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Abstract

The survey propagation (SP) algorithm has been shown to work well on large instances
of the random 3-SAT problem near its phase transition. It was shown that SP estimates
marginals over covers that represent clusters of solutions. The SP-y algorithm generalizes
SP to work on the maximum satisfiability (Max-SAT) problem, but the cover interpretation
of SP does not generalize to SP-y. In this paper, we formulate the relaxed survey propaga-
tion (RSP) algorithm, which extends the SP algorithm to apply to the weighted Max-SAT
problem. We show that RSP has an interpretation of estimating marginals over covers
violating a set of clauses with minimal weight. This naturally generalizes the cover inter-
pretation of SP. Empirically, we show that RSP outperforms SP-y and other state-of-the-art
Max-SAT solvers on random Max-SAT instances. RSP also outperforms state-of-the-art
weighted Max-SAT solvers on random weighted Max-SAT instances.

1. Introduction

The 3-SAT problem is the archetypical NP-complete problem, and the difficulty of solving
random 3-SAT instances has been shown to be related to the clause to variable ratio,
α=M/N , where M is the number of clauses and N the number of variables. A phase
transition occurs at the critical value of αc ≈ 4.267: random 3-SAT instances with α<αc
are generally satisfiable, while instances with α>αc are not. Instances close to the phase
transition are generally hard to solve using local search algorithms (Mezard & Zecchina,
2002; Braunstein, Mezard, & Zecchina, 2005).

The survey propagation (SP) algorithm was invented in the statistical physics com-
munity using approaches used for analyzing phase transitions in spin glasses (Mezard &
Zecchina, 2002). The SP algorithm has surprised computer scientists by its ability to solve
efficiently extremely large and difficult Boolean satisfiability (SAT) instances in the phase
transition region. The algorithm has also been extended to the SP-y algorithm to handle
the maximum satisfiability (Max-SAT) problem (Battaglia, Kolar, & Zecchina, 2004).

Progress has been made in understanding why the SP algorithm works well. Braunstein
and Zecchina (2004) first showed that SP can be viewed as the belief propagation (BP)
algorithm (Pearl, 1988) on a related factor graph where only clusters of solutions represented
by covers have non-zero probability. It is not known whether a similar interpretation can be
given to the SP-y algorithm. In this paper, we extend the SP algorithm to handle weighted
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Max-SAT instances in a way that preserves the cover interpretation, and we call this new
algorithm the Relaxed Survey Propagation (RSP) algorithm. Empirically, we show that
RSP outperforms SP-y and other state-of-the-art solvers on random Max-SAT instances.
It also outperforms state-of-the-art solvers on a few benchmark Max-SAT instances. On
random weighted Max-SAT instances, it outperforms state-of-the-art weighted Max-SAT
solvers.

The rest of this paper is organized as follows. In Section 2, we describe the background
literature and mathematical notations necessary for understanding this paper. This includes
a brief review of the definition of joint probability distributions over factor graphs, an
introduction to the SAT, Max-SAT and the weighted Max-SAT problem, and how they can
be formulated as inference problems over a probability distribution on a factor graph. In
Section 3, we give a review of the BP algorithm (Pearl, 1988), which plays a central role in
this paper. In Section 4, we give a description of the SP (Braunstein et al., 2005) and the
SP-y (Battaglia et al., 2004) algorithm, explaining them as warning propagation algorithms.
In Section 5, we define a joint distribution over an extended factor graph given a weighted
Max-SAT instance. This factor graph generalizes the factor graph defined by Maneva,
Mossel and Wainwright (2004) and by Chieu and Lee (2008). We show that, for solving
SAT instances, running the BP algorithm on this factor graph is equivalent to running
the SP algorithm derived by Braunstein, Mezard and Zecchina (2005). For the weighted
Max-SAT problem, this gives rise to a new algorithm that we call the Relaxed Survey
Propagation (RSP) algorithm. In Section 7, we show empirically that RSP outperforms
other algorithms for solving hard Max-SAT and weighted Max-SAT instances.

2. Background

While SP was first derived from principles in statistical physics, it can be understood as
a BP algorithm, estimating marginals for a joint distribution defined over a factor graph.
In this section, we will provide background material on joint distributions defined over
factor graphs. We will then define the Boolean satisfiability (SAT) problem, the maximum
satisfiability (Max-SAT) problem, and the weighted maximum satisfiability (weighted Max-
SAT) problem, and show that these problems can be solved by solving an inference problem
over joint distributions defined on factor graphs. A review of the definition and derivation of
the BP algorithm will then follow in the next section, before we describe the SP algorithm
in Section 4.

2.1 Notations

First, we will define notations and concepts that are relevant to the inference problems over
factor graphs. Factor graphs provide a framework for reasoning and manipulating the joint
distribution over a set of variables. In general, variables could be continuous in nature, but
in this paper, we limit ourselves to discrete random variables.

In this paper, we denote random variables using large Roman letters, e.g., X,Y . The
random variables are always discrete in this paper, taking values in a finite domain. Usually,
we are interested in vectors of random variables, for which we will write the letters in bold
face, e.g., X,Y. We will often index random variables by the letters i, j, k..., and write,
for example, X = {Xi}i∈V , where V is a finite set. For a subset W ⊆ V , we will denote

230



Relaxed Survey Propagation for The Weighted Max-SAT Problem
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Figure 1: A simple factor graph for p(x) = ψβ(x1, x2)ψβ′(x1, x3)ψβ′′(x2, x4).

XW = {Xi}i∈W . We call an assignment of values to the variables in X a configuration,
and will denote it in small bold letters, e.g. x. We will often write x to represent an event
X = x and, for a probability distribution p, write p(x) to mean p(X = x). Similarly, we
will write x to denote the event X = x, and write p(x) to denote p(X = x).

A recurring theme in this paper will be on defining message passing algorithms for joint
distributions on factor graphs (Kschischang, Frey, & Loeliger, 2001). In a joint distribution
defined as a product of local functions (functions defined on a small subset of variables),
we will refer to the local functions as factors. We will index factors, e.g. ψβ, with Greek
letters, e.g., β, γ (avoiding α which is used as the symbol for clause to variable ratio in SAT
instances). For each factor ψβ, we denote V (β) ⊆ V as the subset of variables on which
ψβ is defined, i.e. ψβ is a function defined on the variables XV (β). In message passing
algorithms, messages are vectors of real numbers that are sent from factors to variables or
vice versa. A vector message sent from a variable Xi to a factor ψβ will be denoted as
Mi→β, and a message from ψβ to Xi will be denoted as Mβ→i.

2.2 Joint Distributions and Factor Graphs

Given a large set of discrete, random variables X = {Xi}i∈V , we are interested in the joint
probability distribution p(X) over these variables. When the set V is large, it is often of
interest to assume a simple decomposition, so that we can draw conclusions efficiently from
the distribution. In this paper, we are interested in the joint probability distribution that
can be decomposed as follows

p(X = x) =
1
Z

∏
β∈F

ψβ(xV(β)), (1)

where the set F indexes a set of functions {ψβ}β∈F . Each function ψβ is defined on a
subset of variables XV (β) of the set X, and maps configurations xV (β) into non-negative
real numbers. Assuming that each function ψβ is defined on a small subset of variables
XV (β), we hope to do efficient inference with this distribution, despite the large number
of variables in X. The constant Z is a normalization constant, which ensures that the
distribution sums to one over all configurations x of X.

A factor graph (Kschischang et al., 2001) provides a useful graphical representation
illustrating the dependencies defined in the joint probability distribution in Equation 1. A
factor graph G = ({V, F}, E), is a bipartite graph with two sets of nodes, the set of variable
nodes, V , and the set of factor nodes, F . The set of edges E in the factor graph connects
variable nodes to factor nodes, hence the bipartite nature of the graph. For a factor graph
representing the joint distribution in Equation 1, an edge e = (β, i) is in E if and only if
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the variable Xi is a parameter of the factor ψβ (i.e. i ∈ V (β)). We will denote V (i) as the
set of factors depending on the variable Xi, i.e.

V (i) = {β ∈ F | i ∈ V (β)} (2)

We show a simple example of a factor graph in Figure 1. In this small example, we have for
example, V (β) = {1, 2} and V (2) = {β, β′′}. The factor graph representation is useful for
illustrating inference algorithms on joint distributions in the form of Equation 1 (Kschis-
chang et al., 2001). In Section 3, we will describe the BP algorithm by using the factor
graph representation.

Equation 1 defines the joint distribution as a product of local factors. It is often useful
to represent the distribution in the following exponential form:

p(x) = exp (
∑
β∈F

φβ(xV (β))− Φ) (3)

The above equation is a reparameterization of Equation 1, with ψβ(xV (β)) = exp(φβ(xV (β)))
and Φ = lnZ. In statistical physics, the exponential form is often written as follows:

p(x) =
1
Z

exp(− 1
kBT

E(x)), (4)

where E(x) is the Hamiltonian or energy function, kB is the Boltzmann’s constant, and T
is the temperature. For simplicity, we set kBT = 1, and Equations 3 and 4 are equivalent
with E(x) = −

∑
β∈F φβ(xV (β)).

Bayesian (belief) networks and Markov random fields are two other graphical represen-
tations often used to describe multi-dimensional probability distributions. Factor graphs
are closely related to both Bayesian networks and Markov random fields, and algorithms
operating on factor graphs are often directly applicable to Bayesian networks and Markov
random fields. We refer the reader to the work of Kschischang et al. (2001) for a comparison
between factor graphs, Bayesian networks and Markov random fields.

2.3 Inference on Joint Distributions

In the literature, “inference” on a joint distribution can refer to solving one of two problems.
We define the two problems as follows:

Problem 1 (MAP problem). Given a joint distribution, p(x), we are interested in the con-
figuration(s) with the highest probability. Such configurations, x∗, are called the maximum-
a-posteriori configurations, or MAP configurations

x∗ = arg max
x

p(x) (5)

From the joint distribution in Equation 4, the MAP configuration minimizes the energy
function E(x), and hence the MAP problem is sometimes called the energy minimization
problem.
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Problem 2 (Marginal problem). Given a joint distribution, p(x), of central interest are
the calculation or estimation of probabilities of events involving a single variable Xi = xi.
We refer to such probabilities as marginal probabilities:

pi(xi) =
∑
x\xi

p(x). (6)

The notation
∑

x\xi means summing over all configurations of X with the variable Xi set
to xi. Marginals are important as they represent the underlying distribution of individual
variables.

In general, both problems are not solvable in reasonable time by currently known meth-
ods. Naive calculation of pi(xi) involves summing the probabilities of all configurations for
the variables X for which Xi = xi. For example, in a factor graph with n variables of
cardinality q, finding the marginal of one of the variables will involve summing over qn−1

configurations. Furthermore, NP-complete problems such as 3-SAT can be simply coded
as factor graphs (see Section 2.4.1). As such, the MAP problem is in general NP-complete,
while the marginal problem is equivalent to model counting for 3-SAT, and is #P-complete
(Cooper, 1990). Hence, in general, we do not expect to solve the inference problems (ex-
actly) in reasonable time, unless the problems are very small, or have special structures
that can be exploited for efficient inference.

Of central interest in this paper is a particular approximate inference method known
as the (sum-product) belief propagation (BP) algorithm. We defer the discussion of the
BP algorithm to the next section. In the rest of this section, we will describe the SAT,
Max-SAT and weighted Max-SAT problems, and how they can be simply formulated as
inference problems on a joint distribution over a factor graph.

2.4 The SAT and Max-SAT Problem

A variable is Boolean if it takes values in {FALSE,TRUE}. In this paper, we will follow
conventions in statistical physics, where Boolean variables take values in {−1,+1}, with −1
corresponding to FALSE, and +1 corresponding to TRUE.

The Boolean satisfiability (SAT) problem is given as a Boolean propositional formula
written with the operators AND (conjunction), OR (disjunction), NOT (negation), and
parenthesis. The objective of the SAT problem is to decide whether there exists a con-
figuration such that the propositional formula is satisfied (evaluates to TRUE). The SAT
problem is the first problem shown to be NP-complete in Stephen Cook’s seminal paper in
1971 (Cook, 1971; Levin, 1973).

The three operators in Boolean algebra are defined as follows: given two propositional
formulas A and B, OR(A,B) is true if either A or B is true; AND(A,B) is true only if both
A and B are true; and NOT(A) is true if A is false. In the rest of the paper, we will use the
standard notations in Boolean algebra for the Boolean operators: A ∨B means OR(A,B),
A ∧ B means AND(A,B), and A means NOT(A). The parenthesis is available to allow
nested application of the operators, e.g. (A ∨B) ∧ (B ∨ C).

The conjunctive normal form (CNF) is often used as a standard form for writing Boolean
formulas. The CNF consists of a conjunction of disjunctions of literals, where a literal is
either a variable or its negation. For example, (X1 ∨ X2) ∧ (X3 ∨ X4) is in CNF, while
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X1 ∨X2 and (X1∧X2)∨(X2∧X3) are not. Any Boolean formula can be re-written in CNF
using De Morgan’s law and the distributivity law, although in practice, this may lead to an
exponential blowup in the size of the formula, and the Tseitin transformation is often used
instead (Tseitin, 1968). In CNF, a Boolean formula can be considered to be the conjunction
of a set of clauses, where each clause is a disjunction of literals. Hence, a SAT problem is
often given as (X,C), where X is the vector of the Boolean variables, and C is a set of
clauses. Each clause in C is satisfied by a configuration if it evaluates to TRUE for that
configuration. Otherwise, it is said to be violated by the configuration. We will use Greek
letters (e.g. β, γ) as indices for clauses in C, and denote by V (β) as the set of variables in
the clause β ∈ C. The K-SAT problem is a SAT problem for which each clause in C consists
of exactly K literals. The K-SAT problem is NP-complete, for K ≥ 3 (Cook, 1971).

The maximum satisfiability problem (Max-SAT) problem is the optimization version of
the SAT problem, where the aim is to minimize the number of violated constraints in the
formula. We define a simple working example of the Max-SAT problem that we will use
throughout the paper:

Example 1. Define an instance of the Max-SAT problem in CNF with the following clauses
β1 = (x1∨x2), β2 = (x2∨x3), β3 = (x3∨x1), β4 = (x1∨x2∨x3), β5 = (x1∨x2∨x3) and β6 =
(x1 ∨ x2). The Boolean expression representing this problem would be

(x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x3 ∨ x1) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2). (7)

The objective of the Max-SAT problem would be to find a configuration minimizing the
number of violated clauses.

2.4.1 Factor Graph Representation for SAT Instances

The SAT problem in CNF can easily be represented as a joint distribution over a factor
graph. In the following definition, we give a possible definition of a joint distribution over
Boolean configurations for a given SAT instance, where the Boolean variables take values
in {−1,+1}.

Definition 1. Given an instance of the SAT problem, (X,C) in conjunctive normal form,
where X is a vector of N Boolean variables. We define the energy, E(x), and the distribu-
tion, p(x), over configurations of the SAT instance (Battaglia et al., 2004)

∀β ∈ C, Cβ(xV (β)) =
∏

i∈V (β)

1
2

(1 + Jβ,ixi), (8)

E(x) =
∑
β∈C

Cβ(xV (β)), (9)

p(x) =
1
Z

exp(−E(x)), (10)

where x ∈ {−1,+1}N , and Jβ,i takes values in {−1,+1}. If Jβ,i = +1 (resp. −1), then
β contains Xi as a negative (resp. positive) literal. Each clause β is satisfied if one of its
variables Xi takes the value −Jβ,i. When a clause β is satisfied, Cβ(xV (β)) = 0. Otherwise
Cβ(xV (β)) = 1.
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Figure 2: The factor graph for the SAT instance given in Example 1. Dotted (resp. solid)
lines joining a variable to a clause means the variable is a negative (resp. positive)
literal in the clause.

With the above definition, the energy function is zero for satisfying configurations, and
equals the number of violated clauses for non-satisfying configuration. Hence, satisfying
configurations of the SAT instance are the MAP configurations of the factor graph.

In this section, we make some definitions that will be useful in the rest of the paper.
For a clause β containing a variable Xi (associated with the value of Jβ,i), we will say that
Xi satisfies β if Xi = −Jβ,i. In this case, the clause β is satisfied regardless of the values
taken by the other variables. Conversely, we say that Xi violates β if Xi does not satisfy β.
In this case, it is still possible that β is satisfied by other variables.

Definition 2. For a clause β ∈ C, we define uβ,i (resp. sβ,i) as the value of Xi ∈ {−1,+1}
that violates (resp. satisfies) clause β. This means that sβ,i = −Jβ,i and uβ,i = +Jβ,i. We
define the following sets

V +(i) = {β ∈ V (i); sβ,i = +1},
V −(i) = {β ∈ V (i); sβ,i = −1},
V s
β (i) = {γ ∈ V (i) \ {β}; sβ,i = sγ,i},
V u
β (i) = {γ ∈ V (i) \ {β}; sβ,i 6= sγ,i}.

(11)

In the above definitions, V +(i) (resp. V −(i)) is the set of clauses that contain Xi as a
positive literal (resp. negative literal). V s

β (i) (resp. V u
β (i)) is the set of clauses containing

Xi that agrees (resp. disagrees) with the clause β concerning Xi. These sets will be useful
when we define the SP message passing algorithms for SAT instances.

The factor graph representing the Max-SAT instance given in Example 1 is shown in
Figure 2. For this example, V +(1) = {β3, β5, β6}, V −(1) = {β1, β4}, V s

β3
(1) = {β5, β6}, and

V u
β3

(1) = {β1, β4}. The energy for this example is as follows:

E(x) =
1
4

(1 + x1)(1− x2) +
1
4

(1 + x2)(1− x3) +
1
4

(1 + x3)(1− x1) +

1
8

(1 + x1)(1 + x2)(1 + x3) +
1
8

(1− x1)(1− x2)(1− x3) +
1
4

(1− x1)(1− x2) (12)
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2.4.2 Related Work on SAT

The SAT problem is well studied in computer science: as the archetypical NP-complete
problem, it is common to reformulate other NP-complete problems such as graph coloring
as a SAT problem (Prestwich, 2003). SAT solvers are either complete or incomplete. The
best known complete solver for solving the SAT problem is probably the Davis-Putnam-
Logemann-Loveland (DPLL) algorithm (Davis & Putnam, 1960; Davis, Logemann, & Love-
land, 1962). The DPLL algorithm is a basic backtracking algorithm that runs by choosing a
literal, assigning a truth value to it, simplifying the formula and then recursively checking if
the simplified formula is satisfiable; if this is the case, the original formula is satisfiable; oth-
erwise, the same recursive check is done assuming the opposite truth value. Variants of the
DPLL algorithm such as Chaff (Moskewicz & Madigan, 2001), MiniSat (Een & Sörensson,
2005), and RSAT (Pipatsrisawat & Darwiche, 2007) are among the best performers in re-
cent SAT competitions (Berre & Simon, 2003, 2005). Solvers such as satz (Li & Anbulagan,
1997) and cnfs (Dubois & Dequen, 2001) have also been making progress in solving hard
random 3-SAT instances.

Most solvers that participated in recent SAT competitions are complete solvers. While
incomplete or stochastic solvers do not show that a SAT instance is unsatisfiable, they are
often able to solve larger satisfiable instances than complete solvers. Incomplete solvers
usually start with a randomly initialized configuration, and different algorithms differ in
the way they flip selected variables to move towards a solution. One disadvantage of such
an approach is that in hard SAT instances, a large number of variables have to be flipped to
move a current configuration out of a local minimum, which acts as a local trap. Incomplete
solvers differ in the strategies used to move the configuration out of such traps. For example,
simulated annealing (Kirkpatrick, Jr., & Vecchi, 1983) allows the search to move uphill,
controlled by a temperature parameter. GSAT (Selman, Levesque, & Mitchell, 1992) and
WalkSAT (Selman, Kautz, & Cohen, 1994) are two algorithms developed in the 1990s that
allow randomized moves when the solution cannot be improved locally. The two algorithms
differ in the way they choose the variables to flip. GSAT makes the change which minimizes
the number of unsatisfied clauses in the new configuration, while WalkSAT selects the
variable that, when flipped, results in no previously satisfied clauses becoming unsatisfied.
Variants of algorithms such as WalkSAT and GSAT use various strategies, such as tabu-
search (McAllester, Selman, & Kautz, 1997) or adapting the noise parameter that is used,
to help the search out of a local minima (Hoos, 2002). Another class of approaches is based
on applying discrete Lagrangian methods on SAT as a constrained optimization problem
(Shang & Wah, 1998). The Lagrange mutlipliers are used as a force to lead the search out
of local traps.

The SP algorithm (Braunstein et al., 2005) has been shown to beat the best incomplete
solvers in solving hard random 3-SAT instances efficiently. SP estimates marginals on all
variables and chooses a few of them to fix to a truth value. The size of the instance is then
reduced by removing these variables, and SP is run again on the remaining instance. This
iterative process is called decimation in the SP literature. It was shown empirically that SP
rarely makes any mistakes in its decimation, and SP solves very large 3-SAT instances that
are very hard for local search algorithms. Recently, Braunstein and Zecchina (2006) have
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shown that by modifying BP and SP updates with a reinforcement term, the effectiveness
of these algorithms as solvers can be further improved.

2.5 The Weighted Max-SAT Problem

The weighted Max-SAT problem is a generalization of the Max-SAT problem, where each
clause is assigned a weight. We define an instance of the weighted Max-SAT problem as
follows:

Definition 3. A weighted Max-SAT instance (X,C,W) in CNF consists of X, a vector of
N variables taking values in {−1,+1}, C, a set of clauses, and W, the set of weights for
each clause in C. We define the energy of the weighted Max-SAT problem as

E(x) =
∑
β∈C

∏
i∈V (β)

wβ
2

(1 + Jβ,ixi), (13)

where x ∈ {−1,+1}N , and Jβ,i takes values in {−1,+1}, and wβ is the weight of the clause
β. The total energy, E(x), of a configuration x equals the total weight of violated clauses.

Similarly to SAT, there are also complete and incomplete solvers for the weighted Max-
SAT problem. Complete weighted Max-SAT solvers involve branch and bound techniques by
calculating bounds on the cost function. Larrosa and Heras (2005) introduced a framework
that integrated the branch and bound techniques into a Max-DPLL algorithm for solving
the Max-SAT problem. Incomplete solvers generally employ heuristics that are similar to
those used for SAT problems. An example of an incomplete method is the min-conflicts hill-
climbing with random walks algorithm (Minton, Philips, Johnston, & Laird, 1992). Many
SAT solvers such as WalkSAT can be extended to solve weighted Max-SAT problems, where
the weights are used as a criterion in the selection of variables to flip.

As a working example in this paper, we define the following instance of a weighted
Max-SAT problem:

Example 2. We define a set of weighted Max-SAT clauses in the following table:

Id Clause Weight - - - - - + - + - - + + + - - + - + + + - + + +
β1 x1 ∨ x2 1 3 3 3 3 5 5 3 3

β2 x2 ∨ x3 2 3 3 5 3 3 3 5 3

β3 x3 ∨ x1 3 3 5 3 5 3 3 3 3

β4 x1 ∨ x2 ∨ x3 4 3 3 3 3 3 3 3 5

β5 x1 ∨ x2 ∨ x3 5 5 3 3 3 3 3 3 3

β6 x1 ∨ x2 6 5 5 3 3 3 3 3 3

Energy 1 9 2 3 1 1 2 4

This weighted Max-SAT example has the same variables and clauses as the Max-SAT
example given in Example 1. In the above table, we show the clauses satisfied (a tick) or
violated (a cross) by each of the 8 possible configurations of the 3 variables. In the first
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row, the symbol − corresponds to the value −1, and + corresponds to +1. For example, the
string “−−+ ” corresponds to the configuration (X1, X2, X3) = (−1,−1,+1). The last row
of the table shows the energy of the configuration in each column.

The factor graph for this weighted Max-SAT example is the same as the one for the
Max-SAT example in Example 1. The differences between the two examples are in the
clause weights, which are reflected in the joint distribution, but not in the factor graph.
The energy for this example is as follows:

E(x) =
1
4

(1 + x1)(1− x2) +
2
4

(1 + x2)(1− x3) +
3
4

(1 + x3)(1− x1) +

4
8

(1 + x1)(1 + x2)(1 + x3) +
5
8

(1− x1)(1− x2)(1− x3) +
6
4

(1− x1)(1− x2)(14)

2.6 Phase Transitions

The SP algorithm has been shown to work well on 3-SAT instances near its phase transition,
where instances are known to be very hard to solve. The term “phase transition” arises
from the physics community. To understand the notion of “hardness” in optimization
problems, computer scientists and physicists have been studying the relationship between
computational complexity in computer science and phase transitions in statistical physics.
In statistical physics, the phenomenon of phase transitions refers to the abrupt changes
in one or more physical properties in thermodynamic or magnetic systems with a small
change in the value of a variable such as the temperature. In computer science, it has
been observed that in random ensembles of instances such as K-SAT, there is a sharp
threshold where randomly generated problems undergo an abrupt change in properties. For
example, in K-SAT, it has been observed empirically that as the clause to variable ratio α
changes, randomly generated instances change abruptly from satisfiable to unsatisfiable at
a particular value of α, often denoted as αc. Moreover, instances generated with a value of
α close to αc are found to be extremely hard to solve.

Computer scientists and physicists have worked on bounding and calculating the pre-
cise value of αc where the phase transition for 3-SAT occurs. Using the cavity approach,
physicists claim that αc ≈ 4.267 (Mezard & Zecchina, 2002). While their derivation of
the value of αc is non-rigorous, it is based on this derivation that they formulated the SP
algorithm. Using rigorous mathematical approaches, the upper bounds to the value of αc
can be derived using first-order methods. For example, in the work of Kirousis, Kranakis,
Krizanc, and Stamatiou (1998), αc for 3-SAT was upper bounded by 4.571. Achlioptas,
Naor and Peres (2005) lower-bounded the value of αc using a weighted second moments
method, and their lower bound is close to the upper bounds for K-SAT ensembles for large
values of K. However, their lower bound for 3-SAT is 2.68, rather far from the conjectured
value of 4.267. A better (algorithmic) lower bound of 3.52 can be obtained by analyzing
the behavior of algorithms that find SAT configurations (Kaporis, Kirousis, & Lalas, 2006).

Physicists have also shown rigorously using second moment methods that as α ap-
proaches αc, the search space fractures dramatically, with many small solution clusters
appearing relatively far apart from each other (Mezard, Mora, & Zecchina, 2005). Clusters
of solutions are generally defined as a set of connected components of the solution space,
where two adjacent solutions have a Hamming distance of 1 (differ by one variable). Daude,
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i

β''

β

Mβ'→j

Mβ''→j

Mj→β
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Mk→β

Ml→β

Mβ→i

Figure 3: Illustration of messages in a BP algorithm.

Mezard, Mora, and Zecchina (2008) redefined the notion of clusters by using the concept
of x-satisfiability: a SAT instance is x-satisfiable if there exists two solutions differing by
Nx variables, where N is the total number of variables. They showed that near the phase
transition, x goes from around 1

2 to very small values, without going through a phase of
intermediate values. This clustering phenomenon explains why instances generated with α
close to αc are extremely hard to solve with local search algorithm: it is difficult for the
local search algorithm to move from a local minimum to the global minimum.

3. The Belief Propagation Algorithm

The BP algorithm has been reinvented in different fields under different names. For example,
in the speech recognition community, the BP algorithm is known as the forward-backward
procedure (Rabiner & Juang, 1993). On tree-structured factor graphs, the BP algorithm is
simply a dynamic programming approach applied to the tree structure, and it can be shown
that BP calculates the marginals for each variable in the factor graph (i.e. solving Problem
2). In loopy factor graphs, the BP algorithm has been found to provide a reasonable
approximation to solving the marginal problem when the algorithm converges. In this case,
the BP algorithm is often called the loopy BP algorithm. Yedidia, Freeman and Weiss (2005)
have shown that the fixed points of the loopy BP algorithm correspond to the stationary
points of the Bethe free energy, and is hence a sensible approximate method for estimaing
marginals.

In this section, we will first describe the BP algorithm as a dynamic programming
method for solving the marginal problem (Problem 2) for tree-structured factor graphs. We
will also briefly describe how the BP algorithm can be applied to factor graphs with loops,
and refer the reader to the work of Yedidia et al. (2005) for the underlying theoretical
justification in this case.

Given a factor graph representing a distribution p(x), the BP algorithm involves itera-
tively passing messages from factor nodes β ∈ F to variable nodes i ∈ V , and vice versa.
Each factor node β represents a factor ψβ, which is a factor in the joint distribution given
in Equation 1. In Figure 3, we give an illustration of how the messages are passed between
factor nodes and variable nodes. Each Greek alphabet (e.g. β ∈ F ) in a square represents
a factor (e.g. ψβ) and each Roman alphabet (e.g. i ∈ V ) in a circle represents a variable
(e.g. Xi).

The factor to variable messages (e.g. Mβ→i), and the variable to factor messages (e.g.
Mi→β) are vectors of real numbers, with length equal to the cardinality of the variable Xi.
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We denote by Mβ→i(xi) or Mi→β(xi) the component of the vector corresponding to the
value Xi = xi.

The message update equations are as follows:

Mj→β(xj) =
∏

β′∈V (j)\β
Mβ′→j(xj) (15)

Mβ→i(xi) =
∑

xV (β)\xi

ψβ(xV (β))
∏

j∈V (β)\i
Mj→β(xj), (16)

where
∑

xV (β)\xi means summing over all configurations XV (β) with Xi set to xi.
For a tree-structured factor graph, the message updates can be scheduled such that after

two parses over the tree structure, the messages will converge. Once the messages converge,
the beliefs at each variable node are calculated as follows:

Bj(xj) =
∏

β∈V (j)

Mβ→j(xj). (17)

For a tree-structured graph, the normalized beliefs for each variable will be equal to its
marginals.

INPUT: A joint distribution p(x) defined over a tree-structured factor graph ({V, F}, E),
and a variable Xi ∈ X.

OUTPUT: Exact marginals for the variable Xi.

ALGORITHM :

1. Organize the tree so that Xi is the root of the tree.

2. Start from the leaves, propagate the messages from child nodes to parent nodes
right up to the root Xi with Equations 15 and 16.

3. The marginals of Xi can then be obtained as the normalized beliefs in Equa-
tion 17.

Figure 4: The BP algorithm for calculating the marginal of a single variable, Xi, on a
tree-structured factor graph

The algorithm for calculating the exact marginals of a given variable Xi, is given in
Figure 4. This algorithm is simply a dynamic programming procedure for calculating the
marginals, pi(Xi), by organizing the sums so that the sums at the leaves are done first. For
the simple example in Figure 1, for calculating p1(x1), the sum can be ordered as follows:

p1(x1) =
∑

x2,x3,x4

p(x)

= ψβ(x1, x2)
∑
x2

.
∑
x3

ψβ′(x1, x3)
∑
x4

ψβ′′(x2, x4)
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The BP algorithm simply carries out this sum by using the node for X1 as the root of the
tree-structured factor graph in Figure 1.

The BP algorithm can also be used for calculating marginals for all variables efficiently,
with the message passing schedule given in Figure 5. This schedule involves selecting a
random variable node as the root of the tree, and then passing the messages from the leaves
to the root, and back down to the leaves, After the two parses, all the message updates
required in the algorithm in Figure 4 for any one variable would have been performed, and
the beliefs of all the variables can be calculated from the messages. The normalized beliefs
for each variable will be equal to the marginals for the variable.

INPUT: A joint distribution p(x) defined over a tree-structured factor graph (V, F ).

OUTPUT: Exact marginals for all variables in V .

ALGORITHM :

1. Randomly select a variable as a root.

2. Upward pass: starting from leaves, propagate messages from the leaves right up
to the tree.

3. Downward pass: from the root, propagate messages back down to the leaves.

4. Calculate the beliefs of all variables as given in Equation 17.

Figure 5: The BP algorithm for calculating the marginals of all variables on a tree-
structured factor graph

If the factor graph is not tree-structured (i.e. contains loops), then the message updates
cannot be scheduled in the simple way described in the algorithm in Figure 5. In this case,
we can still apply BP by iteratively updating the messages with Equations 15 and 16, often
in a round-robin manner over all factor-variable pairs. This is done until all the messages
converge (i.e. the messages do not change over iterations). There is no guarantee that
all the messages will converge for general factor graphs. However, if they do converge, it
was observed that the beliefs calculated with Equation 17 are often a good approximation
of the exact beliefs of the joint distribution (Murphy, Weiss, & Jordan, 1999). When
applied in this manner, the BP algorithm is often called the loopy BP algorithm. Recently,
Yedidia, Freeman and Weiss (2001, 2005) have shown that loopy BP has an underlying
variational principle. They showed that the fixed points of the BP algorithm correspond to
the stationary points of the Bethe free energy. This fact serves in some sense to justify the
BP algorithm even when the factor graph it operates on has loops, because minimizing the
Bethe free energy is a sensible approximation procedure for solving the marginal problem.
We refer the reader to the work of Yedidia et al. (2005) for more details.
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4. Survey Propagation: The SP and SP-y Algorithms

Recently, the SP algorithm (Braunstein et al., 2005) has been shown to beat the best
incomplete solvers in solving hard 3-SAT instances efficiently. The SP algorithm was first
derived from principles in statistical physics, and can be explained using the cavity approach
(Mezard & Parisi, 2003). It was first given a BP interpretation in the work of Braunstein
and Zecchina (2004). In this section, we will define the SP and the SP-y algorithms for
solving SAT and Max-SAT problems, using a warning propagation interpretation for these
algorithms.

4.1 SP Algorithm for The SAT Problem

In Section 2.4.1, we have defined a joint distribution for the SAT problem (X,C), where
the energy function of a configuration is equal to the number of violated clauses for the con-
figuration. In the factor graph ({V, F}, E) representing this joint distribution, the variable
nodes in V correspond to the Boolean variables in X, and each factor node in F represents
a clause in C. In this section, we provide an intuitive overview of the SP algorithm as it
was formulated in the work of Braunstein et al. (2005).

The SP algorithm can be defined as a message passing algorithm on the factor graph
({V, F}, E). Each factor β ∈ F passes a single real number, ηβ→i to a neighboring variable
Xi in the factor graph. This real number ηβ→i is called a survey. According to the warning
propagation interpretation given in the work of Braunstein et al. (2005), the survey ηβ→i
corresponds to the probability1 of the warning that the factor β is sending to the variable
Xi. Intuitively, if ηβ→i is close to 1, then the factor β is warning the variable Xi against
taking a value that will violate the clause β. If ηβ→i is close to 0, then the factor β is
indifferent over the value taken by Xi, and this is because the clause β is satisfied by other
variables in V (β).

We first define the messages sent from a variable Xj to a neighboring factor β, as
a function of the inputs from other factors containing Xj , i.e. {ηβ′→j}β′∈V (j)\β. In SP,
this message is a vector of three numbers, Πu

j→β,Π
s
j→β, and Π0

j→β, with the following
interpretations:

Πu
j→β is the probability that Xj is warned (by other clauses) to take a value that will violate

the clause β.
Πs
j→β is the probability that Xj is warned (by other clauses) to take a value that will satisfy

the clause β.
Π0
j→β is the probability that Xj is free to take any value.

With these defintions, the update equations are as follows:

Πu
j→β = [1−

∏
β′∈V u

β
(j)

(1− ηβ′→j)]
∏

β′∈V s
β

(j)

(1− ηβ′→j), (18)

Πs
j→β = [1−

∏
β′∈V s

β
(j)

(1− ηβ′→j)]
∏

β′∈V u
β

(j)

(1− ηβ′→j), (19)

1. SP reasons over clusters of solutions, and the probability of a warning in this section is used loosely in
the SP literature to refer to the fraction of clusters for which the warning applies. In the next section,
we will define a rigorous probability distribution over covers for the RSP algorithm.
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Π0
j→β =

∏
β′∈V (j)

(1− ηβ′→j), (20)

ηβ→i =
∏

j∈V (β)−i

Πu
j→β

Πu
j→β + Πs

j→β + Π0
j→β

(21)

These equations are defined using the sets of factors V u
β (j) and V s

β (j), which has been
defined in Section 2.4.1. For the event where the variable Xj is warned to take on a value
violating β, it has to be (a) warned by at least one factor β′ ∈ V u

β (j) to take on a satisfying
value for β′, and (b) all the other factors in V s

β (j) are not sending warnings. In Equation
18, the probability of this event, Πu

j→β, is a product of two terms, the first corresponding to
event (a) and the second to event (b). The definitions of Πs

j→β and Π0
j→β are defined in a

similar manner. In Equation 21, the final survey ηβ→i is simply the probability of the joint
event that all incoming variables Xj are violating the clause β, forcing the last variable Xi

to satisfy β.
The SP algorithm consists of iteratively running the above update equations until the

surveys converge. When the surveys converged, we can then calculate local biases as follows:

Π+
j = [1−

∏
β∈V +(j)

(1− ηβ′→j)]
∏

β∈V −(j)

(1− ηβ→j), (22)

Π+
j = [1−

∏
β∈V −(j)

(1− ηβ′→j)]
∏

β∈V +(j)

(1− ηβ→j), (23)

Π0
j =

∏
β∈V (j)

(1− ηβ→j), (24)

W+
i =

Π+
j

Π+
j + Π−j + Π0

j

(25)

W−i =
Π−j

Π+
j + Π−j + Π0

j

(26)

To solve an instances of the SAT problem, the SP algorithm is run until it converges,
and a few variables that are highly constrained are set to their preferred values. The SAT
instance is then reduced to a smaller instance, and SP can be run again on the smaller
instance. This continues until SP fails to set any more variables, and in this case, a local
search algorithm such as WalkSAT is run on the remaining instance. This algorithm, called
the survey inspired decimation algorithm (Braunstein et al., 2005), is given in the algorithm
in Figure 6.

4.2 The SP-y Algorithm

In contrast to the SP algorithm, the SP-y algorithm’s objective is to solve Max-SAT in-
stances, and hence clauses are allowed to be violated, at a price. The SP algorithm can
be understood as a special case of the SP-y algorithm, with y taken to infinity (Battaglia
et al., 2004). In SP-y, a penalty value of exp(−2y) is multiplied into the distribution for
each violated clause. Hence, although the message passing algorithm allows the violation of
clauses, but as the value of y increases, the surveys will prefer configurations that violate a
minimal number of clauses.
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INPUT: A SAT problem, and a constant k.

OUTPUT: A satisfying configuration, or report FAILURE.

ALGORITHM :

1. Randomly initialize the surveys.

2. Iteratively update the surveys using Equations 18 to 21.

3. If SP does not converge, go to step 7.

4. If SP converges, calculate W+
i and W−i using Equations 25 and 26.

5. Decimation: sort all variables based on the absolute difference |W+
i −W

−
i |, and

set the top k variables to their preferred value. Simplify the instance with these
variables removed.

6. If all surveys equal zero, (no variables can be removed in step 5), output the
simplified SAT instance. Otherwise, go back to the first step with the smaller
instance.

7. Run WalkSAT on the remaining simplified instance, and output a satisfying
configuration if WalkSAT succeeds. Otherwise output FAILURE.

Figure 6: The survey inspired decimation (SID) algorithm for solving a SAT problem
(Braunstein et al., 2005)

The SP-y algorithm can still be understood as a message passing algorithm over factor
graphs. As in SP, each factor, β, passes a survey, ηβ→i, to a neighboring variable Xi,
corresponding to the probability of the warning. To simplify notations, we define η+

β→i
(resp. η−β→i) to be the probability of the warning against taking the value +1 (resp. −1),
and we define η0

β→i = 1 − η+
β→i − η

−
β→i. In practice, since a clause can only warn against

either +1 or −1 but not both, either η+
β→i or η−β→i equals zero: ηJβ,iβ→i = ηβ→i, and η−Jβ,iβ→i = 0,

where Jβ,i is defined in Definition 1.
Since clauses can be violated, it is insufficient to simply keep track of whether a variable

has been warned against a value or not. It is now necessary to keep track of how many
times the variable has been warned against each value, so that we know how many clauses
will be violated if the variable was to take a particular value. Let H+

j→β (resp. H−j→β) be
the number of times the variable Xj is warned by factors in {β′}β′∈V (j)\β against the value
+1 (resp. −1). In SP-y, the variable Xj will be forced by β to take the value +1 if H+

j→β is
smaller than H−j→β, and the penalty in this case will be exp(−2yH+

j→β). In notations used
in the work of Battaglia et al. (2004) describing SP-y, let hj→β = H+

j→β −H
−
j→β.

Battaglia et al. (2004) defined the SP-y message passing equations that calculate the
probability distribution over hj→β, based on the input surveys,

{ηβ′→j}β′∈V (j)\β = {ηβ1→j , ηβ2→j , ..., ηβ(|V (j)|−1)→j}, (27)
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where |V (j)| refers to the cardinality of the set V (j). The unnormalized distributions
P̃j→β(h) are calculated as follows:

P̃
(1)
j→β(h) = η0

β1→iδ(h) + η+
β1→iδ(h− 1) + η−β1→iδ(h+ 1), (28)

∀γ ∈ [2, |V (j)| − 1], P̃
(γ)
j→β(h) = η0

βγ→iP̃
(γ−1)
j→β (h)

+η+
βγ→iP̃

(γ−1)
j→β (h− 1) exp [−2yθ(−h)]

+η−βγ→iP̃
(γ−1)
j→β (h+ 1) exp [−2yθ(h)], (29)

P̃j→β(h) = P̃
(|V (j)|−1)
j→β (h), (30)

where δ(h) = 1 if h = 0, and zero otherwise, and θ(h) = 1 if h ≥ 0, and zero otherwise.
The above equations take into account each neighbor of j excluding β, from γ = 1 to
γ = |V (j)|−1. The penalties exp(−2y) are multiplied every time the value of hj→β decreases
in absolute value, as each new neighbor of Xj , βγ , is added. At the end of the procedure,
this is equivalent to multiplying the messages with a factor of exp(−2y×min(H+

j→β, H
−
j→β)).

The P̃j→β(h) are then normalized into Pj→β(h) by computing P̃j→β(h) for all possible
values of h in [−|V (j)|+ 1, |V (j)| − 1]. The message updates for the surveys are as follows:

W+
j→β =

|V (j)|−1∑
h=1

Pj→β(h), (31)

W−j→β =
−1∑

h=−|V (j)|+1

Pj→β(h), (32)

η
−Jβ,i
β→i = 0, (33)

η
Jβ,i
β→i =

∏
j∈V (j)\i

W
Jβ,j
j→β, (34)

η0
β→i = 1− ηJβ,iβ→i, (35)

The quantity W+
j→β (resp. W−j→β) is the probability of all events warning against the value

+1 (resp. −1). Equation 34 reflects the fact that a warning is sent from β to the variable
Xi if and only if all other variables in β are warning β that they are going to violate β.

When SP-y converges, the preference of each variable is calculated as follows:

W+
j =

|V (j)|∑
h=1

Pj(h), (36)

W−j =
−1∑

h=−|V (j)|
Pj(h), (37)

where the Pj(h) are calculated in a similar manner as the Pj→β(h), except that it does not
exclude β in its calculations.

With the above definitions for message updates, the SP-y algorithm can be used to
solve Max-SAT instances by a survey inspired decimation algorithm similar to the one for
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SP given in the algorithm in Figure 6. At each iteration of the decimation process, the SP-y
decimation procedure selects variables to fix to their preferred values based on the quantity

bfix(j) = |W+
j −W

−
j | (38)

In the work of Battaglia et al. (2004), an additional backtracking process was intro-
duced to make the decimation process more robust. This backtracking process allows the
decimation procedure to unfix variables already fixed to their values. For a variable Xj

fixed to the value xj , the following quantities are calculated:

bbacktrack(j) = −xj(W+
j −W

−
j ) (39)

Variables are ranked according to this quantity and the top variables are chosen to be
unfixed. In the algorithm in Figure 7, we show the backtracking decimation algorithm
for SP-y (Battaglia et al., 2004), where the value of y is either given as input, or can be
determined empirically.

INPUT: A Max-SAT instance and a constant k. Optional input: yin and a backtracking
probability r.

OUTPUT: A configuration.

ALGORITHM :

1. Randomly initialize the surveys.

2. If yin is given, set y = yin. Otherwise, determine the value of y with the bisection
method.

3. Run SP-y until convergence. If SP-y converges, for each variable Xi, extract a
random number q ∈ [0, 1].

(a) If q > r, sort the variables according to Equation 38 and fix the top k most
biased variables.

(b) If q < r sort the variables according to Equation 39 and unfix the top k most
biased variables.

4. Simplify the instance based on step (3). If SP-y converged and return a non-
paramagnetic solution (a paramagnetic solution refers to a set of {bfix(j)}j∈V
that are not biased to any value for all variables), go to step (1).

5. Run weighted WalkSAT on the remaining instance and outputs the best config-
uration found.

Figure 7: The survey inspired decimation (SID) algorithm for solving a Max-SAT instance
(Battaglia et al., 2004)
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5. Relaxed Survey Propagation

It was shown (Maneva et al., 2004; Braunstein & Zecchina, 2004) that SP for the SAT
problem can be reformulated as a BP algorithm on an extended factor graph. However,
their formulation cannot be generalized to explain the SP-y algorithm which is applicable to
Max-SAT problems. In a previous paper (Chieu & Lee, 2008), we extended the formulation
in the work of Maneva et al. (2004) to address the Max-SAT problem. In this section,
we will modify the formulation in our previous paper (Chieu & Lee, 2008) to address the
weighted Max-SAT problem, by setting up an extended factor graph on which we run the BP
algorithm. In Theorem 3, we show that this formulation generalizes the BP interpretation
of SP given in the work of Maneva et al. (2004), and in the main theorem (Theorem 2), we
show that running the loopy BP algorithm on this factor graph estimates marginals over
covers of configurations violating a set of clauses with minimal total weight.

We will first define the concept of covers in Section 5.1, before defining the extended
factor graph in Section 5.2. In the rest of this section, given a weighted Max-SAT problem
(X,C,W), we will assume that variables in X take values in {−1,+1, ∗}: the third value is
a “don’t care” state, corresponding to a no-warning message for the SP algorithm defined
in the Section 4.

5.1 Covers in Weighted Max-SAT

First, we need to define the semantics of the value ∗ as a “don’t care” state.

Definition 4. (Maneva et al., 2004) Given a configuration x, we say that a variable Xi

is the unique satisfying variable for a clause β ∈ C if it is assigned sβ,i whereas all other
variables Xj in the clause are assigned uβ,j (see Definition 2 for the definitions of sβ,i and
uβ,i). A variable Xi is said to be constrained by the clause β if it is the unique satisfying
variable for β. A variable is unconstrained if it is not constrained by any clauses. Define

CONi,β(xβ) = Ind(xi is constrained by β), (40)

where Ind(P ) equals 1 if the predicate P is true, and 0 otherwise.

As an illustration, consider the configuration X = (+1,−1,−1) in Example 2. In this
configuration, X1 = +1 is constrained by the clauses β5 and β6, X2 = −1 is constrained
by β2, while X3 = −1 is unconstrained: flipping X3 to +1 will not violate any additional
clauses for the configuration.

In the following definition, we redefine when a configuration taking values in {−1,+1, ∗}
satisfies or violates a clauses.

Definition 5. A configuration satisfies a clause β if and only if (i) β contains a variable Xi

set to the value sβ,i, or (ii) when at least two variables in β take the value ∗. A configuration
violates a clause β if all the variables Xj in β are set to uβ,j. A configuration x is invalid
for clause β if and only if exactly one of the variables in β is set to ∗, and all the other
remaining variables in β are set to uβ,i. A configuration is valid if it is valid for all clauses
in C.

The above definition for invalid configurations reflects the interpretation that the ∗ value
is a “don’t care” state: clauses containing a variable Xi = ∗ should already be satisfied by
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other variables, and the value of Xi does not matter. So Xi = ∗ cannot be the last remaining
possibility of satisfying any clause. In the case where a clause contains two variables set to
∗, the clause can be satisfied by either one of these two variables, so the other variable can
take the “don’t care” value.

We define a partial order on the set of all valid configurations as follows (Maneva et al.,
2004):

Definition 6. Let x and y be two valid configurations. We write x ≤ y if ∀i, (1) xi = yi
or (2) xi = ∗ and yi 6= ∗.

This partial order defines a lattice, and Maneva et al. (2004) showed that SP is a
“peeling” procedure that peels a satisfying configuration to its minimal element in the
lattice. A cover is a minimal element in the lattice. In the SAT region, a cover can be
defined as follows (Kroc, Sabharwal, & Selman, 2007):

Definition 7. A cover is a valid configuration x ∈ {−1,+1, ∗}N that satisfies all clauses,
and has no unconstrained variables assigned -1 or +1.

The SP algorithm was shown to return marginals over covers (Maneva et al., 2004).
In principle, there are two kinds of covers: true covers which correspond to satisfying
configurations, and false covers which do not. Kroc et al. (2007) showed empirically that
the number of false covers is negligible for SAT instances. For RSP to apply to weighted
Max-SAT instances, we introduce the notion of v-cover:

Definition 8. A v-cover is a valid configuration x ∈ {−1,+1, ∗}N such that

1. the total weight of clauses violated by the configuration equals v,

2. x has no unconstrained variables assigned -1 or +1.

Hence the covers defined in Definition 7 are simply v-covers with v = 0 (i.e. 0-covers).

5.2 The Extended Factor Graph

In this section, we will define a joint distribution over an extended factor graph that is
positive only over v-covers. First, we will need to define functions that will be used to
define the factors in the extended factor graph.

Definition 9. For each clause, β ∈ C, the following function assigns different values to
configurations that satisfy, violate or are invalid (see Definition 5) for β:

VALβ(xV (β)) =


1 if xV (β) satisfies β
exp(−wβy) if xV (β) violates β
0 if xV (β) is invalid

(41)

In the above definition, we introduced a parameter y in the RSP algorithm, which plays
a similar role to the y in the SP-y algorithm. The term exp(−wβy) is the penalty for
violating a clause with weight wβ.
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Definition 10. (Maneva et al., 2004) Given a configuration x, we define the parent set
Pi(x) of a variable Xi to be the set of clauses for which Xi = xi is the unique satisfying
variable in a configuration x, (i.e. the set of clauses constraining Xi to its value). Formally,

Pi(x) = {β ∈ C|CONi,β(xV(β)) = 1} (42)

In Example 2, for the configuration x = (+1,−1,−1), the parent sets are P1(x) =
{β5, β6}, P2(x) = {β2}, and P3(x) = ∅.

Given the weighted Max-SAT instance (X,C,W) and its factor graph, G = ({V, F}, E),
we now construct another distribution with an associated factor graph Gs = ({V, Fs}, Es) as
follows. For each i ∈ V , let P (i) be the set of all possible parent sets of the variable Xi. Due
to the restrictions imposed by our definition, Pi(x) must be contained in either V +(i) or
V −(i), but not both. Therefore, the cardinality of P (i) is 2|V

+(i)|+2|V
−(i)|−1. Our extended

factor graph is defined on set of the variables Λ = (Λ1,Λ2, ...,Λn) ∈ X1 × X2 × ... × Xn,
where Xi := {−1,+1, ∗} × P (i). Hence this factor graph has the same number of variables
as the original SAT instance, but each variable has a large cardinality. Given configurations
x for the SAT instance, we denote configurations of Λ as λ(x) = {λi(x)}i∈V , where λi(x) =
(xi, Pi(x)).

The definitions given so far define the semantics of valid configurations and parent sets,
and in the rest of this section, we will define factors in the extended factor graph Gs to
ensure that the above definitions are satisfied by configurations of Λ.

The single variable compatibilities (Ψi) are defined by the following factor on each
variable λi(x):

Ψi(λi(x) = {xi, Pi(x)}) =


0 if Pi(x) = ∅, xi 6= ∗
1 if Pi(x) = ∅, xi = ∗
1 for any other valid (xi, Pi(x))

. (43)

The first case in the above definition for Pi(x) = ∅ and xi 6= ∗ corresponds to the case where
the variable Xi is unconstrained, and yet takes a value in {−1,+1}. Valid configurations
that are not v-covers (with unconstrained variables set to −1 or +1) have a zero value in
the above factor. Hence only v-covers have a positive value for these factors. In the last
case in the above definition, the validity of (xi, Pi(x)) simply means that if xi = +1 (resp.
xi = −1), Pi(x) ⊆ V +(i) (resp. Pi(x) ⊆ V −(i).).

The clause compatibilities (Ψβ) are:

Ψβ(λ(x)V (β)) = VALβ(xV(β))
∏
k∈V (β) Ind

(
[β ∈ Pk(x)] = CONβ,k(xV (β))

)
, (44)

where Ind is defined in Definition 4. These clause compatibilities introduce the penalties in
VALβ(xV (β)) into the joint distribution. The second term in the above equation enforces
that the parent sets Pk(x) are consistent with the definitions of parent sets in Definition 10
for each variable Xk in the clause β.

The values of x determines uniquely the values of P = {Pi(x)}i∈V , and hence the
distribution over λ(x) = {xi, Pi(x)}i∈V is simply a distribution over x.

Theorem 1. Using the notation UNSAT(x) to represent the set of all clauses violated by
x, the underlying distribution p(Λ) of the factor graph defined in this section is positive only
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γ'1

β'2

γ'2

β'5

β'6 β'1 β'3

β'4

Λ1 Λ2 Λ3 γ'3

Figure 8: The extended factor graph for the SAT instance given in Example 1. The factor
nodes β′i correspond to the clause compatibility factors Ψβi , and the single variable
factor nodes γ′i represents the single variable compatibility factors Ψi. This factor
graph is similar to the original factor graph of the SAT instance in Figure 2, except
that it has additional factor nodes γ′i.

over v-covers, and for a v-cover x, we have:

p(X = x) = p(Λ = λ(x)) ∝
∏

β∈UNSAT(x)

exp(−wβy), (45)

Proof. Configurations that are not v-covers are either invalid or contains unconstrained
variables set to −1 or +1. For invalid configurations, the distribution is zero because of the
definition of VALβ, and for configurations with unconstrained variables set to −1 or +1,
the distribution is zero due to the definition of the factors ψi. For each v-cover, the total
penalty from violated clauses is the product term in Equation 45.

The above definition defines a joint distribution over a factor graph. The RSP algorithm
is a message passing algorithm defined on this factor graph:

Definition 11. The RSP algorithm is defined as the loopy BP algorithm applied to the
extended factor graph Gs associated with a MaxSAT instance (X,C,W).

In Section 6, we will formulate the message passing updates for RSP, as well as a
decimation algorithm for using RSP as a solver for weighted Max-SAT instances. As an
example, Figure 8 shows the extended factor graph for the weighted Max-SAT instance
defined in Example 1.

Definition 12. We define a min-cover for a weighted Max-SAT instance as the m-cover,
where m is the minimum total weight of violated clauses for the instance.

Theorem 2. When y is taken to ∞, RSP estimates marginals over min-covers in the
following sense: the stationary points of the RSP algorithm correspond to the stationary
points of the Bethe free energy on a distribution that is uniform over min-covers.
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Energy = 4+1,+1,+1

-1,-1,+1 Energy = 9

-1,-1,-1 Energy = 11

-1,+1,-1 +1,+1,-1

*,+1,-1
+1,-1,-1 +1,-1,+1

+1,-1,*

Energy = 2

-1,+1,+1 Energy = 3

Energy = 1

Figure 9: Energy landscape for the weighted Max-SAT instance given in Example 2. Each
node represents a configuration for the variables (x1, x2, x3). For example, the
node (−1,+1,−1) represents the configuration (x1, x2, x3) = (−1,+1,−1).

Proof. The ratio of the probability of a v-cover to that of a (v + ε)-cover equals exp(εy).
When y is taken to ∞, the distribution in Equation 45 is positive only over min-covers.
Hence RSP, as the loopy BP algorithm over the factor graph representing Equation 45,
estimates marginals over min-covers.

In the application of RSP to weighted Max-SAT instances, taking y to ∞ would often
cause the RSP algorithm to fail to converge. Taking y to a sufficiently large value is often
sufficient for RSP to be used to solve weighted Max-SAT instances.

In Figure 9, we show the v-covers of a small weighted Max-SAT example in Example 2.
In this example, there is a unique min-cover with X1 = +1, X2 = −1, and X3 = ∗.

Maneva et al. (2004) formulated the SP-ρ algorithm, which is equivalent to the SP
algorithm (Braunstein et al., 2005) for ρ = 1. The SP-ρ algorithm is the loopy BP algorithm
on the extended factor graph defined in the work of Maneva et al. (2004). Comparing the
definitions of the extended factor graph and factors for RSP and SP-ρ, we have (Chieu &
Lee, 2008):

Theorem 3. By taking y →∞, RSP is equivalent to SP-ρ with ρ = 1.

Proof. The definitions of the joint distribution for SP-ρ for ρ = 1 (Maneva et al., 2004),
and for RSP in this paper differ only in Definition 9, and with y → ∞ in RSP, their
definitions become identical. Since SP-ρ and RSP are both equivalent to the loopy BP
on the distribution defined on their extended factor graphs, the equivalence of their joint
distribution means that the algorithms are equivalent.

Taking y to infinity corresponds to disallowing violated clauses, and SP-ρ was formulated
for satisfiable SAT instances, where all clauses must be satisfied. For SP-ρ, clause weights
are inconsequential as all clauses have to be satisfied.

In this paper, we disallow unconstrained variables to take the value ∗. In the Appendix
A, we give an alternative definition for the single variable potentials in Equation 43. With
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this definition, Maneva et al. (2004) defines a smoothing interpretation for SP-ρ. This
smoothing can also be applied to RSP. See Theorem 6 in the work of Maneva et al. (2004)
and the Appendix A for more details.

5.3 The Importance of Convergence

It was found that message passing algorithms such as the BP and the SP algorithms perform
well whenever they converge (e.g., see Kroc, Sabharwal, & Selman, 2009). While the success
of the RSP algorithm on random ensembles of Max-SAT and weighted Max-SAT instances
are believed to be due to the clustering phenomenon on such problems, we found that
RSP could also be successful in cases where the clustering phenomenon is not observed.
We believe that the presence of large clusters help the SP algorithm to converge well, but
as long as the SP algorithm converges, the presence of clusters is not necessary for good
performance.

When covers are simply Boolean configurations (with no variables taking the ∗ value),
they represent singleton clusters. We call such covers degenerate covers. In many structured
and non random weighted Max-SAT problems, we have found that the covers we found are
often degenerate. In a previous paper (Chieu, Lee, & Teh, 2008), we have defined a modified
version of RSP for energy minimization over factor graphs, and we show in Lemma 2 in
that paper that configurations with * have zero probability, i.e. all covers are degenerate.
In that paper, we showed that the value of y can be tuned to favor the convergence of the
RSP algorithm.

In Section 7.3, we show the success of RSP on a few benchmark Max-SAT instances.
In trying to recover the covers of the configurations found by RSP, we found that all the
benchmark instances used have degenerate covers. The fact that RSP converged on these
instances is sufficient for RSP to outperform local search algorithms.

6. Using RSP for Solving the Weighted Max-SAT Problem

In the previous section, we defined the RSP algorithm in Definition 11 to be the loopy BP
algorithm over the extended factor graph. In this section, we will derive the RSP message
passing algorithm based on this definition, before giving the decimation-based algorithm
used for solving weighted Max-SAT instances.

6.1 The Message Passing Algorithm

The variables in the extended factor graphs are no longer Boolean. They are of the form
λi(x) = (xi, Pi(x)), which are of large cardinalities. In the definition of the BP algorithm,
we have stated that the message vector passed between factors and variables are of length
equal to the cardinality of the variables. In this section, we show that the messages passed
in RSP can be grouped into a few groups, so that each message passed between variables
and factors has only three values.

In RSP, the factor to variable messages are grouped as follows:

M s
β→i if xi = sβ,i, Pi(x) = S ∪ {β}, where S ⊆ V s

β (i),
(all cases where the variable xi is constrained by the clause β),
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Mu
β→i if xi = uβ,i, Pi(x) ⊆ V u

β (i),
(all cases where the variable xi is constrained to be uβ,i by other clauses),

M s∗
β→i if xi = sβ,i, Pi(x) ⊆ V s

β (i),
(all cases where the variable xi = sβ,i is not constrained by β. At least one other
variable xj in β satisfies β or equals ∗. Otherwise xi will be constrained),

M∗∗β→i if xi = ∗, Pi(x) = ∅.

The last two messages are always equal:

M∗β→i = M s∗
β→i = M∗∗β→i.

This equality is due to the fact that for a factor that is not constraining its variables, it
does not matter whether a variable is satisfying or is ∗, as long as there are at least two
variables that are either satisfying or is ∗. In the following, we will consider the two equal
messages as a single message, M∗β→i.

The variable to factor messages are grouped as follows:

Rsi→β:=
∑
S⊆V s

β
(i)Mi→a(sβ,i, S ∪ {β}),

Variable xi is constrained by β to be sβ,i,

Rui→β:=
∑
Pi(x)⊆V u

β
(i)Mi→a(uβ,i, Pi(x)),

Variable xi is constrained by other clauses to be uβ,i,

Rs∗i→β:=
∑
Pi(x)⊆V s

β
(i)Mi→a(sβ,i, Pi(x)),

Variable xi is not constrained by β, but constrained by other clauses to be sβ,i,

R∗∗i→β:= Mi→β(∗, ∅),
Variable xi unconstrained and equals *.

The last two messages can again be grouped as one message (as was done in our previous
paper, Chieu & Lee, 2008) as follows,

R∗i→β = Rs∗i→β +R∗∗i→β,

since in calculating the updates of the Mβ→j messages from the Ri→β messages, only R∗i→β
is required. The update equations of RSP for weighted Max-SAT are given in Figure 10.
These update equations are derived based on loopy BP updates in Equations 15 and 16 in
Section 3. In the worst case in a densely connected factor graph, each iteration of updates
can be performed in O(MN) time, where N is the number of variables, and M the number
of clauses.

6.1.1 Factor to Variable Messages

We will begin with the update equations for the messages from factors to variables, given
in Equations 46, 47 and 48. The message M s

β→i groups cases where Xi is constrained by
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M s
β→i =

∏
j∈V (β)\{i}

Ruj→β (46)

Mu
β→i =

 ∏
j∈V (β)\{i}

(Ruj→β +R∗j→β) +
∑

k∈V (β)\{i}
(Rsk→β −R∗k→β)

∏
j∈V (β)\{i,k}

Ruj→β


+(e−wβy − 1)

∏
j∈V (β)\{i}

Ruj→β (47)

M∗β→i =
∏

j∈V (β)\{i}
(Ruj→β +R∗j→β)−

∏
j∈V (β)\{i}

Ruj→β (48)

Rsi→β =
∏

γ∈V u
β

(i)

Mu
γ→i

 ∏
γ∈V s

β
(i)

(M s
γ→i +M∗γ→i)

 (49)

Rui→β =
∏

γ∈V s
β

(i)

Mu
γ→i

 ∏
γ∈V u

β
(i)

(M s
γ→i +M∗γ→i)−

∏
γ∈V ua (i)

M∗γ→i

 (50)

R∗i→β =
∏

γ∈V u
β

(i)

Mu
γ→i

 ∏
γ∈V s

β
(i)

(M s
γ→i +M∗γ→i)−

∏
γ∈V s

β
(i)

M∗γ→i


+
∏

γ∈V s
β

(i)∪V u
β

(i)

M∗γ→i (51)

Bi(−1) ∝
∏

β∈V +(i)

Mu
β→i

 ∏
β∈V −(i)

(M s
β→i +M∗β→i)−

∏
β∈V −(i)

M∗β→i

 (52)

Bi(+1) ∝
∏

β∈V −(i)

Mu
β→i

 ∏
β∈V +(i)

(M s
β→i +M∗β→i)−

∏
β∈V +(i)

M∗β→i

 (53)

Bi(∗) ∝
∏

β∈V (i)

M∗β→i (54)

Figure 10: The update equations for RSP. These equations are BP equations for the factor
graph defined in the text.
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the factor β. This means that all other variables in β are violating the factor β, and hence
we have Equation 46

M s
β→i =

∏
j∈V (β)\{i}

Ruj→β,

where Ruj→β are messages from neighbors of β stating that they will violate β.
The next equation for Mu

β→i states that the variable Xi is violating β. In this case, the
other variables in β are in these possible cases

1. Two or more variables in β satisfying β, with the message update∏
j∈V (β)\{i}

(Ruj→β +R∗j→β)−
∑

k∈V (β)\{i}
R∗k→β

∏
j∈V (β)\{i,k}

Ruj→β −
∏

j∈V (β)\{i}
Ruj→β.

2. Exactly one variable in V (β)\{i} constrained by β, and all other variables are violating
β, with the message update∑

k∈V (β)\{i}
Rsk→β

∏
j∈V (β)\{i,k}

Ruj→β

3. All other variables are violating β, and in this case, there is a penalty factor of
exp(−wβy), with the message update

exp(−wβy)
∏

j∈V (β)\{i}
Ruj→β

The sum of these three cases result in Equation 48.
The third update equation for M∗β→i is for the case where the variable Xi is uncon-

strained by β, satisfying β with sβ,i (for the case M s∗
β→i) or ∗ (for M∗∗β→i). This means that

there is at least one other satisfying variable that is unconstrained by β, with the message
update ∏

j∈V (β)\{i}
(Ruj→β +R∗j→β)−

∏
j∈V (β)\{i}

Ruj→β

6.1.2 Variable to Factor Messages

The first message Rsi→β consists of the case where the variable Xi is constrained by the
factor β, which means that it satisfies neighboring factors in V s

β (i), and violates factors in
V u
β (i), with probability

∏
γ∈V u

β
(i)

Mu
γ→i

 ∏
γ∈V s

β
(i)

(M s
γ→i +M s∗

γ→i)

 .
The second message Rui→β is the case where Xi violates β. In this case, all other variables

in V u
β (i) are satisfied, while clauses in V s

β (i) are violated. In this case, the variable Xi must
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be constrained by one of the clauses in V u
β (i). Hence the message update is

∏
γ∈V s

β
(i)

Mu
γ→i

 ∏
γ∈V u

β
(i)

(M s
γ→i +M s∗

γ→i)−
∏

γ∈V u
β

(i)

M s∗
γ→i


The third message R∗i→β is the sum of two messages Rs∗i→β and R∗∗i→β. For the message

Rs∗i→β, the variable Xi satisfies β but is not constrained by β, and so it must be constrained
by some other factors:

∏
γ∈V u

β
(i)

Mu
γ→i

 ∏
γ∈V s

β
(i)

(M s
γ→i +M s∗

γ→i)−
∏

γ∈V s
β

(i)

M s∗
γ→i


The second part of the message, R∗∗i→β, is the case where Xi = ∗, :∏

γ∈V s
β

(i)∪V u
β

(i)

M∗∗γ→i,

and the sum of the above two equations results in Equation 51.

6.1.3 The Beliefs

The beliefs can be calculated from the factor to variable messages once the algorithm con-
verges, to obtain estimates of the marginals over min-covers. The calculation of the beliefs
is similar to the calculation of the variable to factor messages.

The belief Bi(−1) is the belief or the variable Xi taking the value −1. This is the case
where the variable Xi satisfies clauses in V −(i), and violates clauses in V +(i). In this case,
Xi must be constrained by one of the factors in V −(i). Hence the belief is as follows:

∏
β∈V +(i)

Mu
β→i

 ∏
β∈V −(i)

(M s
β→i +M s∗

β→i)−
∏

β∈V −(i)

M s∗
β→i

 .
The calculation of the belief Bi(+1) is similar to Bi(−1). The belief Bi(∗) is the case where
Xi = ∗, and hence it is calculated as follows:∏

β∈V (i)

M∗∗β→i.

6.2 Comparing the RSP and SP-y Message Passing Algorithms

The message passing algorithms for RSP and SP-y share many similarities. Both algorithms

1. include a multiplicative penalty into the distribution for each violated clause.

2. contain a mechanism for a “don’t care” state. For SP-y, this occurs when a variable
receives no warnings from neighboring factors.

However, there are a number of significant differences in the two algorithms.
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1. In RSP, the penalties are imposed as each factor passes a message to a variable. For
SP-y, the penalties are imposed when a variable compiles all the incoming warnings,
and decides how many factors it is going to violate.

2. Importantly, in RSP, variables participating in violated clauses can never take the *
value. For SP-y, a variable receiving an equal number of warnings from the set of
factors {β′}β′∈V (i)\β against taking the +1 and the −1 value (i.e. hj→β = H+

j→β −
H−j→β = 0) will decide to pass a message with no warning to β. Hence for SP-y, it is
possible for variables in violated clauses to take a “don’t care” state.

3. In the work of Battaglia et al. (2004) where SP-y was formulated with the cavity
approach, it was found that the optimal value of y for a given Max-SAT problem is
y∗ = δΣ

δe , where Σ is the complexity in statistical physics, and e is the energy density
(Mezard & Zecchina, 2002). They stated that y∗ is a finite value when the energy of
the Max-SAT problem is not zero. In Theorem 2, we show that for RSP, y should
be as large as possible so that the underlying distribution is over min-covers. In our
experimental results in Figure 12, we showed that this is indeed true for RSP, as long
as it converges.

INPUT: A (weighted) Max-SAT instance, a constant k, and yin

OUTPUT: A configuration.

ALGORITHM :

1. Randomly initialize the surveys and set y = yin.

2. Run RSP with y. If RSP converges, sort the variables according to the quantities
bi = |P (xi = +1) − P (xi = −1)|, and fix the top k variables to their preferred
values, subject to the condition that bi > 0.5.

3. (For weighted Max-SAT) If RSP fails to converge, adjust the value of y.

4. If RSP converges and at least one variable is set, go back to step (1) with the sim-
plified instance. Otherwise, run the (weighted) WalkSAT solver on the simplified
instance and output the configuration found.

Figure 11: The decimation algorithm for RSP for solving a (weighted) Max-SAT instance

6.3 The Decimation Algorithm

The decimation algorithm is shown in Figure 11. This is the algorithm we used for our
experiments described in Section 7. In comparing RSP with SP-y on random Max-SAT
instances in Section 7.1, we run both algorithms with a fixed yin, and vary the yin over
a range of values. Comparing Figure 11 to Figure 7 for SP-y, the condition used in SP-
y to check for a paramagnetic solution is replaced by the condition given in Step (2) in
Figure 11. In the experimental results in Section 7.1, we used the SP-y implementation
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available online (Battaglia et al., 2004), which contains a mechanism for backtracking on
decimation decisions (see Figure 7). In Section 7.1, RSP still outperforms SP-y despite not
backtracking on its decisions. When running RSP on weighted Max-SAT, we found that
it was necessary to adjust y dynamically during the decimation process. For details on
experimental settings, please refer to Section 7.

7. Experimental Results

We run experiments on random Max-3-SAT, random weighted Max-SAT, as well as on a
few benchmark Max-SAT instances used in the work of Lardeux, Saubion, and Hao (2005).

#Viols #Viols

Figure 12: Behaviour of SP-y and RSP over varying values of y on the x-axis, and the
number of violated clauses (#viols) on the y-axis. The comparison of the per-
formances between RSP and SP-y are shown in Table 1. The objective of showing
the graphs in this figure is to show that the behavior of RSP over varying y is
consistent with Theorem 2: as long as RSP converges, its performance improves
as y increases. In the graph, RSP reaches a plateau when it fails to converge.This
property allows for a systematic search for a good value of y to be used. The
behavior of SP-y over varying y is less consistent.

.

7.1 Random Max-3-SAT

We run experiments on randomly generated Max-3-SAT instances of 104 variables, with
different clause-to-variable ratios. The random instances are generated by the SP-y code
available online (Battaglia et al., 2004). In Figure 12, we compare SP-y and RSP on random
Max-3-SAT with different clause-to-variable ratio, α. We vary α from 4.2 to 5.2 to show the
performance of SP-y and RSP in the UNSAT region of 3-SAT, beyond its phase transition
at αc ≈ 4.267. For each value of α, the number of violated clauses (y-axis) is plotted against
the value of y used.
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We perform the decimation procedure in Figure 11 for RSP, for a fixed value of yin,
decimating 100 variables at a time (i.e. k = 100). For SP-y, we run the SP-y code available
on line, with the option of decimating 100 variables at each iteration, and with two different
settings: with and without backtracking (Battaglia et al., 2004). Backtracking is a proce-
dure used in SP-y to improve performance, by unfixing previously fixed variables at a rate
r = 0.2, so that errors made by the decimation process can be corrected. For RSP, we do
not run backtracking. Note that the y in our formulation equals to 2y in the formulation
in the work of Battaglia et al. (Battaglia et al., 2004).

Both SP-y and RSP fail to converge when y becomes large enough. When this happens,
the output of the algorithm is the result returned by WalkSAT on the original instance. In
Figure 12, we see this happening when a curve reaches a horizontal line, signifying that the
algorithm is returning the same configuration regardless of y (we “seed” the randomized
WalkSAT so that results are identical when instances are identical). From Figure 12, we
see RSP performs more consistently than SP-y: as y increases, the performance of RSP
improves, until a point where RSP fails to converge. Interestingly for Max-3-SAT instances,
we observed that once RSP converges for a value of y for a given instance, it will continue to
converge for the same value of y throughout the decimation process. Hence, the best value
of y for RSP is obtainable without going through the decimation process: we can commence
decimation at the largest value of y for which RSP converges. In Table 1, we show that RSP
outperforms SP-y for α ≥ 4.7, despite the fact that we did not allow backtracking for RSP.
We also compare RSP and SP-y with the local search solvers implemented in UBCSAT
(Tompkins & Hoos, 2004). We run 1000 iterations of each of the 20 Max-SAT solvers in
UBCSAT, and take the best result among the 20 solvers. The results are shown in Table 1.
We see that the local solvers in UBCSAT does worse than both RSP and SP-y. We have
also tried running complete solvers such as toolbar (de Givry, Heras, Zytnicki, & Larrosa,
2005) and maxsatz (Li, Manyà, & Planes, 2006). They are unable to deal with instances of
size 104.

7.2 Random Weighted Max-3-SAT

We have also run experiments on randomly generated weighted Max-3-SAT instances. These
instances are generated in the same way as the instances for Max-3-SAT, and in addition,
the weights of each clause is uniformly sampled as integers in the set [1,M ], where M is
the upper bound on the weights. We show the experimental results for M = 5 and M = 10
in Figure 13. We compare RSP with the 13 weighted Max-SAT solvers implemented in
UBCSAT. For RSP, we run all our experiments with an initial y set to 10, and whenever
the algorithm fails to converge, we lower the value of y by 1, or halve the value of y if y
is less than 1 (see Figure 11). We see that RSP outperforms UBCSAT consistently in all
experiments in Figure 13.

7.3 Benchmark Max-SAT Instances

We compare RSP with UBCSAT on instances used in the work of Lardeux et al. (2005),
which were instances used in the SAT 2003 competition. Among the 27 instances, we use
the seven largest instances with more than 7000 variables. We run RSP in two settings:
decimating either 10 or 100 variables at a time. We run RSP for increasing values of y: for
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Table 1: Number of violated clauses attained by each method. For SP-y, “SP-y (BT)” (SP-
y with backtracking), and RSP, the best result is selected over all y. For each α,
we show the best performance in bold face. The column “Fix” shows the number
of variables fixed by RSP at the optimal y, and “Time” the time taken by RSP
(in minutes) to fix those variables, on an AMD Opteron 2.2GHz machine.

α UBCSAT SP-y SP-y(BT) RSP Fix Time (minutes)
4.2 47 0 0 0 7900 24
4.3 68 9 7 10 7200 43
4.4 95 42 31 36 8938 82
4.5 128 67 67 65 9024 76
4.6 140 98 89 90 9055 45
4.7 185 137 130 122 9287 76
4.8 232 204 189 172 9245 52
4.9 251 223 211 193 9208 62
5.0 278 260 224 218 9307 66
5.1 311 294 280 267 9294 42
5.2 358 362 349 325 9361 48

α

W-viol

α

W-viol

Figure 13: Experimental results for weighted Max-SAT instances. The x-axis shows the
value of α, and the y-axis (W-viol) is the number of violated clauses returned
by each algorithm.

each y, RSP fixes a number of spins, and we stop increasing y when the number of spins
fixed decreases over the previous value of y. For UBCSAT, we run 1000 iterations for each
of the 20 solvers. Results are shown in Table 2. Out of the seven instances, RSP fails to
fix any spins on the first one, but outperforms UBCSAT on the rest. Lardeux et al. (2005)
did not show best performances in their paper, but their average results were an order of
magnitude higher than results in Table 2. Figure 12 shows that finding a good y for SP-y
is hard. On the benchmark instances, we run SP-y with the “-Y” option (Battaglia et al.,
2004) that uses dichotomic search for y: SP-y failed to fix any spins on all 7 instances.
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Table 2: Benchmark Max-SAT instances. Columns: “instance” shows the instance name in
the paper of Lardeux et al. (2005), “nvar” the number of variables, “ubcsat” and
“rsp-x” (x is the number of decimations at each iteration) the number of violated
clauses returned by each algorithm, and “fx-x” the number of spins fixed by RSP.
Best results are indicated in bold face.

instance nvar ubcsat rsp-100 fx-100 rsp-10 fx-10
family: purdom-10142772393204023

fw 9366 83 357 0 357 0
nc 8372 74 33 8339 35 8316
nw 8589 73 24 8562 28 8552

family: pyhala-braun-unsat
35-4-03 7383 58 68 7295 44 7299
35-4-04 7383 62 53 7302 41 7304
40-4-02 9638 86 57 9547 65 9521
40-4-03 9638 76 77 9521 41 9568

The success of the SP family of algorithms on random ensembles of SAT or Max-SAT
problem are usually due to the clustering phenomenon on such random ensembles. As the
benchmark instances are not random instances, we attempted to see if the configurations
found by RSP do indeed belong to a cover representing a cluster of solutions. Rather
disappointingly, we found that for all 6 solutions where RSP outperformed local search
algorithms, the variables in the solutions are all constrained by at least one clause. Hence,
the v-covers found are degenerate covers, i.e. the covers do not contain variables set to
∗. It appears that the success of RSP on these benchmark instances is not due to the
clustering phenomenon, but simply because RSP manages to converge for these instances,
for some value of y. Kroc, Sabharwal, and Selman (2009) made a similar observation: the
convergence of BP or SP like algorithms is often sufficient for obtaining a good solution to
a given problem. As discussed in Section 5.3, the ability to vary y to improve convergence
is a useful feature of RSP, but one that is distinct from its ability to exploit the clustering
phenomenon.

8. Conclusion

While recent work on Max-SAT or weighted Max-SAT tends to focus more on complete
solvers, these solvers are unable to handle large instances. In the Max-SAT competition
2007 (Argelich, Li, Manya, & Planes, 2007), the largest Max-3-SAT instances used have
only 70 variables. For large instances, complete solvers are still not practical, and local
search procedures have been the only feasible alternative. SP-y, generalizing SP, has been
shown to be able to solve large Max-3-SAT instances at its phase transition, but lacks the
theoretical explanations that recent work on SP has generated.

For 3-SAT, there is an easy-hard-easy transition as the clause-to-variable ratio increases.
For Max-3-SAT, however, it has been shown empirically that beyond the phase transition
of satisfiability, all instances are hard to solve (Zhang, 2001). In this paper, we show that
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RSP outperforms SP-y as well as other local search algorithms on Max-SAT and weighted
Max-SAT instances, well beyond the phase transition region.

Both RSP and SP-y do well on Max-SAT instances near the phase transition. The
mechanisms behind SP-y and RSP are similar: both algorithms impose a penalty term for
each violated constraint, and both reduce to SP when y → ∞. SP-y uses a population
dynamics algorithm, which can also be seen as a warning propagation algorithm. In this
paper, we have formulated the RSP algorithm as a BP algorithm over an extended factor
graph, enabling us to understand RSP as estimating marginals over min-covers.
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Appendix A. Smoothing Interpretation for RSP

In the definition of SP-ρ (Maneva et al., 2004), the parameter ρ was introduced to define a
whole family of algorithms. For ρ = 1, the SP-ρ algorithm corresponds to the SP algorithm,
while for ρ = 0, the SP-ρ algorithm corresponds to the BP algorithm. In this section, we
develop a more general version of the extended factor graph defined in Section 5, that
incorporates the ρ in SP-ρ. We will call the corresponding RSP algorithm on this new
factor graph the RSP-ρ algorithm.

The only difference between the factor graph for RSP-ρ and the one in Section 5 is the
definition of the variable compatibilities in Equation 43. Following notations in the work
of Maneva et al. (2004), we introduce the parameters ω0 and ω∗, and we restrict ourselves
to the case where ω0 + ω∗ = 1 (The ρ in SP-ρ or RSP-ρ is equal to ω∗). We redefine the
variable compatibilities as follows

Ψi(λi(x) = {xi, Pi(x)}) =


ω0 if Pi(x) = ∅, xi 6= ∗
ω∗ if Pi(x) = ∅, xi = ∗
1 for any other valid (xi, Pi(x))

, (55)

with ω0 + ω∗ = 1. The definition in Equation 43 corresponds to the particular case where
ω0 = 0 and ω∗ = 1. In Section 5, we have defined the factor graph so that unconstrained
variables must take the value ∗. With the new definition of Ψi above, unconstrained vari-
ables are allowed to take on the values −1 or +1 with weight ω0, and the ∗ value with
weight ω∗.

With the above definition, the joint distribution in Equation 45 is redefined as follows:

P (x) = P ({xk, Pk}k) ∝ ω
n0(x)
0 ω

n∗(x)
∗

∏
β∈UNSAT(x)

exp(−wβy). (56)

where n0(x) is the number of unconstrained variables in x taking +1 or −1, and n∗(x) the
number of unconstrained variables taking ∗ in x.

Case ω∗ = 1: we have studied this case in the main paper: the underlying distribution
is a distribution which is positive only over v-covers.
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Case ω∗ = 0: in this case, only configurations x with n∗(x) = 0 have non-zero prob-
ability in the distribution given in Equation 56. Hence, the value ∗ is forbidden, and all
variables take values in −1,+1. A Boolean configuration violating clauses with total weight
W has a probability proportional to exp(−yW ). Hence we retreive the weighted Max-SAT
energy defined in Equation 13. In this case, the factor graph is equivalent to the original
weighted Max-SAT factor graph defined in Definition 3, and hence RSP-ρ is equivalent to
the loopy BP algorithm on the original weighted Max-SAT problem.

Case ω∗ 6= 1 and ω∗ 6= 0: in this case, all valid configurations x violating clauses
with a total weight W has a probability proportional to ω

n0(x)
0 ω

n∗(x)
∗ exp(−yW ). Hence,

the probability of v-covers in the case where ω∗ = 1 are spread over the lattice for which it
is the minimal element.

With the above formulation, RSP-ρ can be seen as a family of algorithms that include
the BP and the RSP algorithm, moving from BP to RSP as ρ (or ω∗) varies from 0 to 1.
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Een, N., & Sörensson, N. (2005). MiniSat - a SAT solver with conflict-clause minimization.
In SAT’05: Eighth International Conference on Theory and Applications of Satisfia-
bility Testing.

Hoos, H. H. (2002). An adaptive noise mechanism for walksat. In AAAI’02: Eighteenth
National Conference on Artificial Intelligence, pp. 655–660.

Kaporis, A. C., Kirousis, L. M., & Lalas, E. G. (2006). The probabilistic analysis of a greedy
satisfiability algorithm. Random Structures and Algorithms, 28 (4), 444–480.

Kirkpatrick, S., Jr., C. D. G., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220, 671–680.

Kirousis, L. M., Kranakis, E., Krizanc, D., & Stamatiou, Y. C. (1998). Approximating the
unsatisfiability threshold of random formulas. Random Structures and Algorithms,
12 (3), 253–269.

Kroc, L., Sabharwal, A., & Selman, B. (2007). Survey propagation revisited. In UAI’07:
Twenty-Third Conference on Uncertainty in Artificial Intelligence.

Kroc, L., Sabharwal, A., & Selman, B. (2009). Message-passing and local heuristics as
decimation strategies for satisfiability. In SAC-09. 24th Annual ACM Symposium on
Applied Computing.

Kschischang, F. R., Frey, B., & Loeliger, H.-A. (2001). Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47 (2).

Lardeux, F., Saubion, F., & Hao, J.-K. (2005). Three truth values for the SAT and MAX-
SAT problems. In IJCAI’05: Nineteenth International Joint Conference on Artificial
Intelligence.

Larrosa, J., & Heras, F. (2005). Resolution in Max-SAT and its relation to local consis-
tency in weighted CSPs. In IJCAI’05: Nineteenth International Joint Conference on
Artificial Intelligence.

Levin, L. A. (1973). Universal search problems. Problemy Peredaci Informacii, 9, 115–116.

264



Relaxed Survey Propagation for The Weighted Max-SAT Problem

Li, C. M., & Anbulagan (1997). Heuristics based on unit propagation for satisfiability prob-
lems. In IJCAI’97: Fifteenth International Joint Conference on Artificial Intelligence,
pp. 366–371.
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