
Journal of Artificial Intelligence Research 38 (2010) 535-568 Submitted 05/10; published 08/10

Logical Foundations of RDF(S) with Datatypes

Jos de Bruijn bruijn@kr.tuwien.ac.at

Stijn Heymans heymans@kr.tuwien.ac.at

Vienna University of Technology

Favoritenstraße 9-11, A-1040 Vienna, Austria

Abstract

The Resource Description Framework (RDF) is a Semantic Web standard that provides
a data language, simply called RDF, as well as a lightweight ontology language, called
RDF Schema. We investigate embeddings of RDF in logic and show how standard logic
programming and description logic technology can be used for reasoning with RDF. We
subsequently consider extensions of RDF with datatype support, considering D entailment,
defined in the RDF semantics specification, and D* entailment, a semantic weakening of D
entailment, introduced by ter Horst. We use the embeddings and properties of the logics to
establish novel upper bounds for the complexity of deciding entailment. We subsequently
establish two novel lower bounds, establishing that RDFS entailment is PTime-complete
and that simple-D entailment is coNP-hard, when considering arbitrary datatypes, both in
the size of the entailing graph. The results indicate that RDFS may not be as lightweight
as one may expect.

1. Introduction

The Resource Description Framework (RDF) (Klyne & Carroll, 2004), together with its
vocabulary description language RDF Schema (RDFS) (Brickley & Guha, 2004), constitutes
the basic language of the Semantic Web. Statements in RDF are triples of the form 〈s, p, o〉.
Sets of triples are called RDF graphs: intuitively, each triple can be viewed as an edge from
node s to node o with label p. Here, s, o, and p are constant symbols – uniform resource
identifiers (URIs) or literals (e.g., strings) – or anonymous identifiers, called blank nodes.
Consider, for example, the graphs S = {〈o, rdf:type, A〉, 〈A, rdfs:subClassOf, B〉} and
E = {〈o, rdf:type, B〉}. Hayes (2004) defines notions of RDF and RDFS entailment. We
have that, compared with RDF entailment, RDFS entailment gives additional meaning to
rdfs:subClassOf statements: S RDFS-entails E, but S does not RDF-entail E.

The RDF semantics specification (Hayes, 2004) defines four increasingly expressive nor-
mative entailment relations between RDF graphs, namely simple, RDF, RDFS, and D
entailment, where the latter extends RDFS entailment with support for datatypes (e.g.,
strings and integers). Furthermore, it defines extensional RDFS (eRDFS) entailment as
a possible extension of RDFS entailment that is more in line with description logic-based
languages such as OWL DL (Patel-Schneider, Hayes, & Horrocks, 2004) and OWL 2 DL
(Motik, Patel-Schneider, & Parsia, 2009b). Intuitively, the difference between the RDFS
and eRDFS entailment regimes is that, for the latter, whenever an ontological relation (e.g.,
subclass or property domain) implicitly holds in an interpretation, the corresponding RDF
statement (rdfs:subClassOf, rdfs:domain, respectively) must be true, whereas this is not

c©2010 AI Access Foundation. All rights reserved.

de Bruijn & Heymans

always the case with the RDFS entailment regime. The following example illustrates this
difference.

Example 1. Let S be the graph

{〈mother, rdfs:subPropertyOf, parent〉, 〈parent, rdfs:domain, P erson〉}

which says that Person is in the domain of parent, and the property mother is a sub-
property of parent. Using eRDFS entailment we can conclude from S that Person is in the
domain of mother:

S |=erdfs 〈mother, rdfs:domain, P erson〉

since it must the case that the subject of any mother triple has the type Person; thus,
Person is implicitly in the domain of mother. We cannot draw this conclusion when using
RDFS entailment; in RDFS, only explicitly asserted domain constraints can be derived.

We further also consider D* entailment (ter Horst, 2005), which is a semantic weak-
ening of D entailment for the purpose of more efficient computation of consequences. D*
entailment extends RDFS entailment, but is not more expensive in terms of computational
complexity.

There have been several investigations into the formal properties of the RDF semantics
(Gutierrez, Hurtado, & Mendelzon, 2004; Gutierrez, Hurtado, Mendelzon, & Pérez, 2010;
de Bruijn, Franconi, & Tessaris, 2005; ter Horst, 2005): Gutierrez et al. (2004, 2010) re-
construct the semantics from a graph database perspective, and de Bruijn et al. (2005)
reconstruct the semantics from a logical language perspective. The investigation of the
RDF semantics by ter Horst (2005) stays very close to the RDF specification. Additionally,
ter Horst shows that the entailment rules for computing RDFS entailment presented in the
original specification (Hayes, 2004) are not complete with respect to the RDFS semantics.
These reconstructions have led to a number of complexity results for RDF entailment. In
particular, simple, RDF, and RDFS entailment are NP-complete in the combined size of the
graphs. This high complexity is due to the presence of blank nodes (essentially existentially
quantified variables): if the entailed graph is known to be ground, the respective problems
turn out to be decidable in polynomial time. These bounds have not been shown to be
tight. As we will show in Section 5, the bound is tight for RDFS entailment, but not for
simple and RDF entailment, which can be decided in logarithmic space.

To investigate the relationship between RDF and logic we embed the various RDF
entailment regimes in F-Logic (Kifer, Lausen, & Wu, 1995), which is a syntactic extension
of first-order logic (FOL) with object oriented modeling constructs. F-Logic has constructs
to explicitly specify attributes, as well as generalization/specialization and instantiation
relationships. Like RDFS, the syntax of F-Logic has some seemingly higher-order features,
namely, the same identifier can be used for a class, an instance, and an attribute. However,
the semantics of F-Logic is strictly first-order (Kifer et al., 1995). It turns out that the
attribute value construct in F-Logic is exactly equivalent to the triple construct in RDF,
and the typing (class membership) construct in F-Logic is very close in spirit to the one in
RDF.

In addition, we consider the embedding of a large subset of extensional RDFS in FOL and
the tractable description logic language DL-LiteR (Calvanese, Giacomo, Lembo, Lenzerini,

536

Logical Foundations of RDF(S) with Datatypes

& Rosati, 2007), thereby showing that, under certain restrictions, extensional RDFS can be
seen as a standard first-order knowledge representation language.

Our contributions with this paper can be summarized as follows.

1. We define embeddings of simple, RDF, RDFS, and extensional RDFS into F-Logic,
and show that simple, RDF, and RDFS entailment can be decided using standard logic
programming techniques, as their embeddings are in the Horn fragment of F-Logic.

2. We define an alternative, direct embedding of extensional RDFS into the Horn frag-
ment of F-Logic for a fragment of RDF graphs, namely those in which the RDFS
vocabulary is only used in a standard way. We subsequently exploit earlier results
about the relationship between F-Logic statements and description logic statements
(de Bruijn & Heymans, 2008) to show that extensional RDFS reasoning with ground
RDF graphs can be reduced to reasoning in the tractable description logic DL-LiteR
(Calvanese et al., 2007).

3. We extend the embeddings mentioned under 1. with support for datatypes, considering
both D* and D entailment. The embeddings of the extensions of simple, RDF, and
RDFS entailment with D* datatype support are all essentially in the Horn fragment
of F-Logic. The extensions of simple, RDF, and RDFS with D datatype support can
be embedded in the Horn fragment of F-Logic when suitably restricting the datatypes
that may be considered.

4. We analyze the complexity of deciding the mentioned entailment relations. From the
mentioned embeddings we obtain a number of novel complexity upper bounds, namely,
simple and RDF entailment, as well as their extensions with datatypes (under suitable
restrictions), are in LogSpace in the size of the entailing graph and a large fragment
of extensional RDFS entailment is in NP in the combined size of the graphs and in
PTime in the size of the entailing graph. We also establish a novel PTime lower bound
for RDFS entailment and a novel coNP lower bound for simple entailment extended
with D datatype support, when considering arbitrary datatypes, both in the size of
the entailing graph. See Table 2 on page 553 for an overview of the complexity results
for RDF.

The structure of the remainder of the paper is as follows. In Section 2 we review the logics
under consideration, namely F-Logic and DL-LiteR. In Section 3 we review the RDF(S)
semantics, define embeddings into F-Logic and FOL, show faithfulness of these embeddings,
and demonstrate the relationship with DL-LiteR. In Section 4 we consider extensions of
the RDF entailment regimes with datatype support based on both D* and D entailment
and embeddings of these extensions into logic. In Section 5 we extensively investigate the
complexity of the various RDF entailment regimes. We conclude the paper and outline
future work in Section 6.

This paper extends a paper we published at the International Semantic Web Conference
(de Bruijn & Heymans, 2007) with embeddings of the D* and D entailment regimes and
novel lower bounds for the complexity of deciding RDFS, D* , and D entailment.

537

de Bruijn & Heymans

For reasons of legibility, the definitions of the various RDF-related notions of interpre-
tation may be found in Appendix A, the embeddings of the RDF entailment regimes may
be found in Appendix B, and the proofs of Sections 3 and 4 may be found in Appendix C.

2. Preliminaries

In this section we review F-Logic and DL-LiteR.

2.1 Frame Logic

We consider Frame Logic (F-Logic) as defined by Kifer, Lausen, and Wu (1995). To simplify
matters, and because these constructs are not necessary for the embedding of RDF, we do
not consider function symbols, parameterized methods, functional (single-valued) methods,
inheritable methods, and compound molecules, following de Bruijn and Heymans (2008).

The signature of an F-language L is of the form Σ = 〈C,P〉 with C and P disjoint sets of
constant and predicate symbols; each predicate symbol has an associated arity n ≥ 0. Let
V be a set of variable symbols. Terms and atomic formulas are constructed as usual: x ∈ V
and c ∈ C are terms and >, ⊥, p(t1, . . . , tn), and t1 = t2 are atomic formulas, with p ∈ P
an n-ary predicate symbol, and t1, . . . , tn terms.

A molecule in F-Logic is one of the following statements: (i) an is-a assertion of the
form t1 : t2, which states that an individual t1 is of type t2, or (ii) a data molecule (called
“method” by Kifer et al., 1995) of the form t1[t2 � t3], with t1, t2, and t3 terms, which
states that an individual t1 has an attribute t2 with value t3. An F-Logic molecule is ground
if it does not contain variables.

Formulas of an F-language L are either atomic formulas, molecules, or compound for-
mulas which are constructed in the usual way from atomic formulas, molecules, and the
logical connectives ¬,∧,∨,⊃, the quantifiers ∃, ∀ and the auxiliary symbols ‘(’ and ‘)’. We
denote universal closure, i.e., the universal quantification of every variable that has a free
occurrence in the formula, with (∀).

A theory is a set of formulas. A theory or formula is called equality-free if the equality
symbol ‘=’ does not appear in it.

F-Logic Horn formulas are of the form (∀)B1 ∧ . . . ∧ Bn ⊃ H, with B1,. . . , Bn, and H
atomic formulas or molecules. F-Logic Datalog formulas are F-Logic Horn formulas such
that every variable in H occurs in some equality-free Bi. The latter condition is called
safeness.

An F-structure is a tuple I = 〈U,∈U , IC , I�, IP 〉, where U is a non-empty set and ∈U is a
binary relation over U . A constant symbol c ∈ C is interpreted as an element of the domain:
IC(c) ∈ U . An n-ary predicate symbol p ∈ P is interpreted as a relation over the domain
U : IP (p) ⊆ Un. I� associates a binary relation over U with each k ∈ U : I�(k) ⊆ U × U .
Variable assignments B are defined in the usual way.

Given an F-structure I, a variable assignment B, and a term t of L, tI,B is defined as:
xI,B = xB for variable symbol x and tI,B = IC(t) for t ∈ C.

Satisfaction of atomic formulas and molecules φ in I, given a variable assignment B,
denoted (I, B) |=f φ, is defined as
– (I, B) |=f >, (I, B)6|=f ⊥,

538

Logical Foundations of RDF(S) with Datatypes

– (I, B) |=f p(t1, . . . , tn) iff (tI,B1 , . . . , tI,Bn) ∈ IP (p),

– (I, B) |=f t1 = t2 iff tI,B1 = tI,B2 ,

– (I, B) |=f t1 : t2 iff tI,B1 ∈U tI,B2 , and

– (I, B) |=f t1[t2 � t3] iff 〈tI,B1 , tI,B3 〉 ∈ I�(tI,B2).

This extends to arbitrary formulas in the usual way. An F-structure I satisfies a formula
φ, denoted I |=f φ, if (I, B) |=f φ for every variable assignment B. I satisfies a theory Φ ⊆ L
if it satisfies all formulas in Φ; in this case, I is called a model of Φ. A theory Φ F-entails
a formula φ ∈ L, denoted Φ |=f φ, iff for every model I of Φ, I |=f φ.

A Herbrand F-structure is an F-structure I = 〈U, ∈U , IC , I�, IP 〉 such that U is the
set of constants and for every constant symbol c ∈ C, IC(c) = c. As an abuse of notation,
for Herbrand structures we use I to denote both the structure and the set of ground atomic
formulas satisfied by the structure. Finally, a Herbrand F-structure I is a minimal Herbrand
model of a theory Φ if it is a model and there is no Herbrand F-structure I′ that is a model
of Φ such that I′ I.

Classical first-order logic (FOL) is F-Logic without molecules. Contextual first-order logic
is classical FOL where C and P are not required to be disjoint, predicate symbols do not
have an associated arity, and for every structure I = 〈U, ∈U , IC , I�, IP 〉, IP assigns a
relation IiP (p) ⊆ Un to every p ∈ P, for every nonnegative integer i. We denote satisfaction
and entailment in classical and contextual first-order logic using the symbols |= and |=c,
respectively. Contextual FOL is sometimes also referred to as FOL with “punning”.

F-Logic can be straightforwardly embedded into FOL, as shown in (Kifer et al., 1995,
Theorem 18.1).

Proposition 1. Let Φ and φ be an F-Logic theory and formula that do not contain the
binary and ternary predicate symbols isa and data, respectively, and let Φ′ and φ′ be the
FOL theory and formula obtained from Φ and φ by replacing every is-a molecule a : b with
isa(a, b) and every data molecule a[b� c] with data(a, b, c). Then,

Φ |=f φ iff Φ′ |= φ′

2.2 DL-LiteR

A DL-LiteR (Calvanese et al., 2007) language consists of pairwise disjoint sets of concept
(NC), role (NR), and individual (NI) identifiers. Concepts and roles in DL-LiteR are
defined as follows:

Cl −→ A | ∃R
Cr −→ A | ∃R | ¬A | ¬∃R

R,R′ −→ P | P−

with A ∈ NC and P ∈ NR, Cl and Cr left- (resp., right-)hand side concepts, and R and R′

roles.

A DL-LiteR knowledge base K = (T ,A) consists of a TBox T , which is a set of inclusion
axioms of the forms

Cl v Cr R v R′

539

de Bruijn & Heymans

DL syntax FOL syntax DL syntax FOL syntax
π(A,X) A(X) π(Cl v Cr) ∀x(π(Cl, x) ⊃ π(Cr, x))
π(P,X, Y) P (X,Y) π(R1 v R2) ∀x, y(π(R1, x, y) ⊃ π(R2, x, y))
π(P−, X, Y) P (Y,X) π(A(a)) A(a)
π(∃R,X) ∃y(π(R,X, y)) π(P (a1, a2)) P (a1, a2)
π(¬A,X) ¬π(A,X)
π(¬∃R,X) ¬∃y(π(R,X, y))

y is a new variable

Table 1: Mapping of DL-LiteR to FOL

and an ABox A, which is a set of concept and role membership assertions of the forms

A(a) P (a1, a2)

with a, a1, a2 ∈ NI .
We define the semantics of DL-LiteR through a translation to FOL, in the form of the
mapping function π, which is defined in Table 1.1 The mapping π extends naturally to sets
of axioms and assertions.

Given a DL-LiteR knowledge base K = (T ,A), the FOL equivalent of K is the FOL
theory Φ = π(K) = π(T) ∪ π(A).

Contextual DL-LiteR is like DL-LiteR, except that the sets of concept (NC), role (NR),
and individual (NI) identifiers are not required to be disjoint. The semantics of a contextual
DL-LiteR knowledge base K = (T ,A) is given through the same mapping π(K), which
yields a contextual FOL theory. Note that contextual DL-LiteR is essentially a subset of
the QL profile of OWL 2 (Motik, Grau, Horrocks, Wu, Fokoue, & Lutz, 2009a).

3. RDF and RDF Schema

We first review the definitions of the RDF syntax and semantics. We then proceed with
the embedding of graphs and axiomatization of the entailment regimes into F-Logic, and
finally the embedding of extensional RDFS into FOL and DL-LiteR.

3.1 RDF(S) Syntax and Semantics

We proceed with a review of the definitions of the RDF syntax (Klyne & Carroll, 2004) and
semantics (Hayes, 2004).

A vocabulary V = 〈C,PL, T L〉 consists of a set C of RDF URI references (simply referred
to as URIs), a set PL of plain literals (i.e., Unicode character strings with an optional
language tag), and a set T L of typed literals (i.e., pairs (s, u) of a Unicode string s and a
URI u, denoting a datatype); see (Klyne & Carroll, 2004, Sections 6.4, 6.5, 6.6) for more
details about the specific form of these symbols. Note that C, PL, and T L are mutually
disjoint. The symbols in V are collectively referred to as names.

Let B be a set of blank nodes that is disjoint from the set of names in V . Terms are
names or blank nodes. A generalized RDF graph S is a set of generalized triples 〈s, p, o〉 –

1. Borgida (1996) discusses the relationship between description logics and first-order logic in detail.

540

Logical Foundations of RDF(S) with Datatypes

subject, predicate, object – with s, p, o ∈ C ∪PL∪T L∪B. A normal RDF graph S is a set
of normal triples 〈s, p, o〉, with s ∈ C ∪B, p ∈ C, and o ∈ C ∪PL∪T L∪B.2 A ground triple
is a triple that does not contain blank nodes. A ground generalized, respectively normal
RDF graph is a set of ground generalized, respectively normal triples. With bl(〈s, p, o〉) ⊆ B
(resp., bl(S) ⊆ B) we denote the set of blank nodes in a triple 〈s, p, o〉 (resp., graph S).
In the remainder, whenever speaking about triples or RDF graphs, we mean generalized
triples, respectively generalized RDF graphs, unless stated otherwise.

An interpretation is a tuple I = 〈IR, IP,LV, IS, IL, IEXT〉, where IR is a non-empty set,
called the domain, IP is a set of properties, LV ⊆ IR is a set of literal values with PL ⊆ LV,
IS is a mapping IS : C → IR∪ IP, IL is a mapping IL : T L → IR, and IEXT is an extension
function IEXT : IP→ 2(IR×IR).

Given an interpretation I, a subset of the blank nodes B′ ⊆ B, and a mapping A : B′ →
IR, which is used to interpret blank nodes, for any given term t we define tI,A as:

– if t ∈ C, then tI,A = IS(t),
– if t ∈ T L, then tI,A = IL(t), and

– if t ∈ PL, then tI,A = t,
– if t ∈ B′, then tI,A = A(t).

An interpretation I satisfies a triple 〈s, p, o〉 with respect to a mapping A : B′ → IR, with
bl(〈s, p, o〉) ⊆ B′, denoted (I, A) |= 〈s, p, o〉, if pI,A ∈ IP and 〈sI,A, oI,A〉 ∈ IEXT(pI,A). I
satisfies a graph S with respect to a mapping A : bl(S) → IR, denoted (I, A) |= S, if
(I, A) |= 〈s, p, o〉 for every 〈s, p, o〉 ∈ S.

An interpretation I satisfies an RDF graph S, denoted I |= S, if (I, A) |= S for some
mapping A : bl(S) → IR; in this case, I is a model of S. Any interpretation is an s-
interpretation (simple interpretation).

The notions of rdf -, rdfs-, and erdfs-interpretation are defined through additional con-
ditions on s-interpretation. For example, an s-interpretation is an rdf -interpretation only if
for every object k, k ∈ IP iff 〈k, IS(rdf:Property)〉 ∈ IEXT (IS(rdf:type)) and it satisfies
the triple 〈rdf:nil, rdf:type, rdf:List〉. Triples that are required to be satisfied by every
x-interpretation are called x-axiomatic triples, for x ∈ {rdf, rdfs, erdfs} or simply axiomatic
triples when the entailment regime is clear from the context. The precise definitions of rdf -,
rdfs-, and erdfs-interpretation are found in Appendix A.

Entailment and Satisfiability Given a vocabulary V and an entailment regime x ∈
{s, rdf, rdfs, erdfs}, a generalized (resp., normal) RDF graph S x-entails a generalized (resp.,
normal) RDF graph E, denoted S |=x E, if every x-interpretation of V that is a model of
S is also a model of E.

Given an entailment regime x ∈ {s, rdf, rdfs, erdfs}, a generalized (resp., normal) RDF
graph S is x-satisfiable if it has a model that is an x-interpretation; otherwise it is x-
unsatisfiable. The following observations can be made about satisfiability for the various
entailment regimes; the observations concerning normal RDF graphs are due to Hayes
(2004).

Proposition 2.
1. Every generalized and every normal RDF graph is s-satisfiable.
2. Every normal RDF graph is rdf-satisfiable.

2. Normal RDF graphs correspond the RDF graphs defined by Hayes (2004). In contrast to normal RDF,
generalized RDF graphs allow blank nodes and literals in predicate, and literals in subject positions.

541

de Bruijn & Heymans

3. There is a generalized RDF graph that is rdf-unsatisfiable.
4. There is a normal (and generalized) RDF graph that is rdfs- and erdfs-unsatisfiable.

3.2 Embedding RDF in Logic

We translate a graph to a conjunction of data molecules, where URIs and literals are
constant symbols and blank nodes are existentially quantified variables. We axiomatize the
entailment regimes using sets of formulas that are independent from the graphs. In the
remainder we assume that RDF graphs are finite.

Given a vocabulary V = 〈C,PL, T L〉, an F-language L conforms with V if it has a
signature of the form Σ = 〈C′,P〉, with C′ ⊇ C ∪ PL ∪ T L.3

Definition 1. Let V be a vocabulary, let S be an RDF graph of V , let bl(S) = {b1, . . . , bn}
be the set of blank nodes appearing in S, let 〈s, p, o〉 be a triple in S, and let L be an
F-language that conforms with V . Then,

tr(〈s, p, o〉) = s[p� o] and

tr(S) = ∃ b1, . . . , bn
(∧
{tr(〈s, p, o〉) | 〈s, p, o〉 ∈ S}

)
are formulas of L.

The axiomatizations of the entailment regimes are theories Ψx, with x ∈ {s, rdf, rdfs,
erdfs}, which are defined in Appendix B.

If φ is an F-Logic formula in prenex normal form with only existential quantifiers, then
sk(φ) denotes the Skolemization of φ, i.e., every existentially quantified variable is replaced
with a globally unique new constant symbol. This extends to theories in the natural way.

Proposition 3. Let S be an RDF graph of a vocabulary V and let x ∈ {s, rdf, rdfs} be an
entailment regime. Then, sk(tr(S)) ∪ Ψx can be equivalently rewritten to a set of F-Logic
Horn formulas.

We have that Ψerdfs cannot be equivalently rewritten to a set of Horn formulas, because
of the use of universal quantification in the antecedents of some of the implications in Ψerdfs.

We now show faithfulness of our embedding.

Theorem 1. Let S and E be RDF graphs of a vocabulary V , and let x ∈ {s, rdf, rdfs, erdfs}
be an entailment regime. Then,

S |=x E iff tr(S) ∪Ψx |=f tr(E) and

S is x-satisfiable iff tr(S) ∪Ψx has a model.

The following corollary follows immediately from Theorem 1 and the classical results
about Skolemization (see, e.g., Fitting, 1996).

Corollary 1. Let S and E be RDF graphs of a vocabulary V , and let x ∈ {s, rdf, rdfs,
erdfs} be an entailment regime. Then,

S |=x E if and only if sk(tr(S)) ∪Ψx |=f tr(E).

3. Even though typed literals are pairs in RDF, we treat them simply as constant symbols in our embedding.

542

Logical Foundations of RDF(S) with Datatypes

Observe that Ψrdf , Ψrdfs, and Ψerdfs are infinite due to the infinite set of RDF axiomatic
triples. However, for checking RDF entailment we need only a finite subset of Ψx. Given
an RDF graph S, let Ψx

−S be obtained from Ψx by removing all formulas originating from
axiomatic triples involving container membership properties (i.e., rdf: 1, rdf: 2, . . .) not
appearing in S, with the exception of the axiomatic triples involving rdf: 1.

Proposition 4. Let S and E be RDF graphs and let x ∈ {s, rdf, rdfs, erdfs} be an entailment
regime. Then,

S |=x E if and only if sk(tr(S)) ∪Ψx
−S∪E |=f tr(E).

By Proposition 3 we have that sk(tr(S)) ∪Ψs, tr(S)sk ∪Ψrdf, and sk(tr(S)) ∪Ψrdfs are
equivalent to sets of Horn formulas. Therefore, Proposition 4 implies that simple, RDF, and
RDFS entailment can be computed using reasoners that can compute ground entailment of
F-Logic Horn theories, such as FLORA-2 (Yang, Kifer, & Zhao, 2003). Notice that tr(E)
can be seen as a boolean conjunctive query (i.e., a yes/no query), where the existentially
quantified variables in tr(E) are the non-distinguished variables.

3.3 Direct Embedding of Extensional RDFS

We now consider an alternative, direct embedding of the extensional RDFS entailment
regime. This embedding, rather than axiomatizing the entailment regime, embeds ontolog-
ical statements, e.g., rdfs:subClassOf statements, directly as formulas.

We first define the notion of standard use of the RDF(S) vocabulary, which intuitively
corresponds to not using the vocabulary in locations where it can change the semantics of
the RDF(S) ontology vocabulary (e.g., 〈rdf:type, rdfs:subPropertyOf, a〉).

Definition 2. Let S be an RDF graph. Then, S has only standard use of the RDF(S)
vocabulary if

• rdf:type, rdfs:subClassOf, rdfs:domain, rdfs:range, and rdfs:subPropertyOf do
not appear in subject or object positions of any triple in S and

• rdfs:ContainerMembershipProperty, rdfs:Resource, rdfs:Class, rdfs:Datatype,
and rdf:Property appear only in object positions of rdf:type-triples in S.

We are now ready to define the direct embedding trerdfs of the extensional RDFS entail-
ment regime for graphs with only standard use of RDFS vocabulary. While trerdfs deals with
an important part of the RDF(S) vocabulary, the axiomatization of the eRDFS semantics
of the remainder of the RDF(S) vocabulary may be found in Appendix B, in the form of
the theory Ψerdfs-V , where V is a vocabulary.

543

de Bruijn & Heymans

Definition 3. Let 〈s, p, o〉 be an RDF triple. Then,

trerdfs(〈s, type, Datatype〉) = s :Datatype ∧ ∀x(x :s ⊃ x :Literal),
trerdfs(〈s, type, ContainerMembership- = s :ContainerMembershipProperty

Property〉) ∧∀x, y(x[s� y] ⊃ x[member� y]),
trerdfs(〈s, type, o〉) = s :o,

trerdfs(〈s, subClassOf, o〉) = ∀x(x :s ⊃ x :o),
trerdfs(〈s, subPropertyOf, o〉) = ∀x, y(x[s� y] ⊃ x[o� y]),

trerdfs(〈s, domain, o〉) = ∀x, y(x[s� y] ⊃ x :o),
trerdfs(〈s, range, o〉) = ∀x, y(x[s� y] ⊃ y :o), and

trerdfs(〈s, p, o〉) = s[p� o], otherwise.

Let S be an RDF graph and let bl(S) = {b1, . . . , bn} be the set of blank nodes in S. Then,

trerdfs(S) = {∃ b1, . . . , bn(
∧
{trerdfs(〈s, p, o〉) | 〈s, p, o〉 ∈ S})}

We say that a term t occurs in a property position if it occurs as the predicate of
a triple, as the subject or object of an rdfs:subPropertyOf triple, as the subject of an
rdfs:domain or rdfs:range triple, or the graph contains 〈t, rdf:type, rdf:Property〉 or
〈t, rdf:type, ContainerMembershipProperty〉. A term t occurs in a class position if it oc-
curs as the subject or object of an rdfs:subClassOf triple, as the object of an rdfs:domain,
rdfs:range, or rdf:type triple, as the subject of a triple 〈t, rdf:type, rdfs:Class〉, or as
the subject of a triple 〈t, rdf:type, rdfs:Datatype〉.

Let S be an RDF graph with only standard use of the RDF(S) vocabulary. The property
(resp., class) vocabulary of S consists of all the names appearing in property (resp., class)
positions in S or the RDF(S) axiomatic triples with only standard use of the RDF(S)
vocabulary.

Given two RDF graphs S and E with only standard use of the RDF(S) vocabulary, we
write E E S if the property, resp. class vocabularies of E are subsets of the property, resp.
class vocabularies of S, there are no blank nodes in class or property positions in E,4 and
rdfs:Resource, rdfs:Class, and rdf:Property do not appear in E.

Theorem 2. Let S and E be RDF graphs with only standard use of the RDFS vocabulary
such that E E S. Then,

S |=erdfs E iff trerdfs(S) ∪Ψerdfs-V |=f tr
erdfs(E)

We define Ψerdfs-V
−S analogously to Ψerdfs

−S , i.e., it does not contain statements concerning
container membership properties not appearing in the graph S, with the exception of rdf: 1.
The following proposition follows from an argument analogous to the proof of Property 4.

Proposition 5. Let S and E be RDF graphs with only standard use of the RDFS vocabulary
such that E E S. Then,

S |=erdfs E iff sk(trerdfs(S)) ∪Ψerdfs-V
−S∪E |=f tr

erdfs(E).

4. This restriction on the use of blank nodes in the entailed graph was not mentioned in the extended
abstract of this paper (de Bruijn & Heymans, 2007). This was an error.

544

Logical Foundations of RDF(S) with Datatypes

We have that whenever E does not contain the terms rdfs:subClassOf, rdfs:sub-
PropertyOf, rdfs:domain, and rdfs:range, trerdfs(E) is a conjunction of atomic molecules
prefixed by an existential quantifiers (i.e., a conjunctive query).

We have that sk(trerdfs(S)) ∪ Ψerdfs-V
−S∪E is a finite set of Horn formulas. Therefore, if

the graphs satisfy the mentioned conditions, query answering techniques used in F-Logic
reasoners such as FLORA-2 (Yang et al., 2003) can be used for checking extensional RDFS
entailment.

3.4 Embedding Extensional RDFS into First-Order Logic

We now consider an embedding of extensional RDFS entailment into first-order logic (FOL),
based on the direct embedding of extensional RDFS in F-Logic defined above.

We say that an F-Logic theory Φ is translatable to contextual FOL if Φ does not contain
unary or binary predicates and for every molecule of the form t1[t2 � t3] or t1 : t2 holds that
t2 is a constant symbol. FO(Φ) is the contextual FOL theory obtained from Φ by replacing:

• every data molecule t1[t2 � t3] with the atomic formula t2(t1, t3) and

• every is-a molecule t1 : t2 with the atomic formula t2(t1).

The following proposition follows immediately from an earlier result (de Bruijn & Heymans,
2008, Theorem 3.2).

Proposition 6. Let Φ, respectively φ, be an equality-free F-Logic theory, respectively for-
mula, that is translatable to contextual FOL. Then,

Φ |=f φ iff FO(Φ) |=c FO(φ).

We say that an RDF graph S is a non-higher-order graph if S does not contain blank
nodes in class or property positions, and has only standard use of the RDFS vocabulary.
Observe that if S is a non-higher-order RDF graph, then trerdfs(S)∪Ψerdfs-V is translatable
to contextual FOL. Notice also that every ground RDF graph that has only standard use
of the RDFS vocabulary is a non-higher-order RDF graph.

Theorem 3. Let S and E be non-higher-order RDF graphs such that E E S. Then,

S |=erdfs E iff FO(trerdfs(S) ∪Ψerdfs-V) |=c FO(trerdfs(E)).

Proof. Follows immediately from Theorem 2, the fact that FO(trerdfs(S)) and
FO(trerdfs(E)) do not contain the equality symbol, and Proposition 6.

Concerning the relationship with DL-LiteR, we make the following observation.

Proposition 7. Let S be a ground non-higher-order graph.5 Then, FO(trerdfs(S)∪Ψerdfs-V)
can be equivalently rewritten to the FOL equivalent Φ = π(K) of a contextual DL-LiteR
knowledge base K.

Analogous to Proposition 5, one may discard the axiomatic triples concerning container
membership properties that are not used, and thus one only needs to reason with a finite
knowledge base.

5. Note that, when considering a variant of DL-LiteR that allows existentially quantified variables in the
ABox – also allowed in OWL DL – this restriction could be relaxed to S being a non-ground non-higher-
order RDF graph.

545

de Bruijn & Heymans

4. Extensions with Datatypes

The entailment regimes we dealt with in the previous section do not consider many of
the useful datatypes (e.g., strings, integers). In fact, rdf:XMLLiteral is the only datatype
that was considered. The RDF semantics specification (Hayes, 2004) defines the notion
of D entailment (datatype entailment), which extends RDFS entailment with support for
datatypes. Ter Horst (2005) defines the notion of D* entailment, which is also an extension
of RDFS entailment, but semantically weaker than D entailment. We first review D*
entailment, after which we review D entailment. Both semantics were originally defined as
extensions of RDFS entailment. However, one might extend any of the entailment regimes
we considered with datatype support. Therefore, we consider extensions of simple, RDF,
RDFS, and extensional RDFS entailment with both kinds of datatype semantics. We first
review the datatype semantics, after which we present embeddings of both semantics into
F-Logic. Finally, we discuss a notion of normalization that may be used to remove equality
statements from the embeddings to speed up processing.

4.1 Extension of the RDF Entailment Regimes with Datatypes

Datatypes define sets of concrete data values (e.g., strings and integers), along with their
lexical representations. A datatype is a tuple d = 〈Ld, V d, L2V d〉 consisting of

• a lexical space Ld, which is a set of character strings (e.g., “0”, “1”, “01”, . . . , in the
case of an integer datatype),

• a value space V d, which is a set of values (e.g., the numbers 0, 1, 2, . . . , in the case
of an integer datatype), and

• a lexical-to-value mapping L2V d, which is a mapping from the lexical space to the
value space (e.g., {“0” 7→ 0, “1” 7→ 1, “01” 7→ 1, . . .}, for an integer datatype).

A simple datatype map D is a partial mapping from URIs to datatypes. A simple datatype
map D is a datatype map if D(rdf:XMLLiteral) = xml where xml is the built-in XML
literal datatype as defined in the RDF specification (Klyne & Carroll, 2004). With dom(D)
and ran(D) we denote the domain and range of D, respectively.

Given a simple datatype map D, we call a typed literal (s, u) ∈ T L well-typed if u ∈
dom(D) and s ∈ LD(u); (s, u) is ill-typed if u ∈ dom(D) and s /∈ LD(u).

We now review the notions of D* and D entailment. Similar to the previous section,
the definitions of D* - and D-interpretations can be found in Appendix A.

D* entailment Given a simple datatype map D , an RDF graph S s-D* entails an RDF
graph E, denoted S |=s-D* E, if every s-D* -interpretation that is a model of S is a model
of E.

Given a datatype map D , an RDF graph S x-D*-entails an RDF graph E, denoted
S |=x-D* E, if every x-D* -interpretation that is a model of S is a model of E, for x ∈
{rdf, rdfs, erdfs}.

Notice that if dom(D) = {rdf:XMLLiteral} and x ∈ {rdf, rdfs, erdfs}, then x-D* -
entailment corresponds to x-entailment, with the exception that when considering rdf -D* -
entailment, the triple 〈rdf:XMLLiteral, rdf:type, rdfs:Datatype〉 is additionally entailed.
In addition, if dom(D) = ∅, then s-D* -entailment corresponds to s-entailment.

546

Logical Foundations of RDF(S) with Datatypes

The following example shows how equality may be introduced by the D* semantics.

Example 2. Consider a datatype map that contains the XML schema string datatype
(Peterson, Gao, Malhotra, Sperberg-McQueen, & Thompson, 2009). Certain equalities hold
between plain literals without language tags and typed literals of this datatype, because the set
of plain literals without language tags corresponds to the value space of the string datatype.
So, equalities such as “a” = (“a”, string) and “xxx” = (“xxx”, string) necessarily hold.
Similar for equalities between datatypes. For example, if the datatype map contains both
integer and decimal, then further equalities such as (“1”, integer) = (“1”, decimal) and
(“1”, decimal) = (“1.0”, decimal) necessarily hold.

D entailment Given a simple datatype map D , an RDF graph S s-D-entails an RDF
graph E, denoted S |=s-D E, if every s-D-interpretation which is a model of S is a model
of E.

Given a datatype map D , an RDF graph S x-D-entails an RDF graph E, denoted
S |=x-D E, if every x-D-interpretation which is a model of S is a model of E, for x ∈
{rdf, rdfs, erdfs}. An RDF graph S x-D-entails an RDF graph E, denoted S |=x-D E, if
every x-D-interpretation which is a model of S is also a model of E.

There are two main differences between D* entailment and D entailment: (i) D en-
tailment allows for easy extension towards languages which can express equality between
URIs denoting datatypes; whenever two URIs denote the same datatype, typed literals
with these two URIs as datatypes are interpreted in the same way (see Example 3); and (ii)
D entailment directly links the class extension of a datatype with the value space of this
datatype. The latter complicates the evaluation of entailment somewhat, and was likely the
main motivation for the introduction of D* entailment. The complication becomes clear
when declaring blank nodes as members of specific datatypes, as illustrated in Example 4.

Example 3. Consider an extension of D entailment with equality by imposing the following
condition on interpretations:

(+) An interpretation I satisfies a triple 〈x, owl:sameAs, y〉 with respect to a
blank node assignment A iff xI,A = yI,A.

Now consider a datatype map D = {bool 7→ boolean}, where boolean is defined as follows:

• Lboolean = {“1”, “0”, “t”, “f”},

• V boolean = {true, false}, and

• L2V boolean = {“1” 7→ true, “0” 7→ false, “t” 7→ true, “f” 7→ false},

and an RDF graph S = {〈myBool, owl:sameAs, bool〉, 〈a, b, (“1”,myBool)〉}. In D-inter-
pretations, typed literals of which the datatype URIs are interpreted the same are inter-
preted the same as well. Therefore, under D entailment extended with condition (+) the
triple 〈a, b, (“t”,myBool)〉 can be derived from S: (“1”,myBool) and (“t”,myBool) are
both interpreted as L2V boolean(“1”) = L2V boolean(“t”) = true; hence, (“1”,myBool) and
(“t”,myBool) are interpreted in the same way in every interpretation. Similarly, it can be
shown that the triples 〈a, b, (“1”, bool)〉 and 〈a, b, (“t”, bool)〉 are entailed by S.

547

de Bruijn & Heymans

None of these derivations is valid when considering D* entailment extended with condi-
tion (+). In fact, because myBool is not in the domain of D, (“1”,myBool) is interpreted
as an arbitrary (abstract) symbol; it is treated in the same way as a URI.

Example 4. Consider a datatype map D that includes the XML schema datatypes string

and integer (Peterson et al., 2009), which have disjoint value spaces. Consider also the
graph S = {〈 : x, rdf:type, string〉, 〈 : x, rdf:type, integer〉}. In an rdfs-D*-interpre-
tation I the class extensions of string and integer are not necessarily the same as the
value spaces of the respective datatypes. Therefore, there may be an object k ∈ IR that is
neither an integer nor a string, but which is in the class extensions of both string and
integer. Consequently, there is an rdfs-D*-interpretation that is a model of S and S is
rdfs-D*-satisfiable.

In an rdfs-D-interpretation the class extensions of string and integer are necessarily
the same as the value spaces of the respective datatypes. Since these value spaces are disjoint,
there can be no object that is both in the class extension of string and in the class extension
of integer. Therefore, S is not rdfs-D-satisfiable.

4.2 Embeddings of Datatypes in Logic

Given a datatype map D, we use a set of formulas Ψy ⊆ L, defined in Appendix B, to axiom-
atize the semantics of an entailment regime y ∈ {x-D*, x-D}, with x ∈ {s, rdf, rdfs, erdfs}.

Analogous to Proposition 3, we have:

Proposition 8. Let S be an RDF graph of a vocabulary V . Then, sk(tr(S)) ∪ Ψy, with
y ∈ {s-D*, rdf-D*, rdfs-D*, s-D, rdf-D, rdfs-D}, can be equivalently rewritten to a set of F-
Logic Horn formulas.

We first show faithfulness of our embedding of D* entailment.

Theorem 4. Let S and E be RDF graphs of a vocabulary V , let D be a datatype map, and
let x ∈ {s, rdf, rdfs, erdfs} be an entailment regime. Then,

S |=x-D* E if and only if tr(S) ∪Ψx-D* |=f tr(E) and

S is x-D*-satisfiable iff tr(S) ∪Ψx-D* has a model.

We now turn to x-D-entailment. It turns out that when considering datatype maps with
arbitrary datatypes, one needs to reason by case (see Proposition 14 in Section 5), which
complicates matters. We therefore restrict ourselves to definite datatypes, which do not
bring this complication. An example of a definite datatype map is one that includes only
the set of datatypes in the OWL 2 EL and QL profiles (Motik et al., 2009a).

Definition 4. A datatype map D is definite if

• the value space of every datatype d ∈ ran(D) is infinite,

• for any n ≥ 1 distinct datatypes d1, . . . , dn ∈ ran(D) holds that either (a) the value
spaces are disjoint, i.e., V di ∩ V dj = ∅ (1 ≤ i < j ≤ n) or (b) their intersection is
infinite, i.e., V d1 ∩ · · · ∩ V dn is an infinite set, and

548

Logical Foundations of RDF(S) with Datatypes

• for no two datatypes d1, d2 ∈ ran(D) holds that d1 ∈ V d2.

Theorem 5. Let S and E be RDF graphs of a vocabulary V , let D be a definite datatype
map, and let x ∈ {s, rdf, rdfs, erdfs} be an entailment regime. Then,

S |=x-D E if and only if tr(S) ∪Ψx-D |=f tr(E) and

S is x-D-satisfiable iff tr(S) ∪Ψx-D has a model.

4.3 Normalization of Datatypes

The set of equality statements in the axiomatizations Ψx-D* and Ψx-D is potentially large
and, in general, polynomial in the size of the vocabulary V . In addition, it requires equality
reasoning, which tends to deteriorate the performance of a reasoner. We discuss how to
normalize the embedding of a graph in F-Logic, thereby removing the need for expressing
equality.

Given a vocabulary V , we assume a strict (e.g., lexicographical) order < on the set of
literals PL ∪ T L. For a given datatype map D, we define V D =

⋃
u∈dom(D) V

D(u), i.e.,

the values in D. For each v ∈ V D, we define the literals that represent the value v as:
v = {(s, u) ∈ T L | L2V D(u)(s) = v} ∪ {l ∈ PL | l = v}. The representation of v, denoted
r(v), is the least element in v according to the order <.

Given a set of formulas Φ ⊆ L such that L conforms with V , the datatype normalization
of Φ, denoted (Φ)n, is obtained from Φ by replacing every plain literal l ∈ PL with r(l) and

replacing every well-typed literal (s, u) ∈ T L with r(L2V D(u)(s)).
Observe that the only equality statements in the normalizations (tr(S) ∪ Ψx-D)n and

(tr(S) ∪ Ψx-D*)n are trivial statements of the form t = t, where t is a literal. Therefore,
these statements may be discarded.

The following proposition follows straightforwardly from the shape of the axiomatiza-
tions Ψy and the definition of normalization.

Proposition 9. Let S and E be RDF graphs of a vocabulary V , let D be datatype map D,
and let y ∈ {s-D*, rdf-D*, rdfs-D*, erdfs-D*, s-D, rdf-D, rdfs-D, erdfs-D}. Then,

tr(S) ∪Ψy |=f tr(E) iff (tr(S) ∪Ψy)n |=f (tr(E))n

5. Complexity

In this section we review the complexity of the various RDF entailment relations and present
several novel results, exploiting the embeddings presented in Sections 3 and 4.

The complexity of non-ground simple entailment and RDFS entailment, and upper bounds
for ground entailment are known from the literature, and analogous results for RDF en-
tailment follow immediately. Recall that, although the set of axiomatic triples is infinite,
only a finite subset, linear in the size of the graphs, needs to be taken into account when
checking entailment (cf. Proposition 4).

Proposition 10 (Gutierrez et al., 2004, 2010; ter Horst, 2005; de Bruijn et al., 2005). The
decision problems S |=s E, S |=rdf E, S |=rdfs E, and S |=rdfs-D* E, given RDF graphs S

549

de Bruijn & Heymans

and E, are NP-complete in the combined size of S and E, and polynomial in the size of S.
If E is ground, then the respective problems are in PTime.
In addition, the problems S |=erdfs E and S |=rdfs-D E are NP-hard.

The membership proofs by Gutierrez et al. (2004, 2010), ter Horst (2005), and de Bruijn
et al. (2005) rely on the fact that the set of all (relevant) entailed triples of a given graph
can be computed in polynomial time using the RDFS entailment rules (ter Horst, 2005);
the problem can then be reduced to subgraph homomorphism. From Corollary 1 and the
fact that the problem of checking ground entailment in Datalog (Dantsin, Eiter, Gottlob,
& Voronkov, 2001) is polynomial in the size of the data (i.e., tr(S)) we obtain a novel
argument for membership.

NP-hardness of non-ground entailment has been shown through a reduction from a
known NP-hard problem (ter Horst, 2005).

From the embedding in F-Logic (Theorem 1), we obtain the following upper bound for
the complexity of simple and RDF entailment.

Proposition 11. Let S and E be RDF graphs. If E is fixed, the problems S |=s E and
S |=rdf E are decidable in LogSpace in the size of S. The problems S |=s E and S |=rdf E
are decidable in LogSpace in the combined size of the graphs if E is ground.

Proof Sketch. It is easy to see that the only fact that could potentially be recursively de-
rived from Ψrdf is rdf:type[rdf:type � rdf:Property]; however, rdf:type[rdf:type �
rdf:Property] ∈ Ψrdf. Thus, sk(tr(S)) and sk(tr(S))∪Ψrdf may be treated as nonrecursive
Datalog programs.

The proposition then follows straightforwardly from Corollary 1 and the fact that ground
entailment in nonrecursive Datalog is in LogSpace in the size of the data (Abiteboul, Hull,
& Vianu, 1995), with the data being the input RDF graphs.

It turns out that we cannot obtain a LogSpace upper bound for RDFS entailment. In
fact, it turns out that ground rdfs-, and hence ground rdfs-D* - and rdfs-D-entailment, is
PTime-hard.

Proposition 12. There exist ground RDF graphs S and E such that the decision problems
S |=rdfs E, S |=rdfs-D* E, and S |=rdfs-D E are PTime-hard.

Proof. We proceed by reduction from the PTime-hard problem path system accessibility
(Jones & Laaser, 1974; Gary & Johnson, 1979), which is defined as:
Instance: A set X of nodes, subsets S, T ⊆ X of source and terminal nodes, and a relation
R ⊆ X ×X ×X.
Question: A node x ∈ X is accessible if x ∈ S or if there exist accessible nodes y, z ∈ X
such that 〈x, y, z〉 ∈ R. Is there an accessible terminal node t ∈ T?

In the remainder sp is short for rdfs:subPropertyOf.
We now encode this problem into RDFS. The graph G is constructed as follows:

• for every source node x ∈ S include the triple 〈x, sp, sp〉,

• for every terminal node x ∈ T include the triple 〈a, sp, x〉, and

• for every tuple 〈x, y, z〉 ∈ R include the triple 〈x, y, z〉.

550

Logical Foundations of RDF(S) with Datatypes

We show that a node t ∈ X is accessible iff G |=rdfs 〈t, sp, sp〉. It follows that there
exists an accessible node iff G |=rdfs 〈a, sp, sp〉.

(⇒) We proceed by induction. Base case: if t ∈ S then 〈t, sp, sp〉 ∈ G, so clearly
G |=rdfs 〈t, sp, sp〉.

Induction step: consider 〈t, y, z〉 ∈ R such that y, z are accessible. We have that 〈t, y, z〉
is included in G and G |=rdfs 〈y, sp, sp〉 and G |=rdfs 〈z, sp, sp〉, since y and z are accessible.
Condition 10 in Table 5 implies that G |=rdfs 〈t, sp, z〉. By transitivity of sp (condition 9
in Table 5) we can subsequently conclude that G |=rdfs 〈t, sp, sp〉.

(⇐) Assume, on the contrary, that t ∈ X is not accessible. It is then straightforward to
construct an rdfs-interpretation I such that I |=rdfs G and I 6|=rdfs 〈t, sp, sp〉, a contradiction.

Using the correspondence of Proposition 7, the results on the complexity of reasoning
in DL-LiteR (Calvanese et al., 2007), and the classical results on skolemization (Fitting,
1996) we obtain the following result for extensional RDFS entailment. Recall the notion of
standard use of the RDFS vocabulary from Definition 2.

Proposition 13. Let S and E be RDF graphs with only standard use of the RDFS vo-
cabulary such that E E S. Then, the problem of deciding S |=erdfs E is NP-complete, and
NLogSpace-complete if E is ground.

Proof. Assume that E is ground. We first demonstrate membership.
We have that FO(sk(trerdfs(S))∪Ψerdfs-V) is a theory of contextual FOL that is equiv-

alent to a contextual DL-LiteR knowledge base (by Proposition 7). If E is ground, then,
as a straightforward consequence from Theorems 2 and 3,

S |=erdfs E iff FO(sk(trerdfs(S)) ∪Ψerdfs-V
−S∪E) |=c FO(trerdfs(E)).

A contextual DL-LiteR theory Φc (resp., formula φc) can be straightforwardly rewritten
to a corresponding classical DL-LiteR theory Φ (resp., formula φ) such that

Φc |=c φ
c iff Φ |= φ.

Since this transformation is linear in the size of the knowledge base, the complexity of
deciding satisfiability and entailment of contextual DL-LiteR knowledge bases is the same
as that of DL-LiteR knowledge bases, namely NLogSpace (Calvanese et al., 2007).

Hardness is shown by reduction from a known NLogSpace-hard problem: Graph reach-
ability (Papadimitriou, 1994) can be encoded using subclass statements: edges in the
graph are represented in the RDF graph S by rdfs:subClassOf-triples and t is reachable
from s iff S |=erdfs {〈s, rdfs:subClassOf, t〉}.

This result immediately leads to the following NP algorithm for deciding S |=erdfs E, in
case E is not ground:

1. Guess a mapping θ from blank nodes in E to ground terms in FO(sk(trerdfs(S))∪Ψerdfs-V
−S∪E).

2. Check whether FO(sk(trerdfs(S)) ∪Ψerdfs-V
−S∪E) |=c FO(trerdfs(E)θ).

This algorithm is clearly sound and complete, since the theory FO(sk(trerdfs(S))∪Ψerdfs-V
−S∪E)

is universal.

NP-hardness follows from NP-hardness of simple entailment (Proposition 10), which is
straightforwardly encoded into extensional RDFS entailment.

551

de Bruijn & Heymans

For x-D-entailment with arbitrary datatype maps we obtain the following novel lower
bound.

Proposition 14. There are RDF graphs S and E and a datatype map D such that deciding
S |=s-D E is coNP-hard in the size of S.

Proof. We proceed by reduction from the complement of graph k-colorability for k ≥ 3,
i.e., the nonexistence of a k-coloring. This problem is coNP-complete (Gary & Johnson,
1979):

Instance: A graph G = 〈V,E〉 and a positive integer k ≤ |V | such that k ≥ 3.
Question: A k-coloring is an assignment from nodes to colors f : V → {1, 2, . . . , k} such

that no two adjacent nodes share the same color, i.e., if 〈u, v〉 ∈ E, then f(u) 6= f(v). Is it
the case that there is no k-coloring?

Let D be a datatype map that includes rdf:XMLLiteral and that maps a URI d to
a datatype D(d) with an ordered value space of cardinality k, let S be the smallest RDF
graph such that:

• for every v ∈ V , 〈v, rdf:type, d〉 ∈ S and

• for every 〈u, v〉 ∈ E, 〈u, R, v〉 ∈ S,

where R is a URI, and let H = {〈 :x, R, :x〉}, where :x is a blank node.
We now show that G does not have a k-coloring if and only if S |=s-D H.
(⇒) Assume, on the contrary, that S 6|=s-D H, which means there is an s-D-inter-

pretation I such that I |= S and I 6|= H. Therefore, (*) there is no s ∈ IR such that
〈s, s〉 ∈ IEXT(IS(R)). Consider any 〈u, v〉 ∈ E; by (*) we have that IS(u) 6= IS(v). Since
〈u, rdf:type, d〉, 〈v, rdf:type, d〉 ∈ S, IS(u), IS(v) ∈ D(d), by condition 20 in Table 8. Now
let f(v) = IS(v) for every v ∈ V . We have that f is a k-coloring, a contradiction.

(⇐) Analogously, if there exists a k-coloring, one can construct an s-D-interpretation
that is a model of S, but not of H.

A polynomial (resp., logspace) datatype map D is a datatype map for which holds
that deciding well-typedness of literals and deciding L2V D(u)(s) = L2V D(u′)(s′) and l =
L2V D(u)(s), where l is a plain literal and (s, u), (s′, u′) are well-typed literals, can be done
in PTime (resp., LogSpace).

Considering definite datatype maps, we obtain the following lower bound from Theorem
5 and the data complexity of Datalog, exploiting Skolemization, analogous to Corollary 1,
and exploiting the fact that we need to take into account only a subset of the RDF(S)
axiomatic triples, analogous to Proposition 4.

Proposition 15. Let D be a definite polynomial datatype map. Then, the decision problems
S |=s-D E, S |=rdf-D E, and S |=rdfs-D E are NP-complete in the combined size of S and E,
and polynomial in the size of S. If E is ground, then the respective problems are in PTime.

It turns out that, analogous to the case without datatypes, we can further refine the
upper bounds of simple- and rdf -entailment.

Lemma 1. Let Φ be a theory and let D be a logspace datatype map. Then, (Φ)n can be
computed in LogSpace.

552

Logical Foundations of RDF(S) with Datatypes

Entailment Restrictions on S Restrictions on E Complexity

|=s,|=rdf ,|=rdfs none none NP-complete

|=s,|=rdf none ground LogSpace

|=rdfs none ground P-complete

|=erdfs none none NP-hard

|=erdfs stand. RDFS stand. RDFS NP-complete

|=erdfs stand. RDFS
stand. RDFS,

ground
NLogSpace-complete

Table 2: Complexity of Entailment S |=x E in RDF, measured in the combined size of S
and E

Entailment ∅ D* definite D D

x=s LogSpace LogSpace LogSpace coNP-hard

x=rdf LogSpace LogSpace LogSpace coNP-hard

x=rdfs P-complete P-complete P-complete coNP-hard

Table 3: Complexity of Entailment S |=x-D E and S |=x-D* E, measured in the size of S

Proof. With WL we denote the set of plain and well-typed literals, and with < the lexico-
graphical ordering over WL. If l is a plain literal, we define vl = l; if (s, u) is a well-typed
literal, v(s,u) = L2V D(u)(s). The following algorithm returns the representation of a literal
l ∈ WL in LogSpace: iterate over all literals l′ < l, until the least literal l′′ such that vl

′′
= vl

is found; observe that deciding l′ < l and deciding vl
′′

= vl can be done in LogSpace.

From the lemma we obtain the following upper bound, by considerations analogous to
Proposition 11 and the fact that the axioms in ΨD\Ψrdf do not introduce recursion.

Proposition 16. Let S and E be RDF graphs and let D be a logspace datatype map. Then,
the problems S |=s-D* E and S |=rdf-D* E are decidable in LogSpace in the size of S, and in
the combined size of the graphs if E is ground.

Furthermore, if D is definite, the problems S |=s-D E and S |=rdf-D E are decidable in
LogSpace in the size of S, and in the combined size of the graphs if E is ground.

Table 2 summarizes the complexity of reasoning with the entailment regimes of RDF;
“stand. RDFS” stands for “only standard use of the RDFS vocabulary; S and E are such
that E E S”. The results in the first and fourth line of the table, and the upper bound
for ground rdfs-entailment were previously known (Gutierrez et al., 2004; de Bruijn et al.,
2005; ter Horst, 2005). To the best of our knowledge, the other results are novel.

Table 3 summarizes the complexity of reasoning with datatypes, measured in the size of
the entailing graph S. “Definite D” stands for D entailment restricted to definite datatype
maps. The LogSpace results require the datatype map D to be logspace as well, i.e., it
must be decidable in LogSpace whether two literals are equal under the interpretation given
by D . We suspect that many datatype maps of interest are logspace – examples are the
XML schema datatypes (Peterson et al., 2009). The upper bounds for rdfs- and rdfs-D*-

553

de Bruijn & Heymans

entailment are known from the literature (ter Horst, 2005). To the best of our knowledge,
the other results in the table are novel.

6. Conclusions and Future Work

We have presented embeddings of the different RDF entailment regimes in F-Logic, and
we have shown how deductive database and description logic technology can be used for
reasoning with RDF.

Known complexity results from the fields of deductive databases and description logics
resulted in several novel upper bounds, in particular, ground simple- and rdf -entailment
are in LogSpace, as are the respective extensions with D* datatype semantics; non-ground
(resp., ground) erdfs-entailment of graphs with only standard use of the RDFS vocabulary
is in NP (resp., NLogSpace). To the best of our knowledge these are the first known upper
bounds for extensional RDFS entailment for a nontrivial subset of RDF graphs. For the
case of extensions of simple-, rdf -, and rdfs-entailment with D datatype support, the upper
bounds for non-ground and ground entailment are the same as for D* entailment when
considering definite datatypes, which do not require reasoning by case.

In addition, we have established several lower bounds through reductions from known
hard problems. In particular, rdfs-entailment turns out to be PTime-hard and simple-
entailment extended with D datatype support turns out to be coNP-hard, both in the size
of the entailing graph. We also found a matching lower bound for the NLogSpace result for
ground erdfs-entailment of graphs with only standard use of the RDFS vocabulary.

The negative result concerning ground rdfs-entailment (i.e., PTime-hardness) might
come as a surprise because the language seems far less expressive than other PTime-hard
languages (e.g., variable-free Datalog (Dantsin et al., 2001) and DL-LiteR,u, an extension
of DL-LiteR (Calvanese et al., 2007)). The PTime-hardness proof suggests that the com-
plexity originates from the possibility to use RDFS vocabulary in arbitrary places in RDF
statements, e.g., rdfs:subPropertyOf in the object position of a triple. Indeed, ground
entailment in the minimal RDFS fragment by Muñoz, Pérez, and Gutierrez (2009) can
be decided in O(nlogn).6 We suspect that the minimal RDFS fragment can be extended
with many useful features, such as class and property declarations and the RDFS metadata
vocabulary, without compromising the O(nlogn) upper bound. This is a topic for future
work.

The negative result concerning D entailment, even when not considering the RDFS vo-
cabulary (i.e., coNP-hardness), suggests that one should restrict oneself to a weaker datatype
semantics such as D* or one should use only definite datatype maps, which precludes the
use of finite datatypes such as bool or int (Peterson et al., 2009). The latter approach was
taken in the specification of the tractable fragments (also called profiles) of OWL 2 (Motik
et al., 2009a), which has a datatype semantics similar to the D semantics.

The investigation reported on in this paper has formed the basis for the specification of
combinations of RIF-BLD rules (RIF Working Group, 2010a), which are essentially Horn
logic formulas, with RDF graphs. The RIF RDF and OWL specification (RIF Working
Group, 2010b) gives a model-theoretic account of the semantics of RIF-RDF combinations

6. This minimal RDFS disallows the use of any RDF(S) vocabulary besides the properties in the RDF(S)
ontology vocabulary, and allows the use of these properties only in the predicate position of triples.

554

Logical Foundations of RDF(S) with Datatypes

and suggests how such combinations can be embedded into RIF-BLD rules, based on the
embedding in Section 3.2. A particular challenge for future work is the combination of RDF
graphs with extensions of RIF-BLD that allow nonmonotonic negation in the rules, and the
interaction of this negation with blank nodes.

Another topic for future investigation is the precise relationship between extensional
RDFS and OWL. In particular, the relationship between extensional RDFS with only stan-
dard use of the RDFS vocabulary and the OWL 2 QL fragment of OWL 2 (Motik et al.,
2009a), which is based on contextual DL-LiteR. The embedding in the proof of Proposition
7 provides a promising starting point.

Acknowledgments

Jos de Bruijn was partially supported by the European Commission under the projects
Knowledge Web (IST-2004-507482) and ONTORULE (FP7 231875). Stijn Heymans was
partially supported by the Austrian Science Fund (FWF) under projects P20305 and P20840
and by the European Commission under the project ONTORULE (FP7 231875).

Appendix A. RDF(S) Semantics

In this appendix we define the notions of RDF, RDFS, eRDFS, D* , and D interpretations
(Hayes, 2004; ter Horst, 2005). Recall the definition of interpretation in Section 3.1.

RDF Interpretations The RDF vocabulary consists of the following symbols:

rdf:type rdf:Property rdf:XMLLiteral rdf:nil rdf:List rdf:Statement rdf:subject
rdf:predicate rdf:object rdf:first rdf:rest rdf:Seq rdf:Bag rdf:value rdf:Alt
rdf: 1 rdf: 2 . . .

The RDF ontology vocabulary consists of the symbols rdf:type and rdf:Property. Note
that rdf: i, for any positive integer i, is part of the RDF vocabulary. Thus, the RDF
vocabulary is infinite. In the remainder, we omit the prefix rdf: when using the RDF
vocabulary.

A typed literal (s, XMLLiteral) is a well-typed XML literal if s is in the lexical space
of XMLLiteral, as defined in (Klyne & Carroll, 2004, Section 5.1); the XML value of s,
denoted xml(s), is in one-to-one correspondence with s. If s is not in the lexical space of
XMLLiteral, then (s, XMLLiteral) is an ill-typed XML literal.

Given an interpretation I, the class extension of an object x ∈ IR is the set of elements
connected to x via type, i.e., the instances of x. It is defined as ICEXT(x) = {k | 〈k, x〉 ∈
IEXT(IS(type))}.

An interpretation I of a vocabulary V = 〈C,PL, T L〉 is an rdf-interpretation if V in-
cludes the RDF vocabulary and conditions 1–4 in Table 4 hold in I.

RDFS Interpretations The RDFS vocabulary consists of:

rdfs:domain rdfs:range rdfs:Resource rdfs:Literal rdfs:Datatype rdfs:Class
rdfs:subClassOf rdfs:subPropertyOf rdfs:member rdfs:Container rdfs:label
rdfs:ContainerMembershipProperty rdfs:comment rdfs:seeAlso rdfs:isDefinedBy

555

de Bruijn & Heymans

1 IS(type), IS(subject), IS(predicate), IS(object), IS(first), IS(rest),

IS(value), IS(1), IS(2), . . . ∈ IP

IS(nil) ∈ ICEXT(IS(List))

2 IP = ICEXT(IS(Property))

3 if (s, XMLLiteral) ∈ T L is a well-typed XML literal, then

IL((s, XMLLiteral)) = xml(s), IL((s, XMLLiteral)) ∈ LV, and

IL((s, XMLLiteral)) ∈ ICEXT(IS(XMLLiteral))

4 if (s, XMLLiteral) ∈ T L is an ill-typed XML literal, then

IL((s, XMLLiteral)) /∈ LV and IL((s, XMLLiteral)) /∈ ICEXT(IS(XMLLiteral))

Table 4: Conditions on RDF interpretations

The RDFS ontology vocabulary consists of the symbols rdfs:subClassOf, rdfs:subProp-
ertyOf, rdfs:domain, rdfs:range, rdfs:Class, and rdfs:Datatype. In the remainder we
omit the prefix rdfs: when using the RDFS vocabulary.

We say that an rdf -interpretation I of a vocabulary V is an rdfs-interpretation if V
includes the RDFS vocabulary and conditions 5–15 depicted in Table 5 hold in I. As a
shortcut, we define IEXTp(o) = {s | 〈s, IS(o)〉 ∈ IEXT(IS(p))}.

An RDF (resp, RDFS) axiomatic triple is a triple that is satisfied in every rdf -(resp,
rdfs-) interpretation. Conditions 1 and 5 correspond to the RDF(S) axiomatic triples in the
following way; see also (Hayes, 2004, Sections 3.1 and 4.1):

• IS(s) ∈ IP corresponds to the axiomatic triple 〈s, type, rdf:Property〉,

• IS(s) ∈ IEXTp(o) corresponds to the axiomatic triple 〈s, p, o〉, and

• IS(s) ∈ ICEXT(IS(c)) corresponds to the axiomatic triple 〈s, type, c〉.

Extensional RDFS Interpretations The normative RDFS semantics, reviewed above,
is also called the intensional RDFS semantics. The RDF semantics specification (Hayes,
2004) also defines an extensional RDFS semantics (eRDFS).

An rdfs-interpretation I is an erdfs-interpretation if the conditions depicted in Table 6
hold.

D* Interpretations Given a vocabulary V and a simple datatype map D, an s-interpre-
tation of V is an s-D*-interpretation if V includes dom(D) and conditions 16–19 in Table
7 are satisfied for each u ∈ dom(D).

Given a vocabulary V and datatype map D, an rdf (resp., rdfs, erdfs)-interpretation I
of V is an rdf -D* (resp., rdfs-D* , erdfs-D*)-interpretation if I is an s-D* -interpretation.

D Interpretations Given a vocabulary V and a simple datatype map D, an s-D* -inter-
pretation of V is an s-D-interpretation if it satisfies conditions 20–22 in Table 8 for each
u ∈ dom(D).

Given a vocabulary V and a datatype map D, an rdf (resp., rdfs, erdfs)-interpretation
I of V is an rdf -D (resp., rdfs-D , erdfs-D)-interpretation if I is an s-D-interpretation.

556

Logical Foundations of RDF(S) with Datatypes

5 IS(type), IS(member), IS(seeAlso), IS(isDefinedBy), IS(comment),

IS(label), IS(value), IS(1), IS(2), . . . ∈ IEXTdomain(Resource)

IS(domain), IS(range), IS(subPropertyOf) ∈ IEXTrdfs:domain(Property)

IS(subClassOf) ∈ IEXTrdfs:domain(Class)

IS(subject), IS(predicate), IS(object) ∈ IEXTdomain(Statement)

IS(first), IS(rest) ∈ IEXTdomain(List)

IS(subject), IS(predicate), IS(object), IS(member), IS(first), IS(seeAlso),

IS(isDefinedBy), IS(value), IS(1), IS(2), . . . ∈ IEXTrange(Resource)

IS(comment), IS(label) ∈ IEXTrange(Literal)

IS(subPropertyOf) ∈ IEXTrange(Property)

IS(type), IS(domain), IS(range), IS(subClassOf) ∈ IEXTrange(Class)

IS(rest) ∈ IEXTrange(List)

IS(Alt), IS(Bag), IS(Seq) ∈ IEXTsubClassOf(Container)

IS(ContainerMembershipProperty) ∈ IEXTsubClassOf(Property)

IS(isDefinedBy) ∈ IEXTsubPropertyOf(seeAlso)

IS(XMLLiteral) ∈ ICEXT(IS(Datatype))

IS(XMLLiteral) ∈ IEXTsubClassOf(Literal)

IS(Datatype) ∈ IEXTsubClassOf(Class)

IS(1), IS(2), . . . ∈ ICEXT(IS(ContainerMembershipProperty))

6 IR = ICEXT(IS(Resource))

LV = ICEXT(IS(Literal))

7 if 〈x, y〉 ∈ IEXT(IS(domain)) and 〈u, v〉 ∈ IEXT(x), then u ∈ ICEXT(y)

8 if 〈x, y〉 ∈ IEXT(IS(range)) and 〈u, v〉 ∈ IEXT(x), then v ∈ ICEXT(y)

9 IEXT(IS(subPropertyOf)) is transitive and reflexive on IP

10 if 〈x, y〉 ∈ IEXT(IS(subPropertyOf)), then IEXT(x) ⊆ IEXT(y)

11 if x ∈ ICEXT(Class), then x ∈ IEXTsubClassOf(Resource)

12 if 〈x, y〉 ∈ IEXT(IS(subClassOf)), then ICEXT(x) ⊆ ICEXT(y)

13 IEXT(IS(subClassOf)) is transitive and reflexive on ICEXT(Class)

14 if x ∈ ICEXT(ContainerMembershipProperty), then x ∈ IEXTsubPropertyOf(member)

15 if x ∈ ICEXT(Datatype), then x ∈ IEXTsubClassOf(Literal)

Table 5: Conditions on RDFS interpretations

7′ 〈x, y〉 ∈ IEXT(IS(domain)) if and only if (if 〈u, v〉 ∈ IEXT(x), then u ∈ ICEXT(y))

8′ 〈x, y〉 ∈ IEXT(IS(range)) if and only if (if 〈u, v〉 ∈ IEXT(x), then v ∈ ICEXT(y))

10′ 〈x, y〉 ∈ IEXT(IS(subPropertyOf)) if and only if x, y ∈ IP and IEXT(x) ⊆ IEXT(y)

12′
〈x, y〉 ∈ IEXT(IS(subClassOf)) if and only if

x, y ∈ ICEXT(Class) and ICEXT(x) ⊆ ICEXT(y)

Table 6: Conditions on eRDFS interpretations

557

de Bruijn & Heymans

16 IS(u) = D(u)

17 IS(u) ∈ ICEXT(IS(Datatype))

18
if (s, u) ∈ T L and s ∈ LD(u), then IL((s, u)) = L2V D(u)(s) ∈ LV and

IL((s, u)) ∈ ICEXT(D(u))

19
if (s, u) ∈ T L and s /∈ LD(u), then IL((s, u)) /∈ LV and

IL((s, u)) /∈ ICEXT(D(u))

Table 7: Conditions on D* interpretations

20 ICEXT(IS(u)) = V D(u) ⊆ LV

21
if (s, u′) ∈ T L, IS(u′) = IS(u) and s ∈ LD(u), then

IL((s, u′)) = L2V D(u)(s)

22 if (s, u′) ∈ T L, IS(u′) = IS(u) and s /∈ LD(u), then IL((s, u′)) /∈ LV

Table 8: Conditions on D-interpretations

Appendix B. Embeddings

This appendix contains the axiomatization Ψx of the entailment regimes x ∈ {s, rdf, rdf,
erdfs} and the axiomatization of the datatype entailment regimes Ψx-D*,Ψx-D, referenced
from Sections 3 and 4.

Following the convention in Appendix A we omit the prefixes rdf: and rdfs: when using
the RDF and RDF vocabularies.

B.1 RDF Entailment Regimes

The axiomatization of the s, rdf , rdfs, and erdfs entailment regimes, denoted Ψx, for
x ∈ {s, rdf, rdfs, erdfs}, is defined in Table 9.

B.2 Datatype Entailment Regimes

The axiomatization of the D* and D entailment regimes, denoted Ψx-D* and Ψx-D, respec-
tively, for x ∈ {s, rdf, rdfs, erdfs}, is defined in Table 10.

Note that D entailment requires that whenever two URIs are mapped to the same
individual in a given interpretation, the URIs can be used interchangeably in typed literals.
However, since equality between URIs cannot be stated in RDF(S) – or indeed inferred –
we do not need to consider this case in our embeddings.

B.3 Extensional RDFS

Let V = 〈C,PL, T L〉 be a vocabulary. The mapping function trerdfs, defined in Section
3.3, deals with the eRDFS semantics of most of the RDF(S) vocabulary through direct
embedding. We define here the theory Ψerdfs-V , which deals with the remainder of the
RDF(S) vocabulary.

558

Logical Foundations of RDF(S) with Datatypes

Ψs = ∅
Ψrdf = {tr(〈s, p, o〉) | 〈s, p, o〉 is an RDF axiomatic triple}∪
{t[type� XMLLiteral] | t ∈ T L is a well-typed XML literal}∪
{illD(t) | t ∈ T L is an ill-typed XML literal}∪
{∀x(∃y, z(y[x� z]) ⊃ x[type� Property]),
∀x(x[type� XMLLiteral] ∧ illD(x) ⊃ ⊥)}

Ψrdfs = Ψrdf ∪ {tr(〈s, p, o〉) | 〈s, p, o〉 is an RDFS axiomatic triple}∪
{t[type� Literal] | t ∈ PL}∪
{∀x(x[type� Resource]),
∀u, v, x, y(x[domain� y] ∧ u[x� v] ⊃ u[type� y]),
∀u, v, x, y(x[range� y] ∧ u[x� v] ⊃ v[type� y]),
∀x(x[type� Property] ⊃ x[subPropertyOf� x]),
∀x, y, z(x[subPropertyOf� y] ∧ y[subPropertyOf� z] ⊃ x[subPropertyOf� z]),
∀x, y(x[subPropertyOf� y] ⊃ ∀z1, z2(z1[x� z2] ⊃ z1[y � z2])),
∀x(x[type� Class] ⊃ x[subClassOf� Resource]),
∀x, y(x[subClassOf� y] ⊃ ∀z(z[type� x] ⊃ z[type� y])),
∀x(x[type� Class] ⊃ x[subClassOf� x]),
∀x, y, z(x[subClassOf� y] ∧ y[subClassOf� z] ⊃ x[subClassOf� z]),
∀x(x[type� ContainerMembershipProperty] ⊃ x[subPropertyOf� member]),
∀x(x[type� Datatype] ⊃ x[subClassOf� Literal]),
∀x(x[type� Literal] ∧ illD(x) ⊃ ⊥)}

Ψerdfs = Ψrdfs ∪ {∀x, y(∀u, v(u[x� v] ⊃ u[type� y]) ⊃ x[domain� y]),
∀x, y(∀u, v(u[x� v] ⊃ v[type� y]) ⊃ x[range� y]),
∀x, y(x[type� Property] ∧ y[type� Property] ∧ ∀u, v(u[x� v] ⊃
u[y � v]) ⊃ x[subPropertyOf� y]),

∀x, y(x[type� Class] ∧ y[type� Class] ∧ ∀u(u[type� x] ⊃ u[type� y]) ⊃
x[subClassOf� y])}

Table 9: Axiomatization of the RDF entailment regimes.

Ψerdfs-V = {trerdfs(〈s, p, o〉) | 〈s, p, o〉 is an RDF(S) axiomatic triple with

only standard use of the RDF(S) vocabulary}∪
{t :XMLLiteral | t ∈ T L is a well-typed XML literal}∪
{t : illxml | t ∈ T L is an ill-typed XML literal}∪
{t :Literal | t ∈ PL}∪
{∀x(x :Literal ∧ x : illxml ⊃ ⊥)}

Appendix C. Proofs

This appendix contains the proofs of the propositions and theorems in Sections 3 and 4.

C.1 Proof of Proposition 2

Consider a generalized RDF graph S, an interpretation I = 〈IR, IP, IS, IEXT〉 for which
holds that IP = IR includes every term in S, IS(c) = c for any URI c, IL(l) = l for
any typed literal l, and for every triple 〈s, p, o〉 ∈ S, (s, o) ∈ IEXT (p), and a blank node

559

de Bruijn & Heymans

ΨV -D*-= = {l = (s, u) | l ∈ PL, (s, u) ∈ T L is a well-typed literal, and

l = L2V D(u)(s)}∪
{(s, u) = (s′, u′) | (s, u), (s′, u′) ∈ T L are distinct well-typed literals and

L2V D(u)(s) = L2V D(u′)(s′)}
Ψx-D* = Ψx ∪ΨV -D*-=∪
{(s, u)[type� u] | (s, u) ∈ T L is a well-typed literal}∪
{illD(t) | t ∈ T L is an ill-typed literal}∪
{u[type� Datatype] | u ∈ dom(D)}∪
{∀x(illD(x) ∧ x[type� u] ⊃ ⊥) | u ∈ dom(D)}

Ψx-D = Ψx-D*∪
{(s, u′)[type� u] | (s, u′) ∈ T L is a well-typed literal,

u ∈ dom(D), and L2V D(u′)(s) ∈ V D(u)}∪
{s[type� u] | s ∈ PL, u ∈ dom(D), and s ∈ V D(u)}∪
{∀x(x[type� u] ⊃ dt(x, u)) | u ∈ dom(D)}∪
{∃x(dt(x, u1) ∧ dt(x, u2)) ⊃ ⊥ | u1, u2 ∈ dom(D).V D(u1) ∩ V D(u2) = ∅}∪
{dt(l, u) ⊃ ⊥ | l ∈ PL, u ∈ dom(D), l 6∈ V D(u)}∪
{dt((s, u), u′) ⊃ ⊥ | (s, u) ∈ T L, u′ ∈ dom(D), L2V D(u)(s) 6∈ V D(u′)}

Table 10: Axiomatization of the datatype entailment regimes, x ∈ {s, rdf, rdfs, erdfs}.

assignment A : bl(S)→ IR that maps every blank node to itself. Clearly, (I, A) |= S, I |= S,
and I is an s-interpretation. Therefore, S is s-satisfiable.

It is easy to see that the following generalized RDF graph is rdf -, and hence rdfs- and
erdfs-unsatisfiable, by the negation in condition 4 in Table 4:
S = {〈(“<notXML”, XMLLiteral), type, XMLLiteral〉}: (“<notXML”, XMLLiteral) is
an ill-typed XML literal, so by condition 4 in Table 4, IL((“<notXML”, XMLLiteral)) /∈
ICEXT(IS(XMLLiteral)). However, if the graph were satisfied in some rdf -interpretation,
it must be the case that IL((“<notXML”, XMLLiteral)) ∈ ICEXT(IS(XMLLiteral)), a con-
tradiction.

Hayes (2004) observed that one can create a similar situation with a normal RDF graph
and a range constraint; this graph is rdfs- and hence erdfs-unsatisfiable.

C.2 Proof of Theorem 1

We first show that S 6|=x E iff tr(S) ∪ Ψx 6|=f tr(E). From this follows immediately that
S |=x E iff tr(S) ∪Ψx |=f tr(E).

(⇒) Let V = 〈C,PL, T L〉 be the vocabulary of S and E and let L be an F-language that
conforms with V . Assume that S 6|=x E. This means that there is an x-interpretation
I = 〈IR, IP,LV, IS, IL, IEXT〉 such that I |= S and I 6|= E. We construct a corresponding
F-structure I = 〈U, ∈U , IC , I�, IP 〉 in the following way:

(i) U = IR ∪ IP,

(ii) IF (t) = IS(t) for every URI reference t ∈ C, IF (t) = t for every plain literal t ∈ PL,
and IF (t) = IL(t) for every typed literal t ∈ T L,

560

Logical Foundations of RDF(S) with Datatypes

(iii) I�(k) = IEXT(k) for every k ∈ IP and I�(k) = ∅ for every k /∈ IP,

(iv) IP (illD) = {u | t ∈ T L is an ill-typed XML literal and IL(t) = u}.

It is straightforward to verify that I |=f tr(S) ∪ Ψx and I 6|=f tr(E). Hence, tr(S) ∪
Ψx 6|=f tr(E).

(⇐) Assume that tr(S)∪Ψx 6|=f tr(E). This means that (by (Fitting, 1996, Theorem 5.9.4)
and Proposition 6) there is a Herbrand F-structure I = 〈U, ∈U , IC , I�, IP 〉 such that
I |=f tr(S)∪Ψx and I 6|=f tr(E). Since I is a Herbrand F-structure, U includes all constant
symbols, and IC maps every constant symbol to itself. We construct a corresponding
interpretation I = 〈IR, IP,LV, IS, IL, IEXT〉 as follows:

(i) IP = {p | 〈p, IF (Property)〉 ∈ I�(IF (type))} ∪ {p | ∃s, o.〈s, o〉 ∈ I�(p)},

(ii) LV = PL ∪ {xml(s) | ((s, XMLLiteral) ∈ T L ∧ (s, XMLLiteral) is a well-typed XML
literal)} ∪ {l | 〈l, IF (Literal)〉 ∈ I�(IF (type))},

(iii) IR = U ∪ LV,

(iv) IS(t) = IF (t) for every URI t ∈ C, IL((s, u)) = xml(s) if (s, u) ∈ T L is a well-typed
XML literal; IL((s, u)) = IF ((s, u)) for (s, u) ∈ T L if (s, u) ∈ T L is not a well-typed
XML literal, and

(v) for any p ∈ U and any 〈s, o〉 ∈ I�(p): 〈s′, o′〉 ∈ IEXT(p), where s′ (resp., o′) is: if there
is some (t, XMLLiteral) ∈ T L such that (t, XMLLiteral) is a well-typed XML literal
and IF ((t, XMLLiteral)) = s (resp., · · · = o), then s′ = xml(t) (resp., o′ = xml(t));
otherwise s′ = s (resp., o′ = o).

One can verify that I is an x-interpretation, I |= S, and I 6|= E. Hence, S 6|= E.

The second part of the theorem can be shown analogously.

C.3 Proof of Proposition 4

By Corollary 1 we have that S |=x E iff sk(tr(S)) ∪ Ψx |=f tr(E). Therefore, we need to
show sk(tr(S)) ∪Ψx

−S∪E |=f tr(E) iff sk(tr(S)) ∪Ψx |=f tr(E).
(⇒) Trivial, since sk(tr(S)) ∪Ψx

−S∪E ⊆ sk(tr(S)) ∪Ψx.
(⇐) Consider the case x = erdfs. Let I be a minimal Herbrand model of sk(tr(S))∪Ψx and
let I′ be obtained from I by removing all triples involving container membership properties
n that appear in Ψx\Ψx

−S∪E . We can verify, e.g., by doing a case analysis on the shape of
the triples in S, that I′ is a minimal model of sk(tr(S))∪Ψx

−S∪E . Similarly, one can verify
that if I |=f tr(E), then I′ |=f tr(E).

Analogous for x ∈ {s, rdf, rdfs}.

C.4 Proof of Theorem 2

We prove both directions by contraposition.

(⇒) Assume trerdfs(S) ∪ Ψerdfs-V 6|=f tr
erdfs(E). This means that there is a Herbrand F-

structure I = 〈U, ∈U , IC , I�, IP 〉 such that I |=f trerdfs(S) ∪ Ψerdfs-V and I 6|=f trerdfs(E).

561

de Bruijn & Heymans

We define xml′(x) = xml(s) if x is a well-typed XML literal (s, XMLLiteral); otherwise
xml′(x) = x. We construct a corresponding interpretation I = 〈IR, IP,LV, IS, IL, IEXT〉 as
follows:

(i) LV = {xml′(l) | l ∈U IF (Literal)},

(ii) IP = IR = U ∪ LV ∪ {type, subClassOf, domain, range, subPropertyOf},

(iii) IS(t) = t for every URI reference t in S, E, or the RDF(S) vocabulary,

(iv) IL(t) = xml′(t) for any t ∈ T L,

(v) for any p ∈ U and any 〈s, o〉 ∈ I�(p), 〈xml′(s), xml′(o)〉 ∈ IEXT(p),

(vi) IEXT(type) is the smallest relation such that

(a) IEXT(type) ⊇ {〈xml′(s), xml′(o)〉 | s ∈U o};

(b) ICEXT(Resource) = ICEXT(Class) = IR; and

(c) ICEXT(Property) = IP,

(vii) IEXT(domain) is the set of all tuples 〈x, y〉, x, y ∈ IR, such that (if 〈u, v〉 ∈ IEXT(x),
then u ∈ ICEXT(y)); analogous for IEXT(subClassOf), IEXT(subPropertyOf), and
IEXT(range) (see Table 6 for the precise conditions).

One can verify that I |= S, and I 6|= E, since S and E have only standard use of the RDFS
vocabulary, E does not include occurrences of Resource, Class, or Property, and the class
and property vocabularies of E are subsets of the respective vocabularies of S.

I clearly satisfies conditions 1–4 in Table 4, conditions 6–15 in Table 5, and conditions
7′–12′ in Table 6. To verify that I satisfies condition 5 in Table 4 one only needs to keep in
mind that ICEXT(Resource) = ICEXT(Class) = IR and ICEXT(Property) = IP. So, I
is an erdfs-interpretation and thus S 6|=erdfs E.

(⇐) Assume S 6|=erdfs E. This means there is some erdfs-interpretation I′ such that, for any
URI t, IS(t) = t (making I′ similar to a Herbrand interpretation) and such that I′ |= S and
I′ 6|= E. Let I = 〈IR, IP,LV, IS, IL, IEXT〉 be an erdfs-interpretation obtained from I′ such
that IP = IR and ICEXT(IS(Class)) = IR, and such that IEXT is minimally extended
to satisfy the semantic conditions in Tables 4, 5, and 6. Clearly, there must be such an
erdfs-interpretation and I |= S. We also have, by the restrictions on the class and property
vocabularies as well as the non-occurrence in E of Resource, Class, and Property, that
I 6|= E.

We construct a corresponding F-Logic interpretation I = 〈U, ∈U , IC , I�, IP 〉 as follows:
(i) U = IR, (ii) IF (t) = t for every URI or plain literal t, IF (t) = t for every t ∈ T L, (iii)
I�(k) = IEXT(k) for every k ∈ U , and (iv) ∈U= IEXT(IS(type)).

It can be straightforwardly verified that I |=f tr
erdfs(S) ∪ Ψerdfs-V and I6|=f trerdfs(E).

Therefore, it must be the case that trerdfs(S) ∪Ψerdfs-V 6|=f trerdfs(E).

562

Logical Foundations of RDF(S) with Datatypes

C.5 Proof of Proposition 7

Φ is obtained from FO(trerdfs(S) ∪Ψerdfs-V) in the following way:

(i) Class membership and property value statements of the forms A(a), P (a1, a2) are
included as such,

(ii) Subclass and subproperty statements are included as such,

(iii) Domain constraints of the form ∀x, y(P (x, y) ⊃ A(x)) are rewritten to role-typing
statements of the form ∀x(∃y(P (x, y)) ⊃ A(x)),

(iv) Range constraints of the form ∀x, y(P (x, y) ⊃ A(y)) are rewritten to role-typing state-
ments of the form ∀x(∃y(P (y, x)) ⊃ A(x)), and

(v) Constraints of the form ∀x(A(x) ∧B(x) ⊃ ⊥) are rewritten to ∀x(A(x) ⊃ ¬B(x)).

Φ and FO(trerdfs(S)) are obviously equivalent, and it is easy to verify that Φ is the FOL
equivalent of a contextual DL-LiteR knowledge base.

C.6 Proof of Theorem 4

We first establish the second part of the theorem, i.e., S is x-D*-satisfiable iff tr(S)∪Ψx-D*

has a model.

(⇒) Let V = 〈C,PL, T L〉 be the vocabulary of S and let L be an F-language that conforms
with V . Assume that S is x-D*-satisfiable. This means that there is an x-D*-interpretation
I = 〈IR, IP,LV, IS, IL, IEXT〉 such that I |= S. We construct a corresponding F-structure
I = 〈U, ∈U , IC , I�, IP 〉 in the following way (analogous to the construction in the ‘⇒’
direction in the proof of Theorem 1):

(i) U = IR ∪ IP,

(ii) IF (t) = IS(t) for every URI reference t ∈ C, IF (t) = t for every plain literal t ∈ PL,
IF (t) = IL(t) for every typed literal t ∈ T L,

(iii) I�(k) = IEXT(k) for every k ∈ IP,

(iv) IP (illD) = {u | t ∈ T L is an ill-typed literal and IL(t) = u}.

Clearly, I |=f tr(S).

If a literal t ∈ T L is an ill-typed XML literal, then clearly it is an ill-typed literal.
Then, there is no ill-typed literal t such that IS(t) ∈ LV (by condition 19 in Table 7),
and hence there is no ill-typed literal t such that IS(t) ∈ ICEXT(Literal) or IS(t) ∈
ICEXT(XMLLiteral), by condition 4 in Table 4 (if x = rdf, x = rdfs, or x = erdfs) and
condition 6 in Table 5 (if x = rdfs or x = erdfs). Satisfaction of Ψx is then established
straightforwardly.

Consider a well-typed literal (s, u) and a plain literal l. In case l = L2V D(u)(s),
IL((s, u)) = l, by condition 18 in Table 7, and thus IF ((s, u)) = IF (l) = l and I |=f l = (s, u),
by (ii). Analogous for the case of two distinct well-typed literals. Therefore, I |=f ΨV -D*-=.

563

de Bruijn & Heymans

Consider the definition of Ψx-D* in Table 10. We have established that I |=f Ψx ∪
ΨV -D*-=. Satisfaction of the second, first, third, and fourth sets of formulas in the table
follows immediately from, respectively, (iv), and conditions 18, 17, and 19 in Table 7.
Therefore, I |=f Ψx-D*.

This establishes I |=f tr(S) ∪Ψx-D*.

(⇐) Assume that tr(S) ∪Ψx-D* has a model. Let Φ = tr(S) ∪Ψx-D*.

Let Φ≈ be obtained from Φ by replacing every occurrence of = with ≈ and adding the
usual congruence axioms (cf. Fitting, 1996, Chapter 9). It is known that this axiomatization
of equality preserves satisfiability and entailment in first-order logic (Fitting, 1996, Theorem
9.3.9). This is also the case for F-Logic, by Proposition 1.

We extend the signature of Φ≈ with a set of URI references C′, disjoint from C, with
cardinality |bl(S)|; i.e., the signature is Σ′ = 〈C ∪ PL ∪ T L ∪ C′,P ∪ {≈}〉. Since Φ≈ has
a model (as Φ has), there exists, by classical results, a Herbrand F-structure I such that
I |=f Φ≈. We have that U = C ∪ C′ ∪ PL ∪ T L.

For any u ∈ U , define σ as follows:

• if u ∈ C such that u ∈ dom(D), σ(u) = D(u),

• if (s, u) ∈ T L is a well-typed literal and u ∈ dom(D), σ((s, u)) = L2V D(u)(s),

• otherwise, σ(u) = u.

We construct a corresponding interpretation I = 〈IR, IP,LV, IS, IL, IEXT〉:

(i) IP = {σ(p) | 〈p, IF (Property)〉 ∈ I�(IF (type))} ∪ {σ(p) | ∃s, o.〈s, o〉 ∈ I�(p)},

(ii) LV = PL ∪ {L2V D(u)(s) | (s, u) ∈ T L, u ∈ dom(D), (s, u) is a well-typed literal)} ∪
{σ(l) | 〈l, IF (Literal)〉 ∈ I�(IF (type)) & (x = rdfs or x = erdfs)},

(iii) IR = U ∪ LV,

(iv) IS(u) = σ(u) for every URI reference u ∈ C; IL((s, u)) = σ((s, u)) for every (s, u) ∈
T L, and

(v) for any p ∈ IP, IEXT is the smallest set such that 〈s, o〉 ∈ I�(p) implies 〈σ(s), σ(o)〉 ∈
IEXT(σ(p)).

It is easy to see that I |= S. Remains to verify that I is an x-D*-interpretation. Verifying
that I is an x-interpretation is straightforward. It remains to verify the satisfaction of the
conditions in Table 7.

Satisfaction of condition 16 follows directly from the definition of I and σ. For condition
17, we have that u ∈ dom(D) and thus u[type � Datatype] ∈ Ψx-D*. As I satisfies Ψx-D*

we have that 〈IF (u), IF (Datatype)〉 ∈ I�(IF (type)), and so 〈σ(IF (u)), σ(IF (Datatype))〉 ∈
IEXT(σ(IF (type))). By construction of IS, this yields IS(u) ∈ ICEXT(IS(Datatype)).

Consider some (s, u) ∈ T L such that u ∈ dom(D) and s ∈ LD(u). Then, (s, u) is well-
typed, and so IL((s, u)) = L2V D(u)(s) ∈ LV. By definition of Ψx-D*, we have (s, u)[type�
u] ∈ Ψx-D*; it follows that L2V D(u)(s) ∈ ICEXT(D(u)). This establishes satisfaction of
condition 18.

564

Logical Foundations of RDF(S) with Datatypes

Condition 19 is satisfied by the fact that LV does not contain ill-typed literals. Indeed,
PL ∪ {L2V D(u)(s) | (s, u) ∈ T L, u ∈ dom(D), (s, u) is a well-typed literal)} does not
contain ill-typed literals and if x is rdfs or erdfs, there is no ill-typed literal t such that
I |=f t[type� Literal], by the last axiom in the definition of Ψrdfs in Table 9.

It is easy to verify, for both directions, that we have I 6|= E iff I 6|=f tr(E). The first part of
the theorem follows.

C.7 Proof of Theorem 5

We first show correspondence of satisfiability.

(⇒) Let V = 〈C,PL, T L〉 be the vocabulary of S and E, let rdf be an x-D-interpretation
that satisfies S and let L be an F-language that conforms with V . We construct an F-
structure I = 〈U, ∈U , IC , I�, IP 〉 that corresponds to I, using steps (i)–(iv) as in the (⇒)
direction of the proof of Theorem 4, with the additional step

(v) IP (dt) = {〈x, u〉 | x ∈ ICEXT(u) and u ∈ ran(D)}.

From the argument in the (⇒) direction in the proof of Theorem 4 follows that I |=f tr(S)∪
Ψx-D*. Consider Ψx-D \ Ψx-D*, as defined in Table 10. Satisfaction of the first set follows
immediately from conditions 20 and 21 in Table 8. Satisfaction of the second set follows
immediately from condition 20 in Table 8. Satisfaction of the third set follows immediately
from (v).

Consider any two u1, u2 ∈ dom(D) such that V D(u1) ∩ V D(u2) = ∅. By condition 20 in
Table 8, ICEXT(IS(u1))∩ICEXT(IS(u2)) = ∅. From (v) then follows that there is no k ∈ U
such that 〈k, IF (u1)〉 ∈ IP (dt) and 〈k, IF (u2)〉 ∈ IP (dt). Consequently, I 6|=f ∃x(dt(x, u1) ∧
dt(x, u2)) and thus the fourth set of sentences is satisfied.

Consider some (s, u) ∈ T L and some u′ ∈ dom(D) such that IL((s, u)) = L2V D(u)(s) /∈
V D(u′). By condition 20 in Table 8, ICEXT(IS(u′)) = V D(u′), and thus IL((s, u)) /∈
ICEXT(IS(u′)). From (v) follows 〈IF ((s, u)), IF (u′)〉 /∈ IP (dt) and thus I6|=f dt((s, u), u′),
establishing satisfaction of the sixth set. The argument for the fifth set is obtained by
replacing (s, u) ∈ T L with l ∈ PL.

We thus obtain I |=f Ψx-D. Therefore, tr(S) ∪Ψx-D has a model.

(⇐) Assume Φ = tr(S) ∪Ψx-D has a model.

Let Φ≈ be obtained from Φ as in the proof of Theorem 4 and let I = 〈U, ∈U , IC ,
I�, IP 〉 be a Herbrand F-structure that is a model of Φ≈. We construct a corresponding
interpretation I = 〈IR, IP,LV, IS, IL, IEXT〉 in the following way. W.l.o.g. we assume that
no value space V d, for d ∈ ran(D), contains any typed literal t ∈ T L.

We observe that (*) for any two d1, d2 ∈ dom(D) must hold that either V D(d1) and
V D(d2) are disjoint or their overlap is infinite, since D is definite. In addition, if V D(d1) and
V D(d2) are disjoint, then, by satisfaction of the fourth set in the definition of Ψx-D, (**)
I6|=f t[type� d1] ∧ t[type� d2] for any t ∈ C ∪ C′.

For a given URI u ∈ C ∪ C′ we define the mapping σ as follows:

• if u ∈ dom(D), then σ(u) = D(u),

• if 〈u, u′〉 ∈ I�(type), for some u′ ∈ dom(D), then σ(u) = v, where v is such that

565

de Bruijn & Heymans

– v ∈ V D(u1) ∩ · · · ∩ V D(un), where u1, . . . , un ∈ dom(D) are all the datatype
identifiers such that 〈u, u1〉, . . . , 〈u, un〉 ∈ I�(type);

– there is no u′ ∈ C such that v = σ(u′); and

– there is no (s, u′) ∈ T L such that u′ ∈ dom(D) and v = L2V D(u′)(s);

such a v must exist, because u cannot be a member of two disjoint datatypes, by (**),
and V D(u1) ∩ · · · ∩ V D(un) is an infinite set, by Definition 4,

• otherwise, σ(u) = u.

For a given literal l ∈ PL ∪ T L we define σ as:

• if l = (s, u) ∈ T L is a well-typed literal, then σ(s, u) = L2V D(u)(s),

• otherwise σ(l) = IF (l).

One can verify that σ is such that for any two distinct t1, t2 ∈ C ∪PL∪ T L, either σ(t1) =
σ(t2) and 〈t1, t2〉 ∈ IP (≈) (by definition of ΨV -D*-=) or σ(t1) 6= σ(t2).

We construct an RDF interpretation I = 〈IR, IP,LV, IS, IL, IEXT〉, similar to the con-
struction in the (⇐) direction of the proof of Theorem 4. Note that the respective con-
structions differ only in steps (ii) and (v).

(i) IP = {σ(p) | 〈p, IF (Property)〉 ∈ I�(IF (type))} ∪ {σ(p) | ∃s, o.〈s, o〉 ∈ I�(p)},

(ii) LV = PL ∪
⋃
{V d | d ∈ ran(D)} ∪ {σ(l) | 〈l, IF (Literal)〉 ∈ I�(IF (type)) & (x =

rdfs or x = erdfs)},

(iii) IR = U ∪ LV,

(iv) IS(u) = σ(u) for every u ∈ C; IL((s, u)) = σ((s, u)) for every (s, u) ∈ T L, and

(v) IEXT is the smallest set such that

• ICEXT(IS(u)) = V D(u) for every u ∈ dom(D), and

• for any p ∈ IP and 〈s, o〉 ∈ I�(p), 〈σ(s), σ(o)〉 ∈ IEXT(σ(p)).

Satisfaction of all conditions up to and including 19 are established analogous to the (⇐)
direction in the proof of Theorem 4. Notice that condition 20 is satisfied in I by (v).

Consider a typed literal t = (s, u′) ∈ T L and a datatype identifier u ∈ dom(D). If
IS(u′) = IS(u), then it must be the case that D(u′) = D(u), by construction of I. If
s ∈ LD(u′), then (s, u′) is a well-typed literal, and thus IL((s, u′)) = L2V D(u′) = L2V D(u),
by (iv). If s /∈ LD(u′), then (s, u′) is an ill-typed literal and IL((s, u′)) = (s, u′) /∈ LV,
because LV does not contain ill-typed literals. Therefore, conditions 21 and 22 in Table 8
are satisfied.

Consequently, I is an x-D-interpretation. We have that I |= S and and thus S is x-D-
satisfiable.

The second part of the theorem follows from the observation that, for both directions, we
have I 6|= E iff I 6|=f tr(E).

566

Logical Foundations of RDF(S) with Datatypes

References

Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of Databases. Addison-Wesley.

Borgida, A. (1996). On the relative expressiveness of description logics and predicate logics.
Artificial Intelligence, 82 (1–2), 353–367.

Brickley, D., & Guha, R. V. (2004). RDF vocabulary description language 1.0: RDF schema.
Recommendation 10 February 2004, W3C.

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., & Rosati, R. (2007). Tractable
reasoning and efficient query answering in description logics: the dl-lite family. Journal
of Automated Reasoning, 39, 385–429.

Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive
power of logic programming. ACM Computing Surveys (CSUR), 33 (3), 374–425.

de Bruijn, J., Franconi, E., & Tessaris, S. (2005). Logical reconstruction of normative RDF.
In Proceedings of the Workshop OWL: Experiences and Directions (OWLED-2005).

de Bruijn, J., & Heymans, S. (2007). Logical foundations of (e)RDF(S): Complexity
and reasoning. In Proceedings of the 6th International Semantic Web Conference
(ISWC2007), pp. 86–99. Springer.

de Bruijn, J., & Heymans, S. (2008). On the relationship between description logic-based
and f-logic-based ontologies. Fundamenta Informaticae, 82 (3), 213–236.

Fitting, M. (1996). First Order Logic and Automated Theorem Proving (second edition).
Springer.

Gary, M. R., & Johnson, D. S. (1979). Computers and Intractability – A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, New York, NY, USA.

Gutierrez, C., Hurtado, C., & Mendelzon, A. O. (2004). Foundations of semantic web
databases. In Proceedings of the 23rd ACM Symposium on Principles of Database
Systems (PODS2004), pp. 95–106. ACM Press.

Gutierrez, C., Hurtado, C. A., Mendelzon, A. O., & Pérez, J. (2010). Foundations of
semantic web databases. Journal of Computer and System Sciences. In Press.

Hayes, P. (2004). RDF semantics. Recommendation 10 February 2004, W3C.

Jones, N. D., & Laaser, W. T. (1974). Complete problems for deterministic polynomial
time. In Proceedings of the 6th Annual ACM Symposium on Theory of Computing
(STOC1974), pp. 40–46, Seattle, Washington, USA. ACM Press.

Kifer, M., Lausen, G., & Wu, J. (1995). Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42 (4), 741–843.

Klyne, G., & Carroll, J. J. (2004). Resource description framework (RDF): Concepts and
abstract syntax. Recommendation 10 February 2004, W3C.

Motik, B., Grau, B. C., Horrocks, I., Wu, Z., Fokoue, A., & Lutz, C. (2009a). OWL 2 web
ontology language profiles. Recommendation 27 October 2009, W3C.

Motik, B., Patel-Schneider, P. F., & Parsia, B. (2009b). OWL 2 web ontology language
structural specification and functional-style syntax. Recommendation 27 October
2009, W3C.

567

de Bruijn & Heymans

Muñoz, S., Pérez, J., & Gutierrez, C. (2009). Simple and efficient minimal RDFS. Journal
of Web Semantics, 7 (3), 220–234.

Papadimitriou, C. H. (1994). Computational Complexity. Addison Wesley.

Patel-Schneider, P. F., Hayes, P., & Horrocks, I. (2004). OWL web ontology language
semantics and abstract syntax. Recommendation 10 February 2004, W3C.

Peterson, D., Gao, S., Malhotra, A., Sperberg-McQueen, C. M., & Thompson, H. S. (2009).
W3C XML schema definition language (XSD) 1.1 part 2: Datatypes. Working draft
3 December 2009, W3C.

RIF Working Group (2010a). RIF basic logic dialect. Recommendation 22 June 2010, W3C.

RIF Working Group (2010b). RIF RDF and OWL compatibility. Recommendation 22 June
2010, W3C.

ter Horst, H. J. (2005). Completeness, decidability and complexity of entailment for RDF
schema and a semantic extension involving the OWL vocabulary. Journal of Web
Semantics, 3 (2–3), 79–115.

Yang, G., Kifer, M., & Zhao, C. (2003). FLORA-2: A rule-based knowledge represen-
tation and inference infrastructure for the semantic web. In Proceedings of the Sec-
ond International Conference on Ontologies, Databases and Applications of Semantics
(ODBASE2003). Springer.

568

