Journal of Artificial Intelligence Research 34 (2009) 39424 Submitted 07/08; published 03/09

Solving #SAT and Bayesian Inference with Backtracking Search

Fahiem Bacchus FBACCHUS@CS.TORONTO.EDU
Shannon Dalmao
Toniann Pitassi TONI@CS.TORONTO.EDU

Department of Computer Science
University of Toronto

Toronto, Ontario

Canada, M5S 3G4

Abstract

Inference in Bayes Nets @B ES) is an important problem with numerous applications in prob
abilistic reasoning. Counting the number of satisfyingigrements of a propositional formula
(#AT) is a closely related problem of fundamental theoreticgdantance. Both these problems,
and others, are members of the class of sum-of-productstPRoD) problems. In this paper
we show that standard backtracking search when augmentkdivgimple memoization scheme
(caching) can solve any sum-of-products problem with tirmmpglexity that is at least as good
any other state-of-the-art exact algorithm, and that itaan achieve the best known time-space
tradeoff. Furthermore, backtracking’s ability to utilizere flexible variable orderings allows us to
prove that it can achieve an exponential speedup over ottredard algorithms for @vPROD on
some instances.

The ideas presented here have been utilized in a numbenadrsdhat have been applied to
various types of sum-of-product problems. These systeave bxploited the fact that backtracking
can naturally exploit more of the problem’s structure toieeh improved performance on a range
of probleminstances. Empirical evidence of this perforogagein has appeared in published works
describing these solvers, and we provide references te thesks.

1. Introduction

Probabilistic inference in Bayesian Networksalis) is an important and well-studied problem
with numerous practical applications in probabilisticseaing (Pearl, 1988). Counting the number
of satisfying assignments of a propositional formula A#§5is also a well-studied problem that is
of fundamental theoretical importance. These two problamesknown to be closely related. In
particular, the decision versions of both##Sand BaYEs are #P-complete (Valiant, 1979b, 1979a;
Roth, 1996), and there amatural polynomial-time reductions from each problem to the other
(Darwiche, 2002; Sang, Beame, & Kautz, 2005b; Chavira, ey & Jaeger, 2006).

A more direct relationship between these two problems siffisen the observation that they
are both instances of the more general “sum of products”lpnol§Sum PROD). Perhaps the most
fundamental algorithm for @vPROD (developed in a general way by Dechter 1999) is based on
the idea of eliminating the variables of the problem one by fmtlowing some fixed order. This
algorithm is called variable elimination (VE), and it is tbere notion in many state-of-the-art exact
algorithms for MPROD (and BaYES).

SAT, the problem of determining whether or not a proposiloiormula has any satisfying
assignments, is also an instance oiv8’°rRoD, and the original Davis-Putnam algorithm (DP) for
determining satisfiability (Davis & Putnam, 1960) which sisgdered resolution is a version of

(©2009 Al Access Foundation. All rights reserved.

BAccHUS, DALMAO, & PITASSI

variable elimination. However, DP is never used in practedts performance is far inferior to
modern versions of the backtracking search based DPLLitdigo{Davis, Logemann, & Loveland,
1962). In fact DP is provably less powerful than modern wrsiof DPLL equipped with clause
learning (Hertel, Bacchus, Pitassi, & van Gelder, 2008).

This performance gap naturally raises the question of venethnot backtracking search could
be used to solve other types o @PROD problems more efficiently than variable elimination. In
this paper, we present a general algorithmic framework $orgubacktrack search methods (specif-
ically DPLL) to solve YMPRroD and related problemsWe first show that a straightforward adap-
tation of backtracking for solving ®vPROD is insufficient. However, by examining the sources
of inefficiency we are able to develop some simple cachingmeels that allow our backtracking
algorithm, #DPLL-Cache, to achieve the same performaneeagtees as state-of-the-art exact al-
gorithms for MPROD, in terms of both time and space. Furthermore, we prove tektbacking’s
natural additional flexibility allows it to sometimes ackgean exponential speedup over other ex-
isting algorithms. Specifically, we present a family af8PROD instances where #DPLL-Cache
achieves an exponential speedup over the original versitiigee prominent algorithms forui-
PROD.

Besides these theoretical results, there are also gooon®#&s believe that backtracking based
algorithms have the potential to perform much better thair thorst case guarantees on problems
that arise from real domains. In fact, subsequent work hasstigated the practical application of
the ideas presented here to the problem of counting satgsBssignments, &ES, and constraint
optimization with very successful results (Sang, Baccldeame, Kautz, & Pitassi, 2004; Sang
et al., 2005b; Sang, Beame, & Kautz, 2005a, 2007; Davies &Bas; 2007; Kitching & Bacchus,
2008).

An outline of the paper follows. In Section 2, we defineN8PROD; demonstrate that #8,
BAYES, and other important problems are instances of this clagsoblems; discuss various graph-
theoretic notions of width that can be used to characteheecomplexity of algorithms for &v-
ProD; and review some core state-of-the-art exact algorithmsStovPrROD. In Section 3, we
discuss DPLL-based algorithms with caching for solvingr#&nd SiMPROD and provide worst
case complexity bounds for these algorithms. These bouedb@same as the best time and space
guarantees achieved by currently known algorithms. Ini&@eet, we provide a framework for
comparing our algorithms with other algorithms fasdPROD and prove that with caching DPLL
can efficiently simulate known exact algorithms while sdmes achieving super-polynomially
superior performance. In Section 5 we discuss some of th& Wat has used our algorithmic
ideas to build practical solvers for various problems. Bnae provide some closing remarks in
Section 6.

2. Background

In this section, we first define the sum-of-producte/¢$RoD) class of problems, and then illus-
trate how BA\YES, #SAT, and some other important problems are instancesusfFRoD. As we
will show in the rest of the paper, backtracking search quedpwith different caching schemes is

1. The notion of “backtracking” over a previous set of comm@nts can be utilized in other contexts, including in other
algorithms for ¥MPROD. However, here we are referring to the standard algorithpaiadigm of backtracking
search that explores a single tree of partial variable asségts in a depth-first manner. This algorithm has an
extensive history that stretches back over a hundred yBare(& Reingold, 1975).

392

BACKTRACKING SEARCH FOR#SAT AND BAYES

well suited for solving 8MPRoOD. The key computational structure that is exploited by ajbal
rithms for SUMPROD is then explained and the graph theoretic notion of width tiagtures this
structure is identified. Different notions of “width” exjsind we present three different definitions
and show that they all yield essentially equivalent measafeomplexity. The different definitions
are however very useful in that different algorithms are theasily analyzed using different defini-
tions of width. Finally, we briefly review some of the most ianfant exact algorithms for solving
SumPRrRoOD and related problems.

2.1 Sum-of-Products

Dechter (1999) has been shown thatyBs and many other problems are instances of a more
general problem called B1PrROD (sum-of-products). An instance ofusiPrRoD is defined by
the tuple(V, F, @, ®), whereV is a set of discrete valued variabléX, ..., X, }, F is a set of
functions{fi, ..., fm} with eachf; defined over some set of variables C V, @ is an addition
operator, and is a multiplication operator. The range of the functiongFidepends on the problem,
with & and® being operators over that range such that both are comnejtassociative, ang
distributes overp. Typical examples involve functions that range over theldmo domain, with

@ being disjunctionv and® being conjunctiom, or over the reals, witkb and® being ordinary
addition and multiplication.

Definition 1 (SumPROD) Given(V, F, ®, ®) the SUMPROD problem is to compute

@@”‘@éﬁ(ﬂ),

X1 Xo Xn =1

i.e., the sum«) over all values (assignments) of the variablesf the product ¢) of the functions
F evaluated at those assignments.

A number of well known problems are instances afM3’ROD. We describe some of them
below.

2.1.1 BAYES:

BAYES is the problem of computing probabilities in a Bayesian Ne&\(BN). Developed by Pearl
(1988), a Bayesian network is a tripl®, £, P) where(V, E') describes a directed acyclic graph,
in which the node® = {X1,..., X,,} represent discrete random variables, edges represeat dire
correlations between the variables, and associated with eamdom variableX; is a conditional
probability table CPT (or function);(X;, 7(X;)) € P, that specifies the conditional distribution of
X; given assignments of values to its parentX;) in (V, E'). A BN represents a joint distribution
over the random variablésin which the probability of any assignmeft; , . . ., z,,) to the variables
is given by the equatio®r(z1,...,x,) = 17— fi(x;, 7(x;)), wheref;(x;, m(x;)) is f; evaluated
at this particular assignment.

The generic BYES problem is to compute the posterior distribution of a vdgali; given a
particular assignment to some of the other variableise., Pr(X;|«). SinceX; has only a finite set
of k values, this problem can be further reduced to that of comgtitex valuesPr(X; = d; A«),

j = 1,...,k and then normalizing them so that they sum to 1. The valigsX; = d; A «) can
be computed by making all of the assignmentsvias well asX; = d;, and then summing out the

393

BAccHUS, DALMAO, & PITASSI

other variables from the joint distributioRr (x4, . .., z,). Given the above product decomposition
of Pr(xy,...,xy,), this is equivalent to reducing the functiorfs € P by setting the variables
assigned inv and X; = d;, and then summing their product over the remaining varsgble., it is
an instance of M PROD.

Computing all Marginals It is common when solving Bres to want to compute all marginals.
That is, instead of wanting to compute just the margiRa(X;|«) for one particular variableX;,
we want to compute the marginal for all variables not instded bya.

2.1.2 MARkKov RANDOM FIELDS

Markov Random Fields or Markov Networks (MN) (Preston, 19%éitzer, 1971) are similar to
Bayesian Networks in that they also define a joint probabdiistribution over a set of discrete
random variable® = {X3,..., X,,} using a set of functiong;, called potentials, each over some
set of variable€’; C V. In particular, the probability of any assignmént, . . . , z,,) to the variables

is given by the normalized product of thfe evaluated at the values specified by the assignment:
L fi(Ei[z1,...,z,]). The difficulty is to compute the partition function, or natizing constant:

Z=23 > T fi&).
X1 Xp =1

Computing the partition function is thus an instance of%RoOD.

2.1.3 MoSTPROBABLE EXPLANATION

Most Probable Explanation (MPE) is the problem of findingrtiest probable complete assignment
to the variables in a Bayes net (or Markov net) that agreds aviixed assignment to a subset of the
variables (the evidence). If the evideneg,s an instantiation of the variables i C V, then MPE

is the problem of computing

m
rvn_agi:]_[llea(i — B),

where f;|,, is the reduction of the functiof by the instantiations: to the variables inZ (yielding
a function over the variables; — F).

2.1.4 ST
Let V = {X;,Xs,...,X,,} be a collection ofn Boolean variables, and let()) be ak-CNF
Boolean formula on these variables withclauses{cy, ..., ¢, }. An assignmenty to the Boolean

variablesV is satisfyingif it makes the formularue (i.e., #(«) = 1). SAT asks, given a Boolean
formula¢(V) in k-CNF, does it have a satisfying assignment? By viewing ekatlsec; as being a
function of its variabled; (i.e., it maps an assignment to these variables:toe if that assignment
satisfies the clause and taLSE otherwise), we can see thanSis equivalent to the instance of
SUMPROD (V,{c1,...,¢m}, V, A):

BACKTRACKING SEARCH FOR#SAT AND BAYES

2.1.5 #371

Given ak-CNF formula¢(V) on the boolean variable8 = {Xi,...,X,}, as above, #&r is
the problem of determining the number of satisfying assigmis for¢. By viewing each clause
¢; as being a function from its variables; to {0,1} (i.e., it maps satisfying assignments to 1
and falsifying assignments to 0), we can see that#iS equivalent to the instance ofusIPROD
<V, {Cl, . ,Cm}, +, X>Z

S S [elE).

X, X, i=1

2.1.6 OPTIMIZATION WITH DECOMPOSEDOBJECTIVE FUNCTIONS

LetV = {X3,..., X, } be a collection of finite valued variables, the optimizattesk is to find
an assignment of values to these variables that maximizes sbjective functiorO(V) (i.e., a
function that maps every complete assignment to the vasatol a real value). In many problems
O can be decomposed into a sum of sub-objective funct{gfis.. ., f,,} with each f; being a
function of some subset of the variablés. This problem can then be cast as theM®R0OD
instance(V, {f1, ..., fm}, max, +)

m
max H)lcingl(i)

2.2 The Computational Complexity of UM PROD

SuMPROD is a computationally difficult problem. For example,#Ss known to be complete for
the complexity class #P (Valiant, 1979b, 1979a) asAs#s (Roth, 1996). Many special cases that
are easy for 81 remain hard for #8r7, e.g., Valiant showed that the decision version oA#& #P
hard even when the clause siZe,is 2, and Roth (1996) showed that the problem is hard to even
approximate in many cases wheretSs easy, e.g., when (V) is monotone, or Horn, or 2-CNF.
Despite this worst case intractability, algorithms farM8PROD, €.g., the variable elimination
algorithm presented by Dechter (1999), can be successfuiittice. The key structure exploited
by this algorithm, and by most algorithms, is that the fumsif; of many SymPROD problems are
often relatively local and fairly independent. That is,staften the case that the sets of variables
E; that each functiory; depends on are small, so that each function is dependenbardysmall
“local” set of the variables, and that these sets share ofdwaariables with each other, so that the
functions f; are fairly independent of each other. The graph theoretiomof Tree Width is used
to make these intuitions precise.

2.3 Complexity Measures and Tree width

There is a natural hypergraph, = (V, E), corresponding to any instane¢®, 7, ®, ®) of SuM-
ProbD. In the hypergraphly” corresponds to the s#t of variables, and for every functiofy with
domain setF;, there is a corresponding hypereddg,

The “width” of this hypergraph is the critical measure of quaxity for essentially all state-of-
the-art algorithms for #8r, BAYES, and SYMPROD. There are three different (and well known)
notions of width that we will define in this section. We wilkalshow that these different notions of
width are basically equivalent. These equivalences arezknalthough we need to state them and

395

BAccHUS, DALMAO, & PITASSI

prove some basic properties, in order to analyze our newitigts, and to relate them to standard
algorithms.

Definition 2 (Branch width) Let’H = (V, E) be a hypergraph. Aranch decompositionof H is
a binary tre€l’ such that each node @f is labelled with a subset df. There areé £| many leaves
of T, and their labels are in one-to-one correspondence withyheredgeds. For any other node
n in T, let A denote the union of the leaf labeling of the subtree rooted and letB denote the
union of the labelings of the rest of the leaves. Then thel fve: is the set of all vertices that
are in the intersection ofl and B. Thebranch width of a branch decompositioff for H is the
maximum size of any labeling . Thebranch width of H is the minimum branch width over all
branch decompositions &{.

Example 1 Figure 1 shows a particular branch decomposifignfor the hypergraptt{ = (V, E)

whereV = {1,2,3,4,5} andE = {{1,2,3},{1,4},{2,5},{3,5},{4,5}}. Tpq has branch width
3.

///////ii\\\\\\

{3,4,5} {3,4,5)
P
{zm@ {35} {45}
/\
{1’273} {174}

Figure 1: A branch decomposition of branch width 3 fégr = {(1,2,3), (1,4), (2,5), (3,5),
(4,5)}.

Definition 3 (Elimination width) Let H = (V, E)) be a hypergraph, and let= o7, ..., v" be an
ordering of the vertices i, wherev? is thei!" element in the ordering. This induces a sequence
of hypergraphs+,,, H,,_1, ..., H1 whereH = H,, and’H;_ is obtained fronf; as follows. All
edges inH; containingv] are merged into one edge and thénis removed. Thus the underlying
vertices ofH; arev7, ... v ;. Theinduced width of H underr is the size of the largest edge in
all the hypergraph®t,,, ..., ;. Theelimination width of H is the minimum induced width over
all orderingsr.

Example 2 Under the orderingr = (1,2,3,4,5) the hypergrapt¥{ of Example 1 produces the
following sequence of hypergraphs:

Hs = {(1,2,3),(1,4),(2,5),(3,5),(4,5)}
He = {(2,3,4),(2,5),(3,5),(4,5)}

Hs = {(3,4,5),(3,5),(4,5)}

Hy = {(4,5),(4,5)}

Hi = {(5)}

396

BACKTRACKING SEARCH FOR#SAT AND BAYES

The induced width of{ underr is 3—the edge$l, 2,3) € H, (2,3,4) € Ho and(3,4,5) € Hs
all achieve this size.

Tree width is the third notion of width.

Definition 4 (Tree width) Let H = (V, E) be a hypergraph. Aree decompositionof H is a
binary treel” such that each node @f is labelled with a subset df in the following way. First,
for every hyperedge € E, some leaf node iff’ must have a label that containsSecondly, given
labels for the leaf nodes every internal nadeontainsy € V in its label if and only ifn is on a path
between two leaf nodds andl, whose labels contain.? Thetree width of a tree decomposition
T for H is the maximum size of any labeling inminus 1, and thé&ree width of H is the minimum
tree width over all tree decompositions it

Example 3 Figure 2 showd;,; a tree decomposition fdr of Example 1.7}, has tree width 3.

{3,4, 5}
{2, 3{\{34 5}

T {&ﬁ 5}

{1,2,3,4} {2,5}

/\
{1,2,3} {1,4}

Figure 2: Tree decomposition of tree width for 3 figrof Example 1.
The next three lemmas show that these three notions arealhasiquivalent. The proofs of
Lemmas 2 and 3 are given in the appendix.

Lemma 1 (Robertson & Seymour, 1991)Let H be a hypergraph. Then the branch widtHbis
at most the tree width df plus 1, and the tree width @{ is at most 2 times the branch width &f.

Lemma 2 Let’H = (V, E) be a hypergraph with a tree decomposition of widthThen there is an
elimination orderingr of the verticed” such that the induced width & underr is at mostw.

Lemma 3 Let H be a hypergraph with elimination width at mast Then’H has a tree decompo-
sition of tree width at most.

Letting TW (H), BW (H), andEW (H) represent the tree width, branch width and elimination
width of the hypergrapli, the above lemmas give the following relationship betwdmsé three
notions of width: for all hypergraph&

BW(H) —1< TW(H) = EW(H) < 2BW (H).

2. Since the labels of internal nodes are determined by bedaf the leaf nodes in this way, it can be seen that for any
pair of nodesu; andn. in the tree decomposition every node lying on the path betwieem must contaim in its
label if v appears in both,’s andn,’s labels. This is commonly known as the running intersecficoperty of tree
decompositions.

397

BAccHUS, DALMAO, & PITASSI

{4,5}

T

{3,4,5} {4,5}

TN

2345 {35
/\
{1727 37 4} {27 5}

/\
{1,2,3} {1,4}

Figure 3: Tree decomposition of the hypergraitof Example 1 that has been constructed from
the orderingr = (1,2, 3,4,5).

Example 4 The tree decompositiof; of H = {(1,2,3), (1,4), (2,5), (3,5), (4,5)} given in Fig-
ure 2 has the property that it has tree width no more than tiieebranch width of the branch
decompositiorily, of H given in Figure 1. FronT;; we can obtain the ordering = (1,2, 3,4, 5)
that was used in Example 2. (The proof of Lemma 2, given in ggeadix, shows how a elim-
ination ordering can be constructed from a tree-deconipasit As shown in Example 27 has
induced width 3, equal to the tree width of tree decompasiiiy, from which it was constructed.
Finally, from the orderingr we can construct a new tree decomposition#pshown in Figure 3.
(The proof of Lemma 3 shows how a tree decomposition can bstrearted from an elimination
ordering).7 has induced width 3 and, as indicated by Lemma 3 the tree demsition constructed
from it has equal tree width of 3.

It can be noted that our definition of tree decompositiongesaslightly from other definitions
that appear in the literature, e.g., (Bodlaender, 1993)lowimg Robertson and Seymour (1991)
we have defined tree decompositions over hypergraphs thére over graphs, and we have made
two extra restrictions so as to simplify the proofs of ouruttss First, we have restricted tree
decompositions to be binary trees, and second we have eegthiat each hyperedge be contained
in the label of somdeaf node of the tree decomposition. Usually tree decompositeme not
restricted to be binary trees, and only require that eackdegge be contained in some node’s label
(not necessarily a leaf node).

It is not difficult to show that any tree decomposition thalsféo satisfy our two restrictions
can be converted to a tree decomposition satisfying thesgateons without changing its width.
However, it is more straight forward to observe that with d@haut these two restrictions tree width
is equal to elimination width. Hence, our restrictions do cltange the tree width.

2.4 Exact Algorithms for SumPROD

Next we briefly review three prominent exact algorithms fatyBs. These algorithms solve the
more general problem®1PRrobD. All of these algorithms are in fact nondeterministic altons
that should be considered to be families of procedures, machber of which is a particular deter-
ministic realization.

398

BACKTRACKING SEARCH FOR#SAT AND BAYES

2.4.1 \ARIABLE ELIMINATION :

Variable or bucket elimination (VE) (Dechter, 1999) is adamental algorithm for v PROD.
Variable elimination begins by choosing an eliminationesidg, 7 for the variablesy = {Xj,

oo Xutt Xaqys -+ Xa(my- (This is the nondeterministic part of the computation).tha first
phase, all functions involving(,r(l), are collected together in the sﬁkﬂ(l), and a new function,
Fy is computed by “summing outX ;). The new function sums the product of all the functions in
Fx,, overall of X 1y's values. Specificallyl; is a function of all of the variables of the functions
in Fx,q except forX, (), and its value on any assignmento these variables is

Fila)=) [floXeq=ad).

dEValS(Xﬂ.(l)) fe}—X‘rr(l)

Summing outX, ;) induces a new hypergraph(;, where the hyperedges corresponding to the set
of functions]—'XW(l) are replaced by a single hyperedge corresponding to the umastién 7;. The
process then continues to sum ddf,y from H; and so on until alk variables are summed out.
Note that the sequence of hypergraphs generated by sumntitigeovariables according tois the
same the sequence of hypergraphs that defines the inducttdokid (Definition 3).

The original Davis-Putnam algorithm (Davis & Putnam, 196&3ed on ordered resolution is an
instance of variable elimination. Consider applying aleaelimination to the formulation of &
given above. For &r, the new functiond”; computed at each stage need only preserve whether or
not the product of the functions ifix_, is O or 1, the exact number of satisfying assignments need
not remembered. This can be accomplished by representing gymbolically as a set of clauses.
Furthermore, this set of clauses can be computed by gemgralli clauses that can be obtained
by resolving onX;), and then discarding all old clauses containig;). This resolution step
corresponds to the summing out operation, and yields migdike Davis-Putnam (DP) algorithm
for satisfiability3

2.4.2 RECURSIVECONDITIONING:

Recursive conditioning (RC) (Darwiche, 2001) is anothgretyf algorithm for SMPROD. Let

S = (V,F,®,®) be an instance of @vPrRoD andH be its underlying hypergraph. RC is a
divide and conquer algorithm that instantiates the vaemlgf)’ so as to break the problem into
disjoint components. It then proceeds to solve these coemsindependently. The original space-
efficient version of recursive conditioning, as specifieddarwiche (2001), begins with a branch
decompositiorl” of H of width w and depthd, and an initially empty set of instantiated variables
p. (Choosind! is the nondeterministic part of the computation.) We ca#l digorithmRC-Space
and show it in Algorithm 1.

The branch decompositidh specifies a recursive decompaosition of the problem and i lmge
RC-Space as follows. Létbel(n) be the label of a node ift, and letSy be the MPROD problem
defined by the variables and functions containe’in(In the initial call’T" is the complete branch
decomposition containing all variables and functionsSpgo that initiallySr = S). Starting atr,
the root of’, RC-Space solves the reducedMPROD St |, for all assignmenta: to the variables

3. Rish and Dechter (2000) have previously made a connebtbomeen DP and variable elimination. They were thus
able to show, that DP runs in time” () 2°(*) wherew is the branch width of the underlying hypergraph of the SAT
instance.

399

BAccHUS, DALMAO, & PITASSI

in label(left(r)) N label(right(r)) not yet instantiated by, whereleft(r) andright(r) are the left
and right children of-. The sum over all such is the solution to the inputed instanse|,.

Eacha renders the set of functions in the subtree belgChild(r) (i.e., the leaf labels) disjoint
from the functions below-ightChild(r). Thus for eachy, RC-Space can independently solve the
subproblems specified bigftChild(r)|,uao and rightChild(r)|,ua (i.€., the sum of the products
of all of the functions below the left/right subtree conalited on the instantiations muU «) and
multiply their answers to obtain the solutionde .. At the leaf nodes, the functiof) associated
with that node has had all of its variables instantiatedhsaigorithm can simply “LOOKUP;’s
current value.

Algorithm 1: RC-Space—Linear Space Recursive Conditioning

1 RC-Space(T, p)
2 begin

3 if T'is a leaf nodehen

4 return LOOKUP(value of function labeling the leaf node)

5 p=0;7=root(T)

6 &= variables inlabel(left(r)) N label(right(r)) uninstantiated by

7 forall o € {instantiations ofr'} do

8 p =p+ RC-Space(leftChild(T), pU «) x RC-Space(rightChild(T), p U «)
9 end

10 return p

11 end

A less space-efficient but more time-efficient version ofursive conditioning, calledRC-
Cache caches intermediate values that can be reused to reduamitingutation. Algorithm 2
shows the RC-Cache algorithm. Like RC-Space, each inmtali RC-Cache solves the subprob-
lem specified by the variables and functions contained irp#ssed subtreg. Since the functions
below T" only share the variables ifbel(root(T")) with variables outside of’, only the instan-
tiations in the subsety, of p intersectinglabel(root(T")) can affect the form of this subproblem.
Hence, RC-Cache will return the same answer if invoked wighsamé™ and samey, even if other
assignments ip have changed. RC-Cache, can thusTismsdy to index a cache, storing the com-
puted result in the cache (line 13) and returning immedjiateahe answer is already in the cache
(line 7).

Propagation Since RC instantiates the problem’s variables, propagaizm be employed. That
is, RC can perform additional inference to compute some @fitiplicit effects each assignment
has on the remaining proble®|, .. For example, if the functions of theu$1PROD problem
are all clauses (e.g., when solving A4S unit propagation can be performed. Propagation can
make recursive conditioning more effective. For examglene of the remaining clauses becomes
falsified through unit propagation, recursive conditignican immediately move on to the next
instantiation of the variableg. Similarly, unit propagation can force the value of varesbihat will

be encountered in subsequent recursive calls, thus regti@mumber of different instantiations
that must be attempted in that recursive call. It can be nittetdpropagation does not reduce the
worst case complexity of the algorithm, as on some1®R0OD problems propagation is ineffective.
It can however improve the algorithm'’s efficiency on someif@s of problems.

400

BACKTRACKING SEARCH FOR#SAT AND BAYES

Algorithm 2: RC-Cache—Recursive Conditioning with caching

1 RC-Cache(T, p)
2 begin

3 if T'is a leaf nodehen

4 return LOOKUP(value of function labeling the leaf node)
5 y = pNlabel(root(T))

6 if InCachéT,y) then
7
8
9

return GetValuéT,y)

p=0;r = root(T)

& = variables inabel(left(r)) N label(right(r)) uninstantiated by
10 forall « € {instantiations of} do
11 p = p+ RC-Cache(leftChild(T), p U a) x RC-Cache(rightChild(T), p U)
12 end
13 AddToCache(('\y), p)
14 return p
15 end

RC-Cache™ A simple extension of RC that is used in practice is to set theables? C
label(left(r) N label(right(r)) (line 10 of Algorithm 2) iteratively rather than all at onc&hat

is, rather than iterate over all complete assignmerits ¥ we can instantiate these variables one at
a time, performing propagation after each assignment. ddrnismake propagation more effective,
since, e.g., an empty clause might be detected after imsiagtonly a subset of the variables:in
and thus the number of iterations of the for loop might be cedu

Once the variables of are being set iteratively the order in which they are assigran vary.
Furthermore, the order of assignment can vary dynamicdlhat is, depending on how the val-
ues assigned to the firgt variables of#, the algorithm can make different choices as to which
unassigned variable afto assign next.

We call the extension of RC-Cache that uses incrementarasgints and dynamic variable or-
dering within set?, RC-Cache" . That is RC-Cache uses the same caching scheme as RC-Cache,
but has more flexibility in its variable ordering. It should boted however, that RC-Cacheoes
not have complete freedom in its variable ordering. It mtifsllow the inputed branch decompo-
sition 7. That is, the variable chosen must come from thersetlabel (left(r)) N label(right(r)).
This is in contrast with the DPLL based algorithms we presettie next section, which are always
free to choose any remaining unassigned variable as theagable to assign.

Space-Time Tradeoff RC has the attractive feature that it can achieve a noratrspace-time
tradeoff, taking less time if it caches its recursively caga values (RC-Cache), or taking less
space without caching (RC-Space). In fact, Darwiche andmq(R002) show that there is a smooth
tradeoff that can be achieved, with RC-Space and RC-Cadhe awvo extremes.

The DPLL based algorithms presented here share a numbettofds with RC; they also reduce
and decompose the input problem by making instantiatiosig, €fficiency by caching, and achieve
a similar space-time tradeoff. However, our algorithmskased on the paradigm of backtracking,
rather than divide and conquer. In particular, they expmreingle backtracking tree in which
the decomposed subproblems are not solved separatelythet can be solved in any interleaved

401

BAccHUS, DALMAO, & PITASSI

fashion. As a result, they are not limited to following thedmposition scheme specified by a fixed
branch decomposition. As we will see, the limitation of distdecomposition scheme means that
RC-Space and RC-Cache must perform exponentially worsedtimaalgorithms on some instances.

2.4.3 AND/OR $ARCH:

In more recent work Dechter and Mateescu (2007) have shoatritth notion of AND/OR search
spaces (Nilsson, 1980) can be applied to formalize the eligitl conquer approach tw@&PROD
problems utilized by RC. In this formulation the structunattguides the AND/OR search algorithm
is a pseudo tree. (Choosing the pseudo tree is the nondetstimpart of the computation.)

Definition 5 (Primal Graph) Theprimal graph of a hypergrapti{ is an undirected grapfy that
has the same vertices &sand has an edge connecting two vertices if and only if thosevertices
appear together in some hyperedgéof

Definition 6 (Pseudo Tre¢ Given an undirected gragh with vertices and edged’, £), apseudo
tree for GG is a directed rooted trég with vertices and edgdd/, Er) (i.e., the same set of vertices as
G), such that any edgethat is inG but not in7" must connect a vertex ifi to one of its ancestors.
Thatis,e = (v1,v2) Ae € Eg A e ¢ Ep implies that eithew; is an ancestor of, in 7" or v, is an
ancestor of; in T

This implies that there is no edge 6f connecting vertices lying in different subtrees’iof
Given a MPROD problemS = (V, F, @, ®) with underlying hypergrapi, we can formG, the
primal graph of{. The vertices of7 are the variables of the problevhand any pair of variables
that appear together in some functionfill be connected by an edge @#. A pseudo tred” for
G will then have the property that two vertices’Bf(variables ofS) can only appear in functions of
F with their ancestors or their descendants, they cannotaappdunctions with their siblings nor
with their ancestor’s siblings nor with the descendantauchssiblings.

This implies that once a variableand all of its ancestors i have been instantiated, the vari-
ables contained in its children subtrees become discomthe€hat is, the variables in these subtrees
no longer appear in functions together, and the resultibpriblems can be solved independently.
The AND/OR search algorithm utilizes this fact to solve theabproblems independently, just like
recursive conditioning.

Example 5 Given the hypergraptt = (V, E) whereV = {1,2,3,4,5} andE = {{1,2,3},
{1,4},{2,5}, {3,5}}, the primal graph of{ is G = (V, E¢) whereEqs = {(1,2), (1,3), (2,3),
(1,4), (2,5), (3,5)}. H, its primal graphG, and a pseudo tree f@¥ are shown in Figure 4. The
dotted lines shown on the pseudo tree are the edgéstiot are not in the pseudo tree. As can be
seen from the diagram these edges connect nodes only witlatieestors.

The space efficient version of thEND/OR-Spacesearch algorithm (Dechter & Mateescu,
2007) is shown in Algorithm 3. It solves theuS PROD instanceS = (V, F, &, ®), taking as
input a pseudo tree for the problem(i.e., the hypergraph fof is converted to a primal graph
G, andT is a pseudo tree fofy), and an initially empty set of instantiated variabjes The al-
gorithm solves a sub-problem of the original instasteeduced by the instantiations S|,. The
sub-problem being solved is defined by the functions|gfthat are over the variables contained in
the passed sub-tré@e Initially, with p being empty and” being the original pseudo tree containing
all variables, the algorithm solves the original probl&m

402

BACKTRACKING SEARCH FOR#SAT AND BAYES

Hypergraph Primal Graph

Pseudo Tree

Figure 4: The hypergraph, primal graph, and a pseudo treexample 5.

The nodes of the pseudo tréeare variables of the proble), and we also attach to each node
n of T a set of functiongns(n). A function f of F isin fns(n) if and only if (a)n is in the scope of
f and (b) all other variables in the scopefofire ancestors of in T'. This means thaf will have a
fully instantiated set of arguments when AND/OR searchaimsates the node (variable)

Algorithm 3: AND/OR-Space—Linear Space AND/OR search

1 AND/OR-Space(T, p)

2 begin

3 p=0;r=ro0t(T)

4 ST, = set of subtrees below

s forall d € {instantiations of-} do

6 o =[] sens(ry LOOKUP(value off onp U {r = d})
7

8

9

0

p=p+ ax[]presy, AND/OR-Space(T”, p U {r = d})
end
return p

10 end

The algorithm operates on the variabléhat is the root of the pseudo trée For each instanti-
ation ofr the algorithm computes, the product of the functions i that have now become fully
instantiated by the assignmenttd.e., those irnfns(r). It then invokes a separate recursion for each
child of r passing the subtree rooted by that child to the recurside BAID/OR search exploits
decomposition through these separate recursions.hifs only one child, then the problem is not
decomposed—there is only the single reduced subproblenhdisaesulted from instantiating

Like RC, AND/OR search can be made more time efficient at tiperese of using more space.
Algorithm 4 shows the caching versig¢tND/OR-Cache(called AND/OR graph search by Dechter
and Mateescu (2007)). Létbel(n) for any noden in the pseudo tred be the set of ancestors
of n that appear in some function with or with some descendant efin 7. It is only the in-
stantiations tdabel(n) that can affect the functions over the variables in the sgbtooted byn.
Hence,label(n) plays the same role as the root label of the passed brancimgesdion in RC-
Cache: only instantiations to these variables can affecstibproblem currently being computed.

403

BAccHUS, DALMAO, & PITASSI

Hence, like RC-Cache, AND/OR-Cache can use the instamtigin the subsey;, of p intersecting
label(root(T)) along with7" to index a cache.

Finally, as with RC-Cache, propagation can be used to decrease the number of brarmates t
AND/OR search needs to explore. For example, the recursille aver the children of can be
terminated when one of these calls returns the value zero.

Algorithm 4: AND/OR-Cache—AND/OR search with caching

1 AND/OR-Cache(T, p)
2 begin
3 p=0;7r=r00t(T)

4 y = p N label(root(T))

5 if InCachéT,y) then

6 return GetValuéT,y)

7 ST, = set of subtrees below

g forall d € {instantiations of} do

9 o = [e ns(ry LOOKUP(value off onp U {r=4d})

10 p=p+ ax[lresr, AND/OR-Cache(T”, pU {r = d})
11 end

12 return p

13 end

AND/OR-Cachet Some variable order dynamism can be employed during AND/€RcS. In
particular, the variables along any chain in the pseudoTrean be reordered without affecting
the decompositions specified iy A chain is a sub-path df such that none of its nodes, except
perhaps the last, have more than one child. In Figure 4 ngd&saRd 5 form a chain. The resultant
extension,AND/OR-Cache", can dynamically chose to next instantiate any of the viesan
the chain that starts at the root of its passed pseudditre@larinescu and Dechter (2006) refer
to AND/OR-Cache as “AND/OR with partial variable ordering”. However theyddnot utilize
caching in their version of the algorithm.)

It will then pass the rest of the chain (and the nodes belovifstnext recursive call, or if the
chosen variable was the last in the chain it will invoke a safgarecursive call for each child. Like
RC-Cache&, AND/OR-Cache does not have complete freedom in its choice of variable—sistm
chose a variable from the top most chain. Furthermore, ANBachée can only use its caching
scheme at the bottom of each chain (i.e., after all variahl#®e chain have been instantiated) since
its cache requires that the same set of variables be iretiahtiThis makes AND/OR-Cachevery
similar to RC-Cache.

2.4.4 OrHER EXACT ALGORITHMS

The algorithm most commonly used forBEeS is thejoin tree algorithm (Lauritzen & Spiegelhal-
ter, 1988), which can also be adapted to solve other kindsuefPRoD problems. The join-tree
algorithm first organizes the primal graph of theNsPROD problem into a tree by clustering the
variables, and it then performs message passing on the hiethe messages are computed by a
variable elimination process. In the context of¥&s the main advantage of join-tree algorithms is

404

BACKTRACKING SEARCH FOR#SAT AND BAYES

that they compute all marginals. That is they compute thé&epios probability of all of the variables
given some evidence.

In contrast, the default version of variable eliminatiommgutes only the posterior distribution
for a single variable. However, Kask et al. (2005) show hosvjtiin-tree algorithm can be reduced
to a version of VE that remembers some of its intermediateltseand runs in the same time and
space as VE. Hence, all of the results we state here compéEmngith our new backtracking based
algorithms also hold for the join tree algorithm.

Computing all Marginals All of the algorithms described above, i.e., VE, RC, and ARB/
search, can be modified to compute all marginals when soBmgs without any change to their
worst case complexity. In particular, besides the restilisagk et al. (2005), Darwiche (2001) has
shown that RC can compute all marginals oryBs problems with an extra bottom up traversal
of its search tree—at most doubling its run time. The samienigoe can be applied to AND/OR
search algorithms. For the DPLL algorithms we present Heamg et al. (2005b) have given an
even simpler scheme for modifying them so that they can cdmgp@ll marginals. Sang et al.'s
scheme involves maintaining some extra information dusegrch and does not require an extra
traversal of the search tree.

Another algorithm that has now been mostly supersededtiset conditioning (Pearl, 1988).
Here the idea is to identify a subset of variables which wietneduce the underlying hypergraph
of the SUMPROD into a tree. The reducedumPROD can then be easily solved. However, the
approach requires trying all possible instantiations ef¢ht-set yielding a runtime that is usually
worse than RC-Cache. Nevertheless, cutset conditioningpatentially be applied in conjunction
with other exact algorithms (Mateescu & Dechter, 2005).

Finally, an important early algorithm callddDP was presented by Bayardo and Pehoushek
(2000). This was a version of DPLL that utilized dynamic daposition for solving #&T. In
terms of the algorithms discussed above, AND/OR-Space eavidwed as being an version of
DDP that utilizes a pseudo tree to guide its variable orgerin the original presentation of DDP,
any variable ordering could be used including dynamic deiarderings. The search continued
until the problem was decomposed into independent compefsted for during search) at which
point a separate recursion was used to solve each compdiente, the DDP explored an AND/OR
search tree, however this tree need not correspond to anygigpseee over the original problem.
(The DVO and DSO AND/OR search schemes presented by MateescDechter (2005) are also
versions of DDP run with particular variable ordering heticis). In comparison with the algorithms
we present in the next section, Bayardo and Pehoushek (2@D0dt provide a complexity analysis
of DDP, DDP did not use caching to enhance its performanaeDayP still has less flexibility in its
variable ordering. In particular, once the problem has tsg#it into independent components the
search must solve these components sequentially in separatrsions. Inside each recursion the
search can only branch on the variables of the current coemtohat is, DDP cannot interleave
the solution of these components like the DPLL algorithmsvesent here.

2.5 Complexity Analysis

All known algorithms for B\YES, #SAT and SUMPROD run in exponential-time in the worst case.
However, when the branch width of the underlying hypergraplthe instancew, is small, the
some of the above algorithms are much more efficient. It cahban that the algorithms VE, RC-
Cache and AND/OR-Cache discussed above run in time and sy4&2°(®) . We note that the

405

BAccHUS, DALMAO, & PITASSI

complexity of these algorithms is usually given in termsreétwidth or elimination width, and not
branch width. However, by Lemmas 1, 2, and 3, these concepiscmivalent to within a factor of
2, and therefore the asymptotic complexity can equivajdrel stated in terms of any of these three
notions of width (tree width, branch width, or eliminationdth). For analyzing our backtracking
algorithms, branch width is be somewhat more natural, anthfe reason we have chosen to state
all complexity results in terms of branch width.

The runtime of the variable elimination algorithm is easigen to be at most®()20®) To
see this, notice that the algorithm proceeds istages, removing one variable at each stage. Sup-
pose that the algorithm is run on some variable orderingithsielimination widthy. The algorithm
removes theé'” variable during theé*" stage. At the*" stage, all functions involving this variable
are merged to obtain a new function. As indicated in Sectidnl2 computing the new function
involves iterating overall possible instantiations ofvtsiables. The runtime of this stage is there-
fore exponential in the number of underlying variables eftiew function, which is bounded by
Thus, the runtime of the algorithm is bounded:83()2°(*) . Now by Lemmas 1 and 2 and 3, if the
elimination width isv, then the branch width is at most+ 1, and therefore the overall runtime is
as claimed. It can also be noted that since the new functist bemustored, the space complexity of
variable elimination is the same as its time complexity, €1 20w).

It has also been shown that the run times of RC-Cache and RieCare bounded by©(1)20(w)
(Darwiche, 2001). Further, there is a nice time-space tfiddhat is, the space-efficient imple-
mentation of RC, RC-Space, runs in tid@(®1°8") byt needs only space linear in the size of the
input, where as RC-Cache has space complexity equal toriescomplexity;© M 20) We will
present proofs showing that our DPLL based algorithms chieee the same time and time/space
bounds; our proofs give the bounds for RC-Space, RC-CadldeR€-Cach€ as special cases.

Finally, it has been shown that AND/OR-Space runs in tifl&”!°s") (Dechter & Mateescu,
2007). Specifically, Dechter and Mateescu show that AND&JRee runs in time exponential in the
height of its inputed pseudo tree, and Bayardo and Mirarl@®%) show that this height is bounded
wlogn. Lemma 1 then shows that the bound also holds for branch wiithilarly, Dechter and
Mateescu (2007) show that AND/OR-Cache runs in time andespacinded by@(1)20®) py
exploiting the very close relationship between pseudctegrl elimination orders.

Making the algorithms deterministic. As stated above, all of these algorithms are in fact nonde-
terministic algorithms each requiring a different nondeteistically determined input. Hence, the
stated complexity bounds mean that there exists some chbmendeterministic input (i.e., some
variable ordering for VE, some branch decomposition for R some pseudo tree for AND/OR
search) with which the algorithm can achieve the stated &mxitp bound.

However, to achieve this runtime in practice, we will neetbécable tdind such a good branch
decomposition (variable ordering, pseudo tree) efficjentinfortunately, the general problem of
computing an optimal branch decomposition (i.e., one thatvidth equal to the branch width of
‘H) is NP-complete. However, Robertson and Seymour (199%eptean algorithm for computing
a branch decomposition with branch width that is within adaof 2 of optimal and that runs in
time n®120w) wherew is the branch width of{. By first running this deterministic algorithm
to compute a good branch decomposition, one can obigtierministicversions of RC-Cache and
RC-Caché that run in time and spaee”()2°() as well as aleterministicversion of RC-Space
that runs in linear space and tirB@(*1°s™) These deterministic versions no longer require access
to a nondeterministically determined choice to achieve 8tated runtimes.

406

BACKTRACKING SEARCH FOR#SAT AND BAYES

Algorithm 5: DPLL for SAT

1 DPLL (¢)

2 begin

3 if ¢ has no clausethen
4 return TRUE

5 else if¢ contains an empty claugben
6 return FALSE

7 else
8

9

0

choosea variabler that appears ig
return (DPLL (¢|z=0) V DPLL (¢|,=1))

10 end

Similarly with a nearly optimal branch decomposition, wa c&ge Lemmas 1-3 to find a nearly
optimal elimination ordering, and thus can obtaitederministicversion of the variable elimination
algorithm that runs in time and spae€1)20®) And finally, from that nearly optimal elimination
ordering the bucket-tree construction of Dechter and Matie€2007) can be used to construct a
nearly optimal pseudo tree, and thus we can obtalatarministicversion of AND/OR-Space that
runs in linear space and tin?€ (127 and adeterministicversion of AND/OR-Cache that runs in
time and space®)20(w),

3. Using DPLL for #SAT and SUMPROD

Now we present our methods for augmenting backtrackingcheaith different caching schemes
so that it can solve @vPROD with time and space guarantees at least as good as the otutr ex
algorithm for SYIMPROD. For ease in presentation we present DPLL-based algoritbnsolving
#SAT, and derive complexity results for these algorithms. Latewill discuss how the algorithms
and complexity results can be applied to other instancesofFROD (like BAYES).

3.1 DPLL and #DPLL:

DPLL is a nondeterministic algorithm fora$, that has also been used to solve various generaliza-
tions of AT, including #T (Dubois, 1991; Zhang, 1996; Birnbaum & Lozinskii, 1999;tiran,
Majercik, & Pitassi, 2001). DPLL solvesa$ by performing a depth-first search in the space of
partial instantiations (i.e., it is a standard backtraglgearch algorithm). The nondeterministic part
of the computation is lies in the choice of which variable texy (i.e., instantiate) next during its
search. It operates om$ problems encoded in clause form (CNF).

The standard DPLL algorithm for solvinga$ is given in Algorithm 5. We use the notation
¢|z=0 Or ¢|,—1 to denote the new CNF formula obtained from reducinigy setting the variable
to 0 or 1. Reducing by x = 1 (x = 0) involves removing fromp all clauses containing (—x)
and removing the falsifiedx (z) from all remaining clauses.

DPLL is a nondeterministic procedure that generatédsasion treeepresenting the underlying
CNF formula. For solving &r, the decision tree is traversed in a depth-first manner aitkier a
satisfying path is encountered, or until the whole treeaigdrsed (and all paths falsify the formula).
The nondeterminism of the algorithm occurs in the choiceasfable on line 8. In practice this

407

BAccHUS, DALMAO, & PITASSI

Algorithm 6 : #DPLL for #SaT (no caching)

1 #DPLL (¢)
/I Returns the probability of 1)
2 begin
if ¢ has no clausethen
return 1
else if¢ contains an empty claugben
return 0
else
choosea variabler that appears ig
return (3#DPLL (¢|,—0) + 2#DPLL (4],=1))

o © 0o N o o b~ W

10 end

nondeterminism is typically resolved via some heuristioich. Also, the algorithm utilizes early
termination of the disjunctive test on line 9; i.e., if thesfitest returngRUE the second recursive
call is not made. Thus, the algorithm stops on finding the $asisfying path.

Note that we do not require that DPLL perfoumit propagation In particular, unit propagation
can always be realized through the choice of variable at8inm particular, if we force DPLL to
always chose a variable that appears in a unit clausewlienever one exists, this will have the
same effect as forcing DPLL to perform unit propagationradteery variable instantiation. That is,
after a variable is chosen, and instantiated to one of itsegalthe input CNk will be reduced. The
reduced formulag|,—o or ¢|,—1, passed to the next recursive call may contain unit clavgéih
unit propagation, the variables in these clauses woulddiantiated so as to satisfy the unit clauses.
If instead, we force one of these variable to be chosen next,imstantiation would immediately
fail due to the generation of an empty clause, while the otlwrld instantiate the variable to the
same value as unit propagation. Hence, since we analyze BBla_nondeterministic algorithm,
this includes those deterministic realizations that penfanit propagation.

A simple modification of DPLL allows it to count all satishgrassignments. Algorithm 6 gives
the #DPLL algorithm for counting. The algorithm actuallyngputes the probability of the set of
satisfying assignments under the uniform distributionné¢g the number of satisfying assignments
can be obtained by multiplying this probability BY, wheren is the number of variables i. The
alternative would be to return 2 raised to the number of uvaeables whenevep has no clauses
(line 4) and not multiply the recursively computed counts%t@ine 9).

Known exponential worst-case time bounds for DPLL also wp@l#DPLL: for unsatisfiable
formulas, both algorithms have to traverse an entire datisee before terminating. Although this
decision tree can be small (e.g., when an immediate contralis detected), for some families of
formulas the decision tree must be large. In particulas itriplicit in the results of Haken (1985)
that any decision tree for the formulas encoding the (negation of titepositional pigeonhole
principle has exponential size, and thus DPLL and #DPLL ntals¢ exponential-time on these
examples. This lower bound does not, however, help us digtaie between algorithms since
all known algorithms for #&81 and BaYES take exponential-time in the worst-case. Nevertheless,
#DPLL requires exponential time even on instances that eagfficiently solved by competing
algorithms for MPROD. To see this, consider a 3CNF formula oer variables consisting of

408

BACKTRACKING SEARCH FOR#SAT AND BAYES

n clauses that share no variables. Any complete decisiorhaeexponential size, and therefore
#DPLL will require exponential time. In contrast, sincestifiormula has low tree width it can be
solved in polynomial time by VE, RC, or AND/OR search.

3.2 DPLL with Caching:

Given that the obvious application of DPLL to solve&J®8PROD can give exponentially worse
performance than the standard algorithms, we now examirys wiimodifying DPLL so that it
can solve #&T1 (and thus BYes and SYMPRoD) more efficiently. To understand the source of
#DPLL's inefficiency consider the following example.

Example 6 The following diagram shows a run of #DPLL @n= {(w V z)(y V 2)}. Each node
shows the variable to be branched on, and the current for#ilRLL is working on. The left hand
branches correspond to setting the branch variablatsk, while on the right the variable is set
to TRUE. The empty formula is indicated b}, while a formula containing the empty clause is
indicated by{()}. The diagram shows that #DPLL encounters and solves thechlbm{(y V z) }
twice: once along the pathw = 0,2 = 1) and again along the patw = 1). Note that in this
example unit propagation is realized by the choice of végialodering—afterw is set tOFALSE,
#DPLL chooses to instantiate the variablsince that variable appears in a unit clause.

wi{(zVw))(yV=2)}

T

W y{(lyVvz)}
0:{0}) S
{0} L0
() 10
PN
{0} L0

If one considers the above example of applying #DPLL to disjsets of clauses, it becomes
clear that in some formulas #DPLL can encounter the sameaahlgon an exponential number of
times.

3.2.1 DPLLWITH SIMPLE CACHING (#DPLL-SIMPLECACHE)

One way to prevent this duplication is to apply memoizatidsindicated in Example 6, associated
with every node in the DPLL tree is a formufasuch that the subtree rooted at this node is trying
to compute the number of satisfying assignmentg.toNhen performing a depth-first search of
the tree, we can keep a cache that contains all formfikagat have already been solved, and upon
reaching a new node of the tree we can avoid traversing itsesilf the value of its corresponding
formula is already stored in the cache.

In Example 6 we would cach&(y Vv z)}, when we solve it along the patw = 0,z = 1)
thereby avoid traversing the subtree below= 1).

409

BAccHUS, DALMAO, & PITASSI

Algorithm 7 : #DPLL algorithm with simple caching (#DPLL-SimpleCache)

1 #DPLL-SimpleCache(¢)

/I Returns the probability of 1)
2 begin
if InCaché¢) then

/I Also detects obvious formulas.

4 return GetValugo)
5 else
6 choosea variabler that appears ig
7 val = 1#DPLL-SimpleCache(¢|,—o) + 3#DPLL-SimpleCache(¢|,—1)
8
9
0

w

AddToCachef,val)
return val

10 end

The above form of caching, which we will calmple caching#DPLL-SimpleCache) can be
easily implemented as shown in Algorithnf' 7As with #DPLL, #DPLL-SimpleCache returns the
probability of its input formulap; multiplying this by2™ gives the number of satisfying assignments.

In addition to formulas stored in the cache there are alsfolt@ving obviousformulas whose
value is easy to compute. (1) The empty formfacontaining no clauses has value 1. (2) Any
formula containing the empty clause has value 0. Obvioumnditas can be treated as if they are
implicitly stored in the cache (they need not be explicitigred in the cache, rather their values can
be computed as required).

The following (low complexity) subroutines are used to asahe cache. (1) AddToCadlter):
adds to the cache the fact that formdldas valuer. (2) InCachég): takes as input a formula
and returns true ip is in the cache. (3) GetVal@e): takes as input a formul@ known to be in the
cache and returns its stored value. There are various wagsngbuting a cache key from. For
example,¢ can be maintained as a sorted set of sorted clauses, andatieedcas if it was a text
string. Such a caching scheme hé¥") complexity.

Surprisingly, simple caching, does reasonably well. THieviong theorem shows that simple
caching achieves runtime bounded 25 '°s™) wherew is the underlying branch width. As with
our complexity analysis of earlier algorithms presente8etion 2.5, the simple caching algorithm
can also be maddeterministicby first computing a branch decomposition that is within adac
of 2 of optimal (using the Robertson-Seymour algorithm)j #ren running #DPLL-SimpleCache
with a variable ordering determined by this branch decoritipos

Theorem 1 For solving #3T1 with n variables, there is an execution of #DPLL-SimpleCache that
runs in time bounded bg° (") wherew is the underlying branch width of the instance. Fur-
thermore, the algorithm can be made deterministic with #meestime guarantees.

Although the theorem shows that #DPLL-SimpleCache doely fakll, its performance is not
quite as good as the best@PRrRoD algorithms (which run in time©(1)20w),

4. Simple caching has been utilized before (Majercik & Latm1998), but without theoretical analysis.

410

BACKTRACKING SEARCH FOR#SAT AND BAYES

Algorithm 8 : #DPLL algorithm with component caching (#DPLL-Cache)

1 #DPLL-Cache (®)
/I Returns the probability of the set of disjoint formulas P
2 begin
3 if InCaché®) then
/I Also detects obvious formulas.

4 return GetValug®)

5 else

6 ¥ = RemoveCachedCompone(iy

7 choosea variabler that appears in some component ¥
8 U~ = ToComponents|,—o)

9 #DPLL-Cache (U — {¢} U¥™)

10 U+ = ToComponentsh|,—1)

11 #DPLL-Cache (U — {¢} U ¥™)

12 AddToCachép, sGetValug ¥ ~) + SGetvalug U +))
13 if #DPLL-Space then

14 RemoveFromCacli@~ U)

15 return GetValug®)

16 end

3.2.2 DPLLwWITH COMPONENT CACHING (#DPLL-CACHE)

Now we show that a more sophisticated caching scheme all@id ¥ to perform as well as the
best known algorithms. We call the new algorithm #DPLL-Caamd its implementation is given
in Algorithm 8.

In the algorithm we generalize the cache to deal with setowhdilas. First, we say that a
(single) formulag is knownif its value is stored in the cache or it is an obvious formaad its
value is implicitly stored in the cache). Given a set of fotasub we say that the set isnownif
either everyy € ® is known, or there is somg € ® whose value is known to be zero. In both cases
we say thatb’s value is equal to the product of the values of the ®.

Now we generalize some of the cache access subroutinesiGaghe¢d) is generalized so that
it can take as input a set of formulds It returns true if® is known as just defined. (2) Similarly
GetValué®) is generalized to take sets of formulas as input. It retunesproduct of the cached
values of the formulas < .

The intuition behind #DPLL-Cache is to recognize that asaldes are set the input formula
may become broken up into disjoint components, i.e., settaoises that share no variables with
each other. Since these components share no variables wemgmte the number of solutions to
each component and multiply the answers to obtain the totatisn count. Thus, it is intended
that GetValue be called with a set of disjoint componentsn that case it will correctly return the
solution count forb—i.e., the product of the solution counts for eack .

The algorithm creates a standard DPLL tree, however it cacbenponent formulas as their
values are computed. It keeps its input in decomposed forensas of disjoint components, and
if any of these components are already in the cache (and lieirsvialue is known) it can remove

411

BAccHUS, DALMAO, & PITASSI

these parts of the input—reducing the size of the problerillit|s to solve and avoiding having
to resolve these components.

The new algorithm uses the previously defined cache accessuines along with two addi-
tional (low complexity) subroutines. (1) ToComponémis takes as input a formula, breaks it
up into a set of minimal sized disjoint components, and restuhis set. (2) RemoveCachedCom-
ponent$®): returns the input set of formulaB with all known formulas removed. The input to
#DPLL-Cache is always set of disjoint formulas. Hence, to#DPLL-Cache on the input formula
¢ we initially make the call #DPLL-Cach@oComponentsy)).

ToComponents simply computes the connected componenke gfrimal graph generated by
¢. That s, in this graph all of the variables ¢fare nodes, and two nodes are connected if and only
if the corresponding variables appear together (in anyripglan a clause ofp. Each connected
component of this primal graph (which can be computed withreoke depth-first traversal of the
graph Cormen, Leiserson, Rivest, & Stein, 2001), defines afsariables whose clauses form an
independent component of

Each call of #DPLL-Cache completes with the solution of th&known components from the
set of inputed components. If all components ofb are known the product of the values of these
components will be returned at line 4. Otherwise the inptitofeomponents is reduced by re-
moving all known components (line 6), which must leave asieme unknown component and
potentially reduces the size of the remaining problem todbeesl. Then a variable from some un-
solved component is chosen and is branched on. Since trablednly appears in the component
¢ its assignment can only affegt In particular, its assignment might breakinto smaller com-
ponents (line 8 and 11). The recursive call will solve all poments it is passed, so after the two
recursive calls the value @f can be computed and cached (line 12). Finally, since all corapts
in the inputed se® are now solved its value can be retrieved from the cache duchesl.

Example 7 Figure 5 illustrates the behavior of #DPLL-Cache on the fdem = {(a,b,c, x),
(—a,b,c), (a,7b,c), (d,e, f,x), (—d,e, f), (d,—e, f)}. Although the problem could be solved
with a simpler search tree, we use a variable ordering thargées a more interesting behavior.

Each node shows the variable to be branched on, and the taateaf components #DPLL-
Cache is working on. The known components (i.e., those &yreathe cache) are marked with an
asterisk {). The branch variables are setA®oLSE on the left branch andruE on the right branch.
The empty formula is indicated by}, while a formula containing the empty clause is indicated
by {()}. To simply the diagram we use unit propagation to simplify formula after the branch
variable is set. This avoids the insertion into the diagrdmoales where unit clause variables are
branched on. Finally, note that known formulas are remowddrb a recursive call is made, as per
line 6 of Algorithm 8).

At the root, oncer has been set to false,is broken up into two components, ;, . = {(a, b, ¢),
(—a,b,c), (a,—b,c)}, andgq. r = {(d,e, f), (—d,e, f), (d,—e, f)}. The search tree demonstrates
that it does not matter how the search interleaves branamingriables from different components,
the components will still be solved independently. We se¢ the leftmost node in the tree that
branches orf succeeds in solving the compondii¢, f), (—e, f)}. This component is then added
to the cache. Similarly, the parent node that branchels smives the componert(b, c), (—b, c)}.
(The subcomponent$ — and '™ generated by setting lines 8 and 11 of Algorithm 8, and per-
forming unit propagation are equal to the empty formylg, and thus are known). On backtrack
to d, the alternate value faf does not affect the componefith, ¢), (—b,¢)}, so its value can be
retrieved from the cache leaving only the compongt f)} to be solved. Branching onsolves

412

BACKTRACKING SEARCH FOR#SAT AND BAYES

i f e o S0

<

/\ {0 {u}
QRSN “{ e)

f:{ %ée,g),(ﬁe,f)} } { %gig),(ﬁe,f)}* }

Figure 5: Search Space of #DPLL-Cache

this component. Backtracking tbwe have that botH (e, f)} and{(e, f), (—e, f)} are solved, so
¢a.e,r's value can be computed and placed in the cache. On backigattka, the alternate value
for a does not affect the componedy . ¢, so its value can be retrieved from the cache leaving
only the componen{(b, c)} to be solved. Branching dnsolves this component, after which both
{(b,c)} and{(b,c), (—b,c)} are solved s@,; .'s value can be computed and placed in the cache.
The search can then backtrack to try setting TRUE.

We can obtain the following upper bound on the runtime of #Dflache.

Theorem 2 For solving #3T onn variables, there exists an execution of #DPLL-Cache thet i
time bounded by:©()20®) wherew is the underlying branch width of the instance. Furthermore
the algorithm can be made deterministic with the same tinagaqiees (as discussed in Section 2.5).

So we see that #DPLL-Cache can achieve the same level ofpenfice as the besu® PRoOD
algorithms.

Finally, there is a third variant of #DPLL with cachingDPLL-Space, that achieves a nontriv-
ial time-space tradeoff. This algorithm is the natural aatiof #DPLL-Cache, modified to remove
cached values so that only linear space is consumed. Thethigaitilizes one additional subrou-
tine. (6) RemoveFromCache): takes as input a set of formulas (a set of components) anolesn
all of them from the cache. After splitting a component witvaaiable instantiation and computing
the value of each part, #DPLL-Space cleans up the cache lyviegiall of these sub-components,
so that only the value of the whole component is retainedciipally, #DPLL-Space is exactly like
#DPLL-Cache, except that it calls RemoveFromCdgheU) just before returning (line 14).

413

BAccHUS, DALMAO, & PITASSI

Theorem 3 For solving #2T onn variables, there is an execution of #DPLL-Space that usks on
space linear in the instance size and runs in time bounde@?#/°¢™) wherew is the underlying
branch width of the instance. Furthermore, the algorithmlmmade deterministic with the same
time and space guarantees.

The proofs of Theorems 1-3 are given in the appendix.

3.3 Using DPLL Algorithms for Other Instances of SUMPROD:

The DPLL algorithms described in this section can be easiyifred to solve other instances of
SumPROD. However, since #8T is #P complete many instances afi$PRoOD can also be solved
by simply encoding them in #8. For example, this approach is readily applicable xyBs and
has proved to be empirically successful (Sang et al., 2006bithermore, the encoding provided
by Sang et al. (2005b) achieves the same complexity guasatestandard algorithms fonBes.
(That is, the CNF encoding has tree width no greater thaniilginal Bayes Net). Note that this
encoding assigns non-uniform probabilities to values efvariables. That is, for variable the
probability ofz = 0 might not be equal to the probability @f= 1. This is easily accommodated
in our algorithms: instead of multiplying the value retuwin®y each recursive call b%rwe simply
multiply it by the probability of the corresponding variabalue (i.e., byPr(z = 0) or Pr(z = 1)).

On the other hand, if conversion to #Sis inapplicable or undesirable the algorithms can
be modified to solve other instances aiNsPrROD directly. For SYymPROD, we want to compute
Dy, ---Dx, L, fi(E;). DPLL chooses a variables;, and for each valué of X; it recursively
solves the reduced problefﬁ| x,=d- (Hence, instead of a binary decision tree it buildsary tree).
The reduced problenf|x,—, is to compute

€B OB DRIE

Xic1 Xia Xm j=1

where f;(E;)|x,=q IS f; reduced by setting(; = d. #DPLL-SimpleCache caches the solution to
the reduced problem to avoid recomputing it. For examptgntremember the reduced problem by
remembering which of the original functions fairemain (i.e., have not been reduced to a constant
value) and the set of assignments that reduced these regdimctions. #DPLL-Cache caches
the solution to components of the reduced problem. For el@ntgan remember a component by
remembering the set of original functions that form the congmt along with the set of assignments
that reduced these functions. It can compute the currenpooants by finding the connected
components of the primal graph generated from the hypengofithe SUMPROD instance with
all instantiated variables removed. It is a straightfodvadaptation to show that the above three
theorems continue to hold for #DPLL, #DPLL-Cache, and #DFgace so modified to solveusi -
PROD.

Algorithm 9 shows how #DPLL-Cache, for example, can be meditb solve general \84-
ProOD problems. The algorithm takes as input a set of componéntsist like #DPLL-Cache,
initially containing the components of the original praileln the algorithmfns(x) denotes the set
of functions of the original problem that (a) contairin their scope, and (b) are fully instantiated
by the instantiation of.

414

BACKTRACKING SEARCH FOR#SAT AND BAYES

Algorithm 9: SumMPROD-DPLL-Cache algorithm for arbitrary 8 PROD problems

1 SUMPROD-DPLL-Cache (®)
2 begin

3 if InCaché®) then

4 return GetValug®)

5 else

6 ¥ = RemoveCachedCompone(iy

7 choosea variabler that appears in some component ¥
8 p=0

9 foreach d € domain ofr do

10 ¢ = ToComponentsh|,—q)

11 @ =[]t ns(z) LOOKUP(value off onp U {x =d})
12 p = p+ a x SUMPROD-DPLL-Cache(® — {¢} U &%)
13 end

14 AddToCachép, p)

15 return GetValud®)

16 end

4. Comparing Algorithms for BAYES and #SAT

In this section, we will prove that our DPLL based algorithans at least as powerful as the standard
complete algorithms for solving #$, and that they are provable more powerful than many of
them on some instances. This last feature is important againsthat solving @&vPROD using
DPLL augmented with caching can in some cases solve prolifEhare beyond the reach of many
standard complete algorithms.

As mentioned earlier, the algorithms fou@PRrobD as well as our new DPLL-based algorithms,
are actuallynondeterministi@lgorithms that require some nondeterministically chaspat. (This
input can be viewed as being a sequence of bits). For VE, théaterministic bits encode an elim-
ination ordering; for RC, the nondeterministic bits encaderanch decomposition; for AND/OR
search the nondeterministic bits encode a pseudo tree;carmuf DPLL based algorithms, the
nondeterministic bits encode the underlying decision itndeating which variable will be queried
next in the backtracking process. Thus when comparing tbe/ép’ of these algorithms we must
be careful about how the nondeterminism is resolved. Famele VE operating with a very bad
elimination ordering cannot be expected to run as effigjeai #DPLL-Cache operating with a
very good branching strategy. First we present some defigitivhich allow us to state our results
precisely.

Definition 7 Let f be a CNF formula. Defin@ime[VE](f) to be the minimal runtime of any vari-
able elimination algorithm for solving #8 for f, over all choices of elimination orderings fgr
Similarly defineTime[A](f), for A equal to RC-Cache, RC-Space, RC-Cach&ND/OR-Space,
AND/OR-Cache, AND/OR-Cache #DPLL-Cache, and #DPLL-Space. (For examgléme[RC-
Caché(f) is the minimal runtime of the RC-Cache algorithm solvings#Sor f, over all possible
branch decompositions g¢f)

415

BAccHUS, DALMAO, & PITASSI

Definition 8 Let A and B be two nondeterministic algorithms for #8 Then we will say thatd
polynomial-time simulate$3 if there is a fixed polynomiap such that for every CNF formul#
Time[A](f) < p(Time[B](f)).

The following theorem shows that RC-Cache and RC-Cagiwynomially simulate VE. The
proof of this theorem is implicit in the results of Darwictz001).

Theorem 4 Both RC-Cache and RC-Cach@olynomially simulate VE.

Now we prove that DPLL with caching is as powerful as previalgorithms.

Theorem 5 #DPLL-Cache polynomially simulates RC-Cache, RC-CagheND/OR-Cache,
AND/OR-Cache, and VE. #DPLL-Space polynomially simulates RC-Space, ADR-Space and
DDP?

The proof of this theorem is given in the appendix. It shoutddrnoted that the proof also
implies that there is a deterministic version of #DPLL-Gathat has time (and space) complex-
ity that is at least as good as any deterministic realizatibRC-Cache, RC-Cache AND/OR-
Cache, AND/OR-Cache or VE. Similarly, there is a deterministic version of #DRSpace that
has time (and space) complexity that is at least as good agei@gministic realization of RC-Space,
AND/OR-Space and DDP.

Now we prove that DPLL with caching can in some cases run spgignomially faster than
previous algorithms. The proof is given in the appendix.

Theorem 6 None of RC-Space, RC-Cache, AND/OR-Cache, AND/OR-Spags&ocan polyno-
mially simulate #DPLL-Cache, #DPLL-Space, or #DPLL.

This theorem shows that #DPLL-Cache/Space has a basictageaaver the other standard
algorithms for ¥MPRoOD. That is, on some problems RC, AND/OR search, and VE willexiluire
time super-polynomially greater than #DPLL-Cache no matteat branch decomposition, pseudo
tree, or variable ordering they are supplied with, even wteehing is utilized. The proof of this
theorem shows that the advantage of #DPLL-Cache arisesitsaability to utilize dynamic vari-
able orderings, where each branch can order the varialffeseditly. The flexibility of a dynamic
variable ordering for these instances gives rise to inetapportunities for contradictions thereby
significantly decreasing the overall runtime.

We note that Theorem 6 does not cover those algorithms theg tmre flexibility in their
variable ordering, i.e., AND/OR-CacheRC-Caché, and DDP. It is an open problem whether or
not #DPLL-Cache is superpolynomially faster than theserélyns on some instances, although
we conjecture that Theorem 6 is also true for these algosithm

In particular, note that #DPLL-Cache still has greater Béity in its variable ordering than any
of these algorithms. None of these algorithms have comfetaility in their variable ordering.
AND/OR-Caché must select an uninstantiated variable from the chain tastssat the root of its
passed pseudo tree; RC-Cathaust select an uninstantiated variable from the interseaf the
labels of the left and right children of the root of its pasbeainch decomposition; and DDP must
select an uninstantiated variable from the component itirseatly solving. In contrast #DPLL-
Cache can select any uninstantiated variable.

5. DDP is the algorithm presented by Bayardo and Pehousi€io)2

416

BACKTRACKING SEARCH FOR#SAT AND BAYES

The difficulty with proving Theorem 6 for these other alglnits is that all of them can trade-
off flexibility in their variable ordering with their abilt to decompose the problem. The clearest
example of this occurs with AND/OR-Cachelf AND/OR-Cache" is passed a pseudo tree that is
simply a single chain of variables, it will have complete ilbility in its variable ordering, but at the
same time it will never decompose the problem. SimilarliR@-Cache is provided with a branch
decomposition that has large labels it will have more fldijbin its variable ordering, but will be
less effective in decomposing the problem. For the familpmblems used to prove Theorem 6
only flexibility in the variable ordering is needed to acl@ex superpolynomial speedup, and thus
for example AND/OR-Cachecan achieve this speedup by completely sacrificing decoitigros

#DPLL-Cache can manage the tradeoff between flexibility anable ordering and decom-
posing the problem in more sophisticated ways. For exanipl&s the ability to use a variable
ordering that encourages decomposition in some parts séésch tree while using a different vari-
able orderings in other parts of its search tree. For instaihe Cachet system, which is based on
#DPLL-Cache, employs a heuristic that dynamically tradéa wariable’s ability to decompose the
problem with its ability to refute the current subtree (Sat@l., 2005a). (It employs a weighted
average of the number of clauses the variable will satisfitha variable’s VSID score Moskewicz,
Madigan, Zhao, Zhang, & Malik, 2001). #DPLL-Cache also Inesability to interleave the solving
of its current set of components by successively choosinighdas from different components. To
extend Theorem 6 to cover AND/OR-CachdRC-Caché and DDP a family of problems exploit-
ing these features of #DPLL-Cache would have to be developed

5. Impact on Practice

Some of the results of this paper were first presented in secemée paper (Bacchus, Dalmao, &
Pitassi, 2003), and since that time a number of works have ipfleenced by the algorithmic ideas
presented here.

The Cachet system (Sang et al., 2004, 2005a) is a state oftté&ar solver directly based
on the results presented here. Cachet like our #DPLL-Cagdueithm, is based on the ideas of
dynamic decomposition into components and caching of compiosolutions. It was an advance
over previous #8T solvers in its use of caching to remember previously soh@dponents and
in its integration of clause learning. The previous besh#Solver, the DDP solver (Bayardo
& Pehoushek, 2000), also performed dynamic component tilmtebut had neither component
caching nor clause learning. Our results highlighted thgoirrance of component caching and the
possibility of basing a #8r solver on a standard DPLL implementation thus making thegiation
of clause learning feasible.

Cachet resolved a number of issues in making the algorithengresented here practical. This
included practical ways of implementing the caching of comgnts including a method for ef-
ficiently computing a key that could be used for cache look(phis method was subsequently
improved by Thurley, 2006). The Cachet system has also beshto solve BYES, most probable
explanation (MPE), and weighted MAX-SAT problems by enogdihese problems as weighted
#SAT problems (Sang et al., 2005b, 2007). This approach has gbtoviee very successful, espe-
cially for BAYES where it is often much superior to standardygs algorithms. The applications
of #SaT and the Cachet system forBes has been further advanced by Li et al. (2006, 2008).

It should also be noted that practical #Ssolving and its applications to other problems like
BAYES has also been advanced during this period by work on the Regitlgn and its application

417

BAccHUS, DALMAO, & PITASSI

to compiling CNF into representations on which model coumis tractable, e.g., (Darwiche, 2004,
Chavira & Darwiche, 2006, 2008). This work has also illugdathe value of converting various
problems into weighted #§ instances, and the utilization of techniques like clauseniag (in
this case integrated into a RC style algorithm). There hss héen considerable work advanc-
ing AND/OR search, e.g., (Dechter & Mateescu, 2004; Madne& Dechter, 2006; Dechter &
Mateescu, 2007).

One difference between the Cachet system and the RC and ARIB#@rch based systems men-
tioned above is that Cachet utilized a dynamic decompaosgeneme. In particular, Cachet used a
dynamic variable ordering heuristic that attempts to traffi@ variable’s ability to decompose the
problem with its ability to refute the current subtree. Besmathe variable ordering was dynamically
determined during search, Cachet cannot predict what coemts will be generated during search.
Hence it has to examine the current component (i.e., the coem containing the variable just
instantiated) to discover the new components generatags Thchet utilized an approach like that
specified in Algorithm 8 where a function like ToComponestsivoked on newly reduced compo-
nent (see line 8). ToComponents must do a linear computadi@ind the new components (e.g., a
depth-first search or a union-find algorithm). In additicor, éach component it must examine the
clauses contained in the component to compute a cache key.

In contrast, RC and AND/OR search take as input a static azopnputed decomposition
scheme (i.e., a branch decompaosition or a pseudo tree). eHémey are able to find components
without doing any extra work during search, and are able teerafficiently compute cache keys for
these components. For example, with AND/OR search, theitigo simply follows the supplied
pseudo tree. When the variablé along with all variables on the path from the rootWohave
been instantiated, AND/OR search knows that the variableach subtree rooted by a child 16f
forms an independent component. Hence, it can “detectethemponents during search in con-
stant time. Similarly, it need not examine the clauses dwewariables in these new components to
compute a cache key. Instead it can compute a cache key feonotte of the pseudo tree that roots
the component and the set of instantiations of the parentisabfroot that appear in clauses with
the variables of the component. Note that, the set of pakentse instantiations are relevant can
be computed before search so that all that has to be donegckearch is to look up their current
values.

Thus, by using a static decomposition scheme RC and AND/QRcsecan gain efficiency
over Cachet. However, these statically computed decomipuasiare not always as effective as the
dynamic scheme employed by Cachet. First, it can be usebtdrride the precomputed decompo-
sition scheme so as to drive the search towards contraatctibhis is the gist of Theorem 6 which
shows that more dynamic flexibility in variable ordering ganvide superpolynomial reductions in
the size of the explored search tree by better exploiting sootradictions. Second, static decom-
positions cannot account for the different values of théaldes. That is, the formula that arises
after instantiating a variabl& to O can be quite different from the formula that arises aftstan-
tiating V' to 1. This difference can negatively affect the performaotcBC and AND/OR search
in at least a couple of ways: components might be generatddatk not predicted by the static
decomposition scheme and thus the static scheme mightliyogiploit decomposition; and due to
the specific changes to the formula generated by particudtanmtiations, the static decomposition
scheme might be inappropriate for much of the search space.

In practice, Cachet displays a performance that is at leagbad as systems built using the
RC algorithm, and in some cases its performance is supeség the empirical results presented

418

BACKTRACKING SEARCH FOR#SAT AND BAYES

by Sang et al., 2004, 2005a). It should also be noted that #BPdche can easily utilize a static
decomposition scheme and gain all of the efficiencies of seblemes. For example, if provided
with a pseudo tree #DPLL-Cache can follow any ordering ofdméables in that pseudo tree under
which parents are always instantiated before their childkéke AND/OR search it will know that
the children of any node in the pseudo tree each root an imdieipé component, so it also will be
able to detect these components in constant time. Furtlmermaevould be able to utilize the more
efficient caching scheme of AND/OR search. In this case ita@idge over AND/OR search would
be that it would have the freedom to interleave the solvingsadomponents.

In more recent work our algorithms have also been applieghtionization problems (Kitching
& Bacchus, 2008). This work involved adding branch and bowgatiniques to the decompaosition
and component caching described in #DPLL-Cache. Duringdirand bound dynamic variable
ordering can be very effective. In particular, one wantsrembh on variables that will drive the
value of the current path towards a better value as this cagrgie a global bound that can be more
effective in pruning the rest of the search space. The eaapiresults of Kitching and Bacchus
(2008) show that the added flexibility of #DPLL-Cache can stimes vyield significant perfor-
mance improvements over AND/OR search even when the extibifiy of AND/OR-Cache’ is
exploited.

6. Final Remarks

In this paper we have studied DPLL with caching, analyzing plerformance of various types
of caching for #&T. Our results apply immediately to a number of instances efShmPROD
problem including BYES, since #3T is complete for the class #P. However, our proofs can also
be modified without much difficulty so that our complexity utés apply directly to any problem in
SUMPROD.

More sophisticated caching methods have also been exploredlving SAT by Beame et al.
(2003) who showed that some of these methods can consigdraiease the power of DPLL.
However, these more sophisticated caching methods arentiyrmot practical due to their large
overheads. In other related work, one of the results of Adglah and Razborov (2002) showed that
SAT could be solved in time®2°®) QOur results extend this to any problem ini8PROD—as
shown in Section 2.1 SAT is an instance afNSPROD.

We have proved that from a theoretical point of view, #DPLhe@e is just as efficient in terms
of time and space as other state-of-the-art exact algositfum SUMPROD. Moreover, we have
shown that on specific instances, #DPLL-Cache substgniitperforms the basic versions of
these other algorithms. The empirical results presentétkinvorks described in Section 5 indicate
that these advantages can often be realized in practicehahdri some problems our DPLL based
algorithms can yield significant performance improvements

There are a number of reasons why our DPLL based algorithmsoatperform traditional
algorithms for MPRoOD. Algorithms like VE and the join tree algorithm (which is ds& many
BAYES inference systems), take advantage of the global strucfuiréerconnections between the
functions as characterized by the tree width or branch wafithe instance. Our DPLL algorithms
however, can also naturally exploit the internal or localcure within the functions. This is
accomplished by instantiating variables and reducing timetfons accordingly. This can lead to

6. Marinescu and Dechter (2007) present a method for se@yein AND/OR tree in a best-first manner. This method
can also interleave the solving of components, but in gébest-first search has exponential space overheads.

419

BAccHUS, DALMAO, & PITASSI

improvements especially when the functions are encodedavialyao expose more of the function’s
internal structure, such as an encoding by sets of clausgs ¢ee Li et al., 2008). There are two
prominent examples of structure that can be exploited bylDPL

First, some of the subproblems might contain zero valuedtioims. In this case our algorithms
need not recurse further—the reduced subproblem must raue 07 In VE the corresponding
situation occurs when one of the intermediate functidisproduced by summing out some of the
variables, has value 0 for some setting of its inputs. In \&dhs no obvious way of fully exploiting
this situation. VE can achieve some gains by ignoring th@sésof £;’'s domain that map to O
whenF; appears in a product with other functions. However, it cdhestpend considerable effort
computing some other intermediate functibh many of whose non-zero values might in fact be
irrelevant because they will eventually be multiplied byazealues from£;.

Second, it can be that some of the input functions becomeamngrior to all of their variables
being set (e.g., a clause might become equivalenmiioe because one of its literals has become
true), or they might become independent of some of their ieingwvariables. This means the sub-
problemsf|,,—1 and f|,,—o might have quite different underlying hypergraphs. Our DRlased
algorithms can take advantage of this fact, since they warthese reduced problems separately.
For example, our algorithms are free to use dynamic variatderings, where a different variable
ordering is used solving each subproblem. VE, on the othed hdoes not decompose the problem
in this way, and hence cannot take advantage of this steictur

In BAYES this situation corresponds to context-specific indepecelevhere the random vari-
able X might be dependent on the set of variabl&sY, Z when considering all possible assign-
ments to these variables ($0.X, W.Y, Z) is one of the input functions), but whé# = True it
might be thatX becomes independent bf(i.e., f (X, W, Y, Z)|w =1 might be a function?'(X, Z)
rather thar?’ (X, Y, Z)). Previously only ad-hoc methods have been proposed (BwuEriedman,
Goldszmidt, & Koller, 1996) to take advantage of this kindstiicture.

It should be noted however, that when the problem’s funstioave little or internal structure
VE can be significantly more efficient than any of the otheodathms (RC, AND/OR search and
our DPLL algorithms). VE only uses simple multiplicationdasummation operations and does
have any of the overheads involved with instantiating vdeis and exploring an AND/OR search
tree or backtracking tree.

RC and AND/OR search share some of the same advantages oMdpWEver, they do not have
as much flexibility as our DPLL algorithms. We have shown ireditem 6 that fully exploiting the
zero valued functions can in some instances require dyneaniable orderings that lie outside of
the range of the basic versions of RC and AND/OR search. Aghaur proof does not cover the
enhanced versions of RC and AND/OR (RC-Caclaemd AND/OR-Cach€), we have pointed out
that even these versions do not have the same flexibility a®BuL algorithms. In practice, the
empirical evidence provided by the Cachet system (Sang.,e2@0)4, 2005a) and by the branch
and bound system described by Kitching and Bacchus (20q§)ostiour belief that this added
flexibility can be important in practice.

The exploitation of context-specific independence alsepssme problems for RC and AND/OR
search algorithms. In particular, the static decompasiiohemes they employ are incapable of
fully exploiting this structure—as pointed out above thalentying hypergraphs of the subprob-
lems arising from different instantiations can be radicdifferent. However, although our DPLL

7. For #3AT this corresponds to the situation where a clause becomety.emp

420

BACKTRACKING SEARCH FOR#SAT AND BAYES

algorithms are in principle able to exploit such structitreemains an open problem to find practical
ways to accomplishing this. Specifically, when a decompmsgcheme is computed prior to search
sophisticated (and computationally complex) algorithrmas e utilized. It is difficult to overcome
the overhead of such methods when they are used dynamicallygdsearch (although see Li and
van Beek 2004 for some work in this direction). The developinod methods that are light weight
enough to use during search and are still effective for Salpdecomposition promoting variables
remains an open problem.

Finally, as shown in the proof of Theorem 5, RC and AND/OR degiossess no intrinsic
advantages over our DPLL algorithms except perhaps camadptsimplicity. The proof shows
that our DPLL algorithms can simulate RC and AND/OR searcbuich a way that no additional
computation is required. Furthermore, as pointed out irSietion 5 our algorithms are also able
to utilize static decomposition schemes obtaining the safiigency gains as RC and AND/OR
search.

Recently, several papers (Sanner & McAllester, 2005; Mate& Dechter, 2007) have made
significant progress on developing more compact reprets@msafor functions (rather than tabular
form), thereby potentially enhancing all of the algorithdiscussed in this paper (VE, RC, etc.) by
allowing them to exploit additional local structure withime functions. An interesting future step
would be to combine the unique dynamic features of #DPLLkhgawith one of these promising
compact function representations to try to further impr8ua1 PROD algorithms.

Acknowledgments This research funded by governments of Ontario and Canadagh their
NSERC and PREA programs. Some of the results of this paper presented in an earlier confer-
ence paper (Bacchus et al., 2003). We thank Michael Littroamdluable conversations.

Appendix A. Proofs
A.1 Lemmas Relating Branch Width, Tree Width, and Elimination Width

Lemma 2 LetH = (V, E) be a hypergraph with a tree-decomposition of widthThen there is
an orderingr of the verticed/” such that the induced width & underr is at mostw.

Proof: Let’H = (V, E) be a hypergraph of tree width and letT;,; be a tree decomposition
that achieves widtlw. That is, the maximum sized label ©f; is of sizew + 1. We can assume
without loss of generality that the labels of the leaved gfare in a one-to-one correspondence
with the edges of{. For an arbitrary node: in T34, let label(m) be the set of vertices in the label
of m, A™ be the tree rooted at, vertices(m) be the union of the labels of the leaf nodesAft
(i.e., the hyperedges 6{ appearing belowA™), anddepth(m) be the distance fromm to the root.

Let x be any vertex of{, and letleaves(z) be the set of leaves df; that containe in their
label. We definenode(x) to be the deepest common ancestofjnof all the nodes ireaves(x),
and the depth of a vertexepth(z), to be depth(node(z)). Note thatr € label(node(z)), since
the path from the left-most leaf ifraves(x) to the right-most leaf must pass throughde (x); and
thatz does not appear in the label of any node outside of the suliitged atnode(z), since no
leaf outside of this subtree contains

Finally let 7 = z4,...,z, be any ordering of the vertices such thatiépth(y) < depth(z),
theny must precede: in the ordering. We use the notatign<,. x to indicate thay precedes: in

421

BAccHUS, DALMAO, & PITASSI

the orderingr (and thusy will be eliminated afterr). We claim that the induced width of is at
most the width ofl},, i.e.,w.

ConsiderA™*(*) the subtree rooted abde (z), andvertices(node(z)), the union of the labels
of the leaves ofA™*%(*) \\We make the following observations about these vertices.

1. If y € vertices(node(z)) andy <, z, theny labelsnode(z) andnode(y) must be ancestor
of node(z) (or equal).y <, = implies thatdepth(y) < depth(x). There must be a path from
the leaf inA™*%(*) containingy to node(y), and sincerode(y) is at least as high asode ()
the path must go throughode(x) (or we must havenode(z) = node(y)). In either case
y € label(node(x)).

2. If y € wertices(node(z)) andy >, = thennode(y) must lie insideA™4®) and node(y)
must be a descendant abde(x) (or equal). y >, = implies thatdepth(y) > depth(x).
There must be a path from the leaf icontainingy to node(y), and sincenode(y) is at
least as deep atode(x) there must either be a further path framde(y) to node(z), or
node(y) = node(x).

Note further that condition 2 implies thatyf>, « andy appears in the subtree belowde(z),
then all hyperedges in the original hypergrafihcontainingy must also be in the subtree below
node(x).

We claim that the hyperedge produced at stagehe elimination process when is eliminated
is contained inabel(node(x;)). Since the size of this set is boundeddbw- 1, we thus verify that
the induced width ofr is bounded byw (note that the hyperedge produced in elimination does not
containz; where adabel(node(z;)) does).

The base case is when is eliminated. All hyperedges containing are contained in the sub-
tree belownode (1), thus the hyperedge created wheris eliminated is contained iertices(node(x1)).
All other vertices invertices(node(z1)) follow z; in the ordering so by the above they must label
node(x1) andvertices(node(x1)) C label(node(z1)).

Whenz; is eliminated there are two types of hyperedges that mighirtened together: (a)
those hyperedges containing that were part of the original hypergragt, and (b) those hyper-
edges containing; that were produced as, ..., z;_1 were eliminated. For the original hyper-
edges, all these are among the leaves bela¢ (x;), and thus are contained imrtices(node(z;)).

For a new hyperedge produced by eliminating one of the pusviariables, say the variabjethe
hyperedge it produced is containedlirbel(node(y)) by induction, which in turn is contained in
vertices(node(y)). If y is in the subtree belowode(x) we get that this hyperedge is contained in
vertices(node(x)) since this is a superset ofrtices(node(y)). Otherwisenode(y) lies in another
part of the tree, and its label cannot contaifno node outside the subtree belawde(z) hasz in

its label). Thus the hyperedge created when it is eliminated cannot contain,.

In sum the hyperedge created whenis eliminated is contained inertices(node(z;)), since
all of the hyperedges containing at this stage are in this set. Furthermore, all vertiges. ., z;_1
are removed from this hyperedge, thus it contains only kéesfollowingz; in the ordering. Hence,
by (1) above this hyperedge is containeddbel (node(x;)). O

Lemma 3 LetH be a hypergraph with elimination width at mast Then has a tree-decomposition
of tree width at mostv.

422

BACKTRACKING SEARCH FOR#SAT AND BAYES

Proof. (Proof of Lemma 3) Letr = x4, ...z, be an elimination ordering fok. Then we will
construct a tree decomposition faf using as follows. Initially, we haveFE| trees, each of size
1, one corresponding to each edge E. We first merge the trees containing into a bigger tree,
T,, leaving us with a new, smaller set of trees. Then we mergéréi®s containing,,_ into a
bigger tree,I,,_1. We continue in this way until we have formed a single tfEe Now fill in the
labels for all intermediate vertices @f so that the tree is a tree-decomposition. That is; idnd

n are two leaves of" and they both contain some vertexthen every node along the path from
to n must also contaim in its label. It is not too hard to see that for each the treeT; (created
when merging the trees containing) has the property that the label of its root (which connects i
with the rest ofl") is contained ire; U x;, wheree; is the hyperedge created whenis eliminated.
Basically, all nodes witlx;, j > i, are already contained if} sox; does not need to lab&}’s root.
Furthermore, ifz; j < i is contained irl;’s root label, thenr; must have been in some original
hyperedge with a variable;, £ > i: thusz; would have appeared in the hyperedgeyenerated
whenz; was eliminated.

Hence the tree width of the final trdécan be no larger than the induced widthmof O

A.2 Complexity Results for Caching Versions of DPLL

For the proof of theorems 1 and 2 we will need some commonibnatand definitions. Lef be
k-CNF formula withn variables anan clauses, let{ be the underlying hypergraph associated with
f with branch widthw. By the results of Darwiche (2001), there is a branch decaitipn of

H of depthO(log m) and widthO(w). Also by the results of Robertson and Seymour (1995), it
is possible to find a branch decompositidn,, such thatl,; has branch widttO(w) and depth
O(log m), in timen®M29() Thus our main goal for each of the three theorems will be twer
the stated time and space bounds for our DPLL-based praegdwhen they are run on a static
ordering that is easily obtainable frofy,.

Recall that the leaves df,; are in one-to-one correspondence with the clauses alle will
number the vertices df,; according to a depth-first preorder traversdlgf. For a vertex numbered
1, let f; denote the subformula gfconsisting of the conjunction of all clauses correspondinte
leaves of the tree rooted at Let Vars(f;) be the set of variables in the (sub)formyla Recall
that in a branch decomposition the label of each veftekbel(i), is the set of variables in the
intersection ofVars(f;) and Vars(f—f;). Each node in T}, partitions the clauses ¢f into three
sets of clausesf;, fF, and {7, where f* is the conjunction of clauses at the leavespf to the
left of f;, and £ is the conjunction of clauses at the leaves to the right; of

All of our DPLL caching algorithms achieve the stated rundibounds by querying the vari-
ables in a specificstatic variable ordering. That is, down any branch of the DPLL decision tree,
DT, the same variables are instantiated in the same ordero(iinast adynamic variable order-
ing allows DPLL to decide which variable to query next based andbsignments that have been
made before. Thus different branches can query the vasiabla different order.). The variable
ordering used DT is determined by the depth-first pre-ordering of the vesticethe branch de-
compositionT,; and by the labeling of these vertices. I(étl), ..., (i, ;) denote the variables in
label(i) that do not appear in the label of an earlier vertefpf Note that since the width dfy,
isw, j; <wforalli. Letl,...,z bethe sequence of vertex numberdf. Then our DPLL algo-
rithm will query the variables underlying in the following static orderx = ((i1,1), (i1,2), ...,

(il,jl), (ig,l),...,(ig,jg),...,(is,l),...,(is,j5)>il <ig < ... <is < z, andjl,...,js < w.

423

BAccHUS, DALMAO, & PITASSI

Note that for some verticesof T34, nothing will be queried since all of the variables in itsdaimay
have occurred in the labels of earlier vertices. Our natagikows for these vertices to be skipped.
The underlying complete decision treé@[", created by our DPLL algorithms on inpyitis thus a
tree withj; + jo + ... + j; = n levels. The levels are grouped intdayers, with theit” layer
consisting ofj; levels. Note that there agé nodes at levelin DT, and we will identify a particular
node at level by (I, p) wherep is a particular assignment to the fiistariables in the ordering, or
by ((g,7), p), where(q, r) is thel™” pair in the orderingr, andp is as before.

The DPLL algorithms carry out a depth-first traversalioif’, keeping formulas in the cache
that have already been solved along the way. (For #DPLL-®i@arhe, the formulas stored in
the cache are of the forrfi|,, and for #DPLL-Cache and #DPLL-Space, the formulas stored a
various components of ToComponefts,).) If the algorithm ever hits a node where the formula
to be computed has already been solved, it can avoid that wetign, and thus it does not do a
complete depth-first search 6fT" but rather it does a depth-first search @ranedversion ofDT'.
For our theorems, we want to get an upper bound on the size girtined tree actually searched by
the algorithm.

Theorem 1 For solving #3T1 with n variables, there is an execution of #DPLL-SimpleCache that
runs in time bounded bg®(*1°gn) wherew is the underlying branch width of the instance. Fur-
thermore, the algorithm can be made deterministic with #meestime guarantees.

Proof: We want to show that the size of the subtreeXdf searched by #DPLL-SimpleCache
is at mose©(wloen) When backtracking from a particular nodep) = ((¢,7), p) atlevell in DT,
the formula put in the cache, if it is not already known, istaf form f|,. (Recallp is a setting to the
first [variables.) However, we will see that although there2awifferent ways to sep, the number
of distinctformulas of this form is actually much smaller th2ln Consider a partial assignmept,
where we have set all variables up to and includiag-), for someg < i; and some- < j,. The
number of variables set py(thelengthof p) is j1 + 5o + ... + jg—1 + 7.

Let p~ denote the partial assignment that is consistent witthere only the variables in that
came from the labels of the vertices on the path from the rb@;pup to and including vertex
are set. The idea is that is a reduction op, wherep™ has removed the assignmentspdhat are
irrelevant tof, and f .

Consider what happens when the DPLL algorithm reaches eyartnode((q,r), p) at level
l of DT'. At that point the algorithm is solving the subproblefin, and thus, once we backtrack to
this node,f|, = qu\p A fqlp N ff]p is placed in the cache, if it is not already known. Note thht al
variables in the subformulﬁqL are set byp, and thus eithequ]p = 0, in which case nothing new
is put in the cache, of’|, = 1 in which casef|, = fl, A fEl, = fql,- A fE|,- is putin the
cache. Thus, the set distinct subformulas placed in the cache at lelet (g, r) is at most the
set of all subformulas of the forrfj,|,- A ff]pf, wherep™ is a setting to all variables in the labels
from the root to vertex, plus the variablegq, 1), ..., (¢, 7). There are at most- w such variables,
whereq has depthi in T4 (each label has at mosatvariables since this is the width @j,). Hence
the total number of such’s is at mos2(¥*4), This implies that the number of subtrees/M’ at
levell + 1 that are actually traversed by #DPLL-SimpleCache is at host¢ = 20(wd) \where
d is the depth of node in T;4. Lett be the number of nodes iRT that are actually traversed by
#DPLL-SimpleCache. Then,is at mostn20(wlogn) sincet is the sum of the number of nodes
visited at every level oDT and for each nodegin T;q d € O(log m) = O(logn).

424

BACKTRACKING SEARCH FOR#SAT AND BAYES

Accounting for the time to search the cache, the overallimmif #DPLL-SimpleCache is at
mostt2, where agairt is the number of nodes iPT that are traversed by the algorithm. Thus,
#DPLL-SimpleCache runs in tim@20(wlogn))2 — 90(w-logn)

Theorem 2 For solving #3T onn variables, there exists an execution of #DPLL-Cache thet i
time bounded by:©(1)20®) wherew is the underlying branch width of the instance. Furthermore
the algorithm can be made deterministic with the same tinagaguees.

Proof: We prove the theorem by placing a bound on the number of tinl#3L#-Cache can
branch on any variable;. Using the notation specified abowg,corresponds to some pdif, r) in
the orderingr used by #DPLL-Cache. That is; is ther’th new variable in the label of vertaexof
the branch decompositidfi,;.

When #DPLL-Cache utilizes the static ordering it branches on, or queries, the variables
according to that order, always reducing the componentagung the variabler; that is cur-
rently due to be queried. However, since previously caclmdponents are always removed (by
RemoveCachedComponents in the algorithm), it can be thanhwihis variablez;’s turn to be
queried, there is no component among the active compor@ttsdntains;. In this case, #DPLL-
Cache simply moves on to the next variable in the orderingticoing to advance until it finds
the first variable that does appear in some active comporentll then branch on that variable
reducing the component it appears in, leaving the other coemts unaltered.

This implies that at any time when #DPLL-Cache selagtas the variable to next branch on it
must be the case that (&) appears in an active component. In particular the valueéetttimponent
is not already in the cache. And (2) no variable priotcfan the orderingr appears in an active
component. All of these variables have either been assigmpeaditicular value by previous recursive
invocations, or the component they appeared in has beerveghtiecause its value was already in
the cache.

In the branch decompositidfy, let p be ¢’s parent § must have a parent since the root has
an empty label). We claim that whenever #DPLL-Cache selects the next variable to branch
on, the active component containingmust be a component in the reductionfgfwhose form is
determined solely by the settings of the variableg #md ther variables of; that have already been
set. If this is the case, then there can be at ragst”) = 20(®) different components that; can
appear in, and hence #DPLL-Cache can branch;@i most2°(*) times as each time one more of
these components gets stored in the cache.

Now we prove the claim. The label gftonsists of variables appearingis label and variables
appearing in the label af's sibling. Since all of the variables ifbel(p) have been set and its
sibling must now have an identical set of unqueried var@bieheir labels. Hence, must be the
left child of p as by the time the right child is visited in the ordering,will have already been
queried. Thus, at the time, is queried, f,, will have been affected only by the current setting of
label(p) (as these are the only variables it shares with the rest dbtheula) and the first queried
variables fromlabel(q). That is, f, can be in at mos2(“*7) different configurations, and thus the
component containing; can also be in at most this many different configurations.

Thus withn, variables we obtain a bound on the number of branches in ttiside tree explored
by #DPLL-Cache 0f,2°(*), As in the proof of the previous theorem, the overall runtimat most
quadratic in the number of branches traversed, to give imed bound o, 20®) O

425

BAccHUS, DALMAO, & PITASSI

Theorem 3 For solving #2T onn variables, there is an execution of #DPLL-Space that usks on
space linear in the instance size and runs in time bounde@?#/°¢™) wherew is the underlying
branch width of the instance. Furthermore, the algorithmlmmade deterministic with the same
time and space guarantees.

Proof: For this proof, it will be more natural to work withteee decompositionather than a
branch decomposition.

Let f be ak-CNF formula withn variables andn clauses and lek{ be the underlying hyper-
graph associated witli. We begin with a tree decompositidh; of depthO(log m) and width
O(w) (computable in time®M20®)) We can assume without loss of generality that the leaves
of T}, are in one-to-one correspondence with the clausgs &ach node in Ty, partitions f into
three disjoint sets of clauseg;, the conjunction of clauses at the leaves of the subtr&g;oboted
ati, f, the conjunction of clauses of the leavesrjf to the left of f;, and £, the conjunction of
clauses of the leaves 8§, to the right of f;. #DPLL-Space will query the variables associated with
the labels off}; according to the depth-first preorder traversal. Let théatdes inlabel (i) not ap-
pearing in an earlier label on the path from the root to ndaeedenoted by (i) = (i,1), ..., (4, j;).

If 7 is a non-leaf node withi andk being its left and right children, then the variablesSifi) are
exactly the variables that occur in bofh and f;, but that do not occur outside g¢f. If we letc
be the total number of nodes ifi;, then #DPLL-Space will query the variables underlyifign
the following static order:S(1), S(2), ..., S(c), where some5(:) may be empty. The underlying
decision tree DT, created by #DPLL-Space is a complete tree witlevels. As before we will
identify a particular node at levell of DT by s = (I, p) wherep is a particular assignment to the
first/ variables in the ordering, or by= ((q,r), p) (ther!" variable inS(q)).

#DPLL-Space carries out a depth-first traversalDdf, storing the components of formulas in
the cache as they are solved. However, now components ofifasrare also popped from the cache
so that the total space ever utilized is linear. If the atbonihits a node where all of the components
of the formula to be computed are known, it can avoid tramgrshe subtree rooted at that node.
Thus it searches a pruned version/aif".

During the (pruned) depth-first traversal bfl’, each edge that is traversed is traversed twice,
once in each direction. At a given timién the traversal, lel = F; U F5 be the set of edges that
have been traversed, whefig are the edges that have only been traversed in the forwaedtidin,
andF, are the edges that have been traversed in both directioesedges iy, constitute a partial
pathp starting at the root oDT. Each edge im is labeled by either O or 1. Let, ..., p; be the
set of all subpaths qf (beginning at the root) that end in a 1-edge. kgt . ., pi. be subrestrictions
corresponding teq, ..., p; except that the last variable that was originally assignddisinow
assigned a 0. For example,jifis (z; = 0,23 = 1,24 = 0,25 = 1,26 = 0,22 = 0), then
p1 = (1 = 0,23 = 0), andpy = (x1 = 0,23 = 1,24 = 0,25 = 0). Then the information that is
in the cache at time contains ToComponerttg|,,), i < k.

For a nodeg of T4 and corresponding subformulg, the contextof f, is a set of variables
defined as follows. Letq, ..., qq) denote the vertices iit;; on the path from the root tg (ex-
cluding ¢ itself). Then the context of, is the setContext(f,) = S(q1) U S(g2) U ... U S(qa).
Intuitively, the context off, is the set of all variables that are queried at nodes thaldiggethe path
to g. Note that when we reach level= (¢, 1) in DT, where the first variable of(q) is queried,
we have already queried many variables, including all th@l#es in Context(f,). Thus the set
of all variables queried up to levél= (g, 1) can be partitioned into two groups relative fg the

426

BACKTRACKING SEARCH FOR#SAT AND BAYES

irrelevant variables, and the s€bntezt(f,) of relevant variables. We claim that at an arbitrary
levell = (¢,r) in DT, the only nodes at levélthat are actually traversed are those nadesr), p)
where all irrelevant variables in (with respect tof,) are set to 0. The total number of such nodes
at levell = (g, r) is at most2/Contezt(fd)l+7 which is at mosg®!°e™, Since this will be true for all
levels, the total number of nodes INT that are traversed is bounded b9 !°¢™. Thus, all that
remains is to prove our claim.

Consider some node= ((q,7),) in DT. Thatis,a = a'a?...a9 b ... b,_1, where for
eachi, o’ is an assignment to the variablesdti), andb; . .. b,_; is an assignment to the first- 1
variables inS(g). Let the context off, be S(¢1) U... U S(qq), d < logn. Now suppose that
assigns a 1 to some non-context (irrelevant) variable, apdre first such assignment occursvt
thet*" variable ina*, u < ¢ — 1. We want to show that the algorithm never traverses

Associated withy is a partial path inDT’; we will also call this partial patlv. Consider the
subpath/subassignmeptof o up to and includingry’ = 1. If « is traversed, then we start by
traversingp. Since the last bit op is 1 (i.e.,aj = 1) when we get to this point, we have stored
in the cache ToComponeri#§,) wherep is exactly likep except that the last bity’, is zero. Let
j be the first node imy, g2, . . . g4 With the property that the set of variabl&$;) are not queried
in p. (On the path t@ in T4, j is the first node along this path such that the variableS(ii) are
not queried inp.) Then ToComponentg|,) consists of three parts: (a) ToCompone(ay‘iijp), (b)
ToComponentsf;|,), and (c) ToComponer(tﬁjR\p).

Now consider the pathl that extendg on the way tcs in DT, wherep' is the shortest subpath of
a where all of the variableS (i) for i < j have been queried. The restriction corresponding i®a
refinement op where all variables it5(1)US(2)U. .. S(j—1) are set. Since we have already set ev-
erything that occurs beforg we will only go beyon@’ if some component of ToCompone(f$,)
is not already in the cache. ToComponéifits) consists of three parts: (a) ToComponeéyiijpf),
(b) ToComponenty;|,/), and (c) ToComponer(tﬁjR\p/). Because we have set everything that oc-
curs beforej, all formulas in (a) will be known. Singg andp agree on all variables that are relevant
to f;, ToComponentsf;|,;) = ToComponentsf;|,) and hence these formulas in (b) in the cache.
Similarly all formulas in (c) are in the cache since ToCongauts f/?|,/) = ToComponentsf/?|,).
Thus all components of ToComponefts,) are in the cache, and hence we have shown that we
never traverse beyond and hence never traverse Therefore the total number of nodes traversed
at any levell = (¢,r) is at most2®?, whered is the depth of; in T}4, as desired. This yields an
overall runtime of20(wlogn),

It is left to argue that the space used is linear in the ingtame. The total number of formulas
that are ever stored in the cache simultaneously is line#nardepth of the tree decomposition,
which isO(log m). Since we store each restricted formiflg by storing the associated restriction
p, the total space ever used(gn log m), which is linear in the input size. O

A.3 Comparing Algorithms for B AYES and #SaT

Before proving the next theorem, we first discuss in moreildéta structure of the search space
explored by various versions of RC, AND/OR search and DDP.oAthese algorithms operate

in the same way. They instantiate variables and when thdgmobdecomposes into independent
components they solve these components in separate mwwirddence, when solving any CNF
formula f they all generate some AND/OR search tree (Dechter & Mate@897).

427

BAccHUS, DALMAO, & PITASSI

The AND/OR search treélO generated when one of the above algorithms solves thg #S
instancef (a CNF formula), is a rooted tree. Each nodef AO is labeled by a formula.f and
the subtree below is generated when solvingf. The root ofA0 is labeled by the original formula
f. There are four different types of nodesA:

Query nodes. Each query node has an associated variallear and two children corresponding
to the two possible instantiations gfvar. That is, its children are labeled by the formulas
q.flgvar=0 andq.f|q.0ar=1. A query nodeg is generated by the search algorithm whenever
it chooses to instantiate var and then executes recursive calls on the two resultant eelduc
formulas.

AND nodes. Each AND node,, has a query node as its parent, and has one or more children
all of which are query nodes. An AND node is generated by tlaeckealgorithm when it
decomposes the current formula into two or more indepentEnponents following the in-
stantiation of the parent query node’s variable. Each afglemmponents will then be solved
in one of the subtrees rooted by the AND node’s childreru.ffsplits into the components
fisi=1,...,k, thena.f = A, f;, and thei'th child of « is labeled byf;. Note that thef;
share no variables. Hence, the set of query node variald¢spipear in the subtree below
thei-th child of ¢ are disjoint from the set of query node variables appeareigvbthej-th
child of a for all j # 1.

Failure nodes. These are leaf nodes of the tree that are labeled with a faromutaining the empty
clause. If caching is being used, failure nodes might aldaliieled by a formula in the cache
that has already been shown to be unsatisfiable.

Satisfying nodes. These are leaf nodes of the tree that are labeled with a fargwitaining no
clauses. If caching is being used, satisfying nodes migiu bk labeled by a satisfiable
formula in the cache whose model count is already know.

Figure 6 shows an example AND/OR search tree.

Each node: of the AO also has a valuey.value, computed by the algorithm that generates it.
Here we only need to distinguish between zero valueslue = 0, and non-zero values denoted
by n.value = 1. Every satisfying node has value 1, and every failure nodevalie 0. A query
node has value 1 if and only if at least one of its children kdser1, and an AND node has value
1 if and only if all of its children have value 1. For example,Higure 6 AND node D has value
0, while query node 2 has value 1. Note that all of the childvkan AND node inAO must have
value 1 except possibly the right most child. The algoritlgaseratingAO all terminate the search
below an AND node as soon as they discover a value 0 child—tipsies that the AND node has
value 0. It can be seen thatvalue = 0 if n.f is unsatisfiable andl.value = 1if n.f is satisfiable.

Given any node: of AO, let AO(n) be the AND/OR subtree ofO rooted byn. Each satisfying
assignmenp of n’s formulan.f defines aolution subtreeS(n) of AO(n). In particular,S(n) is
a connected subtree ofO(n) rooted byn such that (1) ifg is a query node irt(n) then S(n)
also contains the child af corresponding to the assignment madeplfice., if p[q.var] is the value
assigned tay.var in p, thenS(n) will contain the child labeled by the formulaf|, var—p(q.var]);
(2) if a is an AND node inS(n) thenS(n) contains all children ofi, and (3)S contains no failure
nodes. For example, a solution subtree of the AND/OR tregvshn Figure 6 (i.e., a solution
subtree of the root node) is formed by the leaf nddes f, andl; the query nodes 1, 2, 3, 4, 5, 6,

428

BACKTRACKING SEARCH FOR#SAT AND BAYES

p
A6 L]) D] U] A
f g q r s t X y z
x/\/ x/ /
a b ¢ d h i k v w

Failure node
Satisfying node

Query node

A AND node

Figure 6: An example AND/OR search tree with query nodes rareth 1-19, leaf nodes (both
failure and satisfying) numbered a—z, and AND nodes lahaidsg.

7, and 8; and the AND nodes A, and B. In particular, the lefugadf query nodes 1, 2, 3, 5, 6, 7
and 8, along with the right value of query node 4 satisfy alisks of the formula .. A solution
subtree ofAO(n) exists if and only ifn.value = 1.

Finally, in an AND/OR search tree we say that a query node wlpagent is an AND node is
acomponent root We also classify the root node as a component root. In Fi§upeery nodes 1
(the root node), 3, 6, 8, 4,5, 9, 10, 12, 13, 17, and 19 are coemigoots.

Theorem 5 #DPLL-Cache polynomially simulates RC-Cache, RC-CagheND/OR-Cache,
AND/OR-Caché, and VE. #DPLL-Space polynomially simulates RC-Space, ADR-Space and
DDP.

Proof: Since RC-Cache polynomially simulates VE we can ignore Vaunproof: showing that
#DPLL-Cache polynomially simulates RC-Cache also shows ithpolynomially simulates VE.
Also we assume in our proof that if any of these algorithms wsié propagation, then so does
#DPLL-Cache/Space. As explained in Section 3.1, #DPLLhe&pace without unit propagation
can polynomially simulate versions of #DPLL-Cache/Spasiagiunit propagation.

429

BAccHUS, DALMAO, & PITASSI

Each of the stated algorithms will generate an AND/OR setnegtwhen solving a CNF formula
f. To prove the theorem we first show how any AND/OR search tbeng f can be converted
into a partial DPLL decision tred)T, that is no bigger. Then we show that our DPLL algorithms
can solvef using DT to guide its variable ordering. Thus, we obtain the reswt the minimal
runtime for any of the stated algorithms, which must resulthie generation of some AND/OR
search treedOyi,, €an also be achieved by our DPLL algorithms. In particuldren run on the
partial decision tree constructed froAO,,;,,, our DPLL algorithms will achieve a polynomially
similar runtime. (This suffices to prove the theorem, as wednenly show theexistenceof an
execution of our DPLL algorithms achieving this run time.)

To make the distinction between the AND/OR search tree amatdnstructed partial decision
tree clear, we will use the suffixgs andy to indicate elements of the AND/OR tree and decision
tree respectively.

DPLL decision trees contain only query variables, satigfymodes, and failure nodes, where
satisfying and failure nodes are both leaf nodes. We cartsrpartial decision tre®7 from an
AND/OR tree AO by expanding the left most solution subtt&g:,,) below every node.,, € AO
with ny,.value = 1 into a linear sequence of query variableslifi” using a depth-first ordering
of the query variables i¥(n,). For nodesi,, € AO with ng,,.value = 0 the same expansion is
attempted, but in this case it will result in a sequence ofyjnedes that terminate at failure nodes.

Every nodey,; in DT has a pointerdt—ao(qq:) to a nodey,, in AO, at the end of the construc-
tion these pointers establish a map between the node¥’iand the nodes idO. Initially, the root
of DT has a pointer to the root ofO. Then, for any nodey, € DT

1. If dt—ao(qq) is @ query node,, in AO, then makey,; a query node and create a left and
right child, [;; andrg, for ¢4 in DT. We makegy; query the same variable as, (i.e.,
qdt-var = qqo-var), and set its children to point to the childrengf, (i.e., dt—ao(l4) and
dt—ao(rg) are set to the left and right children @f, in AO).

2. If dt—ao(qqt) is an AND noder,, in AO, then we resetit—ao(qq;) to be the left most child
of aq, IN AO. We then apply the first rule above, and continue.

3. If dt—ao(qq) is a failure node iMAO then we setyy; to be a failure node. In this cagg, has
no children.

4. If dt—ao(qq) is a satisfying node il O then we examine the pagh, in AO from the root
to dt—ao(qq:). Letr,, be the last component root @R, that has a right sibling.

(@) If such anr,, exists, and no node on the path freg to dt—ao(qq) in AO is the right
child of a query node whose left child has value 1, then wetréseao(qq;) to be the
leftmost right sibling of,,. This node is also a component root, and hence it is a query
node inAO. We then apply the first rule above, and continue.

(b) Otherwise (either,, does not exist or there is some node on the path frgnthat is
the right child of a query node whose left child has value l§,makeg;; a satisfying
node. In this casey has no children.

Rule 4 of the construction is where we convert the leftmolsitEm subtree below each nodg,
in AO into a sequence of query nodesliii” by performing a depth-first traversal of this solution
subtree. In particular, in this solution subtree the leitnaght sibling of the deepest component

430

BACKTRACKING SEARCH FOR#SAT AND BAYES

] (9 [
a X
MBI BRI e 1ov J[-
d q r s t w
<] []
y z
&) M @
g h
/ v | x
1 m j k

Satisfying node
D Query node

Figure 7. The partial DPLL decision tree constructed from AND/OR search tree of Figure 6.
Each query and leaf nodesis numbered with the number of the corresponding node,
dt—ao(n), in the AND/OR search tree.

root is the depth-first successor of the satisfying leaf notiee condition that no node on route
to that sibling is the right child of a query node whose lefidtihas value 1 ensures that we only
perform a depth-first traversal along the leftmost solutobtree and not along subsequent solution
subtrees. Figure 7 shows the partial decision tree thatdvbelconstructed from the AND/OR
search tree of Figure 6.

In the diagram, satisfying nodes whose pointers are restitetmext component root using
rule 4a, are numbered with the corresponding query nodeerAtdD/OR tree followed by the
leaf label of the corresponding satisfying node. For exampbde b in the Figure 7 represents
satisfying childb of node 4 in Figure 6 that has been redirected to its depthsiircessor node 5
(the leftmost right sibling of the deepest component root 4)

As another example, in the AND/OR tree, the right child of@éds the AND node C. Hence, in
the decision tree, the right child of the corresponding guede 6, becomes query node 9 which is
the leftmost child of node C (rule 2). Furthermore, when waehesatisfying nodgin the AND/OR
tree, we can proceed no further and hence the left child afyqaxle 10 in the decision tree becomes
a terminal satisfying node (rule 3). In particular, althbuge path from the root to node 10 in the
AND/OR tree contains a component root with a right siblingrely node 6, this path also contains
the node C that is the right child of a query node (node 6) whefsehild (node 7) has value 1.

431

BAccHUS, DALMAO, & PITASSI

There are two things to note. First, at any neggof DT all variables instantiated on the path
Pao IN A0 from the root todt—ao(n) have been instantiated to the same values on thepaih
DT from the root tong. Since Rules 3 and 4b terminate paths, all nodeggire inserted only
by Rules 1, 2, and 4b. Rules 1 and 2 only insert nodes;pwhose parents are already pp, and
Rule 1 ensures that the values assigned are the same asthi@e Finally, Rule 4a only inserts a
nodeagy; on py; if one of dé—ao(agq)’s siblings is already omg;, and hence that sibling’s (arnds)
parent must already be ;.

Second, no variable is queried twice along any pati@f. That is, no nodery in DT has
an anceston/, with ng.var = n/;,.var. Again any pattpg in DT is grown only by applications
of Rules 1, 2, and 4a. Since no pathA®) queries the same variable twice, Rules 1 and 2 must
preserve this condition. Similarly Rule 4a moves to a newmament root:,,, and the set of query
variables at and below,, in AO is disjoint with the set of query variables already appepiirp; .

Using the above, from the AND/OR search tré® generated by any of the algorithms RC-
Space, AND/OR-Space or DDP when solving the formfiJave can construct a corresponding
partial decision treé>T. Now we show that #DPLL-Space can solfidy exploring a search tree
that is no larger tharDT. Note thatDT is itself no larger thamrAO, hence this will show that
#DPLL-Space can solv¢ with a polynomially similar run time, proving that it can yabmially
simulate RC-Space, AND/OR-Space and DDP. (Note that théimanof all of these algorithms is
polynomially related to the size of the search trees theyoesp

We execute #DPLL-Space using the variable ordering spddifié)T. That is, starting at the
rootrg of DT, #DPLL-Space will always query the variable of the curreosdl@ of DT", ng.var,
and then descend tqy's left child. When it backtracks ta,; it will then descend to the right child.
Hence, we only need to show that #DPLL-Space must backtféicleaches a leaf oDT'. That is,
it explores a search tree that is no larger tihHh.

First, if #DPLL-Space reaches a failure nodel/of’ it must detect an empty clause and back-
track. By Rule 3 of the construction any failure nofjg of DT must correspond to a failure node
dt—ao(fq) In AO. Since all variables instantiated on the pathi@ from the root todt—ao(fa:)
are instantiated to the same values on the pathihfrom the root tof;;, we see that if an empty
clause was detected IHO at dt—ao(fg) then #DPLL-Space must also detect an empty clause
at f5;. (Note that if the algorithm that generateld) used unit propagation, then we assume that
#DPLL-Space does as well).

Second, if #DPLL-Space reaches a satisfying nggef DT it must detect that all of its current
set of components are solved and backtrack (line 4 of Algri8). Letpy, be the path inDT from
the root tosg, pqo be the path inAO from dt—ao(sg4;) to the root, and:ry be a node om,; such
that dt—ao(crq) is a component root IO (we say thaiery, is a component root opg). We
claim that (a) ifl,, is a left sibling ofdt—ao(crg:) in AO, then there exists a nodg on pg; such
that dt—ao(lg:) = lao, andiy,.f is satisfied bypg; (b) if rq4, is a right sibling ofdt—ao(crg;) in
AO thenr,,.f isin #DPLL-Space’s cache.

Given claim (a) the only clauses of the original formula net satisfied by are clauses from
rq0.f for those nodes,, in AO that are right siblings of some component reg§; on py (i.e.,
Tao 1S @ right sibling of component roait—ao(cry) in AO). When #DPLL-Space arrived at,;,
prior to reachingsy,, all variables inAO on the path from the root tdt—ao(cry) have already
been instantiated to the same valuespgn Thus, ifp,, is dt—ao(cry)’s parent inAO, #DPLL-
Space would have recognized thgs.f was a separate component once it instantigigar, and
it would have added,.f to its list of components (at line 8 or 11 of Algorithm 8). Ndtwat,

432

BACKTRACKING SEARCH FOR#SAT AND BAYES

once solved-,.f would not be removed from #DPLL-Space’s cache until it beadits to undo the
instantiation ofp,,.var. (At which point the solution all op,,’s children would be combined to
yield a solution tq,.f).

Furthermore, following the variable ordering specifiedifi’, #DPLL-Space would not instan-
tiate any of the variables inf along the path,. Hence, any component that is on #DPLL-Space’s
list of components when it reacheg must be equal te,,.f for some right sibling-,, of a com-
ponent root orpg;, and by claim (b) will be removed by the call to RemoveCaclt@dfonentd)
(line 6). This will leave #DPLL-Space with an empty list ofaponents to solve, and hence it must
backtrack abg;.

Now we prove the claims. For (a) we see thif will always visit the children of an AND node
in AO in a left to right order. That is, before inserting a compdn@ot cry; on its path, it must
first visit all left siblingsl,, of dt—ao(crg;). After insertingly; on its path (withdé—ao(lg) = lao),
it will instantiate [;; and then start to query the nodes untigrsearching alternate instantiations
to these variables until it is able to traverse a leftmostittmh subtree ofAO(l,,). This traversal
results in the insertion into the path of a solution g f, after which DT insertscrg; on its path
using Rule 4a.

For (b) we observe thaty; is a satisfying node itDT" only through the application of Rule 4b.
Hence there are two possible cases. First, it can be thatafdhe component roots gmy; have a
right sibling. In this case every clause of the original fafanis satisfied and #DPLL-Space must
backtrack. For example, in Figure 7 this occurs at leaf nbdesly.

Otherwise, letry be a component root gny; such thatdt—ao(cry;) has a right sibling irAO,
and letng; be the first node omg; following crg, such that (i)ng’s successor opyg; is its right
child, and (ii) dt—ao(ng4:) has a left child inAO with value 1. Such a node;; must exist, elsa
would not have been a leaf node bfl" by Rule 4a. When #DPLL-Space arrived at negdg, it
would haver,,.f on its list of components for all right siblings,, of dt—ao(crg). There might
also be other unsolved components on this list. All of thesaponents, however, must be equal
to r4..f for some right sibling-,, of a component root opy; precedingerg, and must have been
placed on the list of components prior to #DPLL-Space rewghiy;. Then, when #DPLL-Space
arrived atng4 it would have taken the left branch first. Thus it would haveviusly been invoked
with all of these right sibling components on its componésit |

When #DPLL-Space is invoked with a list of components it itholves every component,
placing them in its cache and keeping them there until it tsacks to the node where they were
first placed on its list, or it discovers that one of these congmts is unsatisfiable. If one of the
components is unsatisfiable, it will immediately backtramkhe point where that component was
first placed on its list. In particular, all recursive calllave the list of components contains a known
unsatisfiable component will return immediately since thk t InCaché¢®) will detect that the
list of components has product equal to zero.

Hence, on taking the left branch af;, #DPLL-Space, will have on its list of components,
components of the form,,.f for right siblings of component roots aboxg; on py;, and alsd,,.f
wherel,, is the left child ofdt—ao(ng) in AO. Sincel,, has value 1i,,.f is satisfiable, and either
#DPLL-Space will solve all its components, placing theiluegin its cache, or it will discover that
one of the components,,.f is unsatisfiable and will backtrack without visiting;. Therefore, if it
does visitsy; it would have solved all components that could potentiaéyoh its list of components,
and these components would still be in is cache since theg placed on the list before arriving at

Sdt-

433

BAccHUS, DALMAO, & PITASSI

This shows that #DPLL-Space polynomially simulates RCe8p@AND/OR-Space and DDP.
RC-Cache and AND/OR-Cache gain over RC-Space and AND/C&R€Spy not having to solve
some components more than once. That is, when they arrivenatlan,, in their generated
AND/OR treeAQ, if nq,.f has been solved before they can immediately backtrack.

#DPLL-Cache gains the same efficiency over #DPLL-Spaceattiqular, it need never solve
the same component more than once. Using caching to rempwvevipusly solved components
from its list of components gives rise to the same savingsal@realized by adding caching to
AND/OR or RC. Formally, the same construction of a partiatisien treeDT" can be used. In
AO we mark all nodes where search is terminated by a cache hiatsséying node (if the cached
formula is satisfiable) or as a failure node (if the cacherhida is unsatisfiable). Now, for example,
AND nodes can have satisfying or failure nodes as childreenainose components have been
solved before. Applying our construction #0 gives rise to a partial decision trdeT’, and it
can then be shown that #DPLL-Cache using to guide its variable choices will explore a search
tree that is about the same sizeid¥. This proves that #DPLL-Cache polynomially simulates
RC-Cache and AND/OR-Cache.

The only subtle point is that #DPLL-Cache might not solve emponent at the same point
in its search. In particular, if a componeptfirst appears on #DPLL-Cache’s list of components
with a previously added unsatisfiable component, #DPLLk€axill backtrack without solving.
Following DT, #DPLL-Cache will only do enough work to fingls first solution, after which it
will proceed to the other components on its list. During @argh forg’s first solution, it will cache
all unsatisfiable reductions gffound during this search. Thus, the next time it encountat<an
follow the same variable ordering and not do any extra wahlke: dached unsatisfiable reductions
will immediately prune all paths leading to failure and ihgaroceed directly to the first solution
to ¢. If the other components on its list are all satisfiable, it ewentually backtrack to this first
solution and then continue to solye Hence, although #DPLL-Cache might encountemany
times before solving it, each such encounter, except fofitbe require adding to its search tree
only a number of nodes linear in the number of variables.inThe number of nodes added by
the first encounter, where thgs first solution is found, and the encounter where it finathves
¢, together equal the number of nodes required to solve¢. Hence, the “encounters without
solving” do not increase the size of #DPLL-Cache’s seareh bty more than a polynomial.

Finally, we note that the construction given accommodétesise of dynamic variable orderings
where the order of variables varies from branch to brancinénAND/OR search tree. (Varying
the value assigned along the left and right branch of eachyquagiable is also accommodated).
That is, the proof also shows that #DPLL-Cache polynomialiyulates AND/OR-Cachie and
RC-Cache. O

Theorem 6 None of RC-Space, RC-Cache, AND/OR-Cache, AND/OR-Spas&ocan polyno-
mially simulate #DPLL-Cache, #DPLL-Space, or #DPLL.

To prove this theorem we first observe that from a result olidioken (Johannsen, 2001),
#DPLL-Cache, #DPLL-Space, and #DPLL can all solve the negaif the propositional string-
of-pearls principle (Bonet, Esteban, Galesi, & Johanneag) in timen?(°g™) when run with a
dynamicvariable ordering. Then we prove (in Theorem 7) that all ef ¢clther algorithms require
time exponential im on this problem. Hence, none of these algorithms can poljaibnsimulate
#DPLL (or the stronger #DPLL-Space or #DPLL-Cache).

434

BACKTRACKING SEARCH FOR#SAT AND BAYES

The string-of-pearls principle, introduced in a differéotm by Clote and Setzer (1998) and
explicitly by Bonet et al. (1998) is as follows. From a bagwfpearls, which are colored red and
blue,n pearls are chosen and placed on a string. The string-ofspganciple says that if the first
pearl in the string is red and the last one is blue, then therst ive a red-blue or blue-red pair of
pearls side-by-side somewhere on the string. The negatite @rinciple,S,,, ., is expressed with
variablesp; ; andp; for i € [n] andj € [m]| wherep; ; represents whether pegriis mapped to
vertex: on the string, ang; represents whether pegris colored blue ; = 0) or red f; = 1).
The clauses ob P, ,, are as follows.

(1) Each hole gets at least one peaff.p; j, i € [n].
(2) Each hole gets at most one pedftp; ; V —p; /), i € [n] j € [m] ,j' € [m], j # 7.
(3) A pearl goes to at most one hole:p; ; V —pir ;)i € [n],i" € [n],i # 7, j € [m].

(4) The leftmost hole gets assigned a red pearl and the ragithole gets assigned a blue pearl:
(=p1; V pj) and(=pn; V —p;), j € [m].

(5) Any two adjacent holes get assigned pearls of the sanoe ¢elp; ; VV —p;1,;7 V —p; V pjr),
1<i<n,jem]j €[ml]j+#j and(—=p;i;V-pit1,;;Vp;V-pj), 1 <i<n,je[m]
i elmlj#i'

Johannsen (Johannsen, 2001) showsSHat, has quasipolynomial sizeeeresolution proofs.
It follows that #DPLL, #DPLL-Space and #DPLL-Cache can sd\>, ,, in quasipolynomial time.

Lemma 4 (Johannsen, 20097, ,, can be solved in time®(1s™) by #DPLL, #DPLL-Space, and
#DPLL-Cache.

Theorem 7 Lete = 1/5. Any of the algorithms RC-Space, RC-Cache, AND/OR-CaciDAOR-
Space, VE, or #DPLL-Cache using a static variable orderigyire time2™* to solveSP, .

Proof: It can be seen from the proof of Theorem 5 that #DPLL-Cacheguaistatic variable
ordering can polynomially simulate all of the stated altjoris.

Hence, it suffices to prove that #DPLL-Cache undey static ordering requires timz"" for
SP,n m = n. By a static ordering, we mean that the variables are queredrding to this
ordering as long as they are mentioned in the current formilifeat is, we allow a variable to be
skipped over if it is irrelevant to the formula currently wnadonsideration. We will visualiz8 P, ,,
as a bipartite graph, with vertices on the left, and pearls on the right. There is a pearl variable
p; corresponding to each of thepearls, and an edge variahlg; for every vertex-pearl pair. (Note
that there are no variables corresponding to the verticeséuwvill still refer to them.)

Fix a particular total ordering of the underlying + n variablesd;, 6, ...,6,. For a pearl;,
let fanin,(j) equal the number of edge variablgs; incident with pearl; that are one of the first
t variables queried. Similarly, for a vertéxlet fanin, (i) equal the number of edge variables;
incident with vertex that are one of the firgtvariables queried. For a set of peasiset fanin,(S)
equal the number of edge variablgs; incident with some pearl € S that are one of the first
variables queried. Similarly for a set of vertic8sfanin,(S) equals the number of edge variables
pi i, Incident with some vertex € S that are one of the firstvariables queried. Letdges;(j) and

435

BAccHUS, DALMAO, & PITASSI

edges;(S) be defined similarly although now it is the set of such edg#terahan the number of
such edges. It should be clear from the context whether theagtoobjects are pearls or vertices.

We use a simple procedure, based on the particular ordefithg wariables, for marking each
pearl with either & or with anF as follows. In this procedure, a pearl may at some point b&eclar
with aC and then later overwritten with d&f however, once a pearl is marked withRyit remains
anF for the duration of the procedure. If a pearis marked with &C at some particular point in
time, ¢, this means that at this point, the color of the pearl hagdirdbeen queried, anfdnin,(j)
is less tham?, § = 2/5. If a pearlj is marked with arF at some particular point in timg it means
that at this pointfanin, () is at least:®. (The color ofj may or may not have been queried.) If a
pearlj is unmarked at time, this means that its color has not yet been queried,fanth,(j) is
less tham?®.

Forl from 1 ton?+n, we do the following. If theé'” variable queried is a pearl variably & Dj
for somej), and less tham® edgesp; ; incident toj have been queried so far, then markwith
aC. Otherwise, if thd'" variable queried is an edge variab & p; ;) andfanin,(j) > n’, then
mark pearlj with anF (if not already marked with aR). Otherwise, leave peajlunmarked.

Eventually every pearl will become mark&d Consider the first tim¢* where we have either
a lot of C’s, or a lot of F’'s. More precisely, let* be the first time where either there are exactly
n® C’s (and less than this marfy's) or where there are exactly F's (and less than this many
C's.) If exactly n C's occurs first, then we will call this case (a). Extetidto ¢ as follows.
Let Op41,..., 01 be the largest segment of variables that are all pearl \agab such thatj
is already marked with aR. Thent; = t* + c. Notice that the query immediately followirtg-
is either a pearl variablg; that is currently unmarked, or an edge variable. On the dthad, if
exactlyn® F's occurs first, then we will call this case (b). Again, extendo ¢; to ensure that the
query immediately foIIowing9tZ is either a pearl variablg; that is currently unmarked, or is an
edge variable.

The intuition is that in case (a) (a lot @'s), a lot of pearls are colored prematurely—that is,
before we know what position they are mapped to—and henced tpueries must be asked. For
case (b) (a lot oF’s), a lot of edge variables are queried thus again a lot ofigsievill be asked.
We now proceed to prove this formally.

We begin with some notation and definitions. Lfet= SP, ,, and let Vars(f) denote the
set of all variables underlying. A restrictionp is a partial assignment of some of the variables
underlying f to either(or to 1. If a variablex is unassigned by, we denote this by(z) = *. Let
T be the DPLL tree based on the variable ordefind@hat is, T is a decision tree where variatfie
is queried at level of T'. Recall that corresponding to each nadef 7' is a formulaf|, wherep is
the restriction corresponding to the partial path from t& of 7" to v. The tre€l’ is traversed by a
depth-first search. For each vertewith corresponding path that is traversed, we check to see if
flp is already in the cache. Ifitis, then there is no need to teavéhe subtree rooted belaw If
it is not yet in the cache, then we traverse the left subtree @dllowed by the right subtree af.
After both subtrees have been traversed, we then pop backwm@hd storef|, in the cache. This
induces an ordering on the vertices (and correspondingpafti’ that are traversed—whenever
we pop back up to a vertex(and thus, we can store its value in the cache), weydp) at the end
of the current order.

Lemma5 Let f beSP, , and letr be a static ordering of the variables. lpgte a partial restriction
of the variables. Then the runtime of #DPLL-Cache ¢rp) is not less than the runtime of #DPLL-
Cache or(f|,, 7"), wherer’ is the ordering of the unassigned variables consistentwith

436

BACKTRACKING SEARCH FOR#SAT AND BAYES

Lemma 6 For any restrictiorp, if f|, # 0 andp(p; ;) = *, thenp; ; occurs inf|,.

Proof: Consider the claus€; = (p;1 V... V pim) in f. Sincep; ; is in this clause, ip; ;
does not occur irf|,, thenC;|, must equall. Thus there existg’ # j such thatp(p; ;) = 1. But
then the clausé-p; ; V —p; ;)|, = —p;,; and thusp; ; does not disappear frorf|,. O

Corollary 1 Let 6 be a total ordering oars(f). Let p, p’ be partial restrictions such thatsets
exactlyfy,...,0, andp’ sets exactly,...,0,, ¢ < g. Suppose that there exists = p; ; such
thatp setsf, but p'(6),) = *. Then eitherf|, =0 or f|, =0o0r f|, # f|.

Case (a).Let 6 be a total ordering td/ars(f) such that case (a) holds. LEf denote the set of
exactlyn® pearls that are marked and letP?" denote the set of less than pearls (disjoint from
PC) that are markedF. Note that (the color of) all pearls iR have been queried by timg; the
color of the pearls irP?" may be queried by time:, and the color of all pearls i — P¢ — PF
have not been queried by tintg. Note further that the total number of edggg that have been
queried is at most<to 4 nlte < oplte,

We will define a partial restriction}/,, to all but2™ of the variables i, . . . , 04+ as follows.
For eachj € P¥, fix a one-to-one mapping frof?" to [n] such thatrange(j) € edges (j) for
eachj. For eachj € P¢, for any variablep; ; queried infy, ... 0+, setp; ; to 0. For any vertex
such that all variableg; ; have been queried iy, .. ., 0;-, map: to exactly one pear] such that
pj € P— PY — PF. There are at mo@tn© suchi. (This can be arbitrary as long as it is consistent
with the one-to-one mapping already definedi®h.) For all remainingy; € P — P¢ — PF that
have not yet been mapped to, set all queried variahleso 0. For all pearlg; in PF that have
been queried iy, . .., 0, assign a fixed color to each such pearl (all Red or all Bluahabthe
smallest Red/Blue gap is as large as possible. Note thataghevidl be of size at least'—¢. M,
sets all variables ifly, . . . 0y except for the variables;, j € PC. Since there are® such variables,
the number of restrictions to 61, . . ., ;= consistent with/, is exactly2™*. Let S denote this set
of restrictions.

Let f/ = f|a, and letd’ be be the ordering on the unassigned variables consisténéwiThe
set of unassigned variables is;, for j ¢ P, plus all variables iy, k > t:.) LetT’ be the DPLL
tree corresponding t& for solving f’. By Lemma 5, it suffices to show that #DPLL-Cache when
run on inputsf’ and7”, takes time at leagt™ .

Note that the firsk¢ variables queried ifi” are the pearl variables iR, and thus the set of all
2" paths of height exactly® in T’ correspond to the sétof all possible settings to these variables.
We want to show that for each vertex v of heigfitin 7" (corresponding to each of 28" settings
of all variables inP¢), thatv must be traversed by #DPLL-Cache, and thus the runtime &aat |
2",

Fix such a vertexw, and corresponding paih € S. If v is not traversed, then there is some
¢’ € pand somer such thatr occurs before’ in the ordering, and such th#t|, = f’|,,. We want
to show that this cannot happen. There are several caserdinlen

la. Suppose thaip| < n° ando # p’. Then bothy’ ando are partial assignments to some of the
variables inP¢ that are inconsistent with one another. It is easy to cheakiththis case,

f/|p’ 7é f,|0-
2a. Suppose thafr| > n¢, and the(n¢ + 1)* variable set by is an edge variablg; ;. Because
0’| < n<, p'(pij) = = By Corollary 1, it follows thatf’| , # f'|,.

437

BAccHUS, DALMAO, & PITASSI

3a. Suppose thalr| > n¢ and the(n® + 1) variable set by is a pearl variable,. (Again, we
know thatp; is unset byy’.) Since this is case (a), we can assume phat P — P¢ — pF,
Call a vertexi badif P — P — PC C edges, (i). If i is bad, thenfanin,. (i) is greater
thann — 2n¢ > n/2. Since the total number of edges queried is at maest™, if follows
that the number of bad vertices is at mast. This implies that we can find a pairi + 1 of
vertices and a peajl such that: (1); ; is not queried irdy, ..., 6;:; (2) pi+1,; IS not queried
in6,...,0i; (3)pjisin P — P¢ — PF and thusp;. is also not queried. Thus the clause
(=pij V =p; V =pir1j V pjr)|,» does not disappear or shrink fi|,», and thusf’|» # £,

Case (b).Let 6 be a total ordering td/ars(f) such that case (b) holds. Now IBf denote the set
of less tham< pearls marked and letP!" denote the set of exactly pearls markedF.

We define a partial restrictio;, to all but2™ of the variables if;, .. ., 6;- as follows. Call a
vertex: full if all variablesp; ; have been queried i, . .. O There are at moste full vertices.
For eachj € P, we will fix a pair of verticest; = (i;, i7) in [n]. Let the union of alh® setsF; be
denoted byF'. F has the following properties. (1) For eagino element of'; is full; (2) For each
jePrF e edgesy: (7); and (3) every two distinct elements i are at least distance 4 apart.
Sincefam‘ntz (j) > n®, andé = 2/5 > e, itis possible to find such sef§ satisfying these criteria.

For eachp; ; queried infy, ... 60;, wherej € P andi ¢ F;, M, will setp; ; to 0. For each
j € PY, and for any variable; ; queried indy, ... th, setp; ; to 0. For any full vertex , maps
to exactly one pearj such thatp; € P — P¢ — PF. (Again this can be arbitrary as long as it is
consistent with a one-to-one mapping.) For the remaiping P — P¢ — PF that have not yet
been mapped to, set all queried variabiesto 0. For all pearlg; in PC, color them Red. For all
pearlsp; in PF that have been queried, assign a fixed color to each pear!.

The only variables that were queried d, . .. Ot and that are not set by/, are the edge
variables,p; ;, wherej € P, andi € F;. Let S denote the set of all™* settings of these edge
variables such that eaghe P is mapped to exactly one elementhi. Let f/ = f|ys, and let
T’ be the DPLL tree corresponding #6for solving f/, where#’ is the ordering on the unassigned
variables consistent with. By Lemma 5, it suffices to show that #DPLL-Cache ffrand7” takes
time at leas2"".

Note that the firsn® variables queried irf” are the variables”;, ;, P"}J' j € PF. The
only nontrivial paths of heightn® in 7' are those were each € P! is mapped to exactly one
vertex inF;, since otherwise the formul# is set to 0. Thus, the nontrivial paths Tt of height
2n¢ correspond ta&5. We want to show that for each such nontrivial vertegf height2n® in 7"
(corresponding to each of the restrictionsSi) thatv must be traversed by #DPLL-Cache, and thus
the runtime is at least™.

Fix a vertexv and corresponding pajhe S. Again we want to show that for any C p, and
o whereo occurs beforg’ in the ordering, thaf’|, # f'|,. There are three cases to consider.

1b. Suppose that| < 2n€. If o is nontrivial, then both’ ando are partial mappings of the pearls
jin PF to F}, that are inconsistent with one another. It is easy to cheakin this case

Floe # 'l

2b. Suppose thalo| > 2n¢ and the(2n + 1)** variable set by is an edge variablg; ;. Because
1p'| < 2n¢, p'(pi,j) = *. By Corollary 1, it follows thatf’|, # /| .

438

BACKTRACKING SEARCH FOR#SAT AND BAYES

3b. Suppose thalz| > 2n¢ and the(2n® + 1)% variable set by is a pearl variable;. By the
definition oft;, we can assume thaj € P — P¢ — P, By reasoning similar to case 3a, can
find verticesi, i+1, and pearl’ € P— P — PF such that none of the variabbe ;, pi11,;, pjr
are queried iy, . .. ,th. Thus the clausé-p; ; V —p; V —pit1,5: V pjr)| » does not disappear
to shrink inf’| , 1, and thereforg’|, # f'|,.

Thus for each of the two cases, #DPLL-Cacheférand7” takes time at leas?”” and thus
#DPLL-Cache orf andT takes time at least™". O

References

Aleknovich, A., & Razborov, A. (2002). Satisfiability, Bralm-width and Tseitin Tautologies. In
Annual IEEE Symposium on Foundations of Computer Scie@€ 8] pp. 593-603.

Bacchus, F., Dalmao, S., & Pitassi, T. (2003). Algorithmsl @omplexity Results for #SAT
and Bayesian Inference. Wnnual IEEE Symposium on Foundations of Computer Science
(FOCS) pp. 340-351.

Bayardo, R. J., & Pehoushek, J. D. (2000). Counting Modelsgu€onnected Components. In
Proceedings of the AAAI National Conference (AAAD. 157-162.

Bayardo, R. J., & Miranker, D. P. (1995). On the space-tiradéroff in solving Constraint Satisfac-
tion Problems. IrfProceedings of the International Joint Conference on Aiéfilntelligence
(IJCAI), pp. 558-562.

Beame, P., Impagliazzo, R., Pitassi, T., & Segerlind, NO@0 Memoization and DPLL: Formula
Caching Proof Systems. IEEE Conference on Computational Complexjp. 248—-264.

Birnbaum, E., & Lozinskii, E. L. (1999). The good old DavistRam procedure helps counting
models.J. Artif. Intell. Research (JAIRLO, 457-477.

Bitner, J. R., & Reingold, E. (1975). Backtracking programgtechniques.Communications of
the ACM 18(11), 651-656.

Bodlaender, H. L. (1993). A tourist guide through Treewidiitta Cyberneticall(1-2), 1-21.

Bonet, M., Esteban, J. L., Galesi, N., & Johannsen, J. (198ponential separations between
restricted resolution and cutting planes proof system#nnual IEEE Symposium on Foun-
dations of Computer Science (FOCB). 638—647.

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D.996). Context-specific independence in
Bayesian Networks. Incertainty in Artificial Intelligence, Proceedings of Aral Confer-
ence (UAI) pp. 115-123.

Chavira, M., & Darwiche, A. (2006). Encoding CNFs to empowemponent analysis. [hheory
and Applications of Satisfiability Testing (SApp. 61-74.

Chavira, M., & Darwiche, A. (2008). On probabilistic infexee by weighted model counting.
Artificial Intelligence 1726-7), 772—799.

Chavira, M., Darwiche, A., & Jaeger, M. (2006). Compilingateonal bayesian networks for exact
inference.Int. J. Approx. Reasoning2(1-2), 4—-20.

Clote, P., & Setzer, A. (1998). On PHP, st-connectivity add charged graphs. Proof Complexity
and Feasible Arithmeti¢s/ol. 39 of DIMACS Seriespp. 93-117. AMS.

439

BAccHUS, DALMAO, & PITASSI

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.Q20 Introduction to Algorithms. 2nd
Edition. McGraw Hill.

Darwiche, A., & Allen, D. (2002). Optimal time-space traffaéa probabilistic inference. IfEuro-
pean Workshop on Probabilistic Graphical Modeksrailable at www.cs.ucla.edwdarwiche.

Darwiche, A. (2001). Recursive conditioningrtificial Intelligence 126, 5-41.

Darwiche, A. (2002). A logical approach to factoring belietworks. InProceedings of the Interna-
tional Conference on Principles of Knowledge Represemradind Reasoningp. 409-420.

Darwiche, A. (2004). New advances in compiling CNF into daposable negation normal form.
In Proceedings of the European Conference on Atrtificial Iigetice (ECAI)pp. 328-332.

Davies, J., & Bacchus, F. (2007). Using more reasoning toong#SAT solving. InProceedings
of the AAAI National Conference (AAAPp. 185-190.

Davis, M., Logemann, G., & Loveland, D. (1962). A machinegream for theorem-provingCom-
munications of the ACM}, 394—-397.

Davis, M., & Putnam, H. (1960). A computing procedure for wmifecation theory.Journal of the
ACM, 7, 201-215.

Dechter, R. (1999). Bucket elimination: A unifying frameikdor reasoningAtrtificial Intelligence
113 41-85.

Dechter, R., & Mateescu, R. (2004). Mixtures of determiaigrobabilistic networks and their
AND/OR search space. Mdncertainty in Artificial Intelligence, Proceedings of Aral Con-
ference (UAI) pp. 120-129.

Dechter, R., & Mateescu, R. (2007). AND/OR search spacegraghical modelsArtificial Intel-
ligence 171(2-3), 73-106.

Dubois, O. (1991). Counting the number of solutions foranses of satisfiability. Theoretical
Computer Sciencé&1, 49-64.

Haken, A. (1985). The intractability of resolutioitheoretical Computer Scienc&d, 297-305.

Hertel, P., Bacchus, F., Pitassi, T., & van Gelder, A. (2008)Jause learning can effectively p-
simulate general propositional resolution. Rroceedings of the AAAI National Conference
(AAAI).

Johannsen, J. (2001). Exponential incomparability of-lilee and ordered resolution. Un-
published manuscript, availabletdtp://www.tcs.informatik.uni-muenchen.
de/ ~jjohanns/notes.html

Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). fijing tree decompositions for reasoning
in graphical modelsAtrtificial Intelligence 166(1-2), 165-193.

Kitching, M., & Bacchus, F. (2008). Exploiting decompasitiin constraint optimization problems.
In Proceedings of Principles and Practice of Constraint Pengming (CP) pp. 478—492.

Lauritzen, S., & Spiegelhalter, D. (1988). Local computatwith probabilities on graphical struc-
tures and their application to expert systerdsurnal of the Royal Statistical Society Series
B, 50(2), 157-224.

440

BACKTRACKING SEARCH FOR#SAT AND BAYES

Li, W., & van Beek, P. (2004). Guiding real-world sat solvingth dynamic hypergraph separa-
tor decomposition. IProceedings of the International Conference on Tools witifiéial
Intelligence (ICTAI) pp. 542-548.

Li, W., van Beek, P., & Poupart, P. (2006). Performing inceeal Bayesian Inference by dynamic
model counting. IProceedings of the AAAI National Conference (AAAP. 1173-1179.

Li, W., van Beek, P., & Poupart, P. (2008). Exploiting catsdependence using weighted model
counting. InProceedings of the AAAI National Conference (AAAI)

Littman, M. L., Majercik, S. M., & Pitassi, T. (2001). Stodtiac boolean satisfiabilityd. Automated
Reasoning27(3), 251-296.

Majercik, S. M., & Littman, M. L. (1998). Maxplan: A new appaoch to probabilistic planning. In
Proceedings of the International Conference on Artificidklligence Planning and Schedul-
ing (AIPS) pp. 86-93.

Marinescu, R., & Dechter, R. (2006). Dynamic orderings fod[HOR branch-and-bound search
in graphical models. IdProceedings of the European Conference on Artificial ligefice
(ECAI), pp. 138-142.

Marinescu, R., & Dechter, R. (2007). Best-first AND/OR sédiar graphical models. IRroceed-
ings of the AAAI National Conference (AAASp. 1171-1176.

Mateescu, R., & Dechter, R. (2007). AND/OR multi-valuedidien diagrams for weighted graph-
ical models. InUncertainty in Artificial Intelligence, Proceedings of Arai Conference
(UAI).

Mateescu, R., & Dechter, R. (2005). AND/OR cutset conditign In Proceedings of the Interna-
tional Joint Conference on Atrtificial Intelligence (IJCAPp. 230-235.

Moskewicz, E., Madigan, C., Zhao, M., Zhang, L., & Malik, 2001). Chaff: Engineering an
efficient sat solver. IfProc. of the Design Automation Conference (DAC)

Nilsson, N. J. (1980)Principles of Artificial Intelligence Tioga.

Pearl, J. (1988)Probabilistic Reasoning in Intelligent Syste(@sd edition). Morgan Kaufmann,
San Mateo, CA.

Preston, C. (1974)Gibbs States on Countable Se@ambridge University Press.

Rish, I., & Dechter, R. (2000). Resolution versus searcho Bivategies for SAT.Journal of
Automated Reasoning4(1), 225-275.

Robertson, N., & Seymour, P. (1991). Graph minors X. ob$itvas to tree-decompositiodournal
of Combinatorial Theory, Series, B2, 153-190.

Robertson, N., & Seymour, P. (1995). Graph minors XIlll. tigaint paths problem.Journal of
Combinatorial Theory, Series, B3, 65—-110.

Roth, D. (1996). On the hardness of approximate reasorfntficial Intelligence 82(1-2), 273—
302.

Sang, T., Bacchus, F., Beame, P., Kautz, H. A., & PitassRd04). Combining component caching
and clause learning for effective model countingTheory and Applications of Satisfiability
Testing (SAT)

441

BAccHUS, DALMAO, & PITASSI

Sang, T., Beame, P., & Kautz, H. A. (2005a). Heuristics fat fxact model counting. Mheory
and Applications of Satisfiability Testing (SApp. 226—240.

Sang, T., Beame, P., & Kautz, H. A. (2005b). Performing Baye#nference by weighted model
counting. InProceedings of the AAAI National Conference (AARD. 475-482.

Sang, T., Beame, P., & Kautz, H. A. (2007). A dynamic appraacMPE and weighted MAX-
SAT. In Proceedings of the International Joint Conference on Aitfilntelligence (IJCAI)
pp. 173-179.

Sanner, P., & McAllester, D. (2005). Affine algebraic demistdiagrams (aadds) and their applica-
tions to structured probabilistic inference. Pmoceedings of the International Joint Confer-
ence on Atrtificial Intelligence (IJCAlpp. 1384-1390.

Spitzer, F. L. (1971). Markov random fields and Gibbs ensesBimerican Mathematical Monthly
78, 142-54.

Thurley, M. (2006). sharpSAT—Counting models with advahcemponent caching and implicit
BCP. InTheory and Applications of Satisfiability Testing (SAW). 424—429.

Valiant, L. G. (1979a). The complexity of enumeration anichkelity problems. SIAM Journal of
Computing 9, 410-421.

Valiant, L. G. (1979b). The Complexity of Computing the Parmant. Theoretical Computer Sci-
ence 8, 189-201.

Zhang, W. (1996). Number of models and satisfiability of sdtslauses.Theoretical Computer
Sciencel55 277-288.

442

