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Abstract

We present an incentive-compatible polynomial-time approximation scheme for multi-
unit auctions with general k-minded player valuations. The mechanism fully optimizes over
an appropriately chosen sub-range of possible allocations and then uses VCG payments
over this sub-range. We show that obtaining a fully polynomial-time incentive-compatible
approximation scheme, at least using VCG payments, is NP-hard. For the case of valuations
given by black boxes, we give a polynomial-time incentive-compatible 2-approximation
mechanism and show that no better is possible, at least using VCG payments.

1. Introduction

In Algorithmic Mechanism Design our goal is to construct efficient mechanisms that will
handle the selfish behavior of the players. In particular, we are interested in designing
truthful mechanisms, that is, mechanisms in which the dominant strategy of each player is
to simply reveal his true valuation.

Typical problems in the field involve allocating goods to players. One key problem is
the problem of multi-unit auctions. Here we are given m identical items and n bidders.
In our setting we view the number of items m as “large” and desire mechanisms whose
computational complexity is polynomial in the number of bits needed to represent m. Every
bidder 7 has a valuation function v; : {1,...,m} — R, where v;(q) denotes his value for
obtaining ¢ items. We assume that v; is weakly monotone increasing (free disposal), and
normalized (v;(0) = 0). Our goal is the usual one of maximizing the social welfare 3;v;(¢;)
where ¥;q; < m.

In the general case, each v; is represented by m real numbers, and in abstract settings
may be accessed as a black box. In a concrete setting, we will assume that v; is represented
as a k-minded bid, i.e. given by a list: (¢1,p1), ..., (q&, Pk), Where v;(q) = Max(j|q. <q} Pj-
This corresponds to a XOR bidding language (Nisan, 2006). Observe that a k-minded
valuation corresponds to a step function with at most k steps (step i is located at ¢; and
has height p;). In general, k can be as large as m, and the case k = 1 is the single-minded
case.

This problem has received much attention, starting from Vickrey’s seminal paper (1961)
that described a truthful mechanism for the case of “downward sloping valuations” in which
the items can be optimally allocated greedily. The general case, however, is NP-hard, as the
single-minded case is just a re-formulation of the knapsack problem. Luckily, the knapsack
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problem has a fully-polynomial time approximation scheme (i.e. can be approximated to
within a factor of 1 + € in time polynomial in n,logm,e~!), and it is not hard to see that
the algorithm directly extends to the general case of multi-unit auctions.

1.1 VCG-Based Mechanisms

The key positive technique of mechanism design is the VCG payment scheme. In this
payment scheme each bidder i pays h;(v—;) — X;-;v;(a), where a is the algorithmic output,
and h; is some arbitrary function that does not depend on v;. Unfortunately, while VCG
works perfectly well from a game-theoretic perspective, it is not so useful in computational
settings, since in multi-unit auctions, and in “most” interesting combinatorial optimization
problems, calculating the exact optimum is intractable.

One naive idea is to use an approximation algorithm to find an approximate solution
a, and then let each bidder i pay h;(v_;) — ¥j+wv;j(a). Applying this idea to the case of
multi-unit auction is tempting in particular in light of the known (1 + €)-approximation
algorithm for this problem. Unfortunately, it turns out that in general using an approxi-
mation algorithm together with VCG payments does not result in a truthful mechanism.
This phenomenon was studied by Nisan and Ronen (2007). It was observed there that the
following family of allocation algorithms do yield truthful VCG-based mechanisms:

Definition: An allocation algorithm (that produces an output a € A for each input
v1, ..., Up, where A is the set of possible alternatives) is called “maximal-in-range” (hence-
forth MIR) if it completely optimizes the social welfare over some subrange R C A. lLe.,
for some R C A, we have that for all vy, ...,v,, a € argmax,er Xvi(a).

Le., MIR algorithms use the following natural and simple strategy to find an approximately
optimal solution: they just optimally search within a pre-specified sub-range of feasible
solutions — a subrange over which optimal search is algorithmically feasible.

The main result of Nisan and Ronen (2007) states that this is essentially it — no other
VCG-based mechanisms are incentive compatible.

Theorem (Nisan & Ronen, 2007): The allocation algorithm of any incentive-compatible
VCG-based mechanism for combinatorial auctions is equivalent to a maximal-in-range al-
gorithm.

“Equivalent” here means that the social utilities are identical for all inputs, i.e. if a and b
are the outputs of the two allocation algorithms for input vy, ..., v, then ¥;v;(a) = X;v;(b).
In particular, the outputs must coincide generically — except perhaps in case of ties. Nisan
and Ronen (2007) prove this for two specific types of mechanism design problems, but the
result is more general (Dobzinski & Nisan, 2007).

Following Nisan and Ronen (2007), Dobzinski and Nisan (2007) view this result as
a negative one. Namely, they show that in the setting of combinatorial auctions with
submodular bidders, MIR algorithms do not have much power. This might imply that in
the above setting truthful deterministic mechanisms do not have much power, since Lavi
et al. (2003) give a partial evidence that all truthful mechanisms that provide a good
approximation ratio must be MIR.
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In contrast, this paper views this result as a positive result. We observe that MIR
algorithms provide us with a constructive way of obtaining truthful mechanisms'. Indeed,
this paper suggests that there are some settings where the power of MIR algorithms is not
trivial at all. We note that several previous papers already obtained upper bounds using
MIR techniques (Holzman, Kfir-Dahav, Monderer, & Tennenholtz, 2004; Dobzinski, Nisan,
& Schapira, 2005; Blumrosen & Dobzinski, 2007). Yet, this paper initiates the systematic
study of MIR algorithms. In particular, the techniques used are more sophisticated then
those obtained in previous work.

1.2 Previous Work and Our Results

For the case of multi-unit auctions with single-minded bidders, the paper by Briest, Krysta,
and Vocking (2005) presents a truthful fully polynomial time approximation scheme (FP-
TAS), improving upon a previous result of Mu’alem and Nisan (2002). The only result
known for k-minded bidders is a randomized %—approximation mechanism that is truth-
ful in expectation (Lavi & Swamy, 2005). The current paper presents a polynomial time
approximation scheme (PTAS) for the general case.

Theorem: For every fixed € > 0, there exists a truthful (1 — €)-approximation mechanism
for multi-unit auctions with k-minded bidders whose running time is polynomial in n, log m,
and k. The dependence of the running time on € is exponential.

However, we prove two ways in which the mechanism can not be improved upon. First,
we show that the dependence on € cannot be made polynomial without destroying the
truthfulness, as long as MIR techniques are used. In contrast, from a pure algorithmic point
of view it is possible to obtain a fully polynomial time approximation scheme?. Furthermore,
there exists a truthful FPTAS if all bidders are known to be single minded (Briest et al.,
2005).

Theorem: No fully polynomial time truthful approximation mechanism that uses VCG
payments exists, unless P=NP.

Then we show that the dependence on k is necessary, and that no approximation scheme
is possible in a general black-box model. This is shown in a general communication model,
and even for two bidders.

Theorem: Every approximation mechanism among two bidders with general valuations
that uses VCG payments requires exponentially many queries to obtain an approximation
factor that is better than %

We do present a truthful approximation mechanism in the general black box model that
does obtain a factor of % This improves upon the randomized one of Lavi and Swamy
(2005) that is only truthful in expectation.

1. Note that the payments of an efficient MIR mechanism can be computed efficiently: take the output
allocation and pay each bidder the sum of the values of the other bidders in the output allocation.

2. Of course, ignoring computational issues, the standard VCG mechanism is MIR and provides an approx-
imation ratio of 1.
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Theorem: There exists a truthful %—approximation mechanism for multi-unit auctions
among general valuations whose running time is polynomial in n and logm. The access to
bidders’ valuations is through value queries: “what is v;(¢)?”2. The mechanism uses VCG
payments.

In Section 5 we present a fairly general construction that takes any a-approximation MIR
algorithm A for ¢ bidders, for some o < 1, and converts it into an (o — tj%l)—approximation
algorithm for n bidders, in time polynomial in n, logm, and the running time of A. The
construction works as long as the model allows us to answer value queries. We present
four applications of the construction: the first two applications provide another proof of the
upper bounds discussed above (the PTAS for k-minded bidders, and the %—approximation for
the black-box model). Then we present two new applications: a PTAS for stronger bidding
languages, such as the one used by Kothari et al. (2005), and a (% + €)-approximation
mechanism for multi-unit auctions with subadditive valuations. Prior to our paper, nothing
was known about the latter setting.

The construction provides us with an interesting example of a truthful reduction among
problems: any MIR approximation algorithm for a fixed number of bidders can be automat-
ically translated into a truthful approximation algorithm for any number of bidders, while
losing only a small factor in the approximation ratio.

1.3 Discussion and Open Questions

The main open problem remains to determine the best approximation ratio that can be ob-
tained in a truthful way. The only general method known for constructing such mechanisms
is VCG, and our lower bounds state that VCG cannot take us any further. Furthermore,
Lavi et al. (2003) show that for 2 bidders in the black-box model, if all items are allocated,
then MIR algorithms are the only truthful way to obtain a reasonable approximation ratio.
Combined with our lower bounds, we get that no better—than—% truthful approximation is
possible in polynomial time, for 2 bidders and if all items are allocated. An intriguing
open question is to understand whether the condition that all items are allocated is indeed
necessary.

Another issue that the paper highlights is the inherent difference between obtaining
approximation algorithms in single-parameter environments and multi-parameter environ-
ments. In a single parameter environment the private information of each bidder consists of
only one number, while in multi-parameter environments the private information consists
of more than one number. Recall that in the single parameter variant of multi-unit auc-
tions, where we assume that all bidders are single-minded, there exists a truthful FPTAS
(Briest et al., 2005). However, the variants we discuss in this paper are multi-parameter,
and indeed our lower bounds suggest that obtaining FPTAS is impossible (if one can prove
that all mechanisms that give a good approximation ratio must be MIR).

Paper Organization

In Section 3 we present the PTAS for k-minded bidders, and the %—approximation in the
black-box model. Section 4 considers lower bounds for MIR algorithms in both models.

3. This is yet another improvement upon the mechanism of Lavi and swamy (2005) which requires the
stronger demand queries.
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In Section 5 we describe a general construction, and its algorithmic applications: truthful
mechanisms for other models and more powerful bidding languages.

2. Preliminaries

In this section we provide the basic definitions and notations used in this paper.

2.1 The Setting

In a multi-unit auction there is a set of m identical items, and a set N = {1,2,...,n}
of bidders. Each bidder i has a valuation function v; : [m] — RT, which is normalized
(v;(0) = 0) and non-decreasing. Denote by V' the set of possible valuations. An allocation
of the items § = (s1,...,8,) to N is a vector of non-negative integers with ¥;s; < m.
Denote the set of allocations by S. The goal is to find an allocation that maximizes the
welfare: 3;v;(s;).

We consider two settings that differ in how the valuations are given to us. In the concrete
setting (a “bidding language” model) we will assume that v; is represented as a k-minded
bid, i.e. given by a list: (q1,p1), ..., (qk, Px), where v;(q) = maxyj|q. <q} Pj-

Otherwise, the valuations are given to us as black boxes. For algorithms, the black
box v will only answer the weak value queries: given s, what is the value of v(s). For the
impossibility result, we assume that the black box v can answer any query that is based
on v (the “communication model”). Our algorithms run in time poly(n,logm), while our
impossibility result gives a lower bound on the number of bits transferred, and holds even
if the mechanism is computationally unbounded.

2.2 Truthfulness

A deterministic n-bidder mechanism for multi-unit auctions is a pair (f, p) where f : V" — S
and p = (p1,--+ ,pn), where p; : V" — R.

Definition 2.1 Let (f,p) be a deterministic mechanism. (f,p) is truthful if for all i, all
v;, v and all v_; we have that v;(f(vi,v—;)i) — pi(vi,v—;) > vi(f(V},v_i)i) — p(V}, v_;).

Definition 2.2 f is an affine maximizer if there exist a set of allocations R, a constant
a; > 0 fori € N, and a constant Bz € R for each § € S, such that f(v1,...,v,) €
arg maxg—(s,, . s, )er (Li(ivi(si)) + Bs). f is called maximal-in-range (MIR) if o; = 1
fori e N, and Bs =0 for each § € R.

The following proposition is standard:

Proposition 2.3 Let f be an affine mazimizer (in particular, mazimal in range). There
are payments p such that (f,p) is a truthful mechanism.

3. The Basic Mechanisms

This section provides the basic mechanisms for multi-unit auctions: a PTAS for k-minded
bidders, and a % approximation for the black-box model.
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3.1 A Truthful PTAS for k-Minded Bidders

We design an MIR algorithm for this problem, which directly yields an incentive-compatible
VCG-based mechanism. We define a range R of allocations, and prove that if all bidders
are k-minded then the algorithm outputs in polynomial time the best allocation in R. We
start with defining the subrange R.

Definition 3.1 We say that an allocation (s, ..., sy) is t-round if there exists a set T of
bidders, |T| < t, such that the following two conditions hold:

o Letl= EjETSj-

e For each bidder i ¢ T, s; is a multiple of max( {ﬁJ ,1).

o At most max( {(nm—i_t%J ;1) - (n—1t)? items are assigned to bidders outside T': Xigps; <
max(| (255 | 1) - (n - 1)?

We let R be the set of all ¢-round allocations for some fixed ¢ (that will depend only on
the approximation guarantee). Next we prove that the value of the best allocation in R is
close to the optimum:

Lemma 3.2 Let (ay,...,an) be an optimal t-round allocation, and (o1, ...,0,) an optimal
unrestricted allocation, then ;v;(a;) > (1 — H%)Zivi(oi).

Proof:  Let us start with an optimal unrestricted allocation (o1, ...,0,), and use it to
construct a t-round allocation with high value. Assume that all items are allocated in the
optimal allocation (without loss of generality due to the monotonicity of the valuations), and
that vi(01) > ... > vy(0n). Let T = {1,...,t} be the set of t bidders required in Definition
3.1, and assign each bidder i € T" a bundle of size 0;. As in Definition 3.1, let | = ¥;c70;.

Let j ¢ T be the bidder who got the largest number of items o; > Z‘:f For each i ¢ T,

i # j, round up each o; to the nearest multiple of b = max( L%J ,1) and assign this
many items to bidder ¢. Assign bidder j no items. This is a valid ¢t-round allocation since if
b # 1 we added at most (n —1t) - {MJ < ™= jtems by rounding up, but deleted at least

(n—t)2 n—t

:’;—__tl items by removing oj. Notice that the second condition also holds. If b = 1, observe
that even the optimal allocation is t-round. As for the value of the solution, observe that
each bidder i # j gets a bundle no smaller than o;. In addition, v;(0;) < 21;17(102), which
gives the required approximation. Ll

Our MIR approximation algorithm will try each subset of at most ¢ bidders to be the
set T of bidders. For each possible selection of T', the algorithm will consider all possible
allocations to bidders in T according to the k bids each bidder submitted. That is, we
will consider the allocation that assigns each bidder ¢ € T exactly s; items, if and only if
Yiersi < m, and for each s; there is a bid (s;, p;) in the k bids of bidder i (for some p; > 0).

For each selection of T and allocation to the bidders in T" according to their bids, the

algorithm splits the remaining m — [ items into at most (n — t)? equi-sized bundles of size
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max( [ﬁj , 1), where [ is the total number of items that bidders in 7" get. The maximal-

in-range algorithm will optimally allocate these equi-size bundles among the bidders that
are not in 7. Finally, the algorithm outputs the best allocation among all allocations
considered. All that is left is to show the following two lemmas:

Lemma 3.3 For every fized t the above algorithm runs in time polynomial in n and logm.

Proof: There are at most n! possible selections of sets 7. For each selection of T
there are at most k' allocations to bidders in T that are considered. Finding the optimal
allocation to bidders not in 7" is by dynamic programming. Let b be the size of the equi-size
bundles. Without loss of generality, we assume that 7= {n — ¢t 4+ 1,...,n}. We calculate
the following information for every 1 < i < n—t and 1 < ¢ < (n —t)% M(i,q) is the
maximum value that can be obtained by allocating at most ¢ equi-size bundles among
bidders 1...i. Each entry can be filled in polynomial time using the relations: M (i,q) =
maxy<q(vi(¢'b) + M(i — 1,q — ¢’)). In particular notice that if b = 1 then the number of
equi-size bundles is polynomial in the number of bidders, thus the number of entries in
the table is polynomial also in this case. Overall we get that the algorithm runs in time
polynomial in n and logm, for every fixed t. L]

Lemma 3.4 The above algorithm finds an optimal t-round allocation.

Proof: First, notice that the algorithm outputs a ¢-round allocation. Let us prove that
it outputs an optimal one. Let O = (o1, ...,0,) be an optimal ¢-round allocation, let T" be
the set of bidders from Definition 3.1, and let I = X;c7r0;. For each bidder ¢ € T remove
the maximal number ¢; (possibly zero) of items from o; such that v;(0;) = vi(0; — @;).
Observe that there exists a pair (¢}, pj) in i's XOR bids such that ¢; = 0; — ¢;. We now
handle the bidders that are not in 7. Each bidder ¢ ¢ T holds a bundle that is a multiple

of b = max( LﬁJ ,1) in O, while in order for the allocation that we construct to be

t-round we need the bidders not in T to receive multiples of b’ = max([%J ,1), for

' = ¥ier(0; — ¢;). However, notice that b’ > b, and that the number of equi-size bundles
is at least the same. Hence, by assigning each bidder i ¢ T' the same number of equi-size
bundles as in O, bidder 7 holds at least the same value as in O. The lemma follows since
the algorithm considers the newly constructed allocation. L]

We therefore have the following theorem:

Theorem 3.5 There exists a truthful VCG-based mechanism that provides a (1 — tj%l)-
approzimation for multi-unit auctions with k-minded bidders in time polynomial in n, logm,
k, for every constant t.

3.2 A %—Approximation for Multi-Unit Auctions with Black-Box Access

Let us consider the multi-unit auction problem with general valuations given by black boxes.

We will assume in our algorithm an “oracle access” to it that may be queried for v;(q), where

q is the given bundle size*.

4. This is analogous to the weakest “value query” in a combinatorial auction setting. Our lower bounds
presented later will apply to all other query types as well.
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We will design a %—approximation MIR algorithm for this problem, which again yields

an incentive-compatible VCG-based mechanism. Our MIR approximation algorithm will
first split the items into n? equi-sized bundles of size b = L%J as well as a single extra
bundle of size r that holds the remaining elements (thus n?b + r = m). The maximum in
range algorithm will optimally allocate these whole bundles among the n bidders. What we

need to show are the following two simple facts:

Lemma 3.6 An optimal allocation of the bundles can be found in time polynomial inn and
logm.

Lemma 3.7 Let (ay,...,ay,) be an optimal allocation of the bundles that was found by the
algorithm, and (o1, ...,0,) an optimal unrestricted allocation, then X;v;(0;) < 25;v;(a;).

The proofs are simple:

Proof: (of Lemma 3.6): The algorithm is by dynamic programming. We calculate the
following information for every 1 < i < nand 1 < ¢ < n*>: M (i,q) is the maximum
value that can be obtained by allocating at most g regular bundles among bidders 1...7, and
M™(i,q) is the maximum value that can be obtained by allocating at most ¢ regular bundles
and the “remainder” bundle among bidders 1...i. Each entry can be filled in polynomial
time using the relations: M(i,q) = maxy<4vi(¢'b) + M(i — 1,¢ — ¢') and M*(i,q) =
max(maxy<q(vi(¢'b) + M (i —1,q — ¢')), maxy<4(vi(¢b+7) + M(i — 1,9 — ¢'))). ]
Proof: (of Lemma 3.7): Let us start with an optimal unrestricted allocation o5 ...0,, where
all items are allocated (without loss of generality since the valuations are monotone), and
look at the bidder j that got the largest number of items o; > m/n. There are now two
possibilities: if v;(0;) > 3;£jv;(0;) then by allocating all items to j (i.e. all regular-sized
bundles as well as the remainder bundle) we get the required 2-approximation. Otherwise,
round up each o; to the nearest multiple of b (i.e. to full bundles), except for bidder j
that gets nothing. This is a valid allocation since we added at most nb < m/n items by
rounding up, but deleted at least m/n items by removing o;, and its value is certainly at
least 3;2;v;(0;) which gives the required approximation. L]

We have thus proved:

Theorem 3.8 There exists a truthful polynomial time VCG-based mechanism that gives a
%—appma:imation for multi-unit auctions with general valuations.

4. Lower Bounds for VCG-Based Mechanisms

We now move on to show that both mechanisms essentially achieve the best approximation
ratios possible. We say that an allocation (s, ..., sy,) is complete if all items are allocated:
3is; = m. Consider an MIR algorithm for n bidders that does not have full range of
complete allocations. I.e., for some 0 < s1,..., 8,1 < M, Xijcns; < m it never outputs the
allocation (si,...,Sp—1,m — X;<ns;). Now consider the set of valuations where for every
bidder i v;(¢) = 1 if and only if ¢ > s; (and 0 otherwise). The only allocation with value
n s (81, .y Sp—1,M — Xj<pnsi) which is not in the range, while all other allocations have a
value of at most n — 1.
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From this we can easily get a lower bound for any computationally efficient MIR, algo-
rithm in the models considered in this paper. We start with a lower bound in the black-box
model. The lower bound is on the number of queries that the bidders must be queried, and
holds for any type of query — i.e., in a general communication setting.

Proposition 4.1 Let A be a MIR algorithm for multi-unit auctions that achieves an ap-
proximation ratio better than % Then, the communication complexity of A is Q(m).
Proof: In the case of two bidders, an optimal algorithm is known to have a communication
complexity of ©(m):

Lemma 4.2 (Nisan & Segal, 2006) Finding the optimal allocation in multi-unit auc-
tions requires (m) bits of communication, even if there are only two bidders and even for
just finding the value of the allocation. This lower bound also applies to nondeterministic
settings.

Thus, any MIR algorithm for 2 bidders that uses o(m) bits of communication will be
non-optimal and thus, as argued above, gives no better than a %—approximation. The case
of more than 2 bidders follows by setting all valuations but the first two to 0, and then

considering all allocations in which all items are allocated to the first two bidders. Ll

The second result rules out the existence of FPTAS for k-minded bidders. In other
words, the dependence of the running time in % cannot be made polynomial. The result
essentially applies to all models that allow single-minded bidders, e.g., XOR bids, and the

bidding language used by Kothari et al. (2005) (see the next section for a description).

Proposition 4.3 Let A be a MIR algorithm that achieves an approximation ratio better
than (1 — %) Then, A does not run in polynomial time, unless P = NP.

Proof: Similarly to the previous proposition, and by the standard reduction from knapsack
to multi-unit auctions, it follows that for every polynomial-time MIR, algorithm there exist
large enough n and m for which the range of complete allocations is not full, unless P = N P.
The lemma follows by the discussion above. L]

This concludes the proof of the lower bounds for MIR mechanisms. To draw the same
conclusion for VCG-based mechanisms, one technical detail that should be explicitly men-
tioned. Our lower bounds were for MIR algorithms, while VCG-based mechanisms are only
proved to give algorithms that are equivalent to MIR algorithms. See Dobzinski and Nisan
(2007). However, both proofs hold even for finding the value of the optimal allocation and
thus directly apply also to algorithms that are equivalent to MIR algorithms.

5. A General Construction and Applications

We present a general construction that takes a maximal-in-range algorithm for a constant
number of bidders in some bidding language or model®, and extends it to a truthful mech-
anism for an unbounded number of bidders. Yet, the extension loses only an arbitrarily
small constant in the approximation ratio.

5. By a model we mean, e.g., some restriction on the valuations or on how they can be accessed.
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We describe four applications of the construction. First, we reprove the PTAS for k-
minded bidders and the %—approximation algorithm for general bidders of Section 3. Then,
we study the bidding language considered by Kothari et al. (2005). Kothari et al. describe
an approzimately truthful FPTAS for this bidding language, while we present a truthful
VCG-based PTAS (this is the best possible since Section 4 essentially rules out the possibil-
ity of a VCG-based FPTAS). Finally, we present a truthful (%+e)—approximation mechanism

for the case the valuations are sub-additive (a.k.a. complement free) and are accessed via
a black box.

5.1 The Setting

Fix some bidding language or a model for multi-unit auction in which the bidders can
answer value queries. Let A be a maximal-in-range algorithm for ¢ bidders and at most m
items in this model. Denote the complexity of A by A(t,m), its range by Rt m, and its
approximation guarantee by a < 1.

The Construction
1. Build the set @ of allocations as follows:

(a) Let u= (1+ 5).
Let L ={0,1, [u], [v?],...,ullogam™ m}.
(b) For every set T of bidders, |T'| <t, and [ € L:
i. Run A with m — [ items and the set T" of bidders. Denote by s; the number
of items A allocates to each bidder i € T.

ii. Split the remaining [ items into at most 2n? bundles, each consisting of
max([#J , 1) items.

iii. Find the optimal allocation of the equal-size bundles among the bidders that
are not in 7. Denote by s; the allocation to each bidder ¢ ¢ T.

iv. Add (s1,...,8,) to Q.

2. Output the allocation with the highest welfare in Q.

Theorem 5.1 There exists some range of allocations R such that the construction is maz-

imal in R. The construction runs in time poly(logm,n, A(t,m)) for every constant t. It

outputs an allocation with value of (o — t%) of the optimal allocation.

Proof: We will make use of the following definition:
Definition 5.2 An allocation is (R,t,l)-round if:

e R is a set of allocations, and in each R € R at most t bidders are allocated non-empty
bundles. The bidders are allocated together up to m — [ items.

o There exists a set T of bidders, |T| < t, such that the bidders in T are allocated
according to some allocation in R.
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e FEach bidder i ¢ T receives an exact multiple of max(tﬁj , 1) units, and Yigrsi <

max( LﬁJ 1) - n2.

It is not hard to verify that the construction always outputs allocations that are in the
following range:

R ={S|S is a (R km—i,k,l)-round allocation where [ € L and k < t}

Lemma 5.3 Let (01,...,0,) be an optimal unrestricted allocation. There ezists an alloca-
tion (s1,...,8,) € R for which X;v;(s;) > (o — 754%1) - X0 (04).

Proof:  Denote the value of the optimal solution by OPT. Without loss of generality,
assume that all items are allocated and that vy(01) > ... > v,(0,). Let I € L be the largest
such that m — [ > Eleoi. Let (s1,...,st) be the allocation that A outputs when run on
bidders 1,...,t and m — [ items, and assign each bidder 1 < ¢ <t s; items. Observe that
¥t jvi(s;) > o Xt v;(0;). To finish the proof we show that there is an allocation in the
range that recovers the value of all bidders ¢ 4+ 1,...,n but at most one. The lemma will

then follow since for each such bidder i, v;(0;) < (zflT )

Claim 5.4 Step 1(b)iii returns an allocation (Sit1,...,st) of the | items to bidders t +
1,...,n such that for each bidder i in this set, but at most one, we have that v;(s;) > v;(0;).

Proof: Letr = E;‘:Hloi. Let j > ¢t + 1 be some bidder with o; > % (observe that the
existence of this bidder is guaranteed). Let [ € L be the largest such that m —1 > ¥!_,0;
(observe that I < r). We also have that [ > r — --: we chose the largest possible value for

2n
T T
l, and therefore [ 2 @ Z T — 5

Now, for each i # j round up each o; to the nearest multiple of max( LﬁJ ,1), and
allocate no items to bidder j. Observe that for all bidders but bidder j the bundle size they
get increases. Also observe that the number of additional items we allocate to bidders in
{t+1,...n} is at most #n:ﬁ Thus, we have that { > r — & + L >r —o0; + 5. O

L]

All that is left is to show that the construction runs in polynomial time:

Lemma 5.5 The optimal allocation in R can be found in time poly(log m,n, A(t,m)), for
every constant t.

Proof: Step 1(b)iii of the construction can be implemented using a dynamic programming
similarly to Lemma 3.3; optimality of the allocation in R is clear. The running time is

poly(log,, 1 _m - n¥ - A(t,m)), which is polynomial in the relevant parameters for every
2n+1

constant t. ]

U

5.2 Applications of the Construction

We now provide several applications of our construction.
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5.2.1 A PTAS FOR k-MINDED VALUATIONS

We reprove the PTAS for k-minded bidders of Section 3: a multi-unit auction problem
with m items and ¢ k-minded bidders can be optimally solved by exhaustive search in
time poly((tk)t,logm), which is polynomial in logm and k for every constant ¢. By the
construction (and since an optimal algorithm is in particular maximal in range), we get a
PTAS for k-minded bidders: for every constant ¢, we get a (1 — tj%l)—approximation in time
polynomial in n and logm.

5.2.2 A %—APPROXIMATION FOR GENERAL VALUATIONS

Here we observe that a multi-unit auction with one bidder can be optimally solved by
allocating all items to the single bidder. We let t = 1 in the statement of Theorem 5.1, and
get a %—approximation algorithm for general valuations.

5.2.3 A PTAS FOR THE MARGINAL PIECEWISE BIDDING LANGUAGE

The following marginal piecewise bidding language was used by Kothari et al. (2005): a
valuation v is determined by a list of at most k tuples denoted by (u1,m1),. .. ,(ug, my). We
assume that the m;’s are non-negative and that ug > ... > u; = 1. The tuples determine
the marginal utility of the jth item. In other words, to determine the value of a set of s
items, we sum over all the marginal utilities. Le., for each item j, w; < j < w41, let his
marginal utility be ; = my, and for every s < m, let v(s) = E;erj. (In fact, the above
bidding language is more powerful than the one described by Kothari et al. (2005), which
allows only marginal-decreasing piecewise valuations.)

We now show how to optimally solve a multi-unit auction problem in this setting with
a constant number of bidders. A PTAS follows, just as in the k-minded case.

We say that bidder 7 is precisely assigned if he is allocated s; items, and for some u; > 0
there exists a tuple (s;,u;) in his k& bids. The main observation here is that there is an
optimal solution (o1, ..., 0,) in which at most one bidder is not precisely assigned: suppose
there are two bidders 7 and 7’ that are not precisely assigned. Then, move items to the bidder
with the higher (or equal) marginal utility. The value of the allocation cannot decrease.
Continue this process until all bidders but at most one are precisely assigned.

Now optimally solving a multi-unit auction problem with a constant number of bidders
is obvious: select each of the n bidders in his turn to be the bidder that is not precisely
assigned. In each iteration, let ¢ be the bidder that is not precisely assigned, and go over
all allocations in which all other bidders are precisely assigned. Then, assign bidder i the
remaining items. Since there are at most k possible sets that make a bidder precisely
assigned, the algorithm runs in time poly(n - (n - k)"~!, log m), which is polynomial in logm
and k for every constant n.

5.2.4 A (3 + ¢)-APPROXIMATION FOR SUBADDITIVE VALUATIONS

In this model we assume that the valuations are given as black boxes (as in Section 3.2),
and that for each valuation v and bundles 0 < s,t < m we have that v(s) +v(t) > v(s+1t).
Such valuations are called subadditive valuations.
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Let us now describe an algorithm that provides an approximation ratio of % in this
setting when the number of bidders is constant. By the construction, we get a (% + €)-
approximation VCG-based mechanism for unbounded number of bidders, for every constant
€. The algorithm is quite simple: Fix a small enough constant 6 > 1 (6 = % suffices). All
bidders, but at most one, can only receive a bundle s that is a power of ¢ (including the
empty bundle). The bidder that does not get a bundle of size that is a power of § receives
the remaining items. We use exhaustive search to find the optimal allocation in this range.

To see that the algorithm indeed provides an approximation ratio of %, consider an

optimal solution (o1, ...,0,). Without loss of generality, assume that 0oy > ... > o, (notice
that unlike before now the bidders are ordered by their bundle size). Let O be the set of
bidders with odd indices, and E be the set of bidders with even indices.

The analysis is divided into two cases. First suppose that X;covi(0;) > 3iepvi(0;).
Consider the following allocation: the bundles of bidders in E are rounded up to the power
of § that is near 4, the bundles of bidders in O \ {1} are rounded up to the nearest power
of 4, and bidder 1 gets the remaining items. Notice that the above allocation is valid since
for a small enough choice of § we assign bidders in O no more items than what we removed
from bidders in E. Also notice that this allocation is in the range. As for the approximation
ratio, observe that bidders in O hold at least the same value as in the optimal solution,
since each bidder in O is allocated at least the same number of items as in the optimal
solution. In addition, each bidder in E holds at least half of the items allocated to him in
the optimal solution. Thus, by subadditivity, bidders in E hold together at least half of the
value they hold in the optimal solution. In total, the value of the allocation obtained by
the algorithm is at least % of the value of the optimal solution.

Let us now handle the case where ¥;covi(0;) < Xiepvi(0;). Consider the allocation
where all bidders in O are rounded up to the power of ¢ that is near %, and all bidders
in F are rounded up to the nearest power of § (except for one arbitrary bidder in £ who
gets the remaining items). This allocation is in the range, and the analysis is similar to the

previous case, leaving us with an approximation ratio of % also in the current case.

The running time of the algorithm is poly(n - (logs m)™ 1), which is polynomial in log m
for constant n and §.

Notice that the approximation ratio achieved is almost the best possible, as every MIR
approximation algorithm that guarantees a factor better than % requires €2(m) communica-
tion: by Lemma 4.2 finding the optimum solution of a multi-unit auction with two bidders
requires €2(m) bits of communication. We make the valuations sub-additive by defining
for each v a new valuation: v'(s) = v(s) + v(m), for all s # 0. Thus, as in Section 4, the
range of every polynomial-time MIR mechanism for two bidders with subadditive valuations
cannot contain all complete allocations. Fix some MIR algorithm, and let (s;,m — s1) be
a complete allocation that is not in the range. Consider the following instance: bidder 1
values at least s; items with a value of 2, and smaller bundles with a value of 1, and bidder
2 values at least m — sg items with a value of 2, and smaller bundles with a value of 1 (and
0 is the value of the empty bundle). Notice that the valuations of the bidders are indeed
subadditive. Also observe that the optimal welfare is 4, but the mechanism can achieve
welfare of at most 3.
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