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Abstract

Control and bribery are settings in which an external ageeks to influence the outcome of
an election. Constructive control of elections refers terapts by an agent to, via such actions as
addition/deletion/partition of candidates or voters,ugaghat a given candidate wins. Destructive
control refers to attempts by an agent to, via the same a;tpyaclude a given candidate’s victory.
An election system in which an agent can sometimes affeatethidt and it can be determined in
polynomial time on which inputs the agent can succeed istsalé vulnerable to the given type
of control. An election system in which an agent can somediaftect the result, yet in which it is
NP-hard to recognize the inputs on which the agent can sd¢izesaid to be resistant to the given
type of control.

Aside from election systems with an NP-hard winner probléme, only systems previously
known to be resistant to all the standard control types wagkhhartificial election systems cre-
ated by hybridization. This paper studies a parameterieesian of Copeland voting, denoted by
Copeland, where the parameter is a rational number between 0 and 1 that specifies how ties are
valued in the pairwise comparisons of candidates. In evaayipusly studied constructive or de-
structive control scenario, we determine which of resistaor vulnerability holds for Copelafd
for each rationalr, 0 < a < 1. In particular, we prove that Copeldi®j the system commonly
referred to as “Copeland voting,” provides full resistatnaeconstructive control, and we prove
the same for Copelafd for all rationala, 0 < a < 1. Among systems with a polynomial-time
winner problem, Copeland voting is the first natural elatsgstem proven to have full resistance
to constructive control. In addition, we prove that both €lapd and Copelant (interestingly,
Copeland is an election system developed by the thirteenth-centystimLIull) are resistant to
all standard types of constructive control other than orm@amof addition of candidates. More-
over, we show that for each rationa] 0 < a < 1, Copelanél voting is fully resistant to bribery
attacks, and we establish fixed-parameter tractabilityoofloled-case control for Copeldhd

We also study Copelafdelections under more flexible models such as microbribedyesn
tended control, we integrate the potential irrationalityater preferences into many of our results,
and we prove our results in both the unique-winner model hachbnunique-winner model. Our
vulnerability results for microbribery are proven via a abtechnique involving min-cost network
flow.

(©?2009 Al Access Foundation. All rights reserved.
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1. Introduction

This section gives some history and an outline of our results.

1.1 Some Historical Remarks: Llull's and Copeland’s Election Systems

Elections have played an important role in human societies for thousandsurst yeor example,
elections were of central importance in the democracy of ancient Athdrese Titizens typically
could only agree (votgeg or disagree (vot@o) with the speaker, and simple majority-rule was in
effect. The mathematical study of elections, give or take a few discusisjotiee ancient Greeks
and Romans, was until recently thought to have been initiated only a fewdulipdars ago, namely
in the breakthrough work of Borda and Condorcet—later in part reteeeby Dodgson (see, e.g.,
McLean and Urken, 1995, for reprints of these classic papers)o€the most interesting results of
this early work is Condorcet’s (1785) observation that if one conddetsiens with more than two
alternatives then even if all voters have rational (i.e., transitive) preéers, the society in aggregate
can be irrational (indeed, can have cycles of strict preferencehetleless, Condorcet believed
that if there exists a candidatesuch thatc defeats each other candidate in head-to-head contests
thenc should win the election (see, e.g., page 114 of McLean and Urken, 1886h a candidate
is called a Condorcet winner. Clearly, there can be at most one Caidoirmner in any election,
and there might be none.

This understanding of history has been reconsidered during thegpadetades, as it has been
discovered that the study of elections was considered deeply as ed#ily thirteenth century (see
Hagele and Pukelsheim, 2001, and the citations therein regarding Ramonriduhae fifteenth-
century figure Cusanus, especially the citations thatdgéte and Pukelsheim, 2001, are numbered
3, 5, and 24-27). Ramon Llull (b. 1232, d. 1315), a Catalan mystic, masjipand philosopher
developed an election system that (a) has an efficient winner-determipaticedure and (b) elects
a Condorcet winner whenever one exists and otherwise elects casditktare, in a certain sense,
closest to being Condorcet winners.

Llull’'s motivation for developing an election system was to obtain a method obsihg
abbesses, abbots, bishops, and perhaps even the pope. His elea®néder gained public accep-
tance in medieval Europe and were long forgotten.

It is interesting to note that Llull allowed voters to have so-cailteational preferences. Given
three candidates, d, ande, it was perfectly acceptable for a voter to preédao d, d to e, ande
to c. On the other hand, in modern studies of voting and election systems each podéerences
are most typically modeled as a linear order over all candidates. (In thir,pap is common
when discussing elections, “linear order” implies strictness, i.e., no tie in ttheriog; that is,
by “linear order” we mean a strict, complete order, i.e., an irreflexive, yantisetric, complete,
transitive relation.) Yet allowing irrationality is very tempting and natural. CarsBob, who
likes to eat out but is often in a hurry. Bob prefers diners to fast foecthbse he is willing to
wait a little longer to get better food. Also, given a choice between a fagstaurant and a diner
he prefers the fancy restaurant, again because he is willing to wait s@nkwlger to get better
quality. However, given the choice between a fast-food place andcy fastaurant Bob might
reason that he is not willing to wait so much longer to be served at the fastgurant and so
will choose fast food instead. Thus regarding catering options, Bok®rences are irrational in
our sense, i.e., intransitive. When voters make their choices based on maittiplea—a very
common and natural occurrence both among humans and software agentsirationalities can
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occur. Another example where irrationality might naturally occur, as sigdeby a referee, is
the case when each voter is a delegate of some group (having an oddrrafmiembers), and
between each pair of alternatives each delegate votes for whicheveaglte a majority of his or
her constituents prefers among that pair.

Llull's election system is remarkably similar to what is now known as “Copelaed-e
tions” (Copeland, 1951), a more than half-century old voting procethakis based on pairwise
comparisons of candidates: The winner (by a majority of votes—in this papgority” always,
as is standard, means strict majority) of each such head-to-head derdaestrded one point and
the loser is awarded zero points; in ties, both parties are (in the most commmretd&on of
Copeland’s meaning) awarded half a point; whoever collects the most meietsall these con-
tests (including tie-related points) is the election’s winner. In fact, the pailievawarded for ties
in such head-to-head majority-rule contests is treated in two ways in the lieerahen speaking
of Copeland elections: half a point (most common) and zero points (less comifm provide a
framework that can capture both those notions, as well as capturing ldyfitem and the whole
family of systems created by choices of how we value ties, we propose @induoe a parame-
terized version of Copeland elections, denoted by Copélantiere the parameter is a rational
number, < a <1, and in the case of a tie both candidates receiypmints. So the system widely
referred to in the literature as “Copeland elections” is Copé&andhere tied candidates receive
half a point each (see, e.g., Saari and Merlin, 1996, and Merlin and $887; the definition used
by Conitzer, Sandholm, & Lang, 2007, can be scaled to be equivaleripiel&@hd?®). Copelan,
where tied candidates come away empty-handed, has sometimes also bged tefas “Copeland
elections” (see, e.g., Procaccia, Rosenschein, and Kaminka, 2@DFabszewski, Hemaspaandra,
Hemaspaandra, and Rothe, 2007, an early version of this paper)abbive-mentioned election
system proposed by Ramon Llull in the thirteenth century is in this notation Qupelahere tied
candidates are awarded one point each, just like winners of heaghtbeontests.The group stage
of the FIFA World Cup finals is in essence a collection of Cope%anurnaments.

Atfirst glance, one might be tempted to think that the definitional perturbatienaithe param-
etera in Copeland elections is negligible. However, it in fact can make the dynamics of Llull's
system quite different from those of, for instance, Copél@mt Copelanfl. Specific examples
witnessing this claim, both regarding complexity results and regarding theifgre given at the
end of Section 1.3.

Finally, we mention that a probabilistic variant of Copeland voting (known aegdéch method)
was defined already in 1929 by Zermelo (1929) and later on was reiceddwy several other re-
searches (see, e.g., Levin and Nalebuff, 1995, for further mfeseand a description of the Jech
method). We note in passing that the Jech method is applicable even whed insdmplete infor-
mation. In the present paper, however, we do not consider incompfeteaetion or probabilistic
scenarios, although we commend such settings as interesting for futlee wor

1. Page 23 of Hgele and Pukelsheim 2001 indicates in a way we find deeply convincinte(pdy a direct quote of
Llull's in-this-case-very-clear words from hiartifitium Electionis Personarumwhich was rediscovered by those
authors in the year 2000) that at least one of Llull’'s election systems wpel&hd, and so in this paper we refer to
the both-candidates-score-a-point-on-a-tie variant as Llull voting.

In some settings Llull required the candidate and voter sets to be identitlaahan elaborate two-stage tie-
handling rule ending in randomization. We disregard these issues hetieaanhis system into the modern idiom
for election systems. (However, we note in passing that there do exig swdern papers in which the voter and
candidate sets are taken to be identical, see for example the work ofarehees in Altman and Tennenholtz, 2007.)
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1.2 Computational Social Choice

In general it is impossible to design a perfect election system. Arrow jifaG8usly showed that
there is no social choice system that satisfies a certain small set of jrgeedpnable requirements,
and later Gibbard (1973), Satterthwaite (1975), and Duggan and &zhi{®2800) showed that any
natural election system can sometimes be manipulated by strategic voting, i.e/Qtey sevealing
different preferences than his or her true ones in order to affeeleation’s result in his or her
favor. Also, no natural election system with a polynomial-time winner-detetinimgrocedure
has yet been shown to be resistant to all types of control via prodezthaages. Control refers to
attempts by an external agent (called “the chair”) to, via such actionsdésoaddeletion/partition
of candidates or voters, make a given candidate win the election (in thefoesestructive control,
Bartholdi, Tovey, and Trick, 1992) or preclude a given candidaiet®ry (in the case of destructive
control, Hemaspaandra, Hemaspaandra, and Rothe, 2007a).

These obstacles are very discouraging, but the field of computaticrial shoice theory grew
in part from the realization that computational complexity provides a potetieldsagainst ma-
nipulation/control/etc. In particular, around 1990, Bartholdi, Tovey, @nck (1989a), Bartholdi
and Orlin (1991), and Bartholdi et al. (1992) brilliantly observed thailewve perhaps might not
be able to make manipulation (i.e., strategic voting) and control of elections ihf@msse could
at least try to make such manipulation and control so computationally difficdlnither voters
nor election organizers will attempt it. For example, if there is a way for a comrsittair to set
up an election within the committee in such a way that his or her favorite option iamead to
win, but the chair's computational task would take a million years, then forratitigal purposes
we may feel that the chair is prevented from finding such a set-up.

Since the seminal work of Bartholdi, Orlin, Tovey, and Trick, a large baithesearch has been
dedicated to the study of computational properties of election systems. Soitetteat have re-
ceived much attention are the complexity of manipulating elections (Conitzer &f®én, 2003,
2006; Conitzer et al., 2007; Elkind & Lipmaa, 2005; Hemaspaandra & Heasaslra, 2007; Pro-
caccia & Rosenschein, 2007; Meir, Procaccia, Rosenschein, &rZaBa8) and of controlling
elections via procedural changes (Hemaspaandra et al., 2007a; pé&mesa, Hemaspaandra, &
Rothe, 2007b; Meir et al., 2008; Elyi, Nowak, & Rothe, 2008b). Recently, Faliszewski, Hema-
spaandra, and Hemaspaandra (2006a) introduced the study of thiexibyrgf bribery in elections.
Bribery shares some features of manipulation and some features oflcémarticular, the briber
picks the voters he or she wants to affect (as in voter control problemsasks them to vote as he
or she wishes (as in manipulation). (For additional citations and pointershe@ecent survey Fal-
iszewski, Hemaspaandra, Hemaspaandra, and Rothe, 2009.)

In this paper we study Copelahalections with respect to the computational complexity of
bribery and procedural control; see Faliszewski, Hemaspaandig&emoor 2008 for a study of
manipulation within Copelarfd

The study of election systems and their computational properties, such asrtipdexity of
their manipulation, control, and bribery problems, is an important topic in multiagjyestiems.
Agents/voters may have different, often conflicting, individual prefees over the given alterna-
tives (or candidates) and voting rules (or, synonymously, electionrag$igrovide a useful method
for agents to come to a “reasonable” decision on which alternative to eh®bsis elections can be
employed in multiagent settings and also in other contexts to solve many pracbiblmps. As just
a few examples, we mention that Ephrati and Rosenschein (1997) usereddor planning, Ghosh,
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Mundhe, Hernandez, and Sen (1999) develop a recommender systemoies that is based on
voting, and Dwork, Kumar, Naor, and Sivakumar (2001) use electiorgytpegate results from
multiple web-search engines. In a multiagent setting we may have hundrelgstdns happening
every minute and we cannot hope to carefully check in each case wiie¢hearty that organized
the election attempted some procedural change to skew the results. Hdhieigecomputationally
hard to find such procedural changes then we can hope it is practidaisible for the organizers
to undertake them.

A standard technique for showing that a particular election-related profiter example, the
problem of deciding whether the chair can make his or her favorite caedideinner by influencing
at mostk voters not to cast their votes) is computationally intractable is to show that it-isaxiP
This approach is taken in almost all the papers on computational sociakctitéd above, and
it is the approach that we take in this paper. One of the justifications for ihbardness as a
barrier against manipulation and control of elections is that in multiagent setimgattempts to
influence the election’s outcome are made by computationally bounded sofhgants that have
neither human intuition nor the computational ability to solve NP-hard problems.

Recently, Conitzer and Sandholm (2006), Procaccia and Rosend@@lid), Homan and
Hemaspaandra (to appear), and McCabe-Dansted, Pritchard, akd &008) have studied the
frequency (or sometimes, probability weight) of correctness of heurigtiogoting problems. Al-
though this is a fascinating and important direction, it does not at this pontve the need to study
worst-case hardness. Indeed, we view worst-case study as al patuemuisite to a frequency-of-
hardness attack: After all, there is no point in seeking frequencyaadrtess results if the problem
at hand is in P to begin with. And if one cannot even prove worst-casinbss for a problem,
then proving “average-case” hardness is even more beyond réé&d). current frequency results
have debilitating limitations (for example, being locked into specific distributioggedding on un-
proven assumptions; and adopting “tractability” notions that declare idatde problems tractable
and that are not robust under even linear-time reductions). Thesdswasdearguably not ready for
prime time and, contrary to some people’s impression, do not imply (and dcametthe goal of
implying, since they are studying frequency of hardness) averaggepmdynomial runtime claims.
Erdelyi, Hemaspaandra, Rothe, and Spakowski (2007) and Homan andspleamalra (to appear)
provide discussions of some of these issues. Regarding the recdnofveriedgut, Kalai, and
Nisan (2008) (see also Xia and Conitzer, 2008a, 2008b), that vemngatiteg work is not on con-
trol, and the lower bounds proven there do not show that one can masipotst of the time,
but rather that work provides lower bounds that unfortunately go to asrthe number of voters
increases, for the case there studied. Of course, the limitations of tteserts on frequency of
hardness surely do not mean that the direction is not interesting; clearfyelth should do its best
to go beyond those limitations.

1.3 Outline of Our Results

The goal of this paper is to study Copeldrelections from the point of view of computational social
choice theory, in the setting where voters are rational and in the settingg wbtars are allowed
to have irrational preferences. (Note: When we henceforwardigayional voters,” we mean that
the voters may have irrational preferences, not that they each mustiutiyetse issues of bribery
and control and we point the reader to Faliszewski et al. 2008 for worknanipulation. (Very
briefly summarized, the work of Faliszewski et al., 2008, on manipulationopie@nd elections
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shows that for all rationat, 0< a < 1, a # % the coalitional manipulation problem in unweighted
Copeland elections, even for coalitions of just two manipulators, is NP-complete. Sortteeof
constructions of the present paper have been adopted or adapted rapea in order to prove
results about manipulation.)

Bribery and control problems have some very natural real-life intefiwata For example,
during presidential elections a candidate might want to encourage as rnlaisyoo her supporters
as possible to vote (“get-out-the-vote” efforts): control via additionaiévs; elections can be held
at an inconvenient date for a group of voters (e.g., a holiday) or atctbareach location (e.g.,
requiring one to own a car, or such that getting to the location involves gadaimgerous areas):
control via deleting voters; one can choose voting districts in a way faieta a particular candi-
date or party (gerrymandering): control via partitioning voters; oneiraduce a new candidate
to the election in the hope that he or she will steal votes away from the opizoofeone’s favorite
candidate without affecting the favorite candidate’s performance: @on& adding candidates. All
the other control scenarios that we study also have natural interpretation

Similarly, bribery is a natural and important issue in the context of electioresstvéss, how-
ever, that bribery problems do not necessarily need to correspoig#biieg or any sort of illegal
action. One could view bribery problems as, for example, problems of firtagninimum num-
ber of voters who can switch the result of the election and, thus, as prsld&finding coalitions,
especially if one assigns prices to voters to measure the difficulty of cangiagarticular voter to
join the coalition (see, e.g., Faliszewski, 2008, for an example of a brilbeblgm where such an
interpretation is very natural).

It is quite natural to study control and bribery both in constructive setfiwyere we want to
make our favorite candidate a winner) and in destructive settings (whets/wo prevent a candi-
date from winning). In the context of real-life elections, one often hearsrs speaking of which
candidate they hope will win, but one also often hears voters expre&rsgntiment “Anyone but
him.” The constructive and destructive settings correspond to actionadkats belonging to these
groups might be interested in.

One of the main achievements of this paper is to classify which of resistanodr@rabil-
ity holds for Copelantl in every previously studied control scenario for each rational valug, of
0< a < 1. In doing so, we provide an example of a control problem where the leaitypof
Copeland® (which is the system commonly referred to as “Copeland”) differs frorm dhdoth
Copeland and Copelantl While the latter two problems are vulnerable to constructive control
by adding (an unlimited number of) candidates, Copélarid resistant to this control type (see
Section 2 for definitions and Theorem 4.10 for this result).

In fact, Copeland (i.e., Copelah®) is the first natural election system (with a polynomial-time
winner problem) proven to be resistant to every type of constructiveadhat has been proposed
in the literature to date. This result closes a 15-year quest for a naliectiba system fully resistant
to constructive contrd.

2. A referee wondered whether (and speculated that) virtually evenynam rule (other than plurality and Condorcet,
said the referee, although actually plurality displays breathtakingly maistaaces itself, albeit not all the construc-
tive resistances) would display just as broad resistance to controleas@hpeland, were one to obtain results for
those rules. This of course is an open issue, but we see no reasorktd thith be the case (and approval voting
already provides a counterexample, see Hemaspaandra et ab)28@d even if that were the case and most other
rules resisted as many control types, we suspect that the pattern df typies are resisted will differ among the
rules, although it is the case that the four “quadrants” (of construdesgructive and voter/candidate do seem to
often stand or fall as a block). That pattern seems to us something tHfatasuoal importance, since one’s choice
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We also show that Copelafids resistant to both constructive and destructive bribery, for both
the case of rational voters and the case of irrational voters. Our éssgmoofs work for the case
of unweighted voters without price tags (see Faliszewski et al., 2008h)hais, naturally, apply
as well to the more involved scenarios of weighted unpriced voters, uhteeligrriced voters, and
weighted priced voters.

To prove our bribery results, we introduce a method of controlling the velagrformances of
certain voters in such a way that, if one sets up other restrictions appedpribe legal possibilities
for bribery actions are sharply constrained. We call our approae Uti technique,” since it is
based on dummy candidateandv. The proofs of Theorems 3.2 and 3.4 are particular applications
of this method. We feel that the UV technique will be useful, even beyonddbge of this paper,
for the analysis of bribery in other election systems based on head-ticcbatests.

We also study Copelaficelections under more flexible models such as “microbribery” (see Sec-
tion 3.2) and “extended control” (see Section 4.3). We show that Copelavith irrational voters
allowed) is vulnerable to destructive microbribery and to destructiveidatedcontrol via providing
fairly simple greedy algorithms. In contrast, our polynomial-time algorithms fostactive micro-
bribery are proven via a technique involving min-cost network flows. &b#st of our knowledge,
this is the first application of min-cost flows to election problems. We believdltbatinge of ap-
plicability of flow networks to election problems extends well beyond microbyiber Copeland
elections and we point the reader to a recent, independent paper ¢tacBimy Rosenschein, and
Zohar (20083 and to a paper by Faliszewski (2008) for examples of such applications.

We also mention that during our study of Copeland control we noticed thatrtw of an
important result of Bartholdi et al. (1992, Theorem 12), namely, thatdOrcet voting is resistant
to constructive control by deleting voters, is invalid. The invalidity is due topitef centrally
using nonstrict voters, in violation of Bartholdi et al.'s (1992) (and)ouodel, and the invalidity
seems potentially daunting or impossible to fix with the proof approach takes tidér note also
that Theorem 14 of the same paper has a similar flaw. In Section 5 we valyveetheir claimed
results using our techniques.

As mentioned in Section 1.1, Copeldndlections may behave quite differently depending on
the value of the tie-rewarding parameter We now give concrete examples to make this case.
Specifically, proofs of results for Copelghaccasionally differ considerably for distinct values
of a, and in some cases even the computational complexity of various contrehanigulation
problems (for the manipulation case see Faliszewski et al., 2008) may jumedyeRvmembership
and NP-completeness dependingrarRegarding control, we have already noted that Theorem 4.10
shows that some control problem (namely, control by adding an unlimited ewafltandidates)
for Copeland is NP-complete for each rational with 0 < a < 1, yet Theorem 4.11 shows that
same control problem to be in P for € {0,1}. To give another example involving a different

of election rule should probably (along with many other factors that shatlleence rule choice) be shaped by the
strength of the rule with respect to resisting the types of attacks one expedgstem to be faced with. For exam-
ple, Copeland is exceedingly strong—in fact, perfect—with respect todhstiwictive control types studied here. In
contrast, plurality, Condorcet, and approval are not (Bartholdi £t892; Hemaspaandra et al., 2007a), and we can’t
speak to the issue of as yet unstudied systems. And as to what holdkdorules, we suspect that the dream-case
path would be to find broad results that in one stroke reveal the consiigtarce patterns of whole classes of election
systems. For example, see Hemaspaandra and Hemaspaandra/idghtoes essentially that for manipulation of
scoring systems.

3. Procaccia et al. (2008) independently of our work in Faliszews#l.e2@007 used a similar technique in their work
regarding the complexity of achieving proportional representation.
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control problem, namely control by partition of candidates with the ties-eliminateatielling rule
(see Section 2), we note that the proofs of Theorem 4.15 (which applees=td for this control
problem within Copelarff) and of Theorem 4.16 (which applies to all ratiomailvith 0 < o < 1
for the same problem) differ substantially. Regarding constructive miitredyy the vulnerability
constructions foir = 0 (see Lemma 3.13) amal = 1 (see Lemma 3.15) significantly differ from
each other, and neither of them works for tie-rewarding values other@hand 1. The above
remarks notwithstanding, for most of our results we show that it is possilmbtein a unified—
though due to this uniformity sometimes rather involved—construction that workSopeland
for every rationabr, 0 < a < 1.

1.4 Organization

This paper is organized as follows. In Section 2, we formalize the notiolecfiens and in partic-
ular of Copelan8l elections, we introduce some useful notation, and we formally define thieoton
and bribery problems we are interested in. In Section 3, we show thadbrrationaltr, 0< a <1,
Copeland elections are fully resistant to bribery, both in the case of rational votersethe case
of irrational voters. On the other hand, if one changes the bribery ntoddlow “microbribes” of
voters (a fine-grained approach to bribery, in which the more one elsamgoter’s vote, the more
one has to pay the voter), we prove vulnerability for each rationd@l < a < 1, in the irrational-
voters destructive case and for some specific valuasiothe irrational-voters constructive case. In
Sections 4.1 and 4.2, we present our results on procedural cont@bfeland elections for each
rationala with 0 < a < 1. We will see that very broad resistance holds for the constructintraio
cases. Section 4.3 presents our results on fixed-parameter tractabildyruddd-case control for
Copeland. Section 5 provides valid proofs for several control problems forddoret elections
(studied by Bartholdi et al., 1992) whose original proofs were invaliel tdubeing at odds with the
model of elections used in Bartholdi et al. 1992. We conclude the papervitief summary in
Section 6 and by stating some open problems.

If every proof were included in this paper, it would be extremely long aifftcalt to read.
Nonetheless, it is of course important to make proofs available for our claWs have han-
dled this as follows. We have made available as Faliszewski, Hemaspabletdnaspaandra, and
Rothe 2008b a full technical report version of this paper, with complatelatailed proofs of essen-
tially every result. And in the current article, for proofs that would beetitpe or tedious relative
to other proofs that we do include here, we simply have not included thosdsphere and have
instead included in their place a pointer to the detailed proof of the result imlfihedhnical report
version.

2. Preliminaries
This section defines many of the notions we use in this paper, such assvatemtion systems,
election problems, and hardness notions.

2.1 Elections: The Systems of Llull and Copeland

An election E= (C,V) consists of a finite candidate €&t {cy,...,Cn} and a finite collectioV of
voters, where each voter is represented (individually, except latenwie discuss succinct inputs)
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via his or her preferences over the candidatesektion syster(or anelection rulg is a rule that
determines the winner(s) of each given election, i.e., a mapping from(@aw9 to subsets of.

We consider two ways in which voters can express their preferenceke fational case (our
default case), each voter’s preferences are represented agsmadider over the sé,? i.e., each
voterv; has apreference list g > ¢, > --- > G, with {i1,i2,...,im} = {1,2,...,m}. In theirra-
tional case, each voter’s preferences are representegredesience tabl¢hat for every unordered
pair of distinct candidates andc; in C indicates whether the voter prefexdo c; (i.e., ¢ > ¢;j) or
prefersc; to ¢ (i.e.,cj > Gj).

Some well-known election rules for the case of rational voters are plurBlityda count, and
Condorcet.Plurality elects the candidate(s) that are ranked first by the largest numbeten$ vo
Borda countelects the candidate(s) that receive the most points, where eachvyvgiees each
candidatec; as many points as the number of candidatess preferred to with respect t@’s
preferences. A candidatg is a Condorcet winneif for every other candidate; it holds thatc;
is preferred tac; by a majority of voters. Note that each election instance will have at most one
Condorcet winner.

In this paper, we introduce a parameterized version of Copeland’d ) &8&ction system, which
we denote by Copelafidwhere the parameteris a rational number between 0 and 1 that specifies
how ties are rewarded in the head-to-head majority-rule contests betwedwadistinct candi-
dates.

Definition 2.1 Leta, 0 < a < 1, be a rational number. In €opeland election, for each head-to-
head contest between two distinct candidates, if some candidate is pdebgra majority of voters
then he or she obtains one point and the other candidate obtains zero @oidts,a tie occurs then
both candidates obtainr points. Let E= (C,V) be an election. For each € C, scorg (c) is (by
definition) the sum of c’€opeland points in E. Every candidate ¢ with maximum s¢dm (i.e.,
every candidate c satisfying/d € C)[score (c) > scoref (d)]) wins.

Let Copeland,;,n, denote the same election system but with voters allowed to be irrational.

As mentioned earlier, in the literature the term “Copeland elections” is most os$keth for the
system Copelar? (e.g., Saari and Merlin, 1996, Merlin and Saari, 1997, and a rescefsibm
of Conitzer et al., 2007), but has occasionally been used for Co;ﬁ’eaargj, Procaccia et al., 2007,
and Faliszewski et al., 2007, an early version of this paper). As meudtieadier, the system
Copeland was proposed by Llull in the thirteenth century (see the literature pointees @i the
introduction) and so is called Llull voting.

We now define some notation to help in the discussion of Cop@latettions. Informally put,
if E=(C,V) is an election and i; andc; are any two candidates @then by vg(ci, cj) we mean
the surplus of votes that candidaéhas overc;. Formally, we define this notion as follows.

Definition 2.2 Let E= (C,V) be an election and let;@nd ¢ be two arbitrary candidates from C.
Define therelative vote-score o with respect tac; by

0 if ci = Cj
[{veV | vprefers¢toci}||—|{veV | vprefersgtoG}| otherwise.

VSE(Ci,Cj):{

4. In this paper, we take “linear order” to mean a strict total order. Thastemmon convention within voting theory,
see, e.g., the book Austen-Smith and Banks 2000. However, we mehtbin the field of mathematics the term
“linear order” is typically taken to allow nonstrictness, i.e., to allow ties.
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So, if ¢ defeatsc; in a head-to-head contest | then vg(ci,cj) > 0, if they are tied then
vse(Gi,¢j) = 0, and ifc; defeats; then vg (¢, cj) < 0. (Throughout this paper, “defeats” excludes
the possibility of a tie, i.e., “defeats” means “(strictly) defeats.” We will says*ie-defeats” when
we wish to allow a tie to suffice.) Clearly, ¥&i,cj) = —vse(cj,ci). We often speak, in the plural,
of relative vote-scores when we mean a group of results of headatbduntests between particular
candidates.

Leta, 0 < a <1, be a rational number. Definition 2.1 introducszbre (c), the Copelant
score of candidatein electionE. Note that for each candidatec C,

scorg(ci) = |/{c;€C | c #cjandvsg(c,cj) > 0}
+al{c;j €C| ¢ #cjandvs(c,cj) =0}

In particular, we havecoré (¢;) = || {cj €C | ¢i # ¢j and vg(ci,cj) > 0}, andscorét (¢i) = || {c; €
C | ¢ #cjand vs(ci,cj) > 0}||. Note further that the highest possible Copefassdore in any
electionE = (C,V) is ||C|| — 1.

Recall that a candidatg < C is a Copelanfl winner of E = (C,V) if for all ¢; € C it holds
thatscoreg (¢;) > scoref (c;). (Clearly, some elections can have more than one Copélanther.)
A candidatec; is a Condorcet winner ok if scoré(ci) = ||C| — 1, that is, ifc; defeats all other
candidates in head-to-head contests.

In many of our constructions to be presented in the upcoming proofs, aé¢hasfollowing
notation for rational voters.

Notation 2.3 Within every election we fix some arbitrary order over the candidatesoéaiyrrence

of a subset D of candidates in ageference list means the candidate®feomlisted with respect

to that fixed order. Occurrences & mean the same except that the candidates from D are listed in
the reverse order.

For example, ifC = {a,b,c,d, e}, with the alphabetical order being used, dhd- {a,c,e} then
—
b>D>dmeand>a>c>e>d,andb>D >dmeandb>e>c>a>d.

2.2 Bribery and Control Problems

We now describe the computational problems that we study in this paperrauems come in two
flavors: constructive and destructive. In the constructive versierytial is to determine whether,
via the bribery or control action type under study, it is possible to makeemgiandidate a winner
of the election. In the destructive case the goal is to determine whether issibfto prevent a
given candidate from being a winner of the election.

Let & be an election system. In our cagewill be either Copelan®l or Copelang, i, Where
a, 0< a <1, is arational number. The bribery problem #rwith rational voters is defined as
follows (Faliszewski et al., 2006a).

Name: &-bribery ands-destructive-bribery.

Given: A setC of candidates, a collectiovi of voters specified via their preference lists oema
distinguished candidate < C, and a nonnegative integlker

Question (constructive): Is it possible to make a winner of the” election resulting froniC,V)
by modifying the preference lists of at mdstoters?
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Question (destructive): Is it possible to ensure thgtis not a winner of the$” election resulting
from (C,V) by modifying the preference lists of at mdstoters?

The version of this problem for elections with irrational voters allowed isn@effiexactly like
the rational one, with the only difference being that voters are repiebeta preference tables
rather than preference lists, and the briber may completely change asvwfierence table at unit
cost. At the end of the present section, Section 2.2, we will describe tiaatsbased on seeking to
makep be (or to precludg from being) auniquewinner. Later in the paper we will study another
variant of bribery problems—a variant in which one is allowed to perfornrabicbes: bribes for
which the cost depends on each preference-table entry changtheabhdber pays separately for
each such change.

Bribery problems seek to change the outcome of elections via modifying tbetedpprefer-
ences of some of the voters. In contrast, control problems seek toetimgutcome of an election
by modifying the election’s structure via adding/deleting/partitioning either idates or voters.
When formally defining these control types, we use the following namingesdions for the cor-
responding control problems. The name of a control problem starts witkl¢lsgon system used
(when clear from context, it may be omitted), followed by CC for “constugctiontrol” or by DC
for “destructive control,” followed by the acronym of the type of cohtA&C for “adding (a limited
number of) candidates,” ACfor “adding (an unlimited number of) candidates,” DC for “deleting
candidates,” PC for “partition of candidates,” RPC for “run-off partitiohcandidates,” AV for
“adding voters,” DV for “deleting voters,” and PV for “partition of voget All the partitioning
cases (PC, RPC, and PV) are two-stage elections, and we here usiedtnathdling rules of Hema-
spaandra et al. (2007a) for first-stage subelections in these twoaléagens. In particular, for all
the partitioning cases, the acronym PC, RPC, and PV, respectiveljlowdd by the acronym of
the tie-handling rule used in first-stage subelections, namely TP for “ti@sqted (i.e., all winners
of first-stage subelections are promoted to the final round of the electidi)&for “ties eliminate”
(i.e., only unique winners of first-stage subelections are promoted to thedural of the election,
so if there is more than one winner in a given first-stage subelection oritheoewinner in a given
first-stage subelection then that subelection does not move any of its assdidrward).

We now formally define our control problems. These definitions are dueatth&di et al.
(2992) for constructive control and to Hemaspaandra et al. (2367 dgstructive control.

Let & be an election system. Agaif,will here be either Copelafdor Copelanf ..., Where
a,0<a <1,isarational number. We describe our control problems as if they wetkd case of
rational preferences, but the irrational cases are perfectly anapgrcept for replacing preference
lists with preference tables.

CONTROL VIA ADDING CANDIDATES

We start with two versions of control via adding candidates. In the unlimitesiorethe goal of the

election chair is to introduce candidates from a pool of spoiler candidatas & make his or her
favorite candidate a winner of the election (in the constructive case)wept his or her despised
candidate from being a winner (in the destructive case). As suggestée bhame of the problem,
in the unlimited version the chair can introduce any subset of the spoileidedes (none, some, or
all are all legal options) into the election.

Name: &-CCAC, and&-DCAC, (control via adding an unlimited number of candidates).
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Given: Disjoint setsC andD of candidates, a collectiovi of voters specified via their preference
lists over the candidates in the €20 D, and a distinguished candidagte: C.

Question (£-CCAC,): Isthere a subsét of D such thatp is a winner of thes” election with voters
V and candidateS UE?

Question (£-DCAC,): Is there a subséf of D such thatp is not a winner of thef” election with
votersV and candidateS UE?

The definition of6-CCAC, was (using different notation) introduced by Bartholdi et al. (1992).
In contrast with the other control problems involving adding or deleting iciatels or voters, in the
adding candidates problem Bartholdi, Tovey, and Trick did not introdunennegative integes
that bounds the number of candidates (from theDethe chair is allowed to add. We feel this
asymmetry in their definitions is not well justifi€dand thus we define a with-change-parameter
version of the control-by-adding-candidates problems, which we ddmot&C, (where the “I”
stands for the fact that part of the problem instancelima on the number of candidates that can
be added, in contrast with the model of Bartholdi et al., 1992, which wetddyy AG, with the “u”
standing for the fact that the number of added candidataslisiited, at least in the sense of not
being limited via a separately input integer). The with-parameter version is nigeskodied case
for AV, DV, and DC, and we in this paper will use AC as being synonymous A@h and will thus
use the notation AC for the rest of this paper when speaking of & suggest this as a natural
regularization of the definitions and we hope this version will become tharfaliiversion of the
adding-candidates problem for further study. However, we cautioretwer that in earlier papers
AC is used to mean A¢

In the present paper, we will obtain results not just for, AGt also for the AG case, in order
to allow comparisons between the results of this paper and those of eantles. wo

Turning now to what we mean by AC (equivalently, AGas per the above definition i+t CCAC
(i.e., £-CCAC) we ask whether it is possible to make the distinguished candatavinner of
someé’ election obtained by adding at méstandidates from the spoiler candidateBe{Note that
kis part of the input.) We define the destructive versi§fDCAC (i.e.,&-DCAC;), analogously.

Name: &-CCAC and&-DCAC (control via adding a limited number of candidates).

Given: Disjoint setsC andD of candidates, a collectiovi of voters specified via their preference
lists over the candidates in the €20 D, a distinguished candidagee C, and a nonnegative
integerk.

Question (&-CCAQ): lIsthere a subsét of D such that|E|| < kandpis a winner of thes” election
with votersV and candidateS UE?

Question (&-DCAC): Is there a subsdi of D such that|E|| < k and p is not a winner of the?’
election with voter$/ and candidateS UE?

5. Bartholdi et al. (1992) are aware of this asymmetry. They write: dTcertain extent the exact formalization of
a problem is a matter of taste. [...] we could equally well have formalieel problem of control via adding
candidates] to be whether there &rer fewer candidates to be added [...] It does not much matter forrtizgms
we discuss, since both versions are of the same complexity” (Barthtcddli €992). In contrast, the complexity of
the problems studied here crucially hinges on which formalization is usddya thus define both versions formally.
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CONTROL VIA DELETING CANDIDATES

In constructive control via deleting candidates, the chair seeks toeetisair his or her favorite
candidatepis a winner of the election by suppressing at mostndidates. In the destructive variant
of this problem, the chair’s goal is to blogiirom winning by suppressing at mdstandidates other
thanp.

Name: &£-CCDC and4-DCDC (control via deleting candidates).

Given: A setC of candidates, a collectiovi of voters represented via preference lists duen
distinguished candidate < C, and a nonnegative integlker

Question (&-CCDQ): Is it possible to by deleting at mositandidates ensure thpis a winner of
the resultings” election?

Question (£-DCDC): Is it possible to by deleting at moktcandidates other thgmensure thap
is not a winner of the resulting election?

CONTROL VIA PARTITION AND RUN-OFF PARTITION OF CANDIDATES

Bartholdi et al. (1992) gave two types of control of elections via partitionasfdidates. In both
cases the candidate €&is partitioned into two group€;; andC; (i.e.,C; UCy, =C andC;NC, = 0),
and the election is conducted in two stages. For control via run-off partitiarandidates, the
election’s first stage is conducted separately on each group of céeglidaandC,, and the group
winners that survive the tie-handling rule compete against each othersad¢bead stage. In control
via partition of candidates, the first-stage election is performed on the edadieC; and those of
that election’s winners that survive the tie-handling rule compete agdirstralidates frontC, in
the second stage.

In the ties-promote (TP) model, all first-stage winners within a group amagied to the final
round. In the ties-eliminate (TE) model, a first-stage winner within a groumispted to the final
round if and only if he or she is the unique winner within that group.

Although these only loosely correspond to real-world settings, let usagreeigh example re-
garding the case of run-off partition of candidates. Consider a depati;tmigh a powerful director,
that is trying to decide among a collection of alternatives. It is certainly pleutilat the direc-
tor might announce that she had divided the candidates into two groupthdhentire department
would vote separately among the candidates in each group, and that théimose candidates who
moved forward from those votes (under whatever tie-handling rule wag lused, if there were
ties) would compete in the final election, in which the entire department would agte. (How

6. A referee asked whether control by adding candidates, if redefineequire adding not at most a certain number
of candidates but instead at least a certain number of candidatespwamntiece forthcoming notion (which is the
standard notion) of control by deleting (at most a certain number of}idates. The answer is that that seems not to
be the case. Consider an election with thirty candidates in which we ask whetketain constructive control goal
can be reached via deleting at most five candidates. Note that refrémsras a twenty-candidate election in which
one tries to reach some goal by adding at least five candidates fromcanditate spoiler set doesn’'t make sense,
as there is no one particular twenty-candidate election from which to stam; dine far too many possibilities. The
referee similarly asked about representing addition of candidates bw aation of deleting candidates that put a
lower bound on the number of deletions, but that attempt seems also tio thikt case for the different reason that
in the deletion case one might delete not just what originally were spoilelidztes but one might delete candidates
from the core election of the addition case, and that is not allowed.
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convincingly the director could do this would of course depend on thetdireqpower and how
well the director could think up a justification for her partition of the candidafésarly some par-
titions may be easy to justify, e.g., “Let’s regarding whom to hire in our acadeomputer science
department first vote separately among the fresh-Ph.D. candidateshand the more senior hiring
candidates,” and some may be harder to justify except as executive fiat.)

Name: &-CCRPC ands-DCRPC (control via run-off partition of candidates).

Given: A setC of candidates, a collectiovi of voters represented via preference lists @eand
a distinguished candidagec C.

Question (£-CCRPQ: Is there a partition o€ into C; andC, such thatp is a winner of the two-
stage election where the winners of subelecti@g,V) that survive the tie-handling rule
compete against the winners of subelectjGp,V) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system

Question (£-DCRPQ: Is there a partition o€ into C; andC, such thatp is not a winner of the
two-stage election where the winners of subelectonV) that survive the tie-handling rule
compete against the winners of subelecti@p,V) that survive the tie-handling rule? Each
subelection (in both stages) is conducted using election system

The above description defines four computational problems for a giktian systemé’
&-CCRPC-TE#S-CCRPC-TP£-DCRPC-TE, and-DCRPC-TP. Note that it is in concept possi-
ble in the TE case for all candidates, due to ties, to be eliminated in the firad tmre, in which
case the overall election would have no winner.

Name: &-CCPC ands-DCPC (control via partition of candidates).

Given: A setC of candidates, a collectiovi of voters represented via preference lists dveand
a distinguished candidafec C.

Question (£-CCPQ: Isthere a partition of into C; andC, such thaip is a winner of the two-stage
election where the winners of subelecti@,V) that survive the tie-handling rule compete
against all candidates i@,? Each subelection (in both stages) is conducted using election
systems’.

Question (&-DCPQ: Is there a partition o€ into C; andC, such thatp is not a winner of the
two-stage election where the winners of subelect©nV) that survive the tie-handling rule
compete against all candidatesGp? Each subelection (in both stages) is conducted using
election systen#’.

This description defines four computational problems for a given electi@ters &
&-CCPC-TE,£-CCPC-TP£-DCPC-TE, ands-DCPC-TP.

CONTROL VIA ADDING VOTERS

In the scenario of control via adding voters, the chair’s goal is to eith&ure thap is a winner (in
the constructive case) or ensure tpas not a winner (in the destructive case) via causing ulp to
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additional voters to participate in the election. The chair can draw the votaddtto the election
from a prespecified collection of voters (with given preferences).

This can very loosely model such real-world situations as get-out-theesffotgs. For example,
suppose a campaign has enough money and volunteers to drive up tarmrechfrom a set of a
thousand car-less elderly people to the polling place, and has to decide ovigs to choose.

Name: &-CCAV and&-DCAV (control via adding voters).

Given: A setC of candidates, two disjoint collections of vote¥sandW, represented via prefer-
ence lists ove€, a distinguished candidate and a nonnegative integler

Question (&-CCAV): Is there a subsdD, ||Q|| < k, of voters inW such that the voters i UQ
jointly electp € C as a winner according to systefi?

Question (&-DCAV): Is there a subsé), || Q|| <k, of voters inW such that the voters M UQ do
not electp as a winner according to systefi?

The reason we do not have an “unlimited” control notion here, or ansevhkse except for
AC,, is that AG, is historically a special case. The seminal paper Bartholdi et al. 1992ededil
addition/deletion problems in (only) the limited version, in which there is nurkbaniting the
additions/deletions, except that their paper, describing this as a mattenoflirad taste, defined
addition of candidates in (only) the unlimited version. We consider the limitedorexr®f all the
addition/deletion problems by far the more natural, and so we study thosie, Bartholdi, Tovey,
and Trick in every case other than addition of candidates. However, o edlmparison with earlier
papers, we keep as a defined control type the case @f AC

CONTROL VIA DELETING VOTERS

In the control via deleting voters case the chair seeks to either ensurp ihat winner (in the
constructive case) or preveptfrom being a winner (in the destructive case) via blocking uk to
voters from participating in the election.

This very loosely models vote suppression. For example, consider thevbase a given cam-
paign can afford to send to the doors of at miosoters a smooth-talking operative who will so
demoralize them that they won'’t bother to vote.

Name: &£-CCDV and&-DCDV (control via deleting voters).

Given: A setC of candidates, a collectiovi of voters represented via preference lists dven
distinguished candidate € C, and a nonnegative integlker

Question (£-CCDV): Is it possible to by deleting at moktvoters ensure thai is a winner of the
resultingé’ election?

Question (&-DCDV): Is it possible to by deleting at moktoters ensure thaiis not a winner of
the resultings” election?
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CONTROL VIA PARTITION OF VOTERS

In the case of control via partition of voters, the following two-stage eledqrerformed. First,
the voter seV is partitioned into two subcommitteeg, andV,. The winners of electioiiC, Vi)
that survive the tie-handling rule compete against the winneiS,of) that survive the tie-handling
rule. Again, our tie-handling rules are TE and TP (ties-eliminate and tigaqig).

This control type is a bit harder than most others to imagine in the real wartlésta somewhat
contrived example, consider the following case. In a given organizatiendirector splits her
workers into two study groups (and let us say she can choose the paatitshe likes, either because
she is a powerful director, or because she is a good enough managakéoup a justification for
any division) to each study a problem and to each propose what it thinke isett alternative.
And then the entire organization comes together to vote among those altesidgen in the first
round (that survive the tie-handling rule in the case of ties).

Name: &-CCPV ands-DCPV (control via partition of voters).

Given: A setC of candidates, a collectiovi of voters represented via preference lists @eand
a distinguished candidafec C.

Question (&-CCPV): Is there a partition o¥ into Vi andV, such thatp is a winner of the two-
stage election where the winners of elect{@)V; ) that survive the tie-handling rule compete
against the winners afC,V,) that survive the tie-handling rule? Each subelection (in both
stages) is conducted using election sys&&m

Question (&-DCPV): Is there a partition o intoV; andV, such thatp is not a winner of the two-
stage election where the winners of elect{@)V; ) that survive the tie-handling rule compete
against the winners afC,V,) that survive the tie-handling rule? Each subelection (in both
stages) is conducted using election sys&&m

UNIQUE WINNERS AND IRRATIONALITY

Our bribery and control problems were each defined above only famed voters and in the
nonunique-winnemodel, i.e., asking whether a given candidate can be made, or prevemted fr
being,a winner. Nonetheless, we have proven all our control results both éardke of nonunique
winners and (to be able to fairly compare them with existing control resulishvane in the unique-
winner modelunique winnerga candidate is a unique winner if he or she is a winner and is the only
winner). Similarly, all our bribery results are proven both in the uniqueaaimmodel and (to be
able to fairly compare them with existing bribery results in the literature) in themqoe-winner
model. In addition to the rational-voters case, we also study these problethe fcase of voters
who are allowed to be irrational. As mentioned earlier, in the case of irratiantats, voters are
represented via preference tables rather than preference lists.

2.3 Graphs

An undirected graph Gs a pair(V(G),E(G)), whereV(G) is the set of vertices an(G) is the
set of edges and each edge is an unordered pair of distinct vertisedirected graphis defined

7. In this paper, the symbols andV are generally reserved for elections and voters, except the justiceddover-
loading” of them to mean sets of edges and vertices in a given graphntBneled meaning d& andV will be clear
from the context, even when our proofs involve multiple elections anchgrap
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analogously, except that the edges are represented as ordered Fpmirexample, it andv are
distinct vertices in an undirected gra@thenG either has an edge= {u, v} that connectsi andv
or it doesn’t. On the other hand,@ is a directed graph the® either has an edge = (u,v) from
utov, or an edge”’ = (v,u) fromv to u, or bothe¢’ and€’, or neithere’ nore”.

For a directed grap@, theindegreeof a vertexu € V(G) is the number 06's edges that enter
(i.e., the number of edges of the foriwu) in E(G)). Similarly, theoutdegreeof u € V(G) is the
number of edges that leaug(i.e., the number of edges of the fofm v) in E(G)).

2.4 NP-Complete Problems and Reductions

Without loss of generality, we assume that all problems that we considenaceled in a natural,
efficient way over the alphab&t= {0,1}. We use the standard notion of NP-completeness, defined
via polynomial-time many-one reductions. We say that a computational prabfestynomial-time
many-one reducds a problenB if there exists a polynomial-time computable functibsuch that

(WxeZ")[xe A < f(x) €B].

A problem isNP-hard if all members of NP polynomial-time many-one reduce to it. Thus, if
an NP-hard problem\ polynomial-time many-one reduces to a problBnthenB is NP-hard as
well. A problem isNP-completef it is NP-hard and is a member of NP. When clear from context
we will use “reduce” and “reduction” as shorthands for “polynomial-timenyaane reduce” and
“polynomial-time many-one reduction.”

Our NP-hardness results typically follow via a reduction from either thetec@ver-by-3-sets
problem or from the vertex cover problem (see, e.g., Garey and dohf©979). These are well-
known NP-complete problems, but we define them here for the sake oflemess.

Name: X3C (exact cover by 3-sets).

Given: A setB={b,...,bx}, k> 1, and a family of sets” = {S;,...,$,} such that for each
1<i<n,itholds that C Band|| S| = 3.

Question: Isthere asef C {1,...,n}, ||A|| =k, such that ). S = B?

The setA about which we ask in the above problem is calle@dsact cover of Blt is a “cover”
because every member Bfbelongs to som& such thati € A, and it is “exact” because each
member ofB belongs to exactly on§ such thai € A.

Whenever we consider instances of the X3C problem, we assume thatehgglaformed, that
is, we assume that they follow the syntactic requirements stated in the aboemn*@eld (e.g., the
cardinality of the seB is indeed a multiple of three). We apply this convention of considering only
syntactically correct inputs to all other problems as well. Adie some computational problem
and letx be an instance oA. When we consider an algorithm fé;, and inputx is malformed,
then we can immediately reject. When we are building a reduction Aeonsome problenB, then
whenever we hit a malformed inpxtve can output a fixegl not in B. (In our reduction$ is never
2*, so this is always possible.)

Copeland elections can often be considered in terms of appropriate graphs. pheseatation
is particularly useful when we face control problems that modify the streabfi the candidate
set, since in this case operations on an election directly translate into suitasiiops on the
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corresponding graph. For candidate control problems, we—instessiraf reductions from X3C—
construct reductions from the vertex cover problem. A vertex covanaindirected grapt is a
subset 0fG’s vertices such that each edge®fs adjacent to at least one vertex from that subset.

Name: VertexCover.
Given: An undirected grapis and a nonnegative integkr

Question: Is there a setV such thaWw C V(G), ||W|| < k, and for every edge € E(G) it holds
thatenW # 0?

2.5 Resistance and Vulnerability

Not all election systems can be affected by each control type; if not, gterayis said to benmune
to this type of control. For example, if a candidatis not a Condorcet winner then it is impossible
to make him or her a Condorcet winner by adding candidates (see Baghald 1992, and Hema-
spaandra et al., 2007a, for more such immunity results). However, fuel@aod elections it is easy
to see that for each type of control defined in Section 2.2 there is a swénatich the outcome of
the election can indeed be changed via conducting the corresponditngl @mtion. If an election
system is not immune to some type of control (as witnessed by such a s¢getharelection system
is said to besusceptibléo that control type.

Proposition 2.4 For each rational numbea, 0 < a < 1, Copeland is susceptible to each type of
control defined in Section 2.2.

We say that an election system (Copelarmt Copelang,;ion.» In OUr case) igesistantto a
particular attack (be it a type of control or of bribery) if the appropriaimputational problem is
NP-hard and susceptibility hol§s.On the other hand, if the computational problem is in P and
susceptibility holds, then we say the systemuerableto this attack. Because of how our bribery
and control problems are defined, the vulnerability definition merely resjtirat there exist a
polynomial-time algorithm that determines whether a successful bribe omtactronexistson a
given input. However, in every single one of our vulnerability proofswik provide something
far stronger. We will provide a polynomial-time algorithm that actuéitiglsa successful bribe or
control action on each input for which a successful bribe or conttiba exists, and on each input
where no successful bribe or control action exists will announce dleat f

The notions of resistance and vulnerability (and of immunity and susceptibititygdntrol
problems in election systems were introduced by Bartholdi et al. (1998)wanhere follow the
definition alteration of Hemaspaandra et al. (2007b) of resistance fiifFacomplete” to “NP-
hard,” as that change is compelling (because under the old definitionphipteteness, things could

8. Itis true that for some unnatural election systems immunity to bribddshe.g., the election system “Every candi-
date is a winner” is immune to all types of bribery. However, our Copélayge systems are all susceptible to all
the bribery types we look at in this paper, so we won't further explicitlywisar state susceptibility for the bribery
cases.

A referee asked whether the definition of resistance could be equiyas¢ated as simply requiring the appro-
priate computational problem to be NP-hard. That seems not to yieldrersation, both becauseA#NP is not yet
a known result, and so one doesn’t know that NP-hard problem®tpoasibly be in P, and more subtly because sus-
ceptibility is defined in terms of changing outcomes while the corresponadingat problem’s NP-hardness (which
in part determines its resistance) is related to what the outcome is (regsaofilwhat it started as).
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actually become nonresistant by being too hard, which is not natural) e¥owfor all resistance
claims in this paper NP-membership is clear, and so NP-completeness ind¢adtald.

3. Bribery

In this section we present our results on the complexity of bribery for theel@aad election sys-
tems, wherex is a rational number with & a < 1. Our main result, which will be presented in
Section 3.1, is that each such system is resistant to bribery, regartilesters’ rationality and of
our mode of operation (constructive versus destructive). In Sectiym@ will provide vulnerabil-
ity results for Llull and Copelarftwith respect to “microbribery.”

3.1 Resistance to Bribery

Theorem 3.1 For each rationala, 0 < a < 1, Copeland andCopelang, ., @re resistant to both
constructive and destructive bribery, in both the nonunique-winner hatdkthe unique-winner
model.

We prove Theorem 3.1 via Theorems 3.2, 3.4, and 3.5 below. Our progfog an approach
that we call the UV technique. For the constructive cases, this techniqueguls by constructing
bribery instances where the only briberies that could possibly ensureuhéavorite candidat@
is a winner involve only voters who rank a group of special candidatesn(the group will contain
exactly two candidates, andv) abovep. The remaining voters, the bystanders so to speak, can be
used to create appropriate padding and structure within the election. $traalive cases follow
via a cute observation regarding the dynamics of our constructive.cases

The remainder of this section is devoted to proving Theorem 3.1. We starthdthase of
rational voters in Theorems 3.2 and 3.4 below and then argue that the amalegults for the case
of irrational voters follow via, essentially, the same proof.

Theorem 3.2 For each rational numbeir, 0 < a < 1, Copeland is resistant to constructive
bribery in the unique-winner model and to destructive bribery in the nmu@winner model.

Proof. Fix an arbitrary rational number with 0 < a < 1. Our proof provides reductions from
the X3C problem to, respectively, the unique-winner variant of coostel bribery and to the
nonunique-winner variant of destructive bribery. Our reductionsdifiiér regarding only the spec-
ification of the goal (i.e., regarding which candidate we attempt to make a uwigquer or which
candidate we prevent from being a winner) and thus we describe them jagn#gsentially, a single
reduction.

Our reduction will produce an instance of an appropriate bribery pnolléh an odd number
of voters, and so we will never have ties in head-to-head contests.olingsoof works regardless
of which rational numbea with 0 < a < 1 is chosen.

Let (B,.#) be aninstance of X3C, wheBe= {by, by, ..., bk}, .7 isacollection{S;,S, ..., S}
of three-element subsets Bfwith U?:l Sj =B, andk > 1. If our input does not meet these condi-
tions then we output a fixed instance of our bribery problem having aimegaswer.

Construct a CopelafddelectionE = (C,V) as follows. The candidate s€tis {u,v,p} UB,
where none ofl, v, andpis in B. The voter se¥ contains 2+ 4k+ 1 voters of the following types.
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1. For eacls, we introduce one voter of type (i) and one voter of type (ii):
i u>v>§>p>B-8§,
.. «—— <
(i) B-S>p>u>v>S§.

2. We introducek voters for each of the types (iii)-1, (iii)-2, (iv)-1, and (iv)-2:

(ii)-1 u>v>p>B,
(ii)-2 v>u>p>B,
(iv)-1 u>§>p>v,
(iv)-2 v>B > p>u.

3. We introduce a single type (v) voter:

(v) B>p>u>w

We have the following relative vote-scores:

1. vs(u,v) =2n+1 > 2k+ 1, where the inequality follows from our assumptlgijilsj =B
(which impliesn > ||B|| /3 =K),

2. v=(u,p) =vse(v, p) = 2k—1,

3. foreach € {1,2,...,3k}, vse(u,bi) = vse(v,by) > 2k+ 1,
4. foreach € {1,2,...,3k}, vse(bj, p) = 1, and

5. foreach, j € {1,2,...,3k} with i # j, |[vse(bi, bj)| = 1.

For example, to see thata@i,bi) > 2k+ 1 for eachi € {1,2,...,3k}, note that eachy; is in
at least ones; because olU?Z1 Sj = B, so the voters of types (i) and (ii) givean advantage of at
least two votes oven;. Furthermore, the voters of types (iii)-1, (iii)-2, (iv)-1, and (iv)-gu an
advantage of Radditional votes over ead#, and the single type (v) voter gives edgla one-vote
advantage oveu. Summing up, we obtain g$u,b;) > 2+2k— 1= 2k+ 1. The other relative
vote-scores are similarly easy to verify.

These relative vote-scores yield the following Copefasdores or upper bounds on such scores:

1. scorg (u) = 3k+ 2,

2. scorgl (v) = 3k+1,

3. foreach € {1,2,...,3k}, score (bj) < 3k, and
4. scorg (p) = 0.

To prove our theorem, we need the following claim.

Claim 3.3 The following three statements are equivalent:

1. (B,.#) € X3C.
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2. Candidate u can be prevented from winning via bribing at most k votdfs o

3. Candidate p can be made a unique winner via bribing at most k votéfs of

Proof of Claim 3.3. (1) implies (2): It is easy to see that(B,.#) € X3C then there is a bribe
involving k or fewer voters that preventsfrom being a winner: It is enough to bribe those type (i)
voters that correspond to a cover of sizéo reportp as their top choice (while not changing
anything else in their preference listp)> u>v> S > B—S. Call the resulting electio’. In E’
the following relative vote-scores changegA(®,u) = vse/(p,v) = n+k— (n—k) —2k+1=1and
vse(p,bi) > 1 for eachi € {1,2,...,3k}, while all other relative vote-scores remain unchanged.
Thus score, (p) = 3k + 2, scoref,(u) = 3k+ 1, score,(v) = 3k, andscore, (bj) < 3k for each
i€{1,2,...,3k}, sop defeats all other candidates and is the unique winner. In particular, thés br
(of at mostk voters inE) ensures that is not a winner.

(2) implies (3): Suppose that there is a bribe involvingr fewer voters that preventsfrom
being a winner. Note that defeats everyone excepty more than R votes inE. This means that
via bribery of at mosk votersu’s score can decrease by at most one. Thus, to preveoin being
a winner via such a bribery, we need to ensure thateives a Copelaficscore of &+ 1 and some
candidate other than gets a Copelarfdscore of &+ 2, that is, that candidate defeats everyone.
Neitherv nor any of theb;’s can possibly obtain a Copeldhdcore of &+ 2 via such a bribery,
since bribery of at modt voters can affect only head-to-head contests where the relativessotes
of the participants are at mosk.2Thus, via such a bribery can be prevented from winning only if
p can be made a (in fact, the unique) winner of our election.

(3) implies (1): LetW be a set of at mosk voters whose bribery ensures thats a unique
winner of our election. Thus we know thg¥V| = k and thatwW contains only voters who rank
bothu andv abovep (as otherwisep would not defeat botlu andv), which is the case only for
voters of types (i), (iii)-1, and (iii)-2. Furthermore, a bribery that mageise unique winner has to
ensure thap defeats all members &; note that the type (iii)-1 and (iii)-2 voters i already rank
p above all ofB. Thus, via a simple counting argumeW, must contain exactlk type (i) voters
that correspond to a sizeeover ofB. 0 Claim3.3

Since our reduction is computable in polynomial time, Claim 3.3 completes the pfoof o
Theorem 3.2. 0

Theorem 3.4 For each rationala, 0 < a < 1, Copeland is resistant to constructive bribery in the
nonunique-winner model and to destructive bribery in the unique-wimuoetel.

The proof of Theorem 3.4, which follows the same general structure esptbof of
Theorem 3.2, for reasons of space and nonrepetitiveness is not included hecabuie found
in the full TR version (Faliszewski et al., 2008b).

9. Since the proof of Theorem 3.4 is slightly more involved, let us brieiytion its key differences from the proof of
Theorem 3.2. Starting from an X3C instari@. ) with ||B|| = 3k, we in this case construct an electiér= (C,V)
with two more candidates (i.eG = {p,s,t,u,v} UB) and withV having, in addition to the voter types similar to
those in the proof of Theorem 3.2,Rthormalizing” voters of eight subtypes. The unique winneEadk s, and the
only candidate who is able to prevesmfrom being the unique winner via at mdstoters being bribed ip. The
construction ensures théB,.”) € X3C exactly if at mosk voters can be bribed such thatands tie for winner,
which simultaneously handles the nonunique-winner constructive oasiha unique-winner destructive case.
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The proofs of the above theorems have an interesting feature. Wheiseuessl bribery, we
never rely on the fact that the voters are rational. Thus we can allow thesvio be irrational and
form Copelang] i,no-0ribery and Copelarftl;,,,rdestructive-bribery instances simply by deriv-
ing the voters’ preference tables from the voters’ preference lisengivthe above proofs. It is
easy to see that the proofs remain valid after this change; in the proofsswma that each bribed
voter, after the bribery, prefegsto all other candidates, but we do not make any further assumptions
(and, in particular, we do not use linearity of the preferences). Thusave the following corollary
to the proofs of Theorems 3.2 and 3.4.

Theorem 3.5 For each rational numben, 0 < a < 1, Copelang], ..« IS resistant to both con-
structive bribery and destructive bribery, in both the nonunigque-winnedehand the unique-
winner model.

Theorems 3.2, 3.4, and Theorem 3.5 together constitute a proof of Thé&oteand establish
that for each rationadr, 0 < a < 1, Copelanl and Copelanf, ;... Possess broad—essentially
perfect—resistance to bribery regardless of whether we are intefiastedstructive or destructive
results. However, the next section shows that this perfect picture scindnly near-perfect when
we consider microbribes, which don't allow changing the complete predeseof voters at once but
rather change the results of head-to-head contests between caniida¢esters’ preferences. We
will show that there is an efficient way of finding optimal microbriberies f@ tlase of irrational
voters in Copelarftielections.

3.2 Vulnerability to Microbribery for Irrational Voters

In this section we explore the problems related to microbribery of irration@rso In standard
bribery problems, which were considered in Section 3.1, we ask whetikgrassible to ensure that
a designated candidafeis a winner (or, in the destructive case, to ensure fhiatnot a winner)
via modifying the preference tables of at mé&stoters. That is, we can at unit cost completely
redefine the preference table of each voter bribed. So in this model,ywempa service (namely,
the modification of the reported preference table) and we pay for it in butled we buy a voter,
we have secured his or her total obedience). However, sometimes it nfay inere reasonable
to adopt a more local approach in which we have to pay separately forpeaference-table entry
flip—to pay more the more we alter a vote.

Throughout the remainder of this section we will use the taritrobribeto refer to flipping
an entry in a preference table, and we will use the tericrobriberyto refer to bribing possibly
irrational voters via microbribes. Recall that by “irrational voters” we dimpean that they are
allowed to have, but not that they must have, irrational preferences.

For the study of microbribery, we consider irrational voters to clearly bentitural model to
study. After all, one is changing (and measuring the overall change in tefiiee number of
changes in) pairwise preferences, and such changes can easilpnefrem a rational preference
to an irrational preference. (We mention in passing that one could defiséws of this problem
for the case of rational voters in various ways, e.g., allowing only chatigg stay on rational
profiles. But that seems a far less natural model to use for the microppbanlem.)

For each rationatr, 0 < a < 1, we define the following two problems.

Name: Copeland,;,,,rmicrobribery and Copelat,;;,,-destructive-microbribery.
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Given: A setC of candidates, a collectiovi of voters specified via their preference tables @ver
a distinguished candidagec C, and a nonnegative integlker

Question (constructive): Is it possible, by flipping at mogt entries in the preference tables of
voters inV, to ensure thap is a winner of the resulting election?

Question (destructive): Is it possible, by flipping at mogtentries in the preference tables of voters
inV, to guarantee that is not a winner of the resulting election?

We can flip multiple entries in the preference table of the same voter, but veethigay sep-
arately for each flip. The microbribery problems for Copefangd, ., are very similar in flavor to
the so-called bribefyproblems for approval voting that were studied by Faliszewski et alG20)
where unit cost for flipping approvals or disapprovals of voters aid.pHowever, the proofs for
Copelang, iona S€€M to be much more involved than their counterparts for approval votimg.
reason is that Copelafid;, ., €lections allow for very subtle and complicated interactions between
the candidates’ scores.

Before we proceed with our results, let us define some notation that wikéfeluhroughout
this section. LeE be an election with candidate $et= {ci,Cy,...,Cn} and voter collectiotV =
{v1,V2,...,Vn}. We define two functiongyincost andtiecost, that describe the costs of ensuring
a victory or a tie of a given candidate in a particular head-to-head contest.

Definition 3.6 Let E= (C,V) be an election and let @and g be two distinct candidates in C.

1. By wincosg(ci,cj) we mean the minimum number of microbribes that ensure ttidfeats
cj in their head-to-head contest. If already wins this contest then winceft;, cj) = 0.

2. By tiecost(ci,cj) we mean the minimum number of microbribes that ensure thascwith
cj in their head-to-head contest, os if E has an odd number of voters and thus ties are
impossible.

Our first result regarding microbribery is that destructive microbribésy easy for
Copeland iona-  Since this is the paper’s first vulnerability proof, we take this opportunity to
remind the reader (recall Section 2.5) that although the definition of vdditigyaequires only that
there be a polynomial-time algorithm to determine whether a successful acttbe finresent case, a
destructive microbribery@xists we will in each vulnerability proof provide something far stronger,
namely a polynomial-time algorithm that both determines whether a succestful agists and
that, when so, finds a successful action (e.g., for our flow algorithmsdate¢he successful action
will be implicit in the flow computed).

Theorem 3.7 For each rationala, 0 < a < 1, Copelang, .., IS Vulnerable to destructive micro-
bribery in both the nonunique-winner model and the unique-winner mode

Proof. Fix an arbitrary rational numbea with 0 < a < 1. We give an algorithm for
Copelang, ionar fOr destructive microbribery in the nonunique-winner model. (We omit tizdca
gous algorithm for the unique-winner case.)

Let E = (C,V) be the input election wher€ = {p,c1,Cy,...,Cn} andV = {vi,Vva,...,Vn},
and letk be the number of microbribes that we are allowed to make. We define the gieedic
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M(E, p,ci,Kk) to be true if and only if there is a microbribery of cost at mo#hat ensures thay’s
score is higher than that @f Our algorithm compute®! (E, p, ¢;, k) for eachc; € C and accepts if
and only if it is true for at least one of them. We now describe how to comyd(Ee p, ¢;, k).1°

By applying appropriate minimum-cost microbriberie€towe obtain electionk;, E», andEs
that are identical t& except that

1. inE;, p defeats; in their head-to-head contest,
2. inEp, ploses tag; in their head-to-head contest, and

3. inE3, ptiesc in their head-to-head contest (we disregggdf the number of voters is odd
and thus ties are impossible).

Let kq, ko, andks be the minimum costs of microbriberies that transféno E;, E to E,, andE to

Es, respectively. Such microbriberies involve only the head-to-head siipétdweerp andc;. We
define the predicat®!’(E’, p,ci, k'), whereE’ € {E;, E»,E3} and where' is an integer, to be true if
and only if there is a microbribery of cost at mé&that does not involve the head-to-head contest
betweenp andc; but that ensures that's Copelang], ;... Score is higher thap's. It is easy to see
that

M(E7p7ci7k) — (M/(Ela p?ka_kl)VM/<E27 paciak_kZ)\/M,(E?n pvciak_k3))'

Thus it is enough to focus on the problem of compuit/dE’, p,ci,K').

Let (E’,K') be one of(E;,k—k1), (E2,k—k2), and(Es, k— k3). Definepromote. (ci,w,w”’,t),
wherec; € C is a candidate ane/, w’, andt are nonnegative integers, to be the minimum cost of a
microbribery that, when applied &/, increases;’s Copeland,;,n, Score byw + (1—a)w” + at
via ensuring that

1. ¢ wins an additionalv head-to-head contests against candidates -in{p} that used to
defeatc; originally,

2. ¢ wins an additionalv’ head-to-head contests against candidat€s-in{ p} with whome;
used to tie originally, and

3. ¢ ties an additional head-to-head contests with candidate€in { p} that used to defeay
originally.

If such a microbribery does not exist then we peamote. (ci,w,w”’ t) to bec. It is an easy
exercise to see tharomote, is computable in polynomial time by a simple greedy algorithm.

We definedemote(c;, ¢, ¢",t) to be the minimum cost of a microbribery that, when applied to
electionE’, decreasep’s score by/' + a¢” + (1— a)t via ensuring that

1. ploses an additiondl head-to-head contests to candidates in{c; } whom p used to defeat
originally,

2. ploses an additiona!” head-to-head contests to candidateS in{c; } with whom p used to
tie originally, and

10. We stress that we have optimized our algorithm for simplicity rather thigpefrformance.
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3. pties an additional head-to-head contests with candidateS in{c;} whomp used to defeat
originally.

If such a microbribery does not exist then we demote/(c;, ¢, ¢ t) to beco. Note thatdemote
can be computed in polynomial time using an algorithm similar to thgpfemote., .

Naturally, the microbriberies used implicitly withinpromote, (cj,w ,w”;t"), within
demote (c;, ¢, ¢",t"), and within transformingg to E’ are “disjoint,” i.e., they never involve
the same pair of candidates. ThME(E', p,ci,K) is true if and only if there exist integers
wow’ ¢ 0"t t" € {0,1,...,m} such that

scored (ci) + (W + £+ (1—a)(t" +w') +a(t'+¢")) —scor, (p) > 0

and
promote. (ci,w, W’ t") +demote/ (c;, ¢, ¢" t") < k.

There are only polynomially many combinations of swé¢hw”, ¢/, ¢ t’, andt”, and we can try them
all. Thus we have given a polynomial-time algorithmK(E’, p, c;,k’). Via the observations given
at the beginning of our proof this implies thit(E, p, ci, k) is computable in polynomial time and
the proof is complete. O

The above destructive-case algorithm and approach is fairly straiglatfd; in the destructive
case we do not need to worry about any side effects of promoting demoting. The constructive
case is more complicated, but we still are able to obtain polynomial-time algorithmsfaidya
involved use of flow networks to model how particular points shift betwesrdidates. In the
remainder of this section we restrict ourselves to the vatueg 0, 1} or settings where the number
of voters is odd and so ties never happen. We remind the reader thaa@deend Copelant] ionan
respectively, refer to Llull voting.

A flow network is a network of nodes with directed edges through which et o transport
some amount of flow from the source to the sink (these are two designaed)nd=ach edge
can carry up ta(e) units of flow, and transporting each unit of flow througlkostsa(e). In the
min-cost-flow problem we have a target flow vakigand the goal is to find a way of transportiRg
units of flow from the source to the sink, while minimizing the cost. (If there is ag of achieving
target flowF, the cost in effect is infinite.)

We now define the notions related to flow networks more formally. NLet {0,1,2,...} and
7Z=A...,-2,-1,0,1,2,...}.

Definition 3.8 1. Aflow networkis a quintuple(K,s,t,c,a), where K is a set of nodes that
includes thesources and thesinkt, ¢c: K2 — N is thecapacity functionand a: K2 > Nis
the cost function We assume thate,u) = a(u,u) = 0 for each node & K, and that at most
one of ¢u,v) and qv,u) is nonzero for each pair of distinct nodesne K. We also assume
that if c(u,v) = O then gu,v) = 0 as well.

2. Given a flow networkK, s,t,c,a), aflow is a function f: K? — Z that satisfies the following
conditions:

(@) Foreach yve K, we have fu,v) < c(u,v), i.e., capacities limit the flow.
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(b) For each uv € K, we have fu,v) = —f(v,u).1

(c) Foreachue K—{st}, we havey, .« f(u,v) =0, i.e., the flow is conserved in all nodes
except the source and the sink.

3. Thevalue of flowf is:

flowvalué f) = Z< f(s,v).

The particular flow network we have in mind will always be clear from the co@ted so
we will not indicate it explicitly (we will not write it explicitly as a subscript to the dun
tion flowvalue).

4. Thecost of flowf is defined as:

flowcostf) = Z a(u,v)f(u,v).
u,veK

That is, we pay the price(a, V) for each unit of flow that passes from node u to node v.

Given a flow network K, s;t, c,a) we will often use the ternedgego refer to pairs of distinct
nodes(u,Vv) € K2 for which c(u,v) > 0.

Below we define the min-cost-flow problem, which is well known from the litegatuThe
definition we employ here is not the most general one but will suffice forneeds. (Readers
seeking a broader discussion of the problem may wish to see, for exahmlmonograph Ahuja,
Magnanti, and Orlin, 1993.)

Definition 3.9 We define thenin-cost-flow problenas follows: Given a flow networlK, s,t,c,a)
and a target flow value F, find a flow f that has value F (if one exists) asdinimum cost among
all such flows, or otherwise indicate that no such flow f exists.

The min-cost-flow problem has a polynomial-time algoritthiThere is a large body of work
devoted to flow problems and we will not even attempt to provide a complete ligtf@fences
here. Instead, we again point the reader to the excellent monogragh Atal. 1993, which
provides descriptions of polynomial-time algorithms, theoretical analysispamerous references
to previous work on flow-related problems. We also mention that the issumnaf i6 so prevalent in
the study of algorithms that the textbook Cormen, Leiserson, Rivest, amPBtl, on its page 787,
contains an exposition of the min-cost-flow problem.

Coming back to the study of constructive microbribery for Llull and Copdlawith irrational
voters allowed, we now present the following result.

Theorem 3.10 For a € {0,1}, Copelang, ,i,nq IS Vulnerable to constructive microbribery, in both
the nonunigue-winner model and the unique-winner model.

11. Note that each flow is fully defined via its nonnegative values. Whegneg speak of a flow (e.g., when defining
some particular flows) we will just speak of its nonnegative part.

12. The min-cost-flow problem is often defined in terms of capacity astfooctions that are not necessarily limited
to nonnegative integer values and so the corresponding flows arestdtted to integer values either. However,
crucially for us, it is known that if the capacity and cost functions havegiatevalues (as we have assumed) then
there exist optimal solutions to the min-cost-flow problem that use only intedeed flows and that can be found in
polynomial time.

300



LLuLL AND COPELAND VOTING RESISTBRIBERY AND CONSTRUCTIVECONTROL

] Edge \ Parameters \
e=(s,c), c(e) = score (c;)
wherec; € C ale)=0
e=(c,cj), ce)=1
wherec;,c; € C and vg(ci,cj) >0 a(e) = wincosk(cj, G)

B ce)=T
€= (007t) a(e) — O
e=(c,t), ce)=T
wherei > 0 andc; € C ale)=B

c(e)=0
every other edge a(e) = 0

Figure 1: Edge capacities and costs for min-cost-flow inst&icg built from electionE.

We prove Theorem 3.10 via Lemmas 3.11 through 3.16 below, which coesr tlases: (a) an
odd number of voters, where all Copeldng, .., €lections with 0< a < 1 are identical due to the
lack of ties, (b) Copelanfgl,,.a With an even number of voters, and (c) Copefand, ., with an
even number of voters. These lemmas only discuss the nonunique-windel lnub in each case it
is easy to see how to change the algorithms and proofs to make them worle fanitiue-winner
model.

Lemma 3.11 For each rationala with 0 < a < 1, there is a polynomial-time algorithm that solves
the constructive microbribery problem f@opelang, ... €lections with an odd number of voters
(in the nonunique-winner model).

Proof. Our input is a nonnegative integlkr(the budget) and an electidh= (C,V), where the
candidate set is {cp,C1,...,Cm}, the number of voters is odd, amd= ¢y is the candidate whose
victory we want to ensure via at mdstmicrobribes. Note that we interchangeably ps&ndcy to
refer to the same candidate, since it is sometimes convenient to be able to§peahd all other
candidates uniformly. As the number of voters is odd, ties never occuis ahy candidate; has
the same Copelagjd,;,, Score for each rational value af 0 < a < 1. Fix an arbitrary suchr.

We give a polynomial-time algorithm for the constructive microbribery problénhigh-level
overview is that we try to find a threshold valliesuch that there is a microbribery of cost at most
k that transformsE into E" such that (a)p hasscoref, exactlyT, and (b) every other candidate has
scorgf, at mostT.

Let B be a number that is greater than the cost of any possible microbribery \Etféng.,
B=||V||-|[C||>+1). For each possible threshdldwe consider a min-cost-flow instank@) with
node seK = CU {s,t}, wheres s the source antlis the sink, the edge capacities and costs are
specified in Figure 1, and the target flow value is

- 5 sontie) - lelicl -1

(1S
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VSE(Ci,Cj) | @ €1 C  C3

Voterl: cp>Cy>Cr>C3 Co 0O 1 -1 1
Voter2: c3>Cr>C1>Cp C1 -1 0 -1 -1
Voter3: cp,>Cyp>C3>C C 1 1 0 1
C3 -1 1 -1 0

Figure 2: Sample electioi for Example 3.12 in the proof of Lemma 3.11.

Figure 3: Flow networkt (T ) corresponding to the instan¢g, ¢, k) of Example 3.12.

Example 3.12 For illustration, consider the following example. Suppose the given electioasE h
four candidates and three voters, and the preference tables of the ateoseach happen to be
rational in this example) can be obtained from their preference ordersateashown in Figure 2,
which also gives the corresponding valuessf(c;, c;j) for each pair of candidates. Thus we have
scorgl (cg) = 2, scorg (c1) = 0, scorg (c2) = 3, and scorg(cz) = 1. Suppose further that we are
allowed to perform one microbribe, sok1. Clearly, one microbribe that changes the preference
of the third voter from £ > ¢y to ¢ > ¢, will flip the outcome of their head-to-head contest fram ¢
winning to ¢ winning, which is enough to reach our goal of makiggagn the election, and this is
of course the cheapest possible successful microbribery. Finally,that in this example we have
B =49

For each threshold T witld < T < 3, the flow network (T) corresponding to this instance
(E,co,k) of the constructive microbribery problem is shown in Figure 3, and we lzatarget flow
value of F= 6. Every edge e in this flow network is labeled by the ga(e),a(e)) of numbers that
give the capacity and the cost of edge e, respectively.

To continue the proof of Lemma 3.11, note that with an odd number of votenstroative
microbribery in Copelarf, ... SImply requires us to choose for which pairs of distinct candidates
we want to flip the outcome of their head-to-head contest in order to ep&uxéctory. Thus it
is sufficient to represent a microbribely as a collection of pairgci, c;) of distinct candidates for
whom we need to flip the result of their head-to-head contestéravmning toc; winning. Clearly,
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given such a collectioM, the cheapest way to implement it costs

Wincosk (cj, Gi).
(ci.cj)eM

A crucial observation for our algorithm is that we can directly translateshtmamicrobriberies
using the following interpretation. Ldtbe a flow (as per Definition 3.8 with all edge flows being in-
tegers) of valu€ within instancd (T). The units of flow that travel through the network correspond
to Copelang,;iona POINts. For eacls; € C, we interpret the amount of flow that goes directly from
sto ¢ as the number of Copelafig,., POints thatci has before any microbribery is attemptéd,
and the amount of flow that goes directly franto t as the number of Copelafjd;, .., Points that
¢ has after the microbribery (defined by the flow). The units of flow thaelriagtween distinat;’'s
(i.e., through edges of the for(a;,cj), i # j) correspond to the microbribes exerted: A unit of flow
traveling from node; to c; corresponds to changing the result of the head-to-head contesienetwe
¢ andc; from ¢ winning toc; winning. In this case, the Copeldhd;,,, Point moves front; to
¢; and the cost of the flow increases &fg;, c;) = wincostc;, c;), exactly the minimum cost of a
microbribery that flips this contest’s result. L be the microbribery defined, as just described,
by flow f. It is easy to see that

flowcos{f) =B- (F — f(co,t))+ 5  wincost(c;,ci).

(Ci,Cj)EMf

Thus we can easily extract the cost of microbribehyfrom the cost of flowf.

Our algorithm crucially depends on this correspondence between flod/snicrobriberies.
(Also, in the proofs of Lemmas 3.14 and 3.16 that cover the case of anreneher of voters
we simply show how to modify the instancedl') to handle ties, and we show correspondences
between the new networks and microbriberies; the rest of these prabéssame as here.)

Note that for small values of no flow of valueF exists forl(T). The reason for this is that
the edges coming into the simknight not have enough capacity so as to hold a flow of valumn
such a situation it is impossible to guarantee that every candidate gets af rpostts; there are
too many Copelarffl,;,, POINts to distribute.

Figure 4 gives our algorithm for constructive microbribery in Copeffanpd,, This algorithm
runs in polynomial time since, as we have already mentioned, the min-cost+fitalem is solvable
in polynomial time.

Let us now prove that this algorithm is correct. We have presented &lnovea flow f of value
F within the flow networkl (T) (with 0 < T < F) defines a microbribery. Based on this, it is clear
that if our algorithm accepts then there is a microbribery of cost at kiitstt ensureg’s victory.

On the other hand, suppose now that there exists a microbribery oftansisék that ensures
p’s victory in the election. We will show that our algorithm accepts in this case.

Let M be a minimum-cost bribery (of cost at mdgtthat ensureg’s victory. As pointed out
above M can be represented as a collection of p&irsc;) of distinct candidates for whom we flip
the result of the head-to-head contest frqrwinning toc; winning. The cost oM is

Wincosk(cj, Gi).
(ci,Ccj)eM

13. Note that for each € C any flow of valueF within I (T) needs to send exactbcore (¢;) units fromsto ¢;.
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procedure Copeland,;i,n,-0dd-microbriberyE = (C,V),k, p)
begin
if pis awinner ofE then accept
F = SecoScord(c) = HCH(Hngl);
for T=0to||C||-1do
begin
build an instancé(T) of min-cost-flow;
if 1(T) has no flow of valué then
restart the for loop with the next value of
f = a minimum-cost flow foit (T);
if f(co,t) < T thenrestart the loop;
K = flowcostf) —B-(F —T);
if kK < kthen accept
end;
reject;
end

Figure 4: The constructive microbribery algorithm for Copefand,,., elections with an odd num-
ber of voters.

Since applying microbriberyl ensures thap is a winner, we have that each candidate among
C1,C2,...,Cm has at most as many Copeldng,.., Points asp does. LetE’ be the election that
results fromE after applying microbribery to E (i.e., after flipping the results of the contests
specified byM in an optimal way, as given byincost). Let T’ bescore, (p), p's Copeland, .ional
score after implementiniyl. Clearly, 0< T’ < ||C|| — 1.

Consider instancE(T’) and letfy be the flow that corresponds to the microbribbty In this
flow each edge of the forr(s, ¢;) carries flow of its maximum capacitgcore (c;), each edge of
the form(ci,c;) carries one unit of flow exactly i is listed inM and carries zero units of flow
otherwise, and each edge of the fofot) carriesscore, (cj) units of flow. It is easy to see that
this is a legal flow. The cost diy is

flowcostfw) =B-(F—T')+ 5  wincost(c;,ci).
(Gi,Cj)eM
Atfter applyingM, p getsT’ Copelang], i, POINts that travel to the sirtkvia edge(co,t) with cost
a(co,t) = 0, and all the remaining — T’ points travel via edge&;,t), i € {1,2,...,m}, with cost
a(ci,t) = B. The remaining part dlowcost f) is the cost of the units of flow traveling through the
edges(c;, ¢;j) that directly correspond to the cost of microbribéty

Now consider some minimum-cost flofyi, for I (T’). Sincefy exists, a minimum-cost flow

must exist as well. Clearly, we have

flowcost fmin) < flowcost fy).

Let T” be the number of units of flow thak,, assigns to travel over the edgey.t), i.e.,
T" = fmin(Co,t). The only edges with nonzero cost for sending flow through them ase timathe
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set{(ci,cj) | ci,cj e CAvse(Gi,cj) > 0}u{(c,t)|i€{1,...,m}} and thus the cost diimin can be
expressed as (recall thatz(s;, cj) > 0 impliesi # )

flowcost fmin) =B+ (F —T") + z fmin(Ci, Cj) - wincosk (cj, ).
Ci,CjeCAVsE(G,cj)>0

It holds that (1)B > ¥ ; i+j wincosk(ci, ¢j), (2) for eachri, ¢ € C such that vg(ci, ¢j) > 0 we have
fmin(Ci,Cj) € {0,1}, and (3)flowcost fmin) < flowcostfyu). SoT” = T’ must hold* and it must
hold that

fmin(Gi, Cj) - WINCOSE(Cj,Ci) < Z wincost(cj, ).

Gi,cjeCAvVse(ci,cj)>0 (Gi,Cj)eM

Thus flow fhin corresponds to a microbribery that guarantpssvictory and has cost at most as
high as that oM. SinceM was chosen to have minimum cost among all such microbriberies, flow
fmin corresponds to a microbribery of minimum cost and our algorithm correctiggs within the

for loop of Figure 4, at the very latest when in the for |[0bjis set toT’. O

We now turn to the algorithms showing that Llull and Copefandth irrational voters allowed,
are vulnerable to constructive microbribery when the number of votengeis. eHere we need to
take into account that it sometimes is more desirable to have some candidateht@les in a
head-to-head contest than to have one of them win the contest. We hamdles#és of Llull and
Copelanf separately, but in each case our proofs follow the same general sérutitueach case
we first provide a lemma that restricts the set of microbriberies to model, andvihese a slightly
modified version of the algorithm from Theorem 3.11, on a modified set ofomst-flow instances,
to solve the thus limited microbribery problem. We omit the proofs of the remainingléonmas
of this section as they are somewhat lengthy and repetitive. Howeveg, phesfs can be found in
the full TR version of this paper (Faliszewski et al., 2008b).

Lemma 3.13 Let E = (C,V) be an election with candidate set-€{cp,cy,...,Cn} and with an
even number of voters, specified via preference tables over C. IfiegbBoa is conducted us-
ing Copelang, .;ional then no minimum-cost microbribery that ensures victory fongolves either
(a) flipping a result of a head-to-head contest between any two distinclidates gc; € C— {co}
from g winning to g winning, or (b) changing a result of a head-to-head contest betwagveo
distinct candidates in G {cp} from a tie to one of them winning.

14. Let us explain whyf” = T’. In I(T'), by definition,c(co,t) = T’, so we know thal” = fiin(co,t) < T'. We will

now show thafr” = T’. For the sake of contradiction, let us assume THak T’. We have
flowcostfin) = B-(F-T")+ > fmin(Ci, Cj) - wincosk (cj, ci)
Gi,CjeCAVs: (Gi,cj) >0
> B-(F-T)+B+ fmin(Gi, Cj) - wincost:(cj, ¢;)

Gi,CjeCAVSE(Ci,cj) >0
B-(F-T)+ Y wincosk(cj,ci)
(Gi,cj)eM
flowcost fim ),

V

where the last inequality follows from the fact tHats greater than the cost of any microbribery witkin\We have
reached a contradiction, sinég;, is @ minimum-cost flow in (T’). ThusT” =T'.
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Lemma 3.14 There is a polynomial-time algorithm that solves the constructive microlyripeb-
lem for Copelang, ... €/€Ctions with an even number of voters (in the nonunique-winner model).

Lemma 3.15 Let E = (C,V) be an election with candidate set-€{cp,cy,...,Cn} and with an
even number of voters, specified via preference tables over C. Iidbtoa is conducted using
Copelang, .;iona then no minimum-cost microbribery that ensures victory foineolves obtaining
atie in a head-to-head contest between any two distinct candidates-ifcg} .

Lemma 3.16 There is a polynomial-time algorithm that solves the constructive microlbyrieb-
lem for Copelang, .;iona €l€Ctions with an even number of voters (in the nonunique-winner model).

Together, Theorem 3.7 and Lemmas 3.11, 3.14, and 3.16 show that, in lgarticath
Copelang, ,iona @nd Copelang, .. are vulnerable to microbribery, both in the constructive and
the destructive settings. It is interesting to note that all our microbriberyfprwould work just as
well if we considered a slight twist on the definition of the microbribery praohleamely, if instead
of saying that each flip in a voter’s preference table has unit cost wiédvedlow each voter to have
a possibly different price for flipping each separate entry in his or refeence table. This change
would affect only the computing of the values of the functimmscostandtiecost(or, strictly speak-
ing, their analogues in the priced setting). (Technically, we would alsotbawedify Lemmas 3.13
and 3.15, which in our unit-cost setting say that an optimal microbriberyr im@x@ves certain spec-
ified pairs of candidates, whereas in the priced setting we would needhasepthem to state that
thereexistoptimal microbriberies that do not involve those specified pairs of candiglate

An interesting direction for further study of the complexity of bribery withimp@and' systems
is to consider a version of the microbribery problem for the case of rdtobers. There, one would
pay unit cost for a switch of two adjacent candidates on a given vqieference list.

For Copelanfl ,i,nar We would also like to know the complexity of constructive microbribery
whena is a rational number strictly between 0 and 1. Our network-flow-baseaplp does not
seem to generalize easily to valuesxaftrictly between 0 and 1 (when the number of voters is even)
because in a flow network it is hard to “split” a unit of flow in a tie. A promisingmach would be
to have several units of flow model one Copefand,.., point (e.g., for the case af = § we could
try to use two units of flow to model a single Copel&Agoint), but then it seems very difficult
(if not impossible) to find edge costs that appropriately model the microlyrilgkris possible to
do so in a very restricted setting, namely whare- % and there are exactly two voters that can be
bribed.) Also, the results regarding hardness of manipulation of Falikzetval. (2008) suggest
that microbribery foro strictly between 0 and 1 might be NP-hard. However, again, it is nontrivial
to translate their reduction to the world of microbribery.

On a related note, Kern and Paulusma (2001) have shown that the follpnobtem, which
they call SO0, a,1), is NP-complete. Letr be a rational number such thakOa < 1 anda # %

We are given an undirected gragh= (V(G),E(G)), where each verten € V(G) is assigned a
rational valuec, of the formi + ja, for nonnegative integerisand j. The question, which we
have rephrased to state in terms of (a variant of) our notion of Copélamahether it is possible
to (possibly partially) orient the edges & such that for each vertex € V(G) it holds thatu's
Copeland score is at most,. Here, by “Copelan@ score of a vertex” we mean, as is natural, the
number of verticesl “defeats” (i.e., the number of verticesuch that there is a directed edge from
uto V) plusa times the number of vertices thatties” with (i.e., the number of vertices such that
there is an undirected edge betwessndv).
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Problem S@0, a,1) is very closely related to our microbribery problem. However, we do not
see an immediate reduction from &Ca,1) to microbribery. A natural approach would be to
embed grapl@ into an election (in the sense that will be explored in Section 4) in such a way tha
our preferred candidatp can become a winner, via a microbribery, if and only if it is possible
to orient the edges 0B in a way respecting the constraints defined by the vatyg$or eachu
in V(G)). We would, of course, have to set the budget of our microbribery éigiugh to allow
modifying each of the edges i@ and none of the edges outside®f However, this is difficult.
The proof of Kern and Paulusma uses valggthat can be implemented only via using tied head-
to-head contests. The agent performing microbribery could, potentiflygt ahose head-to-head
contests, thus spoiling our reduction.

4. Control

In this section we focus on the complexity of control in Copefartkctions. In control problems
we are trying to ensure that our preferred candigeea winner (or, in the destructive case, that our
despised candidate is not a winner) of a given election via affecting tlusaiés structure (namely,
via adding, deleting, or partitioning either candidates or voters). In cstnirigh bribery problems,
in control problems we are never allowed to change any of the votes anseguently, the issues
that we encounter and the proof techniques we use are quite diffeoemtliose presented in the
previous section. For the same reason as previously for each stdpparof control a resistance
result in the rational-voters case implies an analogous resistance reseliirattonal-voters case,
and a vulnerability result in the irrational-voters case implies an analogdoerability result in
the rational-voters case.

The literature regarding the complexity of control problems is not large. @&d#st of our
knowledge, the only election systems for which a comprehensive anagstsden conducted pre-
viously are plurality, Condorcet, and (variants of) approval voting 8&artholdi et al., 1992; Hema-
spaandra et al., 2007a, 2007b; Betzler and Uhlmann, 2008y&&d al., 2008b; see also Meir et al.,
2008, for some results on (variants of) approval voting, single nosfgaatble vote, and cumulative
voting with respect to constructive control via adding voters). Amonggfityy Condorcet, and (the
standard variant of) approval voting, plurality appears to be the lediserable to control and so
it is natural to compare our new results with those for plurality. Howevenngation in passing
that Hemaspaandra et al. (2007b) show how to construct hybrid elsystems that are resistant to
all standard types of control (including both AC and A@C is not discussed or proven in Hema-
spaandra et al., 2007b—the “AC” there is our ‘f&-but we mention that the techniques clearly
can handle it without any problem). (It should also be noted that thesidhgystems were not
designed as “natural” systems to be applied in real-world elections but thtiepurpose was to
prove a certain impossibility theorem impossible.)

Our main result in this section is Theorem 4.1.

Theorem 4.1 Let a be a rational number witld < a < 1. Copeland elections are resistant and
vulnerable to control types as indicated in Table 1 in both the nonuniqueewimodel and the
unique-winner model, for both the rational and the irrational voter model.

In particular, we will prove in this section that the notion widely referred to m Itterature
simply as “Copeland elections,” which we here for clarity call Copel@ngossesses all ten of
our basic types (see Table 1) of constructive resistance (and in adéwem has constructive AC
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Copeland Plurality
a=0 |0O<ax<l a=1

Controltype| CC | DC | CC| DC | CC | DC || CC | DC
AC, vV | V R Vv vV | V R | R
AC R |V R \Y, R |V R | R
DC R |V R Vv R |V R | R
RPC-TP R |V R Vv R |V R | R
RPC-TE R | V R \% R |V R | R
PC-TP R |V R Y, R |V R | R
PC-TE R | V R Y R |V R | R
PV-TE R|R|R R R | R vV | V
PV-TP R|R|R R R | R R | R
AV R|R|R R R | R vV | V
DV R|R|R R R | R vV | V

Table 1: Comparison of control results for Copelarglections, wherex with 0 < a <1 is a
rational number, and for plurality-rule elections. R means resistance tieuytar control
type and V means vulnerability. The results regarding plurality are due thd@dr et al.
(1992) and Hemaspaandra et al. (2007a). (Note that CCAC and DE€gi&ance results
for plurality, not handled explicitly in Bartholdi et al., 1992, or Hemaspaamdal., 2007a,
follow immediately from the respective CCAG@nd DCAG, results.)

resistance). (As to why we consider AC more basic thag,A€e the discussion in the “Control via
Adding Candidates” subpart of Section 2.2. Nonetheless, we do obtajmesQlts, and so fans of
the naturalness of AQwill know how things fare under that control type.) And we will establish
that the other notion that in the literature is occasionally referred to as “Qapelactions,” namely
Copeland, as well as Llull elections, which are here denoted by Copélamath possess all ten of
our basic types of constructive resistance. However, we will showGbatland and Copelant
are vulnerable to an eleventh type of constructive control, the incongroat historically resonant
notion of constructive control by adding an unlimited number of candidatesCCAG,).

Note that CopelarftP has a higher number of constructive resistances, by three, than even
plurality, which was before this paper the reigning champ among naturdlosiesystems with
a polynomial-time winner-determination procedure. (Although the resultsdiegpplurality in
Table 1 are stated for the unique-winner version of control, for all thee’sa€opelané cases,

0 < a <1, our results hold both in the cases of unique winners and of nonuniourers, so that
regardless of which of the two winner models one finds more natural, on&nei what holds in
that model.) Admittedly, plurality does perform better with respect to desteictindidate control
problems, but still our study of Copelahdnakes significant steps forward in the quest for a fully
control-resistant natural election system with an easy winner problem.

Among the systems with a polynomial-time winner problem, Copéareand indeed all
Copeland, 0 < o < 1—have the most resistances currently known for any natural elect®n sy
tem whose voters vote by giving preference lists. We mention that aftework, Ercelyi et al.
(2008b) have shown that their variant of a variant of approval vatiogosed by Brams and San-
ver (2006)—a certain rather subtle election system with a richer votegrerefe type (each voter
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specifies both a permutation and a set) that combines approval with pieddrased voting—has
nineteen (out of a possible twenty-two) control resistances.

This section is organized as follows. The next two sections are devoteoMiog Theorem 4.1,
and Section 4.3 considers the case of control in elections with a bound®aknof candidates or
voters. In particular, Section 4.1 focuses on the upper part of Tabie $tadies control problems
that affect the candidate structure. Section 4.2 is devoted to voter cantdt@overs the lower part
of Table 1. Finally, in Section 4.3 we study the fixed-parameter complexityrafaigproblems. In
particular, we take the role of someone who tries to solve in-general-rgsistatrol problems and
we devise some efficient algorithms for the case where the number of eteslio the number of
voters is bounded.

All our resistance results regarding candidate control follow via redostioom vertex cover
and all our vulnerability results follow via greedy algorithms. Our resistaesalts for the case of
control by modifying voter structure follow from reductions from the X3@kgdem.

4.1 Candidate Control

We start our discussion of candidate control for Copefanith our results on destructive control. It
is somewhat disappointing that for each ratiomaD < a < 1, Copelanf is vulnerable to each type
of destructive candidate control. On the positive side, our vulnerabildgfprfollow via natural
greedy algorithms and will allow us to smoothly get into the spirit of candidatéraloproblems.

4.1.1 DESTRUCTIVE CANDIDATE CONTROL

The results for destructive control by adding and deleting candidagethedollowing observation.

Observation 4.2 Let (C,V) be an election, and latr be a rational number such th& < a < 1.
For every candidate € C it holds that

scort{’cﬁv)(c): z scor{{c’dw)(c).
deC—{c}

Theorem 4.3 For each rational numbeo with 0 < a < 1, Copeland is vulnerable to destructive
control via adding candidates (both limited and unlimited, i.e., DCAC and DZAG both the
nonunique-winner model and the unique-winner model, for both the @ltiand the irrational
voter model.

Proof. Our input is a se€ of candidates, a s& of spoiler candidates, a collectiéof voters
with preferences (either preference lists or preference tablesCavé, a candidate € C, and a
nonnegative integek (for the unlimited version of the problem we let= ||D||). We ask whether
there is a subsdd’ of D such that/|D’|| < k and p is not a winner (is not a unique winner) of
Copeland electionE’ = (CUD’,V). Note that ifk = 0, this amounts to determining whethers
not a winner (is not a unique winner) of electiBnwhich can easily be done in polynomial time.

For the remainder of this proof we will assume tkat 0. Letc be any candidate ifCUD) —
{p}. We definea(c) to be the maximum value of the expression

SCOTE by (C) — SCOMEL by vy (P)
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under the conditions th&’ C D, ce CUD’, and||D’|| < k. From Observation 4.2 it follows that
a(c) is the maximum value of

SCOIEC, ¢y vy (C) — SCOMEG iy vy (P) + ) DZ{ } (scor(—f{c_’d}’v)(c) - score?{p?dw)(p))
eb’'—{c

under the conditions th&' C D, ce CUD’, and||D'|| < k.

Clearly, p can be prevented from being a winner (a unique winner) if and only iEtbgists a
candidate € (CuD) — {p} such thag(c) > 0 (such that(c) > 0).

Given a candidate € (CUD) — {p}, it is easy to construct in polynomial time a $tC D,
|D'|| <k, that yields the valua(c). We start withD’ = 0. If c € D, we addc to D’. Then we add
those candidates € D — D’ to D’ such thascoreggc’d}7v)(c) - scor{{p,d}’v)(p) is positive, starting

with those for whom this value is highest, urjtD’|| = k or no more such candidates exist. [

Theorem 4.4 For each rational numben with 0 < a < 1, Copeland is vulnerable to destruc-
tive control via deleting candidates (DCDC), in both the nonunique-winretehand the unique-
winner model, for both the rational and the irrational voter model.

The proof of Theorem 4.4 is similar to that of Theorem 4.3, so we do notdeciuhere but
instead refer to the full TR version (Faliszewski et al., 2008b).

Destructive control via partitioning of candidates (with or without rur)-cffalso easy. Since
the arguments of that proof are more involved, we present it here.

Theorem 4.5 For each rational numbea with 0 < a < 1, Copeland is vulnerable to destructive
control via partitioning of candidates and via partitioning of candidates with-aif (in both the
TP and TE model, i.e., DCPC-TP, DCPC-TE, DCRPC-TP, and DCRPC#HTEdth the nonunique-
winner model and the unique-winner model, for both the rational and tla¢iamal voter model.

Proof. Itis easy to see that in the TP modplcan be prevented from being a winner via parti-
tioning of candidates (with or without run-off) if and only if there is a 8C C such thatp € C’
andpis not a winner of C',V). It follows that p can be prevented from being a winner if and only
if p can be prevented from being a winner by deleting at nj@$t— 1 candidates, which can be
determined in polynomial time by Theorem 4.4. We will show how to handle the aniganer
variants of DCPC-TP and DCRPC-TP later in this proof.

For the TE model, it is easy to see that if there is ae&t C such thatp € C' andpis not a
unique winner of(C’,V) then p can be prevented from being a unique winner via partitioning of
candidates (with or without run-off). One simply partitions the candidatesGhemdC —C’ and
thus p fails to advance to the final stage. On the other hang,dan be prevented from being a
winner (a unique winner) via partitioning of candidates (with or without oéfj)in the TE model,
then there exists a s€t C C such thatp € C’ and p is not a unique winner ofC’,V). This is so
because then eithgr does not advance to the final stage (and this meansptignot a unique
winner of his or her first-stage election) pis not a winner (not a unique winner) of the final stage
(note that not being a winner implies not being a unique winner).

Thus, p can be prevented from being a winner (a unique winner) via partitionicguedidates
(with or without run-off) in the TE model if and only if there is a €8tC C such thatp € C’ andp
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is not a unique winner ofC’,V). Clearly, such a set exists if and onlypfcan be prevented from
being a unique winner via deleting at m¢§l/| — 1 candidates, which by Theorem 4.4 can be tested
in polynomial time.

It remains to show that Copelahds vulnerable to destructive control via partitioning of can-
didates (with or without run-off), in both the rational and the irrational vatedel, in the unique-
winner model with the TP tie-handling rule. In the argument below we focuhe®CRPC-TP
case but it is easy to see that essentially the same reasoning works fo-DCP

First we determine whethgr can be precluded from being a winner in our current control
scenario. This can be done in polynomial time as explained abovp.c#éin be precluded from
being a winnerp can certainly be precluded from being a unique winner, and we are deore.
the remainder of the proof, suppose thpatannot be precluded from being a winner in our current
control scenario, i.e., for every sbtC C such thatp € D, pis a winner of(D,V). Let

D1 ={ceC—{p} | pdefeatin a head-to-head contést

and letD, = D — (D1 U {p}). Note that for allc € D,, p tiesc in a head-to-head contest, since
otherwisep would not be a winner of{c, p},V). If D, =0, thenp is a Condorcet winner and
no partition (with or without run-off) can prevemt from being a unique winner (Hemaspaandra
et al., 2007a). For the remainder of the proof, we assumeDthat 0. We will show thatp can be
precluded from being a unique winner in our current control scenario

If o < 1, we let the first subelection §®1 U {p},V). Note thatp is the unique winner of this
subelection. The final stage of the election involpesnd one or more candidates frda. Note
that every pair of candidates By U { p} is tied in a head-to-head election (since ifvould defeat
d in a head-to-head electioowould be the unique winner d@f c,d, p},V), which contradicts the
assumption thap is a winner of every subelection it participates in). It follows that all caatdis
that participate in the final stage of the election are winners, amdsoot a unique winner.

Finally, consider the case that= 1. Thenscoref’qv)(p) = ||C|| — 1. If there is a candidate
d € C—{p} such thascoref’qv)(d) = |IC|| — 1, thend will always (i.e., in every subelection con-
taining d) be a winner, and thup will not be a unique winner of the final stage of the election,
regardless of which partition d& was chosen. Now suppose trsaioref’qv)(d) < ||C|| — 1 for
alld e C—{p}. Thenscorefcﬁv)(d) < |IC|| — 2 for alld € C— {p}. Letc be a candidate D2

and let the first subelection K€ — {c},V). LetC’ be the set of winners ofC — {c},V). Since
scor%f{c}_’v)(p) = ||C|| — 2, it holds thatp € C’" and for everyd € C' — {p}, scor%f{c}_’v)(d) =
IIC|| — 2. Sincescoref’ov)(d) < ||C|| — 2, it follows thatc defeatd in a head-to-head election. The
final stage of the election involves candidaf®s {c}. Note thascoref’c,u{c}’v) (c)=|IC||, and thus
cis a winner of the election, and we have precluge€dom being a unique winner. O

The above vulnerability results for the case of destructive candidateotehould be contrasted
with the essentially perfect resistance to constructive candidate conttbltfie exception of con-
structive control via adding an unlimited number of candidates for Cop&latti o € {0,1}) that
will be shown in Section 4.1.3. But first, in Section 4.1.2, we will provide somiertieal prerequi-
sites.
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4.1.2 GONSTRUCTINGINSTANCES OFELECTIONS

Many of our proofs in the next section require constructing fairly invdlestances of Copelafd
elections. In this section we provide several lemmas and observationsnipdifysbuilding such
instances.

We first note that each electidh= (C,V) induces a directed grapgB(E) whose vertices are
E’s candidates and whose edges correspond to the results of the Heaadicontests i&. That
is, for each two distinct vertices @(E) (i.e., for each two distinct candidates),andb, there
is an edge fronma to b if and only if a defeatsb in their head-to-head contest (i.e., if and only if
vse(a,b) > 0). Clearly,G(E) does not depend on the valueaf The following fundamental result
is due to McGarvey. This result allows us to basically identify elections with #leation graphs
in the proofs of resistance for candidate control. In effect, Copélaaddidate-control problems
often can be viewed (with some care regarding ties) as graph-theorabieprs.

Lemma 4.6 (McGarvey, 1953)There is a polynomial-time algorithm that given as input an anti-
symmetric directed graph G outputs an election E such thatGE).

Proof. For the sake of completeness, we give the algorithm.G_be an antisymmetric directed
graph. The algorithm computes the electibs- (C,V), whereC =V (G) and for each edg@, b) in
G there are exactly two voters, one with preferencedistb > C — {a, b} and one with preference

- S - - - . - .
list C— {a,b} > a> b. SinceG is antisymmetric, it is easy to see tiat= G(E). O

The above basic construction of McGarvey was improved upon by St€a959). While Mc-
Garvey’s construction requires twice as many voters as there are ed@eshe construction of
Stearns needs at mo$¥ (G)|| + 2 voters. Stearns also provides a lower bound on the number of
voters that are needed to represent an arbitrary graph via an eldttisreasy to see that any such
graph can be modeled via two irrational voters but the lower bound forabe af rational votes is
somewhat harder.)

We will often construct complicated elections via combining simpler ones (sgmriicular,
the rather involved proofs of Theorems 4.12 through 4.16 that can Ingl fiouthe full TR version,
Faliszewski et al., 2008b). Whenever we speakarhbiningtwo elections, sa¥; = (Cy,V;) and
E; = (C2,V2), we mean building, via the algorithm from Lemma 4.6, an eledena (C,V) whose
election graph is a disjoint union of the election graph&pfand E» with, possibly, some edges
added between the vertices@fE;) andG(Ey) (in each case we will explicitly state which edges,
if any, are added). In particular, we will often want to add some paddinglidates to an election,
without affecting the original election much. In order to do so, we will typicaliynbine our
main election with one of the following “padding” elections. Note that this constn, which we
originally developed for use in the study of control for Copefardting, has also proven useful in
the study of manipulation for Copelahd@Faliszewski et al., 2008).

Lemma 4.7 Let a be a rational number such th&t< a < 1. For each positive integer n, there is
a polynomial-time (in n) computable electi®ad, = (C,V) such that||C|| = 2n+ 1 and for each
candidate ¢e C it holds that scorg, (c) = n.

Proof. Fix a positive integen. By Lemma 4.6 it is enough to construct (in polynomial timea)n
a directed, antisymmetric graghwith 2n+ 1 vertices, each with its indegree and outdegree equal
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to n. We setG's vertex set to bg0,1,...,2n} and we put an edge from vertexo vertexj (i # j)
ifand only if (j —i) mod (2n+1) < n. As a result there is exactly one directed edge between every
two distinct vertices and for each vertexe have edges going out froirto exactly the vertices
(i+1) mod(2n+1),(i +2) mod(2n+1),...,(i+n) mod (2n+1). Thus, both the indegree and
the outdegree of each vertex is equahtand the proof is complete. O

Lemma 4.6 (McGarvey, 1953) is very useful when building an election inhwvie need direct
control over the results of all head-to-head contests. However, in wesgs explicitly specify-
ing the results of all head-to-head contests would be very tedious. dngte@uld be easier to
specify the results of only the important head-to-head contests andeejuaandidates to have
certain suitable scores. In the next lemma we show how to construct elesfieaified in such a
way via combining a “small” election containing the important head-to-head stontth a “large”
padding election. We mention that a generalized version of this lemma has sercesed to study
manipulation for Copelarfd(Faliszewski et al., 2008).

Lemma 4.8 Let E= (C,V) be an election where € {c,...,cy}, leta be arational number such
that0 < a < 1, and let n> n’ be an integer. For each candidatewe denote the number of head-
to-head ties of icin E by t. Let k,...,ky be a sequence of monnegative integers such that for
each kwe have0 < k; < n. There is an algorithm that in polynomial time in n outputs an election
E’' = (C',V’) such that:

1. C =CuD, where D= {dy,...,0dyp},

2. E'restrictedto Cis E,

3. the only ties in head-to-head contests irake between candidates in C,
4. foreachil <i<n', scorg (c)= 2n’ —k; +tia, and

5. foreachil <i < 2n? scord, (dj) <n’+1.

Proof. We buildE’ via combiningE with a padding electiof (see Lemma 4.7 and the paragraph
just before it). F = (D,W), whereD = {d,...,d,}, is essentially the election Padwith one
arbitrary candidate removed. We partition the candidaté&siimo n groups,Dy, ..., Dy, each with
exactly 2 candidates and we set the results of head-to-head contests betwken«e@cand the
candidates irD according to the following scheme. For eagk {1,...,n'} such that # j, ¢;
defeats all members dd; andc; defeats exactly as many candidateDin(and loses to all the
remaining ones) as needed to ensure that

scord, () = 2n* — ki +tia.

It is easy to see that this is possibig's score in(C' — D;,V’) is 2n® — 2n+ K +tia for somek’
such that 0< k' < ' —t;. There are @ candidates iD; and soc; can reach any score of the form
2n? — k+tia, wherek is an integer between 0 ang via defeating in head-to-head contests an
appropriate number of candidateddnand losing to all the remaining ones.

Finally, sinceF is Pag. with one candidate removed, eadhgets at mosn? points from
defeating other members &f and at most one point from possibly defeating some membeér of
Thus, for eachd; € D, it holds thaiscor%(di) <n?+1. This completes the proof. O
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Instead of invoking Lemma 4.8 directly, we will often simply describe an electidgerims of
the results of important head-to-head contests and the scores of the impartdidates and then
mention that such an election can be built, possibly with adding extra paddndideses that do
not affect the general structure of the election, using Lemma 4.8. Inssthcase it will be clear
that Lemma 4.8 can indeed be used to build the election we describe.

4.1.3 MONSTRUCTIVE CANDIDATE CONTROL

Let us now turn to the case of constructive candidate control. Here ove stat resistance holds
for Copeland in all cases (i.e., for all rational values afwith 0 < a < 1 and for all construc-
tive candidate control scenarios), except for CGQAQ a < {0,1} where vulnerability holds (see
Theorem 4.11).

All our resistance proofs in this section follow via reductions from the wectaver problem.
Recall that in the vertex cover problem our inpu{@, k) whereG is an undirected graph arkda
nonnegative integer and we accept if and onlgihas a vertex cover of size at mdst Without
the loss of generality, we assume tNgiG) = {1,...,n} andE(G) = {ey,...,en}. Note that if
eitherm= 0, n= 0, ork > min(n,m) then the instance has a trivial solution and so in our proofs
we will always assume that bothandm are nonzero and th&tis less than mifn,m). In each
case, if the input to our reduction does not meet these requirements {oerg/ise malformed) the
reduction outputs a fixed “yes” instance or a fixed “no” instance dapgrah the (easily obtained)
solution to(G, k) or the malformation of the input. Also note that for every inp@tk) that meets
our requirements; has a vertex cover of size less than or equa ifoand only if G has a vertex
cover of sizek.

Theorem 4.9 Leta be a rational number such thét< a < 1. Copeland is resistant to construc-
tive control via adding candidates (CCAC), in both the nonunique-winratainand the unique-
winner model, for both the rational and the irrational voter model.

Proof. We give a reduction from the vertex cover problem. (@tk) be an instance of the vertex
cover problem, wher& is an undirected graphk is a nonnegative integeY,(G) = {1,...,n},
E(G) = {ey,...,em}, n# 0, m# 0, andk < min(n,m). We construct an instance of CCAC for
Copeland such that a designated candidptean become a winner after adding at mosandidates
if and only if G has a vertex cover of size at mdst

Our reduction works as follows. Via Lemma 4.8, we build an elecibs: (C',V’) such that:

1. {p,ey,....,em} CC/,

2. scord,(p) = 2¢2 — 1 in the nonunique-winner casscore, (p) = 2/2 in the unique-winner
case);/ is a sufficiently large (but polynomially bounded) integer that takes the rble o
Lemma 4.8':,

3. for eachg € C/, score, () = 2¢2, and
4. the scores of all candidates@h— {p,ey,...,en} are at most 2 —n— 2.

We form electionE = (C,V) by combiningE’ with candidate® = {1,...,n} (corresponding
to the vertices ofG). The results of the head-to-head contests wilbiare set arbitrarily, and
the head-to-head contests between the memb&saofl the members @ are set as follows: All
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candidates i€ — {ey,...,en} defeat all members @, and for eaclhe D and eacte; € {ey, ..., en},
candidate defeatse; if e; is an edge incident toand loses otherwise. Our reduction outputs an
instancgC,D,V, p,k) of CCAC and the question is whether it is possible to choose a sDbseD,
|D'|| <k, such thatp is a winner (the unique winner) of Copeldhdlection(CUD’,V). It is clear
that this reduction is computable in polynomial time. We will now show that it is carre

If G does have a vertex cover of sizéhen add the candidateslinthat correspond to the cover.
Adding these candidates increases the scopelgfk, while the scores of thg’s can increase only
by k— 1 each, since each edge is incident with at least one member of the vevax Clearly,
candidates i€ — {p, ey, ...,en} can never become winners by adding at nkostndidates fronD,
and thusp becomes a winner (the unique winner).

For the converse, assume tltan become a winner (the unique winner) via adding at tost
candidates from the sé&. In order forp to become a winner (the unique winner), it must be the
case that via adding candidates eacbets at least one point less thanHowever, this is possible
only if we add candidates that correspond to a cover. O

Interestingly, when the parameteiis strictly between 0 and 1 (i.e.,0 a < 1) then Copelarfti
is resistant to constructive control via adding candidates even if we atldimg an unlimited num-
ber of candidates (the CCACase). The reason for this is that for each ratianatrictly between
0 and 1 our construction will ensure, via its structure, that we can add sttkhoandidates. On
the other hand, both Copeldhand Copelantiare vulnerable to constructive control via adding an
unlimited number of candidates (CCAGee Theorem 4.11).

Theorem 4.10 Leta be a rational number such thét< a < 1. Copeland is resistant to construc-
tive control via adding an unlimited number of candidates (CQA® both the nonunique-winner
model and the unique-winner model, for both the rational and the irrationgér model.

Proof. We give a reduction from the vertex cover problem.

For the unique-winner case, we will need to specify one of the candidata®s in terms of a
numbere > 0 such that - € > a. Lett; andt, be two positive integers such that= tl and such
that their greatest common divisor is 1. Clearly, two such numbers exiaubeg is ratlonal and
greater than 0. We setto beE. By elementary number-theoretic arguments, there are two positive
integer constantk; andky, such thaka =k, — €.

Let (G, k) be an instance of the vertex cover problem, wh@ie an undirected graph akds a
nonnegative integer. Lde,...,en} beG's edges and lefl, ..., n} beG's vertices. As before, we
assume that both andm are nonzero and th&t< min(n,m). Using Lemma 4.8, we can build an
electionE’ = (C,V’) with the following properties:

1. {p,1,e1,...,em} C C (the remaining candidates hare used for padding),
2. scoré, (p) = 202 —

3. scoré, (r) = 20 — 1—k+ka in the nonunique-winner cassdored, (r) = 202 — 1—k+ka — &
in the unique-winner ca$®),

15. Note that via the second paragraph of the proof it is easy to build etioelevherer has a score of this form. To
obtain the—¢ part ofr’s score we could, for example, haveéie with k; padding candidates to obtdip — € points.
Theks points could be accounted for as part 68 2 1.
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4. foreachs € C, scoré, (g) = 2(>— 1+ a in the nonunique-winner cassdoré, () = 20— 1
in the unique-winner case), and

5. the scores of all candidates@n- {p,r,e;,...,en} are at most 2 —n— 2.

We form electiorE = (CUD, V) via combiningE’ with candidate® = {1,...,n} and appro-
priate voters such that the results of the head-to-head contests are:

1. pties with all candidates iD,

2. for eachey, if e; is incident with somé € D then candidatedefeats candidatg, and other-
wise they tie, and

3. all other candidates i@ defeat each of the candidatedin

We will now show thaiG contains a vertex cover of size at m&df and only if there is a set
D’ C D such thatp is a winner (the unique winner) of Copeldhdlection(CUD’,V). It is easy to
see that ifD’ corresponds to a vertex cover of size at motenp is a winner (the unique winner)
of Copeland election(CUD’,V). The reason is that adding any membebbfncrease®’s score
by a and increasess score by one, and for eael, addingi € D’ increase®;’s score bya if and
only if gj is not incident withi. Thus, via a simple calculation of the scores of the candidates, it is
easy to see thaiis a winner (the unique winner) of this election.

On the other hand, assume th@attan become a winner (the unique winner) of Copefand
election(CuD’,V) via adding some subs&’ of candidates fronD. First, note that|D’|| <k,
since otherwise would end up with more points than (at least as many pointp agd sop would
not be a winner (would not be a unique winner). We claim fatorresponds to a vertex cover
of G. For the sake of contradiction, assume that there is someegdgeident to vertices andv
such that neitheu norvis in D’. However, if this were the case then candidgtevould have more
points than (at least as many points psgnd sop would not be a winner (would not be a unigue
winner). ThusD’ must form a vertex cover of size at mdst O

Note that in the above proof it is crucial thatis neither O nor 1. Ifo were 0 then the proof
would fall apart because we would not be able to ensureRhat a vertex cover, and iér were
1 then we would not be able to limit the size Bf. In fact, we will now show, as Theorem 4.11,
that both Copelarfiand Copelantiare vulnerable to control via adding an unlimited number of
candidates (CCAQ.

Theorem 4.11 Leta € {0,1}. Copeland is vulnerable to constructive control via adding an un-
limited number of candidates (CCAXin both the nonunique-winner model and the unique-winner
model, for both the rational and the irrational voter model.

Proof. Ourinputis candidate s€&, spoiler candidate sé&, a collection of voters with preferences
(either preference lists or preference tables) @D, and a candidatp € C. Our goal is to check
whether there is some subdetC D such thatp is a winner (the unique winner) dCuUD’,V)
within Copeland. We will show that we can find such a 42t if it exists, by the following simple
algorithm.
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LetD1={deD| scoref’{pd} V)(p) =1}. Initialize D’ to beD;, and delete everg € D’
for which scoret. , \,,(p) < scoreg ,(d). For the unique-winner problem, delete
everyd € D’ for which scoref’CUD,!V)(p) < score%’CUD,_V)(d).

Clearly, this algorithm runs in polynomial time. To show that the algorithm wdikst, note
that for allD C D*if p is a winner (the unique winner) ¢€UD, V), thenpis a winner (the unique
winner) of(CU(DNDj),V). This is so because, by Observation 4.2,

SCOrEr 5y (P) = SCOMGL 50y (P)+ 3 ScOrey, gy (P)
dED*Dl

= SCOr€L 5rp, vy (P)-

Now suppose that for soni2C Dy, p is a winner (the unique winner) ¢€CU 5,V), but that the
algorithm computes a sBt such thafp is not a winner (not a unique winner) @€UD’,V). We first
consider the case thAtC D', Sincepis not a winner (not a unique winner) @UD’,V), it follows
by the construction oD’ that there exists a candidatiec C — {p} such thatsconfcw, (p) <
scoregCUD, d) (such thascorg?'CUD, (p) < scor«fCUD/ d)). However, in the nonunlque winner
model we then have

Score ) (P) = scorer 5, (p)+ D[ I
> scor€r, 5., (d)+ D[ = [|B] > scorey oy (),

which is a contradiction. In the unique-winner model, the fitst in the above inequality becomes
“>"and we reach a contradiction as well.
FlnaIIy, consider the case trﬁt,@ D’. Letd be the first candidate iD that is deleted frond’ in
the algorithm. Then there is a €@ such thaD C D” C D, andscoreg, ,(P) < SCOree yy(d)

in the nonunique-winner casec(oref’cw,,v)(p) < scorq’CUD,,V)(d) in the unique-winner case).
SinceD C D" C D;, we have

1. scoré o (p) = SCOMEL 1, (P) — (ID"I| = [D]]) < scord, p,, (d) — (ID"]| - 1)) <

scoréJr 6V)(d) in the nonunique-winner case, and

2. scord o (p) = SCOEL, 1, (P) — (ID"| = [1D]]) < scoré, o, (d) — (D" - IB]]) <
scoré’C DV)(d) in the unique-winner case.

It follows that p is not a winner (not a unique winner) ¢€ U 5,V). This is again a contradic-
tion. O

The remainder of this section is dedicated to showing that for any ratosath that 6< a <1,
Copeland is resistant to constructive control via deleting candidates and to cotigtraontrol via
partitioning candidates (with or without run-off and in both the TE and the TBef)oFor reasons
of space and nonrepetitiveness, the proofs of these results areloled here but can be found in
the full TR version (Faliszewski et al., 2008b), where we first handle#se of constructive control
via deleting candidates (CCDC) and then, using our proof for the CCBE as a building block,
handle the constructive partition-of-candidates cases.

317



FALISZEWSKI, HEMASPAANDRA, HEMASPAANDRA, & ROTHE

Theorem 4.12 Let a be a rational number such th& < a < 1. Copeland is resistant to con-
structive control via deleting candidates (CCDC), in both the nonuniqueavimodel and the
unique-winner model, for both the rational and the irrational voter model.

The proof of Theorem 4.13 (which, as mentioned above, is presentedliszdéwski et al.,
2008b) employs both the construction used for proving Theorem 4.13 aodstruction that com-
bines suitable elections such that the combined election has propertiesfasgifoving various
partition-of-candidates cases (with or without run-off). In particullais construction not only is
applied in the proof of Theorem 4.13, but also is designed to be gemayaghk to serve as a key
ingredient in proving Theorems 4.14, 4.15, and 4.16 below.

Theorem 4.13 Let a be a rational number such th& < a < 1. Copeland is resistant to con-
structive control via run-off partition of candidates in both the ties-pronmotalel (CCRPC-TP)
and the ties-eliminate model (CCRPC-TE), in both the nonunique-winndelnand the unique-
winner model, for both the rational and the irrational voter model.

Copeland is also resistant to constructive control via partition of candidates (withuabff)
for each rational value af between (and including) 0 and 1. However, the proofs for the TP and TE
cases (which, again, can be found in the full TR version, Faliszewaki, 2008b) are not as uniform
as in the CCRPC scenario and so—to stay in sync with the structure of Falldzewal. 2008Db,
where the proofs are—we treat these cases separately as Theoréngs¥bland 4.16.

Theorem 4.14 Leta be a rational number such that< a < 1. Copeland is resistant to construc-
tive control via partition of candidates with the ties-promote tie-handling ruleRC-TP), in both

the nonunigue-winner model and the unique-winner model, for both tlmned and the irrational

voter model.

Theorem 4.15 Copeland is resistant to constructive control via partition of candidates with the
ties-eliminate tie-handling rule (CCPC-TE), in both the nonunique-winnetehand the unique-
winner model, for both the rational and the irrational voter model.

Theorem 4.16 Let a be a rational numberD) < a < 1. Copeland is resistant to constructive
control via partition of candidates with the ties-eliminate tie-handling rule (CEHE), in both
the nonunigue-winner model and the unique-winner model, for both tlwed and the irrational
voter model.

4.2 \Voter Control

In this section, we show that for each ratiomal 0 < a < 1, Copeland is resistant to all types
of voter control. Table 2 lists for each type of voter control, each rationad < a < 1, and
each winner model (i.e., the nonunique-winner model and the unique-wimwazl) the theorem in
which each given case is handled. We start with control via adding voters

Theorem 4.17 Let a be a rational number such th& < a < 1. Copeland is resistant to both
constructive and destructive control via adding voters (CCAV and DOAWoth the nonunique-
winner model and the unique-winner model, for both the rational and tla¢iamal voter model.
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a=0 O<ax<1 a=1
unigue [ nonunique| unique | nonunique| unique | nonunique
CCAV
DCAY Thm. 4.17

CCDhV Thm. 4.19| Thm. 4.20| Thm. 4.19| Thm. 4.20| Thm. 4.19| Thm. 4.18
DCDV Thm. 4.20| Thm. 4.19| Thm. 4.20| Thm. 4.19| Thm. 4.18| Thm. 4.19

CCPV-TP

SCPVTR Thm. 4.21

CCPV-TE Thm. 4.23 Thm. 4.24
DCPV-TE Thm. 4.26 Thm. 4.25

Table 2: Table of theorems covering all resistance results for voteratdotrCopeland. Each
theorem covers both the case of rational voters and the case of irtatbders.

Proof.  Our result follows via reductions from the X3C problem. We will first shawtio handle
the nonunique-winner constructive case and later we will argue thattistraction can be easily
modified for each of the remaining cases.

Let (B,.#) be an X3C instance whekB= {by,...,bx} and.¥ ={S,,..., S} is a finite collec-
tion of three-element subsets®f Without loss of generality, we assume thas odd (if it is even,
we simply add)3k+1,b3k+2,b3(k+1) toBandS, 1 = {b3k+1,b3k+2,b3(k+1)} to ., and add 1 t).
The question is whether one can plcketsS,, , . .., S, such thaB = U'j‘:1 S

We build a CopelarfielectionE = (C,V) as follows. The candidate Setcontains candidatgs
(the preferred candidate)(p's rival), s, all members oB, and some number of padding candidates.
We select the voter collectiov such that in their head-to-head contestdefeatsp, r defeats each
bi, and such that we have the following Copeldratores for these candidates, whérs some
sufficiently large (but polynomially bounded im) nonnegative integer:

1. scorg(p) =¢—1,
2. scoré (r) = ¢+ 3k, and
3. all other candidates have Copelératores below — 1.

It is easy to see th& can be constructed in polynomial time by Lemma 4.8. In addition, we ensure
that we have the following results of head-to-head contests betweenritlielages irC:

1. vg(s,p)=k—1,
2. foreach € {1,...,k}, vse(r,bi) =k—3, and
3. for all other pairs of candidatesd, we havevse(c,d)| > k+1.

This can be done since we can add 2 te(esd) and leave all other relative vote scores the same by

adding two votersg > d > C — {c,d} andC — {c,d} > ¢ > d (see Lemma 4.6). Sindeis odd and
the number of voters is even (see Lemma 4.8), it is easy to see that we dathigé requirements.
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We also specify the s&V of voters that the chair can potentially add. For eacltset.” we
have a single voter; € W with preference list

p>B-§>r>§>---

(all unmentioned candidates follow in any fixed arbitrary order). We claiah .t contains &k-
element cover oB if and only if p can become a winner of the above election via adding at knost
voters selected froiw.

If .7 contains &-element cover 0B, sayS,,, ..., S, then we can makp a winner via adding
the voters fromJ = {wjy,, ..., Wy }. Adding these&k voters increasep’s score by one, sincp now
defeatss in their head-to-head contest. Since voterdinorrespond to a cover, the scoreraoes
down by X points. Why? For each; € B, adding thek — 1 voters inU that correspond to the
sets in the cover not containifg increases the relative performancebp¥ersusr by k— 1 votes,
thus givingb; two votes of advantage over Adding the remaining voter frord decreases this
advantage to 1, but stiti; wins the head-to-head contest with

We now show that if we can makea winner by adding at mo&tvoters then¥ contains &-
element cover oB. Note thatp is the only candidate that can possibly become a winner by adding
at mostk voters, thap can at best obtain Copelghdcore/, thatp will obtain this score only if we
add exactlyk voters, and that can lose at mostik3points via losing his or her head-to-head contests
with each of theb;’s. Thus the only way fop to become a winner by adding at méstoters from
W is that we add exactli voters such that loses his or her head-to-head contest with dach
Assume thatl C W is such a set of voters that does not correspond to a coriis means that
there is some candidal® such that at least two voters bh preferr to b;. However, if this is the
case ther; cannot defeat in their head-to-head contest apds not a winnerU corresponds to a
cover. This completes the proof of the honunique-winner constructise of the theorem.

For the constructive unique-winner case, we modify eledii@o thatscoref (p) = ¢. All other
listed properties of the relative vote scores and absolute Copekosutes are unchanged. As in
the previous case, it is easy to see thatan become the unique winner via addingoters that
correspond to a cover &. For the converse, we will show that we still need to add exactiyters
if pisto become the unique winner.

If we added fewer thak — 1 voters therp would not get any extra points and so it would be
impossible forp to become the unique winner. Let us now show that adding exketly voters
cannot makep the unique winner. If we added exacly- 1 voters therp would geta points extra
from the tie withs. Now consider some candidaiec S;, whereS; corresponds to one of the added
voters,w;. Sincew; prefersr to b, addingw; to the election increases the relative performanae of
versugh; to k— 2. Thus adding the remainirkg— 2 voters can result ib; either tieing or losing his
or her head-to-head contest within either casg would not have a high enough score to become
the unique winner. Thus we know that exadtlgandidates must be added if we wartb become
the unique winner and, via the same argument as in the previous casepwehat they have to
correspond to a cover.

For the destructive cases it suffices to note that the proof for the oeotigé nonunique-winner
case works also as a proof for the destructive unique-winner cdssr¢we are preventingfrom
being the unique winner) and the constructive unique-winner casesvaisk as a proof for the
destructive nonunique-winner case (where we are prevenfiogn being a winner). O

Let us now turn to the case of control via deleting voters. Unfortunatedypitbofs here are not
as uniform as before and we need in some cases to handld separately from the case where
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0 < a < 1. Also, we cannot use the construction lemma (Lemma 4.8) anymore to sagamie
build our elections. In the case of deleting voters (or partitioning votersheeel to have a very
clear understanding of how each voter affects the election and the whiolfegb introducing the
construction lemma was to abstract away from such low-level details.

Analogously to the case of candidate control, the resistance proofsl&iid voters are reused
within the resistance proofs for partitioning voters. For reasons ofespad nonrepetitiveness,
we again do not include all proofs. In particular, the proofs of Thesrd.18 and 4.20 are not
included here but can be found in the full TR version (Faliszewski eR@D8b). The proofs of
Theorems 4.19 and 4.21, however, will be presented here. We mentighdéhainstruction given
in the proof of Theorem 4.19 will be used later in the proof of Theoremdni,the construction
given in the proof of Theorem 4.21 will be used later in the proof of TeeDb.2.

Theorem 4.18 Copeland is resistant to constructive control via deleting voters (CCDV) in the
nonunique-winner model and to destructive control via deleting vote3D¥) in the unique-
winner model, for both the rational and the irrational voter model.

Theorem 4.19 Let a be a rational number such th& < a < 1. Copeland is resistant to con-
structive control via deleting voters (CCDV) in the unique-winner moddltardestructive control
via deleting voters (DCDV) in the nonunique-winner model, for both the ratiand the irrational

voter model.

Proof. Let (B,.”) be an instance of X3C, wheg= {by,...,bx} and.¥ = {S;,...,S} is a
finite family of three-element subsets Bf Without loss of generality, we assume timat k and
thatk > 2 (if n < kthen.” does not contain a cover Bf and ifk < 2 then we can solve the problem
by brute force). We build an electidh= (C,V) such that:

1. If . contains &-element cover oB, then the preferred candidapecan become the unique
Copeland winner of E by deleting at mosk voters, and

2. if r can become a nonwinner by deleting at mosgbters, then” contains &-element cover
of B.

Let the candidate s& be {p,r,bs,...,bs} and letV be the following collection of 4 —k+ 1
voters:

1. We haven— 1 voters with preferencB > p>r,
2. we haven — k+ 2 voters with preferencp > r > B, and
3. for eachS € .7 we have two votersy; andv;, such that

(@) v has preference>B—-S§ > p> S, and
(b) Vi has preference>S > p>B-S.
Itis easy to see that for atf € B, vsz(r,bi) = 2n—k+ 3, v (b, p) =k—3, and vg(r, p) = k— 1.
If .7 contains &-element cover 0B, say{S,..., S}, then we delete voteng, ,...,va. In

the resulting electionp defeats every other candidate in their head-to-head contests, angligus
the unique winner.
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To prove the second statement, suppose that there is a $Mbsfeat mostk voters such that
r is not a winner off = (C,V —W). Since vg(r,b;) = 2n—k+ 3 andn > k, it is immediate that
r defeats every; € B in their head-to-head contestsfn In order forr not to be a winner o€,
p must certainly defeat and tie-or-defeat every; € B in their head-to-head contests. Butan
defeatr in their head-to-head contest onlyj|ifV|| = k and every voter iW prefersr to p. It follows
thatW is a sizek subset of{v1,Vv},...,Vn, Vi }.

Letb; € B. Recall that vg(b;, p) = k— 3 and thatp needs to at least tig in their head-to-head
contest inE. Since|W| = k, it follows thatW can contain at most one voter that prefpr® b;.
Sincek > 2, it follows thatW contains only voters from the sé¥s, ..., vy} and that the voters W
correspond to &-element cover oB. O

Theorem 4.20 Leta be a rational number such that< a < 1. Copeland is resistant to construc-
tive control via deleting voters (CCDV) in the nonunique-winner modeltardkstructive control
via deleting voters (DCDV) in the unique-winner model, for both the ratiomal e irrational
voter model.

Theorem 4.21 Let a be a rational number such th& < a < 1. Copeland is resistant to both
constructive and destructive control via partitioning voters in the TP mad€RV-TP and DCPV-
TP), in both the nonunique-winner model and the unigque-winner moddbpth the rational and
the irrational voter model.

Proof. Let (B,.”) be an instance of X3C, whe= {by,...,bx} and.¥ = {S,...,S} is a
finite family of three-element subsets Bf Without loss of generality, we assume timat k and
thatk > 2 (if n < kthenSdoes not contain a cover 8f and ifk < 2 then we can solve the problem
by brute force). We build an electidh= (C,V) such that:

1. If . contains &-element cover oB, then the preferred candidapecan become the unique
Copeland winner of E via partitioning voters in the TP model, and

2. if r can be made to not uniquely wi via partitioning voters in the TP model, ther
contains &-element cover oB.

Note that this implies that Copelahds resistant to both constructive and destructive control via
partitioning voters in the TP model, in both the nonunique-winner model and flqgeieswvinner
model.

Our construction is an extension of the construction from Theorem 4.¥lewthe candidate
setC be{p,r,s,bs,...,bs} and we le be the following collection of voters:

1. We havek+ 1 voters with preference>r > B > p,

2. we haven— 1 voters with preferencB > p>r > s

3. we haven — k+ 2 voters with preference >r > B > s, and
4. for eachS € .7 we have two votersy andv;, such that

(@) vi has preference>B—S>p>S > s and
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(b) Vi has preference>S§ >p>B—-§ >s.

LetV C V be the collection of all the voters Wi except for thek+ 1 voters with preference> r >

B> p. Note thal/ is exactly the voter collection used in the proof of Theorem 4.19 with candidate
added as the least desirable candidate. Siidoes not influence the differences between the scores
of the other candidates, the following claim follows immediately from the prodfeforem 4.19.

Claim 4.22 If r can become a nonwinner ¢€,V) by deleting at most k voters, theti contains a
k-element cover of B.

Recall that we need to prove thatif contains &-element cover oB, thenp can be made the
unique Copelantiwinner of E via partitioning voters in the TP model, and that ifan be made to
not uniquely winE via partitioning voters in the TP model, theri contains &-element cover of
B.

If . contains &k-element cover 0B, say{S,,,...,S.}. then we let the second subelection
consist of thek+ 1 voters with preference > r > B > p and votersv,,,...,Vs. Thenpis the
unique winner of the first subelectios,is the unique winner of the second subelection, and
uniquely wins the final run-off betwegmands.

To prove the second statement, suppose there is a partition of voters aticisthot a unique
winner of the resulting election in model TP. Note that in at least one of theleetibns, without
loss of generality say the second subelection, a majority of the votersgrdteall candidates in
{p,b,...,bs}. Sincer is the unique winner of every run-off he or she participates tannot be
a winner of either subelection. Sincelefeats every candidate {ip, by, ...,bs} in their head-to-
head contests in the second subelection, in order hat to be a winner of the second subelection,
it must certainly be the case thatlefeats in their head-to-head contest in the second subelection.
This implies that at mosgt voters fromV can be part of the second subelection.

Now consider the first subelection. Note thagannot be a winner of the first subelection. Then,
clearly,r cannot be a winner of the first subelection restricted to vote¥sf By Claim 4.22 it
follows that.” contains &-element cover oB. 0

We now turn to the TE variant of control via partitioning voters. None of #raaining proofs
of Section 4.2 (i.e., none of the proofs of Theorems 4.23 through 4.26)ligdedt here but they
each can be found in the full TR version (Faliszewski et al., 2008b)palticular, the proof of
Theorem 4.23 uses the exact same construction as in the proof of hédtg and the proofs of
Theorems 4.24 and 4.25 use modifications thereof. To stay in sync with ttusérof Faliszewski
et al. 2008b, the proof-providing full TR (where the proof struct@ementioned above, depends
on the value ofxr), we state each of Theorems 4.23 through 4.26 separately.

Theorem 4.23 Let a be a rational number such th& < a < 1. Copeland is resistant to con-
structive control via partitioning voters in the TE model (CCPV-TE), in bogrtbnunique-winner
model and the unique-winner model, for both the rational and the irrationgr model.

16. If r were a winner of the first subelection restricted to voter¥ ithenr would certainly be a winner of the first
subelection without any restrictions: The voter&/in-V preferr to everyone exces and (by the discussion in the
proof) s cannot be a winner of the first subelection. (Note #wn be a winner of at most one of the two subelections
andsis a winner of the second subelection.)
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Theorem 4.24 Copeland is resistant to constructive control via partitioning voters in the TE model
(CCPV-TE), in both the nonunique-winner model and the unique-wimioelel, for both the rational
and the irrational voter model.

Theorem 4.25 Copeland is resistant to destructive control via partitioning voters in the TE model
(DCPV-TE), in both the nonunique-winner model and the unique winodeinfor both the rational
and the irrational voter model.

Finally, Theorem 4.26 states the resistance of Copélantherea is a rational number with
0 < a < 1, to destructive control by partition of voters in the TE model. The prodhisf result
(see Faliszewski et al., 2008b) extends the construction from the pfddfeorem 4.20 (see also
Faliszewski et al., 2008b) in the same way the proof of Theorem 4.21dedethe construction
from the proof of Theorem 4.19.

Theorem 4.26 Let a be a rational number such th& < a < 1. Copeland is resistant to de-
structive control via partitioning voters in the TE model (DCPV-TE), in bothribnunique-winner
model and the unique-winner model, for both the rational and the irrationgér model.

4.3 FPT Algorithm Schemes for Bounded-Case Control

Resistance to control is generally viewed as a desirable property in sgs&gn. However, sup-
pose one is trying to solve resistant control problems. Is there any hope?

Bartholdi, Tovey, and Trick (1989b), in their seminal paper on NP-kdrther-determination
problems, suggested considering hard election problems for the cas&sonhded number of can-
didates or a bounded number of voters, and they obtained efficientthigaesults for such cases.
Within the study of elections, this same approach—seeking efficient fiaemlypeter algorithms—
has, for example, also been used (although somewhat tacitly—see the abstingsion in the sec-
ond paragraph of Footnote 17) within the study of bribery (Faliszewsi.£2006a; Faliszewski,
Hemaspaandra, & Hemaspaandra, 2006b). To the best of our krgmyldds bounded-case ap-
proach to finding the limits of resistance results has not been previousiftaistudy control prob-
lems. In this section we do precisely that.

In particular, we obtain for resistant-in-general control problems adrange of efficient al-
gorithms for the case when the number of candidates or voters is bou@ledalgorithms are
not merely polynomial time. Rather, we give algorithms that prove membershipTn(fixed-
parameter tractability, i.e., the problem is not merely individually in P for eaddfizalue of the
parameter of interest (voters or candidates), but indeed has a sindd@rithan having degree
that is bounded independently of the value of the fixed number of votezammlidates) when the
number of candidates is bounded, and also when the number of votersnddasb And we prove
that our FPT claims hold even under the succinct input model—in which thesvate input via
“(preference-list, binary-integer-giving-frequency-of-tha¢ference-list)” pairs—and even in the
case of irrational voters. (One can imagine the succinct-representaserholding after some ini-
tial preprocessing of an election’s ballots to compute the number of peagilagaach preference
that occurred.)

We obtain such algorithms for all the voter-control cases, both for bedicdndidates and for
bounded voters, and for all the candidate-control cases with bouratadidates. On the other
hand, we show that for the resistant-in-general irrational-voter,idatedcontrol cases, resistance
still holds even if the number of voters is limited to being at most two.
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We structure this section as follows. We first start by briefly stating our netmd notations.
We next state, and then prove, our fixed-parameter tractability resultgardlieg those, we first
address FPT results for the (standard) constructive and destroeses. We then show that in
many cases we can assert FPT results that are more general still—in lpartieel will look at
“extended control”: completely pinpointing whether under a given typeootrol we can ensure
that at least one of a specified collection of “Copeland Outcome Tablebg(tiefined later) can be
obtained. Finally, we give our resistance results.

4.3.1 NOTIONS AND NOTATIONS

The study of fixed-parameter complexity (see, e.g., Niedermeier, 2086)demn expanding explo-
sively since it was parented as a field by Downey, Fellows, and others iatth1980s and the 1990s.
Although the area has built a rich variety of complexity classes regardirgederized problems,
for the purpose of the current paper we need focus only on oneimggrtant class, namely, the
class FPT. Briefly put, a problem parameterized by some vpligesaid to befixed-parameter
tractable (equivalently, to belong to the class FPT) if there is an algorithm for thel@molwvhose
running time isf(j)no(l). (Note in particular that there is some particular constant for the “big-oh”
that holds for all inputs, regardless of whatalue the particular input has.)

In our context, we will consider two parameterizations: bounding the numbeandidates
and bounding the number of voters. We will use the same notations usedtbrdtthis paper to
describe problems, except we will postpend a “iB¥ a problem name to state that the number of
voters may be at mogt and we will postpend a “-BC to a problem name to state that the number
of candidates may be at mogt In each case, the bound applies to the full number of such items
involved in the problem. For example, in the case of control by adding vdker$ must bound the
total of the number of voters in the election added together with the number of wotie pool of
voters available for adding.

Typically, we have been viewing input votes as coming in each on a ballot.et#wone can
also consider the case of succinct inputs, in which our algorithm is giendtes as “(preference-
list, binary-integer-giving-frequency-of-that-preference-lis@irg. (We mention in passing that for
the “adding voter” cases, when we speak of succinctness we reqatnedthjust the always-voting
voters be specified succinctly but also that the pool of voters-avaitelde-added be specified
succinctly.) Succinct inputs have been studied extensively in the casibefb(Faliszewski et al.,
2006a, 2006b), and speaking more broadly, succinctness-ofisgués are often very germane to
complexity classification (see, e.g., Wagner, 1986). Note that proving@nmésult for the succinct
case of a problem immediately implies an FPT result for the same problem (witieongtiquirement
of succinct inputs being in place), and indeed is a stronger result, siocastness can potentially
exponentially compress the input.

Finally, we would like to be able to concisely express many results in a singlensate To
do so, we borrow a notational approach from transformational gramandruse square brackets

r””s} is a shorthand for

It
as an “independent choice” notation. So, for example, the clai [Walks
He

six assertions: It runs; She runs; He runs; It walks; She walks;Hmdalks. A special case is
the symbol “0” which, when it appears in such a bracket, means that wheound it should be
viewed as no text at all. For examplg S'$"] Copeland is fun” asserts both “Succinct Copeland
is fun” and “Copeland is fun.”
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4.3.2 HXED-PARAMETER TRACTABILITY RESULTS

We immediately state our main results, which show that for all the voter-comselsd-PT schemes
hold for both the bounded-voter and bounded-candidate casespaatl the candidate-control
cases FPT schemes hold for the bounded-candidate cases.

Theorem 4.27 For each rationala, 0 < a < 1, and each choice from the independent choice brack-
ets below, the specified parameterized (as j varies Bygroblem is inFPT:

AV
[succinc]_{ Copeland J_{C]C DV _{BV,}
0 Copeland ional 1P PV-TE| |BCj|
PV-TP

Theorem 4.28 For each rationala, 0 < a < 1, and each choice from the independent choice brack-
ets below, the specified parameterized (as j varies bygroblem is inFPT:

ACy
AC
DC

[succinc}_[ Copeland J_[C}C pc-TE | -BC.
0 Copeland,ional  |D PC.TP I

RPC-TE
|RPC-TP|

Readers not interested in a discussion of those results and their paoofd this point safely
skip to the next labeled section header.

Before proving the above theorems, let us first make a few observatimmg them. First, for
cases where under a particular set of choices that same case is lkagwrd(e to the results of
Sections 4.1 and 4.2) to be in P even for the unbounded case, the abolie age uninteresting
as they follow from the earlier results (such cases do not include ang d$ticcinct” cases, since
those were not treated earlier). However, that is a small minority of thescédso, for clarity as
to what cases are covered, we have included some items that are ndtyforeealed. For example,
since FPT for the succinct case implies FPT for the no-succinctnesigtiea case, and since FPT
for the irrationality-allowed case implies FPT for the rational-only case, tsighfiio choice brackets
in each of the theorems could, without decreasing the results’ strengtbmuowed by eliminating
their “0” and “Copelanél” choices.

We now turn to the proofs. Since proving every case would be uninterbstipetitive, we
will at times (after carefully warning the reader) prove the cases of ohemcontrol types when
that is enough to make clear how the omitted cases’ proofs go.

Let us start with those cases that can be done simply by appropriatelycappliie force.

We first prove Theorem 4.28.

Proof of Theorem 4.28. If we are limited to having at most candidates, then for each of the
cases mentioned, the total number of ways of adding/deleting/partitioningdesesl is simply a
(large) constant. For example, there will be at most (“at most” rather tbaactly” sincej is
merely an upper bound on the number of candidatég)o8sible run-off partitions and there will
be at most 21 relevant ways of deleting candidates (since we can't (destructive casvould
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never (constructive case) delete the distinguished candidate). Sawbeuta-force try all ways of
adding/deleting/partitioning candidates, and for each such way can stkewnlve get the desired
outcome. This works in polynomial time (with a fixed degree independeptofia) even in the
succinct case, and even with irrationality allowed. 00 Theorem 4.28

A brute-force approach similarly works for the case of voter contramtine number of voters
is fixed. In particular, we prove the following subcase of Theorem 4.27.

Lemma 4.29 For each rationala, 0 < a <1, and each choice from the independent choice brackets
below, the specified parameterized (as | varies &Neproblem is inFPT:

AV
[succinc}_[ Copeland J_[C}C DV | oy
0 Copelan ional D]~ |PV-TE I

PV-TP

When considering “BY’ cases—namely in this proof and in the resistance section starting on
page 334—we will not even discuss succinctness. The reason is thatiiuthber of voters is
bounded, say by, then succinctness doesn’t asymptotically change the input sizes intghgstin
since succinctness at very best would compress the vote descriptiofattpraof aboutj—which
in this case is a fixed constant (relative to the value of the parameterizatiosh itself isj).

Proof of Lemma 4.29. If we are limited to having at most voters, note that we can, for each
of these four types of control, brute-force check all possible amesto that type of control. For
example, for the case of control by deleting voters, we clearly have ne than 2 possible vote
deletion choices, and for the case of control by partitioning of votersagan have at most/2
partitions (intoVy andV — V4) to consider. And Ris just a (large) constant. So a direct brute-force
check yields a polynomial-time algorithm, and by inspection one can see that-tsme’'s degree

is bounded above independentlyjof O Lemma4.29

We now come to the interesting cluster of FPT cases: the voter-contrelwasa the number of
candidates is bounded. Now, at first, one might think that we can handlgtias the above cases,
via a brute-force approach. And that is almost correct: One can ggt@uial-time algorithms
for these cases via a brute-force approach. However, for thenstioases, the degrees of these
algorithms will be huge, andill not be independent of the bound, j, on the number of candidates
For example, even in the rational case, one would from this approacim obtatimes with terms
such aql®l'. That is, one would obtain a family of P-time algorithms, but one would not have
FPT algorithm.

To overcome this obstacle, we will employ Lenstra’s (1983) algorithm famded-variable-
cardinality integer programming. Although Lenstra’s algorithm is truly amazints ipower, even
it will not be enough to accomplish our goal. Rather, we will use a schementr@ves a fixed
(though very large) number of Lenstra-type programs each beingddoon a different resolution
path regarding the given problem.

What we need to prove, to complete the proof of Theorem 4.27, is the foljdemma.

Lemma 4.30 For each rationala, 0 < a <1, and each choice from the independent choice brackets
below, the specified parameterized (as | varies &Neproblem is inFPT:
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AV
[succinc}_[ Copeland J_[C}C DV | ac
0 Copeland ional LP] ~ |PV-TE I

PV-TP

Let us start by recalling that, regarding the first choice bracket, thecitsct” case implies the
“D” case, so we need only address the succinct case. Recall atseethierding the second choice
bracket, for each rational, 0 < a < 1, the “Copelanfl ;... case implies the “Copelafid case,
so we need only address the Copefangd,,., case.

So all that remains is to handle each pair of choices from the third and tootbecbrackets. To
prove every case would be very repetitive. So we will simply prove in datdifficult, relatively
representative case, and then will for the other cases either mention ¢heftgdjustment needed
to obtain their proofs, or will simply leave it as a simple but tedious exerciseuiidie clear, as to
how to do, to anyone who reads this section.

So, in particular, let us prove the following result.

Lemma 4.31 For each rationala, 0 < a < 1, the following parameterized (as j varies o8}
problem is inFPT. succinctCopeland, ;ionar CCPV-TRBC;.

Proof. Leta,0< a <1, be some arbitrary, fixed rational number. In particular, supposerthat
can be expressed agd, whereb € N, d € N*, b andd share no common integer divisor greater
than 1, and ib = 0 thend = 1. We won't explicitly invokeb andd in our algorithm, but each time
we speak of evaluating a certain set of pairwise outcomes “with respect tme can think of it as
evaluating that with respect to a strict pairwise win givohgoints, a pairwise tie giving points,
and a strict pairwise loss giving 0 points.

We need a method of specifying the pairwise outcomes among a set of dasditia do this,
we will use the notion of &opeland outcome tablever a set of candidates. This will not actually
be a table, but rather will be a function (a symmetric one—it will not be aftebiethe order of
its two arguments) that, when given a pair of distinct candidates as inputs,ayilvkich of the
three possible outcomes allegedly happened: Either there is a tie, or aliéatawon, or the other
candidate won. Note that a COT is simply a representation of an election eplection 4.1.2).

So, in aj-candidate election, there are exacﬂél);%uch functions. (We will not care about the names
of the candidates, and so will assume that the tables simply use the namesgh thrand that we
match the names of the actual candidates with those integers by linking thenglaxbaally, i.e.,
the lexicographically first candidate will be associated with the integer 1 @od.$ Let us call a
j-candidates Copeland outcome tablp@OT.

We need to build our algorithm that shows that the  problem
succinct-Copelarffl,;,,.,-CCPV-TP-BG, j € N, is in FPT. So, letj be some fixed integer
bound on the number of candidatés.

17. We will now seem to specify the algorithm merely for this bound. Howétjis important to note that we do enough
to establish that there exists a single algorithm that fulfills the requiremente afefimition of FPT. In particular,
the specification we are about to give is sufficiently uniform that one icaplyg consider a single algorithm that, on
a given input, notes the value ¢fthe number of candidates, and then does what fhal§orithm we are about to
specify does.

We take this moment to mention in passing that our earlier work, Faliszetsiti 2006a and (this is an ex-
panded, full version of that) Faliszewski et al. 2006b, that gives B-tiigorithms for the fixed parameter (fixed
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For eachj’-COT, Ty,
For eachj’-COT, Ty,
Do

when we have a Copelafid;, €lection (involving all the input voters), with re-
spect toa, between all the candidates who win undemwith respect tax, and all
the candidates who win und&s with respect taa, the preferred candidate of the
input problem is a winner,

then

create and run the integer linear program constraint fégiproblem that checks
whether there exists a partition of the voters such that teedubelection hag-
COT Ty and the second subelection HaCOT Ty, and if so, then accept.

Figure 5: The top-level code for the case succinct-Cop¢lang,-CCPV-TP-BG.

Let us suppose we are given an input instance. jLet j be the number of candidates in this
instance (recall thaf is not the number of candidates, but rather is an upper bound on the numbe
of candidates).

The top level of our algorithm is specified by the pseudocode in FigurAlthadugh this algo-
rithm seemingly is just trying to tell whether the given control is possible fogthen case, rather
than telling how to partition to achieve that control, note that which iteration tirdiig double
loop accepts and the precise values of the variables inside the integemplingeatm constraint fea-
sibility problem that made that iteration be satisfied will in fact tell us preciselgtite partition
is that makes the preferred candidate win.)

Now, note that the total number ¢--COTs that exist (we do not need to care whether all can

be realized via actual votes) |§% So the code inside the two loops executes at m@ttﬁnes,
which is constant-bounded singe< j, and we have fixedl.

So all that remains is to give the integer linear program constraint feasibitiblggm mentioned
inside the inner loop. The setting here can sometimes be confusing, e.gwelspeak of constants
that can grow without limit. It is important to keep in mind that in this integer lineagm
constraint feasibility problem, the number of variables and constraints sgtara(over all inputs),
and the integer linear program constraint feasibility problem’s “constgote® may prefer the word

candidate and fixed voters) cases in fact, in all such claims we have imthnkt implicitly is giving FPT algo-
rithms, even though those papers don't explicitly note that. The reas@né&rgly the same as why that is true in
this paper—namely, the Lenstra technique is not just powerful but isddsdly suited for FPT algorithms and for
being used inside algorithms that are FPT algorithms. Most interestinglyetistra approach tends to work even on
succinct inputs, and so the FPT comment we made applies even to thoks ieour abovementioned earlier papers
that are about the succinct-inputs case of fixed-number-of-catedidad fixed-number-of-voters claims. (The fixed-
number-of-candidates and fixed-number-of-voters Dodgsonesiscore work of Bartholdi et al., 1989b, is known
to be about FPT algorithms—due to the proof of Bartholdi et al., 1983#f,isee the discussion in Faliszewski et al.,
20064, see also Betzler, Guo, and Niedermeier, 2008. Although tlee pBBartholdi et al., 1989b, doesn’'t address
the succinct input model, Faliszewski et al., 2006a, notes that theioappworks fine even in the succinct cases of
the winner problem. That is true not just for the P-ness of their algorittwas in the succinct case, but also for the
FPT-ness of their algorithms even in the succinct case.)
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coefficientsif that makes things clearer) are the only things that change with respé toput.
This is the framework that allows us to invoke Lenstra’s powerful algorithm.
We first specify the set of constants of the integer linear program eomisteasibility problem.

In particular, for each, 1 <i < 2(5), we will have a constanty,8 that is the number of input voters
whose vote is of théh type (among the @) possible vote possibilities; keep in mind that voters

are allowed to be irrational, thus the value Ris correct). Note that the number of these constants
that we have is itself constant-bounded (for fiy¢adhough of course the values that these constants
(of the integer linear program constraint feasibility problem) take on caw githout limit.

In addition, let us define some constants that will not vary with the inputatber are simply a
notational shorthand that we will use to describe how the integer lineargsmogpnstraint feasibility
problem is defined (what constraints occur in it). In particular, for éaatd/ such that I<i < |/,
1<¢<j, andi #¢, letvall; , be 1ifT; asserts that (in their head-to-head contetgs or defeats
¢, and let it be 0 ifTy asserts that (in their head-to-head contelsiyes to. Letval2; . be identically
defined, except with respect 1a. Informally put, these values will be used to let our integer linear
program constraint feasibility problem seek to enforce such a win/lossattierp with respect to the
given input vote numbers and the given type of allowed control action.

The integer linear program constraint feasibility problem’s variables, lwafccourse are all

integervariables, are the foIIowing@ variables. Foreach1<i < 2(12/) ,, we will have a variable,
m;, that represents how many of thevoters having théth among the ¢) possible vote types go
into the first subelection.

Finally, we must specify the constraints of our integer linear prograntinsfeasibility prob-
lem. We will have three groups of constraints.

The first constraint group is enforcing that plausible numbers are gheiffirst partition. In

particular, for each, 1 <i < 2(12/), we have the constraintsOm andm; < n;.

The second constraint group is enforcing that after the partitioning ally @o have in the first
subelection a situation in which all the pairwise contests come out exactly eifiegpdy T;. In
particular, for eachand/ such that ki < j’, 1< /¢ < j/, andi # ¢, we do the following. Consider
the equation

( > ms) OP ( > M), (4.2)
{a|l<a< 2(%) and in votes of type {a|l<a< 2(%) and in votes of type
ait holds thati is preferred ta’} ait holds that/ is preferred ta}

wherea in each sum varies over thé 2 possible preferences. Yall(i,/) = 1 we will have a
constraint of the above form with OP set to™ If vall(¢,i) = 1 we will have a constraint of the
above form with OP set to<”. Note that this means that ¥fall(i,¢) = vall(¢,i) = 1, i.e., those
two voters are purported to tie, we will add two constraints.

The third constraint group has the same function as the second congttcaipt except it regards
the second subelection rather than the first subelection. In particutezaéii and ¢ such that

18. Again, as discussed in the immediately previous paragraph, whsaywkat, for example, thg are constants of the
integer linear program constraint feasibility problem, we do not mearhbgtare constants in any complexity sense,
but rather that they are the constants—in the sense of beirgéfficients—of the integer linear program constraint
feasibility problem. By saying that, we do not mean to imply that the numbeotefrs is bounded by some global
value over all cases.
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1<i<j,1<¢<j, andi # ¢, we do the following. Consider again equation (4.a) from above,
except with each of the two occurrenceswf replaced byn, — my. If val2(i,¢) = 1 we will have
a constraint of that form with OP set te>". If val2(¢,i) = 1 we will have a constraint of that
form with OP set to K£”. As above, this means thatvial2(i, /) = val2(¢,i) = 1, we will add two
constraints.

This completes the specification of the integer linear programming constrasibiigy prob-
lem.

Note that our top-level code, from Figure 5, clearly runs within polynoriaé relative to
even the succinct-case input to the original CCPV-TP problem, and thatdhaomial's degree
is bounded above independently pf Note in particular that our algorithm constructs at most a
large constant (fof fixed) number of integer linear programming constraint feasibility problems,
and each of those is itself polynomial-sized relative to even the succinetigast to the original
CCPV-TP problem, and that polynomial size’s degree is bounded abdependently ofl. Fur-
ther, note that the integer linear programming constraint feasibility probleradyclto test what
they are supposed to test—most importantly, they test that the subelections theghirwise
outcomes specified byy-COTsT; andT,. Finally and crucially, by Lenstra’s (1983) algorithm (see
also Downey, 2003, and Niedermeier, 2002, which are very cleardieggthe “linear”s later in this
sentence), since this integer linear programming constraint feasibility pndiae a fixed number of
constraints (and in our case in fact also has a fixed number of varigblss) be solved—relative to
its size (which includes the filled-in constants, such agptor example, which are in effect inputs
to the integer program'’s specification)—via a linear number of arithmetic ipesaon linear-sized
integers. So, overall, we are in polynomial time even relative to succincthjifsggkinput, and the
polynomial’'s degree is bounded above independently. dfthus we have established membership
in the class FPT. 0

We now describe very briefly how the above proof of Lemma 4.31 can be
adjusted to handle all the partition cases from Lemma 4.30, namely, the cases
[sucgmc]_ [C Copeland J [C] C{PV‘TE} -BCj. As noted before, the first two brack-

opeland ional P PV-TP
ets can be ignored, as we have chosen the more demanding choicehfotetags discuss the other
variations. Regarding changing from constructive to destructive, inr€i§ change “is a winner”
to “is not a winner.” Regarding changing from PV-TP to PV-TE, in the ‘fiffock in Figure 5
change each “all the candidates who win” to “the candidate who wins (tisex unique candidate
who wins).”

The only remaining cases are the Ca{ggccmc} [ Copeland J [C} C [AV} -BC;.

0 Copeland, ional  |P] ~ |DV
However, these cases are even more straightforward than the partgieswa just covered, so for
space reasons we will not write them out, but rather will briefly comment eseticases. Basically,

one’s top-level code for these cases loops ovelj’allOTs, and for each (there aré'ﬁ%) checks
whether the right outcome happens under &€ OT (i.e., the distinguished candidate either is
(constructive case) or is not (destructive case) a winner), and it amns Lenstra’s algorithm on
an integer linear programming constraint feasibility problem to see whetheawby the allowed
action (adding/deleting) get to a state where that partic#@OT matches our (after addition or
deletion of voters) election. In the integer program, the variables will belili®os ones, namely,

for eachi, 1<i < 2(12), we will have a variablem, that describes how many voters of tyip
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add/delete. As our key constants (of the integer linear program corigagibility problem), we
will have, for each, 1<i < 2('2), a value,n;, for the number of type voters in the input. Also,

if this is a problem about addition of voters, we will have additional constamhtd < i < 2(12),
representing the number of typ&oters among the podly, of voters available for addition. And
if our problem has an internak” (a limit on the number of additions or deletions), we enforce that
with the natural constraints, as do we also with the natural constraintcerifa obvious relation-
ships between thes, n;, i, and so on. Most critically, we have constraints ensuring that after the
additions/deletions specified by thg, each pairwise outcome specified by & OT is realized.
Finally, although everything in Section 4.3 (both the part so far and thegadme) is written
for the case of the nonunique-winner model, all the results hold anallygousie unique-winner
model, with the natural, minor proof modifications. (Also, we mention in passingdtmato the
connection, found in Footnote 5 of Hemaspaandra et al., 2007a, betwigre-winner destructive
control and nonunique-winner constructive control, one could usesgf our nonunique-winner
constructive-case results to indirectly prove some of the unique-wirestnuattive-case results.)

4.3.3 FPTAND EXTENDED CONTROL

In this section, we look at extended control. By that we do not mean chautiginten standard
control notions of adding/deleting/partitioning candidates/voters. Ratleanean generalizing past
merely looking at the constructive (make a distinguished candidate a wianérhe destructive
(prevent a distinguished candidate from being a winner) cases. ficyar, we are interested in
control where the goal can be far more flexibly specified, for examptaifth in the partition cases
we will be even more flexible than this), we will allow as our goal region aeggonable—there
are some time-related conditions) subcollection of “Copeland outcome taBlestifications of
who won/lost/tied each head-to-head contest). Since from a Copelarmhwutable, in concert
with the currenior, one can read off the Copeldhg,,,, Scores of the candidates, this allows us a
tremendous range of descriptive flexibility in specifying our control goalg., we can specify a
linear order desired for the candidates with respect to their Codglang, scores, we can specify
a linear-order-with-ties desired for the candidates with respect to th@eel@od, ..., Scores, we
can specify the exact desired Copelfng, ., scores for one or more candidates, we can specify that
we want to ensure that no candidate from a certain subgroup has &a@djpg, ., score that ties
or defeats the Copelafid,, ., Score of any candidate from a certain other subgroup'%dtater in
this section we will give a list repeating some of these examples and addingwsowexamples.
Allthe FPT algorithms given in the previous section regard, on their seirfhe standard control
problem, which tests whether a given candidate can be made a winnetr@ctiie case) or can be
precluded from being a winner (destructive case). We now note thgetieral approaches used in
that section in fact yield FPT schemes even for the far more flexible notiorsndrol mentioned

19. We mention up front that that initial example list applies with some additiomaor technical caveats. Those
examples were speaking as if in the final election we have all the candidatiging Copelarff]_;,, Scores in the
final election. But in fact in the partition cases this is not (necessarilyaso,so in those cases we will focus on
the Copeland outcome tables most natural to the given case. For examatrol by partition of voters, we will
focus on subcollections of pairs of Copeland outcome tables for the thelesttions. Also, though our Copeland
outcome tables as defined below are not explicitly labeled with candidatesnaurerather use a lexicographical
correspondence with the involved candidates, in some cases we wowldghttve don't repeat this in the discussion
below—need to allow the inclusion in the goal specification of the names oétididates who are in play in a given
table or tables, most particularly, in the cases of addition and deletion didzdas, and in some partition cases.
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above. In fact, one gets, for all the FPT cases covered in the preseatisn, FPT algorithms for the
extended-control problem for those cases—very loosely put, FPTithlgs that test, for virtually
any natural collection of outcome tables (as long as that collection itself catbgnized in a way
that doesn’t take too much running time, i.e., the checking time is polynomial aadegdree that

is bounded independently ¢j, whether by the given type of control one can reach one of those
outcome tables.

Let us discuss this in a bit more detail. A key concept used inside the pfdafnoma 4.31
was that of a Copeland outcome table—a function that for each distinctfaindidates specifies
either a tie or specifies who is the (not tied) winner in their pairwise contestud eonsider the
control algorithm given in the proof of that lemma, and in particular let usictem the top-level
code specified in Figure 5. That code double-loops overj$i@@peland outcome tables (a.kja.
COTs), regarding the subpartitions, and for each case when the outableg’ subelection cases,
followed by the final election that they imply, correspond to the desired typertstructive (the
distinguished person wins) or destructive (the distinguished persemab®/in) outcome, we check
whether those twg’-COTs can be made to hold via the current type of control (for the cdeg be
discussed, PV-TP).

However, note that simply by easily varying that top-level code we carirobtaatural FPT
algorithm (a single algorithm, see Footnote 17 the analogue of which apptsfbieany question
of whether via the allowed type of control one can reach any run-timekgaicecognize collection
of pairs of j’-COTs (in the subelection), or even whether a given candidate collectiborze of a
given (run-time-quick-to-recognizgy-CQOT collection over that candidate collectioff being the
size of that final-round candidate collection) can be reached in the fe@lan. This is true not
just for the partition cases (where, informally put, we would do this by, inféid) changing the
condition inside the “if” to instead look for membership in that collectiory’eEOT<°) but also for
all the cases we attacked via Lenstra’s method (though for the nonpartises ave will typically
single-loop over Copeland outcome tables that may represent the outcemeaaitrol is exerted,;
also, for some of these cases, the caveat at the end of Footnote 19phi)l. &nd it is even easier
to notice that for those cases we attacked by direct brute force this dt ho

So, as just a few examples (some echoing the start of this section, and eanalhthe follow-
ing have (with the caveats mentioned above about needed names attagh@tdcases of candidate
addition/deletion/partition, and regarding the partition cases focusing nessarily directly on the

20. Let us discuss this a bit more formally, again using PV-TP as anmga@onsider any family of boolean functions
Fj, J € N, such that eackj is computable, even when its first argument is succinctly specified, impolial time
with the polynomial degree bounded independently.dfiow, consider changing Figure 5’'s code to:

For eachj’-COT, Ty,
For eachj’-COT, Ty,
If (Fj(input, Ty, T2))
then---.

Note that this change gives an FPT control scheme for a certain egteond&ol problem. In particular, it does so
for the extended control problem whose goal is to ensure that we aefinerat least one of the set ¢f;, T>) such
thatFj (j’ being the number of candidates in the particular input), given as its inpugsdb&em’s input,T;, andT,
evaluates to true. That is, i functions are recognizing (viewed a bit differently, are defining) thal get of the
extended control problem.

From the input,T;, andT, we can easily tell the scores in the final election. So this approach caretgas
choose as our extended-control goals natural features of the lfiatibe.
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final table) FPT extended control algorithms for all the types of contrdlaundedness cases for
which the FPT results of the previous section are stated.

1. Asking whether under the stated action one can obtain in the final elestroply in the
election in the case when there is no partitioning) the outcome that all the Cdglan,
system scores of the candidates precisely match the relations of the lexibagnames of
the candidates.

2. More generally than that, asking whether under the stated action orwbtzn in the final
election (simply in the election in the case when there is no partitioning) a certaan-line
order-without-ties regarding the Copelgng,..-system scores of the candidates.

3. More generally still, asking whether under the stated action one can abth@final election
(simply in the election in the case when there is no partitioning) a certain lindar-with-
ties regarding the Copelafid,,..-System scores of the candidates.

4. Asking whether under the stated action one can obtain in the final elestioply in the
election in the case when there is no partitioning) the situation that exactly b@ddates
tie as winner regarding their Copelghdg ,,,-system scores.

5. Asking whether under the stated action one can obtain in the final elestaply in the
election in the case when there is no partitioning) the situation that no two cteslitave
the same Copelafd;,,,rSystem scores as each other.

Again, these are just a very few examples. Our point is that the prevéatiss is flexible enough to
address not just constructive/destructive control, but also to agitiresore general control issues.

4.3.4 RESISTANCERESULTS

Theorems 4.27 and 4.28 give FPT schemes for all voter-control cadebaunded voters, for all
voter-control cases with bounded candidates, and for all candidatestcases with bounded can-
didates. This might lead one to hope that all the cases admit FPT schemesafidive remaining
type of case, the candidate-control cases with bounded voters, dofedlow this pattern. In fact,

we note that for Copelatfd,i. ., all the candidate-control cases that we showed earlier in this pa-
per (i.e., without bounds on the number of voters) to be resistant remastargseven for the case

of bounded voters. This resistance holds even when the input is noté@mstiformat, and so it
certainly also holds when the input is in succinct format.

The reason for this is that, for the case of irrational voters, withtyustoters (with preferences
over j candidates) any givetCOT can be achieved. To do this, for each distinct pair of candidates
i and/, to havei preferred in their pairwise contest have both voters piietfef, to havel preferred
in their pairwise contest have both voters prefev i, and to have a tie in the pairwise contest have
one voter prefef to i and one voter prefarto ¢. Since in the proofs of resistance for candidate
control, we identified elections with their election graphs, i.e., with their COTsnivtiiard to see
that all these resistance proofs carry over even to the case of twornaktiaters.

The only open cases remaining regard the rational-voter, candidat@lcdrounded-voter
cases. We note that Betzler and Uhlmann (2008) have recently resalwesl &f these open is-
sues.
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5. Control in Condorcet Elections

In this section we show that Condorcet elections are resistant to canstraantrol via deleting
voters (CCDV) and via partition of voters (CCPV). These results weiginally claimed in the
seminal paper of Bartholdi et al. (1992), but the proofs there wesedan the assumption that
a voter can be indifferent between several candidates. Their mo@&afons did not allow that
(and neither does ours). Here we show how one can obtain these nesisase when the voters’
preference lists are linear orders—which is both their model and ours.

Recall that a candidateof electionE = (C,V) is a Condorcet winner d& if he or she defeats
all other candidates in their head-to-head contests. Alternatively, ard say that a candidate
is a Condorcet winner of electidh if and only if he or she has Copeldhscore of|/C|| — 1. Since
each election can have at most one Condorcet winner, it doesn’t rrake &ere to differentiate
between the unique-winner and the nonunique-winner models. (We passhe reader a referee’s
comment that in the very different system known as weak Condorcdicglecwhose winners are
all candidates who beair tie each other candidate in head-to-head elections, one can have more
than one winner.)

Theorem 5.1 Condorcet elections are resistant to constructive control via deletings.ote

Proof.  This follows immediately from the proof of Theorem 4.19. Note that a Coretavinner
is always a unique Copelafdvinner, for each rationat with 0 < a < 1, and note that in the proof
of Theorem 4.19, if” contains &-element cover oB, then we can deletevoters such that in the
resulting electiorp defeats every other candidate in their head-to-head contesp,ise,Condorcet
winner in the resulting election. O

Before we proceed with our proof of resistance for the case of agiste control via partition
of voters (CCPV), we have to mention a slight quirk of Bartholdi, Tovey, arck’s model of voter
partition. If one reads their paper carefully, it becomes apparent teathiive a quiet assumption
that each given set of voters can only be partitioned into subelectionsahhtelect exactly one
winner, thus severely restricting the chair’s partitioning possibilities. Tlzetwhy Hemaspaandra
et al. (2007a) replaced Bartholdi, Tovey, and Trick’s convention wighnttore natural ties-promote
and ties-eliminate rules (see the discussion in Hemaspaandra et al., 2007&); this current
section of our paper we go back to Bartholdi, Tovey, and Trick's modietesour goal here is to
reprove their results without breakitigeir model.

Theorem 5.2 Condorcet elections are resistant to constructive control via partitioniotgns
(CCPV) in Bartholdi, Tovey, and Trick’s model (see the paragrapbvah

Proof. The proof follows via a reduction from the X3C problem. In fact, we usacty the
construction from the proof of Theorem 4.21. [Eet= (C,V) be the election constructed in that
proof.

Sinces is the only candidate that defeats in a head-to-head contest, the only waypfto
become a winner via partitioning voters is to guaranteehens within his or her subelection and
thats wins within the other one. (Note that sinpés not a Condorcet winnep cannot win in both
subelections.)

If .7 contains ak-element cover, say,S,,- -, S}, then lettingVp =V — {va,,...,va } and
Vs =V —V, will make p the Condorcet winner in this CCPV scenario.
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For the converse, lgl,,Vs) be a partition of the collection of voters such theis the global
Condorcet winner in the CCPV scenario where we use two subelectinasyith votersv, and
one with voterd/. Via the above paragraph we can assume, without loss of generality ithtte
Condorcet winner ifC,V,) and thatsis the Condorcet winner i(C,Vs). Since the&k+ 1 voters in
V —V ranksfirst and rankp last, we can assume théfcontains thesk+ 1 voters (i.e., the voters
with preferences > r > B > p). Also, Vs contains at mosk voters fromV, as otherwise would
certainly not be a Condorcet winner (8, \s).

As a result,p can be made the Condorcet Winner(m‘,\7) by deleting at mosk voters. It
follows from Claim 4.22 that” contains &-element cover oB. 0

6. Conclusions

We have shown that from the computational point of view the election systdrhdland Copeland
(i.e., Copelan®) are broadly resistant to bribery and constructive procedural@pnégardless of
whether the voters are required to have rational preferences. thex reharming that Llull's 700-
year-old system shows perfect resistance to bribery and more resistem(constructive) control
than any other natural system (even far more modern ones) with an easgrwetermination
procedure—other than Copeldhd < a < 1—is known to possess, and this is even more remark-
able when one considers that Llull’s system was defined long befoteotoi elections was even
explicitly studied. CopelartP voting matches Llull's perfect resistance to bribery and in addition
has perfect resistance to (constructive) control.

A natural open direction would be to study the complexity of control for aduttielection
systems. It would be particularly interesting to find existing, natural votirgjesys that have
polynomial-time winner determination procedures but that are resistant tadlasd types of both
constructiveand destructiveontrol. It would also be extremely interesting to find single results that
classify, for broad families of election systems, precisely what it is that snedetrol easy or hard,
i.e., to obtain dichotomy meta-results for control (see Hemaspaandra andptamdra, 2007, for
some discussion regarding work of that flavor for manipulation).
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