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Abstract

The task of identifying synonymous relations and objects, or synonym resolution, is
critical for high-quality information extraction. This paper investigates synonym reso-
lution in the context of unsupervised information extraction, where neither hand-tagged
training examples nor domain knowledge is available. The paper presents a scalable, fully-
implemented system that runs in O(K N log N) time in the number of extractions, N, and
the maximum number of synonyms per word, K. The system, called RESOLVER, introduces
a probabilistic relational model for predicting whether two strings are co-referential based
on the similarity of the assertions containing them. On a set of two million assertions
extracted from the Web, RESOLVER. resolves objects with 78% precision and 68% recall,
and resolves relations with 90% precision and 35% recall. Several variations of RESOLVER’s
probabilistic model are explored, and experiments demonstrate that under appropriate
conditions these variations can improve F1 by 5%. An extension to the basic RESOLVER
system allows it to handle polysemous names with 97% precision and 95% recall on a data
set from the TREC corpus.

1. Introduction

Web Information Extraction (WIE) systems (Zhu, Nie, Wen, Zhang, & Ma, 2005; Agichtein,
2006; Etzioni, Cafarella, Downey, Kok, Popescu, Shaked, Soderland, Weld, & Yates, 2005)

extract assertions that describe a relation and its arguments from Web text. For example:
(is capital of, D.C., United States)

WIE systems can extract hundreds of millions of assertions containing millions of differ-
ent strings from the Web (e.g., the TEXTRUNNER system by Banko, Cafarella, Soderland,
Broadhead, & Etzioni, 2007). One problem that becomes a real challenge at this scale
is that WIE systems often extract assertions that describe the same real-world object or
relation using different names. For example, a WIE system might also extract
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(is capital city of, Washington, U.S.)

which describes the same relationship as above but contains a different name for the relation
and each argument.

Synonyms are prevalent in text, and the Web corpus is no exception. Our data set
of two million assertions extracted from a Web crawl contained over a half-dozen different
names each for the United States and Washington, D.C., and three for the is capital of
relation. The top 80 most commonly extracted objects had an average of 2.9 extracted
names per entity, and several had as many as 10 names. The top 100 most commonly
extracted relations had an average of 4.9 synonyms per relation.

We refer to the problem of identifying synonymous object and relation names as synonym
resolution. Previous techniques have focused on one particular aspect of the problem, either
objects or relations. In addition, these techniques often depend on a large set of training
examples, or are tailored to a specific domain by assuming knowledge of the domain’s
schema. Due to the number and diversity of the relations extracted, these techniques are
not feasible for WIE systems. Schemata are not available for the Web, and hand-labeling
training examples for each relation would require a prohibitive manual effort.

In response, we present RESOLVER, a novel, domain-independent, unsupervised synonym
resolution system that applies to both objects and relations. RESOLVER clusters synony-
mous names together using a probabilistic model informed by string similarity and the
similarity of the assertions containing the names. Its similarity metric outperforms those
used by similar systems for cross-document entity coreference (e.g., Mann & Yarowsky,
2003) and paraphrase discovery (Lin & Pantel, 2001; Hasegawa, Sekine, & Grishman, 2004)
on their respective tasks of object and relation synonym resolution. The key questions
answered by RESOLVER include:

1. Is it possible to effectively cluster strings in a large set of extractions into sets of
synonyms without using domain knowledge, manually labeled training data, or other
external resources that are unavailable in the context of Web Information Extraction?
Experiments below include an empirical demonstration that RESOLVER can resolve
objects with 78% precision and 68% recall, and relations with 90% precision and 35%
recall.

2. How can we scale synonym resolution to large, high-dimensional data sets? RESOLVER
provides a scalable clustering algorithm that runs in time O(K N log N) in the number
of extractions, NV, and the maximum number of synonyms per word, K. In theory it
compares well with even fast approximate solutions for clustering large data sets in
large-dimensional spaces, and in practice RESOLVER has been successfully run on a
set, of assertions extracted from over 100 million Web pages.

3. How can we formalize unsupervised synonym resolution, and is there a practical benefit
to doing so? RESOLVER provides an unsupervised, generative probabilistic model
for predicting whether two object or relation names co-refer, and experiments show
that this significantly outperforms previous metrics for distributional similarity. In
particular, it outperforms a related metric based on mutual information (Lin & Pantel,
2001) by 193% in AUC on object clustering, and by 121% on relation clustering.
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4. Is it possible to use the special properties of functions and inverse functions to improve
the precision of a synonym resolution algorithm? The basic version of RESOLVER’s
probabilistic model for object synonymy is independent of the relation in the ex-
traction. However, it is intuitively clear that certain relations, especially functions
and inverse functions, provide especially strong evidence for and against synonymy.
Several extensions to the RESOLVER system show that without hurting recall, the
precision of object merging can be improved by 3% using functions.

5. Can RESOLVER handle polysemous names, which have different meanings in different
contexts? While the basic version of RESOLVER assumes that every name has a single
meaning, we present an extension to the basic system that is able to automatically
handle polysemous names. On a manually-cleaned data set of polysemous named
entities from the TREC corpus, RESOLVER achieves a precision of 97.3% and a recall
of 94.7% in detecting proper noun coreference relationships, and is able to outperform
previous work in accuracy while requiring only a large, unannotated corpus as input.

The next section discusses previous work in synonym resolution. Section 3 describes
the problem of synonym resolution formally and introduces notation and terminology that
will be used throughout. Section 4 introduces RESOLVER’s probabilistic model. Section
5 describes RESOLVER’s clustering algorithm. Section 6 presents experiments with the
basic RESOLVER system that compare its performance with the performance of previous
work in synonym resolution. Section 7 describes several extensions to the basic RESOLVER
system, together with experiments illustrating the gains in precision and recall. Section
8 develops an extension to RESOLVER that relaxes the assumption that every string has
a single referent, and it compares RESOLVER experimentally to previous work in cross-
document entity resolution. Finally, Section 9 discusses conclusions and areas for future
work.

2. Previous Work

Synonym resolution encompasses two tasks, finding synonyms for extracted objects and
relations. Synonym resolution for objects is very similar to the task of cross-document
entity resolution (Bagga & Baldwin, 1998), in which the objective is to cluster occurrences
of named entities from multiple documents into coreferential groups. Pedersen and Kulkarni
(Pedersen & Kulkarni, 2007; Kulkarni & Pedersen, 2008) cluster people’s names in Web
documents and in emails using agglomerative clustering and a heuristic similarity function.
Li, Morie, and Roth (2004a, 2004b) use an Expectation-Maximization with a graphical
model and databases of common nicknames, honorifics, titles, etc.to achieve high accuracy
on a cross-document entity resolution task. Mann and Yarowsky (2003) use a combination of
extracted features and term vectors including proper names in context to cluster ambiguous
names on the Web. They use the Cosine Similarity Metric (Salton & McGill, 1983) together
with hierarchical agglomerative clustering. RESOLVER’s main contribution to this body of
work is that it proposes a new, formal similarity measure that works for both objects and
relations, and it demonstrates both theoretically and empirically that it can scale up to
millions of extractions. The Web People Search Task (WEPS) (Artile, Sekine, & Gonzalo,
2008), part of SemEval 2007, involved 16 systems trying to determine clusters of documents
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” In

containing references to the same entity for ambiguous person names like “Kennedy.
Section 6, we show that RESOLVER significantly outperforms the Cosine Similarity Metric
in clustering experiments. Further experiments below (Section 8) show that RESOLVER is
able to achieve similar, slightly higher performance than Li et al. on their dataset, while
not relying on any resources besides a large corpus.

Coreference resolution systems, like synonym resolution systems, try to merge references
to the same object, and they apply to arbitrary noun phrases rather than just to named
entities. Because of the difficulty of this general problem, most work has considered tech-
niques informed by parsers (e.g., Lappin & Leass, 1994) or training data (e.g., Ng & Cardie,
2002; McCarthy & Lehnert, 1995). Cardie and Wagstaff (1999) use a set of extracted gram-
matical and semantic features and an ad-hoc clustering algorithm to perform unsupervised
coreference resolution, achieving better performance on the MUC-6 coreference task than a
supervised system. More recently, Haghighi and Klein (2007) use a graphical model com-
bining local salience features and global entity features to perform unsupervised coreference,
achieving an F'1 score of 70.1 on MUC-6. Two systems use automatically extracted infor-
mation to help make coreference resolution decisions, much like RESOLVER does. Kehler,
Appelt, Taylor, and Simma (2004) use statistics over automatically-determined predicate-
argument structures to compare contexts between pronouns and their potential antecedents.
They find that adding this information to a system that relies on morpho-syntactic evidence
for pronoun resolution provides little or no benefit. Bean and Riloff (2004) use targeted
extraction patterns to find semantic constraints on the relationship between pronouns and
their antecedents, and show that they can use these to improve an anaphora-resolution
system. Coreference resolution is a more difficult and general task than synonym resolution
for objects since it deals with arbitrary types of noun phrases. However, systems for coref-
erence resolution also have more information available to them in the form of local sequence
and salience information, which is lost in the extraction process, and they do not address
relation synonymy.

Synonym resolution for relations is often called paraphrase discovery or paraphrase ac-
quisition in NLP literature (e.g., Barzilay & Lee, 2003; Sekine, 2005). Previous work in
this area (Barzilay & Lee, 2003; Barzilay & McKeown, 2001; Shinyama & Sekine, 2003;
Pang, Knight, & Marcu, 2003) has looked at the use of parallel, aligned corpora, such as
multiple translations of the same text or multiple news reports of the same story, to find
paraphrases. Brockett and Dolan (2005) have used manually-labeled data to train a su-
pervised model of paraphrases. The PASCAL Recognising Textual Entailment Challenge
(Dagan, Glickman, & Magnini, 2006) proposes the task of recognizing when two sentences
entail one another, given manually labeled training data, and many authors have submitted
responses to this challenge. RESOLVER avoids the use of labor-intensive resources, and relies
solely on automatically acquired extractions from a large corpus.

Several unsupervised systems for paraphrase discovery have focused on using corpus-
based techniques to cluster synonymous relations. Sekine (2005) uses a heuristic similarity
measure to cluster relations. Davidov and Rappoport (2008) use a heuristic clustering
method to find groups of relation patterns that can be used to extract instances. Hasegawa
et al. (2004) automatically extract relationships from a large corpus and cluster relations,
using the Cosine Similarity Metric (Salton & McGill, 1983) and a hierarchical clustering
technique like RESOLVER’s. The DIRT system (Lin & Pantel, 2001) uses a similarity mea-
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sure based on mutual information statistics to identify relations that are similar to a given
one. RESOLVER provides a formal probabilistic model for its similarity technique, and it
applies to both objects and relations. Section 4.3 contains a fuller description of the dif-
ferences between RESOLVER and DIRT, and Section 6 describes experiments which show
RESOLVER’s superior performance in precision and recall over clustering using the mutual
information similarity metric employed by DIRT, as well as the Cosine Similarity Metric.

RESOLVER’s method of determining the similarity between two strings is an example
of a broad class of metrics called distributional similarity metrics (Lee, 1999), but it has
significant advantages over traditional distributional similarity metrics for the synonym
resolution task. All of these metrics are based on the underlying assumption, called the
Distributional Hypothesis, that “Similar objects appear in similar contexts.” (Hindle, 1990)
Previous distributional similarity metrics, however, have been designed for comparing words
based on terms appearing in the same document, rather than extracted properties. This has
two important consequences: first, extracted properties are by nature sparser because they
appear only in a narrow window around words and because they consist of longer strings
(at the very least, pairs of words); second, each extracted shared property provides stronger
evidence for synonymy than an arbitrary word that appears together with each synonym,
because the extraction mechanism is designed to find meaningful relationships. RESOLVER’s
metric is designed to take advantage of the relational model provided by Web Information
Extraction. Section 4.3 more fully describes the difference between RESOLVER’s metric
and the Cosine Similarity Metric (Salton & McGill, 1983), an example of a traditional
distributional similarity metric. Experiments in Section 6 demonstrate that RESOLVER
outperforms the Cosine Similarity Metric.

There are many unsupervised approaches for object resolution in databases, but unlike
our algorithm these approaches depend on a known, fixed, and generally small schema.
Ravikumar and Cohen (2004) present an unsupervised approach to object resolution us-
ing Expectation-Maximization on a hierarchical graphical model. Several other recent ap-
proaches leverage domain-specific information and heuristics for object resolution. For
example, many (Dong, Halevy, & Madhavan, 2005; Bhattacharya & Getoor, 2005, 2006)
rely on evidence from observing which strings appear as arguments to the same relation
simultaneously (e.g., co-authors of the same publication). While this is useful information
when resolving authors in the citation domain, it is rare to find relations with similar prop-
erties in extracted assertions. None of these approaches applies to the problem of resolving
relations. Winkler (1999) provides a survey of this area. Several supervised learning tech-
niques make entity resolution decisions (Kehler, 1997; McCallum & Wellner, 2004; Singla
& Domingos, 2006), but of course these systems depend on the availability of training data,
and even on a significant number of labeled examples per relation of interest.

One promising new approach to clustering in a relational domain is the Multiple Re-
lational Clusterings (MRC) algorithm (Kok & Domingos, 2007). This approach, though
not specific to synonym resolution, can find synonyms in a set of unlabeled, relational ex-
tractions without domain-specific heuristics. The approach is quite recent, and so far no
detailed experimental comparison has been conducted.

RESOLVER’s probabilistic model is partly inspired by the ball-and-urns abstraction of
information extraction presented by Downey, Etzioni, and Soderland (2005) RESOLVER’S
task and probability model are different from theirs, but many of the same modeling as-
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sumptions (such as the independence of extractions) are made in both cases to simplify the
derivation of the models.

Previous work on RESOLVER (Yates & Etzioni, 2007) discussed the basic version of
the probabilistic model and initial experimental results. This work expands on the previ-
ous work in that it includes a new experimental comparison with an established mutual
information-based similarity metric; a new extension to the basic system (property weight-
ing); full proofs for three claims; and a description of a fast algorithm for calculating the
Extracted Shared Property model.

3. The Formal Synonym Resolution Problem

A synonym resolution system for WIE takes a set of extractions as input and returns a
set of clusters, with each cluster containing synonymous object strings or relation strings.
More precisely, the input is a data set D containing extracted assertions of the form a =
(r,01,...,0,), where r is a relation string and each o; is an object string representing the
arguments to the relation. Throughout this work, all assertions are assumed to be binary,
son =2.

The output of a synonym resolution system is a clustering, or set of clusters, of the
strings in D. Let S be the set of all distinct strings in D. A clustering of S is a set C' C 2°
such that all the clusters in C are distinct, and they cover the whole set:

U=s

ceC
Vei,co € CocgNeg =10

Each cluster in the output clustering constitutes the system’s conjecture that all strings
inside the cluster are synonyms, and no string outside that cluster is a synonym of any
string in the cluster.

3.1 The Single-Sense Assumption

The formal representation of synonym resolution described above makes an important sim-
plifying assumption: it is assumed that every string belongs to exactly one cluster. In
language, however, strings often have multiple meanings; i.e., they are polysemous. Pol-
ysemous strings cannot be adequately represented using a clustering in which each string
belongs to exactly one cluster. For most of this paper, we will make the single-sense as-
sumption, but Section 8 illustrates an extension to RESOLVER that does away with this
assumption.

As an example of the representational trouble posed by polysemy, consider the name
“President Roosevelt.” In certain contexts, this name is synonymous with “President
Franklin D. Roosevelt,” and in other contexts it is synonymous with “President Theodore
Roosevelt.” However, “President Franklin D. Roosevelt” is never synonymous with “Pres-
ident Theodore Roosevelt.” There is no clustering of the three names, using the notion of
clustering described above, such that all synonymy relationships are accurately represented.

Others have described alternate kinds of clustering that take polysemy into account. For
example, “soft clustering” allows a string to be assigned to as many different clusters as it
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has senses. One variation on this idea is to assign a probability distribution to every string,
describing the prior probability that the string belongs in each cluster (Li & Abe, 1998;
Pereira, Tishby, & Lee, 1993). Both of these representations capture only prior information
about strings. That is, they represent the idea that a particular string can belong to a
cluster, or the probability that it belongs to a cluster, but not whether a particular instance
of the string actually does belong to a cluster. A third type of clustering, the most explicit
representation, stores each instance of a string separately. Each string instance is assigned to
the cluster that is most appropriate for the instance’s context. Word sense disambiguation
systems that assign senses from WordNet (Miller, Beckwith, Fellbaum, Gross, & Miller.,
1990) implicitly use this kind of clustering (e.g., Ide & Veronis, 1998; Sinha & Mihalcea,
2007).

3.2 Subproblems in Synonym Resolution

The synonym resolution problem can be divided into two subproblems: first, how to measure
the similarity, or probability of synonymy, between pairs of strings in .S; and second, how
to form clusters such that all of the elements in each cluster have high similarity to one
another, and relatively low similarity to elements in other clusters.

RESOLVER uses a generative, probabilistic model for finding the similarity between
strings. For strings s; and s;, let R;; be the random variable for the event that s; and
sj refer to the same entity. Let Rt denote the event that R;; is true, and Rf i denote
the event that it is false. Let D, denote the set of extractions in D which contain string
z. Given D and S, the first subtask of synonym resolution is to find P(R; ;| Ds,, Ds;) for
all pairs s; and s;. The second subtask takes S and the probability scores for pairs of
strings from S as input. Its output is a clustering of S. Sections 4 and 5 cover RESOLVER’s
solutions to each subtask respectively.

4. Models for String Comparisons

Our probabilistic model provides a formal, rigorous method for resolving synonyms in the
absence of training data. It has two sources of evidence: the similarity of the strings
themselves (i.e., edit distance) and the similarity of the assertions they appear in. This
second source of evidence is sometimes referred to as distributional similarity (Hindle, 1990).

Section 4.1 presents a simple model for predicting whether a pair of strings are synony-
mous based on string similarity. Section 4.2 then presents a model called the Extracted
Shared Property (ESP) Model for predicting whether a pair of strings co-refer based on
their distributional similarity. Section 4.3 compares the ESP model with other methods for
computing distributional similarity to give an intuition for how it behaves. Finally, Sec-
tions 4.4 and 4.5 present a method for combining the ESP model and the string similarity
model to come up with an overall prediction for synonymy decisions between two clusters
of strings.

4.1 String Similarity Model

Many objects appear with multiple names that are substrings, acronyms, abbreviations, or
other simple variations of one another. Thus string similarity can be an important source of
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evidence for whether two strings co-refer (Cohen, 1998). RESOLVER’s probabilistic String
Similarity Model (SSM) assumes a similarity function sim(sy,s2): STRING X STRING —
[0,1]. The model sets the probability of s; co-referring with sy to a smoothed version of
the similarity:
a xsim(sy,s2) + 1

a+f

As « increases, the probability estimate transitions from 1/5 (at o = 0) to the value of the
similarity function (for very large «). The particular choice of a and 3 make little difference
to RESOLVER’s results, as long as they are chosen such that the resulting probability can
never be one or zero. In the experiments below, o = 20 and # = 5. The Monge-Elkan string
similarity function (Monge & Elkan, 1996) is used for objects, and the Levenshtein string
edit-distance function is used for relations (Cohen, Ravikumar, & Fienberg, 2003).

P(Rf7j|sim(sl,sQ)) =

4.2 The Extracted Shared Property Model

The Extracted Shared Property Model (ESP) outputs the probability that two strings co-
refer based on the similarity of the extracted assertions in which they appear. For example,
if the extractions (invented, Newton, calculus) and (invented, Leibniz, calculus) both
appeared in the data, then Newton and Leibniz would be judged to have similar contexts in
the extracted data.

More formally, let a pair of strings (r,s) be called a property of an object string o if
there is an assertion (r,0,s) € D or (r,s,0) € D. A pair of strings (s1, s2) is an instance
of a relation string r if there is an assertion (7,s1,s2) € D. Equivalently, the property
p = (r,s) applies to o, and the instance i = (s1, s2) belongs to r. The ESP model outputs
the probability that two strings co-refer based on how many properties (or instances) they
share.

As an example, consider the strings Mars and Red Planet, which appear in our data 659
and 26 times respectively. Out of these extracted assertions, they share four properties. For
example, (lacks, Mars, ozone layer) and (lacks, Red Planet, ozone layer) both appear
as assertions in our data. The ESP model determines the probability that Mars and Red
Planet refer to the same entity after observing k, the number of properties that apply to
both; nq, the total number of extracted properties for Mars; and ns, the total number of
extracted properties for Red Planet.

ESP models the extraction of assertions as a generative process, much like the URNS
model (Downey et al., 2005). For each string s;, a certain number, P;, of properties of the
string are written on balls and placed in an urn. Extracting n; assertions that contain s;
amounts to selecting a subset of size n; from these labeled balls.! Properties in the urn are
called potential properties to distinguish them from extracted properties.

To model synonymy decisions, ESP uses a pair of urns, containing P; and P; balls
respectively, for the two strings s; and s;. Some subset of the FP; balls have the exact same
labels as an equal-sized subset of the P; balls. Let the size of this subset be \S; ;. Crucially,
the ESP model assumes that synonymous strings share as many potential properties as
possible, though only a few of the potential properties will be extracted for both. For non-

1. Unlike the URNS model, balls are drawn without replacement. The TEXTRUNNER data contains only
one mention of any extraction, so drawing without replacement tends to model the data more accurately.
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synonymous strings, the set of shared potential properties is a strict subset of the potential
properties of each string. Thus the central modeling choice in the ESP model is: if s; and
sj are synonymous (i.e., R; j = sz) then the number of shared potential properties (S; ;) is
equal to the number of potential properties in the smaller urn (min(P;, P;)), and if the two
strings are not synonymous (R; ; = R{j) then the number of shared potential properties is
strictly less than the number of properties in the smaller urn (S; ; < min(P;, Pj) ).

The ESP model makes several simplifying assumptions in order to make probability
predictions. As is suggested by the ball-and-urn abstraction, it assumes that each ball
for a string is equally likely to be selected from its urn. Because of data sparsity, almost
all properties are very rare, so it would be difficult to get a better estimate for the prior
probability of selecting a particular potential property. Second, balls are drawn from one
urn independent of draws from any other urn. And finally, it assumes that without knowing
the value of k, every value of S; ; is equally likely, since we have no better information.

Given these assumptions, we can derive an expression for P(Rf7j). The derivation is
sketched below; see Appendix A for a complete derivation. First, note that there are
(5 z) (5 j) total ways of extracting n; and n; assertions for s; and s;. Given a particular value
of S; j, the number of ways in which n; and n; assertions can be extracted such that they
share exactly k is given by

Count(l, ng, m3[Ps, Py, 813) = () Er iz () (F) k) (o “ ) (1)
By our assumptions,

Count(k, n;, n:|P;, Ps, Si 5
P(K|ni,nj, P., Py, Sij) = (k5P Py, S5 ) o)

P (P
() G2
Let Ppin = min(P;, Pj). The result below follows from Bayes’ Rule and our assumptions
above:

Proposition 1 If two strings s; and s; have P; and P; potential properties (or instances),
and they appear in extracted assertions D; and D; such that |D;| = n; and |Dj| = nj, and
they share k extracted properties (or instances), the probability that s; and sj co-refer is:

P(k|ni, nj, Pi, Pj, Si;j = Punin)
Z P(k|n;,nj, P;, Py, S ;)

Sij
kSSi,j SRnin

Substituting equation 2 into equation 3 gives us a complete expression for the probability
we are looking for.

Note that the probability for Rﬁ’ ; depends on two hidden parameters, P; and P;. Since
in unsupervised synonym resolution there is no labeled data to estimate these parameters
from, these parameters are tied to the number of times the respective strings s; and s; are
extracted: P, = N x n;. The discussion of experimental methods in Section 6 explains how
the parameter N is set.

Appendix B illustrates a technique for calculating the ESP model efficiently.

263



YATES & ETZIONI

4.3 Comparison of ESP with Other Distributional Similarity Metrics

The Discovery of Inference Rules from Text (DIRT) (Lin & Pantel, 2001) system is the
most similar previous work to RESOLVER in its goals, but DIRT’s similarity metric is very
different from ESP. Like ESP, DIRT operates over triples of extracted strings and produces
similarity scores for relations by comparing the distributions of one relation’s arguments
to another’s. The DIRT system, however, has its own extraction mechanism based on a
dependency parser. Here we focus on the differences in the two systems’ similarity metrics,
and compare performance on the same set of extracted triples produced by TEXTRUNNER,
since the extracted triples used by DIRT were not available to us. We refer to the mutual-
information-based similarity metric employed by the DIRT system as sj;7. It is important
to note that sp;; as we describe it here is our own implementation of the similarity metric
described by Lin and Pantel (2001), and is not the complete DIRT system.

We now briefly describe sp;; as it applies to a set of extractions. sps; originally was
applied to only relation strings, and for simplicity we describe it that way here, but it
is readily generalized to a metric for computing the similarity between two argument-1
strings or two argument-2 strings. For notational convenience, let D,—s be the set of
extractions that contain string s at position x. For example, Do_ginstein Would contain
the extraction (discovered, Einstein, Relativity), but not the extraction (talked with,
Bohr, Einstein). Similarly, let Dy—,, 4—s, be the set of extractions that contain s; and
so at positions x and y respectively. Finally, let the projection of a set of extractions
D = {(dy,da,ds)} onto one of its dimensions = be given by:

p?”ij(D) = {SBdl,dg,dg-dx =S A (dl, d2,d3) € D}

spr uses a mutual information score to determine how much weight to give to each
string in the set of extractions during its similarity computation. For a string s at position
x, the mutual information between it and a relation r at position 1 is given by:

[ Di=rz=s| X \D!>
|D1:r| X |Dx:s|

mi1 . (r, s) = log <

syr calculates the similarity between two relations by first calculating the similarity
between the sets of first arguments to the relations, and then the similarity between the
sets of second arguments. Let r; and 79 be two relations, and let the position of the
argument being compared be x. The similarity function used is:

g mi1 z(r1, a) + mii z(r2, a)
a€projy(Di=r, )Nprojz(Di=ry)

Z mi1z(r1,a) + Z mi1z(r2, a)

aEprojm(Dlﬂ«l) aEProjz (D1=r2)

simg(r1,m2) =

The final similarity score for two relations is the geometric average of the similarity scores
for each argument:

smr(r1,m2) = /sima(ry,r2) X simgz(ry,72) (4)

Applying the sp;r metric to entities rather than relations simply requires projecting onto
different dimensions of the relevant tuple sets.
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The most significant difference between the sj;; similarity metric and the ESP model is
that the sp;; metric compares the z arguments from one relation to the x arguments of the
other, and then compares the y arguments from one relation to the y arguments of the other,
and finally combines the scores. In contrast, ESP compares the (z,y) argument pairs of one
relation to the (z,y) pairs of the other. While the sj;; metric has the advantage that it is
more likely to find matches between two relations in sparse data, it has the disadvantage
that the matches it does find are not necessarily strong evidence for synonymy. In effect, it is
capturing the intuition that synonyms have the same argument types for their domains and
ranges, but it is certainly possible for non-synonyms to have similar domains and ranges.
Antonyms are an obvious example. Synonyms are not defined by their domains and ranges,
but rather by the mapping between them, and ESP better captures the similarity in this
mapping. Experiments below (Section 6) compare the ESP as a similarity metric against
SMmI, as given in Equation 4.

As previously mentioned, there is a large body of previous work on similarity metrics
(e.g., Lee, 1999). We now compare ESP with one of the more popular of these metrics,
the Cosine Similarity Metric (CSM), which has previously been used in synonym resolution
work (Mann & Yarowsky, 2003; Hasegawa et al., 2004). Like most traditional distributional
similarity metrics, CSM operates over context vectors, rather than extracted triples. How-
ever, the ESP model is very similar to CSM in this regard. For each extracted string, it in
effect creates a binary vector of properties, ones representing properties that apply to the
string and zeros representing those that do not. For example, the string Einstein would
have a context vector with a one in the position for the property (discovered, Relativity),
and a zero in the position for the property (invented, light bulb). Both ESP and CSM
calculate similarities by comparing these vectors.

The specific metric used to compute CSM for two vectors Z and ¢ is given by:

sim (Z,9) Ty
COMEBYT = 1T 1171l

Often, techniques like term weighting or TFIDF (Salton & McGill, 1983) are used with CSM
to create vectors that are not boolean, but rather have dimensions with different weights
according to how informative those dimensions are. We experimented with TFIDF-like
weighting schemes, where the number of times an extraction was extracted is used as the
term frequency, and the number of different strings a property applies to is used as the
document frequency. However, we found that these weighting schemes had negative effects
on performance, so from here on we ignore them. For two boolean vectors, CSM reduces to
a simple computation on the number of shared properties k£ and the number of extractions
for each string, n1 and ng respectively. It is given by:

k
A/ T112

CSM determines how similar two context vectors are in each dimension, and then adds
the scores up in a weighted sum. In contrast, ESP is highly non-linear in the number

()

SimC’SM—boolean(f) 37) =
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of shared properties. As the number of matching contexts grows, the weight for each
additional matching context also grows. Figure 1 compares the behavior of ESP and CSM
as the number of shared properties between two strings increases. Holding the number of
extractions fixed and assuming boolean vectors for CSM, it behaves as a linear function
of the number of shared properties. On the other hand, the ESP has the shape of a
thresholding function: it has a very low value until a threshold point around k = 10, at
which point its probability estimate starts increasing rapidly. The effect is that ESP has
much lower similarity scores than CSM for small numbers of matching contexts, and much
higher scores for larger numbers of matching contexts. The threshold at which it switches
depends on n; and ng, as well as P, and P,, but we can show experimentally that our
method for estimating P, and P», though simple, can be effective. Experiments in Section
6 compare the ESP model with CSM, as computed using Equation 5.

Similarity

Number of shared properties

Figure 1: The behavior of the Extracted Shared Property (ESP) model and the Cosine
Similarity Model (CSM) as the number of shared properties between two
strings varies. The graph shows similarity results using two hypothetical strings with
20 extracted properties each. For ESP, the property multiple is N = 2. We removed
scale from the y axis, since the scales for the two metrics are not directly comparable,
but the shape of the curves remains the same.

4.4 Combining the Evidence

For each potential synonymy relationship, RESOLVER considers two pieces of probabilistic
evidence. Let Ef; be the evidence for ESP, and let E}; be the evidence for SSM. Our
method for comblmng the two uses the Naive Bayes assumptlon that each piece of evidence
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is conditionally independent, given the synonymy relationship:

P(E;;, Ef j|Ri j) = P(E;;|R; ;) P(ES ;| Ri ) (6)
Given this simplifying assumption, we can combine the evidence to find the probability
of a coreference relationship by applying Bayes’ Rule to both sides (we omit the i, j indices
for brevity):
P(R'|E*)P(R'|E)(1 — P(R')) )
Yieqr.py P(RIE®)P(RIE®)(1 = P(R))

P(R'|E®,E°) =

4.5 Comparing Clusters of Strings

Our algorithm merges clusters of strings with one another, using the above models. However,
these models give probabilities for synonymy decisions between two individual strings, not
two clusters of strings.

We have experimented with several different methods of determining the probability of
synonymy from the individual probability scores for each pair of strings, one taken from each
cluster. Initially, we followed the work of Snow, Jurafsky, and Ng (2006) in incorporating
transitive closure constraints in probabilistic modeling, and we made the same independence
assumptions. This approach provides a formal probabilistic framework for the problem that
is simple and efficient to calculate. In other experiments, we found that simply taking the
mean or geometric mean (or even the harmonic mean) of the string pair scores provided
slightly improved results. For completeness, we now provide a brief explanation of the
probabilistic method for combining string pair scores into cluster pair scores.

Let a clustering be a set of synonymy relationships between pairs of strings such that
the synonymy relationships obey the transitive closure property. We let the probability of
a set of assertions D given a clustering C be:

P(D|C) = H P(D; U Dj|R; ;) X H P(DiUDj|R7{j) (8)
Rt .eC Rf eC
) ¥

The metric used to determine if two clusters should be merged is the likelihood ratio, or
the probability for the set of assertions given the merged clusters over the probability given
the original clustering. Let C” be a clustering that differs from C' only in that two clusters
in C have been merged in C’, and let AC' be the set of synonymy relationships in C’ that
are true, but the corresponding ones in C' are false. This metric is given by:

t P(Rt . D;UD, _p Rf
P(DICP(DIC) — Ltseac PERGIDIUD)L - PE,)

g eac(l = P(R};|D; U Dy))P(R; ;) ®)

The probability P(R%\Di U D;) may be supplied by SSM, ESP, or the combination
model. In our experiments, we let the prior for the SSM model be 0.5. For the ESP and
combined models, we set the prior to P(Rf; j) = m, where P; and P; are the number
of potential properties for s; and s; respectively.
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5. RESOLVER’s Clustering Algorithm

Synonym resolution for the Web requires a clustering algorithm that can scale to a huge
number of strings in a sparse, high-dimensional space. Those requirements are difficult for
any clustering algorithm. On the other hand, very few words have more than a handful of
synonyms, so clusters tend to be quite small. Greedy agglomerative approaches are well-
suited to this type of clustering problem, since they start with the smallest possible clusters
and merge them as needed.

The RESOLVER clustering algorithm is a version of greedy agglomerative clustering,
with a key modification that allows it to scale to sparse, high-dimensional spaces and huge
numbers of elements. A standard greedy clustering algorithm begins by comparing each pair
of data points, and then greedily merges the closest pair. The biggest hurdle to scaling such
an algorithm is that the initial step of comparing every pair of data points requires O(N?)
comparisons for N points. Several proposed techniques have been able to speed up this
process in practice by filtering out some of the initial pairs of points to be compared; we build
on this work to provide a novel technique with a new bound of O(N log N) comparisons,
under very mild assumptions.

Our algorithm is outlined in Figure 2. It begins by calculating similarity scores between
pairs of strings, in steps 1-4. Then the scores are sorted and the best cluster pairs are merged
until no pair of clusters has a score above threshold. The novel part of the algorithm, step
4, compares pairs of clusters that share the same property, as long as no more than Max
clusters share that same property. This step limits the number of comparisons made between
clusters, and it is the reason for the algorithm’s improved efficiency, as explained below.

This algorithm compares every pair of clusters that have the potential to be merged,
assuming two properties of the data. First, it assumes that pairs of clusters with no shared
properties are not worth comparing. Since the number of shared properties is a key source
of evidence for our approach, these clusters almost certainly will not be merged, even if
they are compared, so the assumption is quite reasonable. Second, the approach assumes
that clusters sharing only properties that apply to very many strings (at least Maxz) need
not be compared. Since properties shared by many strings provide little evidence that the
strings are synonymous, this assumption is reasonable for synonym resolution.

We use Max = 50 in our experiments. Less than 0.1% of the distinct properties are
thrown out using this cutoff, but because these discarded properties apply to many strings
(at least Maz), and because the number of comparisons grows with the square of the
number of strings that a property applies to, the restriction drastically cuts down on the
total number of comparisons made. Table 1 shows the number of comparisons made by the
naive method of comparing all pairs of strings in a set of over 2 million extractions, and
the number of comparisons that RESOLVER makes in these experiments. Our algorithm
achieves a reduction by a factor of 136 for objects and 486 for relations in the number of
comparisons made. An unoptimized implementation of RESOLVER is able to cluster the
strings in these extractions in approximately 30 minutes. RESOLVER was also run on a
larger set containing over 100 million extractions and over 1 million distinct strings, and
was able to cluster these in approximately 3.5 days on a single machine.
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E :={e=(r,a,b)|(r,a,b) is an extracted assertion}
S := {s|s appears as a relation or argument string in E'}
Cluster := {}
Elements := {}
1. For each s € S:
Cluster[s| :== new cluster id
Elements[Cluster]s]] := {s}
2. Scores :={}, Index := {}
3. For each e = (r,a,b) € E:
property := (a,b)
Index[property] := Index|property] U {Cluster|r]}
property = (r,a)
Index|property] := Index|property] U {Cluster[b]}
property := (r,b)
Index|property] := Index|property] U {Cluster|a]}
4. For each property p € Index:
If |[Index[p]| < Max:
For each pair {c1,ca} C Index|p):
Scores[{c1, c2}] := similarity(cy, c2)
5. Repeat until no merges can be performed:
Sort Scores
UsedClusters := {}
Repeat until Scores is empty or top score < Threshold:
{c1,co} := removeT opPair(Scores)
If neither ¢ nor ¢ is in UsedClusters:

Elements[ci] :== Elements|ci| U Elements|cs]
For each e € Elements|ca]:
Cluster[e] == 1

delete co from FElements
UsedClusters := UsedClusters U {ci,ca}
Repeat steps 2-4 to recalculate Scores

Figure 2: RESOLVER’s Clustering Algorithm

5.1 Algorithm Analysis

Let D be the set of extracted assertions. The following analysis? shows that one iteration
of merges takes time O(|D|log|D|). Let NC be the number of comparisons between strings
in step 4. To simplify the analysis, we consider only those properties that contain a relation
string and an argument 1 string. Let Properties be the set of all such properties that
apply to fewer than Max strings, and let Strings, be the set of all strings that a particular

2. If the Max parameter is allowed to vary with log | D|, rather than remaining constant, the same analysis
leads to a slightly looser bound that is still better than O(|D|?).
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Num. Strings Compare All RESOLVER Speedup

Objects 9,797 47,985,706 352,177 136x
Relations 10,151 51,516,325 105,915 486x

Table 1: RESOLVER’s clustering algorithm cuts down on the number of comparisons made
between pairs of strings when clustering a data set of 2.1 million TEXTRUNNER
extractions. “Compare All” lists the number of comparisons that would be
made if every string were compared to every other one. RESOLVER reduces com-
parisons between object strings by a factor of 136 compared to this baseline,
and comparisons between relations strings by a factor of 486.

property p applies to. The number of comparisons is given by the size of the union of
the set of comparisons made for each property, which is upper-bounded by the sum of the
maximum number of comparisons made for each property:

NC = U {pair = {s1, sa}|pair C Strings,}
p€E Properties
< Z {pair = {s1, sa}|pair C Strings,}|
p€Properties
_ Z |Strings,| x (|Strings,| — 1)
p€Properties 2

Since each Strings, contains at most Max elements, we can upper-bound this expression
by

NC < Z |Strings,| x (Max — 1)

p€ Properties 2
Max — 1
= (a;) X Z | |Strings,|
p€E Properties
Max — 1
< (az) % | D

The last step bounds ) |Stringsp| with [D|, since the number of extractions is equal to
the number of times that each property is extracted. Since Zp |Strings,| is summing only
over properties that apply to fewer than Max strings, |D| may be greater than this sum.
Overall, the analysis shows that NC' is linear in |D|. Note that in general this bound is
quite loose because most properties apply to only a small number of strings, far fewer than
Max.

Step 5 requires time O(|D|log |D|) to sort the comparison scores and perform one iter-
ation of merges. If the largest cluster has size K, in the worst case the algorithm will take
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K iterations (and in the best case it will take log K). In our experiments, the algorithm
never took more than 9 iterations.

The analysis thus far has related the computational complexity to |D|, the size of the
input data set of extractions. Most existing techniques, however, have been analyzed in
terms of |S|, the number of distinct strings to be clustered. In order to relate the two
kinds of analysis, we observe that linguistic data naturally obeys a Zipf distribution for the
frequency of its distinct strings. That is, the most common string appears many times in the
extractions; the next-most common appears roughly (%)Z times as often for some parameter
z; the next most common appears roughly (%)Z times as often; and so on. The parameter z is
known as the Zipf parameter, and for naturally-occurring text it has typically been observed
to be around 1 (Zipf, 1932; Manning & Schuetze, 1999). If we can characterize the Zipf
distribution for the input data set of extractions, we can rewrite the number of extractions
|D| in terms of the number of distinct strings | S|, since |[D| = o frequency(s). Following
this line of thought to its conclusion, we find that when z < 1, as it is for our data set,
|D| grows linearly with |S|, and a complexity of O(|D|log|D|) is equivalent to a complexity
of O(|S|log|S|). When z = 1, O(|D|log|D|) is equivalent to a bound of O(|S|log?|S]).
And when z > 1, the bound is O(|S|?log|S]). Not until z = 2 is the asymptotic bound of
O(]S|?log|S|) worse than the O(|S|?) bound for comparing all string pairs, and such a high
value of z is highly unlikely for naturally occurring text. For more details and a complete
analysis, see Appendix C.

5.2 Relation to Other Speed-Up Techniques

McCallum, Nigam, and Ungar (2000) proposed a widely-used technique for pre-processing
a data set to reduce the number of comparisons made during clustering. They use a cheap
comparison metric to place objects into overlapping “canopies,” and then use a more ex-
pensive metric to cluster objects appearing in the same canopy. The RESOLVER clustering
algorithm is in fact an adaptation of the canopy method: like the Canopies method, it
uses an index to eliminate many of the comparisons that would otherwise need to be made.
Our method adds the restriction that strings are not compared when they share only high-
frequency properties. The Canopy method works well on high-dimensional data with many
clusters, which is the case with our problem. Our contribution has been to observe that if
we restrict comparisons in a novel and well-justified way, we can obtain a new theoretical
bound on the complexity of clustering text data.

The merge/purge algorithm (Hernandez & Stolfo, 1995) assumes the existence of a
particular attribute such that when the data set is sorted on this attribute, matching pairs
will all appear within a narrow window of one another. This algorithm is O(M log M) where
M is the number of distinct strings. However, there is no attribute or set of attributes that
comes close to satisfying this assumption in the context of domain-independent information
extraction.

RESOLVER’s clustering task can in part be reduced to a task of nearest-neighbor search,
for which several recent systems have developed fast new algorithms. The reduction works
as follows: the nearest-neighbor retrieval techniques can be used to find the most similar
string for every distinct string in the corpus, and then RESOLVER’s merge criteria can decide
which of these M pairs to actually merge. Several of the fastest nearest-neighbor techniques
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perform approximate nearest-neighbor search: given an error tolerance €, such techniques
will return a neighbor for a query node ¢ that is at most 1 + € times as far from ¢ as the
true nearest neighbor of q.

Examples of nearest-neighbor techniques can be divided into those that use hash-based
or tree-based indexing schemes. Locality-Sensitive Hashing uses a combination of hashing
functions to retrieve approximate nearest neighbors in time O(n%ﬂ) for error tolerance e.
So if for a given query point ¢ we are willing to accept neighbors that are at a distance of
at most twice the distance of its true nearest neighbor (¢ = 2), then the running time will
be O(n%) = O(y/n) to find a single nearest neighbor (Gionis, Indyk, & Motwani, 1999).
More recently, tree-based index structures such as metric cover trees (Beygelzimer, Kakade,
& Langford, 2006) and hybrid spill trees (Liu, Moore, Gray, & Yang, 2004), have offered
competitive or even better performance than Locality-Sensitive Hashing. The tree-based
algorithms have a complexity of O(dlogn), where d is the dimensionality of the space, to find
a single nearest neighbor. Metric trees offer exact nearest-neighbor search, and spill trees
offer faster search in practice at the cost of finding approximate solutions and using more
space for their index. These indexing schemes are powerful tools for nearest-neighbor search,
but their dependence on the dimensionality of the space makes it costly to apply them in our
case. RESOLVER operates in a space of hundreds of thousands of dimensions (the number
of distinct extract properties), while the fastest of these techniques have been applied to
spaces of around a few thousand dimensions (Liu et al., 2004). RESOLVER determines the
exact nearest neighbor, and in fact the exact distance between all relevant pairs of points
under the mild assumptions stated above, while operating in a huge-dimensional space.

5.3 RESOLVER Implementation

RESOLVER currently exists as a Java package containing 23,338 lines of code. It has separate
modules for calculating the Extracted Shared Property Model and the String Similarity
Model, as well as for clustering extractions. The basic version of the system accepts a file
containing tuples of strings as input, one tuple per line. Optionally, it accepts manually
labeled clusters as input as well, and will use those to output precision and recall scores. The
output of the system is two files containing all object clusters and relation clusters of size
two or more, respectively. Optionally, the system also outputs precision and recall scores.
Several other options allow the user to run extensions to the basic RESOLVER system, which
are discussed below in Section 7.

RESOLVER is currently a part of the TEXTRUNNER demonstration system. The demon-
stration system is available for keyword searches over the Web at
http://www.cs.washington.edu/research/textrunner/. This demonstration system contains
extractions from several hundred million Web documents. The extractions were fed into
RESOLVER and the resulting clusters were added to the TEXTRUNNER index so that key-
word searches return results for any member of the cluster containing the keyword being
searched for, and the displayed results are condensed such that members of the same cluster
are not repeated.
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6. Experiments

Several experiments below test RESOLVER and ESP, and demonstrate their improvement
over related techniques in paraphrase discovery, syr (Lin & Pantel, 2001) and the Cosine
Similarity Metric (CSM) (Salton & McGill, 1983; Hasegawa et al., 2004; Mann & Yarowsky,
2003). The first experiment compares the performance of the various similarity metrics,
and shows that RESOLVER’s output clusters are significantly better than ESP’s or SSM’s,
and that ESP’s clusters are in turn significantly better than sys;’s or CSM’s. The second
experiment measures the sensitivity of the ESP model to its hidden parameter, and shows
that for a very wide range of parameter settings, it is able to outperform both the sj;r and
CSM models.

6.1 Experimental Setup

The models are tested on a data set of 2.1 million assertions extracted from a Web crawl.
All models run over all assertions, but compare only those objects or relations that appear
at least 25 times in the data, to give the distributional similarity models sufficient data for
estimating similarity. Although this restriction limits the applicability of RESOLVER, we
note that it is intuitive that this should be necessary for unsupervised clustering, since such
systems by definition start with no knowledge about a string. They must see some number of
examples before it is reasonable to expect them to make decisions about them. We also note
that Downey, Schoenmackers, and Etzioni (2007) have shown for a different problem how
bootstrapping techniques can leverage performance on high-frequency examples to build
accurate models for low-frequency items.

Only proper nouns?® are compared, and only those relation strings that contain no punc-
tuation or capital letters are compared. This helps to restrict the experiment to strings
that are less prone to extraction errors. However, the models do use the other strings as
features. In all, the data contains 9,797 distinct proper object strings and 10,151 distinct
proper relation strings that appear at least 25 times. We created a gold standard data set
by manually clustering a subset of 6,000 object and 2,000 relation strings. In total, our gold
standard data sets contains 318 true object clusters and 330 true relation clusters with at
least 2 elements each.

As noted previously (Section 3.1), polysemous strings pose a particular representational
trouble for creating a gold standard data set, since there is no correct clustering that cap-
tures all of the synonymy relationships for polysemous strings, in general. We adopted the
following data-oriented strategy: polysemous strings were not clustered with other strings
unless there was a match for every sense of the strings that appeared in the data. For
example, there have been two U.S. Presidents named “Roosevelt”: Theodore Roosevelt and
Franklin Delano Roosevelt. After applying the criterion above, the gold standard data con-
tained a cluster for FDR and President Franklin Roosevelt, since both referred to Franklin
Delano Roosevelt unambiguously in this dataset. Likewise, President Theodore Roosevelt
and Teddy Roosevelt were put into their own cluster. The terms Roosevelt and President
Roosevelt, however, were used in various places to refer to both men, and so they could not

3. The following heuristic was used to detect proper nouns: if the string consisted of only alphabetic
characters, whitespace, and periods, and if the first character of every word is capitalized, it is considered
a proper noun. Otherwise, it is not.
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be clustered with either the Franklin Roosevelt cluster or the Theodore Roosevelt cluster.
Since they had the same set of senses in the data, the gold standard contained a separate
cluster containing just these two strings. Section 8.2 describes an extension to RESOLVER
that handles polysemous names. Our criterion for polysemy prevented 480 potential merges
in our gold standard data set between object clusters that might be synonymous. The pre-
vented merges usually affected acronyms, first names, and words like “Agency” that might
refer to a number of institutions, and they represent less than 10% of the strings in the gold
standard object data set.

In addition to a gold standard data set for evaluation, we manually created a data
set of development data containing 5 correct pairs of objects, 5 correct pairs of relations,
and also 5 examples of incorrect pairs for each. These 20 examples were not used in the
evaluation data. The development data was used to estimate a value for the ESP model’s
hidden parameter N, called its property multiple (see Section 4.2). We used a simple hill-
climbing search procedure to find a value for N separately for objects and relations, and
found that N = 30 worked best for objects on development data, and N = 500 for relations.
Although the amount of data required to set this parameter effectively is very small, it is
nevertheless an important topic for future work to come up with a method that will estimate
this parameter in a completely unsupervised manner in order to fully automate RESOLVER.

For our comparisons, we calculated the Cosine Similarity Metric (CSM) using the tech-
nique described in Section 4.3 and Equation 5, and the sj;; metric as defined in Equation
4.

6.2 Clustering Analysis

Our first experiment compares the precision and recall of clusterings output by five similarity
metrics: two kinds of previous work used in paraphrase discovery, CSM and sp;7; two
components of RESOLVER, ESP and SSM; and the full RESOLVER system.

The precision and recall of a clustering is measured as follows: hypothesis clusters are
matched with gold clusters such that each hypothesis cluster matches no more than one
gold cluster, and wvice versa. This mapping is computed so that the number of elements in
hypothesis clusters that intersect with elements in the matching gold clusters is maximized.
All such intersecting elements are marked correct. Any elements in a hypothesis cluster
that do not intersect with the corresponding gold cluster are marked incorrect, or irrelevant
if they do not appear in the gold clustering at all. Likewise, gold cluster elements are
marked as found if the matching hypothesis cluster contains the same element, or not found
otherwise. The precision is defined as the number of correct hypothesis elements in clusters
containing at least two relevant (correct or incorrect) elements, divided by the total number
of relevant hypothesis elements in clusters containing at least two relevant items. The recall
is defined as the number of found gold elements in gold clusters of size at least two, divided
by the total number of gold elements in clusters of size at least two. We consider only
clusters of size two or more in order to focus on the interesting cases.

Each model requires a threshold parameter to determine which scores are suitable for
merging. For these experiments we arbitrarily chose a threshold of 3 for the ESP model
(that is, the data needs to be 3 times more likely given the merged cluster than the unmerged
clusters in order to perform the merge) and chose thresholds for the other models by hand
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Objects Relations
Model Prec. Rec. F1 Prec. Rec. Fl
CSM 0.51 0.36 0.42 0.62 0.29 0.40
SMI 0.52 0.38 0.44 0.61 0.28 0.38
ESP 0.56 0.41 047 0.79 0.33 047
SSM 0.62 0.53 0.57 0.85 0.25 0.39

RESOLVER 0.71 0.66 0.68 0.90 0.35 0.50

Table 2: Comparison of the cosine similarity metric (CSM), s);;, RESOLVER components
(SSM and ESP), and the RESOLVER system. Bold indicates the score is significantly
different from the score in the row above at p < 0.05 using the chi-squared test with one
degree of freedom. Using the same test, RESOLVER is also significantly different from ESP,
sy, and CSM in recall on objects, and from sp;;, CSM and SSM in recall on relations.
RESOLVER’s F1 on objects is a 19% increase over SSM’s F1. RESOLVER’s F1 on relations
is a 28% increase over SSM’s F1. No significance tests were performed on the F1 values.

so that the difference between them and ESP would be roughly even between precision and
recall, although for relations it was harder to improve the recall. Table 2 shows the precision
and recall of our models.

6.3 Sensitivity Analysis

The ESP model requires a parameter for the number of potential properties of a string, but
the performance of ESP is not strongly sensitive to the exact value of this parameter. As
described in Section 4.2, we assume that the number of potential properties is a multiple
N of the number of extractions for a string. In the above experiments, we chose values of
N = 30 for objects and N = 500 for relations, since they worked well on held-out data.
However, as Tables 3 and 4 show, the actual values of these parameters may vary in a large
range, while still enabling ESP to outperform sj;; and CSM.

In these experiments, we measured precision and recall for just the similarity metrics,
without performing any clustering. We used the similarity metrics to sort the pairs of strings
(but only those pairs that share at least some property) in descending order of similarity.
We then place a threshold T on the similarity, and measure precision as the number of
correct synonym pairs with similarity greater than 7' divided by the total number of pairs
with similarity greater than 7. We measure recall by the number of correct synonym pairs
with similarity greater than 7" divided by the total number of correct synonym pairs. By
varying T', we can create a precision-recall curve and measure the area underneath the
curve.

These tables highlight two significant results. First, for both objects and relations the
ESP model outperforms CSM and sy by a large amount for parameter settings that vary
by close to a factor of two in either direction from the value we determined on development
data. Thus although we required a small amount of data to determine a value for this
parameter, the performance of ESP is not overly sensitive to the exact value. Second, the
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Metric AUC Fraction of Max. AUC Improvement over Baseline
CSM 0.0061 0.011 -21%
SMI 0.0083 0.014 0%

ESP-10 0.019 0.033 136%

ESP-30 0.024 0.041 193%

ESP-50 0.022 0.037 164%

ESP-90 0.018 0.031 121%
SSM 0.18 0.31 0%

RESOLVER 0.22 0.38 23%

Table 3: Area Under the precision-recall Curve (AUC) for object synonymy. The ESP
model significantly outperforms s;;; and CSM in AUC for a wide range of pa-
rameter settings. Likewise, RESOLVER significantly outperforms SSM in AUC.
The maximum possible AUC is less than one because many correct string pairs share no
properties, and are therefore not compared by the clustering algorithm. The third column
shows the score as a fraction of the maximum possible area under the curve, which for
objects is 0.57. The improvement over baseline column shows how much the ESP curves
improve over sy, and how much RESOLVER improves over SSM.

Metric AUC Fraction of Max. AUC Improvement over Baseline
CSM 0.0035 0.034 -19%
SMI 0.0044 0.042 0%

ESP-50 0.0048 0.046 9.5%

ESP-250  0.0087 0.083 98%
ESP-500  0.0096 0.093 121%
ESP-900 0.010 0.098 133%

SSM 0.022 0.24 0%
RESOLVER  0.029 0.31 31%

Table 4: Area Under the precision-recall Curve (AUC) for relation synonymy. The
ESP model significantly outperforms s);; and CSM in AUC for a wide range
of parameter settings. Likewise, RESOLVER significantly outperforms SSM in
AUC. The maximum possible area is less than one because many correct string pairs
share no properties, and are therefore not compared by the clustering algorithm. The
third column shows the score as a fraction of the maximum possible area under the curve,
which for relations is 0.094. The improvement over baseline shows how much the ESP
curves improve over sy, and how much RESOLVER improves over SSM.
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ESP model clearly provides a significant boost to the performance of the SSM model, as
RESOLVER’s performance significantly improves over SSM’s.

6.4 Discussion

In all experiments, ESP outperforms both CSM and sj;;. The sensitivity analysis shows
that this remains true for a wide range of hidden parameters for ESP, for both objects and
relations. Moreover, ESP’s improvement over the comparison metrics holds true when the
metrics are used in clustering the data. sps;’s performance is largely the same as CSM in
every experiment. Somewhat surprisingly, sy;; performs worse on relation clustering than
on object clustering, even though it is designed for relation similarity.

The results show that the three distributional similarity models perform below the SSM
model on its own for both objects and relations, both in the similarity experiments and
the clustering experiments. The one exception is in the clustering experiment for relations,
where SSM had a poor recall, and thus had lower F1 score than ESP and CSM. This is to
be expected, since ESP, sjrr, and CSM make predictions based on a very noisy signal. For
example, Canada shares more properties with United States in our data than U.S. does,
even though Canada appears less often than U.S. Importantly, though, there is a significant
improvement in both precision and recall when using a combined model over using SSM
alone. RESOLVER’s F1 is 19% higher than SSM’s on objects, and 28% higher on relations
in the clustering experiments.

Interestingly, the distributional similarity metrics (ESP, sp;7, and CSM) perform sig-
nificantly worse in the task of ranking string pairs than in the clustering task. One reason
is that the task of ranking string pairs does not measure performance when comparing a
cluster of two strings against a cluster of two other strings. In a greedy clustering process
such as the one used by RESOLVER, large groups of correct clusters can be formed as long
as the similarity metrics rank some correct pair of strings near the top, and are able to
improve their estimates of similarity when comparing clusters. This issue requires further
investigation.

There is clearly room for improvement on the synonym resolution task. Error analysis
shows that most of RESOLVER’s mistakes are due to three kinds of errors:

1. Extraction errors. For example, US News gets extracted separately from World Report,
and then RESOLVER clusters them together because they share almost all of the same
properties.

2. Similarity vs. Identity. For example, Larry Page and Sergey Brin get merged, as do
Angelina Jolie and Brad Pitt, and Asia and Africa.

3. Multiple word senses. For example, there are two President Bushes; also, there are
many terms like President and Army that can refer to multiple distinct entities.

Extraction systems are improving their accuracy over time, and we do not further address

these errors. The next two sections develop techniques to address the second and third of
these kinds of errors, respectively.
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7. Similar and Identical Pairs

As the error analysis above suggests, similar objects that are not exact synonyms make up
a large fraction of RESOLVER’s errors. This section describes three techniques for dealing
with such errors.

For example, RESOLVER is likely to make a mistake with the pair Virginia and West
Virginia. They share many properties because they have the same type (U.S. states), and
they have high string similarity. Perhaps the easiest approach for determining that these
two are not synonymous is simply to collect more data about them. While they are highly
similar, they will certainly not share all of their properties; they have different governors, for
example. However, for highly similar pairs such as these two, the amount of data required
to decide that they are not identical may be huge, and simply unavailable.

Fortunately, there are more sophisticated techniques for making decisions with the avail-
able data. One approach is to consider the distribution of words that occur between can-
didate synonyms. Similar words are likely to be separated by conjunctions (e.g., “Virginia
and West Virginia”) and domain-specific relations that hold between two objects of the
same type (e.g., “Virginia is larger than West Virginia”). On the other hand, synonyms
are more likely to be separated by highly specialized phrases such as “a.k.a.” Section 7.1
describes a method for using this information to distinguish between similar and identical
pairs.

A second approach is to consider how candidate synonyms behave in the context of
relations with special distributions, like functions or inverse functions. For example, the
“r is capital of y” relation is an inverse function: every y argument has at most one z
argument?. If capitals are extracted for both West Virginia and Virginia, then they may
be ruled out as a synonymous pair when the capitals are seen to be different. On the other
hand, if Virginia and VA share the same capital, that is much stronger evidence that the two
are the same than if they shared some other random property, such as that a town called
Springfield is located there. Section 7.2 describes a method for eliminating similar pairs
because they have different values for the same function or inverse function, and Section
7.3 illustrates a technique for assigning different weights to different evidence based on how
close to functional the property is. Section 7.4 gives results for each of these techniques.

7.1 Web Hitcounts for Synonym Discovery

While names for two similar objects may often appear together in the same sentence, it is
relatively rare for two different names of the same object to appear in the same sentence.
Moreover, synonymous pairs tend to appear in idiosyncratic contexts that are quite different
from the contexts seen between similar pairs. RESOLVER exploits this fact by querying the
Web to determine how often a pair of strings appears together in certain contexts in a large
corpus. When the hitcount is high, RESOLVER can prevent the merge.

Specifically, given a candidate synonym pair s; and s, the Coordination-Phrase Filter
uses a discriminator phrase (Etzioni et al., 2005) of the form “s; and s2”. It then computes

4. It is also a function.
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a variant of pointwise mutual information, given by

hit d s9)?
coordination score(sy, s3) = hitls?if; :nhit222)

The filter removes from consideration any candidate pair for which the coordination score
is above a threshold, which is determined on a small development set. The results of
coordination-phrase filtering are presented below.

The Coordination-Phrase Filter uses just one possible context between candidate syn-
onym pairs. A simple extension is to use multiple discriminator phrases that include com-
mon context phrases like “or” and “unlike.” A more complex approach could measure
the distribution of words found between a candidate pair, and compare that distribution
with the distributions found between known similar or known identical pairs. These are
important avenues for further investigation.

One drawback of this approach is that it requires text containing a pair of objects in
close proximity. For a pair of rare strings, such data will be extremely unlikely to occur —
this type of test exacerbates the data sparsity problem. The following two sections describe
two techniques that do not suffer from this particular problem.

7.2 Function Filtering

Functions and inverse functions can help to distinguish between similar and identical pairs.
For example, Virginia and West Virginia have different capitals: respectively, Richmond
and Charleston. If both of these facts are extracted, and if RESOLVER knows that the
capital of relation is an inverse function, it ought to prevent Virginia and West Virginia
from merging.

Given a candidate synonym pair x1 and x2, the Function Filter prevents merges between
strings that have different values for the same function. More precisely, it decides that two
strings y1 and yo match if their string similarity is above a high threshold. It prevents a
merge between x; and z if there exists a function f and extractions f(z1,y1) and f(x2,y2),
and there are no such extractions such that y; and yo match (and wvice versa for inverse
functions). Experiments described in Section 7.4 show that the Function Filter can improve
the precision of RESOLVER without significantly affecting its recall.

The Function Filter requires knowledge about which relations are actually functions or
inverse functions. Others have investigated techniques for determining such properties of
relations automatically (Popescu, 2007); in the experiments, a pre-defined list of functions
is used. Table 5 lists the set of functions used in the experiments for the Function Filter.
These functions were selected by manually inspecting a set of 500 common relations from
TEXTRUNNER’s extractions, and selecting those that were reliably functional. Only a few
met the criteria, partly because of polysemy in the data, and partly because of extraction
noise.

7.3 Function Weighting

While the Function Filter uses functions and inverse functions as negative evidence, it
is also possible to use them as positive evidence. For example, the relation married is
not strictly one-to-one, but for most people the set of spouses is very small. If a pair of
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is capital of is capital city of
named after was named after
headquartered in is headquartered in
was born in was born on

Table 5: The set of functions used by the Function Filter.

strings are extracted with the same spouse—e.g., FDR and President Roosevelt share the
property (married, Eleanor Roosevelt)—this is far stronger evidence that the two strings
are identical than if they shared some random property, such as (spoke to, reporters).

There are several possibilities for incorporating this insight into RESOLVER. First, any
such technique will need some method for estimating the “function-ness” of a property, or
how close the property is to being functional. We define the degree of a relation to be the
number of y values that are expected to hold true for a given z value. We call a property
high-degree if it is expected to apply to many strings (highly non-functional), and low-degree
if it is expected to apply to few strings (close to functional).

The degree of a property may be estimated from the relation involved in the property
and the set of extractions for that relation, or it may be based on how many objects
the property applies to. For example, if there are 100 unique extractions for the married
relation, and there are 80 unique x argument strings in those 100 extractions, then on
average each z string participates in 100/80 = 1.25 married relations. One method might
assign every property containing the married relation this statistic as the degree. On the
other hand, suppose there are two extractions for the property (married, John Smith). A
second method is to assign a degree of 2 to this property.

There are also two possible ways to incorporate the degree information into the ESP
model. The ESP model may be altered so that it directly models the degrees of the prop-
erties during the process of selecting balls from urns, but this vastly complicates the model
and may make it much more computationally expensive. A second option is to reweight
the number of shared properties between strings based on a TF-IDF style weighting of the
properties, and calculate the ESP model using this parameter instead. This requires mod-
ifying the ESP model so that it can handle non-integer values for the number of shared
properties.

In experiments so far, one set of these options was explored, while others remain for
future investigation. The Weighted Extracted Shared Property Model (W-ESP) sets the
degree of a property to be the number of extractions for that property. Second, if strings
s; and s; share all properties p € P, it sets the value for the number of shared properties
between s; and s; to be

Z 1
ey degree(p)

The ESP model has been changed to handle continuous values for the number of shared
properties by changing all factorials to gamma functions, and using Stirling’s approximation
whenever possible.
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Model Prec. Rec. F1
RESOLVER 0.71 0.66 0.68
RESOLVER + Function Filtering 0.74 0.66 0.70
RESOLVER + Coordination Phrase Filtering 0.78 0.68 0.73
RESOLVER + Weighted ESP 0.71  0.65 0.68

RESOLVER + Function and Coord. Phrase Filtering 0.78 0.68 0.73

Table 6: Comparison of object merging results for the RESOLVER system, RESOLVER plus
Function Filtering, RESOLVER plus Coordination-Phrase Filtering, RESOLVER
using the Weighted Extracted Shared Property Model, and RESOLVER plus both
types of filtering. Bold indicates the score is significantly different from RESOLVER’s
score at p < 0.05 using the chi-squared test with one degree of freedom. RESOLVER+
Coordination Phrase Filtering’s F1 on objects is a 28% increase over SSM’s F1, and a 7%
increase over RESOLVER’s F1.

Unlike the Function Filter, the W-ESP model does not require additional knowledge
about which relations are functional. And unlike the Coordination-Phrase Filter, it does
not require Web hitcounts or a training phase. It works on extracted data, as is.

7.4 Experiments

The extensions to RESOLVER attempt to address the confusion between similar and identical
pairs. Experiments with the extensions, using the same datasets and metrics as in Section 6
demonstrate that the Function Filter (FF) and the Coordination-Phrase Filter (CPF) boost
RESOLVER’s precision. Unfortunately, the W-ESP model yielded essentially no improvement
of RESOLVER.

Table 6 contains the results of our experiments. With coordination-phrase filtering,
RESOLVER’s F1 is 28% higher than SSM’s on objects, and 6% higher than RESOLVER’s F1
without filtering. While function filtering is a promising idea, FF provides a smaller benefit
than CPF on this dataset, and the merges that it prevents are, with a few exceptions,
a subset of the merges prevented by CPF. This is in part due to the limited number of
functions available in the data.

Both the Function Filter and the Coordination-Phrase Filter consistently blocked merges
between highly similar countries, continents, planets, and people in our data, as well as some
other smaller classes. The biggest difference is that CPF more consistently has hitcounts
for the similar pairs that tend to be confused with identical pairs. Perhaps as the amount
of extracted data grows, more functions and extractions with functions will be extracted,
allowing the Function Filter to improve.

Part of the appeal of the W-ESP model is that it requires none of the additional inputs
that the other two models require, and it applies to each property, rather than to a subset
of the relations like the Function Filter. Like TFIDF weighting for the Cosine Similarity
Metric, the W-ESP model uses information about the distribution of the properties in the
data to weight each property. For the data extracted by TEXTRUNNER, neither W-ESP
nor TFIDF weighting seems to have a positive effect. More experiments are required to test
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whether W-ESP might prove more beneficial on other data sets where TFIDF does have a
positive effect.

8. RESOLVER and Cross-Document Entity Resolution

Up to this point, we have made the single-sense assumption, or the assumption that every
token has exactly one meaning. While this assumption is defensible in small domains,
where named entities and relations rarely have multiple meanings, even there it can cause
problems: for example, the names Clinton and Bush each refer to two major players in
American politics, as well as a host of other people. When extractions are taken from
multiple domains, this assumption becomes more and more problematic.

We now describe a refinement of the RESOLVER system that handles the task of Cross-
Document Entity Resolution (Bagga & Baldwin, 1998), in which tokens or names may have
multiple referents, depending on context. An experiment below compares RESOLVER with
an existing entity resolution system (Li et al., 2004a), and demonstrates that RESOLVER can
handle polysemous named entities with high accuracy. This extension could theoretically
be applied to highly polysemous tokens such as common nouns, but this has not yet been
empirically demonstrated.

8.1 Clustering Polysemous Names with RESOLVER

Recall that the synonym resolution task is defined as finding clusters in the set of distinct
strings S found in a set of extractions D (Section 3). Cross-Document Entity Resolution
differs from synonym resolution in that it requires a clustering of the set of all string
occurrences, rather than the set of distinct strings. For example, suppose a document
contains two occurrences of the token DP, one where it means “Design Pattern” and one
where it means “Dynamic Programming.” Synonym resolution systems treat DP as a single
item, and will implicitly cluster both occurrences of DP together. A Cross-Document Entity
Resolution system treats each occurrence of DP separately, and therefore has the potential
to put each occurrence in a separate cluster when they mean different things. In this way,
a Cross-Document Entity Resolution system has the potential to handle polysemous names
correctly.

Because of the change in task definition, the sources of evidence for similarity are sparser.
For each occurrence of a named entity in its input, RESOLVER has just a single TEXT-
RUNNER extraction describing the occurrence. To achieve reasonable performance, it needs
more information about the context in which a named entity appears. We change RE-
SOLVER’s representation of entity occurrences to include the nearest F named entities in
the text surrounding the occurrence. That is, each entity occurrence x is represented as
a set of named entities y, where y appears among the nearest E entities in the text sur-
rounding x. Suppose, for instance, that ey is an occurrence of DP with Bellman and Viterbi
in its context, and eo is another occurrence with 00PSLA and Factory in its context. e
would be represented by the set {Bellman, Viterbi}, and es would be represented by the set
{Factory, OOPSLA}.

Table 7 summarizes the major ways in which we extended RESOLVER to handle polyse-
mous names. With these extensions in place, RESOLVER can proceed to cluster occurrences
of entities more or less the same way that it clusters entity names for synonym resolution.
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Original RESOLVER

Extended RESOLVER

Input

A set of distinct strings .S, and
for each s € S, a set of ex-
tracted properties of s.

A bag of string occurrences O,
and for each occurrence o € O,
a set of named entities appear-
ing close to o in context.

SSM Compares

Character sequences

Character sequences

ESP Compares

Sets of extracted properties

Sets of named entities

Output

A clustering of the set of dis-
tinct strings S

A clustering of the set of string
occurrences O

Table 7: The differences between the original RESOLVER system and the extended RE-
SOLVER system for handling polysemous names.

The SSM model works as above, and the ESP model calculates probabilities of coreference
based on sets of named entities in context rather than extracted properties. The clustering
algorithm eliminates comparisons between occurrences that share no part of their contexts,
or only very common contextual elements. In the end, RESOLVER produces sets of corefer-
ential entity occurrences, which can be used to annotate extractions containing these entity
occurrences for coreference relationships.

8.2 Experiment with Cross-Document Entity Resolution

We tested RESOLVER’s ability to handle polysemous names on a data set of 300 docu-
ments from 1998-2000 New York Times articles in the TREC corpus (Voorhees, 2002). Li
et al. (2004b) automatically ran a named-entity tagger on these documents and manually
corrected them to identify approximately 4,000 occurrences of people’s names. They then
manually annotated the occurrences to form a gold standard set of coreferential clusters.

For each named entity occurrence in this data set, we extracted the set of the closest
named entities, with E set to 100, to represent the context for the named entity occurrence.
We then ran RESOLVER to cluster the entity occurrences. We set ESP’s latent parameter N
to 30, as in the experiments above. We did not have any development data to set the merge
threshold, so we used the following strategy: we arbitrarily picked a single occurrence of a
common name from this data set (A1 Gore), found a somewhat uncommon variant of the
name (Vice President Al Gore), and set the threshold at a value just below the similarity
score for this pair (7.5). For every round of merging in RESOLVER’s clustering algorithm,
we filtered the top 20 proposed merges using the Coordination Phrase Filter, with the same
threshold as used in the previous experiments.

Li et al. propose a generative model of entity coreference that we compare against. Their
model requires databases of information about titles, first names, last names, genders, nick-
names, and common transformations of these attributes of people’s names to help compute
the probability of coreference. It uses Expectation-Maximization over the given data set
to compute parameters, and an inference algorithm that is O(/N?) in the number of word
occurrences N. Full details are provided by Li et al. (2004b).
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Precision Recall F1

RESOLVER 97.3 94.7  96.0
Li et al. 91.5 94.0 92.7

Table 8: RESOLVER outperforms the system by Li et al. on a Cross-Document Entity Res-
olution task involving polysemous people’s names. Differences are statistically
significant for both precision and recall using the two-tailed Chi-Square test
with one degree of freedom (p < 0.01,a = 910.9 for precision and a = 20.6 for
recall).

Following Li et al., we evaluate clusters using precision and recall calculated as follows:
let O, be the set of entity occurrence pairs that are predicted to be coreferential (i.e., they
belong to the same cluster), and let O, denote the set of correct coreferential pairs, as

calculated from the manual clustering. Then precision P = 7|Olpg O“‘l, recall R = Lfg ?“‘,
p a
_ 2PR
and F1 = 5 R

Table 8 shows the results of running RESOLVER on this data set, as well as the best
results reported by Li et al. (2004b) on the same data. ® In follow-up work, Li et al. (2004a)
demonstrate that their unsupervised model outperforms three supervised techniques that
learn parameters for how much different attributes (first name, honorifics, etc.) contribute
to the similarity of occurrence pairs.

In terms of absolute performance, RESOLVER is quite accurate in dealing with the poly-
semous names in this data set. Its performance on this data set is significantly higher than
on TEXTRUNNER extractions, partly because it has extra information available in terms of
the contexts of occurrences, and partly because it is starting out with manually labelled
named entities, rather than noisy extractions.

RESOLVER’s precision is significantly higher than Li et al.’s, with roughly equal recall.
Because of the large sample sizes, the differences in precision and recall are both statis-
tically significant (two-tailed Chi-Square test with one degree of freedom, p < 0.01). In
comparison with Li et al.’s system, RESOLVER’s SSM model is much less sophisticated, but
it compensates by using Web data and a strong measure of distributional similarity. It does
not need to rely on manually curated databases for expert knowledge about the domain, or
in this case, the similarity of people’s names.

9. Conclusion and Future Work

We have shown that the unsupervised and scalable RESOLVER system is able to find clusters
of coreferential object names in extracted relations with a precision of 78% and a recall of

5. In follow-up work, Li et al. (2004a) report an F; score of 95.1 for this task using what appears to be the
same model and the same data, but the result is calculated by testing the model on 6 random splits of
the data and averaging the score. We do not have access to these random splits. One possible reason
that the reported results are different is that splitting up the test data reduces the number of coreference
relations that need to be found and the potential number of incorrect coreference relations that can cause
a system confusion.
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68% with the aid of coordination-phrase filtering, and can find clusters of coreferential
relation names with precision of 90% and recall of 35%. We have demonstrated significant
improvements over using existing similarity metrics for this task by employing a novel
probabilistic model of synonymy. On a much cleaner set of extractions from the TREC
corpus, we demonstrated that RESOLVER was able to achieve 97% precision and 95% recall
by employing an extension that allowed it to cluster different senses of the same name into
different groups.

Perhaps the most critical aspect to extending RESOLVER is refining its ability to handle
polysemy. Further experiments are needed to test its ability to handle new types of pol-
ysemous named entities and extracted data that has not been manually cleaned, as is the
case for Li et al.’s data. In addition, we plan to incorporate the ESP model into a system
for unsupervised coreference resolution, including common nouns and pronouns. We will
extend the model to include aspects of local salience, which can be important in coreference
decisions for noun phrases other than proper names.

Currently we are setting the ESP model’s single hidden parameter using a development
set. While the required amount of data is very small, the model might be more accurate
and easier to use if the hidden parameter were set by sampling the data, rather than using
a development set that must be manually assembled. That is, RESOLVER could inspect a
substantial portion of the data, and then measure how often new properties appear in the
remaining data. The rate of appearance of new properties should offer a strong signal for
how to set the hidden parameter.

Several extensions to RESOLVER have dealt with ruling out highly similar non-synonyms
(Section 7), with varying degrees of success at boosting RESOLVER’s precision. We have also
considered another extension to RESOLVER that seeks to use “mutual recursion” to boost
recall, much like semi-supervised information extraction techniques use “mutual bootstrap-
ping” between entities and patterns to increase recall (Riloff & Jones, 1999). The method
begins by clustering objects, then clusters relations using the merged object clusters as
properties (rather than the raw object strings), then clusters objects again using relation
clusters as properties, and so on. Although we have so far been unable to boost the perfor-
mance of RESOLVER using this technique on TEXTRUNNER data, experiments on artificial
simulations suggest that under suitable conditions, mutual recursion could boost recall by
as much as 16%. It remains an important area of future work to determine if there is
natural data for which this technique is indeed useful, and to investigate other methods for
increasing RESOLVER’s recall.

Acknowledgments

This research was supported in part by Temple University, NSF grants I1S-0535284 and
11S-0312988, ONR grant N00014-08-1-0431 as well as gifts from Google, and was carried
out at the University of Washington’s Turing Center and Temple University’s Center for
Information Science and Technology. We would like to thank the anonymous reviewers and
the JAIR associate editor in charge of this paper for their helpful comments and suggestions.
We would also like to thank the KNOWITALL group at the University of Washington for
their feedback and support.

285



YATES & ETZIONI

Appendix A. Derivation of the Extracted Shared Property Model

The Extracted Shared Property (ESP) Model is introduced in Section 4. It is a method for
calculating the probability that two strings are synonymous, given that they share a certain
number of extractions in a data set. This appendix gives a derivation of the model.

Let s; and s; be two strings, each with a set of extracted properties F; and E;. Let U;
and U; be the set of potential properties for each string, contained in their respective urns.
Let S;; be the number of properties shared between the two urns, or |U; N Uj|. Let R;;
be the random variable for the synonymy relationship between s; and s;, with R; ; = R; j
denoting the event that they are, and le’ j that they are not. The ESP model states that the
probability of Rf, ;18 the probability of selecting the observed number of matching properties
from two urns containing all matching properties, divided by the probability of selecting the
observed number of matching properties from two urns which may contain some matching
and some non-matching properties:

Proposition 2 If two strings s; and sj have |U;| = P; and |U;| = P; potential properties
(or instances), with min(P;, P;) = Ppin; and they appear in extracted assertions E; and Ej
such that |E;| = n; and |Ej| = n;; and they share k extracted properties (or instances), the
probability that s; and s; co-refer is:

(") Eorsmo A2 () Giiies) G i)

Yk <Pom (i) Zrszo Cid) () G i) G ity

(10)

The ESP model makes several simplifying assumptions:
1. Balls are drawn from the urns without replacement.
2. Draws from one urn are independent of draws from any other urn.

3. Each ball for a string is equally likely to be selected from its urn: if U = {u1,...,un}
and X denotes a random draw from U, P(X = u;) = ﬁ for every u;.

4. The prior probability for S; ;, given the number of properties in U; and Uj, is uniform:
1

vOgsgmin(ﬂ,Pj)P(Sz‘,j = S\sz Pj) = W

5. Given extracted properties for two strings and the number of potential properties for
each, the probability of synonymy depends only on the number of extracted properties
for each, and the number of shared properties in the extractions:
P(R};|E;, Ej, P;, Pj) = P(R} |k, ni,nj, P;, P).

6. Two strings are synonymous if and only if they share as many potential properties as
possible: Rg,j = (|U; N Uj| = min(F;, P;)).

Before proving Proposition 2, we prove a simple property of urns under the assumptions
above.
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Lemma 1 Given n draws without replacement from an urn containing a set of properties

U, the probability of selecting a particular set S C U is ﬁ if |S| = n, and zero otherwise.

(is))

Proof of Lemma 1: Let U = {uy,...,uy,} denote the elements of U, and let X;,..., X,
denote the independent draws from the urn. If n = 1, then P(S = {u;}) = P(X; = w;) = ﬁ

by assumption 3 above. Now suppose that n = ng, and that the lemma holds for every
n’ < ng.

P(S:{.’I}l,...,xno|$i€U}) = ZP(S""_l:{xl,...,xi_l,xi+1,...,xno})><
A

P(Xn = .731')
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Proof of Proposition 2:

We begin by transforming the desired expression, P (Rf j |E;, Ej, P;, Pj), into something that
can be derived from the urn model. By assumptions 5 and 6, we get

Then, by applying Bayes Rule, we get

P(Si,j = Pmin|k7nianjapi)‘F)j) =

P(k|S;j = Pmin,ni,nj, Pi, Py)P(S; j = Pmin|ni,nj, Pi, Pj)

(12)
> ok<Si ;< Ppin P (Klnis 15, Py, Py) P (S j|ni, g, Py, Pj)

Since we have assumed a uniform prior for S;; (assumption 4), the prior terms vanish,

leaving
P(k|S;j = Ppin,ni,n;, P;, P;)

- Zkisi,jSPmm P(k|ni’ s B, Pj)

The second step of the derivation is to find a suitable expression for

(13)

P(k|Si,j7n’i7nj7 -Pi7 P])
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The probability can be written out fully as:

> P(Ei, Ej|Si;,ni,ng, P, Py)

E;CU;:|E;|=n;
EjCUj:‘Ej‘ZTLj
‘EiﬁEﬂ:k

P(k|S; j,ni,ng, P, Pj) =

> P(Ei,Ej|Sij,ni,n;, P, P))
E;CU;:|E;i|=n;
E;CUj:|Ej|=n;
By assumption 2, P(E;, E;) = P(E;)P(E;). By Lemma 1, all P(E;) terms are equal, since
they are all sets of size n;, and likewise for P(E;) terms. Thus, to get the desired probability
expression, we simply need to count the number of ways of taking subsets from the two
urns such that they share k properties.

> !
E;CU;:|Eqi|=n;
EjCUjI|Ej|=nj

|E;NE;|=k
P(k’S’L,janlvn]7P’L=P]) = - (15)
>, !
Ez‘CUi:|EZ‘|=ni

E;CUj:|Ej|=n;
Count(k, n;,n;|Si ;, B, Pj)

= 16
Count(ni,nj|S,~7j,Pi,Pj) ( )

There are (5 z) ways of picking each set F;, so

Count(n;, n;|S; ;, P, Pj) = <B> <PJ> (17)
n; Uz

To complete the derivation, we need an expression for Count(k, n;, nj| S; j, P;, P;). This
involves splitting the relevant sets into several parts. First U; and U; each contain some
shared and unshared properties. Let T; ; = U;NU;, V; = U;—T; ;, and V; = U;—T; ;. Second,
the selected sets from each urn, F; and £}, each have properties that come from the set of
shared properties and the set of unshared properties. Let K = E;NE;, F; = (E;NT; ;) — K,
and Fj = (EJ OTZ'J') - K.

With these sets defined, each set F; and F; is composed of three distinct subsets: the
shared subset (K); a subset also selected from the shared potential properties, T ;, but
which is not shared (F; and F}); and the remaining elements, which are chosen from the
complements of the shared properties (V; and V}). Since the subsets are distinct, we can
count them separately and multiply the results to arrive at the final count.

The number of ways of selecting the shared subset is clearly (Sli’j ) The sizes of F; and
F; are unknown, however, so we must sum over all possibilities. Let r = |F;|, and s = |F}|.
There are S; ; — k remaining shared potential properties in 7; ; from which to choose the
r + s elements of F; and F}, and then (ris) ways to split the two into distinct subsets.
There are n; — (k + 1) elements left to choose in Ej;, and nj — (k + s) elements left to choose
in Ej. These must be selected from the unshared potential properties in V; and V}, which
have sizes P; — S; ; and P; — 5; ; respectively. Putting these pieces together, we have

288



UNSUPERVISED METHODS FOR DETERMINING OBJECT AND RELATION SYNONYMS

Count(k,ni,nj\Siﬁj, .PZ', P]) =

9 DX vy Q[ Ot )| O B

The ranges for r and s are somewhat involved. They must obey the following constraints:
1. r,s >0
2.r>n—k—-F+5;;
3. s>n; —k— P+ 5;;
4. r<n; — k
5. s<nj—k
6. 7+5< 8 —k

Plugging Equation 18 into Equation 16, and that in turn into Equation 13 yields the
desired result. O

Appendix B. Fast Calculation of the Extracted Shared Property Model

The ESP model can be expensive to calculate if done the wrong way. We use two techniques
to speed up the calculation immensely. For reference, the full formulation of the model is:

P(Rf7]‘k7nl7nj7 Pi7 Pj) -

() Lm0 Ci) CF) i) G i)
Sk <hum (1) Zrszo (o) (8 Gl ) ()

Note that the equation involves three sums, ranging over O(Ppin), O(n;i), and O(n;) values
respectively. In effect, this is O(n?) in the number of extractions for a string. Furthermore,
each step requires the expensive operation of calculating binomial coefficients. Fortunately,
there are several easy ways to drastically speed up this calculation.

First, Stirling’s approximation can be used to calculate factorials (and therefore the
binomial function). Stirling’s approximation is given by:

1 n"
[ 2 - {—=
n 7T<n—|-3> <e">

To avoid underflow and overflow errors, log probabilities are used everywhere possible. This
calculation can then be done using a few simple multiplications and logarithm calculations.
Stirling’s formula converges to n! like O(%); in practice it proved to be accurate enough of
an approximation of n! for n > 100. In ESP’s implementation, all other values of n! are
calculated once, and stored for future use.

(19)
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Second, the calculation of P(k|ny,ng, P1, P2) can be sped up by simplifying the expres-
sion to get rid of two of the sums. The result is the following equivalent expression, assuming
without loss of generality that P, < Pi:

Py+1 Pi—
Py (P
(ny) Giy)
This simplification removes two of the sums, and therefore changes the complexity of cal-
culating ESP from O(Pynang) to O(ng). This was sufficient for our data set, but on larger

data sets it might be necessary to introduce sampling techniques to improve the efficiency
even further.

P(k|n1,n2,P1,P2) = (20)

Appendix C. A Better Bound on the Number of Comparisons Made by
the RESOLVER Clustering Algorithm

Section 4 showed that the RESOLVER clustering algorithm initially makes O(N log N) com-
parisons between strings in the data, where N is the number of extractions. Heuristic meth-
ods like the Canopies method (McCallum et al., 2000) require O(M?) comparisons, where
M is the number of distinct strings in the data. We claim that O(N log N) is asymptotically
better than O(M?) for Zipf-distributed data.

Zipf-distributed data is controlled by a shape parameter, which we call z. The claim
above holds true for any shape parameter z < 2, as shown below. Fortunately, in natural
data the shape parameter is usually very close to z = 1, and in RESOLVER data it was
observed to be z < 1.

Let S be the set of distinct strings in a set of extractions D. For each s € S, let freq(s)
denote the number of times that s appears in the extractions. Thus |D| = > g freq(s).
Let M = |S| and N = |D|.

Proposition 3 If S has an observed Zipf distribution with shape parameter z, then

1. ifz<1, N=0O(M)

2. ifz=1, N=0(Mlog M)

3. ifz>1, N =0(M?)

Proof: Let si,...,sy be the elements of S in rank order from highest frequency string
(s1) to lowest frequency string (sps). Since S has an observed Zipf distribution with shape

parameter z, freq(s;) = ]\i/[Z. Given the assumptions, z and M determine the number of
extractions made:

Nae = Y freq(s) (21)

seS
MZ
= > = (22)
1<i<M
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We can build a recurrence relation for the value of N as M changes (holding z constant)
by noting that

2M)?
N = 3 ) (23)
1<i<2M
1 1
= (@2M) ) = + (M)’ > = (24)
1<i<M M+1<i<2M
= 2Ny, + f2(M) (25)

2M)*
where f.(M) = ZM+1§i§2M %
There are two important properties of f,(M).

1. Note that every term in the sum for f,(M) is less than (2]3[42)2 = 2% Thus f,(M) is

bounded above by 2% - M, so if z is held constant, f,(M) = O(M).

2. Every term in the sum is at least 1, so f,(M) > M and f,(M) = Q(M); combining
these two facts yields f,(M) = O(M).

These two properties of f,(M) will be used below.

We can now use the recurrence relation and the Master Recurrence Theorem (Cormen,
Leiserson, & Rivest, 1990) to prove the three claims of the proposition. For reference, the
Master Recurrence Theorem states the following:

Theorem 1 Let a > 1 and b > 1 be constants, let f(n) be a function, and let T'(n) be
defined on the non-negative integers by the recurrence

T(n) = aT(n/b) + f(n)
Then T(n) can be bounded asymptotically as follows.
1. If f(n) = O(n'8» =) for some constant € > 0, then T(n) = O (n!8 )
2. If f(n) = ©(n'°% ), then T(n) = O(n'°221logn)

3. If f(n) = Q(n'°&a+€) for some constant € > 0, and if af(n/b) < cf(n) for some
constant ¢ < 1 and all sufficiently large n, then T (n) = O(f(n)).

First consider the case where z > 1. The recurrence for Njs . can clearly be made to fit
the form for Theorem 1 by setting a = 2%, b =2, and f = f,(M). Since f,(M) is bounded
above by 2% - M = O(M), it is also clearly bounded above by O(M82€) = O(M?*~¢),
where we can take € to be anything in (0,z — 1). Thus the case one of Theorem 1 applies,
and Ny, = O(M"°8:2) = O(M?).

Next consider the case where z = 1. Since f,—1(M) = ©(M) and O(M™#*) = (M),
case two of Theorem 1 applies. Thus Ny .—; = ©O(M°% 2 1log M) = ©(M log M).

Finally, consider the case where z < 1. Unfortunately, the regularity condition in case
3 of Theorem 1 does not hold for f,(M). Instead of using Theorem 1, we resort to a proof
by induction.
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Specifically, we show by induction that whenever z < 1 and M > 2, Njs . < ¢- M, where

z z . .
c= Max(%, 232Z). First, consider the case where M = 2:

2 92
iz

=1

= 2°4+1

22 +1

NZ,Z =

2
< ¢-M

We now prove the induction case.

NMz

)

2ZNM/2,Z =+ fz(M/2)

2%cM /2 + f.(M/2) (by the induction hypothesis)
9%cM /2 + 27 M /2

cM - (2771 42771 ¢)

2— 2%
cM - (257 2712 (by the definition of c)

2Z
cM

ININ A

IN

O

The data used in RESOLVER experiments in Section 4 had a shape parameter z < 1, so
the bound on the number of comparisons made was O(N log N) = O(M log M). For z =1,
the bound is O(Nlog N) = O(Mlog M log(Mlog M)) = O(Mlog? M). For z > 1, the
bound is O(M?1log M). Not until z = 2 would the asymptotic performance of O(M?log M)
have been worse than O(M?). If past experience is any guide, such a high value for z is
unlikely for extractions from naturally occurring text.
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