classifiers for identifying shaping factors associated with
a report. Of the remaining reports, we have used 1000 reports as test data and 100 reports
as development data (for parameter tuning).

6.1.1 Evaluation Metrics

As mentioned in Section 2.1, there are 14 shaping factors, and a report may be labeled
with one or more of these shaping factors. We evaluate the performance of our cause
identification approaches based on how well the automatic annotations match the human
annotations of the reports in the test set. For evaluation, we use precision, recall and
F-measure, which are computed as described by Sebastiani (2002). Specifically, for each
shaping factor Si, i = 1, 2, . . . 14, let ni be the number of reports in the test set that the
human annotator has labeled with Si, i.e., the number of true Si-labeled reports in the test
set. Further, let pi be the number of reports that an automatic labeling scheme Ci has
labeled with Si, and let tpi be the number of reports that Ci has labeled correctly with Si.
Then, for the shaping factor Si, we have the following performance metrics:

• Precisioni is the fraction of reports that are really caused by shaping factor Si among
all the reports that are labeled with Si by the labeling scheme.

Precisioni =
tpi

pi
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• Recalli is the percentage of reports really caused by shaping factor Si that are labeled
by the labeling scheme with the shaping factor Si.

Recalli =
tpi

ni

Thus we obtain a measure of the labeling scheme’s performance for each of the shaping
factors. To obtain the overall performance of the labeling scheme, we sum these counts
(i.e., ni, pi and tpi) over all shaping factors and compute the micro-averaged precision,
recall and F-measure from the aggregated counts as described by Sebastiani and repeated
as follows:

Precision =

∑

i tpi
∑

i pi

Recall =

∑

i tpi
∑

i ni

F -measure =
2 × Precision × Recall

Precision + Recall

Thus for each labeling scheme we have one set of overall scores reflecting its performance
over all classes.

6.1.2 Statistical Significance Tests

To determine whether a labeling scheme is better than another, we apply two statistical
significance tests — McNemar’s test (Everitt, 1977; Dietterich, 1998) and the stratified ap-
proximate randomization test (Noreen, 1989) — to test whether the difference in their per-
formances is really statistically significant. McNemar’s test compares two labeling schemes
on the basis of errors (i.e., whether both the labeling schemes are making the same mis-
takes), and the stratified approximate randomization test compares the labeling schemes
on F-measure. Both tests have been extensively used in machine learning and NLP litera-
ture. In particular, stratified approximate randomization is the standard significance test
employed by the organizers of the Message Understanding Conferences to determine if the
difference in F-measure scores achieved by two information extraction systems is signifi-
cant (see Chinchor, 1992; Chinchor, Hirschman, & Lewis, 1993). Since we are ultimately
concerned about the difference in F-measure scores between two labeling schemes in cause
identification, our discussion of statistical significance in the rest of this section will be fo-
cused solely on the stratified approximate randomization test. For both tests, we determine
significance at the level of p < 0.05.

6.2 Baseline System

Recall that we use as our baseline the heuristic method described in Section 3, where the
Occurrence Heuristic is used to label a report using the seed words and phrases manually
extracted from the 233 training reports. Results, shown in the Experiment 1 section of
Table 4, are reported in terms of precision (P), recall (R), and F-measure (F). The last
two columns show whether a particular automatic labeling scheme is significantly better
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than the baseline with respect to McNemar’s test (MN) and stratified approximate ran-
domization test (AR) [Statistical significance and insignificance are denoted by a X and an
X, respectively]. When evaluated on the 1000 reports in the test set, the baseline achieves
a precision of 56.48%, a recall of 40.47% and an F-measure of 47.15%.

Table 4: Report labeling performance of different methods.
Approach Feature Set P R F MN AR

Experiment 1: Baseline

Heuristic Seed words 56.48 40.47 47.15 N/A N/A

Experiment 2: Semantic lexicon approach

Heuristic
Lexicon from modified Basilisk 53.15 47.57 50.21 X X

Lexicon from original Basilisk 49.23 42.78 45.78 X X

Experiment 3: Supervised One-Versus-All classification approach

SVM

Unigrams 37.54 64.50 47.46 X X

Unigrams and bigrams 42.19 47.39 44.64 X X

Lexicon words 48.72 37.08 42.11 X X

Unigrams and lexicon words 37.05 65.96 47.45 X X

Unigrams, bigrams, lexicon words 51.19 36.59 42.68 X X

Experiment 4: Transductive One-Versus-All classification approach

SVM

Unigrams 11.84 67.78 20.16 X X

Unigrams and bigrams 50.00 33.86 40.38 X X

Lexicon from modified Basilisk 42.83 30.64 35.73 X X

Unigrams and lexicon words 51.30 38.29 43.85 X X

Unigrams, bigrams, lexicon words 55.90 32.77 41.32 X X

Experiment 5: MetaLabeler approach

SVM

Unigrams 58.80 16.63 25.92 X X

Unigrams and bigrams 66.02 20.51 31.30 X X

Lexicon words 63.23 17.11 26.93 X X

Unigrams and lexicon words 70.29 20.39 31.61 X X

Unigrams, bigrams, lexicon words 68.79 24.21 35.82 X X

Experiment 6: Ensembles of pruned sets approach

SVM

Unigrams 22.44 63.05 33.09 X X

Unigrams and bigrams 22.22 67.42 33.42 X X

Lexicon from modified Basilisk 20.72 73.67 32.35 X X

Unigrams and lexicon words 23.72 85.25 37.12 X X

Unigrams, bigrams, lexicon words 16.93 71.42 27.37 X X

Experiment 7: Additional training data with 5-fold cross-validation

SVM

Unigrams 42.21 63.65 50.76 X X

Unigrams and bigrams 43.58 58.31 49.88 X X

Lexicon words 56.06 40.41 46.97 X X

Unigrams and lexicon words 54.75 52.43 53.56 X X

Unigrams, bigrams, lexicon words 54.81 52.55 53.66 X X
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6.3 Experiments with Semantic Lexicon Approach

Recall that in the semantic lexicon learning approach, we label a report in the test set using
the Occurrence Heuristic in combination with the semantic lexicon learned by the modified
Basilisk framework described in Section 4.3. Before showing the results of this approach,
we first describe how we tune the parameters of the modified Basilisk framework.

6.3.1 Parameters

Our modified Basilisk framework has five parameters to tune. The first four are the thresh-
olds resulting from the four frequency-based constraints involving minimum support and
maximum generality (see Modification 3 in Section 4.3.3). More specifically, the four
“threshold” parameters are (1) the minimum frequency of a word (MinW ), (2) the maxi-
mum frequency of a word (MaxW ), (3) the minimum frequency of a pattern (MinP ), and
(4) the maximum number of words extracted by a pattern (MaxP ). In addition, recall from
Section 4.3.4 that we have three types of patterns (namely, subject-verb/verb-object pat-
terns, bigram patterns for extracting words, and bigram patterns for extracting phrases).
Our fifth parameter is the “pattern” parameter, which determines which subset of these
three types of patterns to use. Our goal is to tune these five parameters jointly on the
development set. In other words, we want to find the parameter combination that yields
the best F-measure when the Occurrence Heuristic is used to label the reports in the devel-
opment set. However, to maintain computational tractability, we need to limit the number
of values that each parameter can take. Specifically, we limit ourselves to five different com-
binations of the four “threshold” parameters (see Table 5), and for each such combination,
we find which subset of the three types of patterns yields the best F-measure on the devel-
opment set. Hence the total number of experiments we need to run is 35 (= 7 (the number
of (non-empty) subsets from the three types of patterns) × 5 (the number of combinations
of the first four parameters)). Our experiment indicates that combination 3 in Table 5,
together with the bigram patterns for extracting phrases, yields the best F-measure on the
development set, and is therefore chosen to be the best parameter combination involving
these five parameters.

The new words and phrases acquired in the first two iterations of modified Basilisk
by using this parameter combination are shown in Appendix B. Here we see that no new
words are acquired in the first two iterations for eight of the 14 categories. The reasons
are that (1) unlike the original Basilisk framework, modified Basilisk employs a common
word pool, thus no longer requiring that five words must be added to each category in each
bootstrapping iteration; and (2) the application of minimum support to words has led to
the filtering of infrequently-extracted words. These two reasons together ensure that the
modified Basilisk framework focuses on learning high-precision words for each category.

6.3.2 Results

The semantic lexicon learned using the best parameter combination (based on the perfor-
mance on the development set) is used to label the reports the test set. As we can see from
row 1 of Experiment 2 of Table 4, the Modified Basilisk approach achieves a precision of
53.15%, a recall of 47.57% and an F-measure of 50.21%. In comparison to the baseline,
this method has a lower precision and a higher recall. The increased recall shows that more
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Table 5: Combinations of the four “threshold” parameters for the modified Basilisk frame-
work.

Combination MinW MaxW MinP MaxP

Combination 1 25 2500 250 100
Combination 2 25 2500 100 100
Combination 3 10 2500 250 100
Combination 4 10 2500 250 250
Combination 5 10 5000 250 100

reports are covered by the expanded lexicon. However, the learned lexicon also contains
some general words that have resulted in a drop in precision. Overall, it has a higher F-
measure, which is statistically significantly better than that of the baseline according to
both significance tests. This vindicates our premise that learning more words and phrases
relevant to the shaping factors will help us identify the shaping factors of more reports.

6.3.3 Results Using Original Basilisk

To better understand whether our proposed linguistic and algorithmic modifications to
the Basilisk framework (see Section 4.3) are indeed beneficial to our cause identification
task, we repeated the experiment described above, except that we replaced the lexicon
generated using the modified Basilisk framework with one generated using the original
Basilisk framework. More specifically, we implemented the original Basilisk framework as
described by Thelen and Riloff (2002), but with one minor difference: in the case of the
bigram patterns extracting phrases, the word pools described in Section 4.2 were populated
with entire phrases instead of only head words. This was done because the seed words list
extracted in Section 2.3.2 contains both words and phrases and hence we would like to learn
entire phrases.

The only parameter to tune for the original Basilisk framework is the pattern parameter,
which, as mentioned above, determines which subset of the three types of patterns to use.
Therefore, we construct seven lexicons (corresponding to the seven non-empty subsets of
the three types of patterns) using the original Basilisk framework, and determine which
lexicon yields the best performance on the development set. Our experiment indicates that
the best development result was achieved when only the bigram patterns for extracting
phrases were used. Applying the corresponding semantic lexicon in combination with the
Occurrence Heuristic to classify reports in the test set, we observe a precision of 49.23%,
a recall of 42.78% and an F-measure of 45.78% (see row 2 of the Experiment 2 section
of Table 4). This lower precision and higher recall indicates that the lexicon has learned
words that are very general (i.e., words that appear in many of the reports and with little
discriminative power). The new words and phrases acquired in the first two iterations of
original Basilisk are shown in Appendix C. As can be seen, the original Basilisk framework
adds a lot of words, but many of them are not relevant to the shaping factors to which they
were added, and some are not semantically similar to the seed words for that shaping factor.
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Hence, although recall improves by a small amount, precision drops significantly, leading
to a precipitation in F-measure. These results suggest that our proposed modifications to
the original Basilisk framework are indeed beneficial as far as our cause identification task
is concerned.

6.4 Experiments with Classification Approach

Recall that in the classification approach to cause identification, we train an SVM classifier
for each shaping factor Sk to determine whether a report should be labeled as Sk. As desired,
this approach allows a report in the test set to potentially receive multiple labels, since the
resulting 14 SVM classifiers are applied independently to each report. To investigate the
effect of different feature sets on the performance of cause identification, we employ five
feature sets in our experiments: (1) unigrams only; (2) unigrams and bigrams; (3) lexicon
words only; (4) unigrams and lexicon words; and (5) unigrams, bigrams and lexicon words.
The unigrams and bigrams were generated from the reports in the training set by first
removing stop-words and ignoring case information, while the semantic lexicon was the
one constructed by our modified Basilisk framework. Before showing the results of our
supervised and transductive experiments, we first describe the parameters associated with
the classification approach.

6.4.1 Parameters

For each SVM classifier, we have two parameters to tune. The first parameter is the
percentage of features to use. Feature selection has been shown to improve performance
in text classification tasks (Yang & Pedersen, 1997). As a result, we employ information
gain (IG), one of the most effective methods for feature selection according to Yang and
Pedersen’s experimental results. Since we assume that the words from the semantic lexicon
are all relevant to cause identification, we do not apply feature selection to the lexicon words.
Rather, we apply feature selection only to the unigrams and bigrams. More specifically, if
only unigrams are used as features (as in the first of the five feature sets mentioned at the
beginning of this subsection), we select the N% unigrams with the highest IG, where the
value of N is tuned using the development set. When both unigrams and bigrams are used
as features (as in second and fifth feature sets), we combine the unigrams and bigrams into
one feature set and select the N% unigrams and bigrams with the highest IG, where the
value of N is again tuned using the development set. In our experiments, we tested 10
values for N : 10, 20, . . ., 100.

The second parameter associated with the SVM classifiers is the classification threshold.
By default, SVM sets the classification threshold to 0, meaning that every data point with
a classification value above 0 is classified as positive, and the rest will be classified as
negative. However, since an SVM classifier is trained to optimize classification accuracy,
the best classification threshold may not be 0 for our cause identification task, where the
goal is to optimize F-measure. As a result, we parameterize the classification threshold,
allowing it to take one of 21 values: −2.0,−1.8, . . . , 1.8, 2.0.

As usual, we tune the two parameters described above jointly rather than independently.
In other words, for each possible value combination of the percentages of features and
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classification threshold, we compute the F-measure of the classifiers on the development set
over all the classes and choose the value pair that yields the maximum F-measure.

To get a better idea of how these two parameters impact performance, we show in
Figure 3 how F-measure changes on the development set as we vary the values of the
two parameters, from the experiment where the underlying SVM classifiers employ only
unigrams as features. As we can see, the best F-measure was achieved by employing the
top 50% unigrams and a classification threshold of −0.8. Using the default parameter values
(no feature selection and a classification threshold of 0) yields a F-measure of approximately
18%. Overall, these results provide suggestive evidence that both parameters can have a
large impact on performance.
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Figure 3: Variation of F-measure with different percentages of unigram features and clas-
sification thresholds used for SVM classification.

6.4.2 Supervised One-Versus-All Classifiers: Results and Discussions

Results of the supervised One-Versus-All classification approach using the five feature sets
described above are shown in the Experiment 3 section of Table 4.14 As we can see, when
feature sets 1 (unigrams only) and 4 (unigrams and lexicon words) are used, we achieve
the best results — F-measure scores of 47.46% and 47.45%, respectively. However, even
these best results are statistically indistinguishable from the baseline result (according to
approximate randomization test), and are significantly worse than the result produced by

14. Recall that in the supervised approach, the SVM classifiers were trained on only the 233 reports in the
training set.
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the modified Basilisk approach (row 1 of Experiment 2) [see Appendix D, which contains
statistical significance test results that we obtained by applying stratified approximate ran-
domization test to each pair of experiments in Table 4].

In fact, they also indicate that the Occurrence Heuristic has made more effective use
of the learned semantic lexicon than the SVM classifiers: the SVM classifiers trained with
only the lexicon words as features (row 3 of Experiment 3) produced a significantly worse
F-measure score (42.11%) than that of the Occurrence Heuristic (50.21%), due to large
drops in both recall and precision. Overall, these results suggest that the supervised ap-
proach performs worse than the heuristic-based semantic lexicon approach in this task. We
hypothesize that the limited amount of training data available to the SVM learner has con-
tributed to the poor performance of the supervised approach. We will test this hypothesis
in Section 6.5

Two additional observations are worth mentioning. First, comparing rows 1 and 4 of
Experiment 3, we see that the lexicon words are not useful for cause identification in the
presence of unigrams. Second, comparing rows 1 and 2 and then rows 4 and 5 of Experiment
3, we see that using bigrams hurts performance. A likely reason can be attributed to
our feature selection method: since we choose the top N% features, the bigram features
significantly outnumber the unigram features, thus potentially diminishing the effect of
the latter. One solution to this problem is to employ separate parameters when selecting
unigrams and bigrams, but we decided against this choice, as it would lead to an explosion
in the size of the parameter space.

6.4.3 Transductive One-Versus-All Classifiers: Results and Discussions

To investigate whether it is useful to exploit unlabeled data, we employ transductive SVM
to combine labeled and unlabeled data. Essentially, we repeated the experiments in the
supervised One-Versus-All classification approach, except that we trained each transductive
SVM classifier using both the (labeled) reports in the training set and the (unlabeled)
reports in the test set as described in Section 5.2.2. The two parameters — the percentage of
features used and the classification threshold — are tuned jointly to maximize F-measure on
the development set, as described in the supervised approach, except that the transductive
SVMs used in the parameter tuning step are trained using the training set as labeled data
and the development set as unlabeled data.

Results of these transductive SVM classifiers are shown in the Experiment 4 section of
Table 4. Overall, the transductive results are significantly worse than the corresponding
results in Experiment 3. However, the conclusions that we can draw from the transductive
results are slightly different from those drawn from the supervised results. First, using
bigrams significantly improves performance when the lexicon words are absent (comparing
rows 1 and 2 of Experiment 3) but hurts performance when the lexicon words are present
(comparing rows 4 and 5). Second, adding lexicon words to the unigram-only feature
set (comparing rows 1 and 4) significantly improves performance, suggesting the potential
usefulness of the lexicon features. Nevertheless, Experiments 3 and 4 both indicate that (1)
using only lexicon words as features are far from adequate, and (2) the best performance is
achieved when lexicon words are added to unigrams as features.
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6.4.4 Results From Additional Supervised Approaches

Next, we present the results from the two additional supervised approaches, namely Met-
aLabeler and ensembles of pruned sets (Section 5.2.1). The feature sets used by both
approaches are the same as those used by the One-Versus-All method. As in the One-
Versus-All method, both of these approaches use SVM as the underlying learning algorithm
for classifier training.

MetaLabeler. The only parameter that needs to be tuned for the MetaLabeler approach
is the percentage of features to use (N), which was selected based on classification perfor-
mance (F-measure) on the development set.

Results of the MetaLabeler approach are shown in the Experiment 5 section of Ta-
ble 4. There are some interesting points about the these results. First, the MetaLabeler
method results in much better precision than the other methods. Second, this method
shows consistent performance improvement when bigram features are added, as can be seen
by comparing the first and second, and fourth and fifth rows of the MetaLabeler results.
Third, the inclusion of the lexicon word features are also found to improve performance,
as seen by comparing the first and fourth, and second and fifth, rows of the MetaLabeler
results. These two observations show that the MetaLabeler approach can properly take
advantage of the increasingly richer feature sets used in these experiments, with the best
performance occurring when all types of features are used (fifth row). Unfortunately, the
approach suffers from poor recall, a fact that prevents it from even matching, let alone
surpassing, the F-measure scores of the other methods. Since the method discards the less
probable labels when it assigns the labels to the documents, precision is much improved
but recall suffers.

Ensembles of Pruned Set. Among the parameters of the ensembles of pruned sets
approach, the number of classifiers in the ensemble, M , and the size of the sample of the
training data on which each classifier in the ensemble was trained, were chosen to be the
same ones used by Read et al. (2008), namely 10 and 63% respectively. The rest of the
parameters of the pruned set approach, namely the minimum cardinality (b), the minimum
support (p), the percentage of features to use (N), and the threshold for label assignment (t)
were selected jointly based on classification performance (F-measure) on the development
set. The values from which the specific value of b was chosen was 2, 3 and 5. The possible
values of p tested in this experiment was 3, 5 and 10. The threshold parameter t was chosen
from the values 0.1, 0.2, . . . , 1.0, and the percentage of features, N was chosen from the
values 10%, 20%, . . . , 100%. Thus we had 900 parameter combinations for each feature set,
and from these parameter combinations, the combination for which the performance on the
development test set was best (in terms of F-measure) was chosen for running the system
on the test set.

Results of the pruned set approach are shown in the Experiment 6 section of Table 4.
Here, we see the best performance for the combination of unigram and lexicon word features,
better than the performance using the unigrams and lexicon words individually. However,
performance degraded with the inclusion of bigrams into this combination. Precision is
much lower than those of the other methods, which indicates that the selection of the label
sets from the training set of only 233 reports may not have been adequate.
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6.5 Experiments Using Additional Training Data

The results of the above experiments are somewhat surprising: the best-performing super-
vised classification approach — the One-Versus-All approach — performs significantly worse
than the modified Basilisk approach. We hypothesize that its poor performance can be at-
tributed to the scarcity of (labeled) training data. To test this hypothesis, we conducted a
set of experiments in which we increased the amount of training data for the One-Versus-All
supervised classification approach by applying cross-validation. More specifically, we take
the test set of 1000 reports and split it into five disjoint subsets of equal size, T1, T2, . . . , T5.
Then, for each i we construct the training set by merging all Tj , where i 6= j, with the
original training set of 233 reports. After that, we train an SVM classifier on this merged
training set and test on the set Ti. When this is done over all five folds, we compute the
F-measure over the entire test set. In other words, the results we report for this set of
experiments are not F-measure scores averaged over the five folds. We again experimented
with the five set of features used in the supervised experiments in Section 6.4. The two
parameters, the percentage of features used and the classification threshold, are tuned in
exactly the same way as in the supervised experiments.

Results of this set of experiments are shown in the Experiment 7 section of Table 4. In
comparison to the results of Experiment 3, F-measure increases uniformly and significantly.
This provides empirical evidence that the performance of the supervised classifiers is limited
by the amount of data on which they were trained. With feature sets 4 (unigrams and
lexicon words) and 5 (unigrams, bigrams and lexicon words), we achieve the best results
— F-measure scores of 53.56% and 53.66% respectively — the difference between which
is statistically insignificant. These two results are in turn significantly better than that of
modified Basilisk (row 1 of Experiment 2), according to the approximate randomization
test. In addition, except for feature set 3 (lexicon words only), results obtained in this
experiment are significantly better than that of the baseline, again according to approximate
randomization test. Overall, these results suggest the difficulty of the cause identification
task: by comparing rows 4 of Experiments 3 and 5, we see that F-measure increases by only
about 6% as the number of training reports is increased from 233 to 1033.

A few more points deserve mentioning. As in previous learning-based experiments, us-
ing only lexicon words as features yields the worst result in this set of experiments, and
combining unigrams and lexicon words still yields one of the best results. Nevertheless,
in comparison to Experiment 3, while using bigrams still does not improve performance,
it does not hurt performance (from a statistical significance point of view). Perhaps more
importantly, comparing rows 1 and 4 of Experiment 7, we see that augmenting unigrams
with lexicon words yields significantly better performance. This indicates that the lexicon
words are indeed useful features for cause identification, but their usefulness may not be
revealed when a small labeled training set is used, as seen in Experiment 3. Learning algo-
rithms attempt to learn which features are important or relevant for the given classification
task based on the training examples they see, and the more there are training examples,
the better they are able to learn the relevance of the features. Our results show a very
poignant illustration of this phenomenon: the SVM learner is able to use the lexicon word
features effectively only when given a large number of training instances. This can be seen
more clearly from the SVM learning curves in Section 6.7.3. This indicates that lexicon
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words are useful as features only when we have sufficiently large training data. However,
lexicon words may still be used effectively in ways other than as linguistic features even if
the training set is small, as we can see from the results of Experiment 2, which uses the
lexicon words in combination with the Occurrence Heuristic to achieve performances that
are statistically significantly better than the baseline.

6.6 Error Analysis and Lessons Learned

In order to gain a clearer insight into our cause identification problem and help direct
future research, we manually analyzed the errors made by the best-performing system (i.e.,
the heuristic based approach using the semantic lexicon learned by our modified Basilisk
framework) on a randomly chosen 100-report subset of the test set. More specifically, we
looked at the false negatives (cases in which the annotator labeled a report with a shaping
factor but the system did not) and false positives (cases in which the system labeled a
report with a shaping factor but the annotator did not). For each false negative, we tried
to determine why the system failed to correctly label the report, and for each false positive,
we tried to determine why the system labeled the report erroneously. Table 6 shows the
number of false positives and false negatives along with the reasons for these errors that we
discovered in our analysis. The following sections discuss the errors and their reasons in
more detail. Note that since a shaping factor may be indicated by more than one keyword
in a single report, there can be more than one reason for a false negative (positive) error.
Thus the sum of the frequencies of different types of false negative (positive) errors is greater
than the total number of false negatives (positives).

Table 6: Error analysis details: different reasons for the false positive and false negative
errors.

False negatives 58 Percentage

Sentence fragments bigger than phrases 24 41.38%
Implicit causes that cannot be identified by keywords 23 39.66%
Phrases that were not learned 14 24.14%

False positives 83

Keyword was too general 50 60.24%
Keyword indicates concept that appears in the report but
does not contribute to the incident

32 38.55%

Wrongly learned keyword 6 7.23%
Keyword was used in a negative context 3 3.61%
Keyword was used in a hypothetical context 1 1.20%

False negatives. For each false negative error, we read the report narrative to identify
some word, phrase or sentence fragment that may indicate the shaping factor that our
system missed. ¿From this analysis, we identified three reasons for the false negatives as
follows:
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1. Required sentence fragments larger than phrase. We identified 24 sentence
fragments that are bigger than phrases (i.e., those that consist of two or more phrases).
For example, the sentence fragment having never been to DCA before consists of 4
phrases: having never been, to, DCA and before. Together, they convey the meaning
that the reporter was unfamiliar with DCA, but it is not possible to identify a single
word or phrase that conveys the same meaning. Since our framework learns only
phrases, it was not possible to learn these sentence fragments.

2. Cause not identifiable by specific words or phrases. In 21 instances, no specific
word, phrase or sentence fragment could be identified that could pinpoint the shaping
factors responsible for the incident. For example, a number of reports, including
report#566757, describe incidents in which there is a miscommunication between the
pilot and the air traffic controller, but that miscommunication must be understood by
following their conversation. A human reading the report can easily understand that
the pilot is claiming the controller said one thing and the controller is claiming he
said something different, but to detect that kind of a scenario, a machine would need
to generate a complete model of the discourse that identifies the specific topic of the
conversation, the participants, the claims each participant makes about the topic, the
fact that the claims are contradictory, and also the fact that the contradiction arises
from miscommunication between them. The preprocessed narrative of this report is
shown in Appendix E.

3. Missing phrases. In 14 cases the necessary phrase was missing from the semantic
lexicon learned by our modified Basilisk framework. Out of these 14 phrases, six
phrases were too infrequent to be considered by our modified Basilisk framework due
to the minimum frequency criterion. For example, the phrase “temperature flux”
appears only once in the entire corpus and hence was not considered by our system.
Two phrases were verb phrases, which could not have been learned as we focused
only on learning noun phrases and adjective phrases. There are four phrases that
are not semantically similar to any seed word for their shaping factors. For example,
the phrase “garbled transmission” is not semantically similar to any seed word for
the shaping factor Communication Environment, such as disturbance, static, radio
discipline, congestion and noise. Finally, there are two phrases that should have been
learned by the system, but were not learned because at the time they were put into
the word pool, other words with higher scores were selected instead.

False positives. In the case of false positives, we looked into the report narrative and
the keyword that was found in the content to determine why the indication of the shaping
factor for the incident described in the report was incorrect. The different reasons that we
identified are as follows.

1. Too general keywords. We have observed a large number of false positives due to
keywords being too general (i.e., keywords that have been extracted or learned for a
shaping factor but may appear in other phrases that are not related to that shaping
factor). For example, the keyword failure is a correct indicator of Resource Deficiency
as it appears in text like “complete electrical failure”, “alternator failure”, etc., but
when it appears in text like “failure to follow Air Traffic Control instructions”, it does
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not indicate Resource Deficiency as a shaping factor. We have identified 50 cases that
were caused by keywords being too general.

2. Concept present but not contributing to incident. Another frequently faced
problem is that sometimes the concepts identified by the keywords are present in a
report, but they do not act as a shaper for the incident described in the report. For
example, in report#324831, the reporter mentions that he was flying solo, which is
an indication of Taskload, but the incident was due to Physical Environments, namely
snow and foggy weather. The fact that he was flying solo is merely mentioned as a
part of his description of the overall situation. The preprocessed version of this report
is also given in Appendix E. In total, we observed 32 such cases.

3. Incorrectly learned words and phrases. There were six cases in which the se-
mantic lexicon learner learned incorrect words and phrases that were not related to
the shaping factors to which they were assigned. For example, the framework incor-
rectly learned the word further for the shaping factor Resource Deficiency, and thus
a number of reports were mislabeled with Resource Deficiency.

4. Negative context. There were three cases in which the keyword appeared in a
negative context, which is typically signaled by a contextual valence shifter such as
“no” and “hardly” (Polanyi & Zaenen, 2006). For example, the keyword aircraft dam-
age, an indicator of Resource Deficiency, appears in report#569901 as “no apparent
aircraft damage”, which results in a false positive.

5. Hypothetical context. There was one case in which the keyword appeared in a
hypothetical context in which the reporter conjectures about a possible scenario. The
keyword single pilot, an indicator of Taskload, appeared in report#534432 as “this
could happen to a pilot especially if he was single pilot”, resulting in a false positive.

Lessons learned. Our error analysis provides valuable insight into the nature of the
problem as well as hints on how one should proceed in order to improve the performance
of the system. By analyzing the most frequent errors, we present the following lessons
learned from the analysis. First of all, it is more useful to learn high-precision keywords
and phrases than general ones as the largest part of the false positive errors can be attributed
to having too general keywords. However, such high-precision keywords and phrases are
more likely to have low frequencies, and hence one would have to adapt learning methods
to learn useful words and phrases from infrequent ones. Second, one must take into account
the fact that relevant portions of the text may be larger than phrases, even going up to
clause or sentences. These cannot be identified by learning words or phrases, or N-grams
of reasonable size. Thus, more robust methods are needed that can learn useful sentence
fragments or useful sentence structures. Finally, there are cases in which one cannot hope to
identify using methods that look for keywords, phrases, sentence fragments or even sentence
structures, i.e., cases in which the cause of the incident has to be “understood” from the
discourse, and cases in which a concept is present in the description and yet plays no part
in the incident. Much deeper analysis than simple bag-of-anything models are needed for
avoiding these two types of errors, which between themselves represent almost one third
of all errors in the analyzed subset. The former needs a method to distinguish relevant
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sentences from irrelevant ones. For example, Patwardhan and Riloff (2007) discuss a relevant
sentence classifier that is trained on a small set of seed patterns and a set of documents
marked as relevant and irrelevant that can be useful in this context. The latter problem
requires a discourse analysis method that, as discussed earlier, can model the conversations
and identify relations correctly. This shows that though it is possible to identify shaping
factors from these reports using words and phrases to a certain extent, much deeper natural
language techniques are needed to accurately identify the full range of causes.

6.7 Additional Analyses

In this section we present the outcomes of a number of additional analyses that we performed
on our cause identification task and our approaches to this task. In Section 6.7.1 we study
the relative difficulties of classifying the different shaping factors. In Sections 6.7.2 and 6.7.3
we show the learning curves of the semantic lexicon based approach and the learning based
approach respectively, i.e., how the performances of these two approaches vary as they are
provided with different amounts of training data. Finally in Section 6.7.4 we discuss the
outcomes of the experiment conducted to determine if our modifications to the Basilisk
framework is useful for learning general semantic categories.

6.7.1 Per-Class Results

To get an insight into which of the classes are difficult to classify, we perform an analysis
of per-class performance of two labeling schemes: the best heuristic-based method (i.e., the
Occurrence Heuristic using the lexicon learned by the modified Basilisk framework) [see the
first part of Table 7] and the best learning-based method (i.e., the 5-fold SVM classifiers
using unigrams, bigrams and the lexicon words as features) [see the second part of Table 7].
In conjunction with Table 1, two classes stand out most prominently as difficult to classify
– Illusion and Taskload. Both of these classes have very little representation in the training,
test and development sets, have a very small number of seed words, and result in very poor
performance by each of the approaches. The more easily identifiable classes were Physical
Environment, Physical Factors, Resource Deficiency and Preoccupation, in which both the
labeling schemes had F-measures better than 40%. In general these classes had better
representation in the training, testing and development sets, and also had a reasonable
number of words and phrases in the semantic lexicon. We believe that this difference in
characteristics of the classes is a valuable insight that will be helpful in future work.

6.7.2 Lexicon Learning Curve

As mentioned in Section 2.3.2, we have used a total of 177 seed words and phrases. At
a first glance, this number of seeds may seem large as far as bootstrapping experiments
are concerned. However, considering the fact that these 177 seeds are distributed over 14
shaping factors, we only have an average of 12.6 words and phrases per shaping factor.
Nevertheless, it would still be interesting to examine how cause identification performance
will be affected if we reduce the number of seeds for each shaping factor used by Modified
Basilisk in the bootstrapping process. As a result, we ran a set of experiments to measure
cause identification performance that uses the semantic lexicon learned by Modified Basilisk
when it is given different number of seed words, where the parameters specific to Modified
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Table 7: Per-class performance results. The upper table shows the per-class performance of

the Occurrence Heuristic using the lexicon learned by the modified Basilisk framework.

The lower table shows the per-class performance of 5-fold SVM classifiers using unigrams,

bigrams and lexicon words as features.

Shaping Factor TP FN TN FP Precision Recall F-measure

Attitude 3 27 957 13 18.75% 10.00% 13.04%

Communication Environment 9 81 888 22 29.03% 10.00% 14.88%

Duty Cycle 3 23 973 1 75.00% 11.54% 20.00%

Familiarity 31 19 872 78 28.44% 62.00% 38.99%

Illusion 0 2 996 2 0.00% 0.00% 0.00%

Other 25 192 766 17 59.52% 11.52% 19.31%

Physical Environment 195 70 638 97 66.78% 73.58% 70.02%

Physical Factors 22 13 958 7 75.86% 62.86% 68.75%

Preoccupation 78 32 822 68 53.42% 70.91% 60.94%

Pressure 14 16 902 68 17.07% 46.67% 25.00%

Proficiency 40 207 723 30 57.14% 16.19% 25.24%

Resource Deficiency 360 147 225 268 57.32% 71.01% 63.44%

Taskload 0 29 965 6 0.00% 0.00% 0.00%

Unexpected 4 6 976 14 22.22% 40.00% 28.57%

Overall 784 864 11661 691 53.15% 47.57% 50.21%

Shaping Factor TP FN TN FP Precision Recall F-measure

Attitude 2 28 964 6 25.00% 6.67% 10.53%

Communication Environment 20 70 871 39 33.90% 22.22% 26.85%

Duty Cycle 10 16 962 12 45.45% 38.46% 41.67%

Familiarity 18 32 924 26 40.91% 36.00% 38.30%

Illusion 0 2 998 0 0.00% 0.00% 0.00%

Other 52 165 685 98 34.67% 23.96% 28.34%

Physical Environment 182 83 623 112 61.90% 68.68% 65.12%

Physical Factors 20 15 955 10 66.67% 57.14% 61.54%

Preoccupation 55 55 848 42 56.70% 50.00% 53.14%

Pressure 6 24 961 9 40.00% 20.00% 26.67%

Proficiency 102 145 639 114 47.22% 41.30% 44.06%

Resource Deficiency 399 108 247 246 61.86% 78.70% 69.27%

Taskload 0 29 971 0 0.00% 0.00% 0.00%

Unexpected 0 10 990 0 0.00% 0.00% 0.00%

Overall 866 782 11638 714 54.81% 52.55% 53.66%
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Basilisk are set as described in Section 6.3.1. More specifically, we chose the top 3, 4, 5, 6,
7, 10, 15 and 20 seed words and phrases for each shaping factor (in terms of the frequency
in the entire corpus), and ran the modified Basilisk framework for ten iterations using the
aforementioned parameters.

Note, however, that not all shaping factors have the same number of manually selected
seed words and phrases. For example, Illusion, Taskload and Unexpected have 1, 2 and 3
seed words and phrases respectively, whereas Resource Deficiency and Physical Environment
have 47 and 45 respectively (see the last column of Table 1). Hence, for those experiments
where the number of seeds used for each shaping factor exceeds the number of manually
selected seeds for a shaper, all the manually selected seeds were used. For example, since
Unexpected has only three manually selected seeds, all of them were used in the experiments
in which at least three seeds are used for each shaping factor.

The Occurrence Heuristic was then used with the lexicons thus generated to evaluate
their performance on the test set. The resulting learning curve, in terms of F-measure
on the test set of 1000 reports, is shown in Figure 4. In addition, since the baseline to
which we compare the performance is based on the seed words, the baseline learning curve
corresponding to each reduced seed words set is also shown. As expected, increasing the
number of seed words monotonically improves the F-measure. However, the improvement
over the baseline is particularly small when fewer than seven seed words are used, and the
highest improvement is observed for seven seed words and phrases. ¿From then on, adding
more seeds improves the overall performance, but the improvement over the baseline slowly
diminishes.

 30

 32

 34

 36

 38

 40

 42

 44

 46

 48

 50

 0  2  4  6  8  10  12  14  16  18  20

F-
m

ea
su

re
 (

%
)

Number of Seeds

Lexicon Learning Curve

Baseline
Performance of learned lexicon

Figure 4: Variation of F-measure with different number of seeds words per category.
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Figure 5: Variation of F-measure with different number of training reports.

6.7.3 SVM Learning Curve

As discussed in Section 6.5, we hypothesize that the failure of the SVM classifiers to per-
form better than the baseline is due to the scarcity of the training instances available to
the learner. One may argue that SVM has been shown to work well for small datasets.
So, a natural question is: how much smaller will the training set be before we can see a
statistically significant drop in cause identification performance? To answer this question,
we plot a learning curve for the One-Versus-All classification approach, using as features a
combination of unigrams, bigrams, and lexicon word features in a five-fold cross validation
setting, which is the setting that yields the best performance in Table 4. Specifically, we
generated random subsets of the training sets of sizes 50, 100, . . . , 1000 instances. Parame-
ters, namely the percentage of features and the classification threshold, were chosen in the
same way as the original experiment as described in Section 6.5, and the F-measure was
evaluated on the entire test set. The curve is shown in Figure 5, where each data point
is computed by averaging the results over five independent runs. As we can see, there is
a general trend of performance improvement with the increase in the number of training
instances. In addition, when trained on only 50% of the training set, we see that the cause
identification system started to perform statistically significantly worse than the system
that was trained on all of the available instances according to the stratified approximate
randomization test.
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6.7.4 General Usefulness of Our Modifications to Basilisk

In order to test whether the modifications we made to the Basilisk framework are useful
to lexicon learning in general, we added two general categories to the shaping factors in
the bootstrapping experiments, namely People and Equipment. These two categories were
added because, firstly, words and phrases added to these categories would be easy to verify
(i.e., whether they are words or phrases representing people or equipment), and secondly,
they are similar to the original context in which the Basilisk framework was originally eval-
uated (i.e., learning words in the categories BUILDING, EVENT, HUMAN, LOCATION,
TIME, and WEAPON from terrorism reports). These two additional categories were added
to the seed lexicon described in Section 2.3.2, which was then bootstrapped by running Orig-
inal Basilisk and Modified Basilisk separately for ten iterations, with the parameters specific
to these Basilisk frameworks set in the same way as described in Section 6.3.1. The seed
words for these two categories were selected in the same manner as done by Thelen and
Riloff (2002), i.e., the phrases in the corpus were sorted by frequency and the five most
frequent phrases belonging to these categories were manually identified. Below are the seed
words used in the two categories:

• People: Captain, controller, First Officer, RPTR, passenger

• Equipment: aircraft, airplane, Collision Avoidance System II, engine, Auto-Pilot

In order to verify which of the words and phrases learned by the two frameworks correctly
belong to the assigned category, the first author and a computer science graduate student
not affiliated with this research went over the generated lexicons. Appendices F and G
show the lexicons generated by Original Basilisk and Modified Basilisk respectively. To
facilitate analysis, we divide the words and phrases in each generated lexicon into three
categories: (1) those that are determined as correct by both human judges; (2) those that
are determined as correct by only one judge; and (3) those that are determined as incorrect
by both judges.

For the lexicon generated by Original Basilisk, we find that in the category People, 29 of
the 50 words and phrases were determined as correct by both judges, and 6 were determined
by exactly one of the judges as correct; in the category Equipment, 6 of the 50 words and
phrases were correct according to both judges, and 22 were correct according to exactly one
of the judges. On the other hand, for the lexicon generated by Modified Basilisk, we find
that in the category People, 44 of the 50 words and phrases were determined as correct by
both judges, and 3 were determined by exactly one of the judges as correct; in the category
Equipment, 34 of the 50 words and phrases were correct according to both judges, and 9
were correct according to exactly one of the judges. This comparison clearly shows that
the modifications that we made to the Basilisk framework are not specific to this particular
task; rather, these modifications have improved the lexicon building performance in general.

6.8 Summary of Conclusions

We end this section by providing a summary of the major conclusions we draw from the
experiments.
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• Our heuristic approach to cause identification, which labels a report using the Oc-
currence Heuristic in combination with the words and phrases automatically acquired
using our Modified Basilisk framework, surpasses the performance of the baseline sys-
tem, which applies the Occurrence Heuristic in combination with the seed words and
phrases manually identified from the training documents. The difference in F-measure
between these two systems is statistically significant according to both McNemar’s test
and the stratified approximate randomization test. This suggests that the words and
phrases in the semantic lexicon learned via Modified Basilisk are relevant and effective
for cause identification.

• Adding the learned lexicon words to an N-gram-based feature set for training SVM
classifiers is beneficial for cause identification only if the training set is sufficiently
large, as exhibited by the statistically significant increase in F-measure. This provides
suggestive evidence that the words and phrases in the semantic lexicon learned via
Modified Basilisk are relevant and useful features for cause identification.

• When used in combination with the Occurrence Heuristic, the semantic lexicon learned
by our Modified Basilisk framework offers significantly better performance for the
cause identification task than the one obtained using the original Basilisk frame-
work. Additional experiments reveal that Modified Basilisk is not only useful for
cause identification, but it also offers performance superior to Original Basilisk when
bootstrapping general semantic categories such as People and Equipment.

• Among the three multi-class multi-labeled text classification approaches we experi-
mented with, One-Versus-All works significantly better than MetaLabeler and Pruned
Sets for cause identification. Transductive learning, when used in combination with
the One-Versus-All approach, significantly hurts performance, suggesting that unla-
beled data cannot be profitably exploited given the fairly small amount of labeled
data.

• Our best system achieves an F-measure of around 53.7%, which indicates that cause
identification is a difficult task, and that there is a lot of room for improvement. To
provide directions for future research, we performed an analysis of the errors made
by the best-performing system. In particular, we found that performance is currently
limited in part by several factors. First, there are a number of cases in which the
relevant text indicating the responsible shaping factor may be larger than phrases.
Second, indicators for a shaping factor may be mentioned in a report without influ-
encing the incident described in the report. Finally, there are some cases in which the
shaping factors cannot be identified by simply looking at the words, phrases or even
sentence fragments – much deeper analysis is required in these cases.

• Increasing the number of seed words and phrases employed by Modified Basilisk im-
proves cause identification performance, but the marginal performance improvement
for each added seed diminishes with successive additions. In other words, these results
seem to suggest that using more seed words will be unlikely to improve much over the
current performance; rather it would be more promising to start with a small number
of high frequency seeds and improve upon the bootstrapping process.
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• The learning curve plotted for the One-Versus-All classification approach shows that
cause identification performance increases with the number of training instances. In
particular, when trained on only 50% of the training set, we see that the resulting cause
identification system performs statistically significantly worse than the one trained on
all of the available instances.

Overall, while our approaches rely on automatically learned lexicon words and phrases
that are not adequate for cause identification, they are relevant for the task. As men-
tioned previously, their use is motivated by the labor-intensive procedure that the NASA
researchers employed in manually identifying seed words and phrases for each shaping fac-
tor (Posse et al., 2005). Our work represents one of the first attempts to tackle this cause
identification task, and we believe that the use of simple features is a good starting point
and establishes a baseline against which future studies on this problem can be compared.

The main take home message from this research is that though it is possible to solve
the problem that we set out to solve, namely automated cause identification, by learning
relevant keywords or sentence fragments and other suitable bag-of-words models, there
remains a significant portion of the data that remains unlabeled or mislabeled through
these methods. To match the performance level achieved in other topical text classification
tasks, much deeper linguistic analysis like relevant sentence detection and discourse analysis
methods like identifying disagreements, disputes and hostile attitudes will be needed. This
lesson should be the cornerstone of further research in this area.

7. Related Work

In this section, we describe some other works related to our research. In particular, our
discussion focuses on causal analysis as well as approaches to semantic lexicon construc-
tion and text classification, and is organized as follows. First, we discuss causal analysis
as it has appeared in different fields. Second, we discuss the different semantic lexicon
learning algorithms. Third, we discuss works that deal with extraction pattern learning.
Fourth, we describe different algorithms for unsupervised word clustering and thesaurus
building. Finally, we include a discussion of related work on multi-class multi-labeled text
classification.

Causal analysis. Major research on causality has been performed mainly in the fields
of philosophy and psychology. In the field of philosophy, seminal works in causality have
been conducted by Hume (1739, 1748), who provides one of the most influential definitions
of cause as “an object followed by another, and where all the objects, similar to the first,
are followed by objects similar to the second. Or, in other words, where, if the first object
had not been, the second never existed.” This has been the basis of later, much stronger
definitions of causation (e.g., Lewis, 1973; Ganeri, Noordhof, & Ramachandran, 1996).
Notable investigations on causation in the field of psychology include those by Cheng (1997),
who defines causation in terms of the probabilistic contrast model ; Griffiths and Tenenbaum
(2005), who discuss learning about cause and effect relationships using causal graphical
models; and Halpern and Pearl (2005), who provide explanations of causality by means
of structural equations governing random variables representing events. Although these
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works provide important background and definitions contributing to the understanding of
causality, in order to identify causes from naturally written text we must turn to NLP.

In the field of NLP, there is little work on cause identification similar to our problem.
Research on causality focuses mainly on identifying causal relations between two sentence
components. For instance, Girju (2003) describes a method for automatically discovering
lexico-semantic patterns that refer to causation. In particular, she focuses on the explicit
intra-sentential pattern 〈NP1 verb NP2〉, where verb is a simple causative. She also shows
how these patterns can be used to improve the performance of a system for answering
cause-effect type questions. Khoo et al. (2000) use graphical pattern matching to identify
causal relations from medical article abstracts. They use hand-crafted patterns that are
matched against the parse trees of the sentences. The subtrees of the parse tree that match
the patterns are extracted as causes or effects. Similarly, Garcia (1997) uses hand-crafted
extraction patterns to identify causal relations from sentences in the French language. The
limitation of these approaches is that they focus on identifying causal relations from the
same sentence, whereas our reports are multi-sentence discourses.

Grishman and Ksiezyk (1990) use domain modeling, discourse analysis and causal in-
ference to find cause-effect relations between events leading up to equipment malfunctions
from short equipment failure reports. More specifically, they first apply syntactic analysis
to produce parse trees for the sentences in the reports using an augmented context-free
grammar. Then they apply semantic analysis to map (1) verbs and syntactic relations into
domain-specific predicates and relations and (2) noun phrases into references to components
in the domain model. Finally, they apply discourse analysis to these predicates to construct
a time-graph showing the temporal and causal relationships between the elementary facts.
The temporal relations are derived from text structures and words (e.g., “when”, “then”,
etc.) and the order of appearance in text, but the causal relations are determined by query-
ing a simulation model of the equipment that is built using domain knowledge. Specifically,
each possible causal link is posed as a query to the model to test if the relation holds.
Overall, their method relies heavily on the domain model of the equipment being studied,
and their research focuses on only one specific piece of equipment.

NASA’s own research on identifying causes of incidents from the report narratives have
been performed by Posse et al. (2005), who describe a specific experiment in which they
brought together experts to manually analyze the report narratives and identify words,
phrases and expressions related to each of the shaping factors, as mentioned earlier. Later
work by Ferryman et al. (2006) take these manually extracted expressions as ground truth
and compare the anomalies described in the reports to the shaping factors derived from
applying these expressions to the same reports. Specifically, they do not attempt to learn
these expressions automatically; rather, they focus on finding possible correlations between
the shaping factors and the anomalies.

Algorithms for semantic lexicon learning. A number of semantic lexicon learning
algorithms follow an iterative bootstrapping approach, starting from a small number of
semantically labeled seed words. Roark and Charniak (1998) propose a method of con-
structing semantic lexicons based on co-occurrence statistics of nouns in conjunctions, lists
and appositives. They start with a small seed nouns list, and iteratively add similar words
to that list. The word similarity is measured by the ratio of how many times the word occur
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together with a seed word to the number of times the word appear in the corpus. After
construction, they rank the words by a log-likelihood statistic (Dunning, 1993). However,
due to the general brevity of the reports, such co-occurrences and lists are rather few in our
corpus, and it is more useful for us to use context-based similarities like Thelen and Riloff
(2002). They describe their Basilisk framework for learning semantic lexicon using extrac-
tion patterns as features. The apply a weakly supervised bootstrapping approach in which
they start from a small manually constructed seed lexicon and iteratively add semantically
similar words to it. This, described in more detail in Section 4.2, has been the basis for our
lexicon learning approach.

A number of improvements to the Basilisk framework, and more generally to bootstrap-
ping approaches, have been proposed. In the Basilisk framework, the number of iterations
is a parameter that has to be chosen arbitrarily. Rather than making an arbitrary choice,
Yangarber (2003) proposes a method for detecting termination of unsupervised semantic
pattern learning processes. The method requires that the documents must be labeled as
relevant or irrelevant. Since such information is not available for our corpus, it is not use-
ful for us. Curran, Murphy, and Scholz (2007) suggest an improvement over traditional
bootstrapping methods by discarding words and contexts that appear to be related to more
than one category, in order to minimize semantic drift and enforce mutual exclusion. On
the other hand, we handle such cases by comparing the conditional probabilities for the
different categories to which such words can belong. Zhang, Zhou, Huang, and Wu (2008)
present bootstrapping with the graph mutual reinforcement-based bootstrapping (GMR)
(Hassan, Hassan, & Emam, 2006), a modification of the Basilisk method. Similar to us,
they explore using N-grams to capture context, but they use a different set of pattern and
word scoring formulas. For learning multiple categories simultaneously, they introduce a
scoring system based on entropy of a pattern. They report better results than Basilisk on
the MUC-4 dataset (see Sundheim, 1992).

Among non-bootstrapping approaches, Ando (2004) presents a new method of construct-
ing semantic lexicons from an unannotated corpus using a set of semantic classes and a set
of seed words and phrases for each semantic class. She uses spectral analysis to improve
the feature vectors by projecting the useful portions of the vectors into a subspace and re-
moving the “harmful” portions of the vectors. The resultant feature vectors are then used
by a centroid-based classifier using cosine similarity measure to label the words. Avancini,
Lavelli, Sebastiani, and Zanoli (2006) take a classification approach to semantic lexicon
construction. They cast the problem as a term (meaning both words and phrases) cate-
gorization task (dual of the document categorization task), and similar to the bag-of-word
model, they represent the terms as bag-of-documents. They use a variation of the adaptive
boosting algorithm, AdaBoost.MHKR, which is trained on a small seed lexicon and then
used to classify the noun terms in the corpus to zero, one or more semantic categories.

Algorithms for learning extraction patterns. Our approach to semantic lexicon con-
struction uses extraction patterns as features, and here we present some methods that aim
to improve the extraction pattern collection process. Riloff (1996) describes the AutoSlog-TS
system that learns extraction patterns from untagged text. However, it needs a pre-classified
corpus that have the text classified as relevant or irrelevant; as we mentioned earlier, we do
not have access to such information. Phillips and Riloff (2007) present a method of boot-
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strapping algorithm to learn role-identifying nouns, which are then used to learn important
extraction patterns, and also role-identifying expressions. However, their focus is mainly on
identifying the roles of words in events.

Patwardhan and Riloff (2007) provide another extraction pattern learning approach
using relevant regions. They require the documents to be pre-classified into relevant and
irrelevant documents. Using a small set of seed patterns, they classify the sentences in these
documents into relevant and irrelevant sentences. Then “semantically appropriate” extrac-
tion patterns are learned using a semantic affinity metric and separated into primary and
secondary patterns. This approach is also not directly usable to us due to the unavailability
of documents pre-classified into relevant and irrelevant categories.

Recently, the Internet has increasingly been used in natural language research. Patward-
han and Riloff (2006) use the AutoSlog-TS system (Riloff, 1996) to learn domain specific
extraction patterns by processing documents retrieved by querying the web with selected
domain-specific words. Using the web is an interesting and promising enhancement and, as
mentioned in Section 8, we intend to extend our work using the Google corpus (Brants &
Franz, 2006).

Algorithms for thesaurus building and unsupervised word clustering. Another
area of research that is very closely related to semantic lexicon learning is thesaurus building.
Building a thesaurus requires discovering groups of semantically similar words, though it
stops short of assigning semantic class labels to the words. Thus it shares the problem of
measuring semantic similarity and grouping similar words with the semantic lexicon building
task. Here we discuss several approaches to the thesaurus building task.

Clustering has been used extensively in thesaurus building, mostly because of its un-
supervised nature and ability to handle large volumes of data. The seminal work in this
direction has been by Pereira, Tishby, and Lee (1993), who present an unsupervised method
for soft clustering of words using distributions of the words in different contexts. This ap-
proach generates overlapping word clusters, grouping words based on the contexts that they
appear in. Baker and McCallum (1998) use Pereira et al.’s distributional clustering tech-
nique to perform feature space reduction for supervised classification with näıve Bayes by
using the clusters as features. Lin and Pantel (2001) present their approach of generating a
collection of sets of semantically similar words, or concepts, using their clustering method,
UNICON, with dependency relations as features. Pantel and Lin (2002) present another
clustering approach, clustering by committee, using contextual features with point wise
mutual information as feature values, that they compare as better than Lin and Pantel’s
results. Rohwer and Freitag (2004) present a clustering-based automatic thesaurus building
process from an unannotated corpus. They propose an information theoretic co-clustering
algorithm that groups together highly frequent words into clusters of similar part-of-speech
category. Then they pursue an additional process, lexicon optimization, to grow the lexicon
by assigning the less frequent words to their most likely clusters.

Among non-cluster-based methods, Davidov and Rappoport (2006) present an unsu-
pervised method of discovering groups of words that have similar meanings. They achieve
this by (1) identifying high frequency words and content words, (2) identifying symmetric
lexical relationship patterns, and (3) applying a graph clique-set algorithm to generate word
categories from co-occurrence information of the content words in the symmetric patterns.
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Concentrating on the performance issues that plague attempts to build thesaurus from a
large corpus, Rychlý and Kilgarriff (2007) present two methods of improving performance
of general context-based thesaurus building algorithms. The first method is to compare
only those word pairs that have some context in common. The second method is to use the
heuristic of removing those contexts that are too general (i.e., contexts that have more than
a certain number of distinct words). In our research, we have adopted the second method
(see Section 4.3). They also applied a partitioned sequential approach to the construction
process. Though thesaurus building does not usually require an annotated corpus or a set
of seed words and phrases, it is not directly applicable to the task of growing a semantic
lexicon where we have to learn words in specific semantic categories. This is because the
method has no control over which words are being learned and which classes the discovered
word groups belong to. It may be possible to adapt this method to that of semantic lexicon
growing by classifying the word groups into the semantic classes by using the seed words and
phrases. However, the method has to be extended to extract noun and adjective phrases.

Algorithms for multi-class multi-labeled text classification. As mentioned pre-
viously, cause identification, when cast as a text classification problem, is a multi-class
multi-labeled text classification problem, since there are 14 shaping factors in total and
each document may be labeled with more than one shaping factors. There are several
popular approaches to solving a multi-class multi-labeled text classification problem. The
first, and one of the approaches followed in this research, is to independently train a binary
classifier for each class, and apply each classifier on a test instance in isolation. In our
case, the underlying learner is Support Vector Machines (Joachims, 1998). Godbole and
Sarawagi (2004) suggest a number of improvements to this scheme, namely, including class
labels suggested by a preliminary set of classifiers as features, removing negative examples
too close to the classification hyperplane, and selectively removing some classes from the
one-versus-others classifications scheme. Another notable method, followed by Tsoumakas
and Vlahavas (2007) and Read et al. (2008), is to treat each unique set of labels as a
new label, thus converting the problem to a multi-class single-labeled one. Their works
differ from each other in the construction of the new labels. The former, called RAndom
k-LabELsets, or RAKEL, builds an ensemble of classifiers by randomly sampling label sets
of size k; whereas the latter adopts the method of filtering observed label sets by minimum
support. Tang et al. (2009), on the other hand, take a different approach: they train one
classifier that predicts the number of labels that a test instance would have, and then choose
that many labels for that instance based on output of another classifier that ranks the labels
by likelihood for that instance. All these works use SVM as their underlying learner. In
addition, all these approaches make the assumption that the classes are correlated to a high
degree. However, an analysis of our dataset does not present evidence of such a strong
correlation. Of the 140 documents with multiple labels in the test set, there are 68 unique
label sets, of which only seven have a frequency of at least five. Thus increasing the number
of labels would only aggravate an already imbalanced class distribution.

Among other approaches, we mention two systems that use probabilistic generative mod-
els. McCallum and Nigam (1999) propose a system that starts with a small set of keywords
and unlabeled documents, and learns a näıve Bayes classifier in a bootstrapping process from
the keyword-induced labels by using hierarchical shrinkage and expectation maximization
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on a held-out data set. Ueda and Saito (2002) present another generative model called Para-
metric Mixture Models, which treats multi-labeled text as a parametric mixture of words
relevant to each label. Their work is closely related to Latent Dirichlet Allocation (Blei,
Ng, & Jordan, 2003). The generative models usually assume that a document related to a
particular topic would have a high frequency of words related to that topic. In our research,
the documents are mostly devoted to description of the event that occurred, and the cause
of that event is only mentioned briefly. This makes generative models less suitable for the
task at hand as generative models would more likely generate models related to the events
and not the causes. A more comprehensive review of different approaches to multi-class
multi-label text classification can be found in the work of Tsoumakas and Katakis (2007).

8. Conclusions

We have investigated two approaches to the cause identification task, the goal of which is to
understand why an aviation safety incident happened via the identification of the causes, or
shaping factors, that are responsible for the incident. Both approaches exploit information
provided by a semantic lexicon, which is automatically constructed via Thelen and Riloff’s
(2002) Basilisk framework augmented with our three algorithmic modifications (namely, the
use of a probabilistic similarity measure, the use of a common word pool, and the enforce-
ment of minimum support and maximum generality constraints for words and extraction
patterns) and one linguistic modification (the use of N-gram-based extraction patterns).
The heuristic-based approach labels a report by employing the Occurrence Heuristic, which
simply looks for the words and phrases acquired during the semantic lexicon learning pro-
cess in the report. The learning-based approach labels a report by employing inductive
and transductive support vector machines to learn models from reports labeled with shap-
ing factors. Our experimental results indicate that the heuristic-based approach and the
supervised learning approach (when given sufficient training data) both significantly out-
perform our baseline, which, motivated by NASA’s work, labels a report simply by using
the Occurrence Heuristic in combination with a set of manually-identified seed words and
phrases. More importantly, results of the heuristic-based approach indicate that our mod-
ifications to the original Basilisk framework are beneficial as far as cause identification is
concerned, and results of the learning-based approach indicates the usefulness of the lexicon
words when they are used in combination with unigrams as features for training an SVM
classifier. Overall, what we set out to prove was that it is possible to automate the cause
identification task by manually analyzing a small number of reports and using the informa-
tion thus generated to train machine learning methods to identify the shaping factors of the
rest of the reports. Our experiments have been able to prove the feasibility of this approach,
and also the usefulness of learning a semantic lexicon and using the words in it as features.
Nevertheless, our best system achieves an F-measure of around 53.7%, which indicates that
cause identification is a difficult task, and that there is a lot of room for improvement. In
particular, our analysis of the errors made by the best system on 100 randomly chosen test
documents provides valuable insights into the task as well as directions for future research.

From our experience from this current research, we intend to extend our work in the
following directions. First and foremost, we plan to extend our approach to handle text
fragments bigger than phrases. Second, in order to improve the quality of labeling, we
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propose to work on improving the lexicon learning performance further by using different
semantic similarity measures. For instance, we would like to study the performance of the
semantic similarities and weighting functions suggested by Curran and Moens (2002) in
our context. Third, we plan to use more thoroughly normalized text for better parsing
and tagging, as well as relevant region information (Ko, Park, & Seo, 2004; Patwardhan
& Riloff, 2007). Fourth, we propose to augment the semantic lexicon, specifically by using
the Google N-grams corpus (Brants & Franz, 2006) to extract frequent N-gram patterns
for words. Fifth, we propose to explore other more recent lexicon construction methods
like unsupervised word clustering (Pantel & Ravichandran, 2004), spectral analysis, mutual
exclusion bootstrapping, co-clustering and exploiting symmetric patterns. Finally, in order
to handle the shaping factors that are difficult to identify from words occurring in the
reports, we propose to employ much deeper analysis of the text at the semantic level. We
have also taken the step of making our annotated incident reports publicly available, and
we hope that we can stimulate research on this under-investigated problem in the NLP
community.
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Appendix A: Seed Words

Below are the seed words manually extracted from the 233 reports in the training set (see
Section 2.3.2 for details).

Shaping Factor Seed words

Attitude get HOMEITIS, attitude, inattentiveness, get THEREITIS, compla-
cency, overconfidence, sarcastic, inattention

Communication
Environment

disturbance, static, radio discipline, congestion, noise

Duty Cycle 11 hour duty day, inadequate rest, last of 4 legs, heavy flying, reduced
rest, all-night flight, 12 hour day, red eye, ten leg day, all night

Familiarity familiarization, not familiar, new, first departure, unfamiliar, unfa-
miliarity, very familiar, low time, first landing

Illusion bright lights

Other noise abatement policy, disoriented, confused, medical emergency,
economic considerations, disorientation, drunk passenger, confusion

Physical
Environment

cold, clouds, dark, setting sun, sun glare, obscured, visibility, hazy
stratus, birds, fog bank, solid overcast, snow, weather, rime, gust, low
weather, surface winds, jet blast, lightning, sea gulls, high ceilings,
hot, tailwind, chop, very dark, sea gull, winds, scattered, high tail-
winds, extremely dark, too bright, icing, turbulence, RPTED wind,
terrain, bird strike, crosswind, thunderstorm, glare, reduced visibil-
ity, high flying birds, fog, severe winter weather, cloud, ice

Physical Factors very tired, HYPOXIA, tiredness, tired, fatigued, disorientation, fa-
tigue, no rest

Preoccupation distracted, preoccupied, mental lapse, busy, DISTRS, distraction,
attention, inattention, absorbed

Pressure hurry, running late, pressure, low on fuel, fuel considerations, behind
schedule, late, peer pressure, under pressure, rushing

Proficiency mistakes, mistaken, new hire, inexperience, forgotten, less than 100
hours, newly rated, training, recent pilot, inadvertently, bad turn,
MISINTERPED

Resource
Deficiency

loose connection, erratic, blown, overheated, bang, collapse, no idea,
unavailable, placarded, crack, Out Of Service, damage, smoke, in-
operative, failure, leak, deferred items, communication failure, loss,
unreliable, FDRS problem, bump, shaking, master caution, inade-
quately lighted, unreadable, disconnected, malfunction, shudder, ab-
sence, hazard, inaccurate, UNFLAGGED, fire, broken, fluctuations,
compressor stall, deferral, unusable, wrong, intermittently, warning,
discrepancies, faulty, deferred, intermittent, missing

Taskload single pilot, solo

Unexpected unexpected, suddenly, UNFORECAST
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Appendix B: Sample Lexicon Words Learned by Modified Basilisk

Below are the semantic lexicon words learned by the modified Basilisk framework in the
first two iterations.

Shaping Factor New words

Attitude

Communication
Environment

Duty Cycle

Familiarity aligned, fairly new, more familiar

Illusion

Other initial confusion, minimum fuel emergency, misunderstanding,
weather emergency

Physical
Environment

TRWS, conflict message, cumulonimbus, large cells, numerous thun-
derstorms, occasionally severe, thunderstorm cells, weather buildups,
weather cell, weather en route

Physical Factors first factor

Preoccupation adequate attention, as much attention, close attention, close enough
attention, crew attention, enough attention, much attention, proper
attention, strict attention, very close attention

Pressure

Proficiency

Resource
Deficiency

different, amiss, awry, obviously wrong, resulting loss, seriously
wrong, slight loss, temporary loss, terribly wrong, very wrong

Taskload

Unexpected
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Appendix C: Sample Lexicon Words Learned by Original Basilisk

Below are the semantic lexicon words learned by the original Basilisk framework in the first
two iterations.

Shaping Factor New words

Attitude Air Traffic Control security, aileron yoke displacement, anoma-
lous VFR Omni-Directional Radio Range information, assured TFR
avoidance, betrayal, concern and urgency, forgetting air carrier X,
magnified problem, operational complacency, unseen and unknown
turbulence

Communication
Environment

9001 noise, BNA runway 31 approach plate, LIGHTSPEED 20K
noise, Non- noise, OVERSPD bell, active noise, clearance delivery
transmission, left engine stall, static and Emergency Locator Trans-
mitter, stuck trim or elevator movement

Duty Cycle 10 plus 16 layover, 2 different time frames, 3 ’back-to-back ’ continu-
ous duty trips, 4 hour break, 69 minutes, 8 hour 15 minute flight time
day, Pacific Daylight Time departure, TPA flight, XC15 departure,
scheduled 2- leg continuous duty

Familiarity S partial unfamiliarity, ’S perceived familiarity, Command familiar-
ity, Command unfamiliarity, blue panel indication light, dispatch
work desks, generally unfamiliar, inexperience and unfamiliarity, new
everyday, past experience and familiarity

Illusion 1 1/2 Nautical Mile SSW, 1/2-1/4 point, 10 ’ off end, 50 feet side, El-
mendorf required use, about 1/2 mile downwind, airspace E, foxtrot
intersection, lateral boundaries, mile right

Other misinformation, Flight Management System/heading anomalies, con-
fusion/conflict, disoriented and confused, intense panic, micro sleep,
miss numerous times, mistake inconvenience, note closure problem,
start terror

Physical
Environment

MHT class Celsius, STRATO-cumulus, Thur morning, clouds under-
neath, compacted snow and ice, fair weather cumulus, next morning
weather, puffy cumulus clouds, thin scattered clouds, well developed
cumulus clouds

Physical Factors HYPOXIA/carbon monoxide, Minimum Equipment List 24-32-02,
basically tired, cardiac distress, indicating system problem, internal
bleeding, interrupted fuel flow, oncoming seizure, stress overload,
upper respiratory problems

Preoccupation Captain and First Officer attention, Terminal Radar Approach Con-
trol Facility distraction, close enough attention, consequently my at-
tention, good enough attention, lip service, mind or attention, much
mind, real attention, real close attention

Continued on next page
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Shaping Factor New words

Pressure Minimum Equipment List pressure, consistent answer, elevator pres-
sure, intense pressure, part # Coordinated Universal Time, reper-
cussion, right engine pressure, significant pressure, slow gear, wheel
pressure

Proficiency & P school, CL65 ground school, basic flight training, hard lesson,
initial and annual proficiency training, occurrence and strive, rating
training, several military flying clubs, situation event, time limited
simulator sessions

Resource
Deficiency

Air Traffic Control loss, altitude deviation/loss, apparently inoper-
ative, either inoperative, even a reexamining, intermittent or inop-
erative, known traffic conflict or loss, observed loss, recently a Los,
thankfully accurate

Taskload 16500 # turboprop, A320 type aircraft, AVIAT husky A1 two place
tail DRAGGER aircraft, Cessna 402 type aircraft, Cessna model
421 type aircraft, L1011-250, LGA-MHT flight, McDonnell Douglas
MD11, more solo cross country FLTS, solo cross country privileges

Unexpected significant, 1 jolt, approximately 5-10 sec, choppy and aircraft, con-
sistently moderate, contributing workload factor, industry issue, just
as severe, rapid and immediate, real cushion
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Appendix D: Additional Stratified Approximate Randomization Tests

To ascertain the statistical significance of the difference between the F-measure scores of the
different report labeling methods, we performed the stratified approximate randomization
test with 9,999 shuffles between all pairs of the results of Experiments 1 through 5 in Table 4.
The table below shows if the method in the column is statistically significantly better than
the method in the row at the level of p < 0.05. As before, statistical significance and
insignificance are denoted by a X and an X, respectively.
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SW - X X X X X X X X X X X X X X X X X

MLW X - X X X X X X X X X X X X X X X X

OLW X X - X X X X X X X X X X X X X X X

SVM-U X X X - X X X X X X X X X X X X X X

SVM-UB X X X X - X X X X X X X X X X X X X

SVM-L X X X X X - X X X X X X X X X X X X

SVM-UL X X X X X X - X X X X X X X X X X X

SVM-UBL X X X X X X X - X X X X X X X X X X

SVMT-U X X X X X X X X - X X X X X X X X X

SVMT-UB X X X X X X X X X - X X X X X X X X

SVMT-L X X X X X X X X X X - X X X X X X X

SVMT-UL X X X X X X X X X X X - X X X X X X

SVMT-UBL X X X X X X X X X X X X - X X X X X

SVM5-U X X X X X X X X X X X X X - X X X X

SVM5-UB X X X X X X X X X X X X X X - X X X

SVM5-L X X X X X X X X X X X X X X X - X X

SVM5-UL X X X X X X X X X X X X X X X X - X

SVM5-UBL X X X X X X X X X X X X X X X X X -

a. Legend: SW = Occurrence Heuristic using seed words, MLW = Occurrence Heuristic using modified
Basilisk lexicon, OLW = Occurrence Heuristic using original Basilisk lexicon, SVM-U = SVM using
unigrams, SVM-UB = SVM using unigrams and bigrams, SVM-L = SVM using lexicon words, SVM-UL
= SVM using unigrams and lexicon words, SVM-UBL = SVM using unigrams, bigrams and lexicon
words, SVMT-U = transductive SVM using unigrams, SVMT-UB = transductive SVM using unigrams
and bigrams, SVMT-L = transductive SVM using lexicon words, SVMT-UL = transductive SVM using
unigrams and lexicons, SVMT-UBL = transductive SVM using unigrams, bigrams and lexicon words,
SVM5-U = 5-fold SVM using unigrams, SVM5-UB = 5-fold SVM using unigrams and bigrams, SVM5-L
= 5-fold SVM using lexicon words, SVM5-UL = 5-fold SVM using unigrams and lexicon words, SVM5-
UBL = 5-fold SVM using unigrams, bigrams and lexicon words.
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Appendix E: Sample Preprocessed Reports

Report ACN#324831

RETURNING to waukegan regional airport from practice area located between 5-20 mile
W of the airport; flying solo as a student pilot; at about 3000 feet Mean Sea Level Visual
Flight Rules. cloud area about 5 mile W of the airport obscured view ahead so I reduced
altitude to proceed Visual Flight Rules and returned to 3000 feet after passing the thin
cloud line. the area to the n; containing fix references for airport location; was shrouded in
clouds and in fog at ground level. the same was true of the lake michigan shoreline to the
E. the ground was also substantially snow covered. although the airspace over the airport
was undoubtedly clear; as was the practice area; orientation to the field was lost to me.
I climbed to 4500 feet to increase the overview; without benefit. returning to 3000 feet;
I flew to what I believed to be n of the airfield to landfall the airport. I must have been
to the S; however; and proceeding S I flew into ord class B airspace. coinciding to being
lost; I contacted waukegan tower; not then realizing that I had flown as Federal Aviation
Regulation S as I had. I was directed to contact ord approach on the frequency given; and
beginning with ord approach was vectored back to waukegan airport; frequency changed to
tower control and blessedly cleared to land. the time lost was between 1 hour 15 minutes
and 1 1/2 hours.

Report ACN#566757

THE following event occurred while REPOSITIONING; by taxi; from the W side to the S
side of isp airport. I initially contacted longitude island tower asking permission to REPOS
from the W side to the OPS Base Operations Office of the tower (the S side). the controller
replied ’start taxi via taxiway W up to but hold short of runway 6.’ I read back the
instructions stating to start taxi via taxiway W holding short of runway 6. as I was taxiing;
there was an aircraft on taxiway W holding short of runway 6; performing a run-up. the
controller asked if I was able to get around the aircraft. I replied that I was able. the
controller then said ’use caution taxiing around the aircraft and cross runway 6.’ as I was
taxiing across runway 6; I noticed an aircraft on short final for runway 6. I was clear of
the runway before the aircraft touched down. the controller then came on the frequency
and said ’you were instructed to hold short of runway 6.’ I replied ’you cleared me across
runway 6.’ the controller said ’call the tower when you park.’ I replied ’roger; I will call
you when I park.’ I called and talked to the controller a few minutes later and he said ’you
were instructed to hold short of runway 6.’ again I told him that he had cleared me across
the runway. I feel that pilots and controllers need to listen to each other and decipher what
is said before acting on it.

623



Abedin, Ng & Khan

Appendix F: Lexicon Learned by Original Basilisk for Categories People

and Equipment

The following table shows the words and phrases learned by the original Basilisk framework
for the categories people and equipment (see Section 6.7.4).

Category New words

People Agreed by both judges as correct : ABQ tower procedure special-
ist, ACN 126721 reporter, AFSFO, AVP tower specialist, Air Route
Traffic Control Center specialist, Air Traffic Control facility reps,
BDR tower specialist, BHM control, BUF field operations officer,
CAE tower specialist, Chicago quality control, DFW maintenance
manager, Flight Service Station dispatcher, SFOLM the Captain,
SII program manager, Stearman pilot, TLH supervisor, bur local
controller, casino manager, cos Air Traffic Control chief, flight test
engineers, local balloon repairman, outbound Captain and First Of-
ficer, repair facility and pilot, shift boss, spokesperson, station man-
agement individual, technician desk, tower supervisor/manager
Identified by one judge as correct : Flight Standards District
Office ORL, again maintenance supervisor, approach controller ver-
batim, freighter aircraft and approach, him and tower, passenger and
fatigue
Agreed by both judges as incorrect : ACN 670635, ACN 682482,
AT6 aircraft, B737-300/500 SRM, EMB service manual, Non-air
carrier aircraft, RPTR ACN 518698, RPTR ACN 601074, RPTR
ACN 658075, RPTR ACN 664336, RPTR ACN 676343, RPTR ACN
88920, cabin or company, other aircraft center, reliable research re-
sources

Equipment Agreed by both judges as correct : Collision Avoidance Sys-
tem II 10 Distance Measuring Equipment screen, Collision Avoidance
System II B737-200, Collision Avoidance System II EHSI, Collision
Avoidance System II IVSI display, Collision Avoidance System II
Missed Approach Point page, Collision Avoidance System II RR,

Continued on next page
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Category New words

Identified by one judge as correct : Collision Avoidance Sys-
tem II VSI overlay, ’Resolution Advisory ’ stopped and aircraft, Col-
lision Avoidance System II ’stop climb ’ alert, Collision Avoidance
System II ’traffic ; ’ then ’climb ’ advisory, Collision Avoidance Sys-
tem II ’traffic ; traffic ’ aural warning, Collision Avoidance System
II 3 mile circle, Collision Avoidance System II 5 mile scale, Col-
lision Avoidance System II 6 mile scale, Collision Avoidance Sys-
tem II POPUP traffic, Collision Avoidance System II Resolution
Advisory alerts, Collision Avoidance System II Resolution Advisory
climb priority, Collision Avoidance System II Resolution Advisory
climb warning, Collision Avoidance System II Resolution Advisory
signals, Collision Avoidance System II Resolution Advisory zone,
Collision Avoidance System II Resolution Advisory/Traffic Advisory
alert, Collision Avoidance System II Resolution Advisory/Traffic Ad-
visory alerts/advisories, Collision Avoidance System II Resolution
Advisory/altitude deviation, Collision Avoidance System II Traffic
Advisory and Resolution Advisory alerts, Collision Avoidance Sys-
tem II WINDSHEAR warning, Collision Avoidance System II advi-
sory alert, Collision Avoidance System II advisory alert and warning,
Collision Avoidance System II warning and aircraft
Agreed by both judges as incorrect : Collision Avoidance Sys-
tem II 10 O’clock and 2 1/2 to 3 mile, Collision Avoidance Sys-
tem II Resolution Advisory ’climb ’ command, Collision Avoidance
System II Resolution Advisory area, Collision Avoidance System
II Resolution Advisory climb or descent, Collision Avoidance Sys-
tem II Resolution Advisory data tag, Collision Avoidance System
II Resolution Advisory descent, Collision Avoidance System II Res-
olution Advisory green band target, Collision Avoidance System II
Resolution Advisory increase climb, Collision Avoidance System II
Resolution Advisory maneuvering, Collision Avoidance System II
Resolution Advisory messages, Collision Avoidance System II Res-
olution Advisory recovery procedure, Collision Avoidance System
II Resolution Advisory requirement, Collision Avoidance System II
Resolution Advisory requiring climb, Collision Avoidance System
II Resolution Advisory resolution, Collision Avoidance System II
Traffic Advisory notification, Collision Avoidance System II Traffic
Advisory/Resolution Advisory aircraft, Collision Avoidance System
II Traffic Advisory/Resolution Advisory event, Collision Avoidance
System II action requirements, Collision Avoidance System II advice,
Collision Avoidance System II advisories and instructions, Collision
Avoidance System II caution, Collision Avoidance System II quit

625



Abedin, Ng & Khan

Appendix G: Lexicon Learned by Modified Basilisk for Categories People

and Equipment

The following table shows the words and phrases learned by the modified Basilisk framework
for the categories people and equipment (see Section 6.7.4).

Category New words

People Agreed by both judges as correct : ’ First Officer, ’ my First Of-
ficer, ; First Officer, CP, Captain, Captain RPTR, Captain trainee,
Co-Captain, Co-pilot, First Officer, First Officer # 2, Initial Op-
erating Experience Captain, PAXS, Pilot Flying and First Officer,
Potomac controller, RPTING Captain, RPTING First Officer, RPT-
ING pilot, RPTR Captain, RPTR pilot, S/O, ZOA supervisor, air
carrier Y pilot, aircraft X pilot, aircraft commander, all the passen-
ger, analyst, and First Officer, baron pilot, biplane pilot, controller,
facility person, first observer, flight attendant # 3, flight attendants
and passenger, flying Captain, forward observer, passenger, passen-
ger and crew, passenger and flight attendants, right seat pilot, sec-
ond observer, sic, specialist, student Captain, supervisor/Controller,
tower Controller, tower operator, training pilot
Identified by one judge as correct : RPTR, gate and passenger,
so First Officer
Agreed by both judges as incorrect : departure and departure,
neither the Captain, which CLRLY

Equipment Agreed by both judges as correct : # 1 Auto-Pilot, #
2 Auto-Pilot, 3 AUTOPLTS, AUTOFLT, AUTOTHROTTLE,
AUTOTHROTTLE and Auto-Pilot, AUTOTHROTTLES, AU-
TOTHROTTLES and Auto-Pilot, AUTOTHRUST, Auto-Pilot
# 1, Auto-Pilot # 2, Auto-Pilot B, Auto-Pilot and AU-
TOTHRUST, Auto-Pilot and PMs, Auto-Pilot and throttles, Auto-
Pilot/AUTOTHROTTLES, Cessna 180, Collision Avoidance System
II system, ENGS # 2 and # 3, aircraft ABCD, aircraft Auto-Pilot,
aircraft engine, allowed aircraft, automatic pilot, automatic throttle,
automatic throttles, autopilot, center Auto-Pilot, craft, emergency
engine, left Auto-Pilot, left hand engine, parked plane, right Auto-
Pilot
Identified by one judge as correct : problem engine, main-
tenance and aircraft, later aircraft, aircraft and aircraft, Collision
Avoidance System II alert, # 1 Constant Speed Drive, Auto-Pilot
and AUTOTHROTTLES, WDB 2, perf
Agreed by both judges as incorrect : aircraft beginning, aircraft
parallel, normal and aircraft, person or property, persons or property,
so aircraft, time aircraft
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