
Journal of Artificial Intelligence Research 35 (2009) 1-47 Submitted 01/09; published 05/09

Complex Question Answering: Unsupervised Learning

Approaches and Experiments

Yllias Chali chali@cs.uleth.ca
University of Lethbridge
Lethbridge, AB, Canada, T1K 3M4

Shafiq R. Joty rjoty@cs.ubc.ca
University of British Columbia
Vancouver, BC, Canada, V6T 1Z4

Sadid A. Hasan hasan@cs.uleth.ca

University of Lethbridge

Lethbridge, AB, Canada, T1K 3M4

Abstract

Complex questions that require inferencing and synthesizing information from multiple
documents can be seen as a kind of topic-oriented, informative multi-document summa-
rization where the goal is to produce a single text as a compressed version of a set of
documents with a minimum loss of relevant information. In this paper, we experiment
with one empirical method and two unsupervised statistical machine learning techniques:
K-means and Expectation Maximization (EM), for computing relative importance of the
sentences. We compare the results of these approaches. Our experiments show that the
empirical approach outperforms the other two techniques and EM performs better than
K-means. However, the performance of these approaches depends entirely on the feature
set used and the weighting of these features. In order to measure the importance and
relevance to the user query we extract different kinds of features (i.e. lexical, lexical se-
mantic, cosine similarity, basic element, tree kernel based syntactic and shallow-semantic)
for each of the document sentences. We use a local search technique to learn the weights
of the features. To the best of our knowledge, no study has used tree kernel functions
to encode syntactic/semantic information for more complex tasks such as computing the
relatedness between the query sentences and the document sentences in order to generate
query-focused summaries (or answers to complex questions). For each of our methods of
generating summaries (i.e. empirical, K-means and EM) we show the effects of syntactic
and shallow-semantic features over the bag-of-words (BOW) features.

1. Introduction

The vast increase in the amount of online text available and the demand for access to dif-
ferent types of information have led to a renewed interest in a broad range of Information
Retrieval (IR) related areas that go beyond the simple document retrieval. These areas
include question answering, topic detection and tracking, summarization, multimedia re-
trieval, chemical and biological informatics, text structuring, text mining, genomics, etc.
Automated Question Answering (QA)—the ability of a machine to answer questions, simple
or complex, posed in ordinary human language—is perhaps the most exciting technolog-
ical development of the past six or seven years (Strzalkowski & Harabagiu, 2008). The

c©2009 AI Access Foundation. All rights reserved.

Chali, Joty, & Hasan

expectations are already tremendous, reaching beyond the discipline (a subfield of Natural
Language Processing (NLP)) itself.

As a tool for finding documents on the web, search engines are proven to be adequate.
Although there is no limitation in the expressiveness of the user in terms of query formu-
lation, certain limitations exist in what the search engine does with the query. Complex
question answering tasks require multi-document summarization through an aggregated
search, or a faceted search, that represents an information need which cannot be answered
by a single document. For example, if we look for the comparison of the average number of
years between marriage and first birth for women in the U.S., Asia, and Europe, the answer
is likely contained in multiple documents. Multi-document summarization is useful for this
type of query and there is currently no tool on the market that is designed to meet this
kind of information need.

QA research attempts to deal with a wide range of question types including: fact, list,
definition, how, why, hypothetical, semantically-constrained, and cross-lingual questions.
Some questions, which we will call simple questions, are easier to answer. For example, the
question: “Who is the president of Bangladesh?” asks for a person’s name. This type of
question (i.e. factoid) requires small snippets of text as the answer. Again, the question:
“Which countries has Pope John Paul II visited?” is a sample of a list question, asking only
for a list of small snippets of text.

After having made substantial headway in factoid and list questions, researchers have
turned their attention to more complex information needs that cannot be answered by
simply extracting named entities (persons, organizations, locations, dates, etc.) from docu-
ments. Unlike informationally simple factoid questions, complex questions often seek mul-
tiple different types of information simultaneously and do not presuppose that one single
answer can meet all of its information needs. For example, with a factoid question like:
“How accurate are HIV tests?” it can be safely assumed that the submitter of the ques-
tion is looking for a number or a range of numbers. However, with complex questions like:
“What are the causes of AIDS?” the wider focus of this question suggests that the submitter
may not have a single or well-defined information need and therefore may be amenable to
receiving additional supporting information that is relevant to some (as yet) undefined in-
formational goal (Harabagiu, Lacatusu, & Hickl, 2006). These questions require inferencing
and synthesizing information from multiple documents.

A well known QA systems is the Korean Naver’s Knowledge iN search1, who were the
pioneers in community QA. This tool allows users to ask just about any question and get
answers from other users. Naver’s Knowledge iN now has roughly 10 times more entries
than Wikipedia. It is used by millions of Korean web users on any given day. Some people
say Koreans are not addicted to the internet but to Naver. As of January 2008 the Knowl-
edge Search database included more than 80 million pages of user-generated information.
Another popular answer service is Yahoo! Answers which is a community-driven knowl-
edge market website launched by Yahoo!. It allows users to both submit questions to be
answered and answer questions from other users. People vote on the best answer. The site
gives members the chance to earn points as a way to encourage participation and is based
on the Naver model. As of December 2006, Yahoo! Answers had 60 million users and 65

1. http://kin.naver.com/

2

Complex Question Answering: Unsupervised Approaches

million answers. Google had a QA system2 based on paid editors which was launched in
April 2002 and fully closed in December 2006.

However, from a computational linguistics point of view information synthesis can be
seen as a kind of topic-oriented informative multi-document summarization. The goal is to
produce a single text as a compressed version of a set of documents with a minimum loss
of relevant information. Unlike indicative summaries (which help to determine whether a
document is relevant to a particular topic), informative summaries must attempt to find
answers.

In this paper, we focus on an extractive approach of summarization where a subset of
the sentences in the original documents are chosen. This contrasts with abstractive summa-
rization where the information in the text is rephrased. Although summaries produced by
humans are typically not extractive, most of the state of the art summarization systems are
based on extraction and they achieve better results than the automated abstraction. Here,
we experimented with one empirical and two well-known unsupervised statistical machine
learning techniques: K-means and EM and evaluated their performance in generating topic-
oriented summaries. However, the performance of these approaches depends entirely on the
feature set used and the weighting of these features. In order to measure the importance
and relevance to the user query we extract different kinds of features (i.e. lexical, lexical
semantic, cosine similarity, basic element, tree kernel based syntactic and shallow-semantic)
for each of the document sentences. We have used a gradient descent local search technique
to learn the weights of the features.

Traditionally, information extraction techniques are based on the BOW approach aug-
mented by language modeling. But when the task requires the use of more complex seman-
tics, the approaches based on only BOW are often inadequate to perform fine-level textual
analysis. Some improvements on BOW are given by the use of dependency trees and syntac-
tic parse trees (Hirao, , Suzuki, Isozaki, & Maeda, 2004; Punyakanok, Roth, & Yih, 2004;
Zhang & Lee, 2003b), but these too are not adequate when dealing with complex questions
whose answers are expressed by long and articulated sentences or even paragraphs. Shallow
semantic representations, bearing more compact information, could prevent the sparseness
of deep structural approaches and the weakness of BOW models (Moschitti, Quarteroni,
Basili, & Manandhar, 2007). As pinpointing the answer to a question relies on a deep un-
derstanding of the semantics of both, attempting an application of syntactic and semantic
information to complex QA seems natural. To the best of our knowledge, no study has used
tree kernel functions to encode syntactic/semantic information for more complex tasks such
as computing the relatedness between the query sentences and the document sentences in
order to generate query-focused summaries (or answers to complex questions). For all of
our methods of generating summaries (i.e. empirical, K-means and EM) we show the effects
of syntactic and shallow-semantic features over the BOW features.

Over the past three years, complex questions have been the focus of much attention in
both the automatic question-answering and Multi Document Summarization (MDS) com-
munities. Typically, most current complex QA evaluations including the 2004 AQUAINT
Relationship QA Pilot, the 2005 Text Retrieval Conference (TREC) Relationship QA Task,
and the TREC definition (and others) require systems to return unstructured lists of can-

2. http://answers.google.com/

3

Chali, Joty, & Hasan

didate answers in response to a complex question. However recently, MDS evaluations (in-
cluding the 2005, 2006 and 2007 Document Understanding Conference (DUC)) have tasked
systems with returning paragraph-length answers to complex questions that are responsive,
relevant, and coherent.

Our experiments based on the DUC 2007 data show that including syntactic and seman-
tic features improves the performance. Comparison among the approaches are also shown.
Comparing with DUC 2007 participants, our systems achieve top scores and there is no
statistically significant difference between the results of our system and the results of DUC
2007 best system.

This paper is organized as follows: Section 2 focuses on the related work, Section 3
gives a brief description of our intended final model, Section 4 describes how the features
are extracted, Section 5 discusses the learning issues and presents our learning approaches,
Section 6 discusses how we remove the redundant sentences before adding them to the final
summary, and Section 7 describes our experimental study. We conclude and discuss future
directions in Section 8.

2. Related Work

Researchers all over the world working on query-based summarization are trying different
directions to see which methods provide the best results.

There are a number of sentence retrieval systems based on IR (Information Retrieval)
techniques. These systems typically don’t use a lot of linguistic information, but they still
deserve special attention. Murdock and Croft (2005) propose a translation model specifically
for monolingual data, and show that it significantly improves sentence retrieval over query
likelihood. Translation models train on a parallel corpus and they used a corpus of ques-
tion/answer pairs. Losada (2005) presents a comparison between multiple-Bernoulli models
and multinomial models in the context of a sentence retrieval task and shows that a multi-
variate Bernoulli model can really outperform popular multinomial models for retrieving
relevant sentences. Losada and Fernández (2007) propose a novel sentence retrieval method
based on extracting highly frequent terms from top retrieved documents. Their results re-
inforce the idea that top retrieved data is a valuable source to enhance retrieval systems.
This is specially true for short queries because there are usually few query-sentence match-
ing terms. They argue that this method improves significantly the precision at top ranks
when handling poorly specified information needs.

The LexRank method addressed by Erkan and Radev (2004) was very successful in
generic multi-document summarization. A topic-sensitive LexRank is proposed by Otter-
bacher, Erkan, and Radev (2005). As in LexRank, the set of sentences in a document cluster
is represented as a graph where nodes are sentences, and links between the nodes are in-
duced by a similarity relation between the sentences. The system then ranks the sentences
according to a random walk model defined in terms of both the inter-sentence similarities
and the similarities of the sentences to the topic description or question.

Concepts of coherence and cohesion enable us to capture the theme of the text. Co-
herence represents the overall structure of a multi-sentence text in terms of macro-level
relations between clauses or sentences (Halliday & Hasan, 1976). Cohesion, as defined by
Halliday and Hasan (1976), is the property of holding text together as one single grammat-

4

Complex Question Answering: Unsupervised Approaches

ical unit based on relations (i.e. ellipsis, conjunction, substitution, reference, and lexical
cohesion) between various elements of the text. Lexical cohesion is defined as the cohesion
that arises from the semantic relations (collocation, repetition, synonym, hypernym, hy-
ponym, holonym, meronym, etc.) between the words in the text (Morris & Hirst, 1991).
Lexical cohesion among words are represented by lexical chains which are the sequences of
semantically related words. The summarization methods based on lexical chain first ex-
tract the nouns, compound nouns and named entities as candidate words (Li, Sun, Kit, &
Webster, 2007). Then using WordNet3 the systems find the semantic similarity between
the nouns and compound nouns. After that lexical chains are built in two steps:

1. Building single document strong chains while disambiguating the senses of the words.

2. Building a multi-chain by merging the strongest chains of the single documents into
one chain.

The systems rank sentences using a formula that involves a) the lexical chain, b) key-
words from the query and c) named entities. For example, Li et al. (2007) uses the following
formula:

Score = αP (chain) + βP (query) + γP (namedEntity)

where P (chain) is the sum of the scores of the chains whose words come from the
candidate sentence, P (query) is the sum of the co-occurrences of key words in a topic and
the sentence, and P (namedEntity) is the number of name entities existing in both the topic
and the sentence. The three coefficients α, β and γ are set empirically. The top ranked
sentences are then selected to form the summary.

Harabagiu et al. (2006) introduce a new paradigm for processing complex questions
that relies on a combination of (a) question decompositions; (b) factoid QA techniques;
and (c) Multi-Document Summarization (MDS) techniques. The question decomposition
procedure operates on a Markov chain. That is, by following a random walk with a mixture
model on a bipartite graph of relations established between concepts related to the topic
of a complex question and subquestions derived from topic-relevant passages that manifest
these relations. Decomposed questions are then submitted to a state-of-the-art QA system
in order to retrieve a set of passages that can later be merged into a comprehensive an-
swer by a MDS system. They show that question decompositions using this method can
significantly enhance the relevance and comprehensiveness of summary-length answers to
complex questions.

There are approaches that are based on probabilistic models (Pingali, K., & Varma,
2007; Toutanova, Brockett, Gamon, Jagarlamudi, Suzuki, & Vanderwende, 2007). Pingali
et al. (2007) rank the sentences based on a mixture model where each component of the
model is a statistical model:

Score(s) = α×QIScore(s) + (1− α)×QFocus(s,Q) (1)

3. WordNet (http://wordnet.princeton.edu/) is a widely used semantic lexicon for the English language.
It groups English words (i.e. nouns, verbs, adjectives and adverbs) into sets of synonyms called synsets,
provides short, general definitions (i.e. gloss definition), and records the various semantic relations
between these synonym sets.

5

Chali, Joty, & Hasan

Where Score(s) is the score for sentence s. Query-independent score (QIScore) and
query-dependent score (QFocus) are calculated based on probabilistic models. Toutanova
et al. (2007) learns a log-linear sentence ranking model by maximizing three metrics of
sentence goodness: (a) ROUGE oracle, (b) Pyramid-derived, and (c) Model Frequency.
The scoring function is learned by fitting weights for a set of feature functions of sentences
in the document set and is trained to optimize a sentence pair-wise ranking criterion. The
scoring function is further adapted to apply to summaries rather than sentences and to take
into account redundancy among sentences.

Pingali et al. (2007) reduce the document-sentences by dropping words that do not
contain any important information. Toutanova et al. (2007), Vanderwende, Suzuki, and
Brockett (2006), and Zajic, Lin, Dorr, and Schwartz (2006) heuristically decompose the
document-sentences into smaller units. They apply a small set of heuristics to a parse
tree to create alternatives after which both the original sentence and (possibly multiple)
simplified versions are available for selection.

There are approaches in multi-document summarization that do try to cluster sentences
together. Guo and Stylios (2003) use verb arguments (i.e. subjects, times, locations and
actions) for clustering. For each sentence this method establishes the indices information
based on the verb arguments (subject is first index, time is second, location is third and
action is fourth). All the sentences that have the same or closest ‘subjects’ index are put
in a cluster and they are sorted out according to the temporal sequence from the earliest
to the latest. Sentences that have the same ‘spaces/locations’ index value in the cluster
are then marked out. The clusters are ranked based on their sizes and top 10 clusters are
chosen. Then, applying a cluster reduction module the system generates the compressed
extract summaries.

There are approaches in “Recognizing Textual Entailment”, “Sentence Alignment”, and
“Question Answering” that use syntactic and/or semantic information in order to measure
the similarity between two textual units. This indeed motivated us to include syntactic and
semantic features to get the structural similarity between a document sentence and a query
sentence (discussed in Section 4.1). MacCartney, Grenager, de Marneffe, Cer, and Manning
(2006) use typed dependency graphs (same as dependency trees) to represent the text and
the hypothesis. They try to find a good partial alignment between the typed dependency
graphs representing the hypothesis (contains n nodes) and the text (graph contains m
nodes) in a search space of O((m + 1)n). They use an incremental beam search combined
with a node ordering heuristic to do approximate global search in the space of possible
alignments. A locally decomposable scoring function was chosen such that the score of an
alignment is the sum of the local node and edge alignment scores. The scoring measure
is designed to favor alignments which align semantically similar subgraphs, irrespective of
polarity. For this reason, nodes receive high alignment scores when the words they represent
are semantically similar. Synonyms and antonyms receive the highest score and unrelated
words receive the lowest. Alignment scores also incorporate local edge scores which are based
on the shape of the paths between nodes in the text graph which correspond to adjacent
nodes in the hypothesis graph. In the final step they make a decision about whether or
not the hypothesis is entailed by the text conditioned on the typed dependency graphs as
well as the best alignment between them. To make this decision they use a supervised

6

Complex Question Answering: Unsupervised Approaches

statistical logistic regression classifier (with a feature space of 28 features) with a Gaussian
prior parameter for regularization.

Hirao et al. (2004) represent the sentences using Dependency Tree Path (DTP) to in-
corporate syntactic information. They apply String Subsequence Kernel (SSK) to measure
the similarity between the DTPs of two sentences. They also introduce Extended String
Subsequence Kernel (ESK) to incorporate semantics in DTPs. Kouylekov and Magnini
(2005) use the tree edit distance algorithms on the dependency trees of the text and the
hypothesis to recognize the textual entailment. According to this approach, a text T entails
a hypothesis H if there exists a sequence of transformations (i.e. deletion, insertion and
substitution) applied to T such that we can obtain H with an overall cost below a certain
threshold. Punyakanok et al. (2004) represent the question and the sentence containing
answer with their dependency trees. They add semantic information (i.e. named entity,
synonyms and other related words) in the dependency trees. They apply the approximate
tree matching in order to decide how similar any given pair of trees are. They also use the
edit distance as the matching criteria in the approximate tree matching. All these methods
show the improvement over the BOW scoring methods.

3. Our Approach

To accomplish the task of answering complex questions we extract various important fea-
tures for each of the sentences in the document collection to measure its relevance to the
query. The sentences in the document collection are analyzed in various levels and each
of the document sentences is represented as a vector of feature-values. Our feature set
includes lexical, lexical semantic, statistical similarity, syntactic and semantic features, and
graph-based similarity measures (Chali & Joty, 2008b). We reimplemented many of these
features which are successfully applied to many related fields of NLP.

We use a simple local search technique to fine-tune the feature weights. We also use
the statistical clustering algorithms: EM and K-means to select the relevant sentences for
summary generation. Experimental results show that our systems perform better when
we include the tree kernel based syntactic and semantic features though summaries based
on only syntactic or semantic feature do not achieve good results. Graph-based cosine
similarity and lexical semantic features are also important for selecting relevant sentences.
We find that the local search technique outperforms the other two and the EM performs
better than the K-means based learning. In the later sections we describe all the subparts
of our systems in details.

4. Feature Extraction

In this section, we will describe the features that will be used to score the sentences. We
provide detailed examples4 to show how we get the feature values. We will first describe
the syntactic and semantic features that we are introducing in this work. We follow with
a detailed description of the features more commonly used in the question answering and
summarization communities.

4. All the query and document sentences used in the examples are taken from the DUC 2007 collection.

7

Chali, Joty, & Hasan

4.1 Syntactic and Shallow Semantic Features

For the task like query-based summarization that requires the use of more complex syntactic
and semantics, the approaches with only BOW are often inadequate to perform fine-level
textual analysis. The importance of syntactic and semantic features in this context is
described by Zhang and Lee (2003a), Moschitti et al. (2007), Bloehdorn and Moschitti
(2007a), Moschitti and Basili (2006) and Bloehdorn and Moschitti (2007b).

An effective way to integrate syntactic and semantic structures in machine learning al-
gorithms is the use of tree kernel functions (Collins & Duffy, 2001; Moschitti & Quarteroni,
2008) which has been successfully applied to question classification (Zhang & Lee, 2003a;
Moschitti & Basili, 2006). Syntactic and semantic information are used effectively to mea-
sure the similarity between two textual units by MacCartney et al. (2006). To the best
of our knowledge, no study has used tree kernel functions to encode syntactic/semantic
information for more complex tasks such as computing the relatedness between the query
sentences and the document sentences. Another good way to encode some shallow syntactic
information is the use of Basic Elements (BE) (Hovy, Lin, Zhou, & Fukumoto, 2006) which
uses dependency relations. Our experiments show that including syntactic and semantic
features improves the performance on the sentence selection for complex question answering
task (Chali & Joty, 2008a).

4.1.1 Encoding Syntactic Structures

Basic Element (BE) Overlap Measure Shallow syntactic information based on de-
pendency relations was proved to be effective in finding similarity between two textual
units (Hirao et al., 2004). We incorporate this information by using Basic Elements that
are defined as follows (Hovy et al., 2006):

• The head of a major syntactic constituent (noun, verb, adjective or adverbial phrases),
expressed as a single item.

• A relation between a head-BE and a single dependent, expressed as a triple:
(head|modifier|relation).

The triples encode some syntactic information and one can decide whether any two units
match or not- more easily than with longer units (Hovy et al., 2006). We extracted BEs for
the sentences (or query) by using the BE package distributed by ISI5.

Once we get the BEs for a sentence, we computed the Likelihood Ratio (LR) for each BE
following Zhou, Lin, and Hovy (2005). Sorting BEs according to their LR scores produced
a BE-ranked list. Our goal is to generate a summary that will answer the users’ questions.
The ranked list of BEs in this way contains important BEs at the top which may or may not
be relevant to the users’ questions. We filter those BEs by checking whether they contain
any word which is a query word or a QueryRelatedWords (defined in Section 4.3). For
example, if we consider the following sentence we get the BE score of 0.77314.

Query: Describe steps taken and worldwide reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and expectations reported in the press.

5. BE website:http://www.isi.edu/ cyl/BE

8

Complex Question Answering: Unsupervised Approaches

Sentence: The Frankfurt-based body said in its annual report released today that it has
decided on two themes for the new currency: history of European civilization and
abstract or concrete paintings.

BE Score: 0.77314

Here, the BE “decided|themes|obj” is not considered as it does not contain any word
from the query words or query relevant words but BE “report|annual|mod” is taken as it
contains a query word “report”. In this way, we filter out the BEs that are not related to
the query. The score of a sentence is the sum of its BE scores divided by the number of BEs
in the sentence. By limiting the number of the top BEs that contribute to the calculation
of the sentence scores we can remove the BEs with little importance and the sentences with
fewer important BEs. If we set the threshold to 100 only the topmost 100 BEs in the ranked
list can contribute to the normalized sentence BE score computation. In this paper, we did
not set any threshold— we took all the BEs counted when calculating the BE scores for the
sentences.

Tree Kernels Approach In order to calculate the syntactic similarity between the query
and the sentence we first parse the sentence as well as the query into a syntactic tree
(Moschitti, 2006) using a parser like Charniak (1999). Then we calculate the similarity
between the two trees using the tree kernel. We reimplemented the tree kernel model as
proposed by Moschitti et al. (2007).

Once we build the trees, our next task is to measure the similarity between the trees. For
this, every tree T is represented by an m dimensional vector v(T) = (v1(T), v2(T), · · · vm(T)),
where the i-th element vi(T) is the number of occurrences of the i-th tree fragment in tree
T . The tree fragments of a tree are all of its sub-trees which include at least one production
with the restriction that no production rules can be broken into incomplete parts (Moschitti
et al., 2007). Figure 1 shows an example tree and a portion of its subtrees.

Figure 1: (a) An example tree (b) The sub-trees of the NP covering “the press”.

Implicitly we enumerate all the possible tree fragments 1, 2, · · · ,m. These fragments are
the axis of this m-dimensional space. Note that this could be done only implicitly since
the number m is extremely large. Because of this, Collins and Duffy (2001) define the tree
kernel algorithm whose computational complexity does not depend on m.

The tree kernel of two trees T1 and T2 is actually the inner product of v(T1) and v(T2):

9

Chali, Joty, & Hasan

TK(T1, T2) = v(T1).v(T2) (2)

We define the indicator function Ii(n) to be 1 if the sub-tree i is seen rooted at node n
and 0 otherwise. It follows:

vi(T1) =
∑

n1∈N1

Ii(n1), vi(T2) =
∑

n2∈N2

Ii(n2) (3)

Where N1 and N2 are the set of nodes in T1 and T2 respectively. So, we can derive:

TK(T1, T2) = v(T1).v(T2) =
∑

i

vi(T1)vi(T2)

=
∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1)Ii(n2)

=
∑

n1∈N1

∑

n2∈N2

C(n1, n2) (4)

where we define C(n1, n2) =
∑

i Ii(n1)Ii(n2). Next, we note that C(n1, n2) can be
computed in polynomial time due to the following recursive definition:

1. If the productions at n1 and n2 are different then C(n1, n2) = 0

2. If the productions at n1 and n2 are the same, and n1 and n2 are pre-terminals, then
C(n1, n2) = 1

3. Else if the productions at n1 and n2 are not pre-terminals,

C(n1, n2) =

nc(n1)
∏

j=1

(1 + C(ch(n1, j), ch(n2, j))) (5)

where nc(n1) is the number of children of n1 in the tree; because the productions at n1

and n2 are the same we have nc(n1) = nc(n2). The i-th child-node of n1 is ch(n1, i).

In cases where the query is composed of two or more sentences we compute the similarity
between the document sentence (s) and each of the query-sentences (qi) then we take the
average of the scores as the syntactic feature value.

Syntactic similarity value =

∑n
i=1 TK(qi, s)

n

Where n is the number of sentences in the query q and s is the sentence under con-
sideration. TK is the similarity value (tree kernel) between the sentence s and the query
sentence q based on the syntactic structure. For example, for the following sentence s and
query q we get the score:

10

Complex Question Answering: Unsupervised Approaches

Figure 2: Example of semantic trees

Query (q): Describe steps taken and worldwide reaction prior to introduction of the Euro
on January 1, 1999. Include predictions and expectations reported in the press.

Sentence (s): Europe’s new currency, the euro, will rival the U.S. dollar as an international
currency over the long term, Der Spiegel magazine reported Sunday.

Scores: 90, 41

Average Score: 65.5

4.1.2 Semantic Features

Though introducing syntactic information gives an improvement on BOW, by the use of
syntactic parses, this too is not adequate when dealing with complex questions whose an-
swers are expressed by long and articulated sentences or even paragraphs. Shallow semantic
representations, bearing more compact information, could prevent the sparseness of deep
structural approaches and the weakness of BOW models (MacCartney et al., 2006; Moschitti
et al., 2007).

Initiatives such as PropBank (PB) (Kingsbury & Palmer, 2002) have made the design of
accurate automatic Semantic Role Labeling (SRL) systems like ASSERT (Hacioglu, Prad-
han, Ward, Martin, & Jurafsky, 2003) possible. Hence, attempting an application of SRL
to QA seems natural as pinpointing the answer to a question relies on a deep understanding
of the semantics of both. For example, consider the PB annotation:

[ARG0 all][TARGET use][ARG1 the french franc][ARG2 as their currency]

Such annotation can be used to design a shallow semantic representation that can be
matched against other semantically similar sentences, e.g.

[ARG0 the Vatican][TARGET use][ARG1 the Italian lira][ARG2 as their currency]

In order to calculate the semantic similarity between the sentences we first represent the
annotated sentence (or query) using the tree structures like Figure 2 called Semantic Tree
(ST) as proposed by Moschitti et al. (2007). In the semantic tree arguments are replaced
with the most important word–often referred to as the semantic head. We look for a noun
first, then a verb, then an adjective, then adverb to find the semantic head in the argument.
If none of these is present we take the first word of the argument as the semantic head.

11

Chali, Joty, & Hasan

Figure 3: Two STs composing a STN

However, sentences rarely contain a single predicate, rather typically propositions con-
tain one or more subordinate clauses. For instance, let us consider a slight modification of
the second sentence: “the Vatican, located wholly within Italy uses the Italian lira as their
currency.” Here, the main predicate is “uses” and the subordinate predicate is “located”.
The SRL system outputs the following two annotations:

(1) [ARG0 the Vatican located wholly within Italy][TARGET uses][ARG1 the Italian
lira][ARG2 as their currency]

(2) [ARG0 the Vatican][TARGET located] [ARGM-LOC wholly][ARGM-LOC within
Italy] uses the Italian lira as their currency

giving the STs in Figure 3. As we can see in Figure 3(A), when an argument node
corresponds to an entire subordinate clause we label its leaf with ST (e.g. the leaf of
ARG0). Such ST node is actually the root of the subordinate clause in Figure 3(B). If
taken separately, such STs do not express the whole meaning of the sentence. Hence, it
is more accurate to define a single structure encoding the dependency between the two
predicates as in Figure 3(C). We refer to this kind of nested STs as STNs.

Note that the tree kernel (TK) function defined in Section 4.1.1 computes the number of
common subtrees between two trees. Such subtrees are subject to the constraint that their
nodes are taken with all or none of the children they have in the original tree. Though this
definition of subtrees makes the TK function appropriate for syntactic trees, it is not well
suited for the semantic trees (ST). For instance, although the two STs of Figure 2 share
most of the subtrees rooted in the ST node, the kernel defined above computes no match.

The critical aspect of steps (1), (2), and (3) of the TK function is that the productions
of two evaluated nodes have to be identical to allow the match of further descendants. This
means that common substructures cannot be composed by a node with only some of its
children as an effective ST representation would require. Moschitti et al. (2007) solve this
problem by designing the Shallow Semantic Tree Kernel (SSTK) which allows portions of
an ST to match.

Shallow Semantic Tree Kernel (SSTK) We reimplemented the SSTK according to
the model given by Moschitti et al. (2007). The SSTK is based on two ideas: first, it changes

12

Complex Question Answering: Unsupervised Approaches

the ST, as shown in Figure 4 by adding SLOT nodes. These accommodate argument labels
in a specific order with a fixed number of slots, possibly filled with null arguments that
encode all possible predicate arguments. Leaf nodes are filled with the wildcard character *
but they may alternatively accommodate additional information. The slot nodes are used
in such a way that the adopted TK function can generate fragments containing one or more
children like for example those shown in frames (b) and (c) of Figure 4. As previously
pointed out, if the arguments were directly attached to the root node the kernel function
would only generate the structure with all children (or the structure with no children, i.e.
empty) (Moschitti et al., 2007).

Figure 4: Semantic tree with some of its fragments

Second, as the original tree kernel would generate many matches with slots filled with
the null label we have set a new step 0 in the TK calculation:

(0) if n1 (or n2) is a pre-terminal node and its child label is null, C(n1, n2) = 0;

and subtract one unit to C(n1, n2), in step 3:

(3) C(n1, n2) =

nc(n1)
∏

j=1

(1 + C(ch(n1, j), ch(n2, j))) − 1 (6)

The above changes generate a new C which, when substituted (in place of original C)
in Eq. 4, gives the new SSTK.

For example, for the following sentence s and query q we get the semantic score:

Query (q): Describe steps taken and worldwide reaction prior to introduction of the Euro
on January 1, 1999. Include predictions and expectations reported in the press.

Sentence (s): The Frankfurt-based body said in its annual report released today that it
has decided on two themes for the new currency history of European civilization and
abstract or concrete paintings.

Scores: 6, 12

Average Score: 9

13

Chali, Joty, & Hasan

4.2 Lexical Features

Here, we will discuss the lexical features that are most commonly used in the QA and
summarization communities. We reimplemented all of them in this research.

4.2.1 N-gram Overlap

N-gram overlap measures the overlapping word sequences between the candidate document
sentence and the query sentence. With the view to measure the overlap scores, a query pool
and a sentence pool are created. In order to create the query (or sentence) pool, we took
the query (or document) sentence and created a set of related sentences by replacing its
content words6 by their first-sense synonyms using WordNet. For example, given a stemmed
document-sentence: “John write a poem”, the sentence pool contains: “John compose a
poem”, “John write a verse form” along with the given sentence.

We measured the recall based n-gram scores for a sentence P using the following formula:

NgramScore(P) = maxi(maxj Ngram(si, qj)) (7)

Ngram(S,Q) =

∑

gramn∈S Countmatch (gramn)
∑

gramn∈S Count (gramn)
(8)

Where n stands for the length of the n-gram (n = 1, 2, 3, 4), and Countmatch (gramn) is
the number of n-grams co-occurring in the query and the candidate sentence, qj is the j-th
sentence in the query pool, and si is the i-th sentence in the sentence pool of sentence P .

1-gram Overlap Measure
A 1-gram overlap score measures the number of words common in the sentence in hand

and the query related words. This can be computed as follows:

1gram Overlap Score =

∑

w1∈S Countmatch (w1)
∑

w1∈S Count (w1)
(9)

Where S is the set of content words in the candidate sentence and Countmatch is the
number of matches between the sentence content words and query related words. Count (gramn)
is the number of w1.

Note that in order to measure the 1-gram score we took the query related words instead
of the exact query words. The motivation behind this is the sentence which has word(s)
that are not exactly the query words but their synonyms, hypernyms, hyponym or gloss
words, will get counted.

Example:

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and expectations reported in the press.

Sentence The Frankfurt-based body said in its annual study released today that it has
decided on two themes for the new currency: history of European civilization and
abstract or concrete paintings.

6. hence forth content words are the nouns, verbs, adverbs and adjectives.

14

Complex Question Answering: Unsupervised Approaches

1-gram Score 0.06666 (After normalization7).

Note that the above sentence has a 1-gram overlap score of 0.06666 even though it has
no exact word common with the query words. It got this score because the sentence word
study is a synonym of the query word report.

Other N-gram Overlap Measures

As above, we can calculate the other n-gram overlap scores. For example, considering
the following query sentence and document sentence (From DUC 2007 collection), we have 4
matching 2-grams: (“1 1999”,“of Euro”, “on January” and “January 1”). Hence, employing
the formula given above, we get the following 2-gram score after normalization. 3-gram score
is also found accordingly.

Query Sentence: Describe steps taken and worldwide reaction prior to introduction of
the Euro on January 1, 1999. Include predictions and expectations reported in the
press.

Document Sentence: Despite skepticism about the actual realization of a single Euro-
pean currency as scheduled on January 1, 1999, preparations for the design of the
Euro note have already begun.

2-gram: 0.14815

3-gram: 0.0800

4.2.2 LCS and WLCS

A sequence W = [w1, w2, ..., wn] is a subsequence of another sequence X = [x1, x2, ..., xm] ,
if there exists a strict increasing sequence [i1, i2, ..., in] of indices of X such that for all
j = 1, 2, ..., n we have xij = wj (Cormen, Leiserson, & Rivest, 1989). Given two sequences
S1 and S2, the longest common subsequence (LCS) of S1 and S2 is a common subsequence
with maximum length (Lin, 2004).

The longer the LCS of two sentences is, the more similar the two sentences are. We
used LCS-based F-measure to estimate the similarity between the document sentence S of
length m and the query sentence Q of length n as follows:

Rlcs(S,Q) =
LCS(S,Q)

m
(10)

Plcs(S,Q) =
LCS(S,Q)

n
(11)

Flcs(S,Q) = (1− α)× Plcs(S,Q) + α×Rlcs(S,Q) (12)

Where LCS(S,Q) is the length of a longest common subsequence of S and Q, and α is
a constant that determines the importance of precision and recall. While computing the
LCS measure each document sentence and query sentence are viewed as a sequence of words.

7. We normalize each of the feature values corresponding to a sentence with respect to the entire context
of a particular document.

15

Chali, Joty, & Hasan

The intuition is that the longer the LCS of these two is the more similar they are. Here
the recall (Rlcs(S,Q)) is the ratio of the length of the longest common subsequence of S and
Q to the document sentence length that measures the completeness. Whereas the precision
(Plcs(S,Q)) is the ratio of the length of the longest common subsequence of S and Q to the
query sentence length which is a measure of exactness. To obtain the equal importance
to precision and recall we set the value of α as 0.5. Equation 12 is called the LCS-based
F-measure. Notice that Flcs is 1 when, S=Q; and Flcs is 0 when there is nothing in
common between S and Q.

One advantage of using LCS is that it does not require consecutive matches but in-
sequence matches that reflect sentence level word order as n-grams. The other advantage is
that it automatically includes longest in-sequence common n-grams. Therefore, no prede-
fined n-gram length is necessary. Moreover, it has the property that its value is less than or
equal to the minimum of the unigram (i.e. 1-gram) F-measure of S and Q. Unigram recall
reflects the proportion of words in S that are also present in Q; while unigram precision
is the proportion of words in Q that are also in S. Unigram recall and precision count all
co-occurring words regardless of their orders; while LCS counts in-sequence co-occurrences.

By only awarding credit to in-sequence unigram matches, LCS measure also captures
sentence level structure in a natural way. Consider the following example:

S1 John shot the thief

S2 John shot the thief

S3 the thief shot John

Using S1 as reference sentence, and S2 and S3 as the sentences under consideration S2
and S3 would have the same 2-gram score since they both have one bigram (i.e. “the thief”)
in common with S1. However, S2 and S3 have very different meanings. In case of LCS S2
has a score of 3/4=0.75 and S3 has a score of 2/4=0.5 with α = 0.5. Therefore, S2 is better
than S3 according to LCS.

However, LCS suffers one disadvantage in that it only counts the main in-sequence
words; therefore, other alternative LCSes and shorter sequences are not reflected in the
final score. For example, given the following candidate sentence:

S4 the thief John shot

Using S1 as its reference, LCS counts either “the thief” or “John shot” but not both;
therefore, S4 has the same LCS score as S3 while 2-gram would prefer S4 over S3.

In order to measure the LCS score for a sentence we took a similar approach as the pre-
vious section using WordNet (i.e. creation of sentence pool and query pool). We calculated
the LCS score using the following formula:

LCS score = maxi(maxj Flcs(si, qj)) (13)

Where qj is the j-th sentence in the query pool, and si is the i-th sentence in the
sentence pool.

16

Complex Question Answering: Unsupervised Approaches

The basic LCS has a problem in that it does not differentiate LCSes of different spatial
relations within their embedding sequences (Lin, 2004). For example, given a reference
sequence S and two candidate sequences Y1 and Y2 as follows:

S: A B C D E F G

Y1 : A B C D H I K

Y2 : A H B K C I D

Y1 and Y2 have the same LCS score. However, Y1 should be better choice than Y2 because
Y1 has consecutive matches. To improve the basic LCS method we can store the length of
consecutive matches encountered so far to a regular two dimensional dynamic program table
computing LCS. We call it weighted LCS (WLCS) and use k to indicate the length of the
current consecutive matches ending at words xi and yj. Given two sentences X and Y,
the WLCS score of X and Y can be computed using the similar dynamic programming
procedure as stated by Lin (2004). We use WLCS as it has the advantage of not measuring
the similarity by taking the words in a higher dimension like string kernels which indeed
reduces the time complexity. As before, we computed the WLCS-based F-measure in the
same way using both the query pool and the sentence pool.

WLCS score = maxi(maxj Fwlcs(si, qj)) (14)

Example:

Query Sentence: Describe steps taken and worldwide reaction prior to introduction of
the Euro on January 1, 1999. Include predictions and expectations reported in the
press.

Document Sentence: Despite skepticism about the actual realization of a single Euro-
pean currency as scheduled on January 1, 1999, preparations for the design of the
Euro note have already begun.

We find 6 matching strings: (“of on 1 Euro 1999 January”) in the longest common
subsequence considering this sentence and related sentences. For WLCS we set the
weight as 1.2. After normalization, we get the following LCS and WLCS scores for
the sentence applying the above formula.

LCS Score: 0.27586

WLCS Score: 0.15961

4.2.3 Skip-Bigram Measure

A skip-bigram is any pair of words in their sentence order allowing for arbitrary gaps. Skip-
bigram measures the overlap of skip-bigrams between a candidate sentence and a query
sentence (Lin, 2004). We rely on the query pool and the sentence pool as before using
WordNet. Considering the following sentences:

17

Chali, Joty, & Hasan

S1 John shot the thief

S2 John shoot the thief

S3 the thief shoot John

S4 the thief John shot

we get that each sentence has C(4,2)=6 skip-bigrams8. For example, S1 has the following
skip-bigrams: (“John shot”, “John the”, “John thief”, “shot the”, “shot thief” and “the
thief”) S2 has three skip bi-gram matches with S1 (“John the”, “John thief”, “the thief”),
S3 has one skip bi-gram match with S1 (“the thief”), and S4 has two skip bi-gram matches
with S1 (“John shot”, “the thief”).

The skip bi-gram score between the document sentence S of length m and the query
sentence Q of length n can be computed as follows:

Rskip2(S,Q) =
SKIP2(S,Q)

C(m, 2)
(15)

Pskip2(S,Q) =
SKIP2(S,Q)

C(n, 2)
(16)

Fskip2(S,Q) = (1− α)× Pskip2(S,Q) + α×Rskip2(S,Q) (17)

Where SKIP2(S,Q) is the number of skip bi-gram matches between S and Q, and
α is a constant that determines the importance of precision and recall. We set the value
of α as 0.5 to associate the equal importance to precision and recall. C is the combination
function. We call the equation 17 the skip bigram-based F-measure. We computed the skip
bigram-based F-measure using the formula:

SKIP BIGRAM = maxi(maxj Fskip2(si, qj)) (18)

For example, given the following query and the sentence, we get 8 skip-bigrams: (“on 1”,
“January 1”, “January 1999”, “of Euro”, “1 1999”, “on 1999”, “on January” and “of on”).
Applying the equations above, we get skip bi-gram score of 0.05218 after normalization.

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and expectations reported in the press.

Sentence Despite skepticism about the actual realization of a single European currency
as scheduled on January 1, 1999, preparations for the design of the Euro note have
already begun.

Skip bi-gram Score: 0.05218

8. C(n, r) = n!
r!×(n−r)!

18

Complex Question Answering: Unsupervised Approaches

Note that skip bi-gram counts all in-order matching word pairs while LCS only counts
one longest common subsequence. We can put the constraint on the maximum skip distance,
dskip, between two in-order words to form a skip bi-gram which avoids the spurious matches
like “the the” or “of from”. For example, if we set dskip to 0 then it is equivalent to bi-gram
overlap measure (Lin, 2004). If we set dskip to 4 then only word pairs of at most 4 words
apart can form skip bi-grams. In our experiment we set dskip = 4 in order to ponder at
most 4 words apart to get the skip bi-grams.

Modifying the equations: 15, 16, and 17 to allow the maximum skip distance limit is
straightforward: following Lin (2004) we count the skip bi-gram matches, SKIP2(S,Q),
within the maximum skip distance and replace the denominators of the equations with
the actual numbers of within distance skip bi-grams from the reference sentence and the
candidate sentence respectively.

4.2.4 Head and Head Related-words Overlap

The number of head words common in between two sentences can indicate how much they
are relevant to each other. In order to extract the heads from the sentence (or query), the
sentence (or query) is parsed by Minipar9 and from the dependency tree we extract the
heads which we call exact head words. For example, the head word of the sentence: “John
eats rice” is “eat”.

We take the synonyms, hyponyms, and hypernyms10 of both the query-head words and
the sentence-head words and form a set of words which we call head-related words. We
measured the exact head score and the head-related score as follows:

ExactHeadScore =

∑

w1∈HeadSet Countmatch (w1)
∑

w1∈HeadSet Count (w1)
(19)

HeadRelatedScore =

∑

w1∈HeadRelSet Countmatch (w1)
∑

w1∈HeadRelSet Count (w1)
(20)

Where HeadSet is the set of head words in the sentence and Countmatch is the number
of matches between the HeadSet of the query and the sentence. HeadRelSet is the set of
synonyms, hyponyms, and hypernyms of head words in the sentence and Countmatch is
the number of matches between the head-related words of the query and the sentence. For
example, below we list the head words for a query and a sentence and their measures:

Query: Describe steps taken and worldwide reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and expectations reported in the press.

Heads for Query: include, reaction, step, take, describe, report, Euro, introduction, press,
prediction, 1999, expectation

Sentence: The Frankfurt-based body said in its annual report released today that it has
decided on two themes for the new currency: history of European civilization and
abstract or concrete paintings.

9. http://www.cs.ualberta.ca/ lindek/minipar.htm
10. hypernym and hyponym levels are restricted to 2 and 3 respectively.

19

Chali, Joty, & Hasan

Heads for Sentence: history, release, currency, body, report,painting, say, civilization,
theme, decide.

Exact Head Score: 1
11 = 0.09

Head Related Score: 0

4.3 Lexical Semantic Features

We form a set of words which we call QueryRelatedWords by taking the content words from
the query, their first-sense synonyms, the nouns’ hypernyms/hyponyms, and the nouns’
gloss definitions using WordNet.

4.3.1 Synonym Overlap

The synonym overlap measure is the overlap between the list of synonyms of the content
words extracted from the candidate sentence and query related words. This can be computed
as follows:

Synonym Overlap Score =

∑

w1∈SynSet Countmatch (w1)
∑

w1∈SynSet Count (w1)
(21)

Where SynSet is the synonym set of the content words in the sentence and Countmatch is
the number of matches between the SynSet and query related words.

4.3.2 Hypernym/Hyponym Overlap

The hypernym/hyponym overlap measure is the overlap between the list of hypernyms (level
2) and hyponyms (level 3) of the nouns extracted from the sentence in consideration and
query related words. This can be computed as follows:

Hypernym/hyponym overlap score =

∑

h1∈HypSet Countmatch (h1)
∑

h1∈HypSet Count (h1)
(22)

Where HypSet is the hyponym/hyponym set of the nouns in the sentence and Countmatch is
the number of matches between the HypSet and query related words.

4.3.3 Gloss Overlap

The gloss overlap measure is the overlap between the list of content words that are extracted
from the gloss definition of the nouns in the sentence in consideration and query related
words. This can be computed as follows:

Gloss Overlap Score =

∑

g1∈GlossSet Countmatch (g1)
∑

g1∈GlossSet Count (g1)
(23)

Where GlossSet is the set of content words (i.e. nouns, verbs and adjectives) taken from
the gloss definition of the nouns in the sentence and Countmatch is the number of matches
between the GlossSet and query related words.

20

Complex Question Answering: Unsupervised Approaches

Example:
For example, given the query the following sentence gets synonym overlap score of

0.33333, hypernym/hyponym overlap score of 0.1860465 and gloss overlap score of 0.1359223.

Query Describe steps taken and worldwide reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and expectations reported in the press.

Sentence The Frankfurt-based body said in its annual report released today that it has
decided on two themes for the new currency: history of European civilization and
abstract or concrete paintings.

Synonym Overlap Score: 0.33333

Hypernym/Hyponym Overlap Score: 0.1860465

Gloss Overlap Score: 0.1359223

4.4 Statistical Similarity Measures

Statistical similarity measures are based on the co-occurrence of similar words in a corpus.
Two words are termed as similar if they belong to the same context. We used the thesaurus
provided by Dr. Dekang Lin11 for these purpose. We have used two statistical similarity
measures:

Dependency-based similarity measure
This method uses the dependency relations among words in order to measure the simi-

larity (Lin, 1998b). It extracts the dependency triples and then uses a statistical approach
to measure the similarity. Using the given corpus one can retrieve the most similar words
for a given word. The similar words are grouped into clusters.

Note that for a word there can be more than one cluster. Each cluster represents the
sense of the word and its similar words for that sense. So, selecting the right cluster for a
word is itself a problem. Our goals are: i) to create a bag of similar words to the query
words and ii) once we get the bag of similar words (dependency based) for the query words
to measure the overlap score between it and the sentence words.

Creating Bag of Similar Words:
For each query-word we extract all of its clusters from the thesaurus. Now in order

to determine the right cluster for a query word we measure the overlap score between the
query related words (i.e. exact words, synonyms, hypernyms/hyponyms and gloss) and the
clusters. The hypothesis is that the cluster that has more words in common with the query
related words is the right cluster under the assumption that the first synonym is the correct
sense. We choose the cluster for a word which has the highest overlap score.

Overlap scorei =

∑

w1∈QueryRelatedWords Countmatch (w1)
∑

w1∈QueryRelatedWords Count (w1)
(24)

Cluster = argmaxi(Overlap Scorei) (25)

11. http://www.cs.ualberta.ca/ lindek/downloads.htm

21

Chali, Joty, & Hasan

where QueryRelatedWords is the set of exact words, synonyms, hyponyms/hypernyms,
and gloss words for the words in the query (i.e query words) and Countmatch is the number
of matches between the query related words and the ith cluster of similar words.

Measuring Overlap Score:

Once we get the clusters for the query words we measured the overlap between the
cluster words and the sentence words which we call dependency based similarity measure:

DependencyMeasure =

∑

w1∈SenWords Countmatch (w1)
∑

w1∈SenWords Count (w1)
(26)

Where SenWords is the set of words for the sentence and Countmatch is the number
of matches between the sentence words and the cluster of similar words.

Proximity-based similarity measure

This similarity is computed based on the linear proximity relationship between words
only (Lin, 1998a). It uses the information theoretic definition of similarity to measure the
similarity. The similar words are grouped into clusters. We took the similar approach to
measure this feature as the previous section except that we used a different thesaurus.

Example:
Considering the following query and sentence we get the following measures:

Query: Describe steps taken and worldwide reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and expectations reported in the press.

Sentence: The Frankfurt-based body said in its annual report released today that it has
decided on two themes for the new currency: history of European civilization and
abstract or concrete paintings.

Dependency-based Similarity Score: 0.0143678

Proximity-based Similarity Score: 0.04054054

4.5 Graph-based Similarity Measure

Erkan and Radev (2004) used the concept of graph-based centrality to rank a set of sentences
for producing generic multi-document summaries. A similarity graph is produced for the
sentences in the document collection. In the graph each node represents a sentence. The
edges between nodes measure the cosine similarity between the respective pair of sentences.
The degree of a given node is an indication of how important the sentence is. Figure 5
shows an example of a similarity graph for 4 sentences.

Once the similarity graph is constructed, the sentences are ranked according to their
eigenvector centrality. The LexRank performed well in the context of generic summariza-
tion. To apply LexRank to query-focused context a topic-sensitive version of LexRank is
proposed by Otterbacher et al. (2005). We followed a similar approach in order to calculate
this feature. The score of a sentence is determined by a mixture model of the relevance of
the sentence to the query and the similarity of the sentence to other high-scoring sentences.

22

Complex Question Answering: Unsupervised Approaches

Figure 5: LexRank similarity

Relevance to the Question
We first stem out all the sentences in the collection and compute the word IDFs (Inverse

Document Frequency) using the following formula:

idfw = log

(

N + 1

0.5 + sfw

)

(27)

Where N is the total number of sentences in the cluster, and sfw is the number of
sentences that the word w appears in.

We also stem out the questions and remove the stop words. The relevance of a sentence
s to the question q is computed by:

rel(s|q) =
∑

w∈q

log (tfw,s + 1)× log (tfw,q + 1)× idfw (28)

Where tfw,s and tfw,q are the number of times w appears in s and q, respectively.

Mixture Model
In the previous section we measured the relevance of a sentence to the question but a

sentence that is similar to the high scoring sentences in the cluster should also have a high
score. For instance, if a sentence that gets a high score based on the question relevance
model is likely to contain an answer to the question then a related sentence, which may
not be similar to the question itself, is also likely to contain an answer (Otterbacher et al.,
2005).

We capture this idea by the following mixture model:

p(s|q) =

{

d× rel(s|q)
∑

z∈C rel(z|q) + (1− d)×
∑

v∈C

sim(s, v)
∑

z∈C sim(z, v)

}

× p(v|q) (29)

Where p(s|q), the score of a sentence s given a question q, is determined as the sum
of its relevance to the question and the similarity to the other sentences in the collection.
C is the set of all sentences in the collection. The value of the parameter d which we call

23

Chali, Joty, & Hasan

“bias” is a trade-off between two terms in the equation and is set empirically. For higher
values of d we prefer the relevance to the question to the similarity to other sentences.
The denominators in both terms are for normalization. Although it is computationally
expensive, equation 29 calculates the sum over the entire collection since it is required for
the model to sense the global impact through the voting of all sentences. We measure the
cosine similarity weighted by word IDFs as the similarity between two sentences in a cluster:

sim(x, y) =

∑

w∈x,y tfw,x × tfw,y × (idfw)2
√

∑

xi∈x (tfxi,x × idfxi
)2 ×

√

∑

yi∈y (tfyi,y × idfyi
)2

(30)

Equation 29 can be written in matrix notation as follows:

p = [dA + (1− d)B]T p (31)

A is the square matrix such that for a given index i, all the elements in the i-th column
are proportional to rel(i|q). B is also a square matrix such that each entry B(i,j) is
proportional to sim(i,j). Both matrices are normalized so that row sums add up to 1.
Note that as a result of this normalization all rows of the resulting square matrix Q =
[dA + (1 − d)B] also add up to 1. Such a matrix is called stochastic and defines a Markov
chain. If we view each sentence as a state in a Markov chain then Q(i,j) specifies the
transition probability from state i to state j in the corresponding Markov chain. The
vector p we are looking for in Eq. 31 is the stationary distribution of the Markov chain.
An intuitive interpretation of the stationary distribution can be understood by the concept
of a random walk on the graph representation of the Markov chain. With probability d a
transition is made from the current node to the nodes that are similar to the query. With
probability (1-d) a transition is made to the nodes that are lexically similar to the current
node. Every transition is weighted according to the similarity distributions. Each element
of the vector p gives the asymptotic probability of ending up at the corresponding state in
the long run regardless of the starting state. The stationary distribution of a Markov chain
can be computed by a simple iterative algorithm called power method (Erkan & Radev,
2004). It starts with a uniform distribution. At each iteration the eigenvector is updated
by multiplying with the transpose of the stochastic matrix. Since the Markov chain is
irreducible and aperiodic the algorithm is guaranteed to terminate.

5. Ranking Sentences

We use several methods in order to rank sentences to generate summaries applying the
features described in Section 4. In this section we will describe the systems in detail.

5.1 Learning Feature-weights: A Local Search Strategy

In order to fine-tune the weights of the features, we have used a local search technique. Ini-
tially we set all the feature-weights, w1, · · · , wn, as equal values (i.e. 0.5) (see Algorithm 1).
Then we train the weights using the DUC 2006 data set. Based on the current weights we
score the sentences and generate summaries accordingly. We evaluate the summaries using

24

Complex Question Answering: Unsupervised Approaches

Input: Stepsize l, Weight Initial Value v
Output: A vector ~w of learned weights
Initialize the weight values wi to v.
for i← 1 to n do

rg1 = rg2 = prev = 0
while (true) do

scoreSentences(~w)
generateSummaries()
rg2 = evaluateROUGE()
if rg1 ≤ rg2 then

prev = wi

wi+ = l
rg1 = rg2

else
break

end

end

end
return ~w

Algorithm 1: Tuning weights using Local Search technique

the automatic evaluation tool ROUGE (Lin, 2004) (described in Section 7) and the ROUGE
value works as the feedback to our learning loop. Our learning system tries to maximize the
ROUGE score in every step by changing the weights individually by a specific step size (i.e.
0.01). That means, to learn weight wi we change the value of wi keeping all other weight
values (wj∀j 6=i) stagnant. For each weight wi the algorithm achieves the local maximum
(i.e. hill climbing) of ROUGE value.

Once we have learned the feature-weights we compute the final scores for the sentences
using the formula:

scorei = ~xi. ~w (32)

Where ~xi is the feature vector for i-th sentence, ~w is the weight vector, and scorei is the
score of i-th sentence.

5.2 Statistical Machine Learning Approaches

We experimented with two unsupervised statistical learning techniques with the features
extracted in the previous section for the sentence selection problem:

1. K-means learning

2. Expectation Maximization (EM) learning

5.2.1 The K-means Learning

K-means is a hard clustering algorithm that defines clusters by the center of mass of their
members. We start with a set of initial cluster centers that are chosen randomly and go

25

Chali, Joty, & Hasan

through several iterations of assigning each object to the cluster whose center is closest.
After all objects have been assigned we recompute the center of each cluster as the centroid
or mean (µµµ) of its members. The distance function we use is squared Euclidean distance
instead of the true Euclidean distance.

Since the square root is a monotonically growing function squared Euclidean distance
has the same result as the true Euclidean distance but the computation overload is smaller
when the square root is dropped.

Once we have learned the means of the clusters using the K-means algorithm our next
task is to rank the sentences according to a probability model. We have used Bayesian
model in order to do so. Bayes’ law says:

P (qk|xxx,Θ) =
p(xxx|qk,Θ)P (qk|Θ)

p(xxx|Θ)

=
p(xxx|qk,Θ)P (qk|Θ)

∑K
k=1 p(xxx|qk,Θ)p(qk|Θ)

(33)

where qk is a cluster, xxx is a feature vector representing a sentence, and Θ is the parameter
set of all class models. We set the weights of the clusters as equiprobable (i.e. P (qk|Θ) =
1/K). We calculated p(xxx|qk,Θ) using the gaussian probability distribution. The gaussian
probability density function (pdf) for the d-dimensional random variable xxx is given by:

p(µµµ,ΣΣΣ)(xxx) =
e

−1
2

(xxx−µµµ)TΣΣΣ−1(xxx−µµµ)

√
2π

d√
det(ΣΣΣ)

(34)

where µµµ, the mean vector, and ΣΣΣ, the covariance matrix, are the parameters of the
gaussian distribution. We get the means (µµµ) from the K-means algorithm and we calculate
the covariance matrix using the unbiased covariance estimation procedure:

Σ̂ΣΣj =
1

N − 1

N
∑

i=1

(xxxi −µµµj)(xxxi −µµµj)
T (35)

5.2.2 The EM Learning

The EM algorithm for gaussian mixture models is a well known method for cluster analysis.
A useful outcome of this model is that it produces a likelihood value of the clustering model
and the likelihood values can be used to select the best model from a number of different
models providing that they have the same number of parameters (i.e. same number of
clusters).

26

Complex Question Answering: Unsupervised Approaches

Input: A sample of n data-points (xxx) each represented by a feature vector of length
L

Input: Number of Clusters K
Output: An array SSS of K-means-based Scores
Data: Array dddnK , µµµK , ΣΣΣK

Data: Array CCCK , yyynK

Randomly choose K data-points as K initial means: µµµk, k = 1, · · · ,K.
repeat

for i← 1 to n do
for j ← 1 to K do

dddij = ‖xxxi −µµµj‖2 = (xxxi −µµµj)
T (xxxi −µµµj)

end
if dddik < dddil,∀l 6= k then

assign xxxi to CCCk.
end

end
for i← 1 to K do

µµµi =

∑

xxxj∈CCCi
xxxj

|CCCi|
end

until no further change occurs ;
/* calculating the covariances for each cluster */

for i← 1 to K do
m = |CCCi|
for j ← 1 to m do

ΣΣΣi + = (CCCij −µµµi) ∗ (CCCij −µµµi)
T

end
ΣΣΣi ∗ = (1/(m− 1))

end
/* calculating the scores for sentences */

for i← 1 to n do
for j ← 1 to K do

yij = e
−1
2 (xxxi−µµµj)

T
ΣΣΣ−1

j (xxxi−µµµj)
√

2π
d√

det(ΣΣΣj)

end
for j ← 1 to K do

zij = (yij ∗ wj)/
∑K

j=1 yij ∗ wj ; // where, wj = 1/K

end
m = max(µµµk) ∀k
Push zim to SSS

end
return SSS

Algorithm 2: Computing K-means based similarity measure

27

Chali, Joty, & Hasan

A significant problem with the EM algorithm is that it converges to a local maximum
of the likelihood function and hence the quality of the result depends on the initialization.
This problem along with a method for improving the initialization is discussed later in this
section.

EM is a “soft” version of the K-means algorithm described above. As with K-means we
start with a set of random cluster centers c1 · · · ck. In each iteration we do a soft assignment
of the data-points to every cluster by calculating their membership probabilities. EM is
an iterative two step procedure: 1. Expectation-step and 2. Maximization-step. In the
expectation step we compute expected values for the hidden variables hi,j which are cluster
membership probabilities. Given the current parameters we compute how likely it is that
an object belongs to any of the clusters. The maximization step computes the most likely
parameters of the model given the cluster membership probabilities.

The data-points are considered to be generated by a mixture model of k-gaussians of
the form:

P (x) =
k

∑

i=1

P (C = i)P (x|C = i) =
k

∑

i=1

P (C = i)P (x|µµµi,ΣΣΣi) (36)

where the total likelihood of model Θ with k components, given the observed data points
X = xxx1, · · · ,xxxn, is:

L(Θ|X) =
n

∏

i=1

k
∑

j=1

P (C = j)P (xxxi|Θj) =
n

∏

i=1

k
∑

j=1

wjP (xxxi|µµµj,ΣΣΣj) (37)

⇔
n

∑

i=1

log
k

∑

j=1

wjP (xxxi|µµµj,ΣΣΣj) (taking the log likelihood) (38)

where P is the probability density function (i.e. eq 34). µµµj and ΣΣΣj are the mean and
covariance matrix of component j, respectively. Each component contributes a proportion,
wj , of the total population such that:

∑K
j=1 wj = 1.

Log likelihood can be used instead of likelihood as it turns the product into a sum. We
describe the EM algorithm for estimating a gaussian mixture.

Singularities The covariance matrix ΣΣΣ above must be non-singular or invertible. The
EM algorithm may converge to a position where the covariance matrix becomes singular
(|ΣΣΣ| = 0) or close to singular, that means it is not invertible anymore. If the covariance
matrix becomes singular or close to singular then EM may result in wrong clusters. We
restrict the covariance matrices to become singular by testing these cases at each iteration
of the algorithm as follows:

if (
√

|ΣΣΣ| > 1e−9) then update ΣΣΣ

else do not update ΣΣΣ

28

Complex Question Answering: Unsupervised Approaches

Discussion: Starting values for the EM algorithm

The convergence rate and success of clustering using the EM algorithm can be degraded
by a poor choice of starting values for the means, covariances, and weights of the com-
ponents. We experimented with one summary (for document number D0703A from DUC
2007) in order to test the impact of these initial values on the EM algorithm. The cluster
means are initialized with a heuristic that spreads them randomly around Mean(DATA)
with standard deviation

√

Cov(DATA) ∗ 10. Their initial covariance is set to Cov(DATA)
and the initial values of the weights are wj = 1/K where K is the number of clusters.

That is, for d-dimensional data-points the parameters of j−th component are as follows:

~µj = rand(1, · · · , d) ∗
√

ΣΣΣ(DATA) ∗ 10 + ~µ(DATA)

ΣΣΣj = ΣΣΣ(DATA)

wj = 1/K

The highly variable nature of the results of the tests is reflected in the very inconsis-
tent values for the total log likelihood and the results of repeated experiments indicated
that using random starting values for initial estimates of the means frequently gave poor
results. There are two possible solutions to this problem. In order to get good results
from using random starting values (as specified by the algorithm) we will run the EM al-
gorithm several times and choose the initial configuration for which we get the maximum
log likelihood among all configurations. Choosing the best one among several runs is a very
computer intensive process. So, to improve the outcome of the EM algorithm on gaussian
mixture models, it is necessary to find a better method of estimating initial means for the
components.

The best starting position for the EM algorithm, in regard to the estimates of the means,
would be to have one estimated mean per cluster which is closer to the true mean of that
cluster.

To achieve this aim we explored the widely used “K-means” algorithm as a cluster
(means) finding method. That is, the means found by the K-means clustering above will
be utilized as the initial means for the EM and we calculate the initial covariance matrices
using the unbiased covariance estimation procedure (Equation 35).

Ranking the Sentences

Once the sentences are clustered by the EM algorithm, we identify the sentences which
are question-relevant by checking their probabilities, P (qr|xxxi,Θ) where qr denotes the clus-
ter “question-relevant”. If for a sentence xxxi, P (qr|xxxi,Θ) > 0.5 then xxxi is considered to
be question-relevant. The cluster which has the mean values greater than the other one is
considered as the question-relevant cluster.

Our next task is to rank the question-relevant sentences in order to include them in the
summary. This can be done easily by multiplying the feature vector ~xi with the weight
vector ~w that we learned by applying the local search technique (Equation 32).

29

Chali, Joty, & Hasan

Input: A Sample of n data-points (xxx) each represented by a feature vector of length
L

Input: Number of Clusters K
Output: An array S of EM-based Scores
Start with K initial Gaussian models: N(µµµk,ΣΣΣk) k = 1, · · · ,K, with equal priors set
to P (qk) = 1/K.
repeat

/* Estimation step: compute the probability P (q
(i)
k |xxxj,Θ

(i)) for each

data point xj, j = 1, · · · , n, to belong to the class q
(i)
k */

for j ← 1 to n do
for k ← 1 to K do

P (q
(i)
k |xxxj,Θ

(i)) =
P (q

(i)
k |Θ(i))p(xxxj|q(i)

k ,Θ(i))

p(xxxj|Θ(i))

=
P (q

(i)
k |Θ(i))p(xxxj|µµµ(i)

k ,ΣΣΣ
(i)
k)

∑K
k=1 P (q

(i)
k |Θ(i))p(xxxj|µµµ(i)

k ,ΣΣΣ
(i)
k)

end

end
/* Maximization step: */

for k ← 1 to K do
for j ← 1 to n do

// update the means:

µµµi+1
k =

∑n
j=1 xxxjP (q

(i)
k |xxxj ,Θ

(i))
∑n

j=1 P (q
(i)
k |xxxj,Θ(i))

// update the variances:

ΣΣΣ
(i+1)
k =

∑n
j=1 P (q

(i)
k |xxxj ,Θ

(i))(xxxj −µµµ
(i+1)
k)(xxxj −µµµ

(i+1)
k)T

∑N
j=1 P (q

(i)
k |xxxj,Θ(i))

// update the priors:

P (qk(i + 1)|Θ(i+1)) =
1

n

n
∑

j=1

P (q
(i)
k |xxxj,Θ

(i))

end

end
until the total likelihood increase falls under some desired threshold ;
return S

Algorithm 3: Computing EM-based similarity measure

30

Complex Question Answering: Unsupervised Approaches

6. Redundancy Checking and Generating Summary

Once the sentences are scored the easiest way to create summaries is just to output the
topmost N sentences until the required summary length is reached. In that case, we are
ignoring other factors: such as redundancy and coherence.

As we know that text summarization clearly entails selecting the most salient informa-
tion and putting it together in a coherent summary. The answer or summary consists of
multiple separately extracted sentences from different documents. Obviously, each of the
selected text snippets should individually be important. However, when many of the com-
peting sentences are included in the summary the issue of information overlap between parts
of the output comes up and a mechanism for addressing redundancy is needed. Therefore,
our summarization systems employ two levels of analysis: first a content level where every
sentence is scored according to the features or concepts it covers, and second a textual level,
when, before being added to the final output, the sentences deemed to be important are
compared to each other and only those that are not too similar to other candidates are in-
cluded in the final answer or summary. Goldstein, Kantrowitz, Mittal, and Carbonell (1999)
observed this in what the authors called “Maximum-Marginal-Relevance (MMR)”. Follow-
ing Hovy et al. (2006) we modeled this by BE overlap between an intermediate summary
and a to-be-added candidate summary sentence.

We call this overlap ratio R, where R is between 0 and 1 inclusively. Setting R = 0.7
means that a candidate summary sentence, s, can be added to an intermediate summary,
S, if the sentence has a BE overlap ratio less than or equal to 0.7.

7. Experimental Evaluation

This section describes the results of experiments conducted using DUC12 2007 dataset
provided by NIST 13. Some of the questions these experiments address include:

• How do the different features affect the behavior of the summarizer system?

• Which one of the algorithms (K-means, EM and Local Search) performs better for
this particular problem?

We used the main task of DUC 2007 for evaluation. The task was:

“Given a complex question (topic description) and a collection of relevant documents,
the task is to synthesize a fluent, well-organized 250-word summary of the documents that
answers the question(s) in the topic.”

The documents of DUC 2007 came from the AQUAINT corpus comprising newswire
articles from the Associated Press and New York Times (1998-2000) and Xinhua News
Agency (1996-2000). NIST assessors developed topics of interest to them and choose a set
of 25 documents relevant (document cluster) to each topic. Each topic and its document
cluster were given to 4 different NIST assessors including the developer of the topic. The
assessor created a 250-word summary of the document cluster that satisfies the information

12. http://www-nlpir.nist.gov/projects/duc/
13. National Institute of Standards and Technology

31

Chali, Joty, & Hasan

need expressed in the topic statement. These multiple “reference summaries” are used in
the evaluation of summary content.

The purpose of our experiments is to study the impact of different features. To ac-
complish this we generated summaries for the 45 topics of DUC 2007 by each of our seven
systems defined as below:

• The LEX system generates summaries based on only lexical features (Section 4.2):
n-gram (n=1,2,3,4), LCS, WLCS, skip bi-gram, head, head synonym and BE overlap.

• The LEXSEM system considers only lexical semantic features (Section 4.3): syn-
onym, hypernym/hyponym, gloss, dependency-based and proximity-based similarity.

• The SYN system generates summary based on only syntactic feature (Section 4.1.1).

• The COS system generates summary based on the graph-based method (Section 4.5).

• The SYS1 system considers all the features except the syntactic and semantic features
(All features except section 4.1).

• The SYS2 system considers all the features except the semantic feature (All features
except section 4.1.2) and

• The ALL system generates summaries taking all the features (Section 4) into account.

7.1 Automatic Evaluation

ROUGE We carried out automatic evaluation of our summaries using the ROUGE (Lin,
2004) toolkit, which has been widely adopted by DUC for automatic summarization eval-
uation. ROUGE stands for “Recall-Oriented Understudy for Gisting Evaluation”. It is a
collection of measures that determines the quality of a summary by comparing it to refer-
ence summaries created by humans. The measures count the number of overlapping units
such as n-gram, word-sequences, and word-pairs between the system-generated summary to
be evaluated and the ideal summaries created by humans. The available ROUGE measures
are: ROUGE-N (N=1,2,3,4), ROUGE-L, ROUGE-W and ROUGE-S. ROUGE-N is n-gram
recall between a candidate summary and a set of reference summaries. ROUGE-L measures
the longest common subsequence (LCS) which takes into account sentence level structure
similarity naturally and identifies longest co-occurring insequence n-grams automatically.
ROUGE-W measures the weighted longest common subsequence (WLCS) providing an im-
provement to the basic LCS method of computation to credit the sentences having the
consecutive matches of words. ROUGE-S is the overlap of skip-bigrams between a candi-
date summary and a set of reference summaries where skip-bigram is any pair of words in
their sentence order allowing for arbitrary gaps. Most of these ROUGE measures have been
applied in automatic evaluation of summarization systems and achieved very promising
results (Lin, 2004).

For all our systems, we report the widely accepted important metrics: ROUGE-2 and
ROUGE-SU. We also present the ROUGE-1 scores since this has never been shown to not
correlate with human judgement. All the ROUGE measures were calculated by running

32

Complex Question Answering: Unsupervised Approaches

ROUGE-1.5.5 with stemming but no removal of stopwords. ROUGE run-time parameters
were set as the same as DUC 2007 evaluation setup. They are:

ROUGE-1.5.5.pl -2 -1 -u -r 1000 -t 0 -n 4 -w 1.2 -m -l 250 -a

We also show 95% confidence interval of the important evaluation metrics for our systems
to report significance for doing meaningful comparison. We use the ROUGE tool for this
purpose. ROUGE uses a randomized method named bootstrap resampling to compute the
confidence interval. We used 1000 sampling points in the bootstrap resampling.

We report the evaluation scores of one baseline system (The BASE column) in each of
the tables in order to show the level of improvement our systems achieve. The baseline
system generates summaries by returning all the leading sentences (up to 250 words) in the
〈TEXT 〉 field of the most recent document(s).

While presenting the results we highlight the top two F-scores and bottom one F-score
to indicate significance at a glance.

7.1.1 Results and Discussion

The K-means Learning Table 1 shows the ROUGE-1 scores for different combinations
of features in the K-means learning. It is noticeable that the K-means performs best for
the graph-based cosine similarity feature. Note that including syntactic feature does not
improve the score. Also, including syntactic and semantic features increases the score
but not by a significant amount. Summaries based on only lexical features give us good
ROUGE-1 evaluation.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.366 0.360 0.346 0.378 0.376 0.365 0.366 0.312
Precision 0.397 0.393 0.378 0.408 0.403 0.415 0.415 0.369
F-score 0.381 0.376 0.361 0.393 0.389 0.388 0.389 0.334

Table 1: ROUGE-1 measures in K-means learning

Table 2 shows the ROUGE-2 scores for different combinations of features in the K-means
learning. Just like ROUGE-1 graph-based cosine similarity feature performs well here. We
get a significant improvement in ROUGE-2 score when we include syntactic feature with all
other features. Semantic features do not affect the score much. Lexical Semantic features
perform well here.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.074 0.076 0.063 0.085 0.074 0.077 0.076 0.060
Precision 0.080 0.084 0.069 0.092 0.080 0.107 0.109 0.072
F-score 0.077 0.080 0.065 0.088 0.077 0.090 0.090 0.064

Table 2: ROUGE-2 measures in K-means learning

33

Chali, Joty, & Hasan

As Table 3 shows: ROUGE-SU scores are the best for all features without syntactic and
semantic. Including syntactic/semantic features with other features degrades the scores.
Summaries based on only lexical features achieve good scores.

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.131 0.127 0.116 0.139 0.135 0.134 0.134 0.105
Precision 0.154 0.152 0.139 0.162 0.176 0.174 0.174 0.124
F-score 0.141 0.138 0.126 0.149 0.153 0.152 0.152 0.112

Table 3: ROUGE-SU measures in K-means learning

Table 4 shows the 95% confidence interval (for F-measures in K-means learning) of the
important ROUGE evaluation metrics for all our systems in comparison to the confidence
interval of the baseline system. It can be seen that our systems have performed significantly
better than the baseline system in most of the cases.

Systems ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.326680 - 0.342330 0.060870 - 0.068840 0.108470 - 0.116720

LEX 0.362976 - 0.400498 0.064983 - 0.090981 0.128390 - 0.157784

LEXSEM 0.357154 - 0.395594 0.069909 - 0.091376 0.126157 - 0.151831

SYN 0.345512 - 0.377525 0.056041 - 0.076337 0.116191 - 0.136799

COS 0.372804 - 0.413440 0.075127 - 0.104377 0.134971 - 0.164885

SYS1 0.367817 - 0.408390 0.063284 - 0.095170 0.132061 - 0.162509

SYS2 0.358237 - 0.400000 0.065219 - 0.093733 0.123703 - 0.153165

ALL 0.350756 - 0.404275 0.066281 - 0.095393 0.124157 - 0.159447

Table 4: 95% confidence intervals for K-means system

The EM learning Table 5 to Table 7 show different ROUGE measures for the feature
combinations in the context of the EM learning. It can be easily noticed that for all these
measures we get significant amount of improvement in ROUGE scores when we include
syntactic and semantic features along with other features. We get 3-15% improvement over
SYS1 in F-score when we include syntactic feature and 2-24% improvement when we include
syntactic and semantic features. The cosine similarity measure does not perform as well as
it did in the K-means experiments. Summaries considering only the lexical features achieve
good results.

Table 8 shows the 95% confidence interval (for F-measures in EM learning) of the im-
portant ROUGE evaluation metrics for all our systems in comparison to the confidence
interval of the baseline system. We can see that our systems have performed significantly
better than the baseline system in most of the cases.

Local Search Technique The ROUGE scores based on the feature combinations are
given in Table 9 to Table 11. Summaries generated by including all features perform the

34

Complex Question Answering: Unsupervised Approaches

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.383 0.357 0.346 0.375 0.379 0.399 0.398 0.312
Precision 0.415 0.390 0.378 0.406 0.411 0.411 0.399 0.369
F-score 0.398 0.373 0.361 0.390 0.395 0.405 0.399 0.334

Table 5: ROUGE-1 measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.088 0.079 0.063 0.087 0.084 0.089 0.090 0.060
Precision 0.095 0.087 0.069 0.094 0.091 0.116 0.138 0.072
F-score 0.092 0.083 0.065 0.090 0.088 0.100 0.109 0.064

Table 6: ROUGE-2 measures in EM learning

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.145 0.128 0.116 0.138 0.143 0.145 0.143 0.105
Precision 0.171 0.153 0.139 0.162 0.167 0.186 0.185 0.124
F-score 0.157 0.139 0.126 0.149 0.154 0.163 0.161 0.112

Table 7: ROUGE-SU measures in EM learning

Systems ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.326680 - 0.342330 0.060870 - 0.068840 0.108470 - 0.116720

LEX 0.382874 - 0.416109 0.075084 - 0.110454 0.144367 - 0.172449

LEXSEM 0.352610 - 0.395048 0.070816 - 0.095856 0.125276 - 0.154562

SYN 0.345512 - 0.377525 0.056041 - 0.076337 0.115713 - 0.136599

COS 0.366364 - 0.410020 0.076088 - 0.104243 0.133251 - 0.164110

SYS1 0.378068 - 0.413658 0.077480 - 0.099739 0.141550 - 0.168759

SYS2 0.360319 - 0.414068 0.073661 - 0.112157 0.130022 - 0.171378

ALL 0.378177 - 0.412705 0.077515 - 0.115231 0.141345 - 0.164849

Table 8: 95% confidence intervals for EM system

35

Chali, Joty, & Hasan

best scores for all the measures. We get 7-15% improvement over SYS1 in F-score when
we include syntactic feature and 8-19% improvement over SYS1 in F-score when we include
syntactic and semantic features. In this case also lexical features (LEX) perform well but
not better than all features (ALL).

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.379 0.358 0.346 0.375 0.382 0.388 0.390 0.312
Precision 0.411 0.390 0.378 0.406 0.414 0.434 0.438 0.369
F-score 0.394 0.373 0.361 0.390 0.397 0.410 0.413 0.334

Table 9: ROUGE-1 measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.085 0.079 0.063 0.087 0.086 0.095 0.099 0.060
Precision 0.092 0.087 0.069 0.094 0.093 0.114 0.116 0.072
F-score 0.088 0.083 0.065 0.090 0.090 0.104 0.107 0.064

Table 10: ROUGE-2 measures in local search technique

Scores LEX LEXSEM SYN COS SYS1 SYS2 ALL BASE

Recall 0.143 0.128 0.116 0.138 0.145 0.148 0.150 0.105
Precision 0.168 0.153 0.139 0.162 0.170 0.195 0.196 0.124
F-score 0.155 0.139 0.126 0.149 0.157 0.169 0.170 0.112

Table 11: ROUGE-SU measures in local search technique

Table 12 shows the 95% confidence interval (for F-measures in local search technique)
of the important ROUGE evaluation metrics for all our systems in comparison to the confi-
dence interval of the baseline system. We find that our systems have performed significantly
better than the baseline system in most of the cases.

7.1.2 Comparison

From the results reported above we can see for all three algorithms our systems clearly out-
perform the baseline system. Table 13 shows the F-scores of the reported ROUGE measures
while Table 14 reports the 95% confidence intervals for the baseline system, the best system
in DUC 2007, and our three techniques taking all features (ALL) into consideration. We
can see that the method based on local search technique outperforms the other two and the
EM algorithm performs better than the K-means algorithm. If we analyze deeply, we find
that in all cases but ROUGE-SU with local search the confidence intervals do not overlap
with the best DUC 2007 system.

36

Complex Question Answering: Unsupervised Approaches

Systems ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.326680 - 0.342330 0.060870 - 0.068840 0.108470 - 0.116720

LEX 0.380464 - 0.409085 0.078002 - 0.100107 0.143851 - 0.166648

LEXSEM 0.353458 - 0.394853 0.070845 - 0.096261 0.125342 - 0.154729

SYN 0.345512 - 0.377525 0.056041 - 0.076337 0.115713 - 0.136599

COS 0.366364 - 0.410020 0.076088 - 0.104243 0.133251 - 0.164110

SYS1 0.381544 - 0.414534 0.079550 - 0.101246 0.144551 - 0.170047

SYS2 0.370310 - 0.415768 0.078760 - 0.114175 0.141043 - 0.174575

ALL 0.384897 - 0.416301 0.084181 - 0.114753 0.146302 - 0.171736

Table 12: 95% confidence intervals for local search system

Algorithms ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.334 0.064 0.112

Best System 0.438 0.122 0.174

K-means 0.389 0.089 0.152

EM 0.399 0.109 0.161

Local Search 0.413 0.107 0.170

Table 13: ROUGE F-scores for different systems

Algorithms ROUGE-1 ROUGE-2 ROUGE-SU

Baseline 0.326680 - 0.342330 0.060870 - 0.068840 0.108470 - 0.116720

Best System 0.431680 - 0.445970 0.118000 - 0.127680 0.169970 - 0.179390

K-means 0.350756 - 0.404275 0.066281 - 0.095393 0.124157 - 0.159447

EM 0.378177 - 0.412705 0.077515 - 0.115231 0.141345 - 0.164849

Local Search 0.384897 - 0.416301 0.084181 - 0.114753 0.146302 - 0.171736

Table 14: 95% confidence intervals for different systems

37

Chali, Joty, & Hasan

7.2 Manual Evaluation

For a sample of 105 summaries14 drawn from our different systems’ generated summaries
we conduct an extensive manual evaluation in order to analyze the effectiveness of our
approaches. The manual evaluation comprised a Pyramid-based evaluation of contents and
a user evaluation to get the assessment of linguistic quality and overall responsiveness.

7.2.1 Pyramid Evaluation

In the DUC 2007 main task, 23 topics were selected for the optional community-based
pyramid evaluation. Volunteers from 16 different sites created pyramids and annotated
the peer summaries for the DUC main task using the given guidelines15. 8 sites among
them created the pyramids. We used these pyramids to annotate our peer summaries to
compute the modified pyramid scores16. We used the DUCView.jar17 annotation tool for
this purpose. Table 15 to Table 17 show the modified pyramid scores of all our systems for
the three algorithms. A baseline system’s score is also reported. The peer summaries of the
baseline system are generated by returning all the leading sentences (up to 250 words) in
the 〈TEXT 〉 field of the most recent document(s). From these results we see that all our
systems perform better than the baseline system and inclusion of syntactic and semantic
features yields better scores. For all three algorithms we can also notice that the lexical
semantic features are the best in terms of modified pyramid scores.

7.2.2 User Evaluation

10 university graduate students judged the summaries for linguistic quality and overall
responsiveness. The given score is an integer between 1 (very poor) and 5 (very good) and
is guided by consideration of the following factors: 1. Grammaticality, 2. Non-redundancy,
3. Referential clarity, 4. Focus and 5. Structure and Coherence. They also assigned a
content responsiveness score to each of the automatic summaries. The content score is an
integer between 1 (very poor) and 5 (very good) and is based on the amount of information
in the summary that helps to satisfy the information need expressed in the topic narrative.
These measures were used at DUC 2007. Table 18 to Table 20 present the average linguistic
quality and overall responsive scores of all our systems for the three algorithms. The same
baseline system’s scores are given for meaningful comparison. From a closer look at these
results, we find that most of our systems perform worse than the baseline system in terms
of linguistic quality but achieve good scores in case of overall responsiveness. It is also
obvious from the tables that the exclusion of syntactic and semantic features often causes
lower scores. On the other hand, lexical and lexical semantic features show good overall
responsiveness scores for all three algorithms.

14. We have 7 systems for each of the 3 algorithms, cumulatively we have 21 systems. Randomly we chose
5 summaries for each of these 21 systems.

15. http://www1.cs.columbia.edu/ becky/DUC2006/2006-pyramid-guidelines.html
16. This equals the sum of the weights of the Summary Content Units (SCUs) that a peer summary matches,

normalized by the weight of an ideally informative summary consisting of the same number of contributors
as the peer.

17. http://www1.cs.columbia.edu/ ani/DUC2005/Tool.html

38

Complex Question Answering: Unsupervised Approaches

Systems Modified Pyramid Scores

Baseline 0.13874

LEX 0.44984

LEXSEM 0.51758

SYN 0.45762

COS 0.50368

SYS1 0.42872

SYS2 0.41666

ALL 0.49900

Table 15: Modified pyramid scores for K-means system

Systems Modified Pyramid Scores

Baseline 0.13874

LEX 0.51894

LEXSEM 0.53226

SYN 0.45058

COS 0.48484

SYS1 0.47758

SYS2 0.44734

ALL 0.49756

Table 16: Modified pyramid scores for EM system

Systems Modified Pyramid Scores

Baseline 0.13874

LEX 0.49760

LEXSEM 0.53912

SYN 0.43512

COS 0.49510

SYS1 0.46976

SYS2 0.46404

ALL 0.47944

Table 17: Modified pyramid scores for local search system

39

Chali, Joty, & Hasan

Systems Linguistic Quality Overall Responsiveness

Baseline 4.24 1.80

LEX 3.08 3.20

LEXSEM 4.08 3.80

SYN 3.24 3.60

COS 4.00 3.60

SYS1 2.72 2.20

SYS2 3.12 2.80

ALL 3.56 3.80

Table 18: Linguistic quality and responsive scores for K-means system

Systems Linguistic Quality Overall Responsiveness

Baseline 4.24 1.80

LEX 4.08 4.40

LEXSEM 3.56 3.40

SYN 4.20 3.80

COS 3.80 4.00

SYS1 3.68 3.80

SYS2 4.20 3.60

ALL 3.36 3.40

Table 19: Linguistic quality and responsive scores for EM system

Systems Linguistic Quality Overall Responsiveness

Baseline 4.24 1.80

LEX 3.24 2.40

LEXSEM 3.12 4.20

SYN 2.64 2.00

COS 3.40 3.40

SYS1 3.40 3.60

SYS2 3.12 3.80

ALL 3.20 3.20

Table 20: Linguistic quality and responsive scores for local search system

40

Complex Question Answering: Unsupervised Approaches

8. Conclusion and Future Work

In this paper we presented our works on answering complex questions. We extracted eigh-
teen important features for each of the sentences in the document collection. Later we used
a simple local search technique to fine-tune the feature weights. For each weight, wi, the
algorithm achieves the local maximum of the ROUGE value. In this way, once we learn
the weights we rank the sentences by multiplying the feature-vector with the weight-vector.
We also experimented with two unsupervised learning techniques: 1) EM and 2) K-means
with the features extracted. We assume that we have two clusters of sentences: 1. query-
relevant and 2. query-irrelevant. We learned the means of the clusters using the K-means
algorithm then we used Bayesian model in order to rank the sentences. The learned means
in the K-means algorithm are used as the initial means in the EM algorithm. We ap-
plied the EM algorithm to cluster the sentences into two classes : 1) query-relevant and 2)
query-irrelevant. We take out the query-relevant sentences and rank them using the learned
weights (i.e. in local search). For each of our methods of generating summaries we filter
out the redundant sentences using a redundancy checking module and generate summaries
by taking the top N sentences.

We also experimented with the effects of different kinds of features. We evaluated our
systems automatically using ROUGE and report the significance of our results through
95% confidence intervals. We conducted two types of manual evaluation: 1) Pyramid and
2) User Evaluation to further analyze the performance of our systems. Our experimental
results mostly show the following: (a) our approaches achieve promising results, (b) the
empirical approach based on a local search technique outperforms the other two learning
techniques and EM performs better than the K-means algorithm, (c) our systems achieve
better results when we include the tree kernel based syntactic and semantic features, and
(d) in all cases but ROUGE-SU with local search the confidence intervals do not overlap
with the best DUC 2007 system.

We are now experimenting with the supervised learning techniques (i.e. SVM, MAX-
ENT, CRF etc) and analyzing how they perform for this problem. Prior to that, we pro-
duced huge amount of labeled data automatically using similarity measures such as ROUGE
(Toutanova et al., 2007).

In the future we plan to decompose the complex questions into several simple questions
before measuring the similarity between the document sentence and the query sentence.
This will certainly serve to create more limited trees and subsequences which might increase
the precision. Thus, we expect that by decomposing complex questions into the sets of
subquestions that they entail systems can improve the average quality of answers returned
and achieve better coverage for the question as a whole.

Acknowledgments

We thank the anonymous reviewers for their useful comments on the earliest version of this
paper. Special thanks go to our colleagues for proofreading the paper. We are also grateful
to all the graduate students who took part in the user evaluation process. The research
reported here was supported by the Natural Sciences and Engineering Research Council
(NSERC) research grant and the University of Lethbridge.

41

Chali, Joty, & Hasan

Appendix A. Stop Word List

reuters ap jan feb mar apr
may jun jul aug sep oct
nov dec tech news index mon
tue wed thu fri sat ’s
a a’s able about above according
accordingly across actually after afterwards again
against ain’t all allow allows almost
alone along already also although always
am amid among amongst an and
another any anybody anyhow anyone anything
anyway anyways anywhere apart appear appreciate
appropriate are aren’t around as aside
ask asking associated at available away
awfully b be became because become
becomes becoming been before beforehand behind
being believe below beside besides best
better between beyond both brief but
by c c’mon c’s came can
can’t cannot cant cause causes certain
certainly changes clearly co com come
comes concerning consequently consider considering contain
containing contains corresponding could couldn’t course
currently d definitely described despite did
didn’t different do does doesn’t doing
don’t done down downwards during e
each edu eg e.g. eight either
else elsewhere enough entirely especially et
etc etc. even ever every everybody
everyone everything everywhere ex exactly example
except f far few fifth five
followed following follows for former formerly
forth four from further furthermore g
get gets getting given gives go
goes going gone got gotten greetings
h had hadn’t happens hardly has
hasn’t have haven’t having he he’s

42

Complex Question Answering: Unsupervised Approaches

hello help hence her here here’s
hereafter hereby herein hereupon hers herself
hi him himself his hither hopefully
how howbeit however i i’d i’ll
i’m i’ve ie i.e. if ignored
immediate in inasmuch inc indeed indicate
indicated indicates inner insofar instead into
inward is isn’t it it’d it’ll
it’s its itself j just k
keep keeps kept know knows known
l lately later latter latterly least
less lest let let’s like liked
likely little look looking looks ltd
m mainly many may maybe me
mean meanwhile merely might more moreover
most mostly mr. ms. much must
my myself n namely nd near
nearly necessary need needs neither never
nevertheless new next nine no nobody
non none noone nor normally not
nothing novel now nowhere o obviously
of off often oh ok okay
old on once one ones only
onto or other others otherwise ought
our ours ourselves out outside over
overall own p particular particularly per
perhaps placed please plus possible presumably
probably provides q que quite qv
r rather rd re really reasonably
regarding regardless regards relatively respectively right

43

Chali, Joty, & Hasan

s said same saw say saying
says second secondly see seeing seem
seemed seeming seems seen self selves
sensible sent serious seriously seven several
shall she should shouldn’t since six
so some somebody somehow someone something
sometime sometimes somewhat somewhere soon sorry
specified specify specifying still sub such
sup sure t t’s take taken
tell tends th than thank thanks
thanx that that’s thats the their
theirs them themselves then thence there
there’s thereafter thereby therefore therein theres
thereupon these they they’d they’ll they’re
they’ve think third this thorough thoroughly
those though three through throughout thru
thus to together too took toward
towards tried tries truly try trying
twice two u un under unfortunately
unless unlikely until unto up upon
us use used useful uses using
usually uucp v value various very
via viz vs w want wants
was wasn’t way we we’d we’ll
we’re we’ve welcome well went were
weren’t what what’s whatever when whence
whenever where where’s whereafter whereas whereby
wherein whereupon wherever whether which while
whither who who’s whoever whole whom
whose why will willing wish with
within without won’t wonder would would
wouldn’t x y yes yet you
you’d you’ll you’re you’ve your yours
yourself yourselves z zero

44

Complex Question Answering: Unsupervised Approaches

References

Bloehdorn, S., & Moschitti, A. (2007a). Combined syntactic and semantic kernels for text
classification. In 29th European Conference on IR Research, ECIR 2007, pp. 307–318
Rome, Italy.

Bloehdorn, S., & Moschitti, A. (2007b). Structure and semantics for expressive text kernels.
In CIKM-2007, pp. 861–864.

Chali, Y., & Joty, S. R. (2008a). Improving the performance of the random walk model
for answering complex questions.. In Proceedings of the 46th Annual Meeting of the
ACL-HLT. Short Paper Section, pp. 9–12 OH, USA.

Chali, Y., & Joty, S. R. (2008b). Selecting sentences for answering complex questions. In
Proceedings of EMNLP, pp. 304–313 Hawaii, USA.

Charniak, E. (1999). A Maximum-Entropy-Inspired Parser. In Technical Report CS-99-12
Brown University, Computer Science Department.

Collins, M., & Duffy, N. (2001). Convolution Kernels for Natural Language. In Proceedings
of Neural Information Processing Systems, pp. 625–632 Vancouver, Canada.

Cormen, T. R., Leiserson, C. E., & Rivest, R. L. (1989). Introduction to Algorithms. The
MIT Press.

Erkan, G., & Radev, D. R. (2004). LexRank: Graph-based Lexical Centrality as Salience
in Text Summarization. Journal of Artificial Intelligence Research, 22, 457–479.

Goldstein, J., Kantrowitz, M., Mittal, V., & Carbonell, J. (1999). Summarizing Text Doc-
uments: Sentence Selection and Evaluation Metrics. In Proceedings of the 22nd In-
ternational ACM Conference on Research and Development in Information Retrieval,
SIGIR, pp. 121–128 Berkeley, CA.

Guo, Y., & Stylios, G. (2003). A New Multi-document Summarization System. In Proceed-
ings of the Document Understanding Conference. NIST.

Hacioglu, K., Pradhan, S., Ward, W., Martin, J. H., & Jurafsky, D. (2003). Shallow
Semantic Parsing Using Support Vector Machines. In Technical Report TR-CSLR-
2003-03 University of Colorado.

Halliday, M., & Hasan, R. (1976). Cohesion in English. Longman, London.

Harabagiu, S., Lacatusu, F., & Hickl, A. (2006). Answering complex questions with random
walk models. In Proceedings of the 29th annual international ACM SIGIR conference
on Research and development in information retrieval, pp. 220 – 227. ACM.

Hirao, T., , Suzuki, J., Isozaki, H., & Maeda, E. (2004). Dependency-based sentence
alignment for multiple document summarization. In Proceedings of Coling 2004, pp.
446–452 Geneva, Switzerland. COLING.

45

Chali, Joty, & Hasan

Hovy, E., Lin, C. Y., Zhou, L., & Fukumoto, J. (2006). Automated Summarization Eval-
uation with Basic Elements. In Proceedings of the Fifth Conference on Language
Resources and Evaluation Genoa, Italy.

Kingsbury, P., & Palmer, M. (2002). From Treebank to PropBank. In Proceedings of the
international conference on Language Resources and Evaluation Las Palmas, Spain.

Kouylekov, M., & Magnini, B. (2005). Recognizing textual entailment with tree edit distance
algorithms. In Proceedings of the PASCAL Challenges Workshop: Recognising Textual
Entailment Challenge.

Li, J., Sun, L., Kit, C., & Webster, J. (2007). A Query-Focused Multi-Document Sum-
marizer Based on Lexical Chains. In Proceedings of the Document Understanding
Conference Rochester. NIST.

Lin, C. Y. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In Proceed-
ings of Workshop on Text Summarization Branches Out, Post-Conference Workshop
of Association for Computational Linguistics, pp. 74–81 Barcelona, Spain.

Lin, D. (1998a). An Information-Theoretic Definition of Similarity. In Proceedings of
International Conference on Machine Learning, pp. 296–304 Madison, Wisconsin.

Lin, D. (1998b). Automatic Retrieval and Clustering of Similar Words. In Proceedings
of the International Conference on Computational Linguistics and Association for
Computational Linguistics, pp. 768–774 Montreal, Canada.

Losada, D. (2005). Language modeling for sentence retrieval: A comparison between
multiple-bernoulli models and multinomial models. In Information Retrieval and The-
ory Workshop Glasgow, UK.

Losada, D., & Fernández, R. T. (2007). Highly frequent terms and sentence retrieval. In
Proc. 14th String Processing and Information Retrieval Symposium, SPIRE’07, pp.
217–228 Santiago de Chile.

MacCartney, B., Grenager, T., de Marneffe, M., Cer, D., & Manning, C. D. (2006). Learn-
ing to recognize features of valid textual entailments. In Proceedings of the Human
Language Technology Conference of the North American Chapter of the ACL, p. 4148
New York, USA.

Morris, J., & Hirst, G. (1991). Lexical cohesion computed by thesaural relations as an
indicator of structure of text. Computational Linguistics, 17 (1), 21–48.

Moschitti, A. (2006). Efficient convolution kernels for dependency and constituent syntactic
trees. In Proceedings of the 17th European Conference on Machine Learning Berlin,
Germany.

Moschitti, A., & Basili, R. (2006). A Tree Kernel approach to Question and Answer Clas-
sification in Question Answering Systems. In Proceedings of the 5th international
conference on Language Resources and Evaluation Genoa, Italy.

46

Complex Question Answering: Unsupervised Approaches

Moschitti, A., & Quarteroni, S. (2008). Kernels on linguistic structures for answer extrac-
tion. In Proceedings of the 46th Conference of the Association for Computational
Linguistics (ACL’08). Short Paper Section Columbus, OH, USA.

Moschitti, A., Quarteroni, S., Basili, R., & Manandhar, S. (2007). Exploiting Syntactic and
Shallow Semantic Kernels for Question/Answer Classificaion. In Proceedings of the
45th Annual Meeting of the Association of Computational Linguistics, pp. 776–783
Prague, Czech Republic. ACL.

Murdock, V., & Croft, W. B. (2005). A translation model for sentence retrieval. In HLT ’05:
Proceedings of the conference on Human Language Technology and Empirical Methods
in Natural Language Processing, pp. 684–691 Morristown, NJ, USA. ACL.

Otterbacher, J., Erkan, G., & Radev, D. R. (2005). Using Random Walks for Question-
focused Sentence Retrieval. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing, pp. 915–922
Vancouver, Canada.

Pingali, P., K., R., & Varma, V. (2007). IIIT Hyderabad at DUC 2007. In Proceedings of
the Document Understanding Conference Rochester. NIST.

Punyakanok, V., Roth, D., & Yih, W. (2004). Mapping dependencies trees: An application
to question answering. In Proceedings of AI & Math Florida, USA.

Strzalkowski, T., & Harabagiu, S. (2008). Advances in Open Domain Question Answering.
Springer.

Toutanova, K., Brockett, C., Gamon, M., Jagarlamudi, J., Suzuki, H., & Vanderwende,
L. (2007). The pythy summarization system: Microsoft research at duc 2007. In
proceedings of the Document Understanding Conference Rochester. NIST.

Vanderwende, L., Suzuki, H., & Brockett, C. (2006). Microsoft Research at DUC2006:
Task-Focused Summarization with Sentence Simplification and Lexical Expansion. In
Proceedings of the Document Understanding Conference Rochester. NIST.

Zajic, D. M., Lin, J., Dorr, B. J., & Schwartz, R. (2006). Sentence Compression as a Com-
ponent of a Multi-Document Summarization System. In Proceedings of the Document
Understanding Conference Rochester. NIST.

Zhang, A., & Lee, W. (2003a). Question Classification using Support Vector Machines. In
Proceedings of the Special Interest Group on Information Retrieval, pp. 26–32 Toronto,
Canada. ACM.

Zhang, D., & Lee, W. S. (2003b). A Language Modeling Approach to Passage Question
Answering. In Proceedings of the Twelfth Text REtreival Conference, pp. 489–495
Gaithersburg, Maryland.

Zhou, L., Lin, C. Y., & Hovy, E. (2005). A BE-based Multi-dccument Summarizer with
Query Interpretation. In Proceedings of Document Understanding Conference Van-
couver, B.C., Canada.

47

