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Abstract

Adequate representation of natural language semantics requires access to vast amounts
of common sense and domain-specific world knowledge. Prior work in the field was based
on purely statistical techniques that did not make use of background knowledge, on limited
lexicographic knowledge bases such as WordNet, or on huge manual efforts such as the
CYC project. Here we propose a novel method, called Explicit Semantic Analysis (ESA),
for fine-grained semantic interpretation of unrestricted natural language texts. Our method
represents meaning in a high-dimensional space of concepts derived from Wikipedia, the
largest encyclopedia in existence. We explicitly represent the meaning of any text in terms
of Wikipedia-based concepts. We evaluate the effectiveness of our method on text catego-
rization and on computing the degree of semantic relatedness between fragments of natural
language text. Using ESA results in significant improvements over the previous state of
the art in both tasks. Importantly, due to the use of natural concepts, the ESA model is
easy to explain to human users.

1. Introduction

Recent proliferation of the World Wide Web, and common availability of inexpensive storage
media to accumulate over time enormous amounts of digital data, have contributed to the
importance of intelligent access to this data. It is the sheer amount of data available that
emphasizes the intelligent aspect of access—no one is willing to or capable of browsing
through but a very small subset of the data collection, carefully selected to satisfy one’s
precise information need.

Research in artificial intelligence has long aimed at endowing machines with the ability
to understand natural language. One of the core issues of this challenge is how to repre-
sent language semantics in a way that can be manipulated by computers. Prior work on
semantics representation was based on purely statistical techniques, lexicographic knowl-
edge, or elaborate endeavors to manually encode large amounts of knowledge. The simplest
approach to represent the text semantics is to treat the text as an unordered bag of words,
where the words themselves (possibly stemmed) become features of the textual object. The
sheer ease of this approach makes it a reasonable candidate for many information retrieval
tasks such as search and text categorization (Baeza-Yates & Ribeiro-Neto, 1999; Sebastiani,
2002). However, this simple model can only be reasonably used when texts are fairly long,
and performs sub-optimally on short texts. Furthermore, it does little to address the two
main problems of natural language processing (NLP), polysemy and synonymy.
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Latent Semantic Analysis (LSA) (Deerwester, Dumais, Furnas, Landauer, & Harshman,
1990) is another purely statistical technique, which leverages word co-occurrence informa-
tion from a large unlabeled corpus of text. LSA does not use any explicit human-organized
knowledge; rather, it “learns” its representation by applying Singular Value Decomposition
(SVD) to the words-by-documents co-occurrence matrix. LSA is essentially a dimensional-
ity reduction technique that identifies a number of most prominent dimensions in the data,
which are assumed to correspond to “latent concepts”. Meanings of words and documents
are then represented in the space defined by these concepts.

Lexical databases such as WordNet (Fellbaum, 1998) or Roget’s Thesaurus (Roget, 1852)
encode important relations between words such as synonymy, hypernymy, and meronymy.
Approaches based on such resources (Budanitsky & Hirst, 2006; Jarmasz, 2003) map text
words into word senses, and use the latter as concepts. However, lexical resources offer
little information about the different word senses, thus making word sense disambiguation
nearly impossible to achieve. Another drawback of such approaches is that creation of
lexical resources requires lexicographic expertise as well as a lot of time and effort, and con-
sequently such resources cover only a small fragment of the language lexicon. Specifically,
such resources contain few proper names, neologisms, slang, and domain-specific technical
terms. Furthermore, these resources have strong lexical orientation in that they predomi-
nantly contain information about individual words, but little world knowledge in general.
Being inherently limited to individual words, these approaches require an extra level of
sophistication to handle longer texts (Mihalcea, Corley, & Strapparava, 2006); for example,
computing the similarity of a pair of texts amounts to comparing each word of one text to
each word of the other text.

Studies in artificial intelligence have long recognized the importance of knowledge for
problem solving in general, and for natural language processing in particular. Back in the
early years of AI research, Buchanan and Feigenbaum (1982) formulated the knowledge as
power hypothesis, which postulated that “The power of an intelligent program to perform
its task well depends primarily on the quantity and quality of knowledge it has about that
task.”

When computer programs face tasks that require human-level intelligence, such as nat-
ural language processing, it is only natural to use an encyclopedia to endow the machine
with the breadth of knowledge available to humans. There are, however, several obstacles
on the way to using encyclopedic knowledge. First, such knowledge is available in textual
form, and using it may require natural language understanding, a major problem in its own
right. Furthermore, even language understanding may not be enough, as texts written for
humans normally assume the reader possesses a large amount of common-sense knowledge,
which is omitted even from most detailed encyclopedia articles (Lenat, 1997). Thus, there
is a circular dependency—understanding encyclopedia articles requires natural language
understanding capabilities, while the latter in turn require encyclopedic knowledge. To
address this situation, Lenat and his colleagues launched the CYC project, which aims to
explicitly catalog the common sense knowledge of the humankind.

We developed a new methodology that makes it possible to use an encyclopedia directly,
without the need for manually encoded common-sense knowledge. Observe that an ency-
clopedia consists of a large collection of articles, each of which provides a comprehensive
exposition focused on a single topic. Thus, we view an encyclopedia as a collection of con-
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cepts (corresponding to articles), each accompanied with a large body of text (the article
contents). We propose to use the high-dimensional space defined by these concepts in order
to represent the meaning of natural language texts. Compared to the bag of words and LSA
approaches, using these concepts allows the computer to benefit from huge amounts of world
knowledge, which is normally accessible to humans. Compared to electronic dictionaries and
thesauri, our method uses knowledge resources that are over an order of magnitude larger,
and also uniformly treats texts that are arbitrarily longer than a single word. Even more
importantly, our method uses the body of text that accompanies the concepts in order to
perform word sense disambiguation. As we show later, using the knowledge-rich concepts
addresses both polysemy and synonymy, as we no longer manipulate mere words. We call
our method Explicit Semantic Analysis (ESA), as it uses knowledge concepts explicitly
defined and manipulated by humans.

Our approach is applicable to many NLP tasks whose input is a document (or shorter
natural language utterance), and the output is a decision based on the document contents.
Examples of such tasks are information retrieval (whether the document is relevant), text
categorization (whether the document belongs to a certain category), or comparing pairs of
documents to assess their similarity.1

Observe that documents manipulated in these tasks are given in the same form as the
encyclopedic knowledge we intend to use—plain text. It is this key observation that allows us
to circumvent the obstacles we enumerated above, and use the encyclopedia directly, without
the need for deep language understanding or pre-cataloged common-sense knowledge. We
quantify the degree of relevance of each Wikipedia concept to the input text by comparing
this text to the article associated with the concept.

Let us illustrate the importance of external knowledge with a couple of examples. With-
out using external knowledge (specifically, knowledge about financial markets), one can infer
little information from a very brief news title “Bernanke takes charge”. However, using the
algorithm we developed for consulting Wikipedia, we find that the following concepts are
highly relevant to the input: Ben Bernanke, Federal Reserve, Chairman of the
Federal Reserve, Alan Greenspan (Bernanke’s predecessor), Monetarism (an eco-
nomic theory of money supply and central banking), inflation and deflation. As another
example, consider the title “Apple patents a Tablet Mac”. Without deep knowledge of hi-
tech industry and gadgets, one finds it hard to predict the contents of the news item. Using
Wikipedia, we identify the following related concepts: Apple Computer2, Mac OS (the
Macintosh operating system) Laptop (the general name for portable computers, of which
Tablet Mac is a specific example), Aqua (the GUI of Mac OS X), iPod (another promi-
nent product by Apple), and Apple Newton (the name of Apple’s early personal digital
assistant).

For ease of presentation, in the above examples we only showed a few concepts identified
by ESA as the most relevant for the input. However, the essence of our method is repre-
senting the meaning of text as a weighted combination of all Wikipedia concepts. Then,

1. Thus, we do not consider tasks such as machine translation or natural language generation, whose output
includes a new piece of text based on the input.

2. Note that we correctly identify the concept representing the computer company (Apple Computer)
rather than the fruit (Apple).

445



Gabrilovich & Markovitch

depending on the nature of the task at hand we either use these entire vectors of concepts,
or use a few most relevant concepts to enrich the bag of words representation.

The contributions of this paper are twofold. First, we propose a new methodology
to use Wikipedia for enriching representation of natural language texts. Our approach,
named Explicit Semantic Analysis, effectively capitalizes on human knowledge encoded in
Wikipedia, leveraging information that cannot be deduced solely from the input texts being
processed. Second, we evaluate ESA on two commonly occurring NLP tasks, namely, text
categorization and computing semantic relatedness of texts. In both tasks, using ESA
resulted in significant improvements over the existing state of the art performance.

Recently, ESA was used by other researchers in a variety of tasks, and consistently proved
to be superior to approaches that do not explicitly used large-scale repositories of human
knowledge. Gurevych, Mueller, and Zesch (2007) re-implemented our ESA approach for the
German-language Wikipedia, and found it to be superior for judging semantic relatedness of
words compared to a system based on the German version of WordNet (GermaNet). Chang,
Ratinov, Roth, and Srikumar (2008) used ESA for a text classification task without explicit
training set, learning only from the knowledge encoded in Wikipedia. Milne and Witten
(2008) found ESA to compare favorably to approaches that are solely based on hyperlinks,
thus confirming that the wealth of textual descriptions in Wikipedia is exlicitly superior to
using structural information alone.

2. Explicit Semantic Analysis

What is the meaning of the word “cat”? One way to interpret the word “cat” is via an
explicit definition: a cat is a mammal with four legs, which belongs to the feline species,
etc. Another way to interpret the meaning of “cat” is by the strength of its association with
concepts that we know: “cat” relates strongly to the concepts “feline” and “pet”, somewhat
less strongly to the concepts “mouse” and “Tom & Jerry”, etc.

We use this latter association-based method to assign semantic interpretation to words
and text fragments. We assume the availability of a vector of basic concepts, C1, . . . , Cn, and
we represent each text fragment t by a vector of weights, w1, . . . , wn, where wi represents the
strength of association between t and Ci. Thus, the set of basic concepts can be viewed as a
canonical n-dimensional semantic space, and the semantics of each text segment corresponds
to a point in this space. We call this weighted vector the semantic interpretation vector of
t.

Such a canonical representation is very powerful, as it effectively allows us to estimate
semantic relatedness of text fragments by their distance in this space. In the following
section we describe the two main components of such a scheme: the set of basic concepts,
and the algorithm that maps text fragments into interpretation vectors.

2.1 Using Wikipedia as a Repository of Basic Concepts

To build a general semantic interpreter that can represent text meaning for a variety of
tasks, the set of basic concepts needs to satisfy the following requirements:

1. It should be comprehensive enough to include concepts in a large variety of topics.
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2. It should be constantly maintained so that new concepts can be promptly added as
needed.

3. Since the ultimate goal is to interpret natural language, we would like the concepts
to be natural, that is, concepts recognized and used by human beings.

4. Each concept Ci should have associated text di, so that we can determine the strength
of its affinity with each term in the language.

Creating and maintaining such a set of natural concepts requires enormous effort of many
people. Luckily, such a collection already exists in the form of Wikipedia, which is one of the
largest knowledge repositories on the Web. Wikipedia is available in dozens of languages,
while its English version is the largest of all, and contains 300+ million words in nearly
one million articles, contributed by over 160,000 volunteer editors. Even though Wikipedia
editors are not required to be established researchers or practitioners, the open editing ap-
proach yields remarkable quality. A recent study (Giles, 2005) found Wikipedia accuracy to
rival that of Encyclopaedia Britannica. However, Britannica is about an order of magnitude
smaller, with 44 million words in 65,000 articles (http://store.britannica.com, visited
on February 10, 2006).

As appropriate for an encyclopedia, each article comprises a comprehensive exposition
of a single topic. Consequently, we view each Wikipedia article as defining a concept that
corresponds to each topic. For example, the article about artificial intelligence defines the
concept Artificial Intelligence, while the article about parasitic extraction in circuit
design defines the concept Layout extraction.3 The body of the articles is critical in our
approach, as it allows us to compute the affinity between the concepts and the words of the
input texts.

An important advantage of our approach is thus the use of vast amounts of highly orga-
nized human knowledge. Compared to lexical resources such as WordNet, our methodology
leverages knowledge bases that are orders of magnitude larger and more comprehensive.
Importantly, the Web-based knowledge repositories we use in this work undergo constant
development so their breadth and depth steadily increase over time. Compared to Latent
Semantic Analysis, our methodology explicitly uses the knowledge collected and organized
by humans. Our semantic analysis is explicit in the sense that we manipulate manifest con-
cepts grounded in human cognition, rather than “latent concepts” used by LSA. Therefore,
we call our approach Explicit Semantic Analysis (ESA).

2.2 Building a Semantic Interpreter

Given a set of concepts, C1, . . . , Cn, and a set of associated documents, d1, . . . , dn, we build
a sparse table T where each of the n columns corresponds to a concept, and each of the rows
corresponds to a word that occurs in

⋃
i=1...n di. An entry T [i, j] in the table corresponds

to the TFIDF value of term ti in document dj

T [i, j] = tf(ti, dj) · log
n

dfi
,

3. Here we use the titles of articles as a convenient way to refer to the articles, but our algorithm treats
the articles as atomic concepts.
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where term frequency is defined as

tf(ti, dj) =

{
1 + log count(ti, dj), if count(ti, dj) > 0
0, otherwise

,

and dfi = |{dk : ti ∈ dk}| is the number of documents in the collection that contain the
term ti (document frequency).

Finally, cosine normalization is applied to each row to disregard differences in document
length:

T [i, j] ← T [i, j]√∑r
l=1 T [i, j]2

,

where r is the number of terms.
The semantic interpretation of a word ti is obtained as row i of table T . That is, the

meaning of a word is given by a vector of concepts paired with their TFIDF scores, which
reflect the relevance of each concept to the word.

The semantic interpretation of a text fragment, 〈t1, . . . , tk〉, is the centroid of the vectors
representing the individual words. This definition allows us to partially perform word sense
disambiguation. Consider, for example, the interpretation vector for the term “mouse”. It
has two sets of strong components, which correspond to two possible meanings: “mouse (ro-
dent)” and “mouse (computing)”. Similarly, the interpretation vector of the word “screen”
has strong components associated with “window screen” and “computer screen”. In a text
fragment such as “I purchased a mouse and a screen”, summing the two interpretation vec-
tors will boost the computer-related components, effectively disambiguating both words.

Table T can also be viewed as an inverted index, which maps each word into a list
of concepts in which it appears. Inverted index provides for very efficient computation of
distance between interpretation vectors.

Given the amount of information encoded in Wikipedia, it is essential to control the
amount of noise present in its text. We do so by discarding insufficiently developed articles,
and by eliminating spurious association between articles and words. This is done by setting
to zero the weights of those concepts whose weights for a given term are too low (see
Section 3.2.3).

2.3 Using the Link Structure

It is only natural for an electronic encyclopedia to provide cross-references in the form of
hyperlinks. As a result, a typical Wikipedia article has many more links to other entries
than articles in conventional printed encyclopedias.

This link structure can be used in a number of ways. Observe that each link is associated
with an anchor text (clickable highlighted phrase). The anchor text is not always identical
to the canonical name of the target article, and different anchor texts are used to refer
to the same article in different contexts. For example, anchor texts pointing at Federal
Reserve include “Fed”, “U.S. Federal Reserve Board”, “U.S. Federal Reserve System”,
“Board of Governors of the Federal Reserve”, “Federal Reserve Bank”, “foreign reserves”
and “Free Banking Era”. Thus, anchor texts provide alternative names, variant spellings,
and related phrases for the target concept, which we use to enrich the article text for the
target concept.
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Furthermore, inter-article links often reflect important relations between concepts that
correspond to the linked articles. We explore the use of such relations for feature generation
in the next section.

2.3.1 Second-order Interpretation

Knowledge concepts can be subject to many relations, including generalization, meronymy
(“part of”), holonymy and synonymy, as well as more specific relations such as “capital of”,
“birthplace/birthdate of” etc. Wikipedia is a notable example of a knowledge repository
that features such relations, which are represented by the hypertext links between Wikipedia
articles.

These links encode a large amount of knowledge, which is not found in article texts.
Consequently, leveraging this knowledge is likely to lead to better interpretation models. We
therefore distinguish between first-order models, which only use the knowledge encoded in
Wikipedia articles, and second-order models, which also incorporate the knowledge encoded
in inter-article links. Similarly, we refer to the information obtained through inter-article
links as second-order information.

As a rule, the presence of a link implies some relation between the concepts it connects.
For example, the article on the United States links to Washington, D.C. (country
capital) and North America (the continent where the country is situated). It also links
to a multitude of other concepts, which are definitely related to the source concept, albeit it
is more difficult to define those relations; these links include United States Declaration
of Independence, President of the United States, and Elvis Presley.

However, our observations reveal that the existence of a link does not always imply the
two articles are strongly related.4 In fact, many words and phrases in a typical Wikipedia
article link to other articles just because there are entries for the corresponding concepts.
For example, the Education subsection in the article on the United States has gratuitous
links to concepts High school, College, and Literacy rate. Therefore, in order to
use Wikipedia links for semantic interpretation, it is essential to filter the linked concepts
according to their relevance to the text fragment being interpreted.

An intuitive way to incorporate concept relations is to examine a number of top-scoring
concepts, and to boost the scores of the concepts linked from them. Let ESA(1)(t) =〈
w

(1)
1 , . . . , w

(1)
n

〉
be the interpretation vector of term t. We define the second-level interpre-

tation of term t as

ESA(2)(t) =
〈
w

(2)
1 , . . . , w(2)

n

〉

where

w
(2)
i = w

(1)
i + α ·

∑

{j|∃link(cj ,ci)}
w

(1)
j

Using α < 1 ensures that the linked concepts are taken with reduced weights. In our
experiments we used α = 0.5.

4. The opposite is also true—the absence of a link may simply be due to an oversight. Adafre and de Rijke
(2005) studied the problem of discovering missing links in Wikipedia.
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2.3.2 Concept Generality Filter

Not all the new concepts identified through links are equally useful. Relevance of the newly
added concepts is certainly important, but is not the only criterion. Suppose that we
are given an input text “Google search”. Which additional concept is likely to be more
useful to characterize the input: Nigritude ultramarine (a specially crafted meaningless
phrase used in a search engine optimization contest) or Website? Now suppose the input is
“artificial intelligence” — which concept is likely to contribute more to the representation
of this input, John McCarthy (computer scientist) or Logic? We believe that in both
examples, the second concept would be more useful because it is not overly specific.

Consequently, we conjecture that we should add linked concepts sparingly, taking only
those that are “more general” than the concepts that triggered them. But how can we judge
the generality of concepts? While this may be tricky to achieve in the general case (no pun
intended), we propose the following task-oriented criterion. Given two concepts ca and cb,
we compare the numbers of links pointing at them. Then, we say that ca is “more general”
than cb if its number of incoming links is at least an order of magnitude larger, that is, if
log10(#inlinks(ca))− log10(#inlinks(cb)) > 1.

We show examples of additional concepts identified using inter-article links in Sec-
tion 4.5.1. In Section 4.5.4 we evaluate the effect of using inter-article links as an additional
knowledge source. In this section we also specifically examine the effect of only using more
general linked concepts (i.e., adding concepts that are more general than the concepts that
triggered them).

3. Using Explicit Semantic Analysis for Computing Semantic
Relatedness of Texts

In this section we discuss the application of our semantic interpretation methodology to
automatic assessment of semantic relatedness of words and texts.5

3.1 Automatic Computation of Semantic Relatedness

How related are “cat” and “mouse”? And what about “preparing a manuscript” and “writ-
ing an article”? The ability to quantify semantic relatedness of texts underlies many funda-
mental tasks in computational linguistics, including word sense disambiguation, information
retrieval, word and text clustering, and error correction (Budanitsky & Hirst, 2006). Rea-
soning about semantic relatedness of natural language utterances is routinely performed by
humans but remains an unsurmountable obstacle for computers. Humans do not judge text
relatedness merely at the level of text words. Words trigger reasoning at a much deeper
level that manipulates concepts—the basic units of meaning that serve humans to organize
and share their knowledge. Thus, humans interpret the specific wording of a document
in the much larger context of their background knowledge and experience. Lacking such
elaborate resources, computers need alternative ways to represent texts and reason about
them.

Explicit Semantic Analysis represents text as interpretation vectors in the high-dimen-
sional space of concepts. With this representation, computing semantic relatedness of texts

5. Preliminary results of this research have been reported by Gabrilovich and Markovitch (2007a).
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Figure 1: Knowledge-based semantic interpreter

simply amounts to comparing their vectors. Vectors could be compared using a variety
of metrics (Zobel & Moffat, 1998); we use the cosine metric throughout the experiments
reported in this paper. Figure 1 illustrates this process.

3.2 Implementation Details

We used Wikipedia snapshot as of November 11, 2005. After parsing the Wikipedia XML
dump, we obtained 1.8 Gb of text in 910,989 articles. Although Wikipedia has almost a
million articles, not all of them are equally useful for feature generation. Some articles corre-
spond to overly specific concepts (e.g., Metnal, the ninth level of the Mayan underworld),
or are otherwise unlikely to be useful for subsequent text categorization (e.g., specific dates
or a list of events that happened in a particular year). Other articles are just too short,
so we cannot reliably classify texts onto the corresponding concepts. We developed a set
of simple heuristics for pruning the set of concepts, by discarding articles that have fewer
than 100 non stop words or fewer than 5 incoming and outgoing links. We also discard arti-
cles that describe specific dates, as well as Wikipedia disambiguation pages, category pages
and the like. After the pruning, 171,332 articles were left that defined concepts used for
feature generation. We processed the text of these articles by first tokenizing it, removing
stop words and rare words (occurring in fewer than 3 articles), and stemmed the remaining
words; this yielded 296,157 distinct terms.
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3.2.1 Preprocessing of Wikipedia XML Dump

Wikipedia data is publicly available online at http://download.wikimedia.org. All the
data is distributed in XML format, and several packaged versions are available: article texts,
edit history, list of page titles, interlanguage links etc. In this project, we only use the article
texts, but ignore the information on article authors and page modification history. Before
building the semantic interpreter, we perform a number of operations on the distributed
XML dump:

• We simplify the original XML by removing all those fields that are not used in feature
generation, such as author ids and last modification times.

• Wikipedia syntax defines a proprietary format for inter-article links, whereas the name
of the article referred to is enclosed in brackets (e.g., “[United States]”). We map
all articles to numeric ids, and for each article build a list of ids of the articles it refers
to. We also count the number of incoming and outgoing links for each article.

• Wikipedia defines a redirection mechanism, which maps frequently used variant names
of entities into canonical names. For examples, United States of America is
mapped to United States. We resolve all such redirections during initial prepro-
cessing.

• Another frequently used mechanism is templates, which allows articles to include
frequently reused fragments of text without duplication, by including pre-defined and
optionally parameterized templates on the fly. To speed up subsequent processing, we
resolve all template inclusions at the beginning.

• We also collect all anchor texts that point at each article.

This preprocessing stage yields a new XML file, which is then used for building the feature
generator.

3.2.2 The Effect of Knowledge Breadth

Wikipedia is being constantly expanded with new material as volunteer editors contribute
new articles and extend the existing ones. Consequently, we conjectured that such addition
of information should be beneficial for ESA, as it would rely on a larger knowledge base.

To test this assumption, we also acquired a newer Wikipedia snapshot as of March 26,
2006. Table 1 presents a comparison in the amount of information between two Wikipedia
snapshots we used. The number of articles shown in the table reflects the total number
of articles as of the date of the snapshot. The next table line (the number of concepts
used) reflects the number of concepts that remained after the pruning as explained in the
beginning of Section 3.2.

In the following sections we will confirm that using a larger knowledge base is beneficial
for ESA, by juxtaposing the results obtained with the two Wikipedia snapshots. Therefore,
no further dimensionality reduction is performed, and each input text fragment is repre-
sented in the space of up to 171,332 features (or 241,393 features in the case of the later
Wikipedia snapshot); of course, many of the features will have zero values, so the feature
vectors are sparse.
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Wikipedia snapshot Wikipedia snapshot
as of November 11, 2005 as of March 23, 2006

Combined article text 1.8 Gb 2.9 Gb
Number of articles 910,989 1,187,839
Concepts used 171,332 241,393
Distinct terms 296,157 389,202

Table 1: Comparison of two Wikipedia snapshots

3.2.3 Inverted Index Pruning

We eliminate spurious association between articles and words by setting to zero the weights
of those concepts whose weights for a given term are too low.

The algorithm for pruning the inverted index operates as follows. We first sort all the
concepts for a given word according to their TFIDF weights in decreasing order. We then
scan the resulting sequence of concepts with a sliding window of length 100, and truncate
the sequence when the difference in scores between the first and last concepts in the window
drops below 5% of the highest-scoring concept for this word (which is positioned first in the
sequence). This technique looks for fast drops in the concept scores, which would signify
that the concepts in the tail of the sequence are only loosely associated with the word (i.e.,
even though the word occurred in the articles corresponding to these concepts, it its not
truly characteristic of the article contents). We evaluated more principled approaches such
observing the values of the first and second derivatives, but the data seemed to be too
noisy for reliable estimation of derivatives. Other researchers studied the use of derivatives
in similar contexts (e.g., Begelman, Keller, & Smadja, 2006), and also found that the
derivative alone is not sufficient, hence they found it necessary to estimate the magnitude
of peaks by other means. Consequently, we opted to use the simple and efficient metric.

The purpose of such pruning is to eliminate spurious associations between concepts and
terms, and is mainly beneficial for pruning the inverted index entries for very common
words that occur in many Wikipedia articles. Using the above criteria, we analyzed the
inverted index for the Wikipedia version dated November 11, 2005 (see Section 3.2.2). For
the majority of terms, there were either fewer than 100 concepts with non-zero weight, or
the concept-term weights decreased gracefully and did not qualify for pruning. We pruned
the entries of 4866 terms out of the total of 296,157 terms. Among the terms whose concept
vector was pruned, the term “link” had the largest number of concepts with non-zero
weight—106,988—of which we retained only 838 concepts (0.8%); as another example, the
concept vector for the term “number” was pruned from 52,244 entries down to 1360 (2.5%).
On the average, 24% of concepts have been retained. The pruning rates for the second
Wikipedia version (dated March 23, 2006) have been similar to these.

3.2.4 Processing Time

Using world knowledge requires additional computation. This extra computation includes
the (one-time) preprocessing step where the semantic interpreter is built, as well as the
actual mapping of input texts into interpretation vectors, performed online. On a stan-
dard workstation, parsing the Wikipedia XML dump takes about 7 hours, and building the
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semantic interpreter takes less than an hour. After the semantic interpreter is built, its
throughput (i.e., the generation of interpretation vectors for textual input) is several hun-
dred words per second. In the light of the improvements computing semantic relatedness
and in text categorization accuracy that we report in Sections 3 and 4, we believe that the
extra processing time is well compensated for.

3.3 Empirical Evaluation of Explicit Semantic Analysis

Humans have an innate ability to judge semantic relatedness of texts. Human judgements
on a reference set of text pairs can thus be considered correct by definition, a kind of “gold
standard” against which computer algorithms are evaluated. Several studies measured
inter-judge correlations and found them to be consistently high (Budanitsky & Hirst, 2006;
Jarmasz, 2003; Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman, & Ruppin, 2002a),
r = 0.88−0.95. These findings are to be expected—after all, it is this consensus that allows
people to understand each other. Consequently, our evaluation amounts to computing the
correlation of ESA relatedness scores with human judgments.

To better evaluate Wikipedia-based semantic interpretation, we also implemented a se-
mantic interpreter based on another large-scale knowledge repository—the Open Directory
Project (ODP, http://www.dmoz.org), which is the largest Web directory to date. In the case
of ODP, concepts Ci correspond to categories of the directory (e.g., Top/Computers/Ar-
tificial Intelligence), and text di associated with each concept is obtained by pooling
together the titles and descriptions of the URLs catalogued under the corresponding cate-
gory. Interpretation of a text fragment amounts to computing a weighted vector of ODP
concepts, ordered by their affinity to the input text. We built the ODP-based semantic
interpreter using an ODP snapshot as of April 2004. Further implementation details can
be found in our previous work (Gabrilovich & Markovitch, 2005, 2007b).

3.3.1 Test Collections

In this work, we use two datasets that to the best of our knowledge are the largest publicly
available collections of their kind.6 For both test collections, we use the correlation of
computer-assigned scores with human scores to assess the algorithm performance.

To assess word relatedness, we use the WordSimilarity-353 collection (Finkelstein et al.,
2002a; Finkelstein, Gabrilovich, Matias, Rivlin, Solan, Wolfman, & Ruppin, 2002b), which
contains 353 noun pairs representing various degrees of similarity.7 Each pair has 13–
16 human judgements made by individuals with university degrees having either mother-
tongue-level or otherwise very fluent command of the English language. Word pairs were
assigned relatedness scores on the scale from 0 (totally unrelated words) to 10 (very much
related or identical words). Judgements collected for each word pair were then averaged to

6. Recently, Zesch and Gurevych (2006) discussed automatic creation of datasets for assessing semantic
similarity. However, the focus of their work was on automatical generation of a set of sufficiently
diverse word pairs, thus relieving the humans of the need to construct word lists manually. Obviously,
establishing the “gold standard” semantic relatedness for each word pair is still performed manually by
human judges.

7. Some previous studies (Jarmasz & Szpakowicz, 2003) suggested that the word pairs comprising this
collection might be culturally biased.
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produce a single relatedness score.8 Spearman’s rank-order correlation coefficient was used
to compare computed relatedness scores with human judgements; being non-parametric,
Spearman’s correlation coefficient is considered to be much more robust than Pearson’s
linear correlation. When comparing our results to those of other studies, we have computed
the Spearman’s correlation coefficient with human judgments based on their raw data.

For document similarity, we used a collection of 50 documents from the Australian
Broadcasting Corporation’s news mail service (Lee, Pincombe, & Welsh, 2005; Pincombe,
2004). The documents were between 51 and 126 words long, and covered a variety of topics.
The judges were 83 students from the University of Adelaide, Australia, who were paid a
small fee for their work. These documents were paired in all possible ways, and each of the
1,225 pairs has 8–12 human judgements (averaged for each pair). To neutralize the effects
of ordering, document pairs were presented in random order, and the order of documents
within each pair was randomized as well. When human judgements have been averaged for
each pair, the collection of 1,225 relatedness scores have only 67 distinct values. Spearman’s
correlation is not appropriate in this case, and therefore we used Pearson’s linear correlation
coefficient.

Importantly, instructions for human judges in both test collections specifically directed
the participants to assess the degree of relatedness of words and texts involved. For example,
in the case of antonyms, judges were instructed to consider them as “similar” rather than
“dissimilar”.

3.3.2 Prior Work

A number of prior studies proposed a variety of approaches to computing word similarity
using WordNet, Roget’s thesaurus, and LSA. Table 2 presents the results of applying these
approaches to the WordSimilarity-353 test collection.

Jarmasz (2003) replicated the results of several WordNet-based methods, and compared
them to a new approach based on Roget’s Thesaurus. Hirst and St-Onge (1998) viewed
WordNet as a graph, and considered the length and directionality of the graph path con-
necting two nodes. Leacock and Chodorow (1998) also used the length of the shortest graph
path, and normalized it by the maximum taxonomy depth. Jiang and Conrath (1997), and
later Resnik (1999), used the notion of information content of the lowest node subsum-
ing two given words. Lin (1998b) proposed a computation of word similarity based on
the information theory. See (Budanitsky & Hirst, 2006) for a comprehensive discussion of
WordNet-based approaches to computing word similarity.

According to Jarmasz (2003), Roget’s Thesaurus has a number of advantages compared
to WordNet, including links between different parts of speech, topical groupings, and a va-
riety of relations between word senses. Consequently, the method developed by the authors
using Roget’s as a source of knowledge achieved much better results than WordNet-based
methods. Finkelstein et al. (2002a) reported the results of computing word similarity using

8. Finkelstein et al. (2002a) report inter-judge agreement of 0.95 for the WordSimilarity-353 collection. We
have also performed our own assessment of the inter-judge agreement for this dataset. Following Snow,
O’Connor, Jurafsky, and Ng (2008), we divided the human judges into two sets and averaged the numeric
judgements for each word pair among the judges in the set, thus yielding a (353 element long) vector of
average judgments for each set. Spearman’s correlation coefficient between the vectors of the two sets
was 0.903.
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an LSA-based model (Deerwester et al., 1990) trained on the Grolier Academic Ameri-
can Encyclopedia. Recently, Hughes and Ramage (2007) proposed a method for comput-
ing semantic relatedness using random graph walks; their results on the WordSimilarity-
353 dataset are competitive with those reported by Jarmasz (2003) and Finkelstein et al.
(2002a).

Strube and Ponzetto (2006) proposed an alternative approach to computing word simi-
larity based on Wikipedia, by comparing articles in whose titles the words occur. We discuss
this approach in greater detail in Section 5.1.

Prior work on assessing the similarity of textual documents was based on comparing
the documents as bags of words, as well as on LSA. Lee et al. (2005) compared a number
of approaches based on the bag of words representation, which used both binary and tfidf
representation of word weights and a variety of similarity measures (correlation, Jaccard,
cosine, and overlap). The authors also implemented an LSA-based model trained on a set
of news documents from the Australian Broadcasting Corporation (test documents whose
similarity was computed came from the same distribution). The results of these experiments
are reported in Table 3.

3.3.3 Results

To better understand how Explicit Semantic Analysis works, let us consider similarity com-
putation for pairs of actual phrases. For example, given two phrases “scientific article” and
“journal publication”, ESA determines that the following Wikipedia concepts are found
among the top 20 concepts for each phrase: Scientific journal, Nature (journal),
Academic publication, Science (journal), and Peer review. When we compute
similarity of “RNA” and “DNA”, the following concepts are found to be shared among
the top 20 lists: Transcription (genetics), Gene, RNA, and Cell (biology). It is
the presence of identical concepts among the top concepts characterizing each phrase that
allows ESA to establish their semantic similarity.

Table 2 shows the results of applying our methodology to estimating relatedness of
individual words, with statistically significant improvements shown in bold. The values
shown in the table represent Spearman’s correlation between the human judgments and
the relatedness scores produced by the different methods. Jarmasz (2003) compared the
performance of 5 WordNet-based metrics, namely, those proposed by Hirst and St-Onge
(1998), Jiang and Conrath (1997), Leacock and Chodorow (1998), Lin (1998b), and Resnik
(1999). In Table 2 we report the performance of the best of these metrics, namely, those
by Lin (1998b) and Resnik (1999). In the WikiRelate! paper (Strube & Ponzetto, 2006),
the authors report results of as many as 6 different method variations, and again we report
the performance of the best one (based on the metric proposed by Leacock and Chodorow,
1998).

As we can see, both ESA techniques yield substantial improvements over previous state
of the art results. Notably, ESA also achieves much better results than another recently
introduce method based on Wikipedia (Strube & Ponzetto, 2006). We provide a detailed
comparison of our approach with this latter work in Section 5.1. Table 3 shows the results
for computing relatedness of entire documents. In both tables, we show the statistical
significance of the difference between the performance of ESA-Wikipedia (March 26, 2006
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Algorithm Spearman’s Stat.
correlation with significance

human judgements (p-value)
WordNet-based techniques (Jarmasz, 2003) 0.35 4 · 10−16

Roget’s Thesaurus-based technique (Jarmasz, 2003) 0.55 1.3 · 10−6

LSA (Finkelstein et al., 2002a) 0.56 3.4 · 10−6

WikiRelate! (Strube & Ponzetto, 2006) 0.50 8 · 10−9

MarkovLink (Hughes & Ramage, 2007) 0.55 1.6 · 10−6

ESA-Wikipedia (March 26, 2006 version) 0.75 –
ESA-Wikipedia (November 11, 2005 version) 0.74 –
ESA-ODP 0.65 0.0044

Table 2: Spearman’s rank correlation of word relatedness scores with human judgements
on the WordSimilarity-353 collection

Algorithm Pearson’s Stat.
correlation with significance

human judgements (p-value)
Bag of words (Lee et al., 2005) 0.1–0.5 4 · 10−19

LSA (Lee et al., 2005) 0.60 5 · 10−8

ESA-Wikipedia (March 26, 2006 version) 0.72 –
ESA-Wikipedia (November 11, 2005 version) 0.71 –
ESA-ODP 0.69 0.07

Table 3: Pearson’s correlation of text relatedness scores with human judgements on Lee et
al.’s document collection

version) and that of other algorithms9 by using Fisher’s z-transformation (Press, Teukolsky,
Vetterling, & Flannery, 1997, Section 14.5).

On both test collections, Wikipedia-based semantic interpretation is superior to the
ODP-based one; in the word relatedness task, this superiority is statistically significant at
p < 0.005. We believe that two factors contribute to this phenomenon. First, axes of a
multi-dimensional interpretation space should ideally be as independent as possible. The
hierarchical organization of the Open Directory reflects the generalization relation between
concepts and obviously violates this independence requirement. Second, to increase the
amount of training data for building the ODP-based semantic interpreter, we crawled all the
URLs listed in the ODP. This allowed us to increase the amount of textual data by several
orders of magnitude, but also brought about a non-negligible amount of noise, which is
common in Web pages. On the other hand, Wikipedia articles are virtually noise-free, and

9. Whenever a range of values is available, we compared ESA-Wikipedia with the best-performing method
in the range.
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mostly qualify as Standard Written English. Thus, the textual descriptions of Wikipedia
concepts are arguably more focused than those of the ODP concepts.

It is also essential to note that in both experiments, using a newer Wikipedia snapshot
leads to better results (although the difference between the performance of two versions is
admittedly small).

We evaluated the effect of using second-order interpretation for computing semantic
relatedness of texts, but it only yielded negligible improvements. We hypothesize that the
reason for this finding is that computing semantic relatedness essentially uses all available
Wikipedia concepts, so second-order interpretation can only slightly modify the weights
of existing concepts. In the next section, which describes the application of ESA to text
categorization, we trim the interpretation vectors for the sake of efficiency, and only consider
a few highest-scoring concepts for each input text fragment. In this scenario, second-
order interpretation does have a positive effect and actually improves the accuracy of text
categorization (Section 4.5.4). This happens because only a few selected Wikipedia concepts
are used to augment text representation, and the second-order approach selectively adds
highly related concepts identified by analyzing Wikipedia links.

4. Using Explicit Semantic Analysis for Text Categorization

In this section we evaluate the benefits of using external knowledge for text categorization.10

4.1 Background on Text Categorization

Text categorization (TC) deals with assigning category labels to natural language docu-
ments. Categories come from a fixed set of labels (possibly organized in a hierarchy) and
each document may be assigned one or more categories. Text categorization systems are
useful in a wide variety of tasks, such as routing news and e-mail to appropriate corporate
desks, identifying junk email, or correctly handling intelligence reports.

The majority of existing text classification systems represent text as a bag of words, and
use a variant of the vector space model with various weighting schemes (Salton & McGill,
1983). Thus, the features commonly used in text classification are weighted occurrence
frequencies of individual words. State-of-the-art systems for text categorization use a variety
of induction techniques, such as support vector machines, k-nearest neighbor algorithm,
and neural networks. The bag of words (BOW) method is very effective in easy to medium
difficulty categorization tasks where the category of a document can be identified by several
easily distinguishable keywords. However, its performance becomes quite limited for more
demanding tasks, such as those dealing with small categories or short documents.

There have been various attempts to extend the basic BOW approach. Several studies
augmented the bag of words with n-grams (Caropreso, Matwin, & Sebastiani, 2001; Peng
& Shuurmans, 2003; Mladenic, 1998; Raskutti, Ferra, & Kowalczyk, 2001) or statistical
language models (Peng, Schuurmans, & Wang, 2004). Others used linguistically motivated
features based on syntactic information, such as that available from part-of-speech tagging
or shallow parsing (Sable, McKeown, & Church, 2002; Basili, Moschitti, & Pazienza, 2000).
Additional studies researched the use of word clustering (Baker & McCallum, 1998; Bekker-

10. Preliminary results of this research have been reported by Gabrilovich and Markovitch (2006).
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man, 2003; Dhillon, Mallela, & Kumar, 2003), neural networks (Jo, 2000; Jo & Japkowicz,
2005; Jo, 2006), as well as dimensionality reduction techniques such as LSA (Deerwester
et al., 1990; Hull, 1994; Zelikovitz & Hirsh, 2001; Cai & Hofmann, 2003). However, these
attempts had mostly limited success.

We believe that the bag of words approach is inherently limited, as it can only use those
pieces of information that are explicitly mentioned in the documents, and only if the same
vocabulary is consistently used throughout. The BOW approach cannot generalize over
words, and consequently words in the testing document that never appeared in the training
set are necessarily ignored. Nor can synonymous words that appear infrequently in training
documents be used to infer a more general principle that covers all the cases. Furthermore,
considering the words as an unordered bag makes it difficult to correctly resolve the sense
of polysemous words, as they are no longer processed in their native context. Most of these
shortcomings stem from the fact that the bag of words method has no access to the wealth
of world knowledge possessed by humans, and is therefore easily puzzled by facts and terms
that cannot be easily deduced from the training set.

4.2 Using ESA for Feature Generation

We propose a solution that augments the bag of words with knowledge-based features.
Given a document to be classified, we would like to use ESA to represent the document
text in the space of Wikipedia concepts. However, text categorization is crucially different
from computing semantic relatedness (cf. Section 3) in two important respects.

First, computing semantic relatedness is essentially a “one-off” task, that is, given
a particular pair of text fragments, we need to quantify their relatedness with no prior
examples for this specific task. In such cases, the very words of the text fragments are likely
to be of marginal usefulness, especially when the two fragments are one word long. This
happens because all the data available to us is limited to the two input fragments, which in
most cases share few words, if at all.

On the other hand, in supervised text categorization, one is usually given a collection
of labeled text documents, from which one can induce a text categorizer. Consequently,
words that occur in the training examples can serve as valuable features—this is how the
bag of words approach was born. As we have observed in an earlier work (Gabrilovich
& Markovitch, 2005, 2007b), it is ill-advised to completely replace the bag of words with
generated concepts, and instead it is advantageous to enrich the bag of words. Rather, we
opt to augment the bag of words with carefully selected knowledge concepts, which become
new features of the document. We refer to this process as feature generation, because we
actually construct new document features beyond those in the bag of words.

Second, enriching document representation for text categorization with all possible
Wikipedia concepts is extremely expensive computationally, because a machine learning
classifier will be learned in the augmented feature space. Such a representation obviously
takes a lot of storage space, and cannot be processed efficiently because of the multitude of
the concepts involved (whose number can easily reach hundreds of thousands). Therefore,
in the text categorization task, we prune the interpretation vectors to only retain a number
of highest-scoring concepts for each input text fragment.
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Using the multi-resolution approach to feature generation We believe that con-
sidering the document as a single unit can often be misleading: its text might be too diverse
to be readily mapped to the right set of concepts, while notions mentioned only briefly may
be overlooked. Instead, we partition the document into a series of non-overlapping segments
(called contexts), and then generate features at this finer level. Each context is mapped
into a number of Wikipedia concepts in the knowledge base, and pooling these concepts
together to describe the entire document results in multi-faceted classification. This way,
the resulting set of concepts represents the various aspects or sub-topics covered by the
document.

Potential candidates for such contexts are simple sequences of words, or more linguis-
tically motivated chunks such as sentences or paragraphs. The optimal resolution for doc-
ument segmentation can be determined automatically using a validation set. In our ear-
lier work (Gabrilovich & Markovitch, 2005, 2007b), we proposed a more principled multi-
resolution approach that simultaneously partitions the document at several levels of linguis-
tic abstraction (windows of words, sentences, paragraphs, up to taking the entire document
as one big chunk), and performs feature generation at each of these levels. We rely on the
subsequent feature selection step to eliminate extraneous features, preserving only those
that genuinely characterize the document.

It is essential to emphasize that using the multi-resolution approach only makes sense
when interpretation vectors are pruned to only retain a number of highest-scoring con-
cepts for each context. As explained above, this is exactly the case for text categorization.
Without such pruning, producing interpretation vectors for each context and then summing
them up would be equivalent to simply multiplying the weight of each concept by a constant
factor. In order to explain why the situation is different in the presence of pruning, let us
consider an example. Suppose we have a long document that only mentions a particular
topic T in its last paragraph. Since this topic is not central to the document, the N top-
scoring concepts in the document’s interpretation vector I are unlikely to cover this topic.
Although T is likely to be covered by other concepts in I, those concepts have lower weight
in I and are going to be pruned. However, if we produce interpretation vectors also for
each paragraph of the document, and retain N highest-scoring concepts of each, then the
concepts generated for the last paragraph will cover T . Consequently, T will have represen-
tation in the joined set of concepts generated for the document. In many text categorization
tasks, documents are labeled with a particular topic even if they mention the topic briefly,
hence generating features describing such topics is very important.

Feature generation Feature generation is performed prior to text categorization. Each
document is transformed into a series of local contexts, which are then represented as
interpretation vectors using ESA. The top ten concepts of all the vectors are pooled together,
and give rise to the generated features of the document, which are added to the bag of words.
Since concepts in our approach correspond to Wikipedia articles, constructed features also
correspond to the articles. Thus, a set of features generated for a document can be viewed
as representing a set of Wikipedia articles that are most relevant to the document contents.
The constructed features are used in conjunction with the original bag of words. The
resulting set optionally undergoes feature selection, and the most discriminative features
are retained for document representation.
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Figure 2: Standard approach to text categorization.
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Figure 3: Induction of text classifiers using the proposed framework for feature generation.

Figure 2 depicts the standard approach to text categorization. Figure 3 outlines the
proposed feature generation framework; observe that the “Feature generation” box replaces
the “Feature selection” box framed in bold in Figure 2.

It is essential to note that we do not use the encyclopedia to simply increase the amount
of the training data for text categorization; neither do we use it as a text corpus to collect
word co-occurrence statistics. Rather, we use the knowledge distilled from the encyclopedia
to enrich the representation of documents, so that a text categorizer is induced in the
augmented, knowledge-rich feature space.
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4.3 Test Collections

This section gives a brief description of the test collections we used to evaluate our method-
ology. We provide a much more detailed description of these test collections in Appendix B.
1. Reuters-21578 (Reuters, 1997) is historically the most often used dataset in text cate-
gorization research. Following common practice, we used the ModApte split (9603 training,
3299 testing documents) and two category sets, 10 largest categories and 90 categories with
at least one training and testing example.
2. 20 Newsgroups (20NG) (Lang, 1995) is a well-balanced dataset of 20 categories
containing 1000 documents each.
3. Movie Reviews (Movies) (Pang, Lee, & Vaithyanathan, 2002) defines a sentiment
classification task, where reviews express either positive or negative opinion about the
movies. The dataset has 1400 documents in two categories (positive/negative)
4. Reuters Corpus Volume I (RCV1) (Lewis, Yang, Rose, & Li, 2004) has over
800,000 documents. To speed up the experiments, we used a subset of RCV1 with 17,808 trai-
ning documents (dated 20–27/08/96) and 5,341 testing ones (28–31/08/96). Following
Brank, Grobelnik, Milic-Frayling, and Mladenic (2002), we used 16 Topic and 16 Industry
categories that constitute representative samples of the full groups of 103 and 354 categories,
respectively. We also randomly sampled the Topic and Industry categories into 5 sets of
10 categories each.11

5. OHSUMED (Hersh, Buckley, Leone, & Hickam, 1994) is a subset of MEDLINE, which
contains 348,566 medical documents. Each document contains a title, and about two-thirds
(233,445) also contain an abstract. Each document is labeled with an average of 13 MeSH12

categories (out of total 14,000). Following Joachims (1998), we used a subset of documents
from 1991 that have abstracts, taking the first 10,000 documents for training and the next
10,000 for testing. To limit the number of categories for the experiments, we randomly
generated 5 sets of 10 categories each.13

Using these 5 datasets allows us to comprehensively evaluate the performance of our
approach. Specifically, comparing 20 Newsgroups and the two Reuters datasets (Reuters-
21578 and Reuters Corpus Volume 1), we observe that the former is substantially more
noisy since the data has been obtained from Usenet newsgroups, while the Reuters datasets
are significantly cleaner. The Movie Reviews collection presents an example of sentiment
classification, which is different from standard (topical) text categorization. Finally, the
OHSUMED dataset presents an example of a very comprehensive taxonomy of over 14,000
categories. As we explain the next section, we also used this dataset to create a collection
of labeled short texts, which allowed us to quantify the performance of our method on such
texts.

Short Documents We also derived several datasets of short documents from the test
collections described above. Recall that about one-third of OHSUMED documents have
titles but no abstract, and can therefore be considered short documents “as-is.” We used
the same range of documents as defined above, but considered only those without abstracts;
this yielded 4,714 training and 5,404 testing documents. For all other datasets, we created

11. The full definition of the category sets we used is available in Table 8 (see Section B.4).
12. http://www.nlm.nih.gov/mesh

13. The full definition of the category sets we used is available in Table 9 (see Section B.5).

462



Wikipedia-based Semantic Interpretation

a short document from each original document by taking only the title of the latter (with
the exception of Movie Reviews, where documents have no titles).

It should be noted, however, that substituting a title for the full document is a poor
man’s way to obtain a collection of classified short documents. When documents were first
labeled with categories, the human labeller saw each document in its entirety. In particular,
a category might have been assigned to a document on the basis of facts mentioned in its
body, even though the information may well be missing from the (short) title. Thus, taking
all the categories of the original documents to be “genuine” categories of the title is often
misleading. However, because we know of no publicly available test collections of short
documents, we decided to construct datasets as explained above. Importantly, OHSUMED
documents without abstracts have been classified as such by humans; working with the
OHSUMED-derived dataset can thus be considered a “pure” experiment.

4.4 Experimentation Procedure

We used support vector machines14 as our learning algorithm to build text categorizers, since
prior studies found SVMs to have the best performance for text categorization (Sebastiani,
2002; Dumais, Platt, Heckerman, & Sahami, 1998; Yang & Liu, 1999). Following established
practice, we use the precision-recall break-even point (BEP) to measure text categorization
performance. BEP is defined in terms of the standard measures of precision and recall,
where precision is the proportion of true document-category assignments among all assign-
ments predicted by the classifier, and recall is the proportion of true document-category
assignments that were also predicted by the classifier. It is obtained by either tuning the
classifier so that precision is equal to recall, or sampling several (precision, recall) points
that bracket the expected BEP value and then interpolating (or extrapolating, in the event
that all the sampled points lie on the same side).

For the two Reuters datasets and OHSUMED we report both micro- and macro-averaged
BEP, since their categories differ in size significantly. Micro-averaged BEP operates at the
document level and is primarily affected by categorization performance on larger categories.
On the other hand, macro-averaged BEP averages results for individual categories, and thus
small categories with few training examples have large impact on the overall performance.

For both Reuters datasets (Reuters-21578 and RCV1) and OHSUMED we used a fixed
train/test split as defined in Section 4.3, and consequently used macro sign test (S-test)
(Yang & Liu, 1999) to assess the statistical significance of differences in classifier perfor-
mance. For 20NG and Movies we performed 4-fold cross-validation, and used paired t-test to
assess the significance. We also used the non-parametric Wilcoxon signed-ranks test (Dem-
sar, 2006) to compare the baseline and the FG-based classifiers over multiple data sets. In
the latter case, the individual measurements taken are the (micro- or macro-averaged) BEP
values observed on each dataset.

14. We used the SVM light implementation (Joachims, 1999) with the default parameters. In our earlier
work on feature selection (Gabrilovich & Markovitch, 2004), we conducted a thorough experimentation
with a wide range of values of the C parameter, and found it not to be of any major importance for
these datasets; consequently, we leave this parameter at its default setting as well.
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4.4.1 Text Categorization Infrastructure

We conducted the experiments using a text categorization platform of our own design and
development named Hogwarts15 (Davidov, Gabrilovich, & Markovitch, 2004). We opted
to build a comprehensive new infrastructure for text categorization, as surprisingly few soft-
ware tools are publicly available for researchers, while those that are available allow only
limited control over their operation. Hogwarts facilitates full-cycle text categorization
including text preprocessing, feature extraction, construction, selection and weighting, fol-
lowed by actual classification with cross-validation of experiments. The system currently
provides XML parsing, part-of-speech tagging (Brill, 1995), sentence boundary detection,
stemming (Porter, 1980), WordNet (Fellbaum, 1998) lookup, a variety of feature selection
algorithms, and TFIDF feature weighting schemes. Hogwarts has over 250 configurable
parameters that control its modus operandi in minute detail. Hogwarts interfaces with
SVM, KNN and C4.5 text categorization algorithms, and computes all standard measures
of categorization performance. Hogwarts was designed with a particular emphasis on
processing efficiency, and portably implemented in the ANSI C++ programming language
and C++ Standard Template Library. The system has built-in loaders for Reuters-21578
(Reuters, 1997), RCV1 (Lewis et al., 2004), 20 Newsgroups (Lang, 1995), Movie Reviews
(Pang et al., 2002), and OHSUMED (Hersh et al., 1994), while additional datasets can be
easily integrated in a modular way.

Each document undergoes the following processing steps. Document text is first to-
kenized, and title words are replicated twice to emphasize their importance. Then, stop
words, numbers and mixed alphanumeric strings are removed, and the remaining words
are stemmed. The bag of words is next merged with the set of features generated for the
document by analyzing its contexts as explained in Section 4.2, and rare features occurring
in fewer than 3 documents are removed.

Since earlier studies found that most BOW features are indeed useful for SVM text
categorization16 (Joachims, 1998; Rogati & Yang, 2002; Brank et al., 2002; Bekkerman,
2003; Leopold & Kindermann, 2002; Lewis et al., 2004), we take the bag of words in its
entirety (with the exception of rare features removed in the previous step). The generated
features, however, undergo feature selection using the information gain criterion.17 Finally,
feature weighting is performed using the “ltc” TF.IDF function (logarithmic term frequency
and inverse document frequency, followed by cosine normalization) (Salton & Buckley, 1988;
Debole & Sebastiani, 2003).

4.4.2 Baseline Performance of Hogwarts

We now demonstrate that the performance of basic text categorization in our implementa-
tion (column “Baseline” in Table 4) is consistent with the state of the art as reflected in
other published studies (all using SVM). On Reuters-21578, Dumais et al. (1998) achieved

15. Hogwarts School of Witchcraft and Wizardry is the educational institution attended by Harry Potter
(Rowling, 1997).

16. Gabrilovich and Markovitch (2004) described a class of problems where feature selection from the bag
of words actually improves SVM performance.

17. Of course, feature selection is performed using only the training set of documents.
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micro-BEP of 0.920 for 10 categories and 0.870 for all categories. On 20NG18, Bekkerman
(2003) obtained BEP of 0.856. Pang et al. (2002) obtained accuracy of 0.829 on Movies19.
The minor variations in performance are due to differences in data preprocessing in the
different systems; for example, for the Movies dataset we worked with raw HTML files
rather than with the official tokenized version, in order to recover sentence and paragraph
structure for contextual analysis. For RCV1 and OHSUMED, direct comparison with pub-
lished results is more difficult because we limited the category sets and the date span of
documents to speed up experimentation.

4.4.3 Using the Feature Generator

The core engine of Explicit Semantic Analysis was implemented as explained in Section 3.2.
We used the multi-resolution approach to feature generation, classifying document con-

texts at the level of individual words, complete sentences, paragraphs, and finally the entire
document.20 For each context, features were generated from the 10 best-matching concepts
produced by the feature generator.

4.5 Wikipedia-based Feature Generation

In this section, we report the results of an experimental evaluation of our methodology.

4.5.1 Qualitative Analysis of Feature Generation

We now study the process of feature generation on a number of actual examples.

Feature Generation per se To illustrate our approach, we show features generated for
several text fragments. Whenever applicable, we provide short explanations of the generated
concepts; in most cases, the explanations are taken from Wikipedia (Wikipedia, 2006).

• Text: “Wal-Mart supply chain goes real time”

Top 10 generated features: (1) Wal-Mart; (2) Sam Walton; (3) Sears Holdings

Corporation; (4) Target Corporation; (5) Albertsons; (6) ASDA; (7) RFID; (8)
Hypermarket; (9) United Food and Commercial Workers; (10) Chain store

Selected explanations: (2) Wal-Mart founder; (5) prominent competitors of Wal-
Mart; (6) a Wal-Mart subsidiary in the UK; (7) Radio Frequency Identification, a
technology that Wal-Mart uses very extensively to manage its stock; (8) superstore
(a general concept, of which Wal-Mart is a specific example); (9) a labor union that

18. For comparison with the results reported by Bekkerman (2003) we administered a single test run (i.e.,
without cross-validation), taking the first 3/4 of postings in each newsgroup for training, and the rest
for testing.

19. For comparison with the results reported by Pang et al. (2002) we administered a single test run (i.e.,
without cross-validation), taking the first 2/3 of the data for each opinion type for training, and the rest
for testing.

20. The 20NG dataset is an exception, owing to its high level of intrinsic noise that renders identification
of sentence boundaries extremely unreliable, and causes word-level feature generation to produce too
many spurious classifications. Consequently, for this dataset we restrict the multi-resolution approach
to individual paragraphs and the entire document only.
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has been trying to organize Wal-Mart’s workers; (10) a general concept, of which
Wal-Mart is a specific example

• It is particularly interesting to juxtapose the features generated for fragments that
contain ambiguous words. To this end, we show features generated for two phrases
that contain the word “bank” in two different senses, “Bank of America” (financial
institution) and “Bank of Amazon” (river bank). As can be readily seen, our fea-
ture generation methodology is capable of performing word sense disambiguation by
considering ambiguous words in the context of their neighbors.

– Text: “Bank of America”
Top 10 generated features: (1) Bank; (2) Bank of America; (3) Bank of

America Plaza (Atlanta); (4) Bank of America Plaza (Dallas); (5) MBNA

(a bank holding company acquired by Bank of America); (6) VISA (credit

card); (7) Bank of America Tower, New York City; (8) NASDAQ; (9) Mas-

terCard; (10) Bank of America corporate Center

– Text: “Bank of Amazon”
Top 10 generated features: (1) Amazon River; (2) Amazon Basin; (3) Ama-

zon Rainforest; (4) Amazon.com; (5) Rainforest; (6) Atlantic Ocean; (7)
Brazil; (8) Loreto Region (a region in Peru, located in the Amazon Rainforest);
(9) River; (10) Economy of Brazil

• Our method, however, is not 100% accurate, and in some cases it generates features
that are only somewhat relevant or even irrelevant to the input text. As an exam-
ple, we show the outcome of feature generation for the title of our earlier article
(Gabrilovich & Markovitch, 2006). For each concept, we show a list of input words
that triggered it (the words are stemmed and sorted in the decreasing order of their
contribution).

Text: “Overcoming the Brittleness Bottleneck using Wikipedia: Enhancing Text Cat-
egorization with Encyclopedic Knowledge”

Top 10 generated features:

1. Encyclopedia (encyclopedia, knowledge, Wikipedia, text)

2. Wikipedia (Wikipedia, enhance, encyclopedia, text)

3. Enterprise content management (category, knowledge, text, overcome, en-
hance)

4. Performance problem (bottleneck, category, enhance)

5. Immanuel Kant (category, knowledge, overcome)

6. Tooth enamel (brittleness, text, enhance)

7. Lucid dreaming (enhance, text, knowledge, category)

8. Bottleneck (bottleneck)

9. Java programming language (category, bottleneck, enhance)
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10. Transmission Control Protocol (category, enhance, overcome)

Some of the generated features are clearly relevant to the input, such as Encyclopedia,
Wikipedia, and Enterprise content management. Others, however, are spurious,
such as Tooth enamel or Transmission Control Protocol. Since the process of
feature generation relies on the bag of words for matching concepts to the input text, it
suffers from the BOW shortcomings we mentioned above (Section 4.1). Consequently,
some features are generated because the corresponding Wikipedia articles just happen
to share words with the input text, even though these words are not characteristic
of the article as a whole. As explained above, our method can successfully operate
in the presence of such extraneous features due to the use of feature selection. This
way, generated features that are not informative for predicting document categories
are filtered out, and only informative features are actually retained for learning the
classification model.

Using Inter-article Links for Generating Additional Features In Section 1, we
presented an algorithm that generates additional features using inter-article links as rela-
tions between concepts. In what follows, we show a series of text fragments, where for
each fragment we show (a) features generated with the regular FG algorithm, (b) features
generated using Wikipedia links, and (c) more general features generated using links. As
we can see from the examples, the features constructed using the links are often relevant to
the input text.

• Text: “Google search”

Regular feature generation: (1) Search engine; (2) Google Video; (3) Google;
(4) Google (search); (5) Google Maps; (6) Google Desktop; (7) Google (verb);
(8) Google News; (9) Search engine optimization; (10) Spamdexing (search engine
spamming)

Features generated using links: (1) PageRank; (2) AdWords; (3) AdSense; (4)
Gmail; (5) Google Platform; (6) Website; (7) Sergey Brin; (8) Google bomb; (9)
MSN Search; (10) Nigritude ultramarine (a meaningless phrase used in a search
engine optimization contest in 2004)

More general features only: (1) Website; (2) Mozilla Firefox; (3) Portable

Document Format; (4) Algorithm; (5) World Wide Web

• Text: “programming tools”

Regular feature generation: (1) Tool; (2) Programming tool; (3) Computer

software; (4) Integrated development environment; (5) Computer-aided soft-

ware engineering; (6) Macromedia Flash; (7) Borland; (8) Game programmer;
(9) C programming language; (10) Performance analysis

Features generated using links: (1) Compiler; (2) Debugger; (3) Source code;
(4) Software engineering; (5) Microsoft; (6) Revision control; (7) Scripting

language; (8) GNU; (9) Make; (10) Linux

More general features only: (1) Microsoft; (2) Software engineering; (3)
Linux; (4) Compiler; (5) GNU

467



Gabrilovich & Markovitch

4.5.2 The Effect of Feature Generation

Table 4 shows the results of using Wikipedia-based feature generation, with significant
improvements (p < 0.05) shown in bold. The different rows of the table correspond to
the performance on different datasets and their subsets, as defined in Section 4.3. We
consistently observed larger improvements in macro-averaged BEP, which is dominated by
categorization effectiveness on small categories. This goes in line with our expectations
that the contribution of encyclopedic knowledge should be especially prominent for cate-
gories with few training examples. Categorization performance was improved for virtually
all datasets, with notable improvements of up to 30.4% for RCV1 and 18% for OHSUMED.
Using the Wilcoxon test, we found that the Wikipedia-based classifier is significantly supe-
rior to the baseline with p < 10−5 in both micro- and macro-averaged cases. These results
clearly demonstrate the advantage of knowledge-based feature generation.

In our prior work (Gabrilovich & Markovitch, 2005, 2007b), we have also performed
feature generation for text categorization using an alternative source of knowledge, namely,
the Open Directory Project (ODP). The results of using Wikipedia are competitive with
those using ODP, with a slight advantage of Wikipedia. Observe also that Wikipedia is
constantly updated by numerous volunteers around the globe, while the ODP is virtually
frozen nowadays. Hence, in the future we can expect to obtain further improvements by
using newer versions of Wikipedia.

The Effect of Knowledge Breadth We also examined the effect of performing feature
generation using a newer Wikipedia snapshot, as explained in Section 3.2.2. Appendix A
reports the results of this experiment, which show a small but consistent improvement due
to using a larger knowledge base.

4.5.3 Classifying Short Documents

We conjectured that Wikipedia-based feature generation should be particularly useful for
classifying short documents.

Table 5 presents the results of this evaluation on the datasets defined in Section 4.3.
In the majority of cases, feature generation yielded greater improvement on short doc-
uments than on regular documents. Notably, the improvements are particularly high for
OHSUMED, where “pure” experimentation on short documents is possible (see Section 4.3).
According to the Wilcoxon test, the Wikipedia-based classifier is significantly superior to
the baseline with p < 2 · 10−6. These findings confirm our hypothesis that encyclope-
dic knowledge should be particularly useful when categorizing short documents, which are
inadequately represented by the standard bag of words.

4.5.4 Using Inter-article links as Concept Relations

Using inter-article links for generating additional features, we observed further improve-
ments in text categorization performance on short documents. As we can see in Table 6,
in the absolute majority of cases using links to generate more general features only is a
superior strategy. As we explain in Section 2.3, inter-article links can be viewed as relations
between concepts represented by the articles. Consequently, using these links allows us to
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Dataset Baseline Wikipedia Improvement
micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.925 0.874 0.932 0.887 +0.8% +1.5%
Reuters-21578 (90 cat.) 0.877 0.602 0.883 0.603 +0.7% +0.2%
RCV1 Industry-16 0.642 0.595 0.645 0.617 +0.5% +3.7%
RCV1 Industry-10A 0.421 0.335 0.448 0.437 +6.4%+30.4%
RCV1 Industry-10B 0.489 0.528 0.523 0.566 +7.0% +7.2%
RCV1 Industry-10C 0.443 0.414 0.468 0.431 +5.6% +4.1%
RCV1 Industry-10D 0.587 0.466 0.595 0.459 +1.4% -1.5%
RCV1 Industry-10E 0.648 0.605 0.641 0.612 -1.1% +1.2%
RCV1 Topic-16 0.836 0.591 0.843 0.661 +0.8% +11.8%
RCV1 Topic-10A 0.796 0.587 0.798 0.682 +0.3% +16.2%
RCV1 Topic-10B 0.716 0.618 0.723 0.656 +1.0% +6.1%
RCV1 Topic-10C 0.687 0.604 0.699 0.618 +1.7% +2.3%
RCV1 Topic-10D 0.829 0.673 0.839 0.688 +1.2% +2.2%
RCV1 Topic-10E 0.758 0.742 0.765 0.755 +0.9% +1.8%
OHSUMED-10A 0.518 0.417 0.538 0.492 +3.9%+18.0%
OHSUMED-10B 0.656 0.500 0.667 0.534 +1.7% +6.8%
OHSUMED-10C 0.539 0.505 0.545 0.522 +1.1% +3.4%
OHSUMED-10D 0.683 0.515 0.692 0.546 +1.3% +6.0%
OHSUMED-10E 0.442 0.542 0.462 0.575 +4.5% +6.1%
20NG 0.854 0.862 +1.0%

Movies 0.813 0.842 +3.6%

Table 4: The effect of feature generation for long documents
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Dataset Baseline Wikipedia Improvement
micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.868 0.774 0.877 0.793 +1.0% +2.5%
Reuters-21578 (90 cat.) 0.793 0.479 0.803 0.506 +1.3% +5.6%
RCV1 Industry-16 0.454 0.400 0.481 0.437 +5.9% +9.2%
RCV1 Industry-10A 0.249 0.199 0.293 0.256 +17.7% +28.6%
RCV1 Industry-10B 0.273 0.292 0.337 0.363 +23.4% +24.3%
RCV1 Industry-10C 0.209 0.199 0.294 0.327 +40.7% +64.3%
RCV1 Industry-10D 0.408 0.361 0.452 0.379 +10.8% +5.0%
RCV1 Industry-10E 0.450 0.410 0.474 0.434 +5.3% +5.9%
RCV1 Topic-16 0.763 0.529 0.769 0.542 +0.8% +2.5%
RCV1 Topic-10A 0.718 0.507 0.725 0.544 +1.0% +7.3%
RCV1 Topic-10B 0.647 0.560 0.643 0.564 -0.6% +0.7%
RCV1 Topic-10C 0.551 0.471 0.573 0.507 +4.0% +7.6%
RCV1 Topic-10D 0.729 0.535 0.735 0.563 +0.8% +5.2%
RCV1 Topic-10E 0.643 0.636 0.670 0.653 +4.2% +2.7%
OHSUMED-10A 0.302 0.221 0.405 0.299 +34.1% +35.3%
OHSUMED-10B 0.306 0.187 0.383 0.256 +25.2% +36.9%
OHSUMED-10C 0.441 0.296 0.528 0.413 +19.7% +39.5%
OHSUMED-10D 0.441 0.356 0.460 0.402 +4.3% +12.9%
OHSUMED-10E 0.164 0.206 0.219 0.280 +33.5% +35.9%
20NG 0.699 0.749 +7.1%

Table 5: Feature generation for short documents
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Dataset Baseline Wikipedia Wikipedia Wikipedia
+ links + links

(more general
features only)

micro macro micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.868 0.774 0.877 0.793 0.878 0.796 0.880 0.801
Reuters-21578 (90 cat.) 0.793 0.479 0.803 0.506 0.804 0.506 0.809 0.507
RCV1 Industry-16 0.454 0.400 0.481 0.437 0.486 0.445 0.488 0.444
RCV1 Topic-16 0.763 0.529 0.769 0.542 0.769 0.539 0.775 0.545
20NG 0.699 0.749 0.753 0.756
Dataset Improvement Improvement Improvement

over baseline over baseline over baseline
Reuters-21578 (10 cat.) – – +1.0% +2.5% +1.2% +2.8% +1.4% +3.5%
Reuters-21578 (90 cat.) – – +1.3% +5.6% +1.4% +5.6% +2.0% +5.8%
RCV1 Industry-16 – – +5.9% +9.2% +7.1% +11.3% +7.5% +11.0%
RCV1 Topic-16 – – +0.8% +2.5% +0.8% +1.9% +1.6% +3.0%
20NG – +7.1% +7.7% +8.1%

Table 6: Feature generation for short documents using inter-article links

identify additional concepts related to the context being analyzed, which leads to better
representation of the context with additional relevant generated features.

5. Related Work

This section puts our methodology in the context of related prior work.
In the past, there have been a number of attempts to represent the meaning of natural

language texts. Early research in computational linguistics focused on deep natural language
understanding, and strived to represent text semantics using logical formulae (Montague,
1973). However, this task proved to be very difficult and little progress has been made to
develop comprehensive grammars for non-trivial fragments of the language. Consequently,
the mainstream research effectively switched to more statistically-based methods (Manning
& Schuetze, 2000).

Although few of these studies tried to explicitly define semantic representation, their
modus operandi frequently induces a particular representation system. Distributional simi-
larity methods (Lee, 1999) compute the similarity of a pair of words w1 and w2 by comparing
the distributions of other words given these two, e.g., by comparing vectors of probabili-
ties P (v|w1) and P (v|w2) for a large vocabulary V of words (v ∈ V ). Therefore, these
techniques can be seen as representing the meaning of a word w as a vector of conditional
probabilities of other words given w. Dagan, Marcus, and Markovitch (1995) refined this
technique by considering co-occurrence probabilities of a word with its left and right con-
textual neighbors. For example, the word “water” would be represented by a vector of its
left neighbors such as “drink”, “pour”, and “clean”, and the vector of right neighbors such
as “molecule”, “level”, and “surface”. Lin (1998a) represented word meaning by consid-
ering syntactic roles of other words that co-occur with it in a sentence. For example, the
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semantics of the word “water” would be represented by a vector of triples such as (water,
obj-of, drink) and (water, adj-mod, clean). Qiu and Frei (1993) proposed a method
for concept-based query expansion; however, they expanded queries with additional words
rather than with features corresponding to semantic concepts.

Latent Semantic Analysis is probably the most similar method in prior research, as it
does explicitly represents the meaning of a text fragment. LSA does so by manipulating
a vector of so-called latent concepts, which are obtained through SVD decomposition of a
word-by-document matrix of the training corpus. CYC (Lenat, 1995; Lenat, Guha, Pittman,
Pratt, & Shepherd, 1990) represents semantics of words through an elaborate network of
interconnected and richly-annotated concepts.

In contrast, our method represents the meaning of a piece of text as a weighted vector
of knowledge concepts. Importantly, entries of this vector correspond to unambiguous
human-defined concepts rather than plain words, which are often ambiguous. Compared to
LSA, our approach benefits from large amounts of manually encoded human knowledge, as
opposed to defining concepts using statistical analysis of a training corpus. Compared to
CYC, our approach streamlines the process of semantic interpretation that does not depend
on manual encoding of inference rules. With the exception of LSA, most prior approaches
to semantic interpretation explicitly represent semantics of individual words, and require an
extra level of sophistication to represent longer texts. Conversely, our approach represents
the meaning of texts in a uniform way regardless of their length.

5.1 Semantic Similarity and Semantic Relatedness

In this study we deal with “semantic relatedness” rather than “semantic similarity” or
“semantic distance”, which are also often used in the literature. In their extensive survey of
relatedness measures, Budanitsky and Hirst (2006) argued that the notion of relatedness is
more general than that of similarity, as the former subsumes many different kind of specific
relations, including meronymy, antonymy, functional association, and others. They further
maintained that computational linguistics applications often require measures of relatedness
rather than the more narrowly defined measures of similarity. For example, word sense
disambiguation can use any related words from the context, and not merely similar words.
Budanitsky and Hirst (2006) also argued that the notion of semantic distance might be
confusing due to the different ways it has been used in the literature.

Our approach to estimating semantic relatedness of words is somewhat reminiscent of
distributional (or co-occurrence) similarity (Lee, 1999; Dagan, Lee, & Pereira, 1999). In-
deed, we compare the meanings of words by comparing the occurrence patterns across a
large collection of natural language documents. However, the compilation of these docu-
ments is not arbitrary, rather, the documents are aligned with encyclopedia articles, while
each of them is focused on a single topic. Furthermore, distributional similarity methods
are inherently suitable for comparing individual words, while our method can compute
similarity of arbitrarily long texts.

Prior work in the field mostly focused on semantic similarity of words, using R&G
(Rubenstein & Goodenough, 1965) list of 65 word pairs and M&C (Miller & Charles, 1991)
list of 30 word pairs. When only the similarity relation is considered, using lexical resources
was often successful enough, reaching the Pearson’s correlation of 0.70–0.85 with human
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judgements (Budanitsky & Hirst, 2006; Jarmasz, 2003). In this case, lexical techniques
even have a slight edge over ESA-Wikipedia, whose correlation with human scores is 0.723
on M&C and 0.816 on R&G. 21 However, when the entire language wealth is considered
in an attempt to capture more general semantic relatedness, lexical techniques yield sub-
stantially inferior results (see Table 2). WordNet-based technique, which only consider the
generalization (“is-a”) relation between words, achieve correlation of only 0.33–0.35 with
human judgements (Budanitsky & Hirst, 2006; Jarmasz, 2003). Jarmasz & Szpakowicz’s
ELKB system (Jarmasz, 2003) based on Roget’s Thesaurus (Roget, 1852) achieves a higher
correlation of 0.55 due to its use of a richer set if relations.

Studying semantic similarity and relatedness of words is related to assessing similarity
of relations. An example of this task is to establish that word pairs carpenter:wood and
mason:stone are relationally similar, as the words in both pairs stand in the same relation
(profession:material). State of the art results on relational similarity are based on Latent
Relational Analysis (Turney, 2006, 2005).

Sahami and Heilman (2006) proposed to use the Web as a source of additional knowledge
for measuring similarity of short text snippets. To this end, they defined a kernel function
that sends two snippets as queries to a search engine, and compares the bags of words for
the two sets of returned documents. A major limitation of this technique is that it is only
applicable to short texts, because sending a long text as a query to a search engine is likely
to return few or even no results at all. On the other hand, our approach is applicable to
text fragments of arbitrary length. Additional studies that explored the Web to gather
information for computing word similarity include (Turney, 2001) and (Metzler, Dumais, &
Meek, 2007). The main difference between these works and our method is that the latter
uses a structured representation of human knowledge defined by Wikipedia concepts.

The above-mentioned based techniques are inherently limited to individual words, and
their adaptation for comparing longer texts requires an extra level of complexity (Mihalcea
et al., 2006). In contrast, our method treats both words and texts in essentially the same
way.

Strube and Ponzetto (2006) also used Wikipedia for computing semantic relatedness.
However, their method, called WikiRelate!, is radically different from ours. Given a pair of
words w1 and w2, WikiRelate! searches for Wikipedia articles, p1 and p2, that respectively
contain w1 and w2 in their titles. Semantic relatedness is then computed based on various
distance measures between p1 and p2. These measures either rely on the texts of the
pages, or path distances within the category hierarchy of Wikipedia. Our approach, on the
other hand, represents each word as a weighted vector of Wikipedia concepts. Semantic
relatedness is then computed by comparing the two concept vectors.

Thus, the differences between the two approaches are:

1. WikiRelate! can only process words that actually occur in titles of Wikipedia articles.
ESA only requires that the word appears within the text of Wikipedia articles.

2. WikiRelate! is limited to single words while ESA can compare texts of any length.

21. WikiRelate! (Strube & Ponzetto, 2006) achieved relatively low scores of 0.31–0.54 on these domains.
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3. WikiRelate! represents the semantics of a word by either the text of the article
associated with it, or by the node in the category hierarchy. ESA has a much more
structured semantic representation consisting of a vector of Wikipedia concepts.

Indeed, as we have shown in Section 3.3, the richer representation of ESA yields much better
results.

5.2 Feature Generation for Text Categorization

To date, quite a few attempts have been made to deviate from the orthodox bag of words
paradigm, usually with limited success. In particular, representations based on phrases
(Lewis, 1992; Dumais et al., 1998; Fuernkranz, Mitchell, & Riloff, 1998), named entities
(Kumaran & Allan, 2004), and term clustering (Lewis & Croft, 1990; Bekkerman, 2003)
have been explored. However, none of these techniques could possibly overcome the problem
underlying the various examples we reviewed in this paper—lack of world knowledge.

Feature generation techniques were found useful in a variety of machine learning tasks
(Markovitch & Rosenstein, 2002; Fawcett, 1993; Matheus, 1991). These techniques search
for new features that describe the target concept better than the ones supplied with the
training instances. A number of proposed feature generation algorithms (Pagallo & Haus-
sler, 1990; Matheus & Rendell, 1989; Hu & Kibler, 1996; Murphy & Pazzani, 1991; Hirsh
& Japkowicz, 1994) led to significant improvements in performance over a range of classi-
fication tasks. However, even though feature generation is an established research area in
machine learning, only a few works have applied it to text processing (Kudenko & Hirsh,
1998; Mikheev, 1998; Cohen, 2000; Scott, 1998; Scott & Matwin, 1999). In contrast to our
approach, these techniques did not use any exogenous knowledge.

In our prior work (Gabrilovich & Markovitch, 2005, 2007b), we assumed the external
knowledge is available in the form of a generalization hierarchy, and used the Open Directory
Project as an example. This method, however, had a number of drawbacks, which can be
corrected by using Wikipedia.

First, requiring the knowledge repository to define an “is-a” hierarchy limits the choice of
appropriate repositories. Moreover, hierarchical organization embodies only one particular
relation between the nodes (generalization), while numerous other relations, such as relat-
edness, meronymy/holonymy and chronology, are ignored. Second, large-scale hierarchies
tend to be extremely unbalanced, so that the relative size of some branches is dispropor-
tionately large or small due to peculiar views of the editors. Such phenomena are indeed
common in the ODP. For example, the Top/Society branch is heavily dominated by one
of its children—Religion and Spirituality; the Top/Science branch is dominated by its
Biology child; a considerable fraction of the mass of Top/Recreation is concentrated in
Pets. Finally, to learn the scope of every ODP concept, short textual descriptions of the
concepts were augmented by crawling the Web sites cataloged in the ODP. This procedure
allowed us to accumulate many gigabytes worth of textual data, but at a price, as texts
obtained from the Web are often quite far from formal writing and plagued with noise.
Crawling a typical Web site often brings auxiliary material that has little to do with the
site theme, such as legal disclaimers, privacy statements, and help pages.

In this paper we proposed to use world knowledge encoded in Wikipedia, which is ar-
guably the largest knowledge repository on the Web. Compared to the ODP, Wikipedia
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possesses several advantageous properties. First, its articles are much cleaner than typical
Web pages, and mostly qualify as standard written English. Although Wikipedia offers
several orthogonal browsing interfaces, their structure is fairly shallow, and we propose to
treat Wikipedia as having essentially no hierarchy. This way, mapping tex fragments onto
relevant Wikipedia concepts yields truly multi-faceted classification of the text, and avoids
the problem of unbalanced hierarchy branches. Moreover, by not requiring the knowledge
repository to be hierarchically organized, our approach is suitable for new domains, for
which no ontology is available. Finally, Wikipedia articles are heavily cross-linked, in a way
reminiscent of linking on the Web. We conjectured that these links encode many interest-
ing relations between the concepts, and constitute an important source of information in
addition to the article texts. We explored using inter-article links in Section 4.5.4.

5.2.1 Feature Generation Using Electronic Dictionaries

Several studies performed feature construction using the WordNet electronic dictionary
(Fellbaum, 1998) and other domain-specific dictionaries (Scott, 1998; Scott & Matwin,
1999; Urena-Lopez, Buenaga, & Gomez, 2001; Wang, McKay, Abbass, & Barlow, 2003;
Bloehdorn & Hotho, 2004).

Scott and Matwin (1999) attempted to augment the conventional bag-of-words repre-
sentation with additional features, using the symbolic classification system Ripper (Cohen,
1995). This study evaluated features based on syntactically22 and statistically motivated
phrases, as well as on WordNet synsets23. In the latter case, the system performed general-
izations using the hypernym hierarchy of WordNet, and completely replaced a bag of words
with a bag of synsets. While using hypernyms allowed Ripper to produce more general
and more comprehensible rules and achieved some performance gains on small classifica-
tion tasks, no performance benefits could be obtained for larger tasks, which even suffered
from some degradation in classification accuracy. Consistent with other published findings
(Lewis, 1992; Dumais et al., 1998; Fuernkranz et al., 1998), the phrase-based representation
also did not yield any significant performance benefits over the bag-of-words approach.24

Urena-Lopez et al. (2001) used WordNet in conjunction with Rocchio (Rocchio, 1971)
and Widrow-Hoff (Lewis, Schapire, Callan, & Papka, 1996; Widrow & Stearns, 1985, Chap-
ter 6) linear classifiers to fine-tune the category vectors. Wang et al. (2003) used Medical
Subject Headings (MeSH, 2003) to replace the bag of words with canonical medical terms;
Bloehdorn and Hotho (2004) used a similar approach to augment Reuters-21578 documents
with WordNet synsets and OHSUMED medical documents with MeSH terms.

It should be noted, however, that WordNet was not originally designed to be a powerful
knowledge base, but rather a lexical database more suitable for peculiar lexicographers’
needs. Specifically, WordNet has the following drawbacks when used as a knowledge base
for text categorization:

22. Identification of syntactic phrases was performed using a noun phrase extractor built on top of a part of
speech tagger (Brill, 1995).

23. A synset is WordNet notion for a sense shared by a group of synonymous words.
24. Sebastiani (2002) casts the use of bag of words versus phrases as utilizing lexical semantics rather than

compositional semantics. Interestingly, some bag-of-words approaches (notably, KNN) may be considered
context-sensitive as they do not assume independence between either features (terms) or categories (Yang
& Pedersen, 1997).
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• WordNet has a fairly small coverage—for the test collections we used in this paper, up
to 50% of their unique words are missing from WordNet. In particular, many proper
names, slang and domain-specific technical terms are not included in WordNet, which
was designed as a general-purpose dictionary.

• Additional information about synsets (beyond their identity) is very limited. This is
because WordNet implements a differential rather than constructive lexical semantics
theory, so that glosses that accompany the synsets are mainly designed to distinguish
the synsets rather than provide a definition of the sense or concept. Usage examples
that occasionally constitute part of the gloss serve the same purpose. Without such
auxiliary information, reliable word sense disambiguation is almost impossible.

• WordNet was designed by professional linguists who are trained to recognize minute
differences in word senses. As a result, common words have far too many distinct
senses to be useful in information retrieval (Mihalcea, 2003); for example, the word
“make” has as many as 48 senses as a verb alone. Such fine-grained distinctions
between synsets present an additional difficulty for word sense disambiguation.

Both our approach and the techniques that use WordNet manipulate a collection of
concepts. However, there are a number of crucial differences. All previous studies only
performed feature generation for individual words only. Our approach can handle arbitrar-
ily long or short text fragments alike. Considering words in context allows our approach
to perform word sense disambiguation. Approaches using WordNet cannot achieve disam-
biguation because information about synsets is limited to merely a few words, while in
Wikipedia concepts are associated with huge amounts of text. Even for individual words,
our approach provides much more sophisticated mapping of words to concepts, through the
analysis of the large bodies of texts associated with concepts. This allows us to represent the
meaning of words (or texts) as a weighted combination of concepts, while mapping a word
in WordNet amounts to simple lookup, without any weights. Furthermore, in WordNet
the senses of each word are mutually exclusive. In our approach, concepts reflect different
aspects of the input, thus yielding weighted multi-faceted representation of the text.

In Appendix D we illustrate the limitations of WordNet on a specific example, where
we juxtapose WordNet-based and Wikipedia-based representation.

5.2.2 Using Unlabeled Examples

To the best of our knowledge, with the exception of the above studies that used WordNet,
there have been no attempts to date to automatically use large-scale repositories of struc-
tured background knowledge for feature generation. An interesting approach to using non-
structured background knowledge was proposed by Zelikovitz and Hirsh (2000). This work
uses a collection of unlabeled examples as intermediaries in comparing testing examples
with the training ones. Specifically, when an unknown test instance does not appear to
resemble any labeled training instances, unlabeled examples that are similar to both may
be used as “bridges.” Using this approach, it is possible to handle the situation where the
training and the test document have few or no words in common. The unlabeled documents
are utilized to define a cosine similarity metric, which is then used by the KNN algorithm
for actual text categorization. This approach, however, suffers from efficiency problems, as
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looking for intermediaries to compare every two documents makes it necessary to explore a
combinatorial search space.

In a subsequent paper, Zelikovitz and Hirsh (2001) proposed an alternative way to use
unlabeled documents as background knowledge. In this work, unlabeled texts are pooled
together with the training documents to compute a Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990) model. LSA analyzes a large corpus of unlabeled text, and automatically
identifies so-called “latent concepts” using Singular Value Decomposition. The resulting
LSA metric then facilitates comparison of test documents to training documents. The ad-
dition of unlabeled documents significantly increases the amount of data on which word
co-occurrence statistics is estimated, thus providing a solution to text categorization prob-
lems where training data is particularly scarce. However, subsequent studies found that
LSA can rarely improve the strong baseline established by SVM, and often even results in
performance degradation (Wu & Gunopulos, 2002; Liu, Chen, Zhang, Ma, & Wu, 2004).
In contrast to LSA, which manipulates virtual concepts, our methodology relies on using
concepts identified and described by humans.

6. Conclusions

In this paper we proposed Explicit Semantic Analysis—a semantic interpretation method-
ology for natural language processing. In order to render computers with knowledge about
the world, we use Wikipedia to build a semantic interpreter, which represents the meaning
of texts in a very high-dimensional space of knowledge-based concepts. These concepts cor-
respond to Wikipedia articles, and our methodology provides a fully automatic way to tap
into the collective knowledge of tens and hundreds of thousands of people. The concept-
based representation of text contains information that cannot be deduced from the input
text alone, and consequently supersedes the conventional bag of words representation.

We believe the most important aspects of the proposed approach are its ability to
address synonymy and polysemy, which are arguably the two most important problems
in NLP. Thus, the two texts can discuss the same topic using different words, and the
conventional bag of words approach will not be able to identify this commonality. On the
other hand, the mere fact that the two texts contain the same word does not necessarily
imply that they discuss the same topic, since that word could be used in the two texts in two
different meanings. We believe that our concept-based representation allows generalizations
and refinements to partially address synonymy and polysemy.

Consider, for example, the following text fragment (taken from Appendix C): “A group
of European-led astronomers has made a photograph of what appears to be a planet orbiting
another star. If so, it would be the first confirmed picture of a world beyond our solar
system.” The fifth concept generated for this fragment is Extrasolar planet, which is
exactly the topic of this text, even though these words are not mentioned in the input.
The other generated concepts (e.g., Astronomy and Planetary orbit) are also highly
characteristic of astronomy-related texts. Such additions enrich the text representation, and
increase the chances of finding common features between texts. It is also essential to note
that, of course, not all the generated concepts need to match features of other documents.
Even if some of the concepts match, we gain valuable insights about the document contents.
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We succeeded to make automatic use of an encyclopedia without deep language under-
standing, specially crafted inference rules or relying on additional common-sense knowledge
bases. This was made possible by applying standard text classification techniques to match
document texts with relevant Wikipedia articles.

Empirical evaluation confirmed the value of Explicit Semantic Analysis for two com-
mon tasks in natural language processing. Compared with the previous state of the art,
using ESA results in significant improvements in automatically assessing semantic related-
ness of words and texts. Specifically, the correlation of computed relatedness scores with
human judgements increased from r = 0.56 to 0.75 (Spearman) for individual words and
from r = 0.60 to 0.72 (Pearson) for texts. In contrast to existing methods, ESA offers a
uniform way for computing relatedness of both individual words and arbitrarily long text
fragments. Using ESA to perform feature generation for text categorization yielded con-
sistent improvements across a diverse range of datasets. Recently, the performance of the
best text categorization systems became similar, and previous work mostly achieved small
improvements. Using Wikipedia as a source of external knowledge allowed us to improve
the performance of text categorization across a diverse collection of datasets.

It should be noted that although a recent study (Giles, 2005) found Wikipedia accu-
racy to rival that of Encyclopaedia Britannica, arguably not all the Wikipedia articles are
of equally high quality. On the one hand, Wikipedia has the notion of featured articles
(http://en.wikipedia.org/wiki/Featured Article), which “are considered to be the
best articles in Wikipedia, as determined by Wikipedia’s editors.” Currently, fewer than
0.1% of articles achieve this status. On the other hand, many articles are incomplete (so-
called stubs), or might even contain information that is incorrect or that does not represent
a consensus among the editors. Yet in other cases, Wikipedia content might be prone to
spamming, despite the editorial process that attempts to review recent changes. We believe
our method is not overly susceptible to such cases, as long as the majority of the content
is correct. Arguably, except for outright vandalism, most spamming would likely modify
articles to contain information that is related to the topic of the article, but not important
or not essential for the majority of readers. As long as this newly added content remains
relevant to the gist of the article, our method will likely be able to correctly determine those
input texts that the article is relevant for. However, a proper evaluation of the robustness
of our method in the presence of imperfect content is beyond the scope of this article.

We believe that this research constitutes a step towards enriching natural language
processing with humans’ knowledge about the world. We hope that Explicit Semantic
Analysis will also be useful for other NLP tasks beyond computing semantic relatedness
and text categorization, and we intend to investigate this in our future work. Recently, we
have used ESA to improve the performance of conventional information retrieval (Egozi,
Gabrilovich, & Markovitch, 2008). In that work, we augmented both queries and documents
with generated features, such that documents were indexed in the augmented space of words
and concepts. Potthast, Stein, and Anderka (2008) and Sorg and Cimiano (2008) adapted
ESA for multi-lingual and cross-lingual information retrieval.

In another recent study, Gurevych et al. (2007) applied our methodology to computing
word similarity in German, and also to an information retrieval task that searched job
descriptions given a user’s description of her career interests, and found our method superior
to a WordNet-based approach. Importantly, this study also confirms that our method
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can be easily adapted to languages other than English, by using the version of Wikipedia
corresponding to the desired target language.

In our future work, we also intend to apply ESA to word sense disambiguation. Current
approaches to word sense disambiguation represent contexts that contain ambiguous words
using the bag of words augmented with part-of-speech information. We believe represen-
tation of such contexts can be greatly improved if we use feature generation to map such
contexts into relevant knowledge concepts. Anecdotal evidence (such as the examples pre-
sented in Section 4.5.1) implies our method has promise for improving the state of the art in
word sense disambiguation. In this work we capitalized on inter-article links of Wikipedia
in several ways, and in our future work we intend to investigate more elaborate techniques
for leveraging the high degree of cross-linking between Wikipedia articles.

The Wiki technology underlying the Wikipedia project is often used nowadays in a vari-
ety of open-editing initiatives. These include corporate intranets that use Wiki as a primary
documentation tool, as well as numerous domain-specific encyclopedias on topics ranging
from mathematics to Orthodox Christianity.25 Therefore, we believe our methodology can
also be used for augmenting document representation in many specialized domains. It is
also essential to note that Wikipedia is available in numerous languages, while different
language versions are cross-linked at the level of concepts. We believe this information
can be leveraged to use Wikipedia-based semantic interpretation for improving machine
translation.

This work proposes a methodology for Explicit Semantic Analysis using Wikipedia.
However, ESA can also be implemented using other repositories of human knowledge that
satisfy the requirements listed in Section 2.1. In Section 3.3 we reported the results of
building an ESA-based semantic interpreter using the Open Directory Project (Gabrilovich
& Markovitch, 2005, 2007b). Zesch, Mueller, and Gurevych (2008) proposed to use Wik-
tionary for computing semantic relatedness. In our future work, we intend to implement
ESA using additional knowledge repositories.

Finally, for readers interested in using Wikipedia in their own work, the main software
deliverable of the described work is the Wikipedia preprocessor (WikiPrep), available online
as part of the SourceForge open-source project at http://wikiprep.sourceforge.net.
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Appendix A. The effect of knowledge breadth in text categorization

In this appendix, we examine the effect of performing feature generation using a newer
Wikipedia snapshot, as defined in Section 3.2.2. As we can see from Table 7, using the
larger amount of knowledge leads on average to greater improvements in text categoriza-
tion performance. Although the difference between the performance of the two versions is
admittedly small, it is consistent across datasets (a similar situation happens when assessing
the role of external knowledge for computing semantic relatedness, see Section 3.3.3).

Dataset Baseline Wikipedia Improvement Improvement
(26/03/06) (26/03/06) (05/11/05)

micro macro micro macro micro macro micro macro
BEP BEP BEP BEP BEP BEP BEP BEP

Reuters-21578 (10 cat.) 0.925 0.874 0.935 0.891 +1.1% +1.9% +0.8% +1.5%
Reuters-21578 (90 cat.) 0.877 0.602 0.883 0.600 +0.7% -0.3% +0.7% +0.2%
RCV1 Industry-16 0.642 0.595 0.648 0.616 +0.9% +3.5% +0.5% +3.7%
RCV1 Industry-10A 0.421 0.335 0.457 0.450 +8.6% +34.3% +6.4% +30.4%
RCV1 Industry-10B 0.489 0.528 0.527 0.559 +7.8% +5.9% +7.0% +7.2%
RCV1 Industry-10C 0.443 0.414 0.458 0.424 +3.4% +2.4% +5.6% +4.1%
RCV1 Industry-10D 0.587 0.466 0.607 0.448 +3.4% -3.9% +1.4% -1.5%
RCV1 Industry-10E 0.648 0.605 0.649 0.607 +0.2% +0.3% -1.1% +1.2%
RCV1 Topic-16 0.836 0.591 0.842 0.659 +0.7% +11.5% +0.8% +11.8%
RCV1 Topic-10A 0.796 0.587 0.802 0.689 +0.8% +17.4% +0.3% +16.2%
RCV1 Topic-10B 0.716 0.618 0.725 0.660 +1.3% +6.8% +1.0% +6.1%
RCV1 Topic-10C 0.687 0.604 0.697 0.627 +1.5% +3.8% +1.7% +2.3%
RCV1 Topic-10D 0.829 0.673 0.838 0.687 +1.1% +2.1% +1.2% +2.2%
RCV1 Topic-10E 0.758 0.742 0.762 0.752 +0.5% +1.3% +0.9% +1.8%
OHSUMED-10A 0.518 0.417 0.545 0.490 +5.2% +17.5% +3.9% +18.0%
OHSUMED-10B 0.656 0.500 0.667 0.529 +1.7% +5.8% +1.7% +6.8%
OHSUMED-10C 0.539 0.505 0.553 0.527 +2.6% +4.4% +1.1% +3.4%
OHSUMED-10D 0.683 0.515 0.694 0.550 +1.6% +6.8% +1.3% +6.0%
OHSUMED-10E 0.442 0.542 0.461 0.588 +4.3% +8.5% +4.5% +6.1%
20NG 0.854 0.859 +0.6% +1.0%
Movies 0.813 0.850 +4.5% +3.6%
Average +2.50% +6.84% +2.11% +6.71%

Table 7: The effect of feature generation using a newer Wikipedia snapshot (dated
March 26, 2006)
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Appendix B. Test Collections for Text Categorization

This Appendix provides detailed description of the test collections we used to evaluate
knowledge-based feature generation for text categorization.

B.1 Reuters-21578

This data set contains one year worth of English-language stories distributed over the
Reuters newswire in 1986–1987, and is arguably the most often used test collection in
text categorization research. Reuters-21578 is a cleaned version of the earlier release named
Reuters-22173, which contained errors and duplicate documents.

The collection contains 21578 documents (hence the name) in SGML format. Of those,
12902 documents are categorized, i.e., assigned a category label or marked as not belonging
to any category. Other documents do not have an explicit classification; that is, they can
reasonably belong to some categories (judged by their content), but are not marked so. Sev-
eral train/test splits of the collection has been defined, of which ModApte (Modified Apte)
is the most commonly used one. The ModApte split divides the collection chronologically,
and allocates the first 9603 documents for training, and the rest 3299 documents for testing.

The documents are labeled with 118 categories; there are 0–16 labels per document, with
the average of 1.04. The category distribution is extremely skewed: the largest category
(“earn”) has 3964 positive examples, while 16 categories have only one positive example.
Several category sets were defined for this collection:

• 10 largest categories (“earn”, “acq”, “money-fx”, “grain”, “crude”, “trade”, “inter-
est”, “ship”, “wheat”, “corn”).

• 90 categories with at least one document in the training set and one in the testing set
(Yang, 2001).

• Galavotti, Sebastiani, and Simi (2000) used a set of 115 categories with at least one
training example (three categories, “cottonseed”, “f-cattle” and “sfr” have no training
examples under the ModApte split).

• The full set of 118 categories with at least one positive example either in the training
or in the testing set.

Following common practice, we used the ModApte split and two category sets, 10 largest
categories and 90 categories with at least one training and testing example.

B.2 20 Newsgroups (20NG)

The 20 Newsgroups collection (Lang, 1995) is comprised of 19997 postings to 20 Usenet
newsgroups. Most documents have a single label, defined as the name of the newsgroup
it was sent to; about 4% of documents have been cross-posted, and hence have several
labels. Each newsgroup contains exactly 1000 positive examples, with the exception of
“soc.religion.christian” which contains 997.

Some categories are quite close in scope, for example, “comp.sys.ibm.pc.hardware” and
“comp.sys.mac.hardware”, or “talk.religion.misc” and “soc.religion.christian”. A document
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posted to a single newsgroup may be reasonably considered appropriate for other groups too
(the author may have simply not known of other similar groups, and thus not cross-posted
the message); this naturally poses additional difficulty for classification.

It should be noted that Internet news postings are very informal, and therefore the doc-
uments frequently contain non-standard and abbreviated words, foreign words, and proper
names, as well as a large amount of markup characters (used for attribution of authorship
or for message separation).

B.3 Movie Reviews

The Movie Reviews collection (Pang et al., 2002) presents an example of sentiment clas-
sification, which is different from standard (topical) text categorization. The collection
contains 1400 reviews of movies, half of which express positive sentiment (opinion) about
the movie, and half negative. The reviews were collected from the “rec.arts.movies.reviews”
newsgroup, archived at the Internet Movie Database (IMDB, http://www.imdb.com). The
classification problem in this case is to determine the semantic orientation of the docu-
ment, rather than to relate its content to one of the predefined topics. This problem is
arguably more difficult than topical text categorization, since the notion of semantic orien-
tation is quite general. We saw this collection as an opportunity to apply feature generation
techniques to this new task.

Recent works on semantic orientation include (Turney & Littman, 2002; Turney, 2002;
Pang et al., 2002).26 The two former studies used unsupervised learning techniques based
on latent semantic indexing, estimating semantic distance between a given document and
two reference words that represent polar opinions, namely, “excellent” and “poor”. The
latter work used classical TC techniques.

B.4 Reuters Corpus Version 1 (RCV1)

RCV1 is the newest corpus released by Reuters (Lewis et al., 2004; Rose, Stevenson, &
Whitehead, 2002). It is considerably larger than its predecessor, and contains over 800,000
news items, dated between August 20, 1996 and August 19, 1997. The stories are labeled
with 3 category sets, Topics, Industries and Regions.

• Topics are most close in nature to the category set of the old Reuters collection
(Reuters-21578). There are 103 topic codes, with 3.24 categories per document on
the average. The topics are organized in a hierarchy, and the Hierarchy Policy re-
quired that if a category is assigned to a document, all its ancestors in the hierarchy
should be assigned as well. As a result, as many as 36% of all Topic assignments

26. The field of genre classification, which attempts to establish the genre of document, is somewhat related
to sentiment classification. Examples of possible genres are radio news transcripts and classified adver-
tisements. The work by Dewdney, VanEss-Dykema, and MacMillan (2001) cast this problem as text
categorization, using presentation features in addition to words. Their presentation features included
part of speech tags and verb tenses, as well as mean and variance statistics of sentence and word length,
punctuation usage, and the amount of whitespace characters. Using support vector machines for actual
classification, the authors found that the performance due to the presentation features alone was at least
as good as that achieved with plain words, and that the combined feature set usually resulted in an
improvement of several percentage points.
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are due to the four most general categories, CCAT, ECAT, GCAT, and MCAT. Con-
sequently, the micro-averaged performance scores are dominated by these categories
(Lewis et al., 2004), and macro-averaging becomes of interest.27 The Minimum Code
Policy required that each document was assigned at least one Topic and one Region
code.

• Industries are more fine-grained than Topics, and are therefore harder for classifi-
cation. These categories are also organized in a hierarchy, although the Hierarchy
Policy was only partially enforced for them. There are 351,761 documents labeled
with Industry codes.

• Region codes correspond to geographical places, and are further subdivided into coun-
tries, regional groupings and economic groupings. Lewis et al. (2004) argue that
Region codes might be more suitable for named entity recognition than for text cate-
gorization.

In our experiments we used Topic and Industry categories. Due to the sheer size of the
collection, processing all the categories in each set would be unreasonably long, allowing to
conduct only few experiments. To speed up experimentation, we used a subset of the corpus
with 17,808 training documents (dated August 20–27, 1996) and 5341 testing documents
(dated August 28–31, 1996). Following the scheme introduced by Brank et al. (2002), we
used 16 Topic and 16 Industry categories, which constitute a representative sample of the
full groups of 103 and 354 categories, respectively. We also randomly sampled the Topic
and Industry categories into 5 sets of 10 categories each. Table 8 gives the full definition of
the category sets we used.

As noted by Lewis et al. (2004), the original RCV1 distribution contains a number of
errors; in particular, there are documents that do not conform to either Minimum Code or
Hierarchy Policy, or labeled with erratic codes. Lewis et al. (2004) proposed a procedure
to correct these errors, and defined a new version of the collection, named RCV1-v2 (as
opposed to the original distribution, referred to as RCV1-v1 ). All our experiments are
based on RCV1-v2.

B.5 OHSUMED

OHSUMED (Hersh et al., 1994) is a subset of the MEDLINE database, which contains
348,566 references to documents published in medical journals over the period of 1987–1991.
Each reference contains the publication title, and about two-thirds (233,445) also contain
an abstract. Each document is labeled with several MeSH categories (MeSH, 2003). There
are over 14,000 distinct categories in the collection, with an average of 13 categories per
document. OHSUMED is frequently used in information retrieval and text categorization
research.

Following Joachims (1998), we used a subset of documents from 1991 that have abstracts,
taking the first 10,000 documents for training and the next 10,000 for testing. To limit the
number of categories for the experiments, we randomly generated 5 sets of 10 categories
each. Table 9 gives the full definition of the category sets we used.

27. This is why micro-averaged scores for Topic codes are so much higher than macro-averaged ones, see
Section 4.4.2.
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Set name Categories comprising the set
Topic-16 e142, gobit, e132, c313, e121, godd, ghea, e13, c183, m143,

gspo, c13, e21, gpol, m14, c15
Topic-10A e31, c41, c151, c313, c31, m13, ecat, c14, c331, c33
Topic-10B m132, c173, g157, gwea, grel, c152, e311, c21, e211, c16
Topic-10C c34, c13, gtour, c311, g155, gdef, e21, genv, e131, c17
Topic-10D c23, c411, e13, gdis, c12, c181, gpro, c15, g15, c22
Topic-10E c172, e513, e12, ghea, c183, gdip, m143, gcrim, e11, gvio
Industry-16 i81402, i79020, i75000, i25700, i83100, i16100, i1300003, i14000,

i3302021, i8150206, i0100132, i65600, i3302003, i8150103, i3640010,
i9741102

Industry-10A i47500, i5010022, i3302021, i46000, i42400, i45100, i32000, i81401,
i24200, i77002

Industry-10B i25670, i61000, i81403, i34350, i1610109, i65600, i3302020, i25700,
i47510, i9741110

Industry-10C i25800, i41100, i42800, i16000, i24800, i02000, i34430, i36101,
i24300, i83100

Industry-10D i1610107, i97400, i64800, i0100223, i48300, i81502, i34400, i82000,
i42700, i81402

Industry-10E i33020, i82003, i34100, i66500, i1300014, i34531, i16100, i22450,
i22100, i42900

Table 8: Definition of RCV1 category sets used in the experiments

Appendix C. Additional Examples of Feature Generation for Text
Categorization

In this Appendix, we list a number of additional feature generation examples.

• Text: ‘The development of T-cell leukaemia following the otherwise successful treat-
ment of three patients with X-linked severe combined immune deficiency (X-SCID)
in gene-therapy trials using haematopoietic stem cells has led to a re-evaluation of
this approach. Using a mouse model for gene therapy of X-SCID, we find that the
corrective therapeutic gene IL2RG itself can act as a contributor to the genesis of
T-cell lymphomas, with one-third of animals being affected. Gene-therapy trials for
X-SCID, which have been based on the assumption that IL2RG is minimally oncogenic,
may therefore pose some risk to patients.”

Top 10 generated features: (1) Leukemia; (2) Severe combined immunodefi-

ciency; (3) Cancer; (4) Non-Hodgkin lymphoma; (5) AIDS; (6) ICD-10 Chapter

II: Neoplasms; Chapter III: Diseases of the blood and blood-forming organs,

and certain disorders involving the immune mechanism; (7) Bone marrow trans-

plant; (8) Immunosuppressive drug; (9) Acute lymphoblastic leukemia; (10) Mul-

tiple sclerosis

Selected explanations: (4) a particular cancer type; (6) a disease code of the ICD—
International Statistical Classification of Diseases and Related Health Problems

• Text: “Scientific methods in biology”
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Set name Categories comprising the set
(parentheses contain MeSH identifiers)

OHSUMED-10A B-Lymphocytes (D001402);
Metabolism, Inborn Errors (D008661);
Creatinine (D003404); Hypersensitivity (D006967);
Bone Diseases, Metabolic (D001851); Fungi (D005658);
New England (D009511); Biliary Tract (D001659);
Forecasting (D005544); Radiation (D011827)

OHSUMED-10B Thymus Gland (D013950); Insurance (D007341);
Historical Geographic Locations (D017516);
Leukocytes (D007962); Hemodynamics (D006439);
Depression (D003863); Clinical Competence (D002983);
Anti-Inflammatory Agents, Non-Steroidal (D000894);
Cytophotometry (D003592); Hydroxy Acids (D006880)

OHSUMED-10C Endothelium, Vascular (D004730);
Contraceptives, Oral, Hormonal (D003278);
Acquired Immunodeficiency Syndrome (D000163);
Gram-Positive Bacteria (D006094); Diarrhea (D003967);
Embolism and Thrombosis (D016769);
Health Behavior (D015438); Molecular Probes (D015335);
Bone Diseases, Developmental (D001848);
Referral and Consultation (D012017)

OHSUMED-10D Antineoplastic and Immunosuppressive Agents (D000973);
Receptors, Antigen, T-Cell (D011948);
Government (D006076); Arthritis, Rheumatoid (D001172);
Animal Structures (D000825); Bandages (D001458);
Italy (D007558); Investigative Techniques (D008919);
Physical Sciences (D010811); Anthropology (D000883)

OHSUMED-10E HTLV-BLV Infections (D006800);
Hemoglobinopathies (D006453); Vulvar Diseases (D014845);
Polycyclic Hydrocarbons, Aromatic (D011084);
Age Factors (D000367); Philosophy, Medical (D010686);
Antigens, CD4 (D015704);
Computing Methodologies (D003205);
Islets of Langerhans (D007515); Regeneration (D012038)

Table 9: Definition of OHSUMED category sets used in the experiments
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Top 10 generated features: (1) Biology; (2) Scientific classification; (3) Sci-

ence; (4) Chemical biology; (5) Binomial nomenclature; (6) Nature (journal);
(7) Social sciences; (8) Philosophy of biology; (9) Scientist; (10) History of

biology

Selected explanations: (5) the formal method of naming species in biology

• Text: “With quavering voices, parents and grandparents of those killed at the World
Trade Center read the names of the victims in a solemn recitation today, marking the
third anniversary of the terror attacks. The ceremony is one of many planned in the
United States and around the world to honor the memory of the nearly 3,000 victims
of 9/11.”

Top 10 generated features: (1) September 11, 2001 attack memorials and ser-

vices; (2) United Airlines Flight 93; (3) Aftermath of the September 11, 2001

attacks; (4) World Trade Center; (5) September 11, 2001 attacks; (6) Okla-

homa City bombing; (7) World Trade Center bombing; (8) Arlington National

Cemetery; (9) World Trade Center site; (10) Jewish bereavement

Selected explanations: (2) one of the four flights hijacked on September 11, 2001;
(6) a terrorist attack in Oklahoma City in 1995; (8) American military cemetery

• Text: “U.S. intelligence cannot say conclusively that Saddam Hussein has weapons
of mass destruction, an information gap that is complicating White House efforts
to build support for an attack on Saddam’s Iraqi regime. The CIA has advised top
administration officials to assume that Iraq has some weapons of mass destruction.
But the agency has not given President Bush a “smoking gun,” according to U.S.
intelligence and administration officials.”

Top 10 generated features: (1) Iraq disarmament crisis; (2) Yellowcake forge-

ry; (3) Senate Report of Pre-War Intelligence on Iraq; (4) Iraq and weapons

of mass destruction; (5) Iraq Survey Group; (6) September Dossier; (7) Iraq

war; (8) Scott Ritter; (9) Iraq War Rationale; (10) Operation Desert Fox

Selected explanations: (2) falsified intelligence documents about Iraq’s alleged
attempt to purchase yellowcake uranium; (6) a paper on Iraq’s weapons of mass
destruction published by the UK government in 2002; (8) UN weapons inspector in
Iraq; (10) US and UK joint military campaign in Iraq in 1998

• As another example, consider a pair of contexts that contain the word “jaguar”, the
first one contains this ambiguous word in the sense of a car model, and the second
one—in the sense of an animal.

– Text: “Jaguar car models”
Top 10 generated features: (1) Jaguar (car); (2) Jaguar (S-Type); (3)
Jaguar X-type; (4) Jaguar E-Type; (5) Jaguar XJ; (6) Daimler Motor Com-

pany; (7) British Leyland Motor Corporation; (8) Luxury vehicles; (9) V8

engine; (10) Jaguar Racing

Top 10 generated features: (2), (3), (4), (5) — particular Jaguar car models;
(6) a car manufacturing company that became a part of Jaguar in 1960; (7)
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another vehicle manufacturing company that merged with Jaguar; (9) an internal
combustion engine used in some Jaguar car models; (10) a Formula One team
used by Jaguar to promote its brand name

– Text: “Jaguar (Panthera onca)”
Top 10 generated features: (1) Jaguar; (2) Felidae; (3) Black panther;
(4) Leopard; (5) Puma; (6) Tiger; (7) Panthera hybrid; (8) Cave lion; (9)
American lion; (10) Kinkajou

Top 10 generated features: (2) a family that include lions, tigers, jaguars,
and other related feline species; (10) another carnivore mammal

We also show here a number of examples for generating features using inter-article links.

• Text: “artificial intelligence”

Regular feature generation: (1) Artificial intelligence; (2) A.I. (film); (3)
MIT Computer Science and Artificial Intelligence Laboratory; (4) Artificial

life; (5) Strong AI; (6) Swarm intelligence; (7) Computer Science; (8) Frame

problem; (9) Cognitive science; (10) Carl Hewitt

Features generated using links: (1) Robot; (2) John McCarthy (computer sci-

entist); (3) Artificial consciousness; (4) Marvin Minsky; (5) Planner program-

ming language; (6) Actor model (a model of concurrent computation formulated
by Carl Hewitt and his colleagues); (7) Logic; (8) Scientific Community Metaphor;
(9) Natural language processing; (10) Lisp programming language

More general features only: (1) Robot; (2) Massachusetts Institute of Tech-

nology; (3) Psychology; (4) Consciousness; (5) Lisp programming language

• Text: “A group of European-led astronomers has made a photograph of what appears
to be a planet orbiting another star. If so, it would be the first confirmed picture of a
world beyond our solar system.”

Regular feature generation: (1) Planet; (2) Solar system; (3) Astronomy; (4)
Planetary orbit; (5) Extrasolar planet; (6) Pluto; (7) Jupiter; (8) Neptune; (9)
Minor planet; (10) Mars

Features generated using links: (1) Asteroid; (2) Earth; (3) Oort cloud (a
postulated cloud of comets); (4) Comet; (5) Sun; (6) Saturn; (7) Moon; (8) Mercury

(planet); (9) Asteroid belt; (10) Orbital period

More general features only: (1) Earth; (2) Moon; (3) Asteroid; (4) Sun; (5)
National Aeronautics and Space Administration

• Text: “Nearly 70 percent of Americans say they are careful about what they eat, and
even more say diet is essential to good health, according to a new nationwide health
poll in which obesity ranked second among the biggest health concerns.”

Regular feature generation: (1) Veganism; (2) Vegetarianism; (3) Obesity; (4)
Atkins Nutritional Approach; (5) Binge eating disorder; (6) Dick Gregory; (7)
Nutrition; (8) Super Size Me; (9) Health insurance; (10) Eating disorder
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Selected explanations: (1) a philosophy of avoiding animal-derived food; (6) an
American nutritionist; (7) a documentary film about an individual who eats only
McDonald’s fast food for one full month.

Features generated using links: (1) Raw food diet; (2) Diabetes mellitus; (3)
Healthy eating; (4) Body mass index; (5) Omega-3 fatty acid (an important nutri-
tional component); (6) Dieting; (7) Milk; (8) United States28; (9) Hypertension;
(10) Egg (food)

More general features only: (1) United States; (2) Diabetes mellitus; (3) Can-

cer; (4) Food; (5) McDonald’s

Appendix D. Comparing Knowledge Sources for Feature Generation:
Wikipedia versus WordNet

To demonstrate the shortcomings of WordNet as a source for knowledge-based feature gen-
eration, we juxtapose WordNet-based and Wikipedia-based feature generation for a sample
sentence examined in Section 4.5.1 (we repeat the Wikipedia context classifications for
readers’ convenience).

We used WordNet version 1.6. In what follows, WordNet synsets are denoted with curly
braces, and noun and verb synsets are followed by their immediate hypernym (more general
synset), if applicable.

• Text: “Wal-Mart supply chain goes real time”

• Most relevant Wikipedia classifications:

– Wal-Mart

– Sam Walton — Wal-Mart founder

– Sears Holdings Corporation, Target Corporation, Albertsons — promi-
nent competitors of Wal-Mart

– RFID — Radio Frequency Identification, a technology that Wal-Mart uses very
extensively to manage its stock

– Hypermarket — superstore, a general concept of which Wal-Mart is a specific
example

– United Food and Commercial Workers — a labor union that has been trying
to organize Wal-Mart’s workers

• WordNet :

– {Wal-Mart} → { }; (word not found in WordNet)

– {supply} → {indefinite quantity}; {supply} → {economic process}; {provision,
providing, supply supplying} → {activity};

28. This classification is quite interesting, as the issue discussed in the input text fragment is very charac-
teristic of the American life style.
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– {supply provide, render, furnish} → {give}; {issue, supply} → {distribute};
{provide, supply ply, cater} → {give}; {add, append, supply} → {state, say,
tell};

– {chain, concatenation} → {series}; {chain, chemical chain} → {unit, building
block}; {chain} → {ligament}; {chain} → {business, concern, business concern,
business organization}; {chain} → {restraint, constraint}; {chain} → {linear
unit}; {range, mountain range, range of mountains, chain, mountain chain,
chain of maountains} → {geological formation, geology, formation}; {iron, irons,
chain, chains} → {shackle, bond, hamper, trammel, trammels}; {chain, string,
strand} → {necklace};

– {chain} → {fasten, fix, secure};
– {go, spell, tour, turn} → {shift, work shift, duty period}; {crack, fling, go, pass,

whirl, offer} → {attempt, effort, endeavor, endeavour, try}; {go, go game} →
{board game};

– {travel, move, go, locomote}; {go, proceed, move} → {act, move}; (28 more
verb senses omitted for brevity)

– {real number, real}; {real (Spanish coin)};
– {real, existent}; {real (no less than what is stated)}; {real, true}; {real (not to

be taken lightly)}; {real, tangible}; {actual, genuine, literal, real}; {real (eco-
nomics)}; {substantial, real, material}; {real (of property)}; {veridical, real};
{real (founded on practical matters)};

– {very, really, real, rattling};
– {time, clip} → {case, instance, example}; {time} → {time period, period,

period of time, amount of time}; {time} → {moment, minute, second, in-
stant}; {time} → {abstraction}; {clock time, time} → {reading, meter read-
ing}; {fourth dimension, time}→ {dimension}; {time}→ {experience}; {meter,
time} → {rhythmicity}; {prison term, sentence, time} → {term};

– {clock, time} → {quantify, measure}; {time} → {schedule}; {time} →
{determine, shape, influence, regulate}; {time} → {adjust, set};

Evidently, WordNet classifications are overly general and diverse because context words
cannot be properly disambiguated. Furthermore, owing to lack of proper names, WordNet
cannot possibly provide the wealth of information encoded in Wikipedia, which easily over-
comes the drawbacks of WordNet. The methodology we proposed does not suffer from the
above shortcomings.
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