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Abstract
Distributed constraint optimization (DCOP) problems are a popular way of formulating and

solving agent-coordination problems. A DCOP problem is a problem where several agents co-
ordinate their values such that the sum of the resulting constraint costs is minimal. It is often
desirable to solve DCOP problems with memory-bounded and asynchronous algorithms. We intro-
duce Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded asynchronous DCOP search
algorithm that uses the message-passing and communication framework of ADOPT (Modi, Shen,
Tambe, & Yokoo, 2005), a well known memory-bounded asynchronous DCOP search algorithm,
but changes the search strategy of ADOPT from best-first search to depth-first branch-and-bound
search. Our experimental results show that BnB-ADOPT finds cost-minimal solutions up to one
order of magnitude faster than ADOPT for a variety of large DCOP problems and is as fast
as NCBB, a memory-bounded synchronous DCOP search algorithm, for most of these DCOP
problems. Additionally, it is often desirable to find bounded-error solutions for DCOP problems
within a reasonable amount of time since finding cost-minimal solutions is NP-hard. The exist-
ing bounded-error approximation mechanism allows users only to specify an absolute error bound
on the solution cost but a relative error bound is often more intuitive. Thus, we present two
new bounded-error approximation mechanisms that allow for relative error bounds and implement
them on top of BnB-ADOPT.

1. Introduction

A distributed constraint optimization (DCOP) problem consists of agents, each responsible for taking
on (= assigning itself) a value from its finite domain of values. The agents coordinate their values,
which are subject to constraints. Two agents are constrained if they share a constraint. Each
constraint has an associated constraint cost, which depends on the values of the constrained agents.
A (complete) solution is an assignment of values to all agents, and a partial solution is an assignment
of values to a subset of agents. The solution cost of a (partial or complete) solution is the sum of the
constraint costs of all constraints resulting from the given assignment of values to agents. Solving a
DCOP problem optimally means finding a solution with minimal solution cost and is NP-hard (Modi
et al., 2005).

Formulating agent-coordination problems as constraint optimization (COP) problems, a specific
type of weighted constraint satisfaction problems (Schiex, Fargier, & Verfaillie, 1995; Bistarelli,
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Figure 1: Example DCOP Problem

Montanari, Rossi, Schiex, Verfaillie, & Fargier, 1999), is more general than formulating them as the
more common constraint satisfaction problems (Dechter, 2003). Constraint satisfaction problems
have constraints that are either satisfied or unsatisfied. Solving a constraint satisfaction problem
means finding a solution such that all constraints are satisfied. An example application is the
scheduling of jobs in a job-shop, where constraints express that some jobs can only be performed
by certain machines and some jobs can only be performed after some other jobs. There could
potentially be multiple solutions that satisfy all constraints. However, some solutions might be more
desirable than others. For example, one might prefer the solution with the shortest completion time.
Unfortunately, constraint satisfaction problems cannot capture these preferences. However, COP
problems are able to do so by using the constraint costs to represent the preferences.

DCOP algorithms are better suited compared to COP algorithms for problems that are nat-
urally distributed. As a result, DCOP algorithms have been applied to coordinating unmanned
aerial vehicles (Schurr, Okamoto, Maheswaran, Scerri, & Tambe, 2005), scheduling meetings (Ma-
heswaran, Tambe, Bowring, Pearce, & Varakantham, 2004b; Petcu & Faltings, 2005b; Greenstadt,
Grosz, & Smith, 2007; Zivan, 2008; Yeoh, Varakantham, & Koenig, 2009), coordinating sensor net-
works (Lesser, Ortiz, & Tambe, 2003; Zhang, Xing, Wang, & Wittenburg, 2003; Modi et al., 2005;
Jain, Taylor, Tambe, & Yokoo, 2009; Stranders, Farinelli, Rogers, & Jennings, 2009; Zivan, Glinton,
& Sycara, 2009), synchronizing traffic lights (Junges & Bazzan, 2008), planning truck routes (Ottens
& Faltings, 2008) and managing power distribution networks (Kumar, Faltings, & Petcu, 2009).

It is common to visualize a DCOP problem as a constraint graph where the vertices are the
agents and the edges are the constraints. Most DCOP algorithms operate on a pseudo-tree, which
is a spanning tree of the (completely connected) constraint graph with the property that edges
in the constraint graph connect a vertex with one of its ancestor or descendant vertices in the
constraint tree (Freuder & Quinn, 1985; Bayardo & Miranker, 1995). An edge of the constraint
graph that is not part of the pseudo-tree is a backedge. An agent c is a pseudo-child agent of
agent p if agent c is a descendant agent of agent p in the pseudo-tree and they are constrained
via a backedge. Similarly, agent p is the pseudo-parent agent of agent c. Sibling subtrees represent
independent DCOP subproblems (since no two agents in different sibling subtrees share a constraint).
Figure 1(a) shows the constraint graph of an example DCOP problem with four agents that can
each take on value 0 or value 1, Figure 1(b) shows one possible pseudo-tree where the assignments of
values to agents a3 and a4 are independent DCOP subproblems (the dotted line is a backedge), and
Figure 1(c) shows the constraint costs. For our example DCOP problem, a cost-minimal solution
results if all agents take on value 1. The minimal solution cost is 12.

1.1 DCOP Algorithms

We now provide a taxonomy of DCOP algorithms. Figure 2 shows the taxonomy. DCOP algorithms
are divided into two groups: complete and incomplete DCOP algorithms. Complete DCOP algo-
rithms find cost-minimal solutions while incomplete DCOP algorithms are often faster but typically
find suboptimal solutions.
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Figure 2: Taxonomy of DCOP Algorithms

1.1.1 Incomplete DCOP Algorithms

Incomplete DCOP algorithms typically use local search to find locally optimal solutions and can
thus potentially get trapped in local minima. Nevertheless, since solving DCOP problems optimally
is NP-hard, such DCOP algorithms are desirable for large DCOP problems where finding cost-
minimal solutions might be slow. DBA (Yokoo & Hirayama, 1996), DSA (Fitzpatrick & Meertens,
2003), MGM (Maheswaran, Pearce, & Tambe, 2004a) and the more recent class of k-optimal DCOP
algorithms (Pearce & Tambe, 2007; Bowring, Pearce, Portway, Jain, & Tambe, 2008; Greenstadt,
2009) are examples of incomplete DCOP algorithms.

1.1.2 Complete DCOP Algorithms

Complete DCOP algorithms are generally divided into two groups, namely partially centralized and
fully decentralized DCOP algorithms.

Partially Centralized DCOP Algorithms

Partially centralized DCOP algorithms allow some agents to transfer their constraint information
(= information regarding the constraints that they are involved in) to a central agent for process-
ing. OptAPO (Mailler & Lesser, 2004) is an example of a partially centralized DCOP algorithm
that uses cooperative mediation, where certain agents act as mediators to solve overlapping DCOP
subproblems centrally.

Fully Decentralized DCOP Algorithms

Fully decentralized DCOP algorithms do not have central agents that collect constraint infor-
mation of other agents that are not constrained with them. Rather, every agent has access to only
its own constraint information. Fully decentralized DCOP algorithms are generally divided into two
groups, namely DCOP inference and search algorithms.

• DCOP inference algorithms: DCOP inference algorithms typically use dynamic program-
ming to propagate aggregated constraint costs from one agent to another agent and thus reduce
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DCOP Search Agent Communication Agent
Algorithm Strategy Operation Ordering

SBB DFBnB sequential & synchronous point-to-point with neighbors chain
ADOPT best-first concurrent & asynchronous point-to-point with neighbors tree
NCBB DFBnB sequential & synchronous point-to-point with neighbors tree
AFB DFBnB concurrent & asynchronous broadcast to all agents chain

BnB-ADOPT DFBnB concurrent & asynchronous point-to-point with neighbors tree

Table 1: Properties of DCOP Search Algorithms

the DCOP problem size by one agent at each step. They repeat this procedure until the DCOP
problem size is reduced to only one agent and the solution space (= space of all possible par-
tial solutions) thus cannot be reduced anymore. The sole remaining agent has then sufficient
knowledge to find a cost-minimal solution. DPOP (Petcu & Faltings, 2005b) is an example
of a DCOP inference algorithm. The number of messages sent between agents is only linear
in the number of agents. However, its memory requirements are exponential in the induced
width of the DCOP problem. The induced width depends on the number of backedges in the
pseudo-tree. It can be as large as the number of agents minus one if the constraint graph is
fully connected and every agent is thus constrained with every other agent.

• DCOP search algorithms: DCOP search algorithms use search strategies to search through
the solution space to find a cost-minimal solution. ADOPT (Modi et al., 2005) uses best-first
search, and SBB (Hirayama & Yokoo, 1997), NCBB (Chechetka & Sycara, 2006), AFB (Ger-
shman, Meisels, & Zivan, 2009) and our new DCOP search algorithm, BnB-ADOPT, use
depth-first branch-and-bound search. Their memory requirements are only polynomial in the
number of agents. However, the number of messages sent between agents can be exponential
in the number of agents.

Therefore, both groups of fully decentralized DCOP algorithms are desirable under different
conditions as there is a tradeoff between space (memory requirements) and time (number of messages
sent).

1.2 Motivation

We now describe the motivation behind our work.

1.2.1 BnB-ADOPT

We study DCOP search algorithms because they can be memory-bounded. This property is impor-
tant for applications, such as sensor networks, where every agent/sensor has only a fixed amount of
memory available. As a result, several DCOP search algorithms, such as SBB, ADOPT, NCBB and
AFB, were developed with this limitation in mind. As described earlier, their memory requirements
are polynomial in the number of agents. Table 1 shows the properties of these DCOP search algo-
rithms as well as the properties of our new DCOP search algorithm, BnB-ADOPT. We now describe
each property in more detail and justify the properties of BnB-ADOPT.

• Search strategy: ADOPT uses best-first search to search the solution space, while SBB,
NCBB and AFB use depth-first branch-and-bound (DFBnB) search. Best-first search repeat-
edly searches for the next best partial solution until it finds a cost-minimal solution. The next
best partial solution is the cost-minimal partial solution among all partial solutions that have
not yet been found. Depth-first branch-and-bound search starts by finding a complete (but
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often suboptimal) solution and stores its solution cost as the upper bound. It then continues
to search for a solution whose solution cost is less than the upper bound. It stores the solution
cost of this solution as the upper bound, and the search proceeds until it can no longer find a
solution whose solution cost is less than the upper bound.

For centralized search, it is known that search problems with depth-bounded search trees can
often be solved faster with depth-first branch-and-bound search than with memory-bounded
best-first search because memory-bounded best-first search algorithms, such as RBFS (Korf,
1993), need to repeatedly reconstruct partial solutions that they purged from memory. Depth-
first branch-and-bound search algorithms are memory-bounded but do not suffer from this
problem (Zhang & Korf, 1995). Since DCOP problems are search problems with depth-
bounded search trees, we hypothesize that depth-first branch-and-bound search might be faster
than best-first search. Therefore, we decided that BnB-ADOPT should use depth-first branch-
and-bound search.

• Agent operation: Agents of SBB and NCBB operate sequentially. Only agents with tokens
are active while the other agents remain idle. Once the token-holding agents are done, they pass
their tokens on and then remain idle. On the other hand, agents of ADOPT and AFB operate
concurrently (= at all times). Agents that operate concurrently might be able to solve DCOP
problems faster than agents that operate sequentially since the former agents can perform
potentially useful computation instead of having to wait for other agents. Therefore, we
decided that all agents of BnB-ADOPT should operate concurrently. Agents of SBB and NCBB
also operate synchronously. Communication between agents is often in form of messages.
Synchronous agents operate in cycles (Modi et al., 2005). A cycle is the time required for an
agent to process all incoming messages in its queue and send all outgoing messages, which
are then processed by the receiving agents in the next cycle (see Section 6.1 for more details).
Therefore, all agents wait until the last agent is done sending its messages before they start
a new cycle. On the other hand, asynchronous agents, such as agents of ADOPT and AFB,
are able to operate independently of each other, which often increases robustness (Silaghi,
Landwehr, & Larrosa, 2004). For example, all synchronous agents are affected if a single
communication link suffers from congestion while only a small number of asynchronous agents
are affected. We therefore decided that agents of BnB-ADOPT should operate asynchronously.

• Communication: DCOP search algorithms such as SBB, ADOPT and NCBB restrict
communication to agents that share constraints. This restriction is motivated by applications
such as sensor networks where communication is restricted to neighboring agents/sensors due
to their limited communication radius. Neighboring sensors share constraints since they need
to coordinate to sense the areas near them. DCOP search algorithms such as AFB do not have
this restriction and allow agents to broadcast messages to all other agents. We decided that
agents of BnB-ADOPT should obey the restrictions of applications such as sensor networks
and thus communicate only with neighboring agents.

• Agent ordering: All DCOP search algorithms mentioned above start with a pre-processing
step that arranges the agents into a pseudo-tree. DCOP search algorithms such as SBB and
AFB arrange the agents into a chain, while ADOPT and NCBB arrange the agents into a tree.
A tree ordering can capture independent DCOP subproblems (represented as sibling subtrees)
while a chain ordering can not. DCOP search algorithms that operate on trees can thus
operate on independent DCOP subproblems independently, while DCOP search algorithms
that operate on chains can not. Therefore, we decided that BnB-ADOPT should arrange
agents into a tree.

ADOPT has all preferred properties mentioned above except that it uses best-first search. We
therefore introduce BnB-ADOPT, a memory-bounded asynchronous DCOP search algorithm that
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uses the message passing and communication framework of ADOPT but changes the search strategy
of ADOPT from best-first search to depth-first branch-and-bound search.

1.2.2 Bounded-Error Approximations

Solving DCOP problems optimally is NP-hard, which makes it advantageous to allow users to trade
off solution cost for a smaller runtime. It is also desirable to have the error of the resulting solution
cost be bounded to provide guarantees on the solution cost. ADOPT is, to the best of our knowledge,
the only DCOP search algorithm with this property. Its Absolute Error Mechanism allows its users
to specify an absolute error bound on the solution cost, for example, that the solution cost should
be at most 10 larger than the minimal solution cost. However, it is often much more desirable to
specify a relative error bound on the solution cost, for example, that the solution cost should be
at most 10 percent larger than the minimal solution cost or, equivalently, 1.1 times larger than the
minimal solution cost. This cannot be done with the Absolute Error Mechanism without knowing
the minimal solution cost a priori. Thus, we propose two approximation mechanisms that allow users
to specify a relative error bound on the solution cost, namely the Relative Error Mechanism and the
Weighted Heuristics Mechanism, and implement them on top of BnB-ADOPT. These approximation
mechanisms allow BnB-ADOPT to find solutions with bounded errors faster than cost-minimal
solutions.

1.3 Experimental Results

We experimentally compare ADOPT, BnB-ADOPT and NCBB on three different DCOP problem
types, namely graph coloring problems, sensor network problems and meeting scheduling problems.
Our results show that BnB-ADOPT is up to one order of magnitude faster (measured in the number
of non-concurrent constraint checks and the number of cycles) than ADOPT on a variety of large
DCOP problems. BnB-ADOPT can also be inferred to be faster than SBB since ADOPT is faster
than SBB (Modi et al., 2005). BnB-ADOPT is also as fast as NCBB on most of these DCOP
problems. Our results for the suboptimal variants of BnB-ADOPT show that the Weighted Heuristics
Mechanism dominates both the Absolute Error Mechanism and Relative Error Mechanism.

1.4 Article Structure

This article is organized as follows: We formalize DCOP problems in Section 2 and describe our
DCOP search algorithm, BnB-ADOPT, in Section 3. We describe approximation mechanisms that
allow BnB-ADOPT to find solutions with bounded error in Section 4. We outline correctness and
completeness proofs of BnB-ADOPT in Section 5. Lastly, we present our experimental evaluations
in Section 6 and our conclusions in Section 7.

2. DCOP Problems

In this section, we formally define distributed constraint optimization (DCOP) problems and describe
their solution space.

2.1 Definition of DCOP Problems

A DCOP problem is defined by the following elements:

• a finite set of agents A = {a1, a2, ..., an};
• a set of finite domains D = {Dom(a1), Dom(a2), ..., Dom(an)}, where Dom(ai) is the domain

of possible floating point values of agent ai ∈ A; and
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Figure 3: AND/OR Search Tree

• a set of binary constraints F = {f1, f2, ..., fm}, where each constraint fi: Dom(ai1) ×
Dom(ai2) → R

+ ∪ ∞, specifies its non-negative constraint cost as a function of the values
of the distinct agents ai1 and ai2 that share the constraint.

The above definition assumes that each agent takes on one value rather than multiple values,
for example, a different value for each constraint that it is involved in. These DCOP problems
are more commonly formulated as each agent being responsible for the assignments of values to
multiple variables. However, there exist techniques that reduce such DCOP problems to our DCOP
problems (Burke & Brown, 2006). Thus, we use the terms agent and variable interchangeably. The
above definition also assumes that constraints are binary (= between two agents) rather than n-ary
(= between n agents). One should be able to extend BnB-ADOPT to solve DCOP problems with n-
ary constraints by using the same techniques that were proposed to extend ADOPT to solve DCOP
problems with n-ary constraints (Modi et al., 2005). Additionally, we assume that the messages sent
between agents can be delayed by a finite amount of time but are never lost.

2.2 Search Trees

The solution space of DCOP problems can be visualized with search trees. Traditional search trees
or, synonymously, OR search trees (Marinescu & Dechter, 2009) assign values to agents sequentially.
They do not utilize the fact that the values of agents that belong to independent DCOP subproblems
do not have to be assigned sequentially. AND/OR search trees are based on pseudo-trees and remedy
this issue (Marinescu & Dechter, 2009). Thus, we use AND/OR search trees and refer to them as
search trees in this article. Their depth is bounded by (twice) the number of agents.

Figure 3(a) shows the search tree that is based on the pseudo-tree in Figure 1(b). Figure 3(b)
labels each node of the search tree with an identifier to allow us to refer to the nodes easily. Circular
nodes are OR nodes (labeled with upper-case letters) and correspond to agents. For example, the
agent of node C is agent a2. Left branches of OR nodes correspond to the agents taking on value
0 and right branches correspond to the agents taking on value 1. Square nodes are AND nodes
(labeled with lower-case letters) and correspond to the partial solutions from the root node to those
nodes. For example, the partial solution of node f is {(a1, 1), (a2, 1)}. The subtree rooted at an
AND node represents the DCOP subproblem that assumes the partial solution of the AND node.
For example, the subtree rooted at node f represents the DCOP subproblem of assigning values
to agents a3 and a4 given that {(a1, 1), (a2, 1)}. The number of independent DCOP subproblems
within this DCOP subproblem is indicated by the number of branches exiting the AND node. For
example, there are two branches exiting node f , indicating that there are two independent DCOP
subproblems, namely of assigning values to agents a3 and a4. The numbers in the AND nodes
are the delta costs of the nodes. The delta cost of an AND node is defined to be the sum of the
constraint costs of all constraints in its partial solution that involve the agent of its parent OR node.
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For example, the partial solution of node v is {(a1, 1), (a2, 1), (a4, 1)}. There are two constraints in
this partial solution, namely the constraint between agents a1 and a2, which has constraint cost 3,
and the constraint between agents a2 and a4, which also has constraint cost 3. Since the parent
node of node v is node K with agent a4, the delta cost of node v is 3, namely the constraint cost of
the latter constraint. The former constraint is not included since it does not involve agent a4. The
solution cost of a partial solution of an AND node is the sum of the delta costs of all AND nodes
along the branch from the root node to that node. For example, the solution cost of the partial
solution of node v (= 6) is the sum of the delta costs of nodes b, f and v. In our example DCOP
problem, a cost-minimal solution is the union of the partial solutions of nodes t and v (all agents
take on value 1). Thus, the minimal solution cost (= 12) is the sum of the delta costs of nodes b, f ,
t and v.

3. BnB-ADOPT

In this section, we present Branch-and-Bound ADOPT (BnB-ADOPT). We do not describe BnB-
ADOPT as a modification of ADOPT since this approach requires the readers to have an in-depth
understanding of ADOPT. Instead, we give a stand-alone description of BnB-ADOPT that requires
no knowledge of ADOPT, with the intention of creating a self-contained and hopefully easy-to-read
description.

3.1 Search Strategies of ADOPT and BnB-ADOPT

We first describe centralized versions of the search strategies of ADOPT and BnB-ADOPT and omit
technical details since these are described in more detail in later sections.

3.1.1 Search Strategy of ADOPT

ADOPT (Modi et al., 2005) is a popular DCOP search algorithm (Modi & Ali, 2004; Ali, Koenig,
& Tambe, 2005; Bowring, Tambe, & Yokoo, 2006; Davin & Modi, 2006; Pecora, Modi, & Scerri,
2006; Choxi & Modi, 2007; Silaghi & Yokoo, 2009; Matsui, Silaghi, Hirayama, Yokoo, & Matsuo,
2009) that traverses the search tree in a best-first search order. We now describe a simplified version
of best-first search. The complete version can be found in (Marinescu & Dechter, 2007). Best-
first search maintains a list that initially contains only the child AND nodes of the root node. It
repeatedly performs the following operations: It expands the AND node with the smallest solution
cost in the list by removing that node from the list and adding the grandchild AND nodes of that
node into the list. For our example DCOP problem, best-first search expands the AND nodes in the
search tree in Figure 3 for the first time in the following order, where the numbers in parentheses
indicate the solution costs of the partial solutions of the expanded nodes: a (0), b (0), f (3), c (5),
v (6), i (8), d (8) and t (9).

Figure 4 shows a simplified trace of ADOPT on our example DCOP problem. ADOPT terminates
after fifteen steps with minimal solution cost 12. The numbers in the AND nodes are the delta costs
of the nodes. The lower bound LBr

Xr is an optimistic estimate of the minimal solution cost. It is
the smallest underestimated solution cost, over all solutions. The underestimated solution cost of
a solution is the sum of the delta costs of all AND nodes of that solution whose parent OR node
is the root node or whose grandparent AND node is expanded. For example, the underestimated
solution cost of the solution {(a1, 1), (a2, 1), (a3, 1), (a4, 1)} is 3 if node b is expanded and nodes f , t
and v are not expanded. The upper bound UBr

Xr is a pessimistic estimate of the minimal solution
cost. It is the solution cost of the solution with the smallest solution cost found so far. ADOPT
terminates when the upper bound UBr

Xr is no larger than the lower bound LBr
Xr . In order to be

memory-bounded, ADOPT maintains only one branch of the search tree (shaded grey in the figure)
from the root node to the currently expanded node and thus needs to repeatedly reconstruct nodes
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Figure 4: Trace of Simplified Memory-Bounded Best-First Search (Centralized ADOPT)
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Figure 5: Trace of Simplified Depth-First Branch-and-Bound Search (Centralized BnB-ADOPT)

that it purged from memory. For example, in Step 3, ADOPT has the branch to node f in memory.
The next node that best-first search expands is node c, and ADOPT discards the branch to node f
in Step 4. In Steps 6 and 7, it then needs to reconstruct the discarded branch to node f in order to
expand node v in Step 8.

3.1.2 Search Strategy of BnB-ADOPT

We now describe a simplified version of depth-first branch-and-bound search. The complete version
can be found in (Marinescu & Dechter, 2009). We use the same definitions of LBr

Xr and UBr
Xr as

described earlier for Figure 4. Depth-first branch-and-bound search maintains a stack that initially
contains only the child AND nodes of the root node. It expands the AND node on top of the
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stack by removing that node from the stack and performing the following check. If the solution
cost of that node is no smaller than the upper bound UBr

Xr , it prunes that node and repeats the
operation. Otherwise, it adds the grandchild AND nodes of that node to the top of the stack and
repeats the operation. It terminates when the upper bound UBr

Xr is no larger than lower bound
LBr

Xr . Depth-first branch-and-bound search can add the grandchild AND nodes of an expanded
AND node (and the child AND nodes of the root node) in decreasing order of their solution costs
instead of a random order to the top of the stack. This ordering ensures that depth-first branch-
and-bound search expands the grandchild AND node with the smallest solution cost first. We use
this improvement throughout the article. For our example DCOP problem, depth-first branch-and-
bound search expands the AND nodes in the search tree in the following order, where it prunes the
nodes in brackets: a (0), c (5), i (8), j (13), g (15), [h (19)], d (8), n (11), k (16), [m (18)], [l (21)],
b (0), f (3), v (6) and t (9). Figure 5 shows a trace of depth-first branch-and-bound search for our
example DCOP problem. It is memory-bounded without having to repeatedly reconstruct nodes
that it purged from memory but expands some nodes that a best-first search does not expand, such
as node j in Step 4. The depth-first branch-and-bound search terminates after twelve steps with
minimal solution cost 12, which is three steps fewer than ADOPT.

3.2 Description of BnB-ADOPT

We now provide an incremental description of BnB-ADOPT. First, we provide the notations and key
terms of BnB-ADOPT. Then, we describe how BnB-ADOPT updates its bounds, adheres to memory
limitations, performs depth-first search and performs branch-and-bound. Finally, we introduce our
enhanced final version of BnB-ADOPT and show both its pseudocode and its trace for our example
DCOP problem.

3.2.1 Notation and Key Terms

We adopt the following notation from ADOPT to describe BnB-ADOPT:

• V alInit(a) ∈ Dom(a) is the initial value of agent a ∈ A;

• CD(a) ⊆ A is the set of child and pseudo-child agents of agent a ∈ A;

• C(a) ⊆ CD(a) is the set of child agents of agent a ∈ A;

• pa(a) ∈ A is the parent agent of agent a ∈ A except for the root agent;

• P (a) ⊆ A is the set of ancestor agents (including the parent agent) of agent a ∈ A;

• SCP (a) ⊆ P (a) is the set of ancestor agents (including the parent agent) of agent a ∈ A that
are parent or pseudo-parent agents of agent a or one (or more) of its descendant agents; and

• CP (a) ⊆ SCP (a) is the set of ancestor agents (including the parent agent) of agent a ∈ A
that are parent or pseudo-parent agents of agent a.

We adopt the following key terms from ADOPT to describe BnB-ADOPT:

• Context (X): The context Xa of agent a is the set of values of all ancestor agents of agent
a. The context Xr of the root agent r is always equal to {}.

• Delta cost (δ): The delta cost δa
Xa(d) is the sum of the constraint costs of all constraints

that involve both agent a and one of its ancestor agents, under the assumption that agent a
takes on value d and its ancestor agents take on the values in context Xa. In the search tree,
δa
Xa(d) is the delta cost of the AND node that has partial solution Xa ∪ (a, d). For example,

δa2
{(a1,1)}(1) is the delta cost of node f in Figure 3.
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• Gamma cost (γ): The gamma costs γa
Xa(d) and γa

Xa are defined as follows:

γa
Xa(d) := δa

Xa(d) +
∑

c∈C(a)

γc
Xa∪(a,d) (1)

γa
Xa := min

d∈Dom(a)
{γa

Xa(d)} (2)

for all agents a, all values d and all contexts Xa. Thus, the gamma cost γa
Xa(d) is the sum of

the constraint costs of all constraints that involve agent a or one of its descendant agents (that
is, either both agent a and one of its ancestor agents, both agent a and one of its descendant
agents, both a descendant agent and an ancestor agent of agent a or two descendant agents of
agent a) minimized over all possible values of its descendant agents, under the assumption that
agent a takes on value d and its ancestor agents take on the values in context Xa. In the search
tree, γa

Xa(d) is the gamma cost of the AND node that has partial solution Xa ∪ (a, d). For
example, γa2

{(a1,1)}(1) is the gamma cost of node f in Figure 3. The gamma cost γa
Xa is the sum

of the constraint costs of all constraints that involve agent a or one of its descendant agents
minimized over all possible values of agent a and its descendant agents, under the assumption
that the ancestor agents of agent a take on the values in context Xa. In the search tree, the
gamma cost γa

Xa is the gamma cost of the OR node whose agent is agent a and whose parent
AND node has partial solution Xa. For example, γa2

{(a1,1)} is the gamma cost of node C in
Figure 3. Therefore, the gamma cost of an AND node is the sum of its delta cost and the
gamma costs of its child OR nodes, and the gamma cost of an OR node is the minimum of
the gamma costs of its child AND nodes. For example, the gamma cost of node f in Figure 3
is the sum of its delta cost and the gamma costs of nodes J and K, and the gamma cost of
node C in Figure 3 is the minimum of the gamma costs of nodes e and f .

Solving a DCOP problem optimally means to determine γr
Xr for the root agent r or, equivalently,

the gamma cost of the root node since γr
Xr is the minimal solution cost. It is not difficult for the

agents to cache information that allows them to determine a cost-minimal solution.

3.2.2 Updating the Bounds

Every agent a of BnB-ADOPT stores and updates several bounds on the gamma costs, namely
lba,c

Xa(d), LBa
Xa(d), LBa

Xa, uba,c
Xa(d), UBa

Xa(d) and UBa
Xa for all values d, all child agents c and all

contexts Xa, maintaining the following bound property:

LBa
Xa ≤ γa

Xa ≤ UBa
Xa (3)

LBa
Xa(d) ≤ γa

Xa(d) ≤ UBa
Xa(d) (4)

lba,c
Xa(d) ≤ γc

Xa∪(a,d) ≤ uba,c
Xa(d) (5)

In the search tree,

• LBa
Xa and UBa

Xa are lower and upper bounds, respectively, (on the gamma cost) of the OR
node whose agent is agent a and whose parent AND node has partial solution Xa;

• LBa
Xa(d) and UBa

Xa(d) are lower and upper bounds, respectively, (on the gamma cost) of the
AND node that has partial solution Xa ∪ (a, d); and

• lba,c
Xa(d) and uba,c

Xa(d) are lower and upper bounds, respectively, (on the gamma cost) of the
OR node whose agent is agent c and whose parent AND node has partial solution Xa ∪ (a, d).
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For example, LBa2
{(a1,1)} and UBa2

{(a1,1)} are bounds of node C in Figure 3, LBa2
{(a1,1)}(1) and

UBa2
{(a1,1)}(1) are bounds of node f , and lba2,a3

{(a1,1)}(1) and uba2,a3
{(a1,1)}(1) are bounds of node J .

lba2,a3
{(a1,1)}(1), uba2,a3

{(a1,1)}(1), LBa3
{(a1,1),(a2,1)} and UBa3

{(a1,1),(a2,1)} are bounds of node J , but agent
a2 maintains the first two bounds while agent a3 maintains the last two bounds.

Each agent a uses the following update equations for all values d, all child agents c and all
contexts Xa to initialize its bounds lba,c

Xa(d) and uba,c
Xa(d), where the heuristic values ha,c

Xa(d) are
floating point numbers that are admissible and thus satisfy 0 ≤ ha,c

Xa(d) ≤ γc
Xa∪(a,d):

lba,c
Xa(d) := ha,c

Xa(d) (6)
uba,c

Xa(d) := ∞ (7)

Agent a then uses repeatedly the following update equations for all values d, all child agents c,
all contexts Xa and all contexts Xc (= Xa ∪ (a, d)) to tighten the bounds:

lba,c
Xa(d) := max{lba,c

Xa(d), LBc
Xc} (8)

LBa
Xa(d) := δa

Xa(d) +
∑

c∈C(a)

lba,c
Xa(d) (9)

LBa
Xa := min

d∈Dom(a)
{LBa

Xa(d)} (10)

uba,c
Xa(d) := min{uba,c

Xa(d), UBc
Xc} (11)

UBa
Xa(d) := δa

Xa(d) +
∑

c∈C(a)

uba,c
Xa(d) (12)

UBa
Xa := min

d∈Dom(a)
{UBa

Xa(d)} (13)

The updates maintain the bound property and improve the bounds monotonically, that is,
the lower bounds are monotonically non-decreasing and the upper bounds are monotonically non-
increasing.1 After a finite amount of time, UBa

Xa ≤ LBa
Xa for all agents a and all contexts Xa.

BnB-ADOPT terminates when its termination condition UBr
Xr ≤ LBr

Xr for the root agent r is
satisfied. Then, UBr

Xr ≤ LBr
Xr and the bound property UBr

Xr ≥ LBr
Xr together imply that

UBr
Xr = γr

Xr = LBr
Xr , and the DCOP problem is solved optimally.

Figure 6 shows a simplified trace of the updates of the (lower and upper) bounds for our example
DCOP problem. We assume that the updates proceed sequentially from the leaf agents to the root
agent. Due to this simplification, the lower and upper bounds of each node are identical to its
gamma cost and independent of the heuristic values. The numbers in the nodes are their bounds.
Two agents maintain the bounds of OR nodes except for the root node. The figure shows the bounds
that the parent agent maintains rather than the bounds that the child agent maintains. For example,
the number in node B is the bounds that agent a1 rather than agent a2 maintains. The bounds
that the child agent maintains can be computed by taking the minimum of the bounds of the child
AND nodes of the OR node. Agents update the bound of an AND node to the sum of its delta cost
and the bounds of its child OR nodes according to update equations 9 and 12. They update the
bound of an OR node to the minimum of the bounds of its child AND nodes according to update
equations 10 and 13. A more detailed description of the trace is as follows:

• Step 1: Leaf agent a3 updates the bounds of AND nodes g, h, k, l, o, p, s and t to their
delta costs according to update equations 9 and 12 and the bounds of OR nodes D, F , H and

1. Leaf agents use the same update equations. Since they do not have child agents, the sums over their child agents
evaluate to 0. For example, LBa

Xa(d) = UBa
Xa(d) = δa

Xa(d) for all leaf agents a, all values d and all contexts Xa.
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Figure 6: Simplified Trace of the Updates of the (Lower and Upper) Bounds

J to the minimum of the bounds of their child AND nodes according to update equations 10
and 13. Similarly, leaf agent a4 updates the bounds of AND nodes i, j, m, n, q, r, u and
v to their delta costs according to update equations 9 and 12 and the bounds of OR nodes
E, G, I and K to the minimum of the bounds of their child AND nodes according to update
equations 10 and 13. The bounds of OR nodes D to K are not shown in the figure since they
are not (yet) maintained by agent a2.

• Step 2: Agent a2 updates the bounds of OR nodes D to K that it maintains to the bounds
of the same OR nodes that leaf agents a3 and a4 maintain according to update equations 8
and 11, the bounds of AND nodes c to f to the sum of their delta costs and the bounds of their
child OR nodes according to update equations 9 and 12 and the bounds of OR nodes B and
C to the minimum of the bounds of their child AND nodes according to update equations 10
and 13. The bounds of OR nodes B and C are not shown in the figure since they are not (yet)
maintained by agent a1.

• Step 3: Agent a1 updates the bounds of OR nodes B and C that it maintains to the bounds
of the same OR nodes that agent a2 maintains according to update equations 8 and 11, the
bounds of AND nodes a and b to the sum of their delta costs and the bounds of their child OR
nodes according to update equations 9 and 12 and the bounds of OR node A to the minimum
of the bounds of its child AND nodes according to update equations 10 and 13. Since the
lower and upper bounds of a node are equal to its gamma cost, the lower and upper bounds
of the root node are equal to its gamma cost, which in turn is equal to the minimal solution
cost. The propagation terminates after three steps with minimal solution cost 12.

3.2.3 Adhering to Memory Limitations

Our description of BnB-ADOPT so far assumes no memory limitations. However, BnB-ADOPT is
a memory-bounded DCOP search algorithm with memory requirements per agent that are linear
in the number of agents. We now describe how BnB-ADOPT adheres to these memory limitations
using techniques that were introduced for ADOPT but apply to BnB-ADOPT as well.

The simplified trace in Figure 6 assumes that every agent a maintains its bounds for all values d,
all child agents c and all contexts Xa. The number of contexts can be exponential in the depth of the
agent in the pseudo-tree. For our example DCOP problem, agent a3 has four different contexts for
the four different combinations of values of its ancestor agents a1 and a2. An agent cannot maintain
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an exponential number of bounds due to the memory limitations. Therefore, every agent maintains
its bounds for only one context at any given time. This context is stored in the variable Xa for
agent a. The size of the context is at most linear in the number of agents. The number of bounds of
an agent is now linear in the product of its domain cardinality and the number of its child agents.
Thus, the memory requirements per agent are only linear in the number of agents if the domain
cardinality and the magnitude of the bounds (and the other variables) are constant for each agent.

3.2.4 Performing Depth-First Search

Our description of BnB-ADOPT so far applies to ADOPT as well. However, BnB-ADOPT uses
depth-first branch-and-bound search and ADOPT uses best-first search. We now describe how
BnB-ADOPT implements depth-first search.

Agents of BnB-ADOPT send messages that are similar to that of ADOPT but processes them
differently. They send messages of three different types, namely VALUE, COST and TERMINATE
messages. At the start, every agent a initializes its context Xa, uses update equations 6, 9, 10, 7, 12
and 13 to initialize its bounds and takes on its best value da := argmind∈Dom(a){LBa

Xa(d)}. It sends
VALUE messages to all child agents and a COST message to its parent agent. It then repeatedly
waits for incoming messages, processes them, possibly takes on a different value and again sends
VALUE messages to all child agents and a COST message to its parent agent. A description of the
three message types and how agents process them is as follows:

• VALUE messages: An agent a with context Xa and value da sends VALUE messages to
all child agents with the desired context Xa ∪ (a, da), which is its context augmented with its
value. Leaf agents do not have child agents and thus do not send VALUE messages. VALUE
messages thus propagate contexts down the pseudo-tree.

When an agent receives a VALUE message, it checks whether its context is identical to the
desired context in the VALUE message. If it is not, then the agent changes its context to the
desired context in the VALUE message. In either case, it then executes the common program
(see below).

• COST messages: An agent a sends COST messages to its parent agent with its identity
a, its context Xa and its bounds LBa

Xa and UBa
Xa . The root agent does not have a parent

agent and thus does not send COST messages. COST messages thus propagate bounds up the
pseudo-tree.

When an agent receives a COST message, it checks whether its context and the context in the
COST message are compatible. Two contexts are compatible if no agent takes on different
values in the two contexts. If they are, then the agent uses update equations 8 to 13 with the
bounds in the COST message to improve its bounds for the value in the message. In either
case, it then executes the common program (see below).

• TERMINATE messages: When the termination condition UBr
Xr ≤ LBr

Xr is satisfied,
the root agent r sends TERMINATE messages (without parameters) to all child agents to
inform them that the search is complete and then terminates. When an agent receives such
a TERMINATE message, it sends TERMINATE messages to all child agents and terminates
as well. Leaf agents do not have child agents and thus do not send TERMINATE messages.
TERMINATE messages thus propagate down the pseudo-tree until all agents terminate.

The common program is as follows:

• Context change: If an agent a changed its context Xa, it executes the following statements:
It uses update equations 6, 9, 10, 7, 12 and 13 to initialize its bounds and takes on its best
value da := argmind∈Dom(a){LBa

Xa(d)}. It then sends VALUE messages to all child agents
and a COST message to its parent agent.
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Figure 7: Trace of the Updates of the Lower Bounds

• No context change: If an agent a did not change its context Xa, it executes the following
statements: If UBa

Xa ≤ LBa
Xa(da) for its value da, then the context of the agent augmented

with its value cannot be completed to a solution whose solution cost is smaller than the solution
cost of the best solution found so far for its context Xa (= UBa

Xa) and the agent thus takes on
its best value da := arg mind∈Dom(a){LBa

Xa(d)}. It then sends VALUE messages to all child
agents and a COST message to its parent agent.

Assume that the context Xa of an agent a does not change. After a finite amount of time,
UBa

Xa ≤ LBa
Xa(da) for its value da. The agent then takes on its best value and repeats the

procedure. After a finite amount of time, UBa
Xa ≤ LBa

Xa(d) for all values d, which implies that
UBa

Xa ≤ LBa
Xa . The agent takes on every value d at most once until UBa

Xa ≤ LBa
Xa since LBa

Xa(d)
remains unchanged and UBa

Xa is monotonically non-increasing once the agent changes its value
from d to a different value, which prevents the agent from changing its value back to d before
UBa

Xa ≤ LBa
Xa . BnB-ADOPT thus performs depth-first search. Then, after a finite amount of time,

UBr
Xr ≤ LBr

Xr and the bound property UBr
Xr ≥ LBr

Xr together imply that UBr
Xr = γr

Xr = LBr
Xr

for the root agent r, and the DCOP problem is solved optimally.
Figures 7 and 8 show traces of the updates of the lower and upper bounds, respectively, for our

example DCOP problem. BnB-ADOPT uses the zero heuristic values. The initial context of every

100



BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

X X X X

OR

AND

OR

AND

OR

AND

inf

inf

10 14

inf

3 8

inf

inf inf

X

X

X X

X

X X

X

X

X X

X

X X

inf

inf

inf

inf

inf

Cycle 1

infOR

AND

OR

AND

OR

AND 10 14 3 8 X X X X

inf

0

X

X

X X

X

X X

X

X

X X

X

X X

inf

10 3

inf

inf inf

inf

18

Cycle 2

18OR

AND

OR

AND

OR

AND X X 8 13 10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3

inf

inf inf

inf

inf18

18

X X

Cycle 3

18OR

AND

OR

AND

OR

AND X X X X 8 13 10 3

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3 8 3

inf

inf18

18

19

Cycle 4

18OR

AND

OR

AND

OR

AND 10 14 3 8 X X

X

X

X X

X

X X

X

X

X X

X

X X

18

10 3

19

8 3

inf

inf18

18

X X

Cycle 5

18OR

AND

OR

AND

OR

AND 10 14 3 8 X X X X

inf

X X X X

inf

X X X X

X

10 3

X

X X

inf

inf18

18

inf inf inf inf

Cycle 6

18OR

AND

OR

AND

OR

AND X X X X X X X X

inf

X X X X

inf

inf

23 6

inf

10 3

X

X X

X

X X

inf18

18 inf

inf inf

Cycle 7

18OR

AND

OR

AND

OR

AND X X X X X X X X

inf

X X X X 23 6 10 3

X

X X

X

X X

inf

18

18

inf

inf inf 6 3

12

Cycle 8

12OR

AND

OR

AND

OR

AND X X X X X X X X

inf

X X X X 23 6 10 3

X

X X

X

X X

12

18

18

12

inf inf 6 3

12

Cycle 9

Figure 8: Trace of the Updates of the Upper Bounds

agent assigns value 0 to all ancestor agents of the agent. We partition time into cycles. Agents
maintain their bounds for only one context at any given time. Nodes in the figures are crossed out if
their agent does not maintain their bounds. AND nodes are shaded if their partial solution is equal
to the context of the agent of their parent OR node augmented with its value. For example, agents
a1, a3 and a4 take on value 0 in Cycle 2, and agent a2 takes on value 1. The context of agent a1 is
{}, the context of agent a2 is {(a1, 0)} and the contexts of agents a3 and a4 are {(a1, 0), (a2, 0)}. A
description of the trace is as follows:

• Cycle 1: Root agent a1 initializes its context Xa1 to {}. It initializes the lower bounds of
nodes B (= lba1,a2

Xa1 (0)) and C (= lba1,a2
Xa1 (1)) to 0 since it uses the zero heuristic values. It

updates the lower bound of node a (= LBa1
Xa1 (0)) to the sum of its delta cost (= 0) and the

lower bound of node B (= 0) according to the update equations. It updates the lower bound
of node b (= LBa1

Xa1 (1)) to the sum of its delta cost (= 0) and the lower bound of node C (= 0)
according to the update equations. It updates the lower bound of node A (= LBa1

Xa1 ) to the
minimum of the lower bound of node a (= 0) and the lower bound of node b (= 0) according to
the update equations. It initializes the upper bounds of nodes B and C to infinity. It updates
the upper bounds of nodes a, b and A to infinity according to the update equations. It takes
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on its best value. It can take on either value 0 or value 1 since the lower bounds of nodes a
and b are both 0. It takes on value 0 and sends a VALUE message to its child agent a2.

Agent a2 initializes its context Xa2 to {(a1, 0)}. It initializes the lower bounds of nodes D, E,
F and G to 0. It updates the lower bounds of nodes c, d and B to 5, 8 and 5, respectively. It
initializes the upper bounds of nodes D, E, F and G to infinity. It updates the upper bounds
of nodes c, d and B to infinity. The bounds of node B that agent a2 maintains are not shown
in the figures. It takes on its best value 0, sends VALUE messages to its child agents a3 and
a4 and sends a COST message to its parent agent a1.

Leaf agent a3 initializes its context Xa3 to {(a1, 0), (a2, 0)}. It updates the lower bounds of
nodes g and h to their delta costs 10 and 14, respectively, since leaf agents do not have child
agents. It updates the lower bound of node D to 10. It updates the upper bounds of nodes g
and h to their delta costs 10 and 14, respectively, since leaf agents do not have child agents. It
updates the upper bound of node D to 10. The bounds of node D that leaf agent a3 maintains
are not shown in the figures. It takes on its best value 0 and sends a COST message to its
parent agent a2.

Leaf agent a4 initializes its context Xa4 to {(a1, 0), (a2, 0)}. It updates the lower bounds of
nodes i and j to their delta costs 3 and 8, respectively. It updates the lower bound of node E
to 3. It updates the upper bounds of nodes i and j to their delta costs 3 and 8, respectively. It
updates the upper bound of node E to 3. The bounds of node E that leaf agent a4 maintains
are not shown in the figures. It takes on its best value 0 and sends a COST message to its
parent agent a2.

In summary, the following messages are sent during Cycle 1:

– message (VALUE, {(a1, 0)}) from agent a1 to agent a2;

– message (VALUE, {(a1, 0), (a2, 0)}) from agent a2 to agent a3;

– message (VALUE, {(a1, 0), (a2, 0)}) from agent a2 to agent a4;

– message (COST, a2, {(a1, 0)}, 5, ∞) from agent a2 to agent a1;

– message (COST, a3, {(a1, 0), (a2, 0)}, 10, 10) from agent a3 to agent a2; and

– message (COST, a4, {(a1, 0), (a2, 0)}, 3, 3) from agent a4 to agent a2.

• Cycle 2: Root agent a1 receives the COST message sent by its child agent a2 in Cycle 1. Since
the context of agent a1 (= {}) is compatible with the context in the message (= {(a1, 0)}), it
improves its bounds. It updates the bounds of node B to the bounds in the message (= 5 and
infinity, respectively). It updates the bounds of nodes a, b and A. It does not change its value
since the lower bound of node a (= LBa1

Xa1 (da1) = 5 for its value da1 = 0) is still smaller than
the upper bound of node A (= UBa1

Xa1 = ∞). It sends a VALUE message to its child agent
a2.

Agent a2 receives the VALUE message sent by its parent agent a1 in Cycle 1. Its context
(= {(a1, 0)}) remains unchanged since it is the same as the desired context in the message
(= {(a1, 0)}). Agent a2 also receives the COST messages sent by its child agents a3 and a4

in Cycle 1. Since the context of agent a2 (= {(a1, 0)}) is compatible with the contexts in the
messages (= {(a1, 0), (a2, 0)}), it improves its bounds. It updates the bounds of node D to
the bounds in the first message (= 10 and 10, respectively) and the bounds of node E to the
bounds in the second message (= 3 and 3, respectively). It updates the bounds of nodes c, d
and B. It changes its value since the lower bound of node c (= LBa2

Xa2 (da2) = 18 for its value
da2 = 0) is no longer smaller than the upper bound of node B (= UBa2

Xa2 = 18). It takes on its
best value 1, sends VALUE messages to its child agents a3 and a4 and sends a COST message
to its parent agent a1.
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Leaf agents a3 and a4 receive the VALUE messages sent by their parent agent a2 in Cycle 1.
Their contexts (= {(a1, 0), (a2, 0)}) remain unchanged since they are the same as the desired
context in the message (= {(a1, 0), (a2, 0)}). They send the same COST messages as before to
their parent agent a2.

In summary, the messages sent during Cycle 2 are identical to the ones sent during Cycle 1,
except for the messages sent by agent a2, which are as follows:

– message (VALUE, {(a1, 0), (a2, 1)}) from agent a2 to agent a3;

– message (VALUE, {(a1, 0), (a2, 1)}) from agent a2 to agent a4; and

– message (COST, a2, {(a1, 0)}, 8, 18) from agent a2 to agent a1.

The VALUE messages are different because agent a2 changed its value from 0 to 1. The COST
message is different because agent a2 changed its bounds.

• Cycles 3-9: The messages sent during Cycle 3 are identical to the ones sent during Cycle 2,
except for the messages sent by agents a3 and a4, which are as follows:

– message (COST, a3, {(a1, 0), (a2, 1)}, 8, 8) from agent a3 to agent a2; and

– message (COST, a4, {(a1, 0), (a2, 1)}, 3, 3) from agent a4 to agent a2.

The COST messages are different because agents a3 and a4 changed their contexts. The
termination condition holds after a finite amount of time when the upper bound of node A
(= UBa1

Xa1 = 12) is no larger than the lower bound of node A (= LBa1
Xa1 = 12). Root agent a1

sends TERMINATE messages to all child agents, and the TERMINATE messages propagate
down the pseudo-tree until all agents terminate. BnB-ADOPT terminates after nine cycles
with minimal solution cost 12.

3.2.5 Performing Branch-and-Bound

We now refine our description of BnB-ADOPT by explaining how the agents implement branch-
and-bound search to make BnB-ADOPT faster. Every agent a of BnB-ADOPT now also maintains
the variable threshold THa

Xa, which it initializes to infinity. The threshold of the root agent always
remains infinity. Every other agent uses its threshold for pruning, meaning that it can change its
value earlier than previously.

• First change: If an agent a did not change its context Xa, it previously executed the following
statements: If UBa

Xa ≤ LBa
Xa(da) for its value da, then the agent took on its best value. It

then sent VALUE messages to all child agents and a COST message to its parent agent. Now, if
THa

Xa ≤ LBa
Xa(da), then the agent also takes on its best value. Thus, if min{THa

Xa, UBa
Xa} ≤

LBa
Xa(da), then the agent takes on its best value and thus potentially changes its value, which

is earlier than previously. min{THa
Xa, UBa

Xa} is the pruning quantity.

• Second change: An agent a with context Xa and value da sends VALUE messages
to all its child agents, which previously contained only the desired context Xa ∪ (a, da).
VALUE messages now also contain the desired threshold min{THa

Xa, UBa
Xa} − δa

Xa(da) −∑
c′∈C(a)\c lba,c′

Xa (da) for the child agent c. When agent c receives a VALUE message, it sets
its threshold to the desired threshold and then proceeds as described earlier. The desired
threshold is set such that the lower bound LBa

Xa(da) of agent a for its value da reaches its
pruning quantity (and agent a thus potentially changes its value) when the lower bound LBc

Xc

of agent c reaches the desired threshold. This property can be verified as follows:
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LBc
Xc ≥ min{THa

Xa, UBa
Xa} − δa

Xa(da) −
∑

c′∈C(a)\c

lba,c′
Xa (da) (14)

lba,c
Xa(da) ≥ min{THa

Xa, UBa
Xa} − δa

Xa(da) −
∑

c′∈C(a)\c

lba,c′
Xa (da) (15)

−min{THa
Xa, UBa

Xa} ≥ −δa
Xa(da) − lba,c

Xa(da) −
∑

c′∈C(a)\c

lba,c′
Xa (da) (16)

min{THa
Xa, UBa

Xa} ≤ δa
Xa(da) + lba,c

Xa(da) +
∑

c′∈C(a)\c

lba,c′
Xa (da) (17)

min{THa
Xa, UBa

Xa} ≤ δa
Xa(da) +

∑

c′∈C(a)

lba,c′
Xa (da) (18)

min{THa
Xa, UBa

Xa} ≤ LBa
Xa(da) (19)

3.2.6 Further Enhancements

We continue to refine our description of BnB-ADOPT by explaining a number of additional en-
hancements, which were introduced for ADOPT.

• Reduced contexts: The agents now use reduced contexts, which are subsets of the contexts
described previously. The reduced context Xa

1 of agent a contains the values of all ancestor
agents p ∈ SCP (a), while the context Xa

2 described previously contains the values of all
ancestor agents p ∈ P (a). The agents can use reduced contexts since γa

Xa
1

= γa
Xa

2
and γa

Xa
1
(d) =

γa
Xa

2
(d) for all values d. Agents now use reduced contexts because they need to change their

contexts and thus initialize their bounds less often when they receive VALUE messages since
their contexts are then more often identical to the desired contexts in the VALUE messages.
For our example DCOP problem, the reduced context of agent a4 contains the values of only
agent a2 rather than the values of agents a1 and a2. Therefore, the following pairs of nodes in
the search tree are actually the same node: nodes i and q, nodes j and r, nodes m and u, and
nodes n and v.

• VALUE and COST messages: An agent sends VALUE messages to all child agents, which
previously contained the desired context and the desired threshold. The desired context is the
context of the agent augmented with its value. When an agent receives a VALUE message,
it previously checked whether its context is identical to the desired context in the VALUE
message. If it was not, then the agent changed its context to the desired context in the
VALUE message. Agents now update their contexts differently to reduce the size of the
VALUE messages. An agent sends VALUE messages to all child and pseudo-child agents with
its identity, value and desired threshold, which is infinity for its pseudo-child agents. When an
agent receives a VALUE message, it sets its threshold to the desired threshold if the message
is from its parent agent. It also checks whether the value of the ancestor agent in the VALUE
message is more recent than the value of the ancestor agent in its context. If it is, then the
agent changes the value of the ancestor agent in its context to the value of the ancestor agent in
the VALUE message. However, the context of an agent does not only contain the values of its
parent and pseudo-parent agents but also the values of its ancestor agents that are the parent
or pseudo-parent agents of one (or more) of its descendant agents, and ancestor agents that
are not constrained with the agent cannot send VALUE messages to the agent. However, they
send VALUE messages to their pseudo-child agents, at least one of which is a descendant agent
of the agent, and the information then propagates up the pseudo-tree with COST messages
until it reaches the agent. When an agent receives a COST message, it now checks whether

104



BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm

the value of an ancestor agent in the context of the COST message is more recent than the
value of the ancestor agent in its context. If it is, then the agent changes the value of the
ancestor agent in its context to the value of the ancestor agent in the context of the COST
message. Our example DCOP problem is too simple to allow us to illustrate the propagation
of the information up the pseudo-tree. However, imagine that a new agent a5 is a child agent
of agent a4 and is constrained with agents a1 and a4. The context of agent a4 then contains
the value of agent a1 but agent a1 cannot send VALUE messages to agent a4. However, agent
a1 sends VALUE messages to agent a5. Agent a5 changes the value of agent a1 in its context
and sends COST messages with its context to agent a4, which then changes the value of agent
a1 in its context as well.

The agents now need to determine whether the value of an agent in VALUE messages or in the
contexts of COST messages is more recent than the value of the agent in their contexts. Every
agent a therefore now also maintains a counter IDa and increments it whenever it changes its
value. Therefore, a larger ID indicates a more recent value. The values of agents in contexts
are now labeled with their IDs, and VALUE messages contain the identity of the sending agent,
its value, its ID and the desired threshold.

• Bounds: Whenever an agent changes its context Xa, it previously initialized its bounds and
took on its best value. The (reduced) context of a child agent of an agent can now be a strict
subset of the (reduced) context of the agent since the parent or some pseudo-parent agents of
the agent might not be (parent or) pseudo-parent agents of the child agent or its descendant
agents. If the context of child agent c does not contain the values of any agents whose values
changed in the context of agent a, then agent a does not initialize its lower bounds lba,c

Xa(d)
and upper bounds uba,c

Xa(d) for agent c and all values d before it takes on its best value. Agents
use this optimization because they need to initialize their bounds less often this way. For our
example DCOP problem, if agent a2 changes its context from {(a1, 0)} to {(a1, 1)} (where the
IDs are omitted for simplicity), then it does not initialize its lower bounds lba2,a4

Xa2 (d) and upper
bounds uba2,a4

Xa2 (d) for child agent a4 and all values d since the context of agent a4 does not
contain the value of agent a1.

Additionally, if an agent a changes its context due to a COST message from its child agent c
and its new context Xa is compatible with the context in the COST message, then agent a
can set its lower bound lba,c

Xa(d) and upper bound uba,c
Xa(d) for agent c and the value d of agent

a in the COST message to the bounds in the COST message before it takes on its best value.
Agents use this optimization because the bounds in the COST message are more informed than
the initialized bounds. Our example DCOP problem is too simple to allow us to illustrate this
optimization. However, imagine again that a new agent a5 is a child agent of agent a4 and is
constrained with agents a1 and a4. Assume that the context of agent a4 is {(a1, 0), (a2, 0)}
(where the IDs are again omitted for simplicity) and it receives a COST message from agent
a5 with context {(a1, 1), (a4, 0)}. Agent a4 then changes its context to {(a1, 1), (a2, 0)}, sets
its lower bound lba4,a5

{(a1,1),(a2,0)}(0) and its upper bound uba4,a5
{(a1,1),(a2,0)}(0) to the bounds in the

COST message and initializes all other bounds before it takes on its best value.

3.2.7 Pseudocode

Figure 9 shows the BnB-ADOPT pseudocode of every agent. The pseudocode does not index
variables with the context since this context is implicitly given by the variable Xa. It uses the
predicate Compatible(X, X ′) = ¬∃(a,d,ID)∈X,(a′,d′,ID′)∈X′(a = a′ ∧ d 
= d′) that determines if two
contexts X and X ′ are compatible, that is, if no agent takes on two different values in the two contexts
[Lines 35, 44, 46, 48 and 51]. The pseudocode also uses the procedure PriorityMerge(X, X ′) that
executes X ′ := {(a′, d′, ID′) ∈ X ′ | ¬∃(a,d,ID)∈X(a = a′)} ∪ {(a′, d′, ID′) ∈ X ′ | ∃(a,d,ID)∈X(a =
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procedure Start()
[01] Xa := {(p, ValInit(p), 0) | p ∈ SCP (a)};
[02] IDa := 0;
[03] forall c ∈ C(a), d ∈ Dom(a)
[04] InitChild(c, d);
[05] InitSelf();
[06] Backtrack();
[07] loop forever
[08] if(message queue is not empty)
[09] while(message queue is not empty)
[10] pop msg off message queue;
[11] When Received(msg);
[12] Backtrack();

procedure InitChild(c, d)
[13] lba,c(d) := ha,c(d);
[14] uba,c(d) := ∞;

procedure InitSelf()
[15] da := arg mind∈Dom(a){δa(d) +

∑
c∈C(a) lba,c(d)};

[16] IDa := IDa + 1;
[17] THa := ∞;

procedure Backtrack()
[18] forall d ∈ Dom(a)
[19] LBa(d) := δa(d) +

∑
c∈C(a) lba,c(d);

[20] UBa(d) := δa(d) +
∑

c∈C(a) uba,c(d);

[21] LBa := mind∈Dom(a){LBa(d)};
[22] UBa := mind∈Dom(a){UBa(d)};
[23] if(LBa(da) ≥ min{THa, UBa})
[24] da := arg mind∈Dom(a){LBa(d)} (choose the previous da if possible);
[25] if a new da has been chosen
[26] IDa := IDa + 1;
[27] if((a is root and UBa ≤ LBa) or termination message received)
[28] Send(TERMINATE) to each c ∈ C(a);
[29] terminate execution;

[30] Send(VALUE, a, da, IDa, min{THa, UBa} − δa(da) − ∑
c′∈C(a)\c lba,c′ (da)) to each c ∈ C(a);

[31] Send(VALUE, a, da, IDa, ∞) to each c ∈ CD(a) \ C(a);
[32] Send(COST, a, Xa, LBa, UBa) to pa(a) if a is not root;

procedure When Received(VALUE, p, dp, IDp, THp)
[33] X′ := Xa;
[34] PriorityMerge((p, dp, IDp), Xa);
[35] if(!Compatible(X′, Xa))
[36] forall c ∈ C(a), d ∈ Dom(a)
[37] if(p ∈ SCP (c))
[38] InitChild(c, d);
[39] InitSelf();
[40] if(p = pa(a))
[41] THa := THp;

procedure When Received(COST, c, Xc, LBc, UBc)
[42] X′ := Xa;
[43] PriorityMerge(Xc, Xa);
[44] if(!Compatible(X′, Xa))
[45] forall c ∈ C(a), d ∈ Dom(a)
[46] if(!Compatible({(p, dp, IDp) ∈ X′ | p ∈ SCP (c)},Xa))
[47] InitChild(c,d);
[48] if(Compatible(Xc, Xa))
[49] lba,c(d) := max{lba,c(d), LBc} for the unique (a′, d, ID) ∈ Xc with a′ = a;
[50] uba,c(d) := min{uba,c(d), UBc} for the unique (a′, d, ID) ∈ Xc with a′ = a;
[51] if(!Compatible(X′, Xa))
[52] InitSelf();

procedure When Received(TERMINATE)
[53] record termination message received;

Figure 9: Pseudocode of BnB-ADOPT

a′ ∧ ID ≤ ID′)}∪ {(a, d, ID) ∈ X | ∃(a′,d′,ID′)∈X′(a = a′ ∧ ID > ID′)} and thus replaces the values
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of agents in context X ′ with more recent values, if available, of the same agents in context X [Lines
34 and 43].

The code is identical for every agent except that the variable a is a “self” variable that points to
the agent itself. At the start, BnB-ADOPT calls Start() for every agent. When an agent a receives
a VALUE message from an ancestor agent, then the “When Received” handler for VALUE messages
is called with p being the ancestor agent, dp being the value of the ancestor agent, IDp being the
ID of the ancestor agent and THp being the desired threshold for agent a if the ancestor agent is
its parent agent (and infinity otherwise) [Line 11]. When agent a receives a COST message from a
child agent, then the “When Received” handler for COST messages is called with c being the child
agent, Xc being the context of the child agent, LBc being the lower bound LBc

Xc of the child agent
and UBc being the upper bound UBc

Xc of the child agent [Line 11]. Finally, when agent a receives a
TERMINATE message from its parent agent, then the “When Received” handler for TERMINATE
messages is called without any arguments [Line 11].

BnB-ADOPT uses the same message passing and communication framework as ADOPT and
has the same memory requirements. It uses similar VALUE, COST and TERMINATE messages,
a similar strategy to update the context of an agent based on VALUE messages from its ancestor
agents and COST messages from its child agents, the same semantics for the bounds and the same
update equations to update these bounds. BnB-ADOPT and ADOPT both use thresholds but BnB-
ADOPT uses the thresholds for pruning while ADOPT uses them to reconstruct partial solutions
that were purged from memory. Thus, BnB-ADOPT uses a different threshold initialization [Line
17], different desired threshold calculation [Line 30] and different termination condition [Line 27].
BnB-ADOPT also differs from ADOPT in that it maintains IDs that agents use to indicate the
recency of their values and labels the values of agents in contexts with their IDs.

3.2.8 Trace

Figures 10 and 11 show traces of the updates of the lower and upper bounds, respectively, for our
example DCOP problem, and Table 2 shows a trace of the update of all variables. BnB-ADOPT
uses the heuristic values ha1,a2

Xa1 (0) := 3, ha1,a2
Xa1 (1) := 6, ha2,a3

Xa2 (0) := 2, ha2,a3
Xa2 (1) := 2, ha2,a4

Xa2 (0) := 2
and ha2,a4

Xa2 (1) := 2 for all contexts Xa1 and Xa2 . These heuristic values were chosen by hand. Every
agent assigns the value of all its ancestor agents in its initial context to 0. We partition time into
cycles as in Figures 7 and 8 and continue to use the conventions made in the context of those figures.

• Cycle 1: Root agent a1 initializes its context Xa1 to {} [Line 1]. It initializes the lower bounds
of nodes B (= lba1,a2

Xa1 (0)) and C (= lba1,a2
Xa1 (1)) to their heuristic values 3 and 6, respectively

[Line 13]. It updates the lower bound of node a (= LBa1
Xa1 (0)) to the sum of its delta cost

(= 0) and the lower bound of node B (= 3) according to the update equations [Line 19]. It
updates the lower bound of node b (= LBa1

Xa1 (1)) to the sum of its delta cost (= 0) and the
lower bound of node C (= 6) according to the update equations [Line 19]. It updates the
lower bound of node A (= LBa1

Xa1 ) to the minimum of the lower bound of node a (= 3) and
the lower bound of node b (= 6) according to the update equations [Line 21]. It initializes the
upper bounds of nodes B and C to infinity [Line 14]. It updates the upper bounds of nodes a,
b and A to infinity according to the update equations [Lines 20 and 22]. It takes on its best
value 0 since the lower bound of node a (= 3) is smaller than the lower bound of node b (= 6)
[Line 15], initializes its ID IDa1 to 1 [Lines 2 and 16], initializes its threshold THa1 to infinity
[Line 17] and sends VALUE messages to its child agent a2 and pseudo-child agent a3 [Lines 30
and 31].

Agent a2 initializes its context Xa2 to {(a1, 0, 0)} [Line 1]. It initializes the lower bounds of
nodes D, E, F and G to their heuristic value 2 [Line 13]. It updates the lower bounds of nodes
c, d and B to 9, 12 and 9, respectively [Lines 19 and 21]. It initializes the upper bounds of
nodes D, E, F and G to infinity [Line 14]. It updates the upper bounds of nodes c, d and B
to infinity [Lines 20 and 22]. The bounds of node B that agent a2 maintains are not shown
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Cycle 1 2 3 4 5 6 7 8 9
Xa1

da1 0 0 0 0 1 1 1 1 1
IDa1 1 1 1 1 2 2 2 2 2
THa1 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
LBa1(0) 3 9 12 12 18 18 18 18 18
LBa1(1) 6 6 6 6 6 6 8 8 12
LBa1 3 6 6 6 6 6 8 8 12
UBa1(0) ∞ ∞ 18 18 18 18 18 18 18
UBa1(1) ∞ ∞ ∞ ∞ ∞ ∞ ∞ 30 12
UBa1 ∞ ∞ 18 18 18 18 18 18 12
lba1,a2(0) 3 9 12 12 18 18 18 18 18
lba1,a2(1) 6 6 6 6 6 6 8 8 12
uba1,a2(0) ∞ ∞ 18 18 18 18 18 18 18
uba1,a2(1) ∞ ∞ ∞ ∞ ∞ ∞ ∞ 30 12
Xa2 (a1, 0, 0) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2)
da2 0 1 1 0 0 1 1 1 1
IDa2 1 2 2 3 3 4 4 4 4
THa2 ∞ ∞ ∞ 18 18 18 18 18 18
LBa2(0) 9 18 18 18 18 25 30 30 30
LBa2(1) 12 12 12 19 19 8 8 12 12
LBa2 9 12 12 18 18 8 8 12 12
UBa2(0) ∞ 18 18 18 18 ∞ 30 30 30
UBa2(1) ∞ ∞ ∞ 19 19 ∞ ∞ 12 12
UBa2 ∞ 18 18 18 18 ∞ 30 12 12
lba2,a3(0) 2 10 10 10 10 2 7 7 7
lba2,a3(1) 2 2 2 8 8 2 2 6 6
uba2,a3(0) ∞ 10 10 10 10 ∞ 7 7 7
uba2,a3(1) ∞ ∞ ∞ 8 8 ∞ ∞ 6 6
lba2,a4(0) 2 3 3 3 3 3 3 3 3
lba2,a4(1) 2 2 2 3 3 3 3 3 3
uba2,a4(0) ∞ 3 3 3 3 3 3 3 3
uba2,a4(1) ∞ ∞ ∞ 3 3 3 3 3 3
Xa3 (a1, 0, 0) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 0, 1) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2) (a1, 1, 2)

(a2, 0, 0) (a2, 0, 1) (a2, 1, 2) (a2, 1, 2) (a2, 0, 3) (a2, 0, 3) (a2, 1, 4) (a2, 1, 4) (a2, 1, 4)
da3 0 0 0 0 0 1 1 1 1
IDa3 1 1 2 2 3 4 5 5 5
THa3 ∞ ∞ 8 8 10 10 12 12 6
LBa3(0) 10 10 8 8 10 25 23 23 23
LBa3(1) 14 14 13 13 14 7 6 6 6
LBa3 10 10 8 8 10 7 6 6 6
UBa3(0) 10 10 8 8 10 25 23 23 23
UBa3(1) 14 14 13 13 14 7 6 6 6
UBa3 10 10 8 8 10 7 6 6 6
Xa4 (a2, 0, 0) (a2, 0, 1) (a2, 1, 2) (a2, 1, 2) (a2, 0, 3) (a2, 0, 3) (a2, 1, 4) (a2, 1, 4) (a2, 1, 4)
da4 0 0 1 1 0 0 1 1 1
IDa4 1 1 2 2 3 3 4 4 4
THa4 ∞ ∞ 8 8 3 3 13 13 3
LBa4(0) 3 3 10 10 3 3 10 10 10
LBa4(1) 8 8 3 3 8 8 3 3 3
LBa4 3 3 3 3 3 3 3 3 3
UBa4(0) 3 3 10 10 3 3 10 10 10
UBa4(1) 8 8 3 3 8 8 3 3 3
UBa4 3 3 3 3 3 3 3 3 3

Table 2: Trace of the Update of all Variables of BnB-ADOPT

108



BnB-ADOPT: An Asynchronous Branch-and-Bound DCOP Algorithm

AOR

AND

OR

AND

OR

AND

a

B

c

D

g h

E

i j

d

F

k l

G

m n

b

C

e

H

o p

I

q r

f

J

s t

K

u v

Identifiers

OR

AND

OR

AND

OR

AND

9

2

10 14

2

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

3

3

6

6

3

Cycle 1

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

12

2

X X

2

X X

X

X

X X

X

X X

X

X

X X

X

X X

6

9

6

6

9

Cycle 2

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

12

2

8 13

2

10 3

X

X

X X

X

X X

X

X

X X

X

X X

6

12

6

6

12

Cycle 3

OR

AND

OR

AND

OR

AND

18

10

X X

3

X X

19

8

8 13

3

10 3

X

X

X X

X

X X

X

X

X X

X

X X

6

12

6

6

12

Cycle 4

OR

AND

OR

AND

OR

AND

18

10

10 14

3

3 8

19

8

X X

3

X X

X

X

X X

X

X X

X

X

X X

X

X X

6

18

6

6

18

Cycle 5

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

25

2

25 7

3

3 8

8

2

X X

3

X X

6

18

6

6

18

Cycle 6

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

8

2

23 6

3

10 3

8

18

8

8

18

Cycle 7

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

12

6

23 6

3

10 3

8

18

8

8

18

Cycle 8

OR

AND

OR

AND

OR

AND

X

X

X X

X

X X

X

X

X X

X

X X

30

7

X X

3

X X

12

6

23 6

3

10 3

12

18

12

12

18

Cycle 9

Figure 10: Trace of the Update of the Lower Bounds of BnB-ADOPT

in the figure. It takes on its best value 0 [Line 15], initializes its ID to 1 [Lines 2 and 16],
initializes its threshold to infinity [Line 17] and sends VALUE messages to its child agents a3

and a4 and a COST message to its parent agent a1 [Lines 30-32].

Leaf agent a3 initializes its context Xa3 to {(a1, 0, 0), (a2, 0, 0)} [Line 1]. It updates the lower
bounds of nodes g and h to their delta costs 10 and 14, respectively, since leaf agents do not
have child agents [Line 19]. It updates the lower bound of node D to 10 [Line 21]. It updates
the upper bounds of nodes g and h to their delta costs 10 and 14, respectively, since leaf agents
do not have child agents [Line 20]. It updates the upper bound of node D to 10 [Line 22]. The
bounds of node D that leaf agent a3 maintains are not shown in the figure. It takes on its
best value 0 [Line 15], initializes its ID to 1 [Lines 2 and 16], initializes its threshold to infinity
[Line 17] and sends a COST message to its parent agent a2 [Line 32].

Leaf agent a4 initializes its (reduced) context Xa4 to {(a2, 0, 0)} [Line 1]. It updates the lower
bounds of nodes i and j to their delta costs 3 and 8, respectively [Line 19]. It updates the
lower bound of node E to 3 [Line 21]. It updates the upper bounds of nodes i and j to their
delta costs 3 and 8, respectively [Line 20]. It updates the upper bound of node E to 3 [Line
22]. The bounds of node E that leaf agent a4 maintains are not shown in the figure. It takes
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Figure 11: Trace of the Update of the Upper Bounds of BnB-ADOPT

on its best value 0 [Line 15], initializes its ID to 1 [Lines 2 and 16], initializes its threshold to
infinity [Line 17] and sends a COST message to its parent agent a2 [Line 32].

In summary, the following messages are sent during Cycle 1:

– message (VALUE, a1, 0, 1, ∞) from agent a1 to agent a2;

– message (VALUE, a1, 0, 1, ∞) from agent a1 to agent a3;

– message (VALUE, a2, 0, 1, ∞) from agent a2 to agent a3;

– message (VALUE, a2, 0, 1, ∞) from agent a2 to agent a4;

– message (COST, a2, {(a1, 0, 0)}, 9, ∞) from agent a2 to agent a1;

– message (COST, a3, {(a1, 0, 0), (a2, 0, 0)}, 10, 10) from agent a3 to agent a2; and

– message (COST, a4, {(a2, 0, 0)}, 3, 3) from agent a4 to agent a2.

• Cycle 2: Root agent a1 receives the COST message sent by its child agent a2 in Cycle 1. Since
the context of agent a1 (= {}) is compatible with the context in the message (= {(a1, 0, 0)}), it
improves its bounds. It updates the bounds of node B to the bounds in the message (= 9 and
infinity, respectively) [Lines 48-50]. It updates the bounds of nodes a, b and A [Lines 18-22].
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It does not change its value since the lower bound of node a (= LBa1
Xa1 (da1) = 9 for its value

da1 = 0) is still smaller than its pruning quantity (= min{THa1
Xa1 , UBa1

Xa1} = min(∞,∞) =
∞). It sends VALUE messages to its child agent a2 and pseudo-child agent a3 [Lines 30-31].

Agent a2 receives the VALUE message sent by its parent agent a1 in Cycle 1. It updates its
context from {(a1, 0, 0)} to {(a1, 0, 1)} since the ID of agent a1 in its context (= 0) is smaller
than the ID in the message (= 1) [Line 34]. Its threshold (= ∞) remains unchanged since it
is the same as the desired threshold (= ∞) in the message. Agent a2 also receives the COST
messages sent by its child agents a3 and a4 in Cycle 1. Since its context (= {(a1, 0, 1)}) is com-
patible with the contexts in the messages (= {(a1, 0, 0), (a2, 0, 0)} and {(a2, 0, 0)}, respectively),
it improves its bounds. It updates the bounds of node D to the bounds in the first message
(= 10 and 10, respectively) and the bounds of node E to the bounds in the second message (= 3
and 3, respectively) [Lines 48-50]. It updates the bounds of nodes c, d and B [Lines 18-22]. It
changes its value since the lower bound of node c (= LBa2

Xa2 (da2) = 18 for its value da2 = 0) is
no longer smaller than its pruning quantity (= min{THa2

Xa2 , UBa2
Xa2} = min(∞, 18) = 18). It

takes on its best value 1 [Line 24], increments its ID to 2 [Lines 25-26], sends VALUE messages
to its child agents a3 and a4 [Lines 30-31] and sends a COST message to its parent agent a1

[Line 32].

Leaf agent a3 receives the VALUE messages sent by its parent agent a2 and pseudo-parent
agent a1 in Cycle 1. It updates its context from {(a1, 0, 0), (a2, 0, 0)} to {(a1, 0, 1), (a2, 0, 1)}
since the IDs of agents a1 and a2 in its context (= 0 and 0, respectively) are smaller than
the IDs in the messages (= 1 and 1, respectively) [Line 34]. Its threshold (= ∞) remains
unchanged since it is the same as the desired threshold (= ∞) in the message. Its bounds are
not reinitialized since its context is compatible with its previous context [Line 35]. It sends
the same COST message as before to its parent agent a2 [Line 32].

Leaf agent a4 receives the VALUE message sent by its parent agent a2 in Cycle 1. It updates its
contexts from {(a2, 0, 0)} to {(a2, 0, 1)} since the ID of agent a2 in its context (= 0) is smaller
than the ID in the message (= 1) [Line 34]. Its threshold (= ∞) remains unchanged since it is
the same as the desired threshold (= ∞) in the message. Its bounds are not reinitialized since
its context is compatible with its previous context [Line 35]. It sends the same COST message
as before to its parent agent a2 [Line 32].

In summary, the messages sent during Cycle 2 are identical to the ones sent during Cycle 1,
except for the messages sent by agents a2, a3 and a4, which are as follows:

– message (VALUE, a2, 1, 2, 8) from agent a2 to agent a3;

– message (VALUE, a2, 1, 2, 8) from agent a2 to agent a4; and

– message (COST, a2, {(a1, 0, 1)}, 12, 18) from agent a2 to agent a1.

– message (COST, a3, {(a1, 0, 1), (a2, 0, 1)}, 10, 10) from agent a3 to agent a2; and

– message (COST, a4, {(a2, 0, 1)}, 3, 3) from agent a4 to agent a2.

The VALUE messages are different because agent a2 changed its value from 0 to 1. The COST
messages are different because agent a2 changed its bounds and its context and agents a3 and
a4 changed their contexts.

• Cycles 3-9: The messages sent during Cycle 3 are identical to the ones sent during Cycle 2,
except for the messages sent by agents a3 and a4, which are as follows:

– message (COST, a3, {(a1, 0, 1), (a2, 1, 2)}, 8, 8) from agent a3 to agent a2; and

– message (COST, a4, {(a2, 1, 2)}, 3, 3) from agent a4 to agent a2.
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The COST messages are different because agents a3 and a4 changed their contexts. The
termination conditions holds after a finite amount of time when the upper bound of node A
(= UBa1

Xa1 = 12) is no larger than the lower bound of node A (= LBa1
Xa1 = 12) [Line 27]. Root

agent a1 sends TERMINATE messages to all child agents [Line 28], and the TERMINATE
messages propagate down the pseudo-tree [Line 28] until all agents terminate. BnB-ADOPT
terminates after nine cycles with minimal solution cost 12.

4. Bounded-Error Approximations

In this section, we present three approximation mechanisms that allow BnB-ADOPT to trade off
solution cost for a smaller runtime. They bound the error on the solution cost by a user-defined
error bound. First, we modify the Absolute Error Mechanism of ADOPT (Modi et al., 2005) to
work with BnB-ADOPT. This approximation mechanism allows users to specify an absolute error
bound on the solution cost (for example, that the solution cost should be at most 10 larger than the
minimal solution cost). However, it is often much more desirable to specify a relative error bound on
the solution cost (for example, that the solution cost should be at most 10 percent larger than the
minimal solution cost or, equivalently, 1.1 times larger than the minimal solution cost). This cannot
be done with the Absolute Error Mechanism without knowing the minimal solution cost a priori.
Thus, we introduce two approximation mechanisms that allow users to specify a relative error bound
on the solution cost, namely the Relative Error Mechanism and the Weighted Heuristics Mechanism.

All approximation mechanisms let the root agent r (and only the root agent) maintain the
limit limr. The root agent uses this limit in the same way in the termination condition for all
approximation mechanisms but updates it differently. The termination condition UBr

Xr ≤ LBr
Xr on

Line 27 of the pseudocode of BnB-ADOPT is replaced with UBr
Xr ≤ limr. The root agent updates

the limit between Lines 26 and 27 in the pseudocode, outside of the preceding if statement.

4.1 Absolute Error Mechanism

The Absolute Error Mechanism of ADOPT requires a user-defined absolute error bound 0 ≤ b < ∞
that specifies that the solution cost should be at most b larger than the minimal solution cost. This
approximation mechanism can easily be modified for BnB-ADOPT by setting the limit as follows:

limr := b + LBr
Xr (20)

BnB-ADOPTAEM is the resulting variant of BnB-ADOPT with the Absolute Error Mechanism.
BnB-ADOPTAEM terminates once the upper bound of the root node (which is equal to the solution
cost of the solution with the smallest solution cost found so far) is no larger than the limit (which
is equal to the absolute error bound b plus the lower bound of the root node, which is a lower
bound on the minimal solution cost). BnB-ADOPTAEM terminates with a solution cost that is
equal to the upper bound of the root node although the minimal solution cost could be as small as
the lower bound of the root node. It thus terminates with a solution cost that is at most b larger
than the minimal solution cost. Figure 12 shows a trace of BnB-ADOPTAEM with absolute error
bound b = 24 for our example DCOP problem. BnB-ADOPTAEM terminates after three cycles
with suboptimal solution cost 18, which is six cycles faster than BnB-ADOPT.

4.2 Relative Error Mechanism

It is often much more desirable to specify a relative error bound on the solution cost rather than
an absolute error bound. Fortunately, the Absolute Error Mechanism of BnB-ADOPT can easily
be changed to the Relative Error Mechanism by setting the limit as follows. The Relative Error
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Figure 12: Trace of the Update of the Lower Bounds of BnB-ADOPTAEM with b = 24
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Figure 13: Trace of the Update of the Lower Bounds of BnB-ADOPTREM with p = 3

Mechanism requires a user-defined relative error bound 1 ≤ p < ∞ that specifies that the solution
cost should be at most p times larger than the minimal solution cost:

limr := p · LBr
Xr (21)

BnB-ADOPTREM is the resulting variant of BnB-ADOPT with the Relative Error Mechanism.
BnB-ADOPTREM terminates once the upper bound of the root node (which is equal to the solution
cost of the solution with the smallest solution cost found so far) is no larger than the limit (which
is equal to the relative error bound p times the lower bound of the root node, which is a lower
bound on the minimal solution cost). BnB-ADOPTREM terminates with a solution cost that is
equal to the upper bound of the root node although the minimal solution cost could be as small as
the lower bound of the root node. It thus terminates with a solution cost that is at most p times
larger than the minimal solution cost. Figure 13 shows a trace of BnB-ADOPTREM with relative
error bound p = 3 for our example DCOP problem. BnB-ADOPTREM terminates after three cycles
with suboptimal solution cost 18, which is six cycles faster than BnB-ADOPT.

4.3 Weighted Heuristics Mechanism

There is a second way of implementing a relative error bound for BnB-ADOPT since BnB-ADOPT
uses admissible heuristic values. It is common practice in the context of A* to trade off solution
cost for a smaller runtime by using weighted heuristic values (Pohl, 1973), which are derived from
admissible heuristic values by multiplying them with a user-defined weight 1 ≤ w < ∞. The
resulting heuristic values can be inadmissible. A* is then no longer guaranteed to find cost-minimal
solutions but it is guaranteed to terminate with a solution cost that is at most w times larger than
the minimal solution cost (Pohl, 1970). This approximation mechanism can easily be modified for
BnB-ADOPT by setting the limit as follows:

limr := LBr
Xr (22)
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Figure 14: Trace of the Update of the Lower Bounds of BnB-ADOPTWHM with w = 3

and by initializing the lower bounds lba,c
Xa(d) as follows:

lba,c
Xa(d) := w · ha,c

Xa(d) (23)

for all agents a, all values d, all child agents c and all contexts Xa. BnB-ADOPTWHM is the
resulting variant of BnB-ADOPT with the Weighted Heuristics Mechanism. BnB-ADOPTWHM

terminates once the upper bound of the root node (which is equal to the solution cost of the solution
with the smallest solution cost found so far) is no larger than the limit (which is equal to the lower
bound of the root node, which is a lower bound on w times the minimal solution cost). BnB-
ADOPTWHM terminates with a solution cost that is equal to the upper bound of the root node
although the minimal solution cost could be as small as the lower bound of the root node divided
by w. It thus terminates with a solution cost that is at most w times larger than the minimal
solution cost. Figure 14 shows a trace of BnB-ADOPTWHM with w = 3 for our example DCOP
problem. BnB-ADOPTWHM terminates after three cycles with suboptimal solution cost 18, which
is six cycles faster than BnB-ADOPT.

5. Correctness and Completeness

In this section, we prove the correctness and completeness of BnB-ADOPT and its suboptimal
variants. All definitions, lemmata, theorems and corollaries hold for BnB-ADOPT and its subopti-
mal variants except when mentioned otherwise. Therefore, each agent a uses the following update
equation for all values d, all child agents c and all contexts Xa to initialize its bounds lba,c

Xa(d):

lba,c
Xa(d) := w · ha,c

Xa(d) (24)

where the weight w is a floating point number that satisfies 1 ≤ w < ∞ and the heuristic values
ha,c

Xa(d) are floating point numbers that satisfy

0 ≤ ha,c
Xa(d) ≤ γc

Xa∪(a,d) (25)

Messages are sent at the end of a cycle and received in the beginning of a cycle. ∆ is the largest
duration between the time a message is sent and the time it is processed, and ε is the largest duration
of a cycle.

Lemma 1. If two contexts X and X ′ of an arbitrary agent a ∈ A agree on the values of all ancestor
agents p ∈ SCP (a) of agent a, then γa

X = γa
X′ .

Proof. By definition, Xa ⊆ X is the (reduced) context that contains the values of all ancestor agents
p ∈ SCP (a) of agent a. The gamma cost γa

X is the sum of the constraint costs of all constraints that
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involve agent a or one of its descendant agents minimized over all possible values of agent a and its
descendant agents, under the assumption that the ancestor agents of agent a take on the values in
context X . The gamma cost γa

X thus depends only on the values of the ancestor agents (including
the parent agent) of agent a that are the parent or pseudo-parent agents of agent a or one (or more)
of its descendant agents, that is, the values of all ancestor agents p ∈ SCP (a) of agent a. Therefore,
γa

X = γa
Xa . Similarly, γa

X′ = γa
Xa .

Definition 1. Contexts are correct iff the IDs of the values of all agents in the contexts are equal
to the IDs of the agents, which implies that the values of all agents in the contexts are equal to the
values of the agents.

Lemma 2. If the context Xa of an arbitrary agent a ∈ A does not change for a period of time,
then the lower bounds lba,c

Xa(d), LBa
Xa(d) and LBa

Xa are monotonically non-decreasing and the upper
bounds uba,c

Xa(d), UBa
Xa(d) and UBa

Xa are monotonically non-increasing during that period of time
for all values d ∈ Dom(a) and all child agents c ∈ C(a).

Proof. Since the context Xa does not change, the delta values δa
Xa(d) are constant and the bounds

(once initialized) are updated according to update equations 8 to 13. Thus, the lower bounds are
monotonically non-decreasing and the upper bounds are monotonically non-increasing.

Lemma 3. If the value of an arbitrary ancestor agent p ∈ SCP (a) of an arbitrary agent a ∈ A does
not change between the current time T and a future time t with t ≥ T + |A| · (∆ + ε) + ε, then the
value of agent p and its ID in the context of agent a are equal to the value of agent p and its ID,
respectively, between some time t′ and time t with t′ ≤ t.

Proof. Assume that the value of an arbitrary ancestor agent p ∈ SCP (a) of an arbitrary agent a ∈ A
does not change between the current time T and a future time t with t ≥ T + |A| · (∆+ ε)+ ε. There
are the following two cases.

• Case 1: If agent p is a parent or pseudo-parent agent of agent a, then it sent a VALUE message
to agent a with its value and ID at time t′′ ≤ T + ε, that is, in the same cycle in which it took
on the value that it has at time T since the duration of that cycle is no larger than ε. (The
agents send VALUE messages at the end of every cycle.) Agent a receives the VALUE message
by time t′′ + ∆ since messages are delivered with finite delay ∆. It then updates the value of
agent p and its ID in its context by time t′′ + ∆ + ε since the update is done in the same cycle
and the duration of that cycle is no larger than ε. Thus, the value of agent p and its ID in
the context of agent a are equal to the value of agent p and its ID, respectively, between some
time t′ and time t with t′′ ≤ t′ ≤ t′′ + ∆ + ε ≤ T + ∆ + 2 · ε ≤ t since agent p does not change
its value between time t′′ and time t.

• Case 2: If agent p is not a parent or pseudo-parent agent of agent a, then one of its pseudo-child
agents c is a descendant agent of agent a. Agent p sent a VALUE message to agent c with its
value and ID at time t′′ ≤ T + ε. Agent c receives the VALUE message by time t′′ +∆. It then
updates the value of agent p and its ID in its context and sends a COST message to its parent
agent pa(c) with its updated context by time t′′ + ∆ + ε. (The agents send COST messages at
the end of every cycle.) Agent pa(c) receives the COST message by time t′′ +2 ·∆+ ε. It then
updates the value of agent p and its ID in its context and sends a COST message to its parent
agent pa(pa(c)) with its updated context by time t′′ + 2 · (∆ + ε). This process continues until
agent a updates the value of agent p and its ID in its context by time t′′ + n · (∆ + ε), where
n ≤ |A| is the number of messages in the chain of messages. Thus, the value of agent p and its
ID in the context of agent a are equal to the value of agent p and its ID, respectively, between
some time t′ and time t with t′′ ≤ t′ ≤ t′′ + n · (∆ + ε) ≤ T + |A| · (∆ + ε) + ε ≤ t since agent
p does not change its value between time t′′ and time t.
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Corollary 1. If the values of all ancestor agents p ∈ SCP (a) of an arbitrary agent a ∈ A do not
change between the current time T and a future time t with t ≥ T + |A| · (∆+ ε)+ ε, then the context
of agent a is correct between some time t′ and time t with t′ ≤ t.

Lemma 4. If LBc
Xc ≤ w · γc

Xc ≤ w ·UBc
Xc at all times for all child agents c ∈ C(a) of an arbitrary

agent a and their contexts Xc, then lba,c
Xa(d) ≤ w ·γc

Xa∪(a,d) ≤ w ·uba,c
Xa(d) at all times for the context

Xa of agent a, all values d ∈ Dom(a) and all child agents c ∈ C(a).

Proof. We prove the lemma by induction on the number of times that agent a changes its context
or updates its bounds lba,c

Xa(d) and uba,c
Xa(d) for an arbitrary value d and an arbitrary child agent c

after agent a initializes its bounds. The conclusion of the lemma holds after agent a with context
Xa initializes its bounds since

lba,c
Xa(d) = w · ha,c

Xa(d) (Eq. 24)
≤ w · γc

Xa∪(a,d) (Eq. 25)

≤ ∞
= w · uba,c

Xa(d) (Eq. 7)

for the (unchanged or new) context Xa of agent a (induction basis). Now assume that the lemma
holds after agent a changed its context or updated its bounds a number of times (induction assump-
tion). We show that it then also holds after agent a changes its context or updates its bounds one
more time (induction step). There are the following two cases (where we split the operations after
receiving a COST message into two parts).

• Case 1: The conclusion of the lemma holds when agent a changes its context from Xa to X̂a

after receiving a VALUE or COST message and the two contexts agree on the values of all
ancestor agents p ∈ SCP (c) since agent a then does not change its bounds and thus

lba,c

X̂a
(d) = lba,c

Xa(d) (premise of case)

≤ w · γc
Xa∪(a,d) (induction assumption)

= w · γc
X̂a∪(a,d)

(Lemma 1)

uba,c

X̂a
(d) = uba,c

Xa(d) (premise of case)

≥ γc
Xa∪(a,d) (induction assumption)

= γc
X̂a∪(a,d)

(Lemma 1)

after receiving the VALUE or COST message (since contexts Xa and X̂a agree on the values
of all ancestor agents p ∈ SCP (c)).

• Case 2: The conclusion of the lemma holds when agent a updates its bounds from lba,c
Xa(d) and

uba,c
Xa(d) to l̂b

a,c

Xa(d) and ûb
a,c

Xa(d), respectively, after receiving a COST message from some child
agent c with bounds LBc

Xc and UBc
Xc and context Xc that is compatible with its context Xa

and in which agent a has value d since
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l̂b
a,c

Xa(d) = max{lba,c
Xa(d), LBc

Xc} (Eq. 8)
≤ max{w · γc

Xa∪(a,d), w · γc
Xc} (induction assumption and premise of lemma)

= max{w · γc
Xa∪(a,d), w · γc

Xa∪(a,d)} (Lemma 1)

= w · γc
Xa∪(a,d)

ûb
a,c

Xa(d) = min{uba,c
Xa(d), UBc

Xc} (Eq. 11)
≥ min{γc

Xa∪(a,d), γ
c
Xc} (induction assumption and premise of lemma)

= min{γc
Xa∪(a,d), γ

c
Xa∪(a,d)} (Lemma 1)

= γc
Xa∪(a,d)

after receiving the COST message (since contexts Xa ∪ (a, d) and Xc agree on the values of
all ancestor agents p ∈ SCP (c)).

Thus, lba,c
Xa(d) ≤ w · γc

Xa∪(a,d) ≤ w · uba,c
Xa(d) at all times for all values d ∈ Dom(a) and all child

agents c ∈ C(a).

Lemma 5. LBa
Xa(d) ≤ w · γa

Xa(d) ≤ w ·UBa
Xa(d) and LBa

Xa ≤ w · γa
Xa ≤ w ·UBa

Xa at all times for
all values d ∈ Dom(a) and the context Xa of an arbitrary agent a ∈ A.

Proof. We prove the lemma by induction on the depth of an agent in the pseudo-tree. The lemma
holds for a leaf agent a in the pseudo-tree with context Xa since

LBa
Xa(d) = δa

Xa(d) (Eq. 9)
= γa

Xa(d) (Eq. 1)
UBa

Xa(d) = δa
Xa(d) (Eq. 12)

= γa
Xa(d) (Eq. 1)

for all values d at all times. Thus, LBa
Xa(d) = γa

Xa(d) ≤ w · γa
Xa(d) = w · UBa

Xa(d) for all values d
at all times. Furthermore,

LBa
Xa = min

d∈Dom(a)
{LBa

Xa(d)} (Eq. 10)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 2)

UBa
Xa = min

d∈Dom(a)
{UBa

Xa(d)} (Eq. 13)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 2)

at all times. Thus, LBa
Xa = γa

Xa ≤ w · γa
Xa = w · UBa

Xa at all times (induction basis). Now assume
that the lemma holds for all agents of depth d in the pseudo-tree (induction assumption). We show
that it then also holds for all agents of depth d − 1 in the pseudo-tree each time after they update
their bounds (induction step). The lemma holds for agent a with context Xa since
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LBa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

lba,c
Xa(d) (Eq. 9)

≤ δa
Xa(d) +

∑

c∈C(a)

w · γc
Xa∪(a,d) (induction assumption and Lemma 4)

≤ w · γa
Xa(d) (Eq. 1)

UBa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

uba,c
Xa(d) (Eq. 12)

≥ δa
Xa(d) +

∑

c∈C(a)

γc
Xa∪(a,d) (induction assumption and Lemma 4)

= γa
Xa(d) (Eq. 1)

Thus, LBa
Xa(d) ≤ w · γa

Xa(d) ≤ w · UBa
Xa(d) at all times for all values d ∈ Dom(a). Furthermore,

LBa
Xa = min

d∈Dom(a)
{LBa

Xa(d)} (Eq. 10)

≤ min
d∈Dom(a)

{w · γa
Xa(d)} (see above)

= w · min
d∈Dom(a)

{γa
Xa(d)}

= w · γa
Xa (Eq. 2)

UBa
Xa = min

d∈Dom(a)
{UBa

Xa(d)} (Eq. 13)

≥ min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 2)

Thus, LBa
Xa ≤ w · γa

Xa ≤ w · UBa
Xa at all times.

Definition 2. The potential of an agent a ∈ A with context Xa is
∑

d∈Dom(a){w · UBa
Xa(d) −

LBa
Xa(d)}.

Lemma 6. If the context Xa of an arbitrary agent a ∈ A no longer changes, then the potential of
the agent is monotonically non-increasing and decreases by more than a positive constant every time
the agent changes its value.

Proof. The lower bounds LBa
Xa(d) are monotonically non-decreasing and the upper bounds UBa

Xa(d)
are monotonically non-increasing for all values d according to Lemma 2 since the context Xa of
agent a no longer changes. Therefore, the potential of agent a is monotonically non-increasing.
Furthermore, agent a changes its value d to a new value only if mind∈Dom(a){LBa

Xa(d)} < LBa
Xa(d)

[Line 24]. Thus, the lower bound LBa
Xa(d) must have strictly increased between the time when the

agent changed its value to d and the time when it changes its value d to a new value. Thus, its
potential has decreased by more than a positive constant, namely the smallest possible increase of the
lower bound LBa

Xa(d). Assume that all constraint costs, weights and heuristic values are integers.
Then, the smallest possible increase is bounded from below by one because the only possible values of
LBa

Xa(d) are combinations of all constraint costs and weighted heuristic values. A similar statement
holds if all constraint costs, weights and heuristic values are floating point numbers since they can
then all be transformed into integers by multiplying them with the same sufficiently large integer.

Lemma 7. All agents change their values only a finite number of times.
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Proof. Assume that the lemma does not hold and choose an agent a that changes its value an
infinite number of times but whose ancestor agents p ∈ SCP (a) change their values only a finite
number of times. Then, there exists a time when the ancestor agents do not change their values
any longer. There exists a (later) time when agent a no longer changes its context Xa according to
Corollary 1. Every time agent a changes its value afterwards, its potential decreases by more than
a positive constant according to Lemma 6, towards minus infinity. However, its potential cannot
become negative since LBa

Xa(d) ≤ w · UBa
Xa(d) for all values d according to Lemma 5, which is a

contradiction. Thus, all agents change their values only a finite number of times.

Lemma 8. If BnB-ADOPT and its suboptimal variants do not terminate earlier, then UBa
Xa ≤

LBa
Xa after a finite amount of time for all agents a ∈ A and their contexts Xa.

Proof. We prove the lemma by induction on the depth of an agent in the pseudo-tree. There exists
a time when no agent changes its value any longer according to Lemma 7. There exists a (later)
time when the contexts of all agents are correct and no longer change according to Corollary 1. Let
Xa be the context of agent a at this point in time for all agents a. There exists an (even later)
time when the bounds lba,c

Xa(d), LBa
Xa(d), LBa

Xa , uba,c
Xa(d), UBa

Xa(d) and UBa
Xa no longer change

for all agents a, all values d and all child agents c since (1) the lower bounds lba,c
Xa(d), LBa

Xa(d) and
LBa

Xa are monotonically non-decreasing and the upper bounds lba,c
Xa(d), UBa

Xa(d) and UBa
Xa are

monotonically non-increasing for all agents a, all values d and all child agents c according to Lemma
2, (2) LBa

Xa(d) ≤ w · γa
Xa(d) ≤ w · UBa

Xa(d) and LBa
Xa ≤ w · γa

Xa ≤ w · UBa
Xa for all agents a and

all values d according to Lemma 5, (3) lba,c
Xa(d) ≤ w · uba,c

Xa(d) for all agents a, all values d and all
child agents c according to Lemma 4 and (4) the smallest possible increases of the lower bounds and
the smallest possible decreases of the upper bounds are larger than a positive constant since the
only possible values of the bounds are combinations of all constraint costs and heuristic values, as
explained in more detail in the proof of Lemma 6. Consider the first COST message that each agent
sends after this time and the earliest time when all of these COST messages have been processed by
their receiving agents. The lemma holds for a leaf agent a in the pseudo-tree with context Xa since

LBa
Xa(d) = δa

Xa(d) (Eq. 9)
= γa

Xa(d) (Eq. 1)
UBa

Xa(d) = δa
Xa(d) (Eq. 12)

= γa
Xa(d) (Eq. 1)

for all values d after the considered time. Furthermore,

LBa
Xa = min

d∈Dom(a)
{LBa

Xa(d)} (Eq. 10)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 2)

UBa
Xa = min

d∈Dom(a)
{UBa

Xa(d)} (Eq. 13)

= min
d∈Dom(a)

{γa
Xa(d)} (see above)

= γa
Xa (Eq. 2)

after the considered time. Thus, UBa
Xa = LBa

Xa after the considered time (induction basis). Now
assume that the lemma holds for all agents of depth d in the pseudo-tree after the considered time
(induction assumption). We show that it then also holds for all agents of depth d− 1 in the pseudo-
tree after the considered time (induction step). For agent a with context Xa
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LBa
Xa(d) = δa

Xa(d) +
∑

c∈C(a)

lba,c
Xa(d) (Eq. 9)

= δa
Xa(d) +

∑

c∈C(a)

max{lba,c
Xa(d), LBc

Xc} (Eq. 8)

≥ δa
Xa(d) +

∑

c∈C(a)

LBc
Xc

≥ δa
Xa(d) +

∑

c∈C(a)

UBc
Xc (induction assumption)

≥ δa
Xa(d) +

∑

c∈C(a)

min{uba,c
Xa(d), UBc

Xc}

= δa
Xa(d) +

∑

c∈C(a)

uba,c
Xa(d) (Eq. 11)

= UBa
Xa(d) (Eq. 12)

for its value d after the considered time since all bounds no longer change. Thus, UBa
Xa(d) ≤

LBa
Xa(d) for its value d after the considered time. Since agent a does not change its value d after

the considered time, it must hold that LBa
Xa(d) < min{THa

Xa, UBa
Xa} [Line 23] or LBa

Xa(d) =
mind∈Dom(a){LBa

Xa(d)} [Line 24]. The first disjunct implies that

min{THa
Xa, UBa

Xa} ≤ UBa
Xa

≤ UBa
Xa(d) (Eq. 13)

≤ LBa
Xa(d) (see above)

< min{THa
Xa, UBa

Xa} (first disjunct)

for its value d, which is a contradiction. The second disjunct implies that

UBa
Xa ≤ UBa

Xa(d) (Eq. 13)
≤ LBa

Xa(d) (see above)
= min

d∈Dom(a)
{LBa

Xa(d)} (second disjunct)

= LBa
Xa (Eq. 10)

for its value d and thus that UBa
Xa ≤ LBa

Xa .

Theorem 1. BnB-ADOPT and its suboptimal variants terminate after a finite amount of time.

Proof. If BnB-ADOPT and its suboptimal variants do not terminate earlier, then UBa
Xa ≤ LBa

Xa

after a finite amount of time for all agents a ∈ A and their contexts Xa according to Lemma 8.
In particular, UBr

Xr ≤ LBr
Xr ≤ limr for the root agent r, where limr = LBr

Xr for BnB-ADOPT
and BnB-ADOPTWHM , limr = b + LBr

Xr with b ≥ 0 for BnB-ADOPTAEM and limr = p · LBr
Xr

with p ≥ 1 for BnB-ADOPTREM according to Section 4. Thus, both the termination condition
UBr

Xr ≤ LBr
Xr of BnB-ADOPT and the termination condition UBr

Xr ≤ limr of its suboptimal
variants are satisfied.

Theorem 2. BnB-ADOPT terminates with the minimal solution cost γr
Xr .
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Proof. BnB-ADOPT terminates after a finite amount of time according to Theorem 1. The solution
cost of BnB-ADOPT is the upper bound UBr

Xr of the root agent r. UBr
Xr ≤ LBr

Xr upon termination
according to its termination condition. w · UBr

Xr ≥ w · γr
Xr ≥ LBr

Xr according to Lemma 5.
Therefore, UBr

Xr = γr
Xr = LBr

Xr since w = 1.

Theorem 3. BnB-ADOPTAEM terminates with a solution cost that is bounded from above by the
user-defined absolute error bound b plus the minimal solution cost γr

Xr .

Proof. BnB-ADOPTAEM terminates after a finite amount of time according to Theorem 1. The
solution cost of BnB-ADOPTAEM is the upper bound UBr

Xr of the root agent r. UBr
Xr ≤ limr =

b + LBr
Xr upon termination according to its termination condition. LBr

Xr ≤ w · γr
Xr according to

Lemma 5. Therefore, UBr
Xr ≤ b + γr

Xr since w = 1.

Theorem 4. BnB-ADOPTREM terminates with a solution cost that is bounded from above by the
user-defined relative error bound p times the minimal solution cost γr

Xr .

Proof. BnB-ADOPTREM terminates after a finite amount of time according to Theorem 1. The
solution cost of BnB-ADOPTREM is the upper bound UBr

Xr of the root agent r. UBr
Xr ≤ limr =

p · LBr
Xr upon termination according to its termination condition. LBr

Xr ≤ w · γr
Xr according to

Lemma 5. Therefore, UBr
Xr ≤ p · γr

Xr since w = 1.

Theorem 5. BnB-ADOPTWHM terminates with a solution cost that is bounded from above by the
user-defined weight w times the minimal solution cost γr

Xr .

Proof. BnB-ADOPTWHM terminates after a finite amount of time according to Theorem 1. The
solution cost of BnB-ADOPTWHM is the upper bound UBr

Xr of the root agent r. UBr
Xr ≤ limr =

LBr
Xr upon termination according to its termination condition. LBr

Xr ≤ w · γr
Xr according to

Lemma 5. Therefore, UBr
Xr ≤ w · γr

Xr .

6. Experimental Evaluations

In this section, we compare BnB-ADOPT to two other memory-bounded DCOP search algorithms
that also restrict communication to agents that share constraints, namely ADOPT and NCBB. We
also compare the three suboptimal variants of BnB-ADOPT to each other. We use the distributed
DFS algorithm with the max-degree heuristic (Hamadi, Bessière, & Quinqueton, 1998) that is used
by ADOPT to construct the pseudo-trees. We use DP2 (Ali et al., 2005) that is used by ADOPT to
pre-calculate the heuristic values for ADOPT and BnB-ADOPT. DP2 solves a relaxed version of the
given DCOP problem (where backedges are ignored) with a dynamic programming based approach.
NCBB calculates its own heuristic values during the search rather than in a pre-processing step.

6.1 Runtime Metrics

We use two common runtime metrics, namely non-concurrent constraint checks (Meisels, Kaplansky,
Razgon, & Zivan, 2002) and cycles (Modi et al., 2005).

• Non-concurrent constraint checks (NCCCs): NCCCs are a weighted sum of processing
and communication time. Every agent a maintains a counter NCCCa, which is initialized
to 0. The agent assigns NCCCa := NCCCa + 1 every time it performs a constraint check
to account for the time it takes to perform the constraint check. It assigns NCCCa :=
max{NCCCa, NCCCa′

+ t} every time it receives a message from agent a′ to account for the
time it takes to wait for agent a′ to send the message (NCCCa′

) and the transmission time
of the message (t). We use t = 0 to simulate fast communication and t = 1000 to simulate
slow communication. The number of NCCCs then is the largest counter value of any agent.
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Figure 16: Example: Scheduling Meetings

NCCCs are a good runtime metric if the ratio of processing and communication time can be
estimated reliably.

• Cycles: Cycles are time slices. A cycle is the time required for an agent to process all incoming
messages in its queue and send all outgoing messages, which are then processed by the receiving
agents in the next cycle. Thus, the number of cycles indicates the length of the longest chain
of messages between agents. Cycles are a good runtime metric if the communication time is
much larger than the processing time. Cycles will become a better and better runtime metric
in the future since the communication time is expected to remain relatively stable while the
processing time is expected to decrease (Silaghi, Lass, Sultanik, Regli, Matsui, & Yokoo, 2008).

6.2 DCOP Problem Types

We use three DCOP problem types in our experiments, namely graph coloring problems, sensor
network problems and meeting scheduling problems.

• Graph coloring: Graph coloring problems involve coloring the vertices of a graph, taking
restrictions between the colors of adjacent vertices into account. The agents are the vertices,
their domains are the colors, and the constraints are between adjacent vertices. We vary the
number of vertices from 5 to 15, the constraint density (= the ratio between the number of
constraints and the number of agents) from 2 (sparse graphs) to 3 (dense graphs) and the
range of constraint costs from a range of 0 to 1 (small range) to a range of 0 to 10,000 (large
range). Each agent always has three possible values. We average the experimental results over
50 DCOP problem instances with randomly generated constraints and randomly generated
integer constraint costs.

• Sensor network: Sensor network problems involve assigning targets to sensors in a sensor
network, taking restrictions in the availability of the sensors, restrictions in the number of
sensors that need to track each target and the priorities of the targets into account. The
agents are the targets, their domains are the time slots when they can be tracked, and the
constraints are between adjacent targets (Maheswaran et al., 2004b). Figure 15 shows a sensor
network where the targets are located on a grid and each target is surrounded by four sensors,
all of which are needed to track the target. We vary the number of targets from 4 to 15. We
always use 8 time slots. The cost of assigning a time slot to a target that is also assigned to an
adjacent target is infinity (to be precise: 1,000,000) since the same sensor cannot track both
targets during the same time slot. The cost of targets that are not tracked during any time
slot is 100. All other costs are in the range of 0 to 100. We average the experimental results
over 50 DCOP problem instances with randomly generated integer constraint costs.

• Meeting scheduling: Meeting scheduling problems involve scheduling meetings between the
employees of a company, taking restrictions in their availability as well as their priorities into
account. The agents are the meetings, their domains are the time slots when they can be
held, and the constraints are between meetings that share participants (Maheswaran et al.,
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Figure 17: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB for Graph Coloring
Problems with Constraint Costs Ranging from 0 to 10,000

2004b). Figure 16 shows a hierarchical organization with 4 units of a supervisor and its three
subordinates. For example, supervisor 2 has three subordinates 5, 6 and 7. In each unit, we
assume five possible meetings: one of the entire unit (e.g., 2, 5, 6, 7), two parent-child meetings
(e.g., 2, 5 and 2, 7) and two sibling-sibling meetings (e.g., 5, 6 and 6, 7). We vary the number
of meetings from 5 (1 unit) to 20 (4 units). We always use 8 time slots. The cost of assigning
a time slot to a meeting that has at least one participant who has another meeting during the
same time slot is infinity (to be precise: 1,000,000) since the same person cannot attend more
than one meeting at a time. The cost of a non-scheduled meeting is 100. All other costs are in
the range of 0 to 100. We average the experimental results over 50 DCOP problem instances
with randomly generated integer constraint costs.
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Figure 18: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB for Graph Coloring
Problems with 10 Vertices

6.3 Experimental Results: Optimal DCOP Search Algorithms

We first compare BnB-ADOPT to ADOPT and NCBB. Figure 17 shows our experimental results
for graph coloring problems with constraint costs ranging from 0 to 10,000, where we varied the
number of vertices, while Figure 18 shows our experimental results for graph coloring problems
with 10 vertices, where we varied the range of constraint costs. Figures 17(a-c) and 18(a-c) show
the results for coloring sparse graphs, and Figures 17(d-f) and 18(d-f) show the results for coloring
dense graphs. The y-axes are in log scale and show the runtimes in NCCCs or cycles. DCOP search
algorithms on sparse graphs are faster than on dense graphs because, for example, there is a larger
likelihood of independent DCOP subproblems in sparse graphs. BnB-ADOPT is generally faster
than NCBB on sparse graphs but not on dense graphs because BnB-ADOPT allows agents to send
messages only to their parent agents in the pseudo-tree (along edges of the pseudo-tree) but NCBB
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Figure 19: Experimental Results Comparing ADOPT, BnB-ADOPT and NCBB for Sensor Network
and Meeting Scheduling Problems

allows agents also to send messages to their pseudo-parent agents (along backedges of the pseudo-
tree). Thus, agents of NCBB receive updates faster than agents of BnB-ADOPT. This effect is more
prevalent in dense graphs since there are more backedges in dense graphs. However, the difference
between BnB-ADOPT and NCBB becomes negligible when communication is slow.

Figure 17 shows that BnB-ADOPT is at least half an order of magnitude faster than ADOPT
when the number of vertices is small. The speedup over ADOPT increases as the number of vertices
gets larger and the DCOP problems thus become more complex. Similarly, Figure 18 shows that the
speedup over ADOPT increases as the range of constant costs increases and the DCOP problems
thus become more complex. However, ADOPT can be faster than BnB-ADOPT for simple DCOP
problems. For example, ADOPT requires fewer cycles than BnB-ADOPT for DCOP problems with
constraint costs ranging from 0 to 1. Figure 19 shows the same trend for sensor network and meeting
scheduling problems. The reason for this behavior is as follows. ADOPT uses memory-bounded best-
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Figure 20: Experimental Results on the Cause of Speedup for ADOPT and BnB-ADOPT

first search and thus exploits the heuristic values well but needs to repeatedly reconstruct partial
solutions that it purged from memory, especially if the heuristic values are poorly informed. BnB-
ADOPT uses depth-first branch-and-bound search and thus does not exploit the heuristic values
quite as well but does not have to repeatedly reconstruct partial solutions. ADOPT can thus be
faster than BnB-ADOPT for DCOP problems with well informed heuristic values, such as simple
DCOP problems.

We confirm this intuition with an additional experiment on sensor network problems with four
targets and different informedness of heuristic values. We use the heuristic values c ·ha,c

Xa(d) for 0.5 ≤
c ≤ 1, where ha,c

Xa(d) are the heuristic values calculated by DP2, as used until now. Figures 20(a-c)
show the number of NCCCs for different weights c. When the heuristic values are well informed (large
weights), ADOPT can indeed be faster than BnB-ADOPT. Since ADOPT relies on the heuristic
values more than BnB-ADOPT, the speedup of ADOPT is much larger than that of BnB-ADOPT
as the heuristic values get more informed. Figures 20(d) and 20(e) show the number of unique
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(= different) and repeated contexts per agent for different weights c. When the heuristic values are
well informed (large weights), agents of ADOPT explore fewer unique contexts than agents of BnB-
ADOPT since they are more focused in their search. However, when the heuristic values are poorly
informed (small weights), they explore more unique contexts. Agents of ADOPT explore many more
repeated contexts than agents of BnB-ADOPT since they need to reconstruct partial solutions that
they purged from memory. Agents of BnB-ADOPT explore a few repeated contexts even though it
does not have to reconstruct partial solutions. The reason for this behavior is the distributed nature
of BnB-ADOPT. For example, assume that the context of an agent is {(a1, 0), (a2, 0)} and the next
context of a centralized variant of BnB-ADOPT would be {(a1, 1), (a2, 1)} (where the IDs are omitted
for simplicity). The agent updates its context to {(a1, 1), (a2, 0)} when it receives the message from
agent a1 that it takes on value 1. The agent then updates its context to {(a1, 1), (a2, 1)} when it
receives the message from agent a2 that it takes on value 1. Thus, the agent explores the intermediate
context {(a1, 1), (a2, 0)} that a centralized variant of BnB-ADOPT would not explore. It counts as a
repeated context if the agent explores this context intentionally in the future. Overall, BnB-ADOPT
tends to be faster than ADOPT if the heuristic values are poorly informed (small weights). Thus,
BnB-ADOPT has great potential as a DCOP search algorithm since heuristic values are often poorly
informed for complex DCOP problems, such as DCOP problems with large numbers of agents, large
domains, large numbers of constraints or large ranges of constraint costs.

6.4 Experimental Results: Suboptimal Variants of BnB-ADOPT

We now compare the three suboptimal variants of BnB-ADOPT to each other. The experimental
setup is identical to the one for the optimal DCOP search algorithms, except as follows: For graph
coloring problems, the number of vertices is 10, the range of constraint costs is 0 to 10,000 and the
constraint density is 2; for sensor network problems, the number of targets is 9; and for meeting
scheduling problems, the number of meetings is 10. We measure the runtimes in cycles. (The results
for NCCCs are similar.) However, we report normalized runtimes, that is, the runtimes divided by
the runtime for finding a cost-minimal solution with BnB-ADOPT. Thus, the normalized runtime
0.25 refers to one quarter of the number of cycles that it takes to find a cost-minimal solution with
BnB-ADOPT. Similarly, we report normalized solution costs, that is, the solution costs divided by
the minimal solution costs. Thus, the normalized solution cost 2.5 refers to a solution cost that is
two and a half times larger than the minimal solution cost. We vary the relative error bound (which
is the worst acceptable normalized solution cost) from 1.0 to 4.0. The relative error bound is p for
BnB-ADOPTREM and w for BnB-ADOPTWHM . We pre-calculate the minimal solution costs to
set the correct value of b for BnB-ADOPTAEM . For example, if the minimal solution cost is 100 and
the relative error bound is 2.5, then p = 2.5 for BnB-ADOPTREM , w = 2.5 for BnB-ADOPTWHM

and b = (2.5 − 1) · 100 = 150 for BnB-ADOPTAEM .
Figure 21(a-c) shows our experimental results for graph coloring problems. Figure 21(a) shows

that the normalized solution costs of all three suboptimal variants increase as the relative error
bound increases. However, the solution costs remain much smaller than the error bound. For
example, the normalized solution costs of all three suboptimal variants are less than 1.3 (rather
than 3) when the relative error bound is 3. The normalized solution costs of BnB-ADOPTAEM are
usually larger than the normalized solution costs of BnB-ADOPTREM for the same relative error
bound. The reason for this behavior is that BnB-ADOPTAEM terminates when UBr

Xr ≤ limr =
b+LBr

Xr = (p−1) ·γr
Xr +LBr

Xr , where γr
Xr is the minimal solution cost. Thus, the solution cost of

BnB-ADOPTAEM can be at most UBr
Xr − LBr

Xr ≤ (p − 1) · γr
Xr larger than the minimal solution

cost. On the other hand, BnB-ADOPTREM terminates when UBr
Xr ≤ limr = p · LBr

Xr . Thus, the
solution cost of BnB-ADOPTREM can be at most UBr

Xr − LBr
Xr ≤ (p − 1) · LBr

Xr larger than the
minimal solution cost. The absolute error bound of BnB-ADOPTAEM is thus no smaller than the
absolute error bound of BnB-ADOPTREM since γr

Xr ≥ LBr
Xr but is initially strictly greater than

the absolute error bound of BnB-ADOPTREM since γr
Xr > LBr

Xr during most of the search.
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Figure 21: Experimental Results Comparing the Suboptimal Variants of BnB-ADOPT

Figure 21(b) shows that the normalized runtimes of all three suboptimal variants decrease as the
relative error bound increases. They decrease to almost 0 when the relative error bound is about 2.0.
Therefore, all three suboptimal variants terminate almost immediately after finding the first solution.
The normalized runtimes of BnB-ADOPTAEM are usually smaller than the normalized runtimes of
BnB-ADOPTREM for the same relative error bound since BnB-ADOPTAEM can terminate with a
suboptimal solution cost that is within its absolute error bound but not yet within the absolute error
bound of BnB-ADOPTREM if the absolute error bound of BnB-ADOPTAEM is strictly greater than
the absolute error bound of BnB-ADOPTREM . In other words, BnB-ADOPTAEM can terminate
with a suboptimal solution cost (p− 1) ·LBr

Xr < UBr
Xr ≤ (p− 1) · γr

Xr while BnB-ADOPTREM can
not.

Figure 21(c) shows the normalized runtimes needed to achieve a given normalized solution cost.
BnB-ADOPTWHM terminates faster than BnB-ADOPTAEM , which in turn terminates faster than
BnB-ADOPTREM . For example, the normalized runtime needed to achieve the normalized solu-
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tion cost 1.05 is about 0.18 for BnB-ADOPTWHM , 0.30 for BnB-ADOPTAEM and 0.35 for BnB-
ADOPTREM . Thus, BnB-ADOPTWHM is the suboptimal variant of BnB-ADOPT with the best
performance. Figures 21(d-e) show the same trend for sensor network and meeting scheduling prob-
lems.

7. Conclusions

In this article, we introduced Branch-and-Bound ADOPT (BnB-ADOPT), a memory-bounded
DCOP search algorithm. BnB-ADOPT uses the message passing and communication framework
of ADOPT but changes the search strategy of ADOPT from best-first search to depth-first branch-
and-bound search to make ADOPT faster by taking advantage of the fact that DCOP problems have
depth-bounded search trees. The other properties of BnB-ADOPT are similar to those of ADOPT.
BnB-ADOPT allows agents to operate concurrently (in order to decrease the runtime) and asyn-
chronously (in order to increase robustness). BnB-ADOPT restricts communication to agents that
share constraints (in order to fit the restrictions of applications such as sensor networks). Finally,
BnB-ADOPT orders agents into a pseudo-tree (in order to take advantage of independent DCOP
subproblems). Our experimental results showed that BnB-ADOPT finds cost-minimal solutions up
to one order of magnitude faster than ADOPT for a variety of large DCOP problems and is as fast
as NCBB for most of these DCOP problems. The reason for this behavior is the following: Agents
of NCBB operate sequentially and are thus often idle. ADOPT can construct fewer partial solutions
than BnB-ADOPT but has to reconstruct some partial solutions that it purged from memory. The
advantage of ADOPT with respect to the number of constructed partial solutions decreases and
its disadvantage with respect to the number of reconstructed partial solutions increases as heuristic
values become more poorly informed. Thus, BnB-ADOPT has great potential as a DCOP search
algorithm since heuristic values are often poorly informed for complex DCOP problems such as
DCOP problems with large numbers of agents, large domains, large numbers of constraints or large
ranges of constraint costs.

We also investigated three approximation mechanisms that trade off the solution cost of BnB-
ADOPT for a smaller runtime, namely the Absolute Error Mechanism from ADOPT (resulting in
BnB-ADOPTAEM ), the new Relative Error Mechanism (resulting in BnB-ADOPTREM) and the
new Weighted Heuristics Mechanism (resulting in BnB-ADOPTWHM ). The two new approxima-
tion mechanisms allow users to specify a relative error bound, which is often more meaningful than
an absolute error bound. The Weighted Heuristics Mechanism dominated both the Absolute Er-
ror Mechanism and the Relative Error Mechanism in our experiments and should apply to other
DCOP search algorithms as well since they all benefit from using heuristic values to focus their
searches (Yeoh, Koenig, & Sun, 2008b).

In the future, we plan to improve BnB-ADOPT in the following ways: First, we would like to
reduce the number of sent messages and handle lost messages. Second, we would like to study
how different pseudo-tree arrangements (Atlas & Decker, 2007; Sultanik, Lass, & Regli, 2009) and
pre-processing techniques (Matsui et al., 2009) affect the efficiency of BnB-ADOPT. Finally, we
would like to compare BnB-ADOPT and its approximation mechanisms to other DCOP algorithms,
including OptAPO, DPOP and their variants (Petcu & Faltings, 2005a, 2006).
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