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Abstract

We provide a series of algorithms demonstrating that solutions according to the funda-
mental game-theoretic solution concept of closed under rational behavior (CURB) sets in
two-player, normal-form games can be computed in polynomial time (we also discuss exten-
sions to n-player games). First, we describe an algorithm that identifies all of a player’s best
responses conditioned on the belief that the other player will play from within a given subset
of its strategy space. This algorithm serves as a subroutine in a series of polynomial-time
algorithms for finding all minimal CURB sets, one minimal CURB set, and the smallest
minimal CURB set in a game. We then show that the complexity of finding a Nash equi-
librium can be exponential only in the size of a game’s smallest CURB set. Related to this,
we show that the smallest CURB set can be an arbitrarily small portion of the game, but
it can also be arbitrarily larger than the supports of its only enclosed Nash equilibrium.
We test our algorithms empirically and find that most commonly studied academic games
tend to have either very large or very small minimal CURB sets.

1. Introduction

For noncooperative multi-agent settings, game-theoretic solution concepts help players choose
strategies, help modelers predict outcomes, and help mechanism designers guarantee prop-
erties of the systems they create. Significant attention has been given to algorithms for com-
puting solutions according to concepts of subgame perfect Nash equilibrium (e.g., minimax
search and α-β-pruning), Nash equilibrium (Lemke & Howson, 1964; Porter, Nudelman,
& Shoham, 2004; Sandholm, Gilpin, & Conitzer, 2005), correlated equilibrium (Gilboa &
Zemel, 1989), iterative dominance (Knuth, Papadimitriou, & Tsitsiklis, 1988; Conitzer &
Sandholm, 2005a), and other related concepts (Conitzer & Sandholm, 2005b).

The Nash equilibrium concept, under which each player weakly prefers its strategy as
long as the other players do not deviate from theirs, remains the most important point-
valued game-theoretic solution concept. However, it has been shown that, even in two-
player games with binary utilities, computing a single Nash equilibrium is PPAD-complete
(Chen & Deng, 2006; Abbott, Kane, & Valiant, 2005), suggesting that no algorithms exist
for computing these equilibria in worst-case polynomial time (Daskalakis, Goldberg, &
Papadimitriou, 2009).
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There are other fundamental solution concepts that have some known advantages over
Nash equilibria, and—as we will show—solutions according to some of these concepts can be
found in polynomial time, even in the worst case. Specifically, we will study the fundamental
concept of closed under rational behavior (CURB) strategy sets in two-player, normal-form
games. A game can have multiple Nash equilibria, but each of those is a point, or a single
(potentially mixed) strategy for each player. In contrast, a CURB set can contain multiple
strategies for each player, and it is stable so long as players choose any (potentially mixed)
strategies from within the set.

CURB sets are based on the notion of rationalizability, which was introduced by Pearce
(1984) and Bernheim (1984). Rationalizability is, by now, a widely known, robust game-
theoretic solution concept and has been used to study various applications, such as first-price
auctions (Battigalli & Siniscalchi, 2003). Its main insight is that rationality restricts players
from ever playing strategies that are not best responses given the beliefs they hold about
their opponents. Strategies that are not best responses to a set of consistent beliefs about
opposing strategies are said not to be rationalizable. In two-player games, the process of
iteratively eliminating strategies that are dominated, that is strategies that are not best
responses to any opponent strategy, captures the concept of rationalizability. It emulates
the players’ assumptions that an opponent will never play a strategy that is not a best
response to one of the player’s own remaining strategies (Pearce, 1984).

The set of all players’ rationalizable strategies has the property that no player’s best
response to any pure or mixed strategy inside the set lies outside the set – in other words, the
set is CURB. However, this CURB set may also have CURB subsets, which demonstrates
how CURB sets extend the notion of rationalizability. Basu and Weibull (1991) introduced
the notion of a minimal CURB set, or a CURB set that does not contain any CURB subsets,
and proved that each minimal CURB set is guaranteed to contain the supports of at least
one Nash equilibrium.

The minimal CURB set solution concept has since been motivated from several perspec-
tives in academic literature, including the following:

• Mixed-strategy Nash equilibria (the type guaranteed to exist in every game) can be
highly unstable, because a player may be indifferent between some of its strategies.
Strict Nash equilibria, where players strictly prefer their strategies in equilibrium, are
a more stable alternative, but they are not guaranteed to exist. Minimal CURB sets
always exist and have been referred to as the “nearest set-valued generalization of
strict Nash equilibria,” since they are the smallest sets of strategies that include all
ways of choosing among the indifferences of an equilibrium (Basu & Weibull, 1991).

• A CURB set can be viewed as a subspace of strategies within which any best-response
dynamic (even a best-response dynamic of mixed strategies) will stay. Thus, CURB
sets have been used as a solution concept to describe the strategy subspace where
iteratively adapting agents will eventually settle (Hurkens, 1995).

• Voorneveld et.al. enumerated a number of other properties of minimal CURB sets
that illustrate the stability of set-based solution concepts over point-valued concepts,
such as Nash equilibria (Voorneveld, Kets, & Norde, 2005).
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In order for a solution concept to be operational, it must also be accompanied by al-
gorithms for applying it. Finding minimal CURB sets has been previously considered
challenging (Pruzhansky, 2003), and, prior to this work on CURB sets, little had been done
on the problem from a computational standpoint. To our knowledge, the only such work to
predate ours was that of Pruzhansky, which studied sequential games of perfect information.
Such games are relatively simple, in that they contain exactly one minimal CURB set, and
a straightforward algorithm can quickly find it by exploiting the sequential representation
(Pruzhansky, 2003). In this paper, we present the first thorough computational treatment
of CURB sets in general two-player games. We show that, in these settings, minimal CURB
sets are actually easy to find: the time complexity is polynomial in the size of the game,
even in the worst case.

The primary source of complexity for our algorithms is a linear programming-based
subroutine for finding all of a player’s best responses (i.e., utility-maximizing pure strategies)
conditioned on the belief that the other player will play from within a given subset of its
strategy space. This problem can be solved fast for two players, in this case it involves
solving a simple linear feasibility program, but the mathematical program we use is of
degree p− 1, where p is the number of players, and with p = 3 the constraints are already
quadratic. On the plus side, our CURB set algorithms only make a polynomial number of
calls to this subroutine. If future research is able to identify polynomial-time algorithms for
finding all of a player’s best responses in n-player games, then our CURB set algorithms
will also be polynomial time in those settings. Additionally, our algorithms have been useful
as templates for the development of other algorithms to compute related solution concepts
in n-player games (Brandt, Brill, Fischer, & Harrenstein, 2009; Jordan & Wellman, 2010).

The rest of the paper is organized as follows. We begin with some preliminaries on
our notations and definitions. Next, we present and analyze our algorithm for finding
conditional best responses, which serves as the main subroutine of our CURB set finding
algorithms. We then present and analyze a family of polynomial-time algorithms for two-
player, normal-form games that compute all of a game’s minimal CURB sets, a single one of
its minimal CURB sets, and its smallest minimal CURB set. Finally, we discuss additional
applications of our results, including the potential for our CURB set algorithms to bound
the theoretical complexity of finding Nash equilibria.

2. Preliminaries

We describe and analyze our algorithms in the classic game-theoretic setting of a two-player,
normal-form game represented as a matrix with rows corresponding to the pure strategies
(or actions) of one player, player r, and columns corresponding to the pure strategies of
the other, player c. (For shorthand, we will often omit the term “pure” and refer to a pure
strategy simply as a strategy.) As is typical in game theory, the players are assumed to be
fully-rational, utility-maximizing agents.

Each row in the game matrix corresponds to a strategy, sr, from the set of all player r’s
strategies, Sr. Likewise, each column corresponds to a strategy, sc, from the set of all of
player c’s strategies, Sc. The cell corresponding to strategies sr and sc contains two entries,
one indicating the real-valued utility of the row player when sr and sc are played, ur(sr, sc),
and the other indicating that of the column player when those two strategies are played,
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uc(sr, sc). Using these entities, we also refer to a game, G, as a tuple, G = 〈Sr, Sc, ur, uc〉.
The size of the game, which we refer to as n, is the total number of strategies it contains,
n = |Sr|+ |Sc|.

A mixed strategy, or mixture, is a probability distribution over pure strategies, or a
function, mi, that maps from each of player i’s pure strategies to a probability, mi : Si →
[0, 1] and

∑
s∈Si

mi(s) = 1. The supports of a mixture are all of the pure strategies in the
mixture with non-zero probability. The set of all possible mixtures with supports in some
set of strategies, Si, is denoted M(Si), and can be thought of as a simplex with degree
|Si| − 1. A pure strategy can be represented as a point-mass mixture, that is a mixture
with all of its probability mass on one strategy.

A strategy profile is a set of pure or mixed strategies, with one for each player. When
a mixed-strategy profile is played, a player’s utility is assumed to be its expected util-
ity, which is given by summing that player’s utility for each possible pure-strategy profile
weighted by the profile’s joint probability according to the mixtures, e.g., ur(mr, mc) =∑

sr∈Sr
mr(sr)

∑
sc∈Sc

mc(sc)ur(sr, sc). We occasionally use the notation −i to refer to the
player or players other than some player i. When used as a subscript on a strategy-related
entity with more than two players, we intend for the −i to refer to one instance of the entity
per player (e.g., m−i is a mixed-strategy profile containing one mixture per player other
than i).

Player i’s best responses to a mixed strategy of the other player(s), m−i, are given by
the function βi(m−i). These are the pure strategies that maximize player i’s utility if the
other player(s) play m−i.

For a set of the other player’s pure strategies, S−i, we define βi(S−i) to be a function
that returns player i’s best responses to every mixture with supports in S−i, βi(S−i) =⋃

m∈M(S−i)
βi(m). In Section 3, we describe an algorithm for computing the pure strategies

in βi(S−i) that serves as a subroutine in our CURB set algorithms, and we refer to the
strategies it computes as conditionally rational. We define β(S) (without a subscript i) as
the union of the sets βi(S−i) for all players.

A CURB set, S, is formally defined as a set of pure strategies (with at least one strategy
for each player) that contains the best responses to any mixture over itself: if S is CURB
and players believe that no strategy outside of S will be played with positive probability by
their opponents, then such strategies will indeed not be played by rational players. Using
the notation above, a set, S, is CURB if β(S) ⊆ S. (The entire game is trivially CURB
by this definition.) We refer to the number of strategies in a CURB set as its size. The
intersection of two CURB sets, S1 and S2, is the set of strategies attained by taking the
intersection of their strategy sets, SI = S1 ∩ S2. Two CURB sets overlap if they share a
strategy (i.e., their intersection is non-empty).

A Nash equilibrium is a pure- or mixed-strategy profile, {mr, mc}, such that each player’s
strategy is at least as good as its best response to the other’s, ur(mr, mc) = ur(s

∗
r , mc) and

uc(mr, mc) = uc(mr, s
∗
c), where s∗r ∈ βr(mc) and s∗c ∈ βc(mr). A strict Nash equilibrium is

a pure-strategy profile, {sr, sc}, where each player’s strategy is its only best response to the
other’s, βr(sc) = {sr} and βc(sr) = {sc}. A CURB set that contains only one strategy per
player is also a pure-strategy Nash equilibrium.
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3. Finding Conditional Best Responses

Finding all of a player’s best responses conditioned on the belief that the other player will
play from within some subset of its total strategy space, is a problem of interest in its own
right, and it plays a central role in our computation of CURB sets. This section describes
a polynomial-time algorithm, all conditionally rational, for doing just that. The al-
gorithm below is for the row player; the column player’s variant is symmetric. The inputs
to the algorithm are a set of row-player strategies to consider, Sr, a set of column-player
strategies they may be played against, Sc, and the row player’s utility function, ur.

function all conditionally rational(Sr, Sc, ur)

S∗
r ← ∅

for each row strategy, sr ∈ Sr do

if there exists a feasible solution to the following linear feasibility program:

find psc
such that

∑

sc∈Sc

psc
= 1 (1)

∑

sc∈Sc

psc
ur(sr, sc) ≥

∑

sc∈Sc

psc
ur(s

′
r, sc) ∀s′r ∈ Sr \ sr (2)

psc
≥ 0 ∀sc ∈ Sc (3)

then S∗
r ← S∗

r ∪ sr

return S∗
r

For each row strategy, sr ∈ Sr, a linear feasibility program (LFP) (i.e., a linear program
with no objective) is constructed to find a mixture of probabilities over column-player
strategies, psc

, such that sr is the row player’s best response. The constraints of the LFP
ensure that the mixture is valid (sums to one), and that the row player’s utility by playing
sr against psc

is greater than or equal to that of any other strategy. If the LFP has a feasible
solution, sr is added to the set of best responses to be returned.

The computational complexity of the algorithms described in this paper depend on the
total number of strategies in the game, n, and the complexity of solving an LFP with
a number of variables and constraints bounded by n, which we will denote as LFP(n).
LFPs can be solved in low-order polynomial time, even in the worst case, and the fastest
known algorithms for LFPs have better worst-case guarantees than the fastest known linear
programming algorithms (Ye, 2006). In our experiments, we solve the LFP using the simplex
algorithm, which has exponential worst-case time complexity, but is known to outperform
polynomial-time linear programming algorithms in practice.

Proposition 1. The all conditionally rational algorithm returns a player’s best re-
sponses to every mixture over the input strategy set, and nothing else. Its worst-case time
complexity is Θ(n)× LFP(n).
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Proof. Since all conditionally rational runs this program on all strategies and includes
them in the return set only if the LFP is feasible, it must be correct. Since the LFP is
executed once for each strategy, and its size is bounded by n, all conditionally rational

has complexity as shown.

4. Finding CURB Sets

We now turn our attention to the problem of finding CURB sets. The algorithm below
finds the smallest CURB set that contains a given seed strategy within a given subgame.
(The returned set is not necessarily minimally CURB.) The algorithm repeatedly alternates
between players, each time calling all conditionally rational to add the strategies nec-
essary for maintaining the CURB property. If an iteration passes without any strategies
being added, the algorithm has converged.

function min containing CURB(sr,G = 〈Sr, Sc, ur, uc〉)

S∗
r ← {sr}, S∗

c ← ∅
converged← false

while ¬converged do

converged← true

for i ∈ {r, c} do

S′
i ← all conditionally rational(Si, S

∗
−i, ui)

if S′
i \ S∗

i 6= ∅ then

converged← false

S∗
i ← S∗

i ∪ S′
i

return S∗
r ∪ S∗

c

It is worth noting that on the second-to-last line of the algorithm (S∗
i ← S∗

i ∪ S′
i) it is

necessary to merge the old strategies, S∗
i , with the newly identified strategies, S′

i, because
S′

i is not always a superset of S∗
i . If, instead, S∗

i were replaced by S′
i, then it would be

possible for the seed strategy to be eliminated during the algorithm’s first iteration. For
example, consider the following game.

sc1 sc2

sr1
1,1 0,0

sr2
0,1 1,0

If strategy sr2
is used as a seed, then on the first iteration S∗

r is initialized to {sr2
}, S∗

c is
then set to {sc1}, and finally S∗

r is set to {sr1
}. Thus, without the merge the algorithm

would output a subgame that does not contain the seed strategy.

Proposition 2. The min containing CURB algorithm has worst-case runtime Θ(n2) ×
LFP(n).

Proof. Every two calls made to all conditionally rational must add a strategy to the
return set, or min containing CURB will terminate. Since at most n strategies can be added
this way, the complexity of min containing CURB is Θ(n2)× LFP(n).
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Theorem 1. The min containing CURB algorithm is correct, that is, the returned set, S∗,
is the smallest set of strategies that both 1) contains the given seed strategy, sr, and 2) is
CURB.

Proof. The convergence of the algorithm implies that no strategies outside of S∗ are best
responses to some mixture with supports in S∗. Therefore, β(S∗) ⊆ S∗, and S∗ is CURB.

To prove that S∗ is the smallest CURB set containing sr, we can use induction on the
strategies that are added.

Base Case: Initially, S∗ contains only sr and βc(sr). At this point, S∗ is a subset of
the the smallest CURB set containing sr.

Inductive Step: Each time a new strategy, s∗, is added to S∗, it is necessarily a best
response to some mixture, m ∈ M(S∗), over the strategies already contained in S∗. Since
strategies are never removed from S∗ during execution, m will remain a valid mixture.
Therefore, each strategy that is added is necessary to maintain the CURB property.

We will now present three algorithms that use min containing CURB to determine a
game’s minimal CURB sets. To facilitate our discussion of these algorithms, we first present
three results regarding CURB set structure, which, to the best of our knowledge, were not
previously known.

Theorem 2. If each of two intersecting strategy sets is CURB, then their intersection is
also CURB.

Proof. Consider two CURB sets, SA and SB, with nonempty intersection, SI . For any
mixture over strategies in SI belonging to (without loss of generality) the row player, there
exists a set of pure strategies that are the column player’s best responses, S∗

c . Because SA

is CURB, it also contains all of the strategies in S∗
c (i.e., S∗

c ⊆ SA); likewise S∗
c ⊆ SB.

Therefore, S∗
c is within their intersection, SI .

Since the intersection of two CURB sets must be CURB and contained in both sets, we
also have the following two corollaries.

Corollary 1. Distinct minimal CURB sets cannot overlap (i.e., share rows or columns).

Corollary 2. Each strategy belongs to at most one minimal CURB set.

4.1 Finding All Minimal CURB Sets

The broadest query one can make regarding the minimal CURB set structure of a game
is asking for all of its minimal CURB sets. This is useful, for example, in the adaptive
agent context to identify regions of the strategy space in which learning agents are likely to
settle (Hurkens, 1995).

The all MC algorithm does this by first checking each pair of strategies for size-two
CURB sets (i.e., pure-strategy Nash equilibria) and adding them to the return set of minimal
CURB sets. Since this operation is only Θ(n2), it can be done as a preprocessing step
without affecting the algorithm’s worst-case time complexity, and the strategies it finds can
be eliminated from future consideration. The all MC algorithm then determines all of the
minimal CURB sets in the remaining subgame by calling min containing CURB with each
row strategy, in turn, as a seed.
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At first, we call min containing CURB using the entire remaining subgame as an input.
However, we accelerate subsequent calls to min containing CURB by maintaining a map
between each strategy and the smallest CURB set in which it has been discovered so far.
(The entries added to this map are also stored as candidate minimal CURB sets.) When a
new strategy is used as a seed, we use the smallest known CURB set containing that strategy
as the second input to min containing CURB. Whenever a smaller CURB set containing a
new seed is identified, we eliminate all of the candidate minimal CURB sets that contain
the newly found one. Once each strategy has been used as a seed, all MC terminates and
returns the remaining candidate minimal CURB sets.

Proposition 3. The all MC algorithm finds all of a game’s minimal CURB sets, and
nothing else. Its worst-case runtime is Θ(n3)× LFP(n). Its best-case runtime is Θ(n2).

Proof. By Corollary 1, the minimal CURB set for any strategy must either equal, or be
contained by, any other CURB set in which that strategy is found. Therefore, restricting
the min containing CURB search to the smallest CURB set in which a strategy has been
found so far is valid, and the main loop of all MC will discover all minimal CURB sets in
the game. Since any CURB set that is not minimal must have contained one of the minimal
CURB sets discovered, it is removed when the smaller CURB set is discovered (or not added
if the smaller set was previously discovered).

In the worst case, all MC must call min containing CURB n times, with the full game
as a parameter, giving time complexity Θ(n3)× LFP(n). The best-case complexity follows
from a best-case game where each strategy is part of a pure-strategy Nash equilibrium.

4.2 Finding One Minimal CURB Set

Rather than finding all minimal CURB sets in a game, it may be desirable to find a single
minimal CURB set. To complete this quickly, we first choose a random seed strategy and
check if it is part of any size-two CURB sets (i.e., part of a pure-strategy Nash equilibrium),
which takes O(n) time. If that fails, we use the min containing CURB algorithm with the
randomly-chosen strategy as the seed and the full game as the second input. Since the
resulting CURB set might not be minimal, we recur within it by choosing, as a seed, a
contained strategy that has not yet been used. We repeat this until all strategies in the
current set have been used as seeds, at which point we terminate and return the remaining
set. This constitutes the one MC algorithm.

If the game has more than one CURB set, one MC will be faster than all MC because
it will never leave the CURB set in which it starts. The exact speed of one MC in practice
will depend on the first seed chosen. If it happens to be in a small CURB set, one MC will
run fast. In the worst case, where the entire game is the only CURB set, one MC executes
all of the same steps as all MC.

Proposition 4. The one MC algorithm returns one of a game’s minimal CURB sets. Its
worst-case time complexity is Θ(n3)× LFP(n). Its best-case time complexity is Θ(n).

Proof. If there are no other minimal CURB sets, then the entire game is minimally CURB
and will be returned. If there are any other minimal CURB sets, one of them will be
discovered when a strategy inside it is used as a seed.
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In the worst case, when the whole game is minimally CURB, one MC must call the
min containing CURB algorithm n times, with the full game as an input, giving time com-
plexity Θ(n3) × LFP(n). The best-case complexity follows from a best-case game where a
strategy that is in a CURB set of size two is chosen as a seed.

4.3 Finding the Smallest Minimal CURB Set

As a different type of query, one may be interested in finding one of a game’s smallest
minimal CURB sets. This is important, for example, if the CURB set is used for future
computations and the complexity of those future computations increases with the size of
the CURB set (e.g., for Nash equilibrium finding as we will discuss later in the paper). We
find one of a game’s smallest minimal CURB sets using a pseudo-parallelization of all MC.

First, we use the same preprocessor as in all MC that checks each pair of strategies for a
size-two CURB set and returns one, if found. If that fails, we construct a candidate set for
each row strategy containing only that strategy. We insert the sets into a priority queue,
where sets containing the fewest strategies are given highest priority. We repeatedly pop
the smallest candidate set from the queue, and add all the necessary best responses to keep
it CURB by calling all conditionally rational for each player. If new strategies are
added for either player, the resulting set is inserted back into the queue, and it is prioritized
based on its new size. The algorithm terminates when a candidate set is removed from the
queue that fails to admit any new best responses. That set is returned and it is one of the
game’s smallest minimal CURB sets (we denote the size of this set as n∗). We call this
algorithm small MC.

Proposition 5. The small MC algorithm returns one of the game’s smallest minimal CURB
sets. Its worst-case runtime is Θ(n∗n2)× LFP(n). Its best-case runtime is Θ(n2).

Proof. At the time small MC terminates, all conditionally rational has been called on
each row and column strategy in the set with no new best responses having been added.
Therefore, the returned set is CURB. Since all other candidate sets on the queue must be
as large, or larger than the returned set (and future exploration can only add strategies to
these sets), this set is at least as small as the smallest CURB set in the game, and each of
the game’s smallest CURB sets is also minimal.

Whenever a candidate set is fathomed, at least one new strategy must be added or
small MC will terminate. Since there are n candidate sets, and n∗ strategies in the returned
set, in the worst case n × n∗ sets have been fathomed at termination. Since each exami-
nation of a candidate set involves a call to all conditionally rational, the complexity
of small MC is as claimed. Priority queue operations are logarithmic in the size of the
game, and in the worst case there are n× n∗ such operations. Thus, the overall worst-case
complexity is Θ(n∗n2 + n∗n log n)× LFP(n), which is Θ(n∗n2)× LFP(n). The proof of the
best-case complexity is the same as in Proposition 3.

4.4 Experimental Results

We implemented the algorithms above and conducted experiments on their performance us-
ing most of the instance generators of the main benchmark collection for solving normal-form
games, GAMUT (Nudelman, Wortman, Shoham, & Leyton-Brown, 2004). The GAMUT
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collection includes a variety of commonly studied game types from the academic game
theory literature. It is also specifically designed to test different aspects of scalability for
game-solving algorithms, for example, most of the generators allow one to create multiple
game instances of any given size.1 In this section we show that the complexity of our al-
gorithms depends primarily on the size of the game and the size of its smallest CURB set.
We then proceed to explore the distribution of CURB set sizes in the different game types.

We first report the runtime of our algorithms on two representative GAMUT game
distributions: random games, and covariant games. Figure 1 (left) shows how each of our
minimal CURB set finding algorithms scales with game size on a data set of over 1000
random, square normal-form games with between 20 and 100 strategies. The results show
that small MC is faster than all MC on random games, which is consistent with their time
complexities, considering that many random games have small CURB sets. While the
worst-case time complexity of one MC and all MC is the same, experimentally one MC is
faster because it only needs to find one minimal CURB set. We can also see that, for large
random games, small MC performs slightly better than one MC, since these games tend to
contain both small and large CURB sets and one MC is more likely to start in the larger
ones. On the other hand, in games with only large CURB sets, one MC tends to be faster,
as we will show later.

We observed that the performance on random games, illustrated in Figure 1 (left), was
typical of that of many other GAMUT instance distributions. However, to show potentially
differing performance, we also report on experiments with the covariant game class, in which
utilities for both players are drawn from the same distribution with a specified covariance.
(In our experiments we set the covariance parameter to be −0.5.) This class (and setting)
have been shown to be particularly challenging for Nash equilibrium finding algorithms,
such as the Lemke-Howson and Porter-Nudelman-Shoham algorithms (Lemke & Howson,
1964; Porter et al., 2004). Figure 1 (right) shows that the all MC algorithm scales similarly
on random and covariant games, while the other two algorithms lose their speed advantages
when applied to this class.

The distribution of CURB sets in random games is shown as solid dots in Figure 2. Most
random games have small smallest CURB sets (in fact, often sets of size two), and those that
do not, tend to have very large smallest CURB sets. On the other hand, the distribution of
smallest CURB set sizes in covariant games (shown in Figure 2, hollow squares) has almost
no small smallest CURB sets and many large smallest CURB sets. This is consistent with
the observed hardness of these games for support enumeration-based Nash equilibrium
finding algorithms, which typically try to find equilibria with small supports first (Porter
et al., 2004). This disparity also explains the lowered performance on covariant games of
the two minimal CURB finding algorithms that have time complexities dependent on the
size of the smallest minimal CURB set, small MC and one MC.

Figure 3 shows the distribution of smallest CURB set size for 1000 instances from each
of the twenty-four other distributions emitted by GAMUT generators. Using a variety of
game generators, as we have done here, has become a primary way of testing game-solving
algorithms (Porter et al., 2004; Sandholm et al., 2005), and we used the same parameter
settings in the distributions as those prior papers. For covariant games, the suffixes “Pos”,

1. We did not benchmark on the GAMUT games that only have a fixed size, such as Chicken, Prisoner’s

Dilemma, and Battle of the Sexes, because they are trivial to solve from a computational perspective.
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Figure 1: Scalability of our algorithms in game size for random (left) and covariant (right)
games.
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Figure 2: Distribution of smallest CURB set size in random and covariant (r = −0.5) games,
where n = 20 and n = 40 (3,000 games were generated for each distribution and
value of n).

“Rand”, and “Zero” refer to positive, random, and zero covariance parameters, respectively.
For distributions that take a graph as input, “CG”, “RG”, and “SG” refer to complete,
random, and star graphs.

All of these distributions, like random and covariant games, exhibited very few medium-
sized smallest CURB sets. Most of the instances had a smallest CURB set that was extreme:
either a pure strategy equilibrium or the entire game. With some of the generators, all of
the instances lie at the same extreme. Interestingly, some generators (e.g., Polymatrix)
produced a significant number of games with CURB sets of one or more specific, non-
extremal sizes. It is also notable that using different graph parameters for Local Effect and
Polymatrix games had no effect on their smallest CURB set size distributions, suggesting
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Figure 3: Distribution of smallest CURB set size in sets of 1000 games with n = 20 from
various GAMUT distributions.

that the type of graph used may not change the fundamental structure of these types of
games.

To better understand how the minimal CURB set finding algorithms scale with the size
of the smallest CURB set, we bucketed the n = 20 random and covariant games according
to the size of their smallest CURB sets. (For n = 40, the buckets for medium-sized smallest
CURB sets were nearly empty, making it impossible for us to estimate mean runtimes with
meaningful accuracy.) Figure 4 plots the average runtime and 95% confidence intervals
for each bucket. On games with very small CURB sets, small MC is fastest, but it is
outperformed by both one MC and all MC as the size of the smallest CURB set grows.
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The somewhat surprising runtime performance of the latter two algorithms is due to their
leveraging of information across calls to min containing CURB with different seeds. Because
small MC performs all the searches in parallel, this information is unavailable.
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Figure 4: Average runtime on games were n = 20, with varying smallest CURB set sizes.

5. CURB Sets and Nash Equilibria

Minimal CURB sets and Nash equilibria both model strategy subspaces which are mutually
reinforced given the rationality of agents and their common knowledge. In their original
work on minimal CURB sets, Basu and Weibull showed that every minimal CURB set
contains the supports of at least one Nash equilibrium (Basu & Weibull, 1991). We observe
that this result suggests a secondary use for finding minimal CURB sets: our algorithms
can be used to preprocess a game so that a Nash equilibrium finding algorithm can restrict
its attention to one of the game’s minimal CURB sets, rather than running on the entire
game. As we will show, this can theoretically yield an arbitrarily large reduction of the
search space.

The most common prior preprocessing technique for Nash equilibrium finding, iterated
removal of dominated strategies, attempts to eliminate strategies that cannot be played with
any probability in any Nash equilibrium (Knuth et al., 1988; Gilboa, Kalai, & Zemel, 1993).
The same is true of another recent preprocessing technique, the generalized eliminability
method (Conitzer & Sandholm, 2005b). One comparative advantage of minimal CURB
set-based elimination is that it can eliminate strategies that are played in some equilibria,
while guaranteeing that the resulting set still contains the supports of at least one.

First, we will show that a CURB set-based preprocessor can reduce search space size by
an arbitrary amount even on games where prior preprocessing techniques cannot eliminate
anything.

Theorem 3. For any r,c,r′, and c′ such that r ≥ 2, c ≥ 2, 1 < r′ ≤ r, and 1 < c′ ≤ c,
there exists normal form games of size r × c, with the following properties:

a) it contains a minimal CURB set with shape r′ × c′,
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b) iterated elimination of dominated strategies (even domination by mixed strategies)
cannot eliminate any strategies,

c) the recursive preprocessing technique (that can eliminate strategies that belong to some
equilibrium as long as some other equilibrium remains) (Conitzer & Sandholm, 2006)
can eliminate at most one strategy per player, and

d) the general eliminability method (Conitzer & Sandholm, 2005b) cannot eliminate any
strategies.

Proof. We first present a family of games, Γ. Let Γr′c′ denote a game from this family of
size r′ × c′. The following generator produces such a game where r′, c′ ≥ 2. Assign the
utilities,

• u(sr1
, sc1) = u(sr2

, sc2) = (0, 1) and u(sr1
, sc2) = u(sr2

, sc1) = (1, 0).

Then, for i ∈ [2, b r′

2 c], set

• u(sr2i−1
, sc1) = ( r′−2i+2

r′
, 1) and u(sr2i−1

, sc2) = (2i−2
r′

, 0),

• u(sr2i
, sc1) = ( r′−(2i−1)

r′
, 0) and u(sr2i

, sc2) = (2i−1
r′

, 1).

If r′ is odd there will be one remaining row. In this case, set the following utilities,

• if r′ is odd, u(sr′ , sc1) = ( 1
r′

, 1
2) and u(sr′ , sc2) = ( r′−1

r′
, 1

2).

Next, for j ∈ [2, b c′

2 c], set

• u(sr1
, sc2j−1

) = (0, c′−2j+2
c′

) and u(sr2
, sc2j−1

) = (1, 2j−2
c′

),

• u(sr1
, sc2j

) = (1, c′−(2j−1)
c′

) and u(sr2
, sc2j

) = (0, 2j−1
c′

).

If c′ is odd there will be one remaining column. In this case, set the following utilities,

• if c′ is odd, u(sr1
, sc′) = (1

2 , 1
c′

) and u(sr2
, sc′) = (1

2 , c′−1
c′

).

For example, the game Γ3,4 is as follows.

Γ3,4 sc1 sc2 sc3 sc4

sr1
0,1 1,0 0,12 1,14

sr2
1,0 0,1 1,12 0,34

sr3

1
3 , 1

2
2
3 ,12 -3,-3 -3,-4

Any game generated in this way has a Nash equilibrium where the row player mixes
evenly between its first two strategies, and the column player mixes evenly among all of its
strategies. This game also has an equilibrium where the column player mixes evenly between
its first two strategies, and the row player mixes evenly among all of its strategies. Thus,
every strategy in Γr′c′ is part of some equilibrium. Additionally, each column strategy is a
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best response to a mixture over the first two row strategies (and, to any column strategy,
one of those two is a best response), and vice-versa. Thus, Γr′c′ has a single minimal CURB
set and it includes the entire game.

We now construct an r× c game, with a minimally CURB r′× c′ subset, by putting the
game Γr′c′ in the top left and the game Γ(r−r′)(c−c′) in the bottom right. All other utilities
are set to arbitrary negative values, such that no two are exactly the same. The resulting
game is shown in Figure 5.

Figure 5: r × c game with arbitrary reduction to an r′ × c′ CURB set, irreducible by prior
techniques.

It is irreducible by (iterated) dominance and by general eliminability because every
strategy participates in some Nash equilibrium. The game is irreducible (other than a
single strategy per player) by the recursive preprocessor because the row player’s utilities
are distinct within each column, and the column player’s utilities are distinct within each
row (except for the last row or column in each Γ game, if it has an odd number of rows or
columns).

Three factors curb the promise of minimal CURB set algorithms as powerful preproces-
sors for Nash equilibrium finding. First, the fastest Nash equilibrium finding algorithms,
while requiring exponential time in the worst case, tend to run faster than the CURB set
finding algorithms on many types of games (at least the best known implementations of
these algorithms). Second, the smallest CURB set can be arbitrarily large (up to the size
of the entire game, in which case the preprocessor does not eliminate any strategies from
consideration). Third, as we will now show, even after the smallest minimal CURB set has
been identified, the remaining search space (CURB set size) can be arbitrarily larger than
the size of the supports of a contained Nash equilibrium.

To prove this, we will use the following family of games that contain large minimal
CURB sets and small-support equilibria. For any integer k > 0, we define the game Ωk as
follows. As in the previous proof, assign the utilities u(sr1

, sc1) = u(sr2
, sc2) = (0, 1) and

u(sr1
, sc2) = u(sr2

, sc1) = (1, 0), and let Z be an arbitrarily large value (essentially ∞).
Then, for i ∈ [3, 2 + k],

• u(sri
, sc1) = (−Z, ε), u(sr1

, sci
) = (ε,−Z),

• u(sri
, sci

) = (0, 0),

• u(sri
, sci−1

) = (1 + ε, 0), u(sri−1
, sci

) = (0, 1 + ε), and
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• for all j > i + 1 and j ≤ 2 + n,

u(sri
, scj

) = (0,−Z), and u(srj
, sci

) = (−Z, 0)

For example, the game Ω2 is as follows.

Ω2 sc1 sc2 sc3 sc4

sr1
0,1 1,0 ε,−Z ε,−Z

sr2
1,0 0,1 0,1+ε 0,−Z

sr3
−Z,ε 1+ε,0 0,0 0,1 + ε

sr4
−Z,ε −Z, 0 1+ε,0 0,0

With respect to the strategic structure of games from this class, we have the following
results.

Lemma 1. For i > 2, the row (column) player’s strategy sri
(sci

) is a best response to the
column (row) player’s strategy sci−1

(sri−1
). The column (row) player’s strategy sc1 (sr1

) is
a best response to the row (column) player’s strategy srn+2

(scn+2
).

Proposition 6. Ωk has a single minimal CURB set and it includes the entire game.

Proof. Strategies sr1
, sr2

, sc1 , and sc2 must be included in some minimal CURB set, as they
are the best responses to each other in the subgame containing them, and this subgame
admits no pure-strategy Nash equilibrium. Based on Lemma 1, we can see that when i = 3,
the row (column) player’s strategy sr3

(sc3) is a best response to the column (row) player’s
second strategy. This forces the third strategy of each player into the minimal CURB set
containing the first two strategies of each player, and inductively each additional strategy
is added in the same way.

Proposition 7. In Ωk, the only Nash equilibrium is the the mixed-strategy profile where
sr1

, sr2
, sc1, and sc2 are each played with probability 1

2 .

Proof. Assume, for contradiction, that this is not the case, that is, there exists a mixture,
m∗

r , over the rows M∗
r , comprising the row player’s profile in a Nash equilibrium, and

sr1
/∈M∗

r . Along with our assumption, the definition of Nash equilibrium implies that there
must exist a mixture, m∗

c , over columns M∗
c such that βr(m

∗
c) = M∗

r and βc(m
∗
r) = M∗

c .
Since sr1

is not in M∗
r by assumption, there exists i > 1 such that sri

is the lowest numbered
support in M∗

r , and the definition of Ω specifies the outcome, u(sri
, scj

) = (0,−Z), when
j > i + 1.

The column player’s Nash equilibrium supports cannot contain any such scj
, because

placing any positive probability on this strategy will lead to a highly negative expected
payoff and playing the pure strategy sc1 provides guaranteed payout of at least 0. If we
exclude these strategies, sci+1

(the highest-numbered remaining column strategy) is the only
remaining strategy, other than sc1 , which provides non-zero utility against mixtures on rows
≥ i. In other words, it dominates all column strategies on the row player’s supports M∗

r ,
aside from one: sc1 .
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Since dominated strategies cannot be played in equilibrium, M∗
c is constrained to a

subset of {sc1 , sci+1
}. If M∗

c contains sc1 , M∗
r must not include any srj

with j > 2, due to
the highly negative expected payoff of any mixture including such strategies (as discussed
above). In this case, the only remaining possible equilibrium row mixture is the pure
strategy sr2

, the best response to which is sc3 . Since, by Corollary 2, Ωn has no pure
Nash equilibrium, this cannot constitute an equilibrium, contradicting our assumption.
Alternatively, if M∗

c does not include sc1 , then m∗
c must be the pure strategy sci+1

, and
Lemma 1 provides a pure-strategy best response to any pure strategy with i > 2. This
would, again, form a pure strategy Nash equilibrium, which we have shown cannot exist.

The above reasoning can also be inverted to show that a contradiction is caused by the
assumption that M∗

c does not contain sc1 .
We have shown that the row player’s equilibrium mixture must contain r1 and r2, and

that the column player’s equilibrium mixture must contain c1 and c2 and no other strategies
can be in either player’s supports, since it would lead one of them to have to highly negative
utility.

The Ω game demonstrates that it is possible to construct very large CURB sets that are
loose around the supports of an enclosed Nash equilibrium, giving us the following general
result.

Theorem 4. A Nash equilibrium with supports consisting of two strategies for each player
can be the only Nash equilibrium in an arbitrarily large minimal CURB set.

These results imply that minimal CURB set algorithms will not always be effective as
preprocessors for Nash equilibrium finding. However, on game instances that have a small
CURB set or a relatively tight minimal CURB set,2 these algorithms have the potential to
yield a significant speed improvement.

Furthermore, the existence of the polynomial-time algorithm for detecting a game’s
smallest CURB set (small MC) allows us to offer the following theoretical result of potential
general interest.

Theorem 5. The complexity of finding a Nash equilibrium for a two-player normal-form
game can be super-polynomial only in the size of the game’s smallest CURB set (not in the
size of the full game).

The relationship between the complexity of finding a minimal CURB set and that of
finding a Nash equilibrium is surprising in several ways. For one, it is not obvious that
finding a minimal CURB set should be easier than finding a Nash equilibrium, since, like
Nash equilibria, CURB sets have an exponential space of possible supports which are cho-
sen through maximization processes for both players. Yet from a theoretical, worst-case
perspective, Nash equilibrium finding is PPAD-complete (which is widely believed to be a
strictly harder complexity class than P) and, as we showed earlier in this paper, minimal
CURB set finding is polynomial time.

It is worth noting that games with very small support equilibria, which include all games
with very small CURB sets, are already known to be easily solvable for Nash equilibria

2. If the game has a relatively tight CURB set, a Nash equilibrium can be found quickly by enumerating

strategies of the CURB to be left out from the supports.
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using techniques such as support enumeration. In particular, on games whose smallest
CURB set size is logarithmic in the full game size, both support enumeration and CURB
set preprocessing permit a guarantee of polynomial runtime in finding a Nash equilibrium.
CURB set preprocessing has the additional advantage that it can also be used to simplify
games with larger equilibrium supports, where support enumeration is exponential. For
example, consider the Gk game class described by Sandholm, Gilpin and Conitzer (2005),
which generates games with a single equilibrium, and that equilibrium contains half the
strategies in its support. We also determined that these games have a single CURB set,
and that CURB set includes exactly the supports of the equilibrium. Games from this class
can be padded, using the embedding technique in our Theorem 3, to become arbitrarily
large games without introducing any additional equilibria or CURB sets. On those games,
CURB set detection offers a polynomial-time method for reducing the game to the point
where algorithms not based on support enumeration can be applied.

What about the complexity of the two problems (Nash equilibrium finding and CURB
set finding) in practice? As Figure 6 shows, the average runtimes of our smallest CURB
set finding algorithm and the Lemke-Howson Nash equilibrium finding algorithm (using the
implementation in Gambit, McKelvey, McLennan, & Turocy, 2004) seem to scale similarly
with input game size (when one does not explicitly generate those pathological cases which
produce exponential behavior in the latter, Savani & von Stengel, 2004). In fact, the CURB
set algorithms are slower (by two orders of magnitude) on average than Lemke-Howson.
This experimental performance agrees with intuition, but is the reverse of the theoretical
state of knowledge regarding worst-case complexity.
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Figure 6: Average runtime and 95% confidence intervals of small MC and Lemke Howson
as a function of game size.

It is worth pointing out that an algorithm that builds in part on our work for one of
the CURB set problems (finding all minimal CURB sets) has been presented in a working
paper (Klimm, Sandholm, & Weibull, 2010), and it appears to scale more favorably than
ours. However, the algorithm has not been directly compared with Lemke-Howson or any
other Nash equilibrium finding algorithms, so its relative value related to preprocessing
remains to be seen.
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The root cause of the complexity of Nash equilibrium search has proved elusive, as two
candidates that were considered potential culprits have been shown not to affect worst-
case complexity: games with two players and binary utilities are just as difficult as the
general case, even if both restrictions apply simultaneously (Chen & Deng, 2006; Abbott
et al., 2005). The fact that bounding the smallest CURB set size does serve to bound
the difficulty of Nash equilibrium search suggests that we can further isolate the cause of
equilibrium search complexity as being endemic to minimal CURB sets, rather than games
in general. In this regard, we observe that the special two-player game used by Chen and
Deng to show PPAD-completeness (Chen & Deng, 2006) is itself a single minimal CURB
set, and remains such under Abbott et al.’s (Abbott et al., 2005) transformation to binary
utilities.

6. Conclusions

We presented a thorough computational treatment of CURB sets, an important set-valued,
game-theoretic solution concept, including several algorithms for finding CURB sets in
two-player, normal-form games. Our algorithms find all minimal CURB sets (all MC),
one minimal CURB set (one MC), and a smallest minimal CURB set (small MC), all in
polynomial time. The algorithms are based on basic properties of CURB sets that we prove,
such as the fact that minimal CURB sets cannot overlap. The algorithms use dovetailing
with a priority queue, and exploiting information across overlapping, non-minimal CURB
sets, to further improve speed.

Experiments on random games showed that, unsurprisingly, small MC tends to be the
fastest, one MC is second, and all MC is the slowest. However, on covariant games the speed
advantage of the former two disappears. The runtime of those algorithms is primarily
determined by the size of the smallest CURB set, and on covariant games, which tend to
have larger CURB sets, those algorithms (especially one MC) suffer.

Our algorithms also enable the study of CURB set size distributions of different game
classes. We showed that the instance distributions from GAMUT are mainly extremal, in
the sense that a given game generator will yield mostly games with pure-strategy equilibria
and/or games where the game itself is the sole minimal CURB set. However, curiously,
some of the generators yield a significant number of games with smallest CURB sets of
specific non-extremal sizes.

We also examined the potential for using our algorithms as preprocessors for Nash equi-
librium finding algorithms. We proved that our technique can eliminate an arbitrarily large
portion of the game from consideration, while guaranteeing that the remaining subgame
contains at least one Nash equilibrium from the full game. This is the case even for games
where prior preprocessing techniques, including the iterated removal of dominated strate-
gies, are powerless.

On the downside, we showed that the smallest CURB set can be arbitrarily large and/or
arbitrarily loose. Furthermore, on many distributions, we showed that current Nash equi-
librium finding algorithms run faster, on average, than the CURB set algorithms. This is
surprising in that the theoretical worst-case complexity of the two problems is the reverse.

We demonstrated that the worst-case complexity of finding a Nash equilibrium is poly-
nomial in all known aspects of the game except the size of its smallest CURB set. Taken
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together with our CURB set finding algorithms that are polynomial time even in the worst
case, and the fact that Nash equilibrium finding is super-polynomial in the worst case (un-
less PPAD=P), we observe that the essence of the worst-case complexity of finding a Nash
equilibrium is the complexity of finding a Nash equilibrium within a minimal CURB set.

While the CURB set definition is for any number of players, we presented all of our
algorithms for the two-player setting. For a larger number of players, the only obstacle to
finding minimal CURB sets is finding conditional best responses quickly as a subroutine.
We showed that this problem can be solved fast for two players—in these settings it involves
solving a simple linear feasibility program. However, the mathematical program we use is
of degree p − 1, where p is the number of players, and with three players the constraints
are already quadratic. On the plus side, our algorithms only make a polynomial number
of calls to this subroutine. Therefore, if future research is able to identify polynomial-time
algorithms for finding all of a player’s conditional best responses in n-player games, then
our CURB set algorithms will also be polynomial time in those settings.
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