
Journal of Artificial Intelligence Research 35 (2009) 449-484 Submitted 1/09; published 7/09

Efficient Markov Network Structure Discovery

Using Independence Tests

Facundo Bromberg fbromberg@frm.utn.edu.ar

Departamento de Sistemas de Información,
Universidad Tecnológica Nacional,
Mendoza, Argentina

Dimitris Margaritis dmarg@cs.iastate.edu

Vasant Honavar honavar@cs.iastate.edu

Dept. of Computer Science,

Iowa State University,

Ames, IA 50011

Abstract

We present two algorithms for learning the structure of a Markov network from data:
GSMN∗ and GSIMN. Both algorithms use statistical independence tests to infer the struc-
ture by successively constraining the set of structures consistent with the results of these
tests. Until very recently, algorithms for structure learning were based on maximum like-
lihood estimation, which has been proved to be NP-hard for Markov networks due to the
difficulty of estimating the parameters of the network, needed for the computation of the
data likelihood. The independence-based approach does not require the computation of
the likelihood, and thus both GSMN∗ and GSIMN can compute the structure efficiently
(as shown in our experiments). GSMN∗ is an adaptation of the Grow-Shrink algorithm
of Margaritis and Thrun for learning the structure of Bayesian networks. GSIMN ex-
tends GSMN∗ by additionally exploiting Pearl’s well-known properties of the conditional
independence relation to infer novel independences from known ones, thus avoiding the per-
formance of statistical tests to estimate them. To accomplish this efficiently GSIMN uses
the Triangle theorem, also introduced in this work, which is a simplified version of the set
of Markov axioms. Experimental comparisons on artificial and real-world data sets show
GSIMN can yield significant savings with respect to GSMN∗, while generating a Markov
network with comparable or in some cases improved quality. We also compare GSIMN to
a forward-chaining implementation, called GSIMN-FCH, that produces all possible con-
ditional independences resulting from repeatedly applying Pearl’s theorems on the known
conditional independence tests. The results of this comparison show that GSIMN, by the
sole use of the Triangle theorem, is nearly optimal in terms of the set of independences
tests that it infers.

1. Introduction

Graphical models (Bayesian and Markov networks) are an important subclass of statisti-
cal models that possess advantages that include clear semantics and a sound and widely
accepted theoretical foundation (probability theory). Graphical models can be used to
represent efficiently the joint probability distribution of a domain. They have been used
in numerous application domains, ranging from discovering gene expression pathways in
bioinformatics (Friedman, Linial, Nachman, & Pe’er, 2000) to computer vision (e.g. Geman

c©2009 AI Access Foundation. All rights reserved.

Bromberg, Margaritis, & Honavar

Figure 1: Example Markov network. The nodes represent variables in the domain V =
{0, 1, 2, 3, 4, 5, 6, 7}.

& Geman, 1984, Besag, York, & Mollie, 1991, Isard, 2003, Anguelov, Taskar, Chatalbashev,
Koller, Gupta, Heitz, & Ng, 2005). One problem that naturally arises is the construction of
such models from data (Heckerman, Geiger, & Chickering, 1995, Buntine, 1994). A solution
to this problem, besides being theoretically interesting in itself, also holds the potential of
advancing the state-of-the-art in application domains where such models are used.

In this paper we focus on the task of learning Markov networks (MNs) from data in
domains in which all variables are either discrete or continuous and distributed according
to a multidimensional Gaussian distribution. MNs are graphical models that consist of two
parts: an undirected graph (the model structure), and a set of parameters. An example
Markov network is shown in Figure 1. Learning such models from data consists of two in-
terdependent tasks: learning the structure of the network, and, given the learned structure,
learning the parameters. In this work we focus on the problem of learning the structure of
the MN of a domain from data.

We present two algorithms for MN structure learning from data: GSMN∗ (Grow-Shrink
Markov Network learning algorithm) and GSIMN (Grow-Shrink Inference-based Markov
Network learning algorithm). The GSMN∗ algorithm is an adaptation to Markov networks
of the GS algorithm by Margaritis and Thrun (2000), originally developed for learning the
structure of Bayesian networks. GSMN∗ works by first learning the local neighborhood
of each variable in the domain (also called the Markov blanket of the variable), and then
using this information in subsequent steps to improve efficiency. Although interesting and
useful in itself, we use GSMN∗ as a point of reference of the performance with regard to
time complexity and accuracy achieved by GSIMN, which is the main result of this work.
The GSIMN algorithm extends GSMN∗ by using Pearl’s theorems on the properties of the
conditional independence relation (Pearl, 1988) to infer additional independences from a
set of independences resulting from statistical tests and previous inferences, thus avoiding
the execution of these tests on data. This allows savings in execution time and, when data
are distributed, communication bandwidth.

The rest of the paper is organized as follows: In the next section we present previous
research related to the problem. Section 3 introduces notation, definitions and presents
some intuition behind the two algorithms. Section 4 contains the main algorithms, GSMN∗

and GSIMN, as well as concepts and practical details related to their operation. We evaluate
GSMN∗ and GSIMN and present our results in Section 5, followed by a summary of our

450

Efficient Markov Network Structure Discovery Using Independence Tests

work and possible directions of future research in Section 6. Appendices A and B contain
proofs of correctness of GSMN∗ and GSIMN.

2. Related Work

Markov networks have been used in the physics and computer vision communities (Geman &
Geman, 1984, Besag et al., 1991, Anguelov et al., 2005) where they have been historically
called Markov random fields. Recently there has been interest in their use for spatial
data mining, which has applications in geography, transportation, agriculture, climatology,
ecology and others (Shekhar, Zhang, Huang, & Vatsavai, 2004).

One broad and popular class of algorithms for learning the structure of graphical models
is the score-based approach, exemplified for Markov networks by Della Pietra, Della Pietra,
and Lafferty (1997), and McCallum (2003). Score-based approaches conduct a search in the
space of legal structures in an attempt to discover a model structure of maximum score.
Due to the intractable size of the search space i.e., the space of all legal graphs, which is
super-exponential in size, score-based algorithms must usually resort to heuristic search.
At each step of the structure search, a probabilistic inference step is necessary to evaluate
the score (e.g., maximum likelihood, minimum description length, Lam & Bacchus, 1994, or
pseudo-likelihood, Besag, 1974). For Bayesian networks this inference step is tractable and
therefore several practical score-based algorithms for structure learning have been developed
(Lam & Bacchus, 1994, Heckerman, 1995, Acid & de Campos, 2003). For Markov networks
however, probabilistic inference requires the calculation of a normalizing constant (also
known as partition function), a problem known to be NP-hard (Jerrum & Sinclair, 1993,
Barahona, 1982). A number of approaches have considered a restricted class of graphical
models (e.g. Chow & Liu, 1968, Rebane & Pearl, 1989, Srebro & Karger, 2001). However,
Srebro and Karger (2001) prove that finding the maximum likelihood network is NP-hard
for Markov networks of tree-width greater than 1.

Some work in the area of structure learning of undirected graphical models has con-
centrated on the learning of decomposable (also called chordal) MNs (Srebro & Karger,
2001). An example of learning non-decomposable MNs is presented in the work of Hof-
mann and Tresp (1998), which is an approach for learning structure in continuous domains
with non-linear relationships among the domain attributes. Their algorithm removes edges
greedily based on a leave-one-out cross validation log-likelihood score. A non-score based
approach is in the work of Abbeel, Koller, and Ng (2006), which introduces a new class of ef-
ficient algorithms for structure and parameter learning of factor graphs, a class of graphical
models that subsumes Markov and Bayesian networks. Their approach is based on a new
parameterization of the Gibbs distribution in which the potential functions are forced to be
probability distributions, and is supported by a generalization of the Hammersley-Clifford
theorem for factor graphs. It is a promising and theoretically sound approach that may
lead in the future to practical and efficient algorithms for undirected structure learning.

In this work we present algorithms that belong to the independence-based or constraint-
based approach (Spirtes, Glymour, & Scheines, 2000). Independence-based algorithms ex-
ploit the fact that a graphical model implies that a set of independences exist in the distribu-
tion of the domain, and therefore in the data set provided as input to the algorithm (under
assumptions, see next section); they work by conducting a set of conditional independence

451

Bromberg, Margaritis, & Honavar

tests on data, successively restricting the number of possible structures consistent with the
results of those tests to a singleton (if possible), and inferring that structure as the only
possible one. A desirable characteristic of independence-based approaches is the fact that
they do not require the use of probabilistic inference during the discovery of the structure.
Also, such algorithms are amenable to proofs of correctness (under assumptions).

For Bayesian networks, the independence-based approach has been mainly exemplified
by the SGS (Spirtes et al., 2000), PC (Spirtes et al., 2000), and algorithms that learn the
Markov blanket as a step in learning the Bayesian network structure such as Grow-Shrink
(GS) algorithm (Margaritis & Thrun, 2000), IAMB and its variants (Tsamardinos, Aliferis,
& Statnikov, 2003a), HITON-PC and HITON-MB (Aliferis, Tsamardinos, & Statnikov,
2003), MMPC and MMMB (Tsamardinos, Aliferis, & Statnikov, 2003b), and max-min hill
climbing (MMHC) (Tsamardinos, Brown, & Aliferis, 2006), all of which are widely used in
the field. Algorithms for restricted classes such as trees (Chow & Liu, 1968) and polytrees
(Rebane & Pearl, 1989) also exist.

For learning Markov networks previous work has mainly focused on learning Gaussian
graphical models, where the assumption of a continuous multivariate Gaussian distribution
is made; this results in linear dependences among the variables with Gaussian noise (Whit-
taker, 1990, Edwards, 2000). More recent approaches are included in the works of Dobra,
Hans, Jones, Nevins, Yao, and West (2004), (Castelo & Roverato, 2006), Peña (2008), and
Schäfer and Strimmer (2005), that focus on applications of Gaussian graphical models in
Bioinformatics. While we do not make the assumption of continuous Gaussian variables
in this paper, all algorithms we present are applicable to such domains with the use of
an appropriate conditional independence test (such as partial correlation). The GSMN∗

and GSIMN algorithms presented apply to any case where an arbitrary faithful distribu-
tion can be assumed and a probabilistic conditional independence test for that distribution
is available. The algorithms were first introduced by Bromberg, Margaritis, and Honavar
(2006); the contributions of the present paper include extending these results by conducting
an extensive evaluation of their experimental and theoretical properties. More specifically,
the contributions include an extensive and systematic experimental evaluation of the pro-
posed algorithms on (a) data sets sampled from artificially generated networks of varying
complexity and strength of dependences, as well as (b) data sets sampled from networks
representing real-world domains, and (c) formal proofs of correctness that guarantee that
the proposed algorithms will compute the correct Markov network structure of the domain,
under the stated assumptions.

3. Notation and Preliminaries

We denote random variables with capitals (e.g., X, Y, Z) and sets of variables with bold
capitals (e.g., X,Y,Z). In particular, we denote by V = {0, . . . , n − 1} the set of all n
variables in the domain. We name the variables by their indices in V; for instance, we
refer to the third variable in V simply by 3. We denote the data set as D and its size
(number of data points) by |D| or N . We use the notation (X⊥⊥Y | Z) to denote the
proposition that X is independent of Y conditioned on Z, for disjoint sets of variables X,
Y, and Z. (X 6⊥⊥Y | Z) denotes conditional dependence. We use (X⊥⊥Y | Z) as shorthand
for ({X}⊥⊥{Y } | Z) to improve readability.

452

Efficient Markov Network Structure Discovery Using Independence Tests

A Markov network is an undirected graphical model that represents the joint probability
distribution over V. Each node in the graph represents one of the random variables in
the domain, and absences of edges encode conditional independences among them. We
assume the underlying probability distribution to be graph-isomorph (Pearl, 1988) or faithful
(Spirtes et al., 2000), which means that it has a faithful undirected graph. A graph G is
said to be faithful to some distribution if its graph connectivity represents exactly those
dependencies and independences existent in the distribution. In detail, this means that that
for all disjoint sets X,Y,Z ⊆ V, X is independent of Y given Z if and only if the set of
vertices Z separates the set of vertices X from the set of vertices Y in the graph G (this is
sometimes called the global Markov property, Lauritzen, 1996). In other words, this means
that, after removing all vertices in Z from G (including all edges incident to each of them),
there exists no (undirected) path in the remaining graph between any variable in X to some
variable in Y. For example, in Figure 1, the set of variables {0, 5} separates set {4, 6} from
set {2}. More generally, it has been shown (Pearl, 1988; Theorem 2, page 94 and definition
of graph isomorphism, page 93) that a necessary and sufficient condition for a distribution
to be graph-isomorph is for its set of independence relations to satisfy the following axioms
for all disjoint sets of variables X, Y, Z, W and individual variable γ:

(Symmetry) (X⊥⊥Y | Z) ⇐⇒ (Y⊥⊥X | Z)
(Decomposition) (X⊥⊥Y ∪W | Z) ⇐⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

(Intersection) (X⊥⊥Y | Z ∪W)
(1)∧ (X⊥⊥W | Z ∪Y) =⇒ (X⊥⊥Y ∪W | Z)

(Strong Union) (X⊥⊥Y | Z) =⇒ (X⊥⊥Y | Z ∪W)
(Transitivity) (X⊥⊥Y | Z) =⇒ (X⊥⊥γ | Z) ∨ (γ⊥⊥Y | Z)

For the operation of the algorithms we also assume the existence of an oracle that can
answer statistical independence queries. These are standard assumptions that are needed
for formally proving the correctness of independence-based structure learning algorithms
(Spirtes et al., 2000).

3.1 Independence-Based Approach to Structure Learning

GSMN∗ and GSIMN are independence-based algorithms for learning the structure of the
Markov network of a domain. This approach works by evaluating a number of statistical
independence statements, reducing the set of structures consistent with the results of these
tests to a singleton (if possible), and inferring that structure as the only possible one.

As mentioned above, in theory we assume the existence of an independence-query oracle
that can provide information about conditional independences among the domain variables.
This can be viewed as an instance of a statistical query oracle (Kearns & Vazirani, 1994).
In practice such an oracle does not exist; however, it can be implemented approximately
by a statistical test evaluated on the data set D. For example, for discrete data this
can be Pearson’s conditional independence chi-square (χ2) test (Agresti, 2002), a mutual
information test etc. For continuous Gaussian data a statistical test that can be used to
measure conditional independence is partial correlation (Spirtes et al., 2000). To determine
conditional independence between two variables X and Y given a set Z from data, the

453

Bromberg, Margaritis, & Honavar

statistical test returns a p-value. The p-value of a test equals the probability of obtaining a
value for the test statistic that is at least as extreme as the one that was actually observed
given that the null hypothesis is true, which corresponds to conditional independence in
our case. Assuming that the p-value of a test is p(X, Y | Z), the statistical test concludes
dependence if and only if p(X, Y | Z) is less than or equal to a threshold α i.e.,

(X 6⊥⊥Y | Z) ⇐⇒ p(X, Y | Z) ≤ α.

The quantity 1 − α is sometimes referred to as the test’s confidence threshold. We use
the standard value of α = 0.05 in all our experiments, which corresponds to a confidence
threshold of 95%.

In a faithful domain, it can be shown (Pearl & Paz, 1985) that an edge exists between
two variables X 6= Y ∈ V in the Markov network of that domain if an only if they are
dependent conditioned on all remaining variables in the domain, i.e.,

(X, Y) is an edge iff (X 6⊥⊥Y | V − {X, Y }).

Thus, to learn the structure, theoretically it suffices to perform only n(n − 1)/2 tests i.e.,
one test (X, Y | V − {X, Y }) for each pair of variables X, Y ∈ V, X 6= Y . Unfortunately,
in non-trivial domains this usually involves a test that conditions on a large number of
variables. Large conditioning sets produce sparse contingency tables (count histograms)
which result in unreliable tests. This is because the number of possible configurations of
the variables grows exponentially with the size of the conditioning set—for example, there
are 2n cells in a test involving n binary variables, and to fill such a table with one data point
per cell we would need a data set of at least exponential size i.e., N ≥ 2n. Exacerbating
this problem, more than one data point per cell is typically necessary for a reliable test: As
recommended by Cochran (1954), if more than 20% of the cells of the contingency table
have less than 5 data points the test is deemed unreliable. Therefore both GSMN∗ and
GSIMN algorithms (presented below) attempt to minimize the conditioning set size; they
do that by choosing an order of examining the variables such that irrelevant variables are
examined last.

4. Algorithms and Related Concepts

In this section we present our main algorithms, GSMN∗ and GSIMN, and supporting con-
cepts required for their description. For the purpose of aiding the understanding of the
reader, before discussing these we first describe the abstract GSMN algorithm in the next
section. This helps in showing the intuition behind the algorithms and laying the foundation
for them.

4.1 The Abstract GSMN Algorithm

For the sake of clarity of exposition, before discussing our first algorithm GSMN∗, we
describe the intuition behind it by describing its general structure using the abstract GSMN
algorithm which deliberately leaves a number of details unspecified; these are filled-in in the
concrete GSMN∗ algorithm, presented in the next section. Note that the choices for these

454

Efficient Markov Network Structure Discovery Using Independence Tests

Algorithm 1 GSMN algorithm outline: G = GSMN (V, D).

1: Initialize G to the empty graph.
2: for all variables X in the domain V do
3: /* Learn the Markov Blanket BX of X using the GS algorithm. */
4: BX ← GS (X,V,D)
5: Add an undirected edge in G between X and each variable Y ∈ BX .
6: return G

Algorithm 2 GS algorithm. Returns the Markov Blanket BX of variable X ∈ V: BX =
GS (X,V, D).

1: BX ← ∅

2: /* Grow phase. */
3: for each variable Y in V − {X} do
4: if (X 6⊥⊥Y | BX) (estimated using data D) then
5: BX ← BX ∪ {Y }
6: goto 3 /* Restart grow loop. */
7: /* Shrink phase. */
8: for each variable Y in BX do
9: if (X⊥⊥Y | BX − {Y }) (estimated using data D) then

10: BX ← BX − {Y }
11: goto 8 /* Restart shrink loop. */
12: return BX

details are a source of optimizations that can reduce the algorithm’s computational cost.
We make these explicit when we discuss the concrete GSMN∗ and GSIMN algorithms.

The abstract GSMN algorithm is shown in Algorithm 1. Given as input a data set D
and a set of variables V, GSMN computes the set of nodes (variables) BX that are adjacent
to each variable X ∈ V; these completely determine the structure of the domain MN. The
algorithm consists of a main loop in which it learns the Markov blanket BX of each node
(variable) X in the domain using the GS algorithm. It then constructs the Markov network
structure by connecting X with each variable in BX .

The GS algorithm was first proposed by Margaritis and Thrun (2000) and is shown in
Algorithm 2. It consists of two phases, a grow phase and a shrink phase. The grow phase
of X proceeds by attempting to add each variable Y to the current set of hypothesized
neighbors of X, contained in BX , which is initially empty. BX grows by some variable Y
during each iteration of the grow loop of X if and only if Y is found dependent with X
given the current set of hypothesized neighbors BX . Due to the (unspecified) ordering that
the variables are examined (this is explicitly specified in the concrete GSMN∗ algorithm,
presented in the next section), at the end of the grow phase some of the variables in BX

might not be true neighbors of X in the underlying MN—these are called false positives.
This justifies the shrink phase of the algorithm, which removes each false positive Y in BX

by testing for independence with X conditioned on BX−{Y }. If Y is found independent of
X during the shrink phase, it cannot be a true neighbor (i.e., there cannot be an edge X−Y),
and GSMN removes it from BX . Assuming faithfulness and correctness of the independence
query results, by the end of the shrink phase BX contains exactly the neighbors of X in
the underlying Markov network.

455

Bromberg, Margaritis, & Honavar

In the next section we present a concrete implementation of GSMN, called GSMN∗.
This augments GSMN by specifying a concrete ordering that the variables X are examined
in the main loop of GSMN (lines 2–5 in Algorithm 1), as well as a concrete order that the
variables Y are examined in the grow and shrink phases of the GS algorithm (lines 3–6 and
8–11 in Algorithm 2, respectively).

4.2 The Concrete GSMN∗ Algorithm

In this section we discuss our first algorithm, GSMN∗ (Grow-Shrink Markov Network
learning algorithm), for learning the structure of the Markov network of a domain. Note
that the reason for introducing GSMN∗ in addition to our main contribution, the GSIMN
algorithm (presented later in Section 4.5), is for comparison reasons. In particular, GSIMN
and GSMN∗ have identical structure, following the same order of examination of variables,
with their only difference being the use of inference by GSIMN (see details in subsequent
sections). Introducing GSMN∗ therefore makes it possible to measure precisely (through
our experimental results in Section 5) the benefits of the use of inference on performance.

The GSMN∗ algorithm is shown in Algorithm 3. Its structure is similar to the abstract
GSMN algorithm. One notable difference is that the order that variables are examined is
now specified; this is done in the initialization phase where the so-called examination order
π and grow order λX of each variable X ∈ V is determined. π and all λX are priority
queues and each is initially a permutation of V (λX is a permutation of V − {X}) such
that the position of a variable in the queue denotes its priority e.g., π = [2, 0, 1] means that
variable 2 has the highest priority (will be examined first), followed by 0 and finally by 1.
Similarly, the position of a variable in λX determines the order it will be examined during
the grow phase of X.

During the initialization phase the algorithm computes the strength of unconditional
dependence between each pair of variable X and Y , as given by the unconditional p-value
p(X, Y | ∅) of an independence test between each pair of variables X 6= Y , denoted by
pXY in the algorithm. (In practice the logarithm of the p-values is computed, which allows
greater precision in domains where some dependencies may be very strong or very weak.)
In particular, the algorithm gives higher priority to (examines earlier) those variables with
a lower average log p-value (line 5), indicating stronger dependence. This average is defined
as:

avg
Y

log(pXY) =
1

|V| − 1

∑

Y 6=X

log(pXY).

For the grow order λX of variable X, the algorithm gives higher priority to those variables
Y whose p-value (or equivalently the log of the p-value) with variable X is small (line 8).
This ordering is due to the intuition behind the “folk-theorem” (as Koller & Sahami, 1996,
puts it) that states that probabilistic influence or association between attributes tends to
attenuate over distance in a graphical model. This suggests that a pair of variables X and Y
with high unconditional p-value are less likely to be directly linked. Note that this ordering
is a heuristic and is not guaranteed to hold in general. For example, it may not hold
if the underlying domain is a Bayesian network e.g., two “spouses” may be independent
unconditionally but dependent conditional on a common child. Note however that this
example does not apply to faithful domains i.e., graph-isomorph to a Markov network. Also

456

Efficient Markov Network Structure Discovery Using Independence Tests

Algorithm 3 GSMN∗, a concrete implementation of GSMN: G = GSMN ∗(V, D).

1: Initialize G to the empty graph.
2: /* Initialization. */
3: for all X,Y ∈ V,X 6= Y do
4: pXY ← p(X,Y | ∅)
5: Initialize π such that ∀i, i′ ∈ {0, . . . , n− 1},

[

i < i′ ⇐⇒ avg
j

log(pπij) < avg
j

log(pπi′ j
)
]

.

6: for all X ∈ V do
7: BX ← ∅

8: Initialize λX such that ∀j, j′ ∈ {0, . . . , n− 1},
[

j < j′ ⇐⇒ pXλX
j

< pXλX

j′

]

.

9: Remove X from λX .
10: /* Main loop. */
11: while π is not empty do
12: X ← dequeue(π)
13: /* Propagation phase. */
14: T← {Y : Y was examined and X ∈ BY }
15: F← {Y : Y was examined and X /∈ BY }
16: for all Y ∈ T, move Y to the end of λX .
17: for all Y ∈ F, move Y to the end of λX .
18: /* Grow phase. */
19: S← ∅

20: while λX not empty do
21: Y ← dequeue(λX)
22: if pXY ≤ α then
23: if ¬IGSMN∗(X,Y,S,F,T) then
24: S← S ∪ {Y }
25: /* Change grow order of Y . */
26: Move X to the beginning of λY .
27: for W = S|S|−2 to S0 do
28: Move W to the beginning of λY .
29: /* Change examination order. */
30: for W = S|S|−1 to S0 do
31: if W ∈ π then
32: Move W to the beginning of π.
33: break to line 34
34: /* Shrink phase. */
35: for Y = S|S|−1 to S0 do
36: if IGSMN∗(X,Y,S− {Y } ,F,T) then
37: S← S− {Y }
38: BX ← S
39: Add an undirected edge in G between X and each variable Y ∈ BX .
40: return G

note that the correctness of all algorithms we present does not depend on it holding i.e.,
as we prove in Appendices A and B, both GSMN∗ and GSIMN are guaranteed to return
the correct structure under the assumptions stated in Section 3 above. Also note that the
computational cost for the calculation of pXY is low due to the empty conditioning set.

The remaining of the GSMN∗ algorithm contains the main loop (lines 10–39) in which
each variable in V is examined according to the examination order π, determined during

457

Bromberg, Margaritis, & Honavar

Algorithm 4 IGSMN∗(X, Y,S,F,T): Calculate independence test (X, Y | S) by propaga-
tion, if possible, otherwise run a statistical test on data.

1: /* Attempt to infer dependence by propagation. */
2: if Y ∈ T then
3: return false

4: /* Attempt to infer independence by propagation. */
5: if Y ∈ F then
6: return true

7: /* Else do statistical test on data. */
8: t← 1(p(X,Y |Z)>α) /* t = true iff p-value of statistical test (X,Y | S) > α. */
9: return t

the initialization phase. The main loop includes three phases: the propagation phase (lines
13–17), the grow phase (lines 18–33), and the shrink phase (lines 34–37). The propagation
phase is an optimization in which all variables Y for which BY has already been computed
(i.e., all variables Y already examined) are collected in two sets F and T. Set F (T) contains
all variables Y such that X /∈ BY (X ∈ BY). Both sets are passed to the independence
procedure IGSMN∗ , shown in Algorithm 4, for the purpose of avoiding the execution of any
tests between X and Y by the algorithm. This is justified by the fact that, in undirected
graphs, Y is in the Markov blanket of X if and only if X is in the Markov blanket of Y .
Variables Y already found not to contain X in their blanket BY (set F) cannot be members
of BX because there exists some set of variables that has rendered them conditionally
independent of X in a previous step, and independence can therefore be inferred easily.
Note that in the experiments section of the paper (Section 5) we evaluate GSMN∗ with
and without the propagation phase, in order to measure the effect that this propagation
optimization has on performance. Turning off propagation is accomplished simply by setting
sets T and F (as computed in lines 14 and 15, respectively) to the empty set.

Another difference of GSMN∗ from the abstract GSMN algorithm is in the use of condi-
tion pXY ≤ α (line 22). This is an additional optimization that avoids an independence test
in the case that X and Y were found (unconditionally) independent during the initialization
phase, since in that case this would imply X and Y are independent given any conditioning
set by the axiom of Strong Union.

A crucial difference between GSMN∗ and the abstract GSMN algorithm is that GSMN∗

changes the examination order π and the grow order λY of every variable Y ∈ λX . (Since
X /∈ λX , this excludes the grow order of X itself.) These changes in ordering proceed as
follows: After the end of the grow phase of variable X, the new examination order π (set
in lines 30–33) dictates that the next variable W to be examined after X is the last to be
added to S during the growing phase that has not yet been examined (i.e., W is still in π).
The grow order λY of all variables Y found dependent with X is also changed; this is done
to maximize the number of optimizations by the GSIMN algorithm (our main contribution
in this paper) which shares the algorithm structure of GSMN∗. The changes in grow order
are therefore explained in detail in Section 4.5 when GSIMN is presented.

A final difference between GSMN∗ and the abstract GSMN algorithm is the restart
actions of the grow and shrink phases of GSMN whenever the current Markov blanket is
modified (lines 6 and 11 of Algorithm 2), which are not present in GSMN∗. The restarting

458

Efficient Markov Network Structure Discovery Using Independence Tests

Figure 2: Illustration of the operation of GSMN∗ using an independence graph. The figure
shows the growing phase of variable 5. Variables are examined according to its
grow order λ5 = [3, 4, 1, 6, 2, 7, 0].

of the loops was necessary in the GS algorithm due to its original usage in learning the
structure of Bayesian networks. In that task, it was possible for a true member Y of the
blanket of X to be found initially independent during the grow loop when conditioning on
some set S but to be found dependent later when conditioned on a superset S′ ⊃ S. This
could happen if Y was an “unshielded spouse” of X i.e., if Y had one or more common
children with X but there existed no direct link between Y and X in the underlying Bayesian
network. However, this behavior is impossible in a domain that has a distribution faithful
to a Markov network (one of our assumptions): any independence between X and Y given
S must hold for any superset S′ of S by the axiom of Strong Union (see Eqs. (1)). The
restart of the grow and shrink loops is therefore omitted from GSMN∗ in order to save
unnecessary tests. Note that, even though it is possible that this behavior is impossible in
faithful domains, it is possible in unfaithful ones, so we also experimentally evaluated our
algorithms in real-world domains in which the assumption of Markov faithfulness may not
necessarily hold (Section 5).

A proof of correctness of GSMN∗ is presented in Appendix A.

4.3 Independence Graphs

We can demonstrate the operation of GSMN∗ graphically by the concept of the independence
graph, which we now introduce. We define an independence graph to be an undirected
graph in which conditional independences and dependencies between single variables are
represented by one or more annotated edges between them. A solid (dotted) edge between
variables X and Y annotated by Z represents the fact that X and Y have been found
dependent (independent) given Z. If the conditioning set Z is enclosed in parentheses then
this edge represents an independence or dependence that was inferred from Eqs. (1) (as
opposed to computed from statistical tests). Shown graphically:

459

Bromberg, Margaritis, & Honavar

X Y
Z

(X 6⊥⊥Y | Z)

X Y
Z

(X⊥⊥Y | Z)

X Y
(Z)

(X 6⊥⊥Y | Z) (inferred)

X Y
(Z)

(X⊥⊥Y | Z) (inferred)

For instance, in Figure 2, the dotted edge between 5 and 1 annotated with “3, 4” represents
the fact that (5⊥⊥1 | {3, 4}). The absence of an edge between two variables indicates the
absence of information about the independence or dependence between these variables under
any conditioning set.

Example 1. Figure 2 illustrates the operation of GSMN∗ using an independence graph in
the domain whose underlying Markov network is shown in Figure 1. The figure shows the
independence graph at the end of the grow phase of the variable 5, the first in the examination
order π. (We do not discuss in this example the initialization phase of GSMN∗; instead, we
assume that the examination (π) and grow (λ) orders are as shown in the figure.) According
to vertex separation on the underlying network (Figure 1), variables 3, 4, 6, and 7 are found
dependent with 5 during the growing phase i.e.,

¬I(5, 3 | ∅),

¬I(5, 4 | {3}),

¬I(5, 6 | {3, 4}),

¬I(5, 7 | {3, 4, 6})

and are therefore connected to 5 in the independence graph by solid edges annotated by sets
∅, {3}, {3, 4} and {3, 4, 6} respectively. Variables 1, 2, and 0 are found independent i.e.,

I(5, 1 | {3, 4}),

I(5, 2 | {3, 4, 6}),

I(5, 0 | {3, 4, 6, 7})

and are thus connected to 5 by dotted edges annotated by {3, 4}, {3, 4, 6} and {3, 4, 6, 7}
respectively.

4.4 The Triangle Theorem

In this section we present and prove a theorem that is used in the subsequent GSIMN
algorithm. As will be seen, the main idea behind the GSIMN algorithm is to attempt to de-
crease the number of tests done by exploiting the properties of the conditional independence
relation in faithful domains i.e., Eqs. (1). These properties can be seen as inference rules
that can be used to derive new independences from ones that we know to be true. A careful
study of these axioms suggests that only two simple inference rules, stated in the Triangle
theorem below, are sufficient for inferring most of the useful independence information that
can be inferred by a systematic application of the inference rules. This is confirmed in our
experiments in Section 5.

460

Efficient Markov Network Structure Discovery Using Independence Tests

Figure 3: Independence graph depicting the Triangle theorem. Edges in the graph are
labeled by sets and represent conditional independences or dependencies. A solid
(dotted) edge between X and Y labeled by Z means that X and Y are dependent
(independent) given Z. A set label enclosed in parentheses means the edge was
inferred by the theorem.

Theorem 1 (Triangle theorem). Given Eqs. (1), for every variable X, Y , W and sets Z1

and Z2 such that {X, Y, W} ∩ Z1 = {X, Y, W} ∩ Z2 = ∅,

(X 6⊥⊥W | Z1) ∧ (W 6⊥⊥Y | Z2) =⇒ (X 6⊥⊥Y | Z1 ∩ Z2)

(X⊥⊥W | Z1) ∧ (W 6⊥⊥Y | Z1 ∪ Z2) =⇒ (X⊥⊥Y | Z1).

We call the first relation the “D-triangle rule” and the second the “I-triangle rule.”

Proof. We are using the Strong Union and Transitivity of Eqs. (1) as shown or in contra-
positive form.
(Proof of D-triangle rule):

• From Strong Union and (X 6⊥⊥W | Z1) we get (X 6⊥⊥W | Z1 ∩ Z2).

• From Strong Union and (W 6⊥⊥Y | Z1) we get (W 6⊥⊥Y | Z1 ∩ Z2).

• From Transitivity, (X 6⊥⊥W | Z1∩Z2), and (W 6⊥⊥Y | Z1∩Z2), we get (X 6⊥⊥Y | Z1∩Z2).

(Proof of I-triangle rule):

• From Strong Union and (W 6⊥⊥Y | Z1 ∪ Z2) we get (W 6⊥⊥Y | Z1).

• From Transitivity, (X⊥⊥W | Z1) and (W 6⊥⊥Y | Z1) we get (X⊥⊥Y | Z1).

We can represent the Triangle theorem graphically using the independence graph con-
struct of Section 4.2. Figure 3 depicts the two rules of the Triangle theorem using two
independence graphs.

The Triangle theorem can be used to infer additional conditional independences from
tests conducted during the operation of GSMN∗. An example of this is shown in Fig-
ure 4, which illustrates the application of the Triangle theorem to the example presented
in Figure 2. The independence information inferred from the Triangle theorem is shown by
curved edges (note that the conditioning set of each such edge is enclosed in parentheses).

461

Bromberg, Margaritis, & Honavar

Figure 4: Illustration of the use of the Triangle theorem on the example of Figure 2. The set
of variables enclosed in parentheses correspond to tests inferred by the Triangle
theorem using the two adjacent edges as antecedents. For example, the result
(1⊥⊥7 | {3, 4}), is inferred from the I-triangle rule, independence (5⊥⊥1 | {3, 4})
and dependence (5 6⊥⊥7 | {3, 4, 6}).

For example, independence edge (4, 7) can be inferred by the D-triangle rule from the ad-
jacent edges (5, 4) and (5, 7), annotated by {3} and {3, 4, 6} respectively. The annotation
for this inferred edge is {3}, which is the intersection of the annotations {3} and {3, 4, 6}.
An example application of the I-triangle rule is edge (1, 7), which is inferred from edges
(5, 1) and (5, 7) with annotations {3, 4} and {3, 4, 6} respectively. The annotation for this
inferred edge is {3, 4}, which is the intersection of the annotations {3, 4, 6} and {3, 4}.

4.5 The GSIMN Algorithm

In the previous section we saw the possibility of using the two rules of the Triangle
theorem to infer the result of novel tests during the grow phase. The GSIMN algorithm
(Grow-Shrink Inference-based Markov Network learning algorithm), introduced in this sec-
tion, uses the Triangle theorem in a similar fashion to extend GSMN∗ by inferring the value
of a number of tests that GSMN∗ executes, making their evaluation unnecessary. GSIMN
and GSMN∗ work in exactly the same way (and thus the GSIMN algorithm shares exactly
the same algorithmic description i.e., both follow Algorithm 3), with all differences between
them concentrated in the independence procedure they use: instead of using independence
procedure IGSMN∗ of GSMN∗, GSIMN uses procedure IGSIMN, shown in Algorithm 5. Pro-
cedure IGSIMN, in addition to attempting to propagate the blanket information obtained
from the examination of previous variables (as IGSMN∗ does), also attempts to infer the
value of the independence test that is provided as its input by either the Strong Union
axiom (listed in Eqs. (1)) or the Triangle theorem. If this attempt is successful, IGSIMN

returns the value inferred (true or false), otherwise it defaults to a statistical test on the
data set (as IGSMN∗ does). For the purpose of assisting in the inference process, GSIMN and

462

Efficient Markov Network Structure Discovery Using Independence Tests

Algorithm 5 IGSIMN(X, Y,S,F,T): Calculate independence test result by inference (in-
cluding propagation), if possible. Record test result in the knowledge base.

1: /* Attempt to infer dependence by propagation. */
2: if Y ∈ T then
3: return false

4: /* Attempt to infer independence by propagation. */
5: if Y ∈ F then
6: return true

7: /* Attempt to infer dependence by Strong Union. */
8: if ∃ (A, false) ∈ KXY such that A ⊇ S then
9: return false

10: /* Attempt to infer dependence by the D-triangle rule. */
11: for all W ∈ S do
12: if ∃ (A, false) ∈ KXW such that A ⊇ S ∧ ∃ (B, false) ∈ KWY such that B ⊇ S then
13: Add (A ∩B, false) to KXY and KY X .
14: return false

15: /* Attempt to infer independence by Strong Union. */
16: if ∃ (A, true) ∈ KXY such that A ⊆ S then
17: return true

18: /* Attempt to infer independence by the I-triangle rule. */
19: for all W ∈ S do
20: if ∃ (A, true) ∈ KXW s.t. A ⊆ S ∧ ∃ (B, false) ∈ KWY s.t. B ⊇ A then
21: Add (A, true) to KXY and KY X .
22: return true

23: /* Else do statistical test on data. */
24: t← 1(p(X,Y |Z)>α) /* t = true iff p-value of statistical test (X,Y | S) > α. */
25: Add (S, t) to KXY and KY X .
26: return t

IGSIMN maintain a knowledge base KXY for each pair of variables X and Y , containing the
outcomes of all tests evaluated so far between X and Y (either from data or inferred). Each
of these knowledge bases is empty at the beginning of the GSIMN algorithm (the initializa-
tion step is not shown in the algorithm since GSMN∗ does not use it), and is maintained
within the test procedure IGSIMN.

We now explain IGSIMN (Algorithm 5) in detail. IGSIMN attempts to infer the in-
dependence value of its input triplet (X, Y | S) by applying a single step of backward
chaining using the Strong Union and Triangle rules i.e., it searches the knowledge base
K = {KXY : X, Y ∈ V} for antecedents of instances of rules that have the input triplet
(X, Y | S) as consequent. The Strong Union rule is used in its direct from as shown in
Eqs. (1) and also in its contrapositive form. The direct form can be used to infer indepen-
dences, and therefore we refer to it as the I-SU rule from here on. In its contrapositive form,
the I-SU rule becomes (X 6⊥⊥Y | S ∪W) =⇒ (X 6⊥⊥Y | S), referred to as the D-SU rule
since it can be used to infer dependencies. According to the D-Triangle and D-SU rules,
the dependence (X 6⊥⊥Y | S) can be inferred if the knowledge base K contains

1. a test (X 6⊥⊥Y | A) with A ⊇ S, or

2. tests (X 6⊥⊥W | A) and (W 6⊥⊥Y | B) for some variable W , with A ⊇ S and B ⊇ S,

463

Bromberg, Margaritis, & Honavar

Figure 5: Illustration of the operation of GSIMN. The figure shows the grow phase of two
consecutively examined variables 5 and 7. The figure shows how the variable
examined second is not 3 but 7, according to the change in the examination order
π in lines 30–33 of Algorithm 3. The set of variables enclosed in parentheses
correspond to tests inferred by the Triangle theorem using two adjacent edges as
antecedents. The results (7 6⊥⊥3 | ∅), (7 6⊥⊥4 | {3}), (7 6⊥⊥6 | {3, 4}), and (7 6⊥⊥5 |
{3, 4, 6}) in (b), shown highlighted, were not executed but inferred from the tests
done in (a).

respectively. According to the I-Triangle and I-SU rules, the independence (X⊥⊥Y | S) can
be inferred if the knowledge base contains

3. a test (X⊥⊥Y | A) with A ⊆ S, or

4. tests (X⊥⊥W | A) and (W 6⊥⊥Y | B) for some variable W , with A ⊆ S and B ⊇ A,

respectively.
The changes to the grow orders of some variables occur inside the grow phase of the

currently examined variable X (lines 25–28 of GSIMN i.e., Algorithm 3 with IGSMN∗ re-
placed by IGSIMN.). In particular, if, for some variable Y , the algorithm reaches line 24,
i.e., pXY ≤ α and IGSIMN(X, Y,S) = false, then X and all the variables that were found
dependent with X before Y (i.e., all variables currently in S) are promoted to the beginning
of the grow order λY . This is illustrated in Figure 5 for variable 7, which depicts the grow
phase of two consecutively examined variables 5 and 7. In this figure, the curved edges
show the tests that are inferred by IGSIMN during the grow phase of variable 5. The grow
order of 7 changes from λ7 = [2, 6, 3, 0, 4, 1, 5] to λ7 = [3, 4, 6, 5, 2, 0, 1] after the grow phase
of variable 5 is complete because the variables 5, 6, 4 and 3 were promoted (in that order)
to the beginning of the queue. The rationale for this is the observation that this increases
the number of tests inferred by GSIMN at the next step: The change in the examination
and grow orders described above was chosen so that the inferred tests while learning the
blanket of variable 7 match exactly those required by the algorithm in some future step. In

464

Efficient Markov Network Structure Discovery Using Independence Tests

particular, note that in the example the set of inferred dependencies between each variable
found dependent with 5 before 7 are exactly those required during initial part of the grow
phase of variable 7, shown highlighted in Figure 5(b) (the first four dependencies). These
independence tests were inferred (not conducted), resulting in computational savings. In
general, the last dependent variable of the grow phase of X has the maximum number of
dependences and independences inferred and this provides the rationale for its change in
grow order and its selection by the algorithm to be examined next.

It can be shown that under the same assumptions as GSMN∗, the structure returned
by GSIMN is the correct one i.e., each set BX computed by the GSIMN algorithm equals
exactly the neighbors of X. The proof of correctness of GSIMN is based on correctness of
GSMN∗ and is presented in Appendix B.

4.6 GSIMN Technical Implementation Details

In this section we discuss a number of practical issues that subtly influence the accuracy and
efficiency of an implementation of GSIMN. One is the order of application of the I-SU, D-SU,
I-Triangle and D-Triangle rules within the function IGSIMN. Given an independence-query
oracle, the order of application should not matter—assuming there are more than one rules
for inferring the value of an independence, all of them are guaranteed to produce the same
value due to the soundness of the axioms of Eqs. (1) (Pearl, 1988). In practice however,
the oracle is implemented by statistical tests conducted on data which can be incorrect, as
previously mentioned. Of particular importance is the observation that false independences
are more likely to occur than false dependencies. One example of this is the case where the
domain dependencies are weak—in this case any pair of variables connected (dependent) in
the underlying true network structure may be incorrectly deemed independent if all paths
between them are long enough. On the other hand, false dependencies are much more rare—
the confidence threshold of 1−α = 0.95 of a statistical test tells us that the probability of a
false dependence by chance alone is only 5%. Assuming i.i.d. data for each test, the chance
of multiple false dependencies is even lower, decreasing exponentially fast. This practical
observation i.e., that dependencies are typically more reliable than independences, provide
the rationale for the way the IGSIMN algorithm works. In particular, IGSIMN prioritizes the
application of rules whose antecedents contain dependencies first i.e., the D-Triangle and
D-SU rules, followed by the I-Triangle and I-SU rules. In effect, this uses statistical results
that are typically known with greater confidence before ones that are usually less reliable.

The second practical issue concerns efficient inference. The GSIMN algorithm uses a one-
step inference procedure (shown in Algorithm 5) that utilizes a knowledge base K = {KXY }
containing known independences and dependences for each pair of variables X and Y . To
implement this inference efficiently we utilize a data structure for K for the purpose of
storing and retrieving independence facts in constant time. It consists of two 2D arrays,
one for dependencies and another for independencies. Each array is of n× n size, where n
is the number of variables in the domain. Each cell in this array corresponds to a pair of
variables (X, Y), and stores the known independences (dependences) between X and Y in
the form of a list of conditioning sets. For each conditioning set Z in the list, the knowledge
base KXY represents a known independence (X⊥⊥Y | Z) (dependence (X 6⊥⊥Y | Z)). It is
important to note that the length of each list is at most 2, as there are no more than two

465

Bromberg, Margaritis, & Honavar

tests done between any variable X and Y during the execution of GSIMN (done during
the growing and shrinking phases). Thus, it always takes a constant time to retrieve/store
an independence (dependence), and therefore all inferences using the knowledge base are
constant time as well. Also note that all uses of the Strong Union axion by the IGSIMN

algorithm are constant time as well, as they can be accomplished by testing the (at most
two) sets stored in KXY for subset or superset inclusion.

5. Experimental Results

We evaluated the GSMN∗ and GSIMN algorithms on both artificial and real-world data sets.
Through the experimental results presented below we show that the simple application of
Pearl’s inference rules in GSIMN algorithm results in a significant reduction in the number
of tests performed when compared to GSMN∗ without adversely affecting the quality of the
output network. In particular we report the following quantities:
• Weighted number of tests. The weighted number of tests is computed by the

summation of the weight of each test executed, where the weight of test (X, Y | Z) is
defined as 2+|Z|. This quantity reflects the time complexity of the algorithm (GSMN∗

or GSIMN) and can be used to assess the benefit in GSIMN of using inference instead
of executing statistical tests on data. This is the standard method of comparison of
independence-based algorithms and it is justified by the observation that the running
time of a statistical test on triplet (X, Y | Z) is proportional to the size N of the data
set and the number of variables involved in it i.e., O(N(|Z|+2)) (and is not exponential
in the number of variables involved as a näıve implementation might assume). This
is because one can construct all non-zero entries in the contingency table used by the
test by examining each data point in the data set exactly once, in time proportional to
the number of variables involved in the test i.e., proportional to |{X, Y }∪Z| = 2+ |Z|.
• Execution time. In order to assess the impact of inference in the running time

(in addition to the impact of statistical tests), we report the execution time of the
algorithm.
• Quality of the resulting network. We measure quality in two ways.

– Normalized Hamming distance. The Hamming distance between the output
network and the structure of the underlying model is another measure of the
quality of the output network, when the actual network that was used to generate
the data is known. The Hamming distance is defined as the number of “reversed”
edges between these two network structures, i.e., the number of times an actual
edge in the true network is missing in the returned network or an edge absent
from the true network exists in the algorithm’s output network. A value zero
means that the output network has the correct structure. To be able to compare
domains of different dimensionalities (number of variables n) we normalize it by
(

n
2

)

, the total number of node pairs in the corresponding domain.

– Accuracy. For real-world data sets where the underlying network is unknown,
no Hamming distance calculation is possible. In this case it is impossible to know
the true value of any independence. We therefore approximate it by a statistical
test on the entire data set, and use a limited, randomly chosen subset (1/3 of
the data set) to learn the network. To measure accuracy we compare the result

466

Efficient Markov Network Structure Discovery Using Independence Tests

(true or false) of a number of conditional independence tests on the network
output (using vertex separation), to the same tests performed on the full data
set.

In all experiments involving data sets we used the χ2 statistical test for estimation of
conditional independences. As mentioned above, rules of thumb exist that deem certain
tests as potentially unreliable depending on the counts of the contingency table involved;
for example, one such rule Cochran (1954) deems a test unreliable if more than 20% of the
cells of the contingency table have less than 5 data points the test. Due to the requirement
that an answer must be obtained by an independence algorithm conducting a test, we used
the outcomes of such tests as well in our experiments. The effect of these possibly unreliable
tests on the quality of the resulting network is measured by our accuracy measures, listed
above.

In the next section we present results for domains in which the underlying probabilistic
model is known. This is followed by real-world data experiments where no model structure
is available.

5.1 Known-Model Experiments

In the first set of experiments the underlying model, called the true model or true network, is
a known Markov network. The purpose of this set of experiments is to conduct a controlled
evaluation of the quality of the output network through a systematic study of the algorithms’
behavior under varying conditions of domain size (number of variables) and amount of
dependencies (average node degree in the network).

Each true network that contains n variables was generated randomly as follows: the
network was initialized with n nodes and no edges. A user-specified parameter of the
network structure is the average node degree τ that equals the average number of neighbors
per node. Given τ , for every node its set of neighbors was determined randomly and
uniformly by selecting the first τ n

2 pairs in a random permutation of all possible pairs. The
factor 1/2 is necessary because each edge contributes to the degree of two nodes.

We conducted two types of experiments using known network structure: Exact learning
experiments and sample-based experiments.

5.1.1 Exact Learning Experiments

In this set of known-model experiments, we assume that the result of all statistical queries
asked by the GSMN∗ and GSIMN algorithms were available, which assumes the existence
of an oracle that can answer independence queries. When the underlying model is known,
this oracle can be implemented through vertex separation. The benefits of querying the
true network for independence are two: First, it ensures faithfulness and correctness of
the independence query results, which allows the evaluation of the algorithms under their
assumptions for correctness. Second, these tests can be performed much faster than actual
statistical tests on data. This allowed us to evaluate our algorithms in large networks—we
were able to conduct experiments of domains containing up to 100 variables.

We first report the weighted number of tests executed by GSMN∗ with and without
propagation and GSIMN. Our results are summarized in Figure 6, which shows the ratio
between the weighted number of tests of GSIMN and the two versions of GSMN∗. One

467

Bromberg, Margaritis, & Honavar

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100

W
C

(G
S

IM
N

)
/ W

C
(G

S
M

N
*

w
ith

 p
ro

pa
ga

tio
n)

Domain size (number of variables)

Ratio of weighted cost of GSIMN vs. GSMN* without propagation

τ = 1
τ = 2
τ = 4
τ = 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60 70 80 90 100W
C

(G
S

IM
N

)
/ W

C
(G

S
M

N
*

w
ith

ou
t p

ro
pa

ga
tio

n)

Domain size (number of variables)

Ratio of weighted cost of GSIMN vs. GSMN* with propagation

τ = 1
τ = 2
τ = 4
τ = 8

Figure 6: Ratio of the weighted number of tests of GSIMN over GSMN∗ without propaga-
tion (left plot) and with propagation (right plot) for network sizes (number of
nodes) up to n = 100 of average degree τ = 1, 2, 4, and 8.

Algorithm 6 IFCH(X, Y,S,F,T). Forward-chaining implementation of independence test
IGSIMN(X, Y,S,F,T).

1: /* Query knowledge base. */
2: if ∃ (S, t) ∈ KXY then
3: return t
4: t← result of test (X,Y | S) /* t = true iff test (X,Y | S) returns independence. */
5: Add (S, t) to KXY and KY X .
6: Run forward-chaining inference algorithm on K, update K.
7: return t

hundred true networks were generated randomly for each pair (n, τ), and the figure shows
the mean value. We can see that the limiting reduction (as n grows large) in weighted
number of tests depends primarily on the average degree parameter τ . The reduction of
GSIMN for large n and dense networks (τ = 8) is approximately 40% compared to GSMN∗

with propagation and 75% compared to GSMN∗ without the propagation optimization,
demonstrating the benefit of GSIMN vs. GSMN∗ in terms of number of tests executed.

One reasonable question about the performance of GSIMN is to what extent its inference
procedure is complete i.e., from all those tests that GSIMN needs during its operation, how
does the number of tests that it infers (by applying a single step of backward chaining on
the Strong Union axiom and the Triangle theorem, rather than executing a statistical test
on data) compare to the number of tests that can be inferred (for example using a complete
automated theorem prover on Eqs. (1))? To measure this, we compared the number of tests
done by GSIMN with the number done by an alternative algorithm, which we call GSIMN-
FCH (GSIMN with Forward Chaining). GSIMN-FCH differs from GSIMN in function
IFCH, shown in Algorithm 6, which replaces function IGSIMN of GSIMN. IFCH exhaustively
produces all independence statements that can be inferred through the properties of Eqs. (1)
using a forward-chaining procedure. This process iteratively builds a knowledge base K
containing the truth value of conditional independence predicates. Whenever the outcome
of a test is required, K is queried (line 2 of IFCH in Algorithm 6). If the value of the test is

468

Efficient Markov Network Structure Discovery Using Independence Tests

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

121212121111111110101010999988877766655544332

Ratio of Number of tests GSIMN-FCH and GSIMN

R
at

io

Number of variables (n)

τ = 1
τ = 2
τ = 4
τ = 8

Figure 7: Ratio of number of tests of GSIMN-FCH over GSIMN for network sizes (number
of variables) n = 2 to n = 13 and average degrees τ = 1, 2, 4, and 8.

found in K, it is returned (line 3). If not, GSIMN-FCH performs the test and uses the result
in a standard forward-chaining automatic theorem prover subroutine (line 6) to produce all
independence statements that can be inferred by the test result and K, adding these new
facts to K.

A comparison of the number of tests executed by GSIMN vs. GSIMN-FCH is presented
in Figure 7, which shows the ratio of the number of tests of GSIMN over GSIMN-FCH.
The figure shows the mean value over four runs, each corresponding to a network generated
randomly for each pair (n, τ), for τ = 1, 2, 4 and 8 and n up to 12. Unfortunately, after two
days of execution GSIMN-FCH was unable to complete execution on domains containing
13 variables or more. We therefore present results for domain sizes up to 12 only. The
figure shows that for n ≥ 9, and every τ the ratio is exactly 1 i.e., all tests inferable were
produced by the use of the Triangle theorem in GSIMN. For smaller domains, the ratio is
above 0.95 with the exception of a single case, (n = 5, τ = 1).

5.1.2 Sample-based Experiments

In this set of experiments we evaluate GSMN∗ (with and without propagation) and GSIMN
on data sampled from the true model. This allows a more realistic assessment of the
performance of our algorithms. The data were sampled from the true (known) Markov
network using Gibbs sampling.

In the exact learning experiments of the previous section only the structure of the true
network was required, generated randomly in the fashion described above. To sample data
from a known structure however, one also needs to specify the network parameters. For each
random network, the parameters determine the strength of dependencies among connected
variables in the graph. Following Agresti (2002), we used the log-odds ratio as a measure of
the strength of the probabilistic influence between two binary variables X and Y , defined
as

θXY = log
Pr(X = 0, Y = 0)Pr(X = 1, Y = 1)

Pr(X = 0, Y = 1)Pr(X = 1, Y = 0)
.

469

Bromberg, Margaritis, & Honavar

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 1, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 1, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 1, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 2, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 2, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 2, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 4, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 4, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20
N

or
m

al
iz

ed
 H

am
m

in
g

di
st

an
ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 4, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 8, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 8, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 50, τ = 8, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

Figure 8: Normalized Hamming distances between the true network and the network output
by GSMN∗ (with and without propagation) and GSIMN for domain size n = 50
and average degrees τ = 1, 2, 4, 8.

The network parameters were generated randomly so that the log-odds ratio between every
pair of variables connected by an edge in the graph has a specified value. In this set of
experiments, we used values of θ = 1, θ = 1.5 and θ = 2 for every such pair of variables in
the network.

Figures 8 and 9 show plots of the normalized Hamming distance between the true
network and that output by the GSMN∗ (with and without propagation) and GSIMN for
domain sizes of n = 50 and n = 75 variables, respectively. These plots show that the
Hamming distance of GSIMN is comparable to the ones of the GSMN∗ algorithms for both

470

Efficient Markov Network Structure Discovery Using Independence Tests

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 1, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 1, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 1, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 2, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 2, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 2, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 4, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 4, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20
N

or
m

al
iz

ed
 H

am
m

in
g

di
st

an
ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 4, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 8, θ = 1.0

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 8, θ = 1.5

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12 14 16 18 20

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for sampled data
n = 75, τ = 8, θ = 2.0

GSMN* without propagation
GSMN* with propagation

GSIMN

Figure 9: Normalized Hamming distance results as in Figure 8 but for domain size n = 75.

domain sizes n = 50 and n = 75, all average degrees τ = 1, 2, 4, 8 and log-odds ratios θ = 1,
θ = 1.5 and θ = 2. This reinforces the claim that inference done by GSIMN has a small
impact on the quality of the output networks.

Figure 10 shows the weighted number of tests of GSIMN vs. GSMN∗ (with and without
propagation) for a sampled data set of 20,000 points for domains n = 50, and n = 75,
average degree parameters τ = 1, 2, 4, and 8 and log-odds ratios θ = 1, 1.5 and 2. GSIMN
shows a reduced weighted number of tests with respect to GSMN∗ without propagation in
all cases and compared to GSMN∗ with propagation in most cases (with the only exceptions
of (τ = 4, θ = 2) and (τ = 8, θ = 1.5)). For sparse networks and weak dependences i.e.,
τ = 1, this reduction is larger than 50% for both domain sizes, a reduction much larger

471

Bromberg, Margaritis, & Honavar

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 1, θ = 1.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 1, θ = 1.5, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 1, θ = 2.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 2, θ = 1.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 2, θ = 1.5, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 2, θ = 2.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 4, θ = 1.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 4, θ = 1.5, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75
W

ei
gh

te
d

nu
m

be
r

of
 te

st
s

Number of variables

Weighted cost for sampled data
τ = 4, θ = 2.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 8, θ = 1.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 8, θ = 1.5, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50000

 100000

 150000

 200000

 250000

 300000

50 75

W
ei

gh
te

d
nu

m
be

r
of

 te
st

s

Number of variables

Weighted cost for sampled data
τ = 8, θ = 2.0, 20,000 data points

GSMN* without propagation
GSMN* with propagation

GSIMN

Figure 10: Weighted number of tests executed by GSMN∗ (with and without propagation)
and GSIMN for |D| = 20, 000, for domains sizes n = 50 and 75, average degree
parameters τ = 1, 2, 4, and 8, and log-odds ratios θ = 1, 1, 5, and 2.

than the one observed for the exact learning experiments. The actual execution times for
various data set sizes and network densities are shown in Figure 11 for the largest domain
of n = 75, and θ = 1, verifying the reduction in cost of GSIMN for various data set sizes.
Note that the reduction is proportional to the number of data points; this is reasonable as
each test executed must go over the entire data set once to construct the contingency table.
This confirms our claim that the cost of inference of GSIMN is small (constant time per
test, see discussion in Section 4.6) compared to the execution time of the tests themselves,
and indicates increasing cost benefits of the use of GSIMN for even large data sets.

472

Efficient Markov Network Structure Discovery Using Independence Tests

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
xe

cu
tio

n
tim

e
(s

ec
)

Execution times for sampled data sets
n = 75 variables, τ = 1, θ = 1

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
xe

cu
tio

n
tim

e
(s

ec
)

Execution times for sampled data sets
n = 75 variables, τ = 2, θ = 1

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
xe

cu
tio

n
tim

e
(s

ec
)

Execution times for sampled data sets
n = 75 variables, τ = 4, θ = 1

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 50

 100

 150

 200

 250

 300

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

E
xe

cu
tio

n
tim

e
(s

ec
)

Execution times for sampled data sets
n = 75 variables, τ = 8, θ = 1

GSMN* without propagation
GSMN* with propagation

GSIMN

Figure 11: Execution times for sampled data experiments for θ = 1, τ = 1, 2 (top row)
and τ = 4, 8 (bottom row) for a domain of n = 75 variables.

5.1.3 Real-World Network Sampled Data Experiments

We also conducted sampled data experiments on well-known real-world networks. As there
is no known repository of Markov networks drawn from real-world domains, we instead
utilized well-known Bayesian networks that are widely used in Bayesian network research
and are available from a number of repositories.1 To generate Markov networks from these
Bayesian network structures we used the process of moralization (Lauritzen, 1996) that
consists of two steps: (a) connect each pair of nodes in the Bayesian network that have
a common child with an undirected edge and (b) remove directions of all edges. This
results in a Markov network in which the local Markov property is valid i.e., each node is
conditionally independent of all other nodes in the domain given its direct neighbors. During
this procedure some conditional independences may be lost. This, however, does not affect
the accuracy results because we compare the independencies of the output network with
those of the moralized Markov network (as opposed to the Bayesian network).

We conducted experiments using 5 real-world domains: Hailfinder, Insurance, Alarm,
Mildew, and Water. For each domain we sampled a varying number of data points from its
corresponding Bayesian network using logic sampling (Henrion, 1988), and used it as input
to the GSMN∗ (with and without propagation) and GSIMN algorithms. We then compared
the network output from each of these algorithms to the original moralized network using
the normalized Hamming distance metric previously described. The results are shown in

1. We used http://compbio.cs.huji.ac.il/Repository/. Accessed on December 5, 2008.

473

Bromberg, Margaritis, & Honavar

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for hailfinder data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for insurance data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for alarm data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for Mildew data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2 4 6 8 10 12 14 16 18 20 22

N
or

m
al

iz
ed

 H
am

m
in

g
di

st
an

ce

Data set size (thousands of data points)

Hamming distance for Water data set

GSMN* without propagation
GSMN* with propagation

GSIMN

Figure 12: Normalized Hamming distance of the network output by GSMN∗ (with and
without propagation) and GSIMN with the true Markov networks network using
varying data set sizes sampled from Markov networks for various real-world
domains modeled by Bayesian networks.

Fig. 12 and indicate that the distances produced from the three algorithms are similar.
In some cases (e.g., Water and Hailfinder) the network resulting from the use of GSIMN
is actually better (of smaller Hamming distance) than the ones output by the GSMN∗

algorithms.
We also measured the weighted cost of the three algorithms for each of these domains,

shown in Fig. 13. The plots show a significant decrease in the weighted number of tests for
GSIMN with respect to both GSMN∗ algorithms: the cost of GSIMN is 66% of the cost of
GSMN∗ without propagation on average, a savings of 34%, while the cost of GSIMN is 28%
of the cost of GSMN∗ without propagation on average, a savings of 72%.

5.2 Real-World Data Experiments

While the artificial data set studies of the previous section have the advantage of allowing a
more controlled and systematic study of the performance of the algorithms, experiments on
real-world data are necessary for a more realistic assessment of their performance. Real data
are more challenging because they may come from non-random topologies (e.g., a possibly
irregular lattice in many cases of spatial data) and the underlying probability distribution
may not be faithful.

We conducted experiments on a number of data sets obtained from the UCI machine
learning data set repository (Newman, Hettich, Blake, & Merz, 1998). Continuous variables
in the data sets were discretized using a method widely recommended in introductory statis-
tics texts (Scott, 1992); it dictates that the optimal number of equally-spaced discretization
bins for each continuous variable is k = 1 + log2 N , where N is the number of points in the

474

Efficient Markov Network Structure Discovery Using Independence Tests

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 5 10 15 20

W
ei

gh
te

d
co

st
 o

f t
es

ts

Data set size (thousands of data points)

Weighted cost of tests for hailfinder data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20

W
ei

gh
te

d
co

st
 o

f t
es

ts

Data set size (thousands of data points)

Weighted cost of tests for insurance data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 5 10 15 20

W
ei

gh
te

d
co

st
 o

f t
es

ts

Data set size (thousands of data points)

Weighted cost of tests for alarm data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 2000

 4000

 6000

 8000

 10000

 0 5 10 15 20

W
ei

gh
te

d
co

st
 o

f t
es

ts

Data set size (thousands of data points)

Weighted cost of tests for Mildew data set

GSMN* without propagation
GSMN* with propagation

GSIMN

 0

 5000

 10000

 15000

 20000

 25000

 0 5 10 15 20

W
ei

gh
te

d
co

st
 o

f t
es

ts

Data set size (thousands of data points)

Weighted cost of tests for Water data set

GSMN* without propagation
GSMN* with propagation

GSIMN

Figure 13: Weighted cost of tests conducted by the GSMN∗ (with and without propagation)
and GSIMN algorithms for various real-world domains modeled by Bayesian
networks.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

19 1 2 14 6 7 12 8 3 13 15 4 5 10 11 18 17 9 16
Data set index

Weighted cost and accuracy for real-world data sets

acc(GSIMN) - acc(GSMN* without propagation)
acc(GSIMN) - acc(GSMN* with propagation)

wc(GSIMN) / wc(GSMN* without propagation)
wc(GSIMN) / wc(GSMN* with propagation)

Figure 14: Ratio of the weighted number of tests of GSIMN versus GSMN∗ and difference
between the accuracy of GSIMN and GSMN∗ on real data sets. Ratios smaller
that 1 and positive bars indicate an advantage of GSIMN over GSMN∗. The
numbers in the x-axis are indices of the data sets as shown in Table 1.

data set. For each data set and each algorithm, we report the weighted number of condi-
tional independence tests conducted to discover the network and the accuracy, as defined
below.

475

Bromberg, Margaritis, & Honavar

Table 1: Weighted number of tests and accuracy for several real-world data sets. For each
evaluation measure, the best performance between GSMN∗ (with and without
propagation) and GSIMN is indicated in bold. The number of variables in the
domain is denoted by n and the number of data points in each data set by N .

Data set Weighted number of tests Accuracy
Name n N GSMN∗ GSMN∗ GSIMN GSMN∗ GSMN∗ GSIMN

(w/o prop.) (w/ prop.) (w/o prop.) (w/ prop.)

1 echocardiogram 14 61 1311 1050 604 0.244 0.244 0.244
2 ecoli 9 336 425 309 187 0.353 0.394 0.411

3 lenses 5 24 60 40 20 0.966 0.966 0.966
4 hayes-roth 6 132 102 72 30 0.852 0.852 0.852
5 hepatitis 20 80 1412 980 392 0.873 0.912 0.968

6 cmc 10 1473 434 292 154 0.746 0.767 0.794

7 balance-scale 5 625 82 47 29 0.498 0.797 0.698
8 baloons 5 20 60 40 20 0.932 0.932 0.932
9 flag 29 194 5335 2787 994 0.300 0.674 0.929

10 tic-tac-toe 10 958 435 291 119 0.657 0.657 0.704

11 bridges 12 70 520 455 141 0.814 0.635 0.916

12 car 7 1728 194 140 67 0.622 0.677 0.761

13 monks-1 7 556 135 93 42 0.936 0.936 0.936
14 haberman 5 306 98 76 42 0.308 0.308 0.308
15 nursery 9 12960 411 270 123 0.444 0.793 0.755
16 crx 16 653 1719 999 305 0.279 0.556 0.892

17 imports-85 25 193 4519 3064 1102 0.329 0.460 0.847

18 dermatology 35 358 9902 6687 2635 0.348 0.541 0.808

19 adult 10 32561 870 652 418 0.526 0.537 0.551

Because for real-world data the structure of the underlying Bayesian network (if any)
is unknown, it is impossible to measure the Hamming distance of the resulting network
structure. Instead, we measured the estimated accuracy of a network produced by GSMN∗

or GSIMN by comparing the result (true or false) of a number of conditional independence
tests on the network learned by them (using vertex separation) to the result of the same tests
performed on the data set (using a χ2 test). This approach is similar to estimating accuracy
in a classification task over unseen instances but with inputs here being triplets (X, Y,Z)
and the class attribute being the value of the corresponding conditional independence test.
We used 1/3 of the real-world data set (randomly sampled) as input to GSMN∗ and GSIMN
and the entire data set to the χ2 test. This corresponds to the hypothetical scenario that
a much smaller data set is available to the researcher, and approximates the true value
of the test by its outcome on the entire data set. Since the number of possible tests is
exponential, we estimated the independence accuracy by sampling 10,000 triplets (X, Y,Z)
randomly, evenly distributed among all possible conditioning set sizes m ∈ {0, . . . , n − 2}
(i.e., 10000/(n − 1) tests for each m). Each of these triplets was constructed as follows:
First, two variables X and Y were drawn randomly from V. Second, the conditioning set
was determined by picking the first m variables from a random permutation of V−{X, Y }.
Denoting by T this set of 10,000 triplets, by t ∈ T a triplet, by Idata(t) the result of a test
performed on the entire data set and by Inetwork(t) the result of a test performed on the

476

Efficient Markov Network Structure Discovery Using Independence Tests

network output by either GSMN∗ or GSIMN, the estimated accuracy is defined as:

̂accuracy =
1

|T |

∣

∣

∣

∣

{

t ∈ T | Inetwork(t) = Idata(t)
}

∣

∣

∣

∣

.

For each of the data sets, Table 1 shows the detailed results for accuracy and the weighted
number of tests for the GSMN∗ and GSIMN algorithms. These results are also plotted in
Figure 14, with the horizontal axis indicating the data set index appearing in the first column
of Table 1. Figure 14 plots two quantities in the same graph for these real-world data sets:
the ratio of the weighted number of tests of GSIMN versus the two GSMN∗ algorithms
and the difference of their accuracies. For each data set, an improvement of GSIMN over
GSMN∗ corresponds to a number smaller than 1 for the ratios and a positive histogram bar
for the accuracy differences. We can observe that GSIMN reduced the weighted number of
tests on every data set, with maximum savings of 82% over GSMN∗ without propagation
(for the “crx” data set) and 60% over GSMN∗ with propagation (for the “crx” data set as
well). Moreover, in 11 out of 19 data sets GSIMN resulted in improved accuracy, 6 in a tie
and only 2 in somewhat reduced accuracy compared to GSMN∗ with propagation (for the
“nursery” and “balance-scale” data sets).

6. Conclusions and Future Research

In this paper we presented two algorithms, GSMN∗ and GSIMN, for learning efficiently
the structure of a Markov network of a domain from data using the independence-based
approach (as opposed to NP-hard algorithms based on maximum likelihood estimation) We
evaluated their performance through measurement of the weighted number of tests they
require to learn the structure of the network and the quality of the networks learned from
both artificial and real-world data sets. GSIMN showed a decrease in the vast majority
of artificial and real-world domains in an output network quality comparable to that of
GSMN∗, with some cases showing improvement. In addition, GSIMN was shown to be
nearly optimal in the number of tests executed compared to GSIMN-FCH, which uses an
exhaustive search to produce all independence information that can inferred from Pearl’s
axioms. Some directions of future research include an investigation into the way the topology
of the underlying Markov network affects the number of tests required and quality of the
resulting network, especially for commonly occurring topologies such as grids. Another
research topic is the impact on number of tests of other examination and grow orderings of
the variables.

Acknowledgments

We thank Adrian Silvescu for insightful comments on accuracy measures and general advice
on the theory of undirected graphical models.

Appendix A. Correctness of GSMN∗

For each variable X ∈ V examined during the main loop of the GSMN∗ algorithm (lines
10–39), the set BX of variable X ∈ V is constructed by growing and shrinking a set S,

477

Bromberg, Margaritis, & Honavar

starting from the empty set. X is then connected to each member of BX to produce the
structure of a Markov network. We prove that this procedure returns the actual Markov
network structure of the domain.

For the proof of correctness we make the following assumptions.

• The axioms of Eqs. (1) hold.

• The probability distribution of the domain is strictly positive (required for Intersection
axiom to hold).

• Tests are conducted by querying an oracle, which returns its true value in the under-
lying model.

The algorithm examines every variable Y ∈ λX for inclusion to S (and thus to BX)
during the grow phase (lines 18 to 33) and, if Y was added to S during the grow phase, it
considers it for removal during the shrinking phase (lines 34 to 37). Note that there is only
one test executed between X and Y during the growing phase of X; we call this the grow
test of Y on X (line 23). Similarly, there is one or no tests executed between X and Y
during the shrinking phase; this test (if executed) is called the shrink test of Y on X (line
36).

The general idea behind the proof is to show that, while learning the blanket of X,
variable Y is in S by the end of the shrinking phase if and only if the dependence (X 6⊥⊥Y |
V − {X, Y }) between X and Y holds (which, according to Theorem 2 at the end of the
Appendix, implies there is an edge between X and Y). We can immediately prove one
direction.

Lemma 1. If Y /∈ S at the end of the shrink phase, then (X⊥⊥Y | V − {X, Y }).

Proof. Let us assume that Y /∈ S by the end of the shrink phase. Then, either Y was
not added to set S during the grow phase (i.e., line 24 was never reached), or removed
from it during the shrink phase (i.e., line 37 was reached). The former can only be true if
(pXY > α) in line 22 (indicating X and Y are unconditionally independent) or Y was found
independent of X in line 23. The latter can only be true if Y was found independent of X
in line 36. In all cases then ∃A ⊆ V−{X, Y } such that (X⊥⊥Y | A), and by Strong Union
then (X⊥⊥Y | V − {X, Y }).

The opposite direction is proved in Lemma 6 below. However, its proof is more involved,
requiring a few auxiliary lemmas, observations, and definitions. The two main auxiliary
Lemmas are 4 and 5. Both use the lemma presented next (Lemma 2) inductively to extend
the conditioning set of dependencies found by the grow and shrink tests between X and Y ,
to all the remaining variables V−{X, Y }. The Lemma shows that, if a certain independence
holds, the conditioning set of a dependence can be increased by one variable.

Lemma 2. Let X, Y ∈ V, Z ⊆ V − {X, Y }, and Z′ ⊆ Z. Then ∀W ∈ V,

(X 6⊥⊥Y | Z) and (X⊥⊥W | Z′ ∪ {Y }) =⇒ (X 6⊥⊥Y | Z ∪ {W}).

478

Efficient Markov Network Structure Discovery Using Independence Tests

Proof. We prove by contradiction, and make use of the axioms of Intersection (I), Strong
Union (SU), and Decomposition (D). Let us assume that (X 6⊥⊥Y | Z) and (X⊥⊥W | Z′∪{Y })
but (X⊥⊥Y | Z ∪ {W}). Then

(X⊥⊥Y | Z ∪ {W}) and (X⊥⊥W | Z′ ∪ {Y })
SU
=⇒ (X⊥⊥Y | Z ∪ {W}) and (X⊥⊥W | Z ∪ {Y })

I
=⇒ (X⊥⊥{Y, W} | Z)
D

=⇒ (X⊥⊥Y | Z) ∧ (X⊥⊥W | Z)

=⇒ (X⊥⊥Y | Z).

This contradicts the assumption (X 6⊥⊥Y | Z).

We now introduce notation and definitions and prove auxiliary lemmas.
We denote by SG the value of S at the end of the grow phase (line 34) i.e., the set of

variables found dependent of X during the grow phase, and by SS the value of S at the end
of the shrink phase (line 39). We also denote by G the set of variables found independent
of X during the grow phase and by U = [U0, . . . , Uk] the sequence of variables shrunk from
BX , i.e., found independent of X during the shrink phase. The sequence U is assumed
ordered as follows: if i < j then variable Ui was found independent from X before Uj

during the shrinking phase. A prefix of the first i variables [U0, . . . , Ui−1] of U is denoted
by Ui. For some test t performed during the algorithm, we define k(t) as the integer such
that Uk(t) is the prefix of U containing the variables that were found independent of X in
this loop before t. Furthermore, we abbreviate Uk(t) by Ut.

From the definition of U and the fact that in the grow phase the conditioning set
increases by dependent variables only, we can immediately make the following observation:

Observation 1. For some variable Ui ∈ U, if t denotes the shrink test performed between
X and Ui then Ut = Ui−1.

We can then relate the conditioning set of the shrink test t with Ut as follows:

Lemma 3. If Y ∈ SS and t = (X, Y | Z) is the shrink test of Y , then Z = SG−Ut−{Y }.

Proof. According to line 36 of the algorithm, Z = S− {Y }. At the beginning of the shrink
phase (line 34) S = SG, but variables found independent afterward and until t is conducted
are removed from S in line 37. Thus, by the time t is performed, S = SG − Ut and the
conditioning set becomes SG −Ut − {Y }.

Corollary 1. (X⊥⊥Ui | SG −Ui).

Proof. The proof follows immediately from Lemma 3, Observation 1, and the fact that
Ui = Ui−1 ∪ {Ui}.

The following two lemmas use Lemma 2 inductively to extend the conditioning set of
the dependence between X and a variable Y in SS . The first lemma starts from the shrink
test between X and Y (a dependence), and extends its conditioning set from SS − {Y } (or
equivalently SG − {Y } −Ut according to Lemma 3) to SG − {Y }.

479

Bromberg, Margaritis, & Honavar

Lemma 4. If Y ∈ SS and t is the shrink test of Y , then (X 6⊥⊥Y | SG − {Y }).

Proof. The proof proceeds by proving

(X 6⊥⊥Y | SG − {Y } −Ui)

by induction on decreasing values of i, for i ∈ {0, 1, . . . , k(t)}, starting at i = k(t). The
lemma then follows for i = 0 by noticing that U0 = ∅.

• Base case (i = k(t)): From Lemma 3, t = (X, Y | SG − {Y } − Ut), which equals
(X, Y | SG−{Y }−Uk(t)) by definition of Ut. Since Y ∈ SS , it must be the case that
t was found dependent, i.e., (X 6⊥⊥Y | SG − {Y } −Uk(t)).

• Inductive step: Let us assume that the statement is true for i = m, 0 < m ≤ k(t)−1:

(X 6⊥⊥Y | SG − {Y } −Um). (2)

We need to prove that this is also true for i = m− 1:

(X 6⊥⊥Y | SG − {Y } −Um−1).

By Corollary 1, we have
(X⊥⊥Um | SG −Um)

and by Strong Union,
(X⊥⊥Um | (SG −Um) ∪ {Y })

or
(X⊥⊥Um | (SG −Um − {Y }) ∪ {Y }). (3)

From Eqs. (2), (3) and Lemma 2 we get the desired relation:

(X 6⊥⊥Y | (SG − {Y } −Um) ∪ {Um}) = (X 6⊥⊥Y | SG − {Y } −Um−1).

Observation 2. By definition of SG, we have that for every test t = (X, Y | Z) performed
during the grow phase, Z ⊆ SG.

The following lemma completes the extension of the conditioning set of the dependence
between X and Y ∈ SS into the universe of variables V− {X, Y }, starting from SG − {Y }
(where Lemma 4 left off) and extending it to SG ∪G− {Y }.

Lemma 5. If Y ∈ SS, then (X 6⊥⊥Y | SG ∪G− {Y }).

Proof. The proof proceeds by proving

(X 6⊥⊥Y | SG ∪Gi − {Y })

by induction on increasing values of i from 0 to |G|, where Gi denotes the first i elements
of an arbitrary ordering of set G.

480

Efficient Markov Network Structure Discovery Using Independence Tests

• Base Case (i = 0): Follows directly from Lemma 4 for i = 0, since G0 = ∅.

• Inductive Step: Let us assume that the statement is true for i = m, 0 ≤ m < |G|:

(X 6⊥⊥Y | SG ∪Gm − {Y }). (4)

We need to prove that it is also true for i = m + 1:

(X 6⊥⊥Y | SG ∪Gm+1 − {Y }). (5)

From Observation 2 the grow test of Gm results in the independence:

(X⊥⊥Gm | Z), where Z ⊆ SG.

By the Strong Union axiom this can become:

(X⊥⊥Gm | Z ∪ {Y }), where Z ⊆ SG (6)

or equivalently
(X⊥⊥Gm | (Z− {Y }) ∪ {Y }), where Z ⊆ SG. (7)

Since Z ⊆ SG ⊆ SG ∪Gm, we have that Z − {Y } ⊆ SG ∪Gm, and so from Eq. (4)
and Lemma 2 we get the desired relation:

(X 6⊥⊥Y | (SG ∪Gm − {Y }) ∪Gm) = (X 6⊥⊥Y | SG ∪Gm+1 − {Y }).

Finally, we can prove that X is dependent with every variable Y ∈ SS given the universe
V − {X, Y }.

Lemma 6. If Y ∈ SS, then (X 6⊥⊥Y | V − {X, Y }).

Proof. From Lemma 5,
(X 6⊥⊥Y | SG ∪G− {Y })

It suffices then to prove that SG ∪G − {Y } = V − {X, Y }. In loop 6–9 of GSMN∗, the
queue λX is populated with all elements in V − {X}, and then, in line 21, Y is removed
from λX . The grow phase then partitions λX into variables dependent of X (set SG) and
independent of X (set G).

Corollary 2. Y ∈ SS ⇐⇒ (X 6⊥⊥Y | V − {X, Y }).

Proof. Follows directly from Lemmas 1 and 6.

From the above Corollary we can now immediately show that the graph returned by
connecting X to each member of BX = SS is exactly the Markov network of the domain
using the following theorem, first published by Pearl and Paz (1985).

Theorem 2. (Pearl & Paz, 1985) Every dependence model M satisfying symmetry, decom-
position, and intersection (Eqs. (1)) has a unique Markov network G = (V,E) produced by
deleting from the complete graph every edge (X, Y) for which (X⊥⊥Y | V − {X, Y }) holds
in M , i.e.,

(X, Y) /∈ E ⇐⇒ (X⊥⊥Y | V − {X, Y }) in M.

481

Bromberg, Margaritis, & Honavar

Appendix B. Correctness of GSIMN

The GSIMN algorithm differs from GSMN∗ only by the use of test subroutine IGSIMN

instead of IGSMN∗ (Algorithms 5 and 4, respectively), which in turn differs by a number
of additional inferences conducted to obtain the independencies (lines 8 to 22). These
inferences are direct applications of the Strong Union axiom (which holds by assumption)
and the Triangle theorem (which was proven to hold in Theorem 1). Using the correctness
of GSMN∗ (proven in Appendix A) we can therefore conclude that the GSIMN algorithm
is correct.

References

Abbeel, P., Koller, D., & Ng, A. Y. (2006). Learning factor graphs in polynomial time and
sample complexity. Journal of Machine Learning Research, 7, 1743–1788.

Acid, S., & de Campos, L. M. (2003). Searching for Bayesian network structures in the
space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence
Research, 18, 445–490.

Agresti, A. (2002). Categorical Data Analysis (2nd edition). Wiley.

Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003). HITON, a novel Markov blanket
algorithm for optimal variable selection. In Proceedings of the American Medical
Informatics Association (AMIA) Fall Symposium.

Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G., & Ng, A.
(2005). Discriminative learning of Markov random fields for segmentation of 3D range
data. In Proceedings of the Conference on Computer Vision and Pattern Recognition
(CVPR).

Barahona, F. (1982). On the computational complexity of Ising spin glass models. Journal
of Physics A: Mathematical and General, 15 (10), 3241–3253.

Besag, J. (1974). Spacial interaction and the statistical analysis of lattice systems. Journal
of the Royal Statistical Society, Series B, 36, 192–236.

Besag, J., York, J., & Mollie, A. (1991). Bayesian image restoration with two applications
in spatial statistics.. Annals of the Institute of Statistical Mathematics, 43, 1–59.

Bromberg, F., Margaritis, D., & Honavar, V. (2006). Efficient Markov network structure dis-
covery from independence tests. In Proceedings of the SIAM International Conference
on Data Mining.

Buntine, W. L. (1994). Operations for learning with graphical models. Journal of Artificial
Intelligence Research, 2, 159–225.

Castelo, R., & Roverato, A. (2006). A robust procedure for Gaussian graphical model search
from microarray data with p larger than n. Journal of Machine Learning Research,
7, 2621–2650.

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with depen-
dence trees. IEEE Transactions on Information Theory, 14 (3), 462 – 467.

482

Efficient Markov Network Structure Discovery Using Independence Tests

Cochran, W. G. (1954). Some methods of strengthening the common χ2 tests. Biometrics,
10, 417–451.

Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19 (4), 390–393.

Dobra, A., Hans, C., Jones, B., Nevins, J. R., Yao, G., & West, M. (2004). Sparse graphical
models for exploring gene expression data. Journal of Multivariate Analysis, 90, 196–
212.

Edwards, D. (2000). Introduction to Graphical Modelling (2nd edition). Springer, New
York.

Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to
analyze expression data. Computational Biology, 7, 601–620.

Geman, S., & Geman, D. (1984). Stochastic relaxation, gibbs distributions, and the bayesian
relation of images.. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6, 721–741.

Heckerman, D. (1995). A tutorial on learning bayesian networks. Tech. rep. MSR-TR-95-06,
Microsoft Research.

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The
combination of knowledge and statistical data. Machine Learning, 20, 197–243.

Henrion, M. (1988). Propagation of uncertainty by probabilistic logic sampling in Bayes’
networks. In Lemmer, J. F., & Kanal, L. N. (Eds.), Uncertainty in Artificial Intelli-
gence 2. Elsevier Science Publishers B.V. (North Holland).

Hofmann, R., & Tresp, V. (1998). Nonlinear Markov networks for continuous variables. In
Neural Information Processing Systems, Vol. 10, pp. 521–529.

Isard, M. (2003). Pampas: Real-valued graphical models for computer vision. In IEEE
Conference on Computer Vision and Pattern Recognition, Vol. 1, pp. 613–620.

Jerrum, M., & Sinclair, A. (1993). Polynomial-time approximation algorithms for the Ising
model. SIAM Journal on Computing, 22, 1087–1116.

Kearns, M. J., & Vazirani, U. V. (1994). An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA.

Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In International Con-
ference on Machine Learning, pp. 284–292.

Lam, W., & Bacchus, F. (1994). Learning Bayesian belief networks: an approach based on
the MDL principle. Computational Intelligence, 10, 269–293.

Lauritzen, S. L. (1996). Graphical Models. Oxford University Press.

Margaritis, D., & Thrun, S. (2000). Bayesian network induction via local neighborhoods. In
Solla, S., Leen, T., & Müller, K.-R. (Eds.), Advances in Neural Information Processing
Systems 12, pp. 505–511. MIT Press.

McCallum, A. (2003). Efficiently inducing features of conditional random fields. In Pro-
ceedings of Uncertainty in Artificial Intelligence (UAI).

483

Bromberg, Margaritis, & Honavar

Newman, D. J., Hettich, S., Blake, C. L., & Merz, C. J. (1998). UCI repository of machine
learning databases. Tech. rep., University of California, Irvine, Dept. of Information
and Computer Sciences.

Peña, J. M. (2008). Learning Gaussian graphical models of gene networks with false dis-
covery rate control. In Proceedings of the 6th European Conference on Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, pp. 165–176.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference. Morgan Kaufmann Publishers, Inc.

Pearl, J., & Paz, A. (1985). Graphoids: A graph-based logic for reasoning about releveance
relations. Tech. rep. 850038 (R-53-L), Cognitive Systems Laboratory, University of
California.

Rebane, G., & Pearl, J. (1989). The recovery of causal poly-trees from statistical data.
In Kanal, L. N., Levitt, T. S., & Lemmer, J. F. (Eds.), Uncertainty in Artificial
Intelligence 3, pp. 175–182, Amsterdam. North-Holland.

Schäfer, J., & Strimmer, K. (2005). An empirical bayes approach to inferring large-scale
gene association networks. Bioinformatics, 21, 754–764.

Scott, D. W. (1992). Multivariate Density Estimation. Wiley series in probability and
mathematical statistics. John Wiley & Sons.

Shekhar, S., Zhang, P., Huang, Y., & Vatsavai, R. R. (2004) In Kargupta, H., Joshi, A.,
Sivakumar, K., & Yesha, Y. (Eds.), Trends in Spatial Data Mining, chap. 19, pp.
357–379. AAAI Press / The MIT Press.

Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, Prediction, and Search (2nd
edition). Adaptive Computation and Machine Learning Series. MIT Press.

Srebro, N., & Karger, D. (2001). Learning Markov networks: Maximum bounded tree-width
graphs. In ACM-SIAM Symposium on Discrete Algorithms.

Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003a). Algorithms for large scale Markov
blanket discovery. In Proceedings of the 16th International FLAIRS Conference, pp.
376–381.

Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003b). Time and sample efficient discov-
ery of Markov blankets and direct causal relations. In Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
673–678.

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing Bayesian
network structure learning algorithm. Machine Learning, 65, 31–78.

Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics. John Wiley &
Sons, New York.

484

