
Journal of Artificial Intelligence Research 34 (2009) 209-253 Submitted 06/2008; published 03/2009

Mechanisms for Making Crowds Truthful

Radu Jurca radu.jurca@gmail.com

Google Inc., Switzerland
Boi Faltings boi.faltings@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Artificial Intelligence Laboratory (LIA)
CH-1015 Lausanne, Switzerland

Abstract

We consider schemes for obtaining truthful reports on a common but hidden signal
from large groups of rational, self-interested agents. One example are online feedback
mechanisms, where users provide observations about the quality of a product or service
so that other users can have an accurate idea of what quality they can expect. However,
(i) providing such feedback is costly, and (ii) there are many motivations for providing
incorrect feedback.

Both problems can be addressed by reward schemes which (i) cover the cost of obtaining
and reporting feedback, and (ii) maximize the expected reward of a rational agent who
reports truthfully. We address the design of such incentive-compatible rewards for feedback
generated in environments with pure adverse selection. Here, the correlation between the
true knowledge of an agent and her beliefs regarding the likelihoods of reports of other
agents can be exploited to make honest reporting a Nash equilibrium.

In this paper we extend existing methods for designing incentive-compatible rewards
by also considering collusion. We analyze different scenarios, where, for example, some or
all of the agents collude. For each scenario we investigate whether a collusion-resistant,
incentive-compatible reward scheme exists, and use automated mechanism design to specify
an algorithm for deriving an efficient reward mechanism.

1. Introduction

An increasing number of applications of artificial intelligence extract knowledge from large
groups of agents, also termed the wisdom of the crowds. One example are online feed-
back forums (also known as reputation mechanisms) for obtaining information about the
products or services. The testimonies of previous buyers disclose hidden, experience-related
(Parasuraman, Zeithaml, & Berry, 1985), product attributes such as quality, reliability,
ease of use, etc., that can only be observed after the purchase. This previously unavailable
information allows the buyers to make better, more efficient decisions, and eliminates some
of the problems that would otherwise lead to the collapse of online markets1.

Recent studies, however, raise important questions regarding the ability of existing rep-
utation mechanisms to reflect the real quality of a product. First, the absence of clear
incentives drives only some of the users to voice their opinions. For example, Hu, Pavlou,

1. Akerlof (1970) warns about the “Market of Lemons”, where asymmetric information drives all, except
the worst quality sellers out of the market.
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and Zhang (2006) and Admati and Pfleiderer (2000) show that Amazon2 ratings of books
or CDs follow with great probability bi-modal, U-shaped distributions where most of the
ratings are either very good, or very bad. As controlled experiments on the same items
reveal normally distributed opinions, the authors conclude that users with a moderate out-
look are unlikely to report. Talwar, Jurca, and Faltings (2007) identify another factor that
promotes rating, namely the desire to contribute with something new to the previously
submitted reports. In both cases, the reputation mechanism collects an unrepresentative
sample of reviews that is not necessarily informative for the average user.

Second, and even more distressful, some users intentionally lie in order to gain external
benefits from the distorted reputation. Harmon (2004) reports that some authors write fake
reviews on Amazon in order to boost the sale of their own books, or to trash the reputation
of competing titles. White (1999) describes manipulation techniques for pushing songs up
the charts, and Elliott (2006) and Keates (2007) identify problems associated to fake hotel
reviews on the travel reputation site TripAdvisor.com. Although we still see high levels
of altruistic (i.e., honest) reporting, the increasing awareness that gains can be made by
manipulating online reputation will likely attract more dishonest reporting in the future.

Both problems can be solved if the reputation mechanism rewards users for reporting
feedback. First, the reward should cover the cost of reporting, so that more users leave
feedback and allow the reputation mechanism to estimate more precisely the quality of
products or services. Second, honest feedback should yield higher rewards than lying, so
that rational agents find in in their best interest to be truthful. This technique is not limited
to reputation mechanisms, but applies more generally to any setting where a private signal
is inferred from reports by a crowd of self-interested rational agents.

The reader might already ask whether or not it is reasonable to assume that explicit
payments3 will incentivise users to change their reporting behavior. Although humans are
known to sometimes act irrationally, there are many examples of online systems where re-
wards have successfully promoted the elicitation of private information. Prediction markets,
for example, consistently outperform traditional prediction tools (Figlewski, 1979; Pennock,
Debnath, Glover, & Giles, 2002) and users seem to be equally motivated by fake or real
money (Servan-Schreiber, Wolfers, Pennock, & Galebach, 2004). Another example is the
ESP Game4 which extracted an impressive volume of image tags by rewarding players with
virtual points. Moreover, the future online economy is likely to contain increasing num-
bers of automated agents, which by design, will be programmed to behave rationally and
maximize their utility.

Fundamental results in the mechanism design literature (d’Aspremont & Grard-Varet,
1979; Crémer & McLean, 1985) show that side payments can be designed to create the
incentive for agents to reveal their private opinions truthfully. The best such payment
schemes have been constructed based on proper scoring rules (Kandori & Matsushima, 1998;
Johnson, Pratt, & Zeckhauser, 1990; Clemen, 2002), and exploit the correlation between
the observations of different buyers about the same good.

2. http://www.amazon.com
3. The term payments is general and includes non-monetary rewards such as preferential access to resources,

social status or bonus “points”.
4. http://www.espgame.org/

210



Mechanisms for Making Crowds Truthful

Miller, Resnick, and Zeckhauser (2005) adapt these results to online feedback forums
characterized by pure adverse selection. In such environments, buyers observe the same
innate quality attributes of the products or the service providers, possibly with some noise.
The role of the reputation mechanism is signaling, i.e. to aggregate reports of the buyers
into accurate estimates of these attributes. Examples of such a situation are product rating
forums such as Amazon, ePinions or Bizrate, and most services that are provided through
machines or networks in an anonymous fashion.

In contrast reputation mechanisms can also be used in a sanctioning role to counter moral
hazard. This exists in environments where the provider can vary the quality attributes for
each particular buyer in a strategic manner. The role of the reputation mechanism is to
spread information about seller misbehavior and increase its cost to make it unattractive.
An example of such an environment are seller ratings in online marketplaces.

The two roles of reputation are complementary, and solve the two important prob-
lems associated with online markets (Dellarocas, 2006). The signaling role acts against
information asymmetries, and allows agents to accurately identify capable partners. The
sanctioning role, on the other hand, acts against cheating incentives and encourages honest
behavior.

Like Miller et al. (2005), we concentrate in this paper on pure signaling mechanisms and
ignore the effects associated with moral hazard. A set of users is assumed to experience the
same product or service, possibly with some noise, and later report the privately perceived
quality signal to a central reputation mechanism. The product or service is assumed to have
consistent quality over time, so that the quality observed by different users can be modeled
as randomly drawn from the same distribution. These assumptions are quite common for
services delivered by automated systems like web services or intelligent agents, where failures
and degradation in performance are due to random events that have not been planned by
a strategic operator.

The reputation mechanism scores every submitted feedback by comparing it with an-
other report (called the reference report) submitted by a different user about the same
good. Miller et al. (2005) prove the existence of general incentive-compatible payments
where honest reporting is a Nash equilibrium, and the expected reward is large enough to
cover the effort of reporting.

Intuitively, incentive-compatible payments exploit the correlation between the private
signal observed by an agent, and the agent’s beliefs regarding the reference report. Different
quality signals trigger different updates of the agent’s private beliefs (by Bayes’ Law), and
thus modify the agent’s expectations regarding the value of the reference report. By paying
reporters according to how well their submitted feedback improves the public predictor of
the reference report (tested against the actual reference report, assumed honest), agents
have the incentive to “align” the public predictor to their private beliefs, and thus report
the truth. Honest reporting becomes a Nash equilibrium.

Unfortunately, honest reporting is not the only Nash Equilibrium (NE) of such a mech-
anism. Jurca and Faltings (2005) show that all binary incentive-compatible payment mech-
anisms using a single reference report have several equilibria; moreover, at least one lying
equilibrium gives the agents higher expected payoffs than the truthful NE. This brings
forth the problem of collusion, as rational agents could potentially coordinate on a lying
equilibrium that gives them a higher payoff than the honest equilibrium.
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The simplest such lying equilibrium is for all agents to always report the same, thus
leading to perfect prediction of the reference reports. As any product or service in the real
world will have occasional defects, truthful reporting will always be a noisy predictor of the
reference report, and thus not be able to match the payoff of the lying strategy.

We overcome this problem by using not a single but several reference reports. We start
from the observation that in the real world, even the most perfect products or services
will occasionally be defective. Thus, we should reward reports that predict this slightly
imperfect situation. The key idea is to score a report against a set of at least 4 reference
reports, and to reward a report according to the distribution of these reference reports,
without considering their order. By giving a higher reward for matching all but one of the
reference reports, it is possible to give a higher expected payoff to the truthful reporting
equilibrium.

As it is difficult to see how to scale the rewards to obtain this characteristic, we use
automated mechanism design (Conitzer & Sandholm, 2002) to compute the rewards that
satisfy the criteria. This technique has been first applied to this problem by Jurca and
Faltings (2006) to compute the minimal payments required to ensure honest reporting of
reputation information. Jurca and Faltings (2007a) augment the technique by formulating
the requirement of collusion safety as additional constraints on the desired mechanism. This
paper extends our previous work by presenting a unified framework for designing incentive-
compatible, collusion resistant rewards in a broader set of collusion scenarios.

More concretely, we vary the complexity of the collusion scenario along three dimensions.
First, we consider the size of the coalition, and study what happens when all or only some of
the agents can become part of a lying coalition. The complexity of coordination is the second
dimension, and we consider cases where colluders have or not the necessary sophistication
to coordinate on different reporting strategies. Finally, the third dimension addresses the
transfer of utilities and includes the settings where colluders can make or not side-payments
to other colluders.

However, not all combinations are formally treated; some contain contradictory assump-
tions (e.g., if colluders are assumed capable of side-payments, they should also be assumed
capable to coordinate on different strategies) or lead to trivial impossibility results (e.g., col-
lusion resistance is clearly impossible when one strategic agent controls all online identities,
exactly the scenario where all agents collude and may transfer payments among themselves).

This paper proceeds as follows. Section 2 formally introduces our model, Section 3
introduces incentive-compatible payment mechanisms and presents some of their proper-
ties. Section 4 addresses the design of collusion-resistant reward mechanisms for different
scenarios. Finally we discuss related work and future directions to improve our results.

2. The Model

We consider an online market where a number of rational buyers (or agents) experience
the same product (or service). The quality of the product remains fixed, and defines the
product’s (unknown) type. Θ is the finite set of possible types, and θ denotes a member of
this set. We assume that all buyers share a common belief regarding the prior probability
Pr[θ], that the product is of type θ.

∑
θ∈Θ Pr[θ] = 1.
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After the purchase, every buyer perceives a binary signal about the quality (i.e., true
type) of the product. 1 denotes the high quality signal and captures the satisfaction of
the buyer with the product. 0, on the other hand, denotes the low quality signal, or
the buyer’s dissatisfaction with the product. Every product type is characterized by a
different probability distribution over the signals perceived by the buyers. Let Pr[1|θ] be
the probability that the buyer of a product of type θ is satisfied (i.e., observes the quality
signal 1). Pr[1|θ1] 6= Pr[1|θ2] for all θ1 6= θ2 ∈ Θ, and Pr[1|·] is assumed common knowledge.

To make it simpler for the reader to follow the formal notation, we will present a
numerical example. The same example will extended as we introduce new notation, and
will serve in the subsequent sections to illustrate our results.

Example. Alice, the owner of an old house, needs some plumbing work done. She knows
there are good (type θG) and bad (type θB) plumbers, such that good plumbers provide high
quality service with much higher probability: e.g., Pr[1|θG] = 0.9 and Pr[1|θB] = 0.15. Alice
picks the plumber from the Yellow Pages, and given the reputation of the source, she believes
that the plumber, Bob, is likely to be good: e.g., Pr[θG] = 0.8 and Pr[θB] = 0.2. Therefore,
Alice expects to get good service with probability Pr[θG]Pr[1|θG] + Pr[θB]Pr[1|θB] = 0.75.

A central reputation mechanism asks every buyer to submit feedback. Buyers are as-
sumed rational, and not constrained to report the truth. The set of pure reporting strategies
of a buyer is S =

{(
s(0), s(1)

)|s(0), s(1) ∈ Q2

}
, where Q2 = {0, 1} is the set of quality sig-

nals, and s =
(
s(0), s(1)

)
denotes the strategy according to which the buyer announces

s(0) ∈ Q2 when she observes low quality, and s(1) ∈ Q2 when she observes high quality.
We will often call the reports 0 and 1 the negative, respectively the positive report.

To ease the notation, we name the four members of the set S as the honest strategy (s̄),
the lying strategy (slie), the always reporting one strategy (spos) and the always reporting
0 strategy (sneg):

• s̄ = (0, 1) the buyer reports 0 when she observes low quality and 1 when she observes
high quality;

• slie = (1, 0) the buyer reports 1 when she observes low quality and 0 when she observes
high quality;

• spos = (1, 1) the buyer reports 1 regardless of her observation;

• sneg = (0, 0) the buyer reports 0 regardless of her observation;

The reputation mechanism rewards buyers for the submitted reports. The payment
received by buyer i can depend on any information available to the reputation mechanism:
namely, the reports submitted by other buyers, and the common knowledge regarding the
environment (probability distribution over types, and conditional probability distributions
of quality signals). We assume the reputation mechanism updates the public reputation
information with batches of N reports. The agents that submitted the N reports in the
same batch are assumed to have had access to the same public information, which motivates
the common priors assumption from the beginning of the section. For the rest of the paper
will analyze reward mechanisms that work on static sets of N reports; in real settings,
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however, the same mechanisms will be designed over and over again for all batches of size
N .

Note that the reputation mechanism (i) does not know the true type of the product,
and (ii) cannot purchase the product in order to get some first-hand experience regarding
its quality.

Discarding from the notation the dependence on the common knowledge, a payment
mechanism (employed by the reputation mechanism) is a function τ : Q2× (Q2)N−1 → R+,
where τ(ri, r−i) ≥ 0 is the amount paid to buyer i when she reports ri ∈ Q2 and the other
N − 1 buyers report r−i ∈ (Q2)N−1. The reports r−i are also called the reference reports
of agent i, since they constitute the reference for computing the payment for agent i. We
constrain payments to be non-negative as most online forums cannot impose punishments
on the reporters.

The order of reports is not important, therefore we can simplify the payment mechanism
by assuming that τ(ri, r−i) = τ(ri, r

∗
−i) for all r−i and r∗−i that contain the same number of

positive reports. A more compact description of the payment mechanism is thus given by
the amounts τ(r, n) where n ∈ {0, 1, . . . , N −1} is the number of positive reports submitted
by the reference reporters.

The payoff expected by agent i depends on the distribution of the reference reports. If
the other agents report honestly, the distribution of the reference reports can be computed
from the prior beliefs, and the true observation, oi ∈ Q2 of agent i. The probability that
exactly n positive reports were submitted by the other N − 1 agents is:

Pr[n|oi] =
∑

θ∈Θ

Pr[n|θ]Pr[θ|oi]; (1)

where Pr[n|θ] is the binomial probability distribution function, and Pr[θ|oi] can be com-
puted from Bayes’ Law:

Pr[n|θ] =
( N − 1

n

)
Pr[1|θ]n(

1− Pr[1|θ])N−1−n;

P [θ|oi] =
Pr[oi|θ]Pr[θ]

Pr[oi]
; Pr[oi] =

∑

θ∈Θ

Pr[oi|θ]Pr[θ];

Example. Once Bob the plumber gets the work done, Alice observes the result and learns
something new about Bob’s type. If Alice sees good work, her posterior belief regarding the
type of Bob will be Pr[θG|1] = 1−Pr[θB|1] = 0.96 (computed by Bayes’ Law), and therefore,
Alice will believe that some other client will get good service from Bob with probability:
Pr[1|1] = Pr[1|θG]Pr[θG|1] + Pr[1|θB]Pr[θB|1] = 0.87. On the other hand, if Alice is not
happy with the work done by Bob, her posterior belief will be: Pr[θG|0] = 1 − Pr[θB|0] =
0.32, and she will expect another client to receive good service from Bob with probability:
Pr[1|0] = Pr[1|θG]Pr[θG|0] + Pr[1|θB]Pr[θB|0] = 0.39.

The reputation mechanism offers Alice the following reward scheme: “the report is paid
only if it matches the reference report. A negative report is paid $2.62, while a positive report
is paid $1.54”. Consequently, this reward scheme can be formally described as τ(0, 0) = 2.62,
τ(1, 1) = 1.54, and τ(1, 0) = τ(0, 1) = 0. Assuming that the reference report is truthful,
one can easily verify that Alice maximizes her expected payment by reporting the truth: If
Alice experiences good service from the plumber, she expects that some other client also gets

214



Mechanisms for Making Crowds Truthful

good service with probability 87%. Assuming that the other client reports truthfully, Alice’s
expected payment is: .87·1.54+.13·0 = 1.34 if she reports good service, or .87·0+.13·2.62 =
0.34 if she reports bad service; Likewise, if Alice experiences bad service, she expects that
the reference report will be negative with probability 1− .39 = .61. In this case, her expected
payment is: .39 · 1.54 + .61 · 0 = 0.6 if she reports good service, or .39 · 0 + .61 · 2.62 = 1.6 if
she reports bad service. In both cases, honest reporting is better than lying by $1.

The numerical example above specifies payments in dollars but does not mention the
value of the service that is the object of the reputation report. We specifically avoid the de-
pendence of the reward mechanism on the value of the goods traded in the market. Instead,
we will relate the rewards to the marginal gain for telling the truth, and the monetary unit
is defined as the minimum expected loss of an agent that miss-reports instead of telling the
truth.

A strategy profile s is a vector (si)i=1,...,N , prescribing the reporting strategy si ∈ S for
each agent i. We will sometimes use the notation s = (si, s−i), where s−i is the strategy
profile for all agents except i; i.e., s−i = (sj), for j = 1, . . . , i − 1, i + 1, . . . , N . Given the
profile of reporting strategies (si, s−i), let µ[n, s−i] describe the belief of agent i regarding
the distribution of the reference reports, when:

• n out of the other N − 1 agents observe the high quality signal, 1

• the other N − 1 agents are reporting according to the strategy profile s−i;
Given n and s−i, agent i believes with probability µ[n, s−i](x) that x reference reports are
positive. If si(oi) ∈ Q2 is the value of the report prescribed by strategy si given the true
observation oi, the expected payoff to agent i is:

V (si, s−i|oi) =
N−1∑
n=0

Pr[n|oi]
N−1∑
x=0

µ[n, s−i](x)τ
(
si(oi), x

)
; (2)

Throughout this paper we will restrict our attention to pure reporting strategies and
pure strategy equilibria. The reason behind this choice is grounded in practical consider-
ations: mixed strategies and mixed strategy equilibria are more complex and difficult to
understand, and therefore unlikely to be observed in practical applications. Acknowledging
the limitations brought in by this assumption, we still believe our results are valuable for a
number of practical scenarios.

3. Incentive-Compatible Payment Mechanisms

In this section we study general payment mechanisms that are incentive-compatible, without
worrying about collusion resistance. A payment mechanism is incentive-compatible when
honest reporting is a Nash Equilibrium (NE): i.e., no agent can gain by lying when other
agents report honestly. Formally, let (s̄i, s̄−i) be the strategy profile where all agents report
honestly. It is optimal for agent i to report the truth if and only if, for any observation oi,
the honest report maximizes the agent’s expected payoff:

V (s̄i, s̄−i|oi) > V (si, s̄−i|oi); ∀si ∈ S \ {s̄}, oi ∈ Q2;

Since reference reports are truthful, the expected payoff to agent i is:

V (s̄i, s̄−i|oi) =
N−1∑
n=0

Pr[n|oi]τ(oi, n);

215



Jurca & Faltings

and the incentive-compatibility constraints become:

N−1∑
n=0

Pr[n|oi]τ(oi, n) >

N−1∑
n=0

Pr[n|oi]τ(1− oi, n); ∀oi ∈ Q2; (3)

Practical mechanisms, however, need to offset lying incentives by offering certain margins
for truth-telling. Honest reporting must be better than lying by at least some margin Λ,
chosen by the mechanism designer to offset the external benefits an agent might obtain
by lying. Rewriting (3) to account for the margin Λ, an incentive-compatible payment
mechanism satisfies the constraints:

N−1∑
n=0

Pr[n|1]
(
τ(1, n)− τ(0, n)

)
≥ Λ;

N−1∑
n=0

Pr[n|0]
(
τ(0, n)− τ(1, n)

)
≥ Λ;

(4)

formalizing the intuition that it is more profitable to report positively (respectively nega-
tively) when observing high (respectively low) quality.

Kandori and Matsushima (1998), and Miller et al. (2005) show that it is possible to
construct payment mechanisms that satisfy the constraints in (4), based on scoring rules.
Jurca and Faltings (2006) build on this existence result and describe an algorithm that
computes the optimal (i.e., budget minimizing) payment mechanism. We will use this
latter approach in this paper, for the obvious practical advantages of designing an incentive
compatible reputation mechanism as cheaply as possible.

The expected payment to an honest reporter (in the truthful NE) is the weighted sum
between the expected payment to an agent that truthfully reports 1, and the expected
payment to an agent that truthfully reports 0:

E
[
V (s̄i, s̄−i)

]
= Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]
N−1∑
n=0

Pr[n|0]τ(0, n); (5)

where Pr[1] (respectively Pr[0]) are the prior probabilities that the agent will perceive high
(respectively low) quality, and are defined as: Pr[oi] =

∑
θ∈Θ Pr[oi|θ]Pr[θ].

The payment scheme that minimizes the budget required to pay for one honest report
therefore solves the linear optimization problem:

LP 3.1.

min E
[
V (s̄i, s̄−i)

]
= Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]
N−1∑
n=0

Pr[n|0]τ(0, n);

s.t.

N−1∑
n=0

Pr[n|1]
(
τ(1, n)− τ(0, n)

)
≥ Λ;

N−1∑
n=0

Pr[n|0]
(
τ(0, n)− τ(1, n)

)
≥ Λ;

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};
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Although numerical algorithms can efficiently solve LP 3.1, the analytical solution helps
us gain additional insights about the structure of incentive-compatible payment mechanisms.
It turns out that LP 3.1 has a simple solution:

Proposition 3.1. The incentive-compatible payment scheme that minimizes the expected
payment to an honest reporter (defined by LP 3.1) is:

τ(0, n) = 0, ∀n 6= 0; τ(1, n) = 0,∀n 6= N − 1

τ(0, 0) = Λ
Pr[N − 1|0] + Pr[N − 1|1]

Pr[N − 1|1]Pr[0|0]− Pr[N − 1|0]Pr[0|1]
;

τ(1, N − 1) = Λ
Pr[0|0] + Pr[0|1]

Pr[N − 1|1]Pr[0|0]− Pr[N − 1|0]Pr[0|1]
;

Proof.

The optimal payment mechanism is symmetric and rewards perfect consensus among
reporters: i.e., an agent gets rewarded only if her report agrees with the report of all other
agents. The reason why consensus rewards are optimal comes from the structure of the
incentive compatible constraints. Clearly there must be at least two positive payments: one
rewarding a negative report for some configuration of reference reports, the other rewarding
a positive report for some other configuration of reference reports. This proof (the full
details are available in Appendix A) shows that it is enough to have only these two posi-
tive payments, and that the corresponding configurations of reference reports must reflect
consensus.

The first part is intuitively simpler to motivate. The properties of Bayesian updates
makes it such that there always exist n1 and n2 such that Pr[n1|0] > Pr[n1|1] and
Pr[n2|1] > Pr[n2|0] (e.g., the configuration where n1 other agents report 1 becomes more
probable after a negative experience, while the configuration where n2 other agents report
1 becomes more likely after a positive experience). With potentially infinite payments, the
fact that n1 and n2 exist makes it possible to satisfy all incentive compatible constraints;
therefore the payment mechanism with only two positive payments for τ(0, n1) and τ(1, n2)
is incentive compatible. The formal proof in Appendix A uses the dual formulation to show
the same thing.

The second part of the proof shows that the expected payment is minimized if the
scheme rewards consensus (i.e., n1 = 0 and n2 = N − 1). The dual of LP 3.1 reveals
that the expected payment to an agent is proportional to the ratios Pr[n1|1]/Pr[n1|0] and
Pr[n2|0]/Pr[n2|1]. These ratios reflect the relative change of the agent’s beliefs following
the subjective private experience. e.g., Pr[n1|1]/Pr[n1|0] reflects the relative change for the
belief that n1 other agents report 1, given a positive as opposed to a negative experience.
Likewise, Pr[n2|0]/Pr[n2|1] is the relative change for the belief that n2 other agents report
1, given a negative as opposed to a positive experience. The following lemma shows that
these ratios (and therefore the expected payment to an agent) are minimized when n1 = 0
and n2 = N − 1.

Lemma 3.1. Given any set of types Θ, probability distributions Pr[1|θ], prior belief over
types Pr[θ] and number of agents N , we have Pr[n|1]

Pr[n|0] < Pr[n+1|1]
Pr[n+1|0] for all n = 0 . . . N − 1.
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The full proof of the Lemma is also provided in Appendix A. ¤
All payment mechanisms5 that satisfy the incentive compatibility constraints have a

similar property: there must be at least two values of the reference reports, n1 < n2, such
that:

τ(0, n1) > τ(1, n2)
τ(1, n2) > τ(0, n2);

The requirement n1 < n2 is a direct consequence of the Lemma 3.1. When τ(0, n1) and
τ(1, n2) are scaled appropriately6, a rational agent prefers the ‘bet’ on n1 when she observes
low quality, and the ‘bet’ on n2 when she observes high quality.

It is exactly this property that makes it impossible to design an incentive-compatible
mechanism that has honest reporting as the unique NE with only one reference report
(Jurca & Faltings, 2005). n1 and n2 are constrained to take the values 0, respectively 1, and
τ(0, 0) > τ(0, 1), τ(1, 1) > τ(1, 0), as illustrated by the example in Section 2. Therefore, the
constant reporting strategies of always reporting 0 or 1 are also Nash Equilibria. Moreover,
since the expected payment to an honest reporter is a linear combination between τ(0, 0) and
τ(1, 1), at least one of the constant reporting equilibrium generates a higher payoff to the
reporters than the honest equilibrium. Hence the vulnerability of the payment mechanism
to lying colluders.

Using several reference reports does not, by default, eliminate this problem. The result of
Proposition 3.1 shows that the incentive-compatible constraints alone, also generate reward
schemes that are vulnerable to conformity rating (i.e, everybody reports the same thing).
In most cases, nevertheless, payment schemes based on several reference reports are not
constrained to reward agreement, so one could specify further conditions, which added to
the design problem generate collusion-resistant mechanisms. This is what we will do in
the next section. We assume there are N > 2 agents in the system and analyze what
supplementary constraints can be added to the design problem in order to deter collusion.
We consider several collusion scenarios, and whenever possible we present an algorithm that
outputs the reward mechanism that is both incentive-compatible and collusion-resistant.

4. Collusion-resistant, Incentive-compatible Rewards

The ideal reward mechanism deters any coalition, no matter how big, even when every col-
luder may use a different strategy and side-payments are possible. Such a mechanism, un-
fortunately, is trivially impossible: given that all agents may collude and use side-payments
to subsidize the agents that might otherwise quit the coalition, the payment mechanism
doesn’t have any leverage to encourage honest reporting. Whatever the payment scheme,
the coalition will adopt the strategy that maximizes the total revenue, regardless of the
truth.

Positive results may be obtained only by imposing further restrictions on possible lying
coalitions. The first restriction is that not all agents can collude. Some agents are altruistic
in nature and report honestly for moral or social reasons. Other agents are not aware of

5. One might wish, for example, to design a mechanism that minimizes the expected budget paid to all N
buyers. In this case, the objective function of the problem LP 3.1 is: B =

∑N
n=0 Pr[n]

(
n · τ(1, n− 1) +

(N − n) · τ(0, n)
)
, where Pr[n] is the prior probability that n out of N buyers observe high quality;

6. τ(1, n1) and τ(0, n2) will typically be 0
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collusion opportunities, or cannot be contacted by a forming coalition. Social or legal norms
against collusion may furthermore create prejudices that deter some agents from entering
the coalition.

The second restriction addresses the complexity of the coordination among colluders.
Symmetric collusion strategies prescribe that all colluders are reporting according to the
same strategy. The coordination on symmetric strategies is very simple, and requires one
anonymous access to a publicly available source of information that specifies the colluding
strategy. Intuitively, the role of the coordination device may be played by a public blog
which analyzes the mechanisms and informs potential colluders on the most profitable
symmetric colluding strategy. Asymmetric collusion strategies, on the other hand, require
significantly more complex coordination. Since every colluder may use a different reporting
strategy, the coordination device must know the identity of the colluder before instructing
on a collusion strategy. This is often unfeasible, either because colluders might not want to
reveal their identity and thus create a trace of their misbehavior, or because identity of the
colluders cannot be known at all before the actual reporting takes place.

The third restriction addresses the availability of side-payments between colluders (or
transferable utilities). Even when the rewards offered by the reputation mechanism are
monetary, the kind of micro-payments that would be required among the colluders are
difficult and expensive to implement. Side-payments are even less feasible when the rewards
offered by the reputation mechanism are in kind, or in some currency under the control of
the reputation mechanism (e.g., Yahoo points or Slashdot karma cannot be transferred
even if users wanted to). The conversion of such subjective resources to real money that
can afterwards be transferred is even more difficult than the transfer itself.

One notable exception where side-payments are feasible is when the same strategic entity
controls a number of online identities, or “sybils” (Cheng & Friedman, 2005). Here, the
controlling agent is interested in maximizing his overall revenue (i.e., the sum of the revenues
obtained by the sybils), so side-payments do not have to physically occur7.

To summarize, we address collusion scenarios where:

• all or only some of the agents can become part of a lying coalition,

• colluders can coordinate or not on using different strategies,

• colluders can make or not side-payments to other colluders.

From the remaining seven restricted collusion scenarios (see Table 1) we are only ad-
dressing five. We exclude the settings where utilities can be transferred but the coalition
is restricted to symmetric strategies. As discussed in the previous paragraph, transferable
utilities are mostly characteristic of sybil attacks, where the same strategic agent controls
several online identities. We believe it is unreasonable to assume that the strategic agent
cannot coordinate the online identities it controls on asymmetric strategy profiles.

For all scenarios involving non-transferable utilities, collusion resistance can emerge as
a consequence of having honest reporting as the only (or an attractive enough) equilibrium.

7. Whenever rewards are non-monetary, the overall utility of the controlling agent is usually less than the
sum of utilities of the sybils. On Slashdot, for example, ten users with bad karma are not worth as one
user with good karma. Nevertheless, we will keep for simplicity the assumption of additive utilities for
the controlling agent.
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Non-Transferable Utilities Transferable Utilities
symmetric
strategies

asymmetric
strategies

symmetric
strategies

asymmetric
strategies

all agents
collude

Section 4.1 Section 4.2
unreasonable
assumption

impossible to
prevent collusion

some agents
collude

Section 4.3 Section 4.4
unreasonable
assumption

Section 4.5

Table 1: Different collusion scenarios.

When all agents may collude, an honest reporting dominant equilibrium is impossible.
Therefore, we will resort to designing reward schemes where honest reporting is a unique
Nash equilibrium, or a Pareto-optimal Nash equilibrium. When only a fraction of the agents
may collude (non-colluders are assumed to report honestly) we also consider designing
rewards that make honest reporting the dominant strategy for the colluders. The following
subsections address each one collusion scenario, and describe possible methods for designing
collusion-resistant, incentive-compatible reward mechanisms.

4.1 Full Coalitions on Symmetric Strategies, Non-Transferable Utilities

We assume that agents (i) can only coordinate once (before any of them purchases the
product) on the same (pure) reporting strategy, and (ii) cannot make side-payments from
one to another. This simple form of coordination between colluders considerably simplifies
the problem of the mechanism designer; the only supplementary constraint on the incentive-
compatible payment mechanism is to ensure that none of the pure symmetric strategy
profiles is a NE.

4.1.1 Unique Nash equilibrium.

The set of pure strategies is finite (and contains 3 lying strategies) therefore we can exhaus-
tively enumerate the constraints that prevent the corresponding symmetric lying strategy
profiles to be NE:

• spos (always reporting 1) is not NE when a rational agent would rather report 0 instead
of 1 given that all other agents follow spos:

τ(0, N − 1) > τ(1, N − 1); (6)

• sneg (always reporting 0) is not NE when a rational agent would rather report 1
instead of 0 given that all other agents follow sneg;

τ(1, 0) > τ(0, 0); (7)

• slie is not NE when at least one agent (either observing 1 or 0) would rather report
the truth. Given that other agents always lie, N − 1 − n reference reports will be
positive whenever n high quality signals were actually observed:
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either
N−1∑
n=0

Pr[n|0]
(
τ(0, N − 1− n)− τ(1, N − 1− n)

)
> 0;

or
N−1∑
n=0

Pr[n|1]
(
τ(1, N − 1− n)− τ(0, N − 1− n)

)
> 0;

(8)

The objective function (5), and the constraints (4), (6), (7) and (8) define the optimal
incentive-compatible payment mechanism that is also collusion-resistant in the sense ex-
plained in the beginning of this section (i.e., honest reporting is the unique pure-strategy
symmetric NE). To compute the payments, the mechanism designer must solve two linear
optimization problems, one corresponding to each branch of the constraint (8).

Proposition 4.1. Collusion-resistant, incentive-compatible rewards require minimum N =
4 agents.

Proof. This Proposition is a direct consequence of Proposition 3.1, once we consider the
supplementary constraints (7) and (6) that prevent high rewards on unanimous agreement.
As we discussed in the proof of Proposition 3.1, any incentive compatible reward mechanism
requires two distinct configuration of reference reports – denoted n1 and n2 – such that:

• under the configuration n1 (i.e., n1 reference reports are positive) an agent reporting
0 is rewarded more than an agent reporting 1: e.g., τ(0, n1) > τ(1, n1)

• under the configuration n2 (i.e., n2 reference reports are positive) an agent reporting
1 is rewarded more than an agent reporting 0: e.g., τ(1, n2) > τ(0, n2)

• n1 < n2 (proven by Lemma 3.1)

The collusion on the positive report (all agents report 1) can be prevented only if n2 6= N−1,
because otherwise τ(1, N − 1) would be greater than τ(1, N − 1), and spos would be a NE.
Likewise, the collusion on the negative report (all agents report 0) can be prevented only
if n1 6= 0 because otherwise τ(0, 0) > τ(1, 0), and sneg would be a NE. Unless N ≥ 4 the
constraints n1 6= 0; n1 < n2 and n2 6= N − 1 cannot be simultaneously satisfied. In other
words, there must exist a rich enough set of possible configuration of reference reports in
order to satisfy both collusion resistance and incentive compatible constraints. ¤

Taking the plumber example described in Section 2 and N = 4 agents, the conditional
distribution of the reference reports can be computed according to Eq. (1):

Pr[0|·] Pr[1|·] Pr[2|·] Pr[3|·]
0 0.4179 0.2297 0.1168 0.2356
1 0.0255 0.0389 0.2356 0.7

When the experience is negative, the two types (θG and θB) become almost equally likely
in the agent’s private belief. The mix between the distribution of reference reports induced
by the two types generates the U-shaped distribution described by the first row of the
table. However, when the experience is positive, the good type becomes dominant, and the
distribution of reference reports is almost entirely dictated by Pr[n|θG] (the second row of
the table). The optimal collusion-resistant, incentive-compatible payment mechanism are
the following:
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τ(·, ·) 0 1 2 3
0 0 12.37 0 ε
1 ε 0 6.29 0

where ε is a small positive value, and the guaranteed margin for truth-telling is Λ = 1. For
any N > 4 the payment mechanism looks the same and rewards a report if all but one of
the other agents agree with the submitted report. In the same time, opposing consensus is
rewarded by a small amount ε.

Payments with exactly the same structure represent a general solution of the design
problem in this context. Moreover, the payments always exist:

Proposition 4.2. Given any set of types Θ, probability distributions Pr[1|θ], prior belief
over types Pr[θ], and number of agents N ≥ 4, the following payment system has honest
reporting as the unique symmetric NE:

τ(0, n) = 0, ∀n 6= 1, N − 1; τ(1, n) = 0, ∀n 6= 0, N − 2; τ(0, N − 1) = τ(1, 0) = ε

τ(0, 1) =





Λ Pr[1|1]
Pr[1|0]Pr[1|1]−Pr[N−2|0]Pr[N−2|1] if condition A

Λ Pr[1|0]
Pr[N−2|0]Pr[N−2|1]−Pr[1|0]Pr[1|1] if condition B

Λ Pr[N−2|1]+Pr[N−2|0]
Pr[1|0]Pr[N−2|1]−Pr[N−2|0]Pr[1|1] otherwise

τ(1, N − 2) =





Λ Pr[N−2|1]
Pr[1|0]Pr[1|1]−Pr[N−2|0]Pr[N−2|1] if condition A

Λ Pr[N−2|0]
Pr[N−2|0]Pr[N−2|1]−Pr[1|0]Pr[1|1] if condition B

Λ Pr[1|1]+Pr[1|0]
Pr[1|0]Pr[N−2|1]−Pr[N−2|0]Pr[1|1] otherwise

A =
∧




Pr[1|0]Pr[1|1] > Pr[N − 2|0]Pr[N − 2|1]
Pr[N − 2|1] > Pr[1|1]
Pr[N − 2|1]2 − Pr[1|1]2 > Pr[1|0]Pr[1|1]− Pr[N − 2|0]Pr[N − 2|1]




B =
∧




Pr[N − 2|0]Pr[N − 2|1] > Pr[1|0]Pr[1|1]
Pr[1|0] > Pr[N − 2|0]
Pr[1|0]2 − Pr[N − 2|0]2 > Pr[N − 2|0]Pr[N − 2|1]− Pr[1|0]Pr[1|1]




Proof. It is straight-forward to check that for ε small enough, the payments described in
the proposition verify the constraints (4), (6) and (7). Moreover, these payments minimize
the expected payment to an honest reporter. ¤

4.1.2 Pareto-optimal Nash equilibrium.

A less strict notion of collusion resistance requires honest reporting to be a Pareto-optimal
NE. The intuition is that any stable (i.e., equilibrium) coalition will necessarily make some
colluders worse off than in the honest equilibrium. Assuming non-transferable utilities,
colluders that benefit from the coalition cannot subsidize the ones that make a loss, and
hopefully, the latter will refuse to join the coalition in the first place. As we will see towards
the end of this subsection, payment mechanisms where honesty is a Pareto-optimal NE will
be significantly cheaper than the payments designed to have a unique honest NE.

The payment mechanism that has honest reporting as a Pareto-optimal equilibrium
solves the following optimization problem:
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LP 4.1.

min E
[
V (s̄i, s̄−i)

]
= Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]
N−1∑
n=0

Pr[n|0]τ(0, n);

s.t.

N−1∑
n=0

Pr[n|1]
(
τ(1, n)− τ(0, n)

)
≥ Λ;

N−1∑
n=0

Pr[n|0]
(
τ(0, n)− τ(1, n)

)
≥ Λ;

τ(1, N − 1) < E
[
V (s̄i, s̄−i)

]
;

τ(0, 0) < E
[
V (s̄i, s̄−i)

]
;

∨



∑N−1
n=0 Pr[n|0]

(
τ(0, N − 1− n)− τ(1, N − 1− n)

)
> 0∑N−1

n=0 Pr[n|1]
(
τ(1, N − 1− n)− τ(0, N − 1− n)

)
> 0

E
[
V (slie

i , slie
−i)

]
< E

[
V (s̄i, s̄−i)

]
;




τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

The first two constraints make honest reporting a Nash equilibrium. The next two
constraints prevent lying colluders on spos or sneg to get higher rewards than in the honest
equilibrium. These constraints are always easier to satisfy than the constraints (6), (7)
which prevent equilibria on spos and sneg. The last constraint requires that the symmetric
profile where every agent lies is either not a NE, or that it generates an expected payoff
lower than the honest equilibrium. The expected payoff to an agent reporting according to
slie when everybody else reports according to slie is:

E
[
V (slie

i , slie
−i)

]
=

N−1∑
n=0

(
Pr[n|0]Pr[0]τ(1, N − 1− n) + Pr[n|1]Pr[1]τ(0, N − 1− n)

)
;

One remark about LP 4.1 is that it is not always optimal to only consider the constraint
that limits the expected payoff of a colluder on slie below the expected payoff obtained in
the honest equilibrium (i.e., the third inequality of the disjunctive constraint of LP 4.1).
Numerical simulations performed on random problems show that for 40- 50% of the problems
the collusion-resistant payments are cheaper by eliminating altogether the symmetric lying
equilibrium on slie: i.e., either the first, or the second inequality from the last constraint of
LP 4.1 are easier to satisfy than the third inequality.

In either case, the resulting optimal payments have the following structure:

• τ(0, 0) = τ(1, N − 1) = E
[
V (s̄i, s̄−i)

] − ε. These values prevent the lying coalitions
on spos or sneg to Pareto-dominate the honest reporting equilibrium;

• τ(0, 1) > 0 and τ(1, N − 2) > 0 are scaled to satisfy the incentive-compatibility
constraints, and the “easiest” of the three inequalities that prevent a coalition on slie;

• the other payments are 0.

For the plumber example in Section 2 the payments are the following:

τ(·, ·) 0 1 2 3
0 1.30 4.52 0 0
1 0 0 1.26 1.30
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These payments are much smaller than the ones generated by a mechanism where honest
reporting is the unique equilibrium. We therefore observe a fundamental tradeoff between
the strongness of collusion resistance guarantees offered by the mechanism, and the price
the mechanism has to pay to enforce these guarantees. For the collusion scenario described
in this section, Proposition 4.2 shows that it is always possible to design a mechanism
where honest reporting is the unique equilibrium. Nevertheless, a mechanism where honest
reporting is just Pareto-optimal, not unique, can be significantly cheaper. We will see the
same tradeoff in all subsequent scenarios.

Before we move on to the next collusion scenario, let us briefly analyze the influence of N
(i.e., the number of reports available to the mechanism) on the properties of the mechanism.
Jurca and Faltings (2006) show that the incentive-compatibility constraints are easier to
satisfy when N becomes larger. Intuitively, this property is a consequence of the structure of
the design problem: the number of constraints in LP 3.1 is independent on N , however, the
number of variables increases with N . Therefore, the dual of LP 3.1 has a constant number
of variables, but an increasing number of constraints. Moreover, the constraints of the dual
are also harder to satisfy, which means that the maximization objective of the dual can only
decrease with N . Hence the objective of the primal, i.e., the cost of the mechanism, also
decreases with N . Without going into the technical details, the same is true for collusion-
resistant mechanisms: for larger values of N , the collusion-resistance constraints become
easier to satisfy and the mechanism has a lower cost. All subsequent sections will maintain
this property: more information helps the mechanism designer to specify better targeted
rewards, which in turn decreases the total cost of the mechanism.

4.2 Full Coalitions on Asymmetric Strategies, Non-Transferable Utilities

The next collusion scenario we are considering is when all N agents can coordinate on
asymmetric collusion strategies, without being able to make side-payments from one to
another. Each of the N agents can have a different reporting strategy, and the collusion
strategy profile is denoted by s = (si), i = 1, . . . , N , where si ∈ S is the reporting strategy
of agent i.

We distinguish between two cases, when the communication (and therefore the coor-
dination on the collusion strategy profile) happens before or after the agents perceive the
quality signals from the product they purchase. In the latter case, no payment scheme can
satisfy the incentive-compatibility constraints. In the former case, honest reporting can
never be a unique Nash equilibrium of the mechanism; however, honest reporting can be a
Pareto-optimal Nash equilibrium.

Proposition 4.3. When agents communicate and coordinate their reports after perceiving
the quality signals, strict incentive-compatible payment mechanisms do not exist.

Proof. Consider two settings, that are identical except for the observation of agent i. In
setting I, agent i observes oi = 0, in setting II, agent i observes oi = 1; in both settings the
other agents observe n high quality signals. An incentive-compatible mechanism requires i
to report 0 in setting I, and 1 in setting II. Assume all other agents report truthfully; during
the communication phase (happening after signals have been perceived) agent i learns in
both settings that the reference reports contain n positive reports. An incentive-compatible
payment mechanism requires that:
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• τ(0, n) > τ(1, n) - honest reporting is strictly better for i in setting I ;

• τ(1, n) > τ(0, n) - honest reporting is strictly better for i in setting II;

Clearly this is impossible. ¤

The previous proposition formalizes the intuition that truth-telling may only be an ex-
ante Nash equilibrium. The reference reports must be unknown to the agent in order to
allow the design of incentive-compatible payments.

4.2.1 Unique Nash equilibrium.

When the communication takes place before the agents observe the signals, incentive-
compatible payments do exist, but always accept other Nash equilibria where agents lie:

Proposition 4.4. When agents communicate and coordinate their reports before perceiving
the quality signals, no payment mechanism has a unique honest reporting Nash equilibrium.

Proof. The proof shows that a full coalition can always find a profile of constant reporting
strategies, s = (si), i = 1, . . . , N , si ∈ {sneg, spos} that is a NE.

We define the family of reporting strategy profiles s(n) = (si) where n out of N agents
always report 1, and the other N − n agents always report 0: i.e.,

si = spos, ∀i ∈ A1; si = sneg, ∀i ∈ A0;
|A1| = n, |A2| = N − n;
A1 ∩A0 = ∅; A1 ∪A0 = {1, 2, . . . , N};

(9)

Assume that the payment mechanism defined by τ(·, ·) accepts honest reporting as
the unique NE. We have seen in Section 3 that the incentive-compatible constraints (4)
imply the existence of n1 < n2 ∈ {0, 1, . . . , N − 1} such that τ(0, n1) > τ(1, n1), and
τ(1, n2) > τ(0, n2).

With non-transferable utilities, the strategy profile s(n2 + 1) is not a NE if and only if
one of the n2 + 1 agents that should report 1 would rather report 0:

τ(0, n2) > τ(1, n2);

or one of the N − n2 − 1 agents that should report 0 would rather report 1:

τ(1, n2 + 1) > τ(0, n2 + 1);

The first inequality cannot be true by the choice of n2; therefore, it must be that
τ(1, n2 + 1) > τ(0, n2 + 1).

Similarly, s(n2 + 2) is not a NE iff either τ(0, n2 + 1) > τ(1, n2 + 1) (impossible), or
τ(1, n2 +2) > τ(0, n2 +2). Continuing this argument we find that τ(1, N −1) > τ(0, N −1)
which makes s(N) (i.e., all agents report 1) a Nash equilibrium. Hence the result of the
proposition. ¤

Proposition 4.4 holds regardless the number of reports, N , available to the reputation
mechanism. The proof shows that all incentive-compatible reward schemes have the prop-
erty that for some n ∈ {0, . . . , N − 1}, either τ(1, n) > 0 and τ(1, n + 1) < τ(0, n + 1), or
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τ(1, N − 1) > 0. In the first case, the coalition can adopt the lying strategy where n + 1
agents always report 1, and N−n−1 agents always report 0. The structure of the payments
makes such a coalition stable, as no agent finds it profitable to deviate from the coalition.
In the second case the payment scheme is vulnerable to everybody always reporting 1.

4.2.2 Pareto-optimal Nash equilibrium.

While lying equilibria always exist in this scenario, they do not necessarily Pareto-dominate
the honest reporting NE. Take for example the incentive-compatible payments that solve
LP 3.1, with the additional constraints that τ(0, 0) = 0 and τ(1, N − 1) = 0. A stable
coalition can form on the strategy profiles s(n2 +1) or s(n1), where n2 +1 (respectively n1)
agents always report 1 and the others always report 0 regardless of their observation. This
equilibrium, however, does not Pareto-dominate the truthful one: the agents that report 0
do not get any reward, whereas they do get rewarded in the honest equilibrium.

The payment mechanism can be further improved by setting τ(0, n1−1) = τ(1, n2+1) =
ε, where ε is some small positive value. This modification eliminates the equilibria s(n2 +1)
and s(n1) and instead introduces the equilibria s(n2+2) and s(n1−1). Both these equilibria
are extremely unattractive (some agents get paid ε, while others don’t get paid at all) and
are dominated by the honest equilibrium.

Proposition 4.5. Given the set of types Θ, the conditional probabilities Pr[1|θ], the prior
belief over types Pr[θ], and N = 4 agents, the following payment scheme has honest reporting
as a Pareto-optimal Nash equilibrium:

τ(·, ·) 0 1 2 3
0 ε x > 0 0 0
1 0 0 y > 0 ε

The values x and y depend on the probabilities Pr[1|θ] and Pr[θ], and ε has a small positive
value.

Proof. The payments here are similar to those of Proposition 4.2 except that consensus is
rewarded with some small amount ε instead of being discouraged. In this way the mechanism
has only three NE: honest reporting, always reporting 1 or always reporting 0. Both lying
equilibria, however, generate much lower revenues (assuming, of course, that ε is small
enough); therefore, honest reporting is a Pareto-optimal equilibrium. The proof that the
mechanism has only 3 NE is based on brute force: for x and y taking the values specified in
Proposition 4.2, we verify that no other strategy profile is a NE. The details are presented
in Appendix B. ¤

For general reward mechanisms based on N > 4 reports, honest reporting can become
a Pareto-optimal NE by considering all lying strategy profiles, s, and adding to the design
problem either of the following linear constraints:

V (si, s−i|oi) < V (s∗i , s−i|oi) for some i, oi and s∗i ;

E
[
V (si, s−i)

]
< E

[
V (s̄i, s̄−i)

]
for some i;

(10)

The first constraint ensures that the strategy profile s is not a NE, and consists of a dis-
junction of at most 8 linear inequalities: for each reporting strategy si = (si(0), si(1)) ∈ S,
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the agent reporting according to si has the incentive to deviate either when observing 0, or
when observing 1. There are four strategies in S and only one possible deviation for each
observed signal, hence the 8 inequalities. The second constraint ensures that s does not
Pareto-dominate the honest equilibrium, and consists of a similar disjunction of at most 4
inequalities. Note that any two strategy profiles that represent different permutations of the
same set of N reporting strategies will generate the same constraints. Therefore, there are( N + 3

3

)
different constraints imposing honesty as a Pareto-optimal NE, each consisting

of a disjunction of at most 12 linear inequations. The resulting optimization problem is a
disjunctive linear program which can be transformed into a mixed integer linear program
(Sherali & Shetty, 1980).

Unfortunately, the complexity of the resulting optimization problem is exponential in
the number N of reporters considered by the payment mechanism. Since the payment
mechanism depends on the current belief over the types θ, the reputation mechanism might
be required to frequently update the payments in order to reflect the changing beliefs. For
large values of N this is clearly infeasible.

We therefore consider a special family of payment mechanisms that can be designed
efficiently to make honest reporting a Pareto-optimal NE. The basic idea is to consider
payments similar to those from Proposition 4.5, that reward a report only when all but
one of the reference reports agree. Consensus on the positive or negative feedback is also
rewarded by a small amount ε, but all other payments are zero:

τ(·, ·) 0 1 2. . . N-3 N-2 N-1
0 ε x > 0 0. . . 0 0 0
1 0 0 0. . . 0 y > 0 ε

Figure 1: Payment mechanism for N > 4 agents.

The payment mechanism now depends on only 2 parameters, x and y that must be scaled
to prevent any other lying strategy profile to become a NE Pareto-dominating the honest
equilibrium. Note that no strategy profile where more than one agent reports according
to spos or sneg can become a successful collusion strategy. If at least two agents always
report 1, none of the other agents will ever want to report 0 (as τ(0, n) = 0 for any n ≥ 2).
Similarly if at least two agents always report 0, none of the other agents will ever want
to report 1. Nevertheless, both consensus equilibria yield very small payoffs, significantly
lower than the payoff of the honest reporting equilibrium.

Following the intuition from the proof of Proposition 4.5, many of the remaining lying
strategy profiles cannot be a NE regardless of the values of x and y. Let us consider the set
of potential lying equilibrium strategy profiles:

S̃ = {(n0 × sneg, n1 × spos, n̄× s̄, nl × slie)| n0 + n1 + n̄ + nl = N}; (11)

where n0 ∈ {0, 1} agents always report 0, n1 ∈ {0, 1} agents always report 1, n̄ /∈ {N−1, N}
agents report honestly and nl agents always lie. The cardinality of S̃ is 4(N−1). The profile
s ∈ S̃ is a NE if and only if for any strategy si ∈ s, the agent reporting according to si does
not have the incentive to deviate to another reporting strategy given that all other agents
keep reporting according to s−i. Let oi ∈ Q2 be the signal observed by agent i. The report
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prescribed by strategy si is ri = si(oi) ∈ Q2, and given that ε is small enough to be ignored,
the expected payoff to agent i is:

Pr[1|oi, s−i] · x if ri = 0
Pr[N − 2|oi, s−i] · y if ri = 1

where Pr[1|oi, s−i] and Pr[N − 2|oi, s−i] are the probabilities that exactly 1, respectively
N − 2 of the other N − 1 agents will report positively given the observation oi and the
strategy profile s−i.

The deviation to reporting 1− ri is not profitable for some observation oi if and only if:

Pr[1|oi, s−i] · x− Pr[N − 2|oi, s−i] · y > 0 if ri = 0
Pr[N − 2|oi, s−i] · y − Pr[1|oi, s−i] · x > 0 if ri = 1

The conditions that make s a NE can therefore be expressed as a set of at most 8
inequalities with the following structure:

ajx− bjy > 0; aj , bj > 0
−akx + bky > 0; ak, bk > 0

If maxj
bj

aj
> mink

bk
ak

the above system of inequations is infeasible, so that for any positive
values of x and y the corresponding strategy profile s can not be a NE. However, when
maxj

bj

aj
< mink

bk
ak

, there are values of x and y which can make s a NE, and therefore, in
the design problem we must specify a constraint that prevents s from Pareto-dominating
the honest NE. The corresponding constraint will be a disjunction of inequalities: 2 for
restricting x and y to values that do not make s a NE, at most 3 that limit the expected
payments of colluders below the expected payment of the honest equilibrium.

Since there are 4(N − 1) potential lying strategy profiles, the optimization problem
defining x and y can have up to 4N−2 constraints: 2 linear incentive-compatible constraints
and up to 4(N − 1) disjunctive linear constraints. The transformation to a mixed integer
linear program involves adding up to 4(N − 1) integer variables, which in the worst case,
can result in exponential-time (in N) complexity of the design problem.

Fortunately, we can eliminate most of the strategy profiles in S̃ analytically. It turns
out that the payment mechanism from Figure 1 does not accept as a Nash Equilibrium
any strategy profile where at lest one agent reports truthfully and another agent reports
according to slie:

Proposition 4.6. Let s = (n0 × sneg, n1 × spos, n̄ × s̄, nl × slie) ∈ S̃ be a strategy profile
where n0 agents always report 0, n1 agents always report 1, n̄ agents report honestly and nl

agents always lie. If (n̄ 6= 0 ∧ nl 6= 0) or (n0 = 1 ∧ n1 = 1), s cannot be a Nash equilibrium
of the payment mechanism described in Figure 1.

Proof. For the reasons explained above, we have restricted the number of agents always
reporting 0 or 1 to the following cases: (i) n0 = 0, n1 = 0, (ii) n0 = 1, n1 = 0, (iii)
n0 = 0, n1 = 1 and (iv) n0 = 1, n1 = 1. For all cases, we consider strategy profiles where
n̄ ≥ 1 agents are honest, and the remaining agents lie according to slie. For each such profile
we show that no values of x and y can simultaneously satisfy the equilibrium constraints of
both an honest and a lying agent. Moreover, when n0 = n1 = 1 we show that the strategy
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profiles where all other agents are honest or all other agents lie, cannot be Nash equilibria.
The technical details of the proof are given in Appendix C. ¤

The remaining lying strategy profiles to be considered for computing the values of x and
y are the following:

• s1 = (N ×slie) when all agents lie; the constraints to prevent this equilibrium are also
considered in LP 4.1;

• s2 =
(
sneg, (N − 1)× slie

)
when one agent always reports 0, and all other agents lie;

• s3 =
(
spos, (N − 1)× slie

)
when one agent always reports 1, and all other agents lie;

A solution for x and y can therefore be found in constant time.

4.3 Partial Coalitions on Symmetric Strategies, Non-Transferable Utilities

In this section we move our attention from full to partial coalitions, where not all agents
can become part of a lying coalition. The non-colluders are assumed to report honestly, and
their reports can be used by the mechanism to deter any “partial” lying coalition. Jurca
and Faltings (2005) show that trusted reports (reports trusted to be true) are useful in
preventing lying coalitions; nevertheless, an important difference from our previous work,
is that here, honest reports cannot be identified and selectively used by the reputation
mechanism.

4.3.1 Unique and Pareto-otpimal Nash equilibrium.

We start as in Section 4.1, by assuming only symmetric collusion strategies and no side-
payments available among colluders. The number of colluders is Ncol < N , and the re-
maining N̄ = N − Ncol report honestly. There are 3 symmetric pure lying strategies,
and appropriate constraints can ensure that none of them becomes a Nash equilibrium, or
Pareto-dominates the honest equilibrium.

Concretely, let P̄ r[·|·] be the probability distribution of the reports submitted by non-
colluders, such that P̄ r[n|oi] is the probability that n out of N̄ agents report positively given
the observation oi ∈ Q2. Likewise, let P̂ r[·|·] be the probability distribution of the reports
submitted by the other colluders: i.e., P̂ r[n|oi] is the probability that n out of Ncol − 1
colluders report positively.

The payment scheme that makes honest reporting the unique Nash equilibrium for the
colluders and minimizes the expected payment to an honest reporter solves the following
optimization problem:

229



Jurca & Faltings

min E
[
V (s̄i, s̄−i)

]
;

s.t.
N∑

n=0

Pr[n|0]
(
τ(0, n)− τ(1, n)

) ≥ Λ;

N∑

n=0

Pr[n|1]
(
τ(1, n)− τ(0, n)

) ≥ Λ;

∨

oi∈Q2

( N̄∑

n=0

P̄ r[n|oi]
(
τ(1, n + Ncol − 1)− τ(0, n + Ncol − 1)

)
< 0

)

∨

oi∈Q2

( N̄∑

n=0

P̄ r[n|oi]
(
τ(0, n)− τ(1, n)

)
< 0

)

∨

oi∈Q2

( N̄∑

n=0

P̄ r[n|oi]

Ncol−1∑

x=0

P̂ r[Ncol − 1− x|oi]
(
τ(1− oi, n + x)− τ(oi, n + x)

)
< 0

)

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

where besides the first two incentive-compatibility constraints, the third, forth and fifth
constraints encourage deviations from the symmetric collusion on spos, sneg and slie respec-
tively. The resulting optimization problem is a disjunctive linear program.

Finally, honest reporting can be made a Pareto-optimal equilibrium by modifying the
optimization problem such that the disjunctive constraints preventing an equilibrium on
the lying symmetric strategies, also specify inequalities for limiting the payoff received by
a colluder below the expected payment of an honest reporter:

• colluders on spos gain less than in the honest equilibrium:

N̄∑
n=0

P̄ r[n|oi]τ(1, n + Ncol − 1) < E
[
V (s̄i, s̄−i)

]
;

• colluders on spos gain less than in the honest equilibrium:

N̄∑
n=0

P̄ r[n|oi]τ(0, n) < E
[
V (s̄i, s̄−i)

]
;

• colluders on slie expect to gain less than in the honest equilibrium:

∑
oi=0,1

Pr[oi]
N̄∑

n=0

P̄ r[n|oi]
Ncol−1∑

x=0

P̂ r[Ncol − 1− x|oi]τ(1− oi, n + x) < E
[
V (s̄i, s̄−i)

]
;

Our numerical simulation show that the optimization problem defined above always
accepts a solution. We therefore conjecture that it is always possible to design incentive-
compatible, collusion resistant rewards under the restrictions discussed in this section. A
formal proof of this result remains for future work.

4.4 Partial Coalitions on Asymmetric Strategies, Non-Transferable Utilities

As opposed to Section 4.3, in this section we consider a more practical scenario where
colluders can also employ asymmetric lying strategies: i.e., all strategy profiles s = (si),
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i = 1, . . . Ncol. Side payments are not allowed among colluders, and we are only concerned
with the equilibrium for the Ncol agents that can become part of the coalition; the remaining
N̄ = N −Ncol agents are assumed to report honestly.

4.4.1 Unique and Pareto-optimal Nash equilibrium.

The mechanism that makes honest reporting the only Nash equilibrium follows the guide-
lines derived in Proposition 4.5 for the scenario where all agents can collude: namely the
reputation mechanism must consider N = 4 reports, the mechanism rewards consensus
with a small positive payment ε, and otherwise pays a report if and only if three out of
four reports agree. The proof of Proposition 4.5 shows that such a payment scheme accepts
three Nash equilibria:

• all agents report honestly,

• all agents always reports 0, and

• all agents always report 1.

.
The restriction made in this section that at least one other does not become part of the

coalition (and thus reports the truth) restricts the set of equilibria to only one, where all
agents report truthfully. Even when the remaining three agents collude, the only NE under
the payment mechanism described by Proposition 4.5 is to report the truth.

General payment mechanisms based on N > 4 agents can be designed following the
same methodology as in Section 4.2: we will consider all strategy profiles the colluders can
use, and add constraints to the design problem such that (i) no lying strategy profile is a
NE, or (ii) no NE lying strategy profile Pareto-dominates the honest reporting NE.

Concretely, let SNcol
be the set of strategy profiles the colluders can use:

SNcol
= {(n0 × sneg, n1 × spos, n̄× s̄, nl × slie)|n0 + n1 + n̄ + nl = Ncol}

where s = (n0 × sneg, n1 × spos, n̄× s̄, nl × slie) ∈ SNcol
is the strategy profile where n0 out

of Ncol colluders always report 0, n1 colluders always report 1, n̄ colluders report honestly,
and nl colluders always lie. When colluders report according to the strategy profile s, let
(s, s̄) = (n0 × sneg, n1 × spos, (n̄ + N̄) × s̄, nl × slie) be the strategy profile used by the N
agents, where the N̄ = N −Ncol non-colluders report honestly.

Honest reporting is the unique Nash equilibrium for colluders if and only if:

V
(
si, (s−i, s̄)|oi

)
< V

(
s∗i , (s−i, s̄)|oi

)
(12)

for some colluder i and observation oi. Similarly, s does not Pareto-dominate the honest
reporting equilibrium if:

E
[
V

(
si, (s−i, s̄)

)]
< E

[
V (s̄i, s̄−i)

]
(13)

for some colluder i.
Let’s compare the constraints expressed above with the similar constraints from Section

4.2 described by Eq. (10). We note two important differences. First, the inequalities apply
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only to the Ncol colluders, not to the entire set of agents, so that a strategy profile that
is not a NE for the N agents, might still be a Nash equilibrium for colluders. Take, for
example, the case where all colluders lie: i.e., s = (Ncol × slie). The strategy profile of all
agents is therefore (s, s̄) = (Ncol × slie, N̄ × s̄). It may well be possible that:

• a lying colluder finds it optimal to report according to slie given that N̄ agents report
honestly and Ncol − 1 agents report lies;

• an honest reporter would rather file a negative report after a positive experience, given
that N̄ − 1 agents report honestly and Ncol agents lie.

So (s, s̄) is not a NE when considering all agents, but it is an equilibrium for the subset of
colluders. Similarly, it is possible that colluders gain better under (s, s̄) and honest reporters
gain less, such that (s, s̄) Pareto-dominates the honest equilibrium for the colluders, but not
for all agents. The constraints (12) and (13) are therefore stricter than their counterparts
(10), as non-colluders are assumed to unconditionally report the truth without taking into
account the actions of a lying coalition.

Second, we can separately consider the constraint (12), when honest reporting is to be
enforced as the unique NE for colluders, or the disjunction of constraints (12) and (13),
when honest reporting is to be enforced as a Pareto-optimal NE for colluders. The presence
of honest reports makes it possible to design payment mechanisms where honesty is the
unique NE, an alternative that was not available under the assumptions of Section 4.2. In
both cases, the constraints preventing lying equilibria (or preventing lying equilibria from
dominating the honest equilibrium) can be represented by a disjunction of linear inequalities,
and consequently, by a conjunction of mixed integer linear constraints. The resulting design
problem is a MILP, and, as discussed in Section 4.2, has a worst-time complexity that grows
exponentially with the number N of agents.

As in Section 4.2, we can use the payment mechanism from Figure 1 to reduce the
complexity of the design problem when honest reporting is the unique or a Pareto-optimal
NE. From Proposition 4.6, we know that:

• in any NE, at most one colluder reports according to sneg or spos;

• an honest reporter and a liar cannot both regard their strategies as optimal given that
at most one of the other agents reports according to sneg or spos

Therefore, the remaining colluding strategy profiles that must be considered when de-
signing the payments x and y are the following:

• (Ncol × slie) when all colluders lie;

• (sneg, (Ncol − 1)× slie) when one colluder always reports 0 and the others always lie;

• (spos, (Ncol − 1)× slie) when one colluder always reports 1 and the others always lie;
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4.4.2 Stronger equilibrium notion.

Before evaluating the reward mechanisms that accepts a unique or a Pareto-optimal honest
reporting Nash equilibrium, let us note that the subgame restricted to the strategies of the
Ncol colluders accepts a stronger equilibrium concept than Nash equilibrium. When the
fraction of colluders is small enough, the available honest reports can make it such that
any colluder has the incentive to report honestly no matter what the other colluders are
reporting. We abuse the notation slightly and call this equilibrium a dominant equilibrium.
Nevertheless, honest reporting is a dominant strategy only given the N̄ honest reporters.

If P̄ r[·|·] describes the probability distribution of the N̄ honest reports, and c is the
number of positive reports submitted by the other Ncol − 1 colluders, the payments τ(·, ·)
that make honest reporting the dominant strategy, and minimize the payment to an honest
reporter, are defined by the following optimization problem:

LP 4.2.

min E
[
V (s̄i, s̄−i)

]
= Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]
N−1∑
n=0

Pr[n|0]τ(0, n);

s.t.

N̄∑
n=0

P̄ r[n|0]
(
τ(0, n + c)− τ(1, n + c)

) ≥ Λ;

N̄∑
n=0

P̄ r[n|1]
(
τ(1, n + c)− τ(0, n + c)

) ≥ Λ;

∀c ∈ {0, . . . Ncol − 1},
τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

The remaining question is how large may the colluding fraction be, such that collusion-
resistant, incentive-compatible mechanisms exist.

Proposition 4.7. When more than half of the agents collude, (i.e., Ncol > N/2), no
incentive-compatible payment mechanism can make truth-telling the dominant strategy for
the colluders.

Proof. The intuition behind the proof is the following: When Ncol > N/2, the Ncol − 1
colluders submit at least as many reports as the remaining N − Ncol honest reporters.
Therefore, any sequence of honest reports, can be ‘corrected’ by a carefully chosen sequence
of colluding reports, such that lying is profitable.

Formally, let us extract from the system of inequalities defined in LP 4.2, the subset
corresponding to c = {0, . . . , N̄}. This subset exists since N̄ < Ncol − 1. Let us form the
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following optimization problem:

min Pr[1]
N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]
N−1∑
n=0

Pr[n|0]τ(0, n);

s.t.

N̄∑
n=0

P̄ r[n|0]
(
τ(0, n + c)− τ(1, n + c)

) ≥ Λ; ∀c = 0 . . . N̄

N̄∑
n=0

P̄ r[n|1]
(
τ(1, n + c)− τ(0, n + c)

) ≥ Λ; ∀c = 0 . . . N̄

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

Let y0
c and y1

c be the dual variables corresponding to the constraints where the colluding
agents report c positive signals, and the agent observes 0, respectively 1. The dual problem
becomes:

max Λ

Ncol−1∑

c=0

(y0
c + y1

c );

s.t.
n∑

c=0

P̄ r[n− c|0]y0
c − P̄ r[n− c|1]y1

c ≤ Pr[0]Pr[n|0]; ∀n = 0 . . . N̄

n∑

c=0

P̄ r[n− c|1]y1
c − P̄ r[n− c|0]y0

c ≤ Pr[1]Pr[n|1]; ∀n = 0 . . . N̄

N̄∑

c=n+1

P̄ r[N̄ + 1− c|0]y0
c − P̄ r[N̄ + 1− c|1]y1

c ≤ Pr[0]Pr[N̄ + n + 1|0]; ∀n = 0 . . . N̄

N̄∑

c=n+1

P̄ r[N̄ + 1− c|1]y1
c − P̄ r[N̄ + 1− c|0]y0

c ≤ Pr[1]Pr[N̄ + n + 1|1]; ∀n = 0 . . . N̄

One can easily verify that the dual problem accepts as solutions:

y1
c = P̄ r[c|0] · const ,

y0
c = P̄ r[c|1] · const ;

(14)

for any positive constants. The dual problem is therefore unbounded, which makes the
primal infeasible. ¤

The bound from Proposition 4.7 is also tight. Consider the numerical example from Sec-
tion 2, and assume the reputation mechanism has N = 4 reports. The following payments
are resistant to the collusion of Ncol = 2 agents:

τ(·, ·) 0 1 2 3
0 1.575 3.575 0 0
1 0 0 2.203 0.943

For example, if Alice observes 1, reporting 1 is better than reporting 0 for any report of
the other colluder:

P̄ r[0|1]τ(1, 0) + P̄ r[1|1]τ(1, 1) + P̄ r[2|1]τ(1, 2) = 1.715;
P̄ r[0|1]τ(0, 0) + P̄ r[1|1]τ(0, 1) + P̄ r[2|1]τ(0, 2) = 0.715;
P̄ r[0|1]τ(1, 1) + P̄ r[1|1]τ(1, 2) + P̄ r[2|1]τ(1, 3) = 1.138;
P̄ r[0|1]τ(0, 1) + P̄ r[1|1]τ(0, 2) + P̄ r[2|1]τ(0, 3) = 0.138;
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where P̄ r[0|1] = 0.0385, P̄ r[1|1] = 0.1830 and P̄ r[2|1] = 0.7785 are the probabilities that
0, 1, or 2 out of the N̄ = 2 non-colluders report positively, given that Alice observed high
quality.

In the general case, the design problem has 2Ncol different constraints, and therefore,
we should expect the budget required by the reputation mechanism to grow with Ncol.
We resort to numerical simulations and study the average cost of an incentive-compatible,
collusion-resistant reputation mechanism as the fraction of colluders increases. We randomly
generated 5000 problems as follows:

• the set of possible types is randomly chosen between 2 and 20;

• for each type, θ, the probability, Pr[1|θ], that the buyers observe high quality is
randomly chosen between 0 and 1;

• we consider reward mechanisms for 5, 10, 15, 20 and 25 agents.

For each problem and every number of agents we varied the number of colluders from 1 to
N/2. Figure 2 plots the average normalized cost of the collusion-resistant mechanism as
a function of the colluding fraction, Ncol/N . One can see that collusion resistance comes
almost for free as long as less than one third of the population colludes. Above this bound
the cost increases exponentially, which makes most such mechanisms impractical.
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Figure 2: The average cost of the mechanism as we increase the colluding fraction. The cost
is normalized to the cost of the corresponding incentive-compatible mechanism
that is not collusion-resistant.

Figure 2 seems to contradict the observation made in Section 4.1 that the mechanism
has lower cost for higher values of N . However, when the same costs are plotted on a
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horizontal axis describing the absolute (not the relative) number of colluders, the order of
the lines is reversed: the red line showing the cost of a mechanism with the smallest number
of reference reports (N = 10) has the highest values.

We also used numerical simulations to investigate the tightness of the bound set by
Proposition 4.7. Table 2 presents the distribution of the maximum collusion threshold for
the randomly generated problems. For more than 95% of the problems we were actually able
to compute payment mechanisms that resist the maximum coalition size Nmax

col = bN/2c
described by Proposition 4.7. There are some settings, however, where the mechanism is
vulnerable to coalition fractions that are significantly smaller than one half. The sufficient
conditions that characterize the settings that accept robust mechanisms with exactly one
half of colluders is subject to future research.

Table 2: Distribution of the maximum coalition bound. Nmax
col = bN/2c.

Distribution of max coalition size (in %) over
[Nmax

col , Nmax
col − 1, . . . , 1]

N = 5, Nmax
col = 2 [99.98, 0.02]

N = 10, Nmax
col = 5 [99.5, 0.36, 0.1, 0.04, 0]

N = 15, Nmax
col = 7 [98.88, 0.54, 0.38, 0.08, 0.1, 0.02, 0]

N = 20, Nmax
col = 10 [97.1, 0.86, 0.78, 0.56, 0.34, 0.2, 0.1, 0.04, 0.02, 0]

N = 25, Nmax
col = 12 [96.3, 0.98, 0.76, 0.58, 0.48, 0.4, 0.24, 0.1, 0.1, 0.04, 0.02, 0]

We also compared the performance of the reward mechanisms that employ different
equilibrium concepts. Figure 3 compares the average normalized cost of a collusion-resistant
payment mechanism when honest reporting is: (i) the dominant strategy, (ii) the unique
NE, or (iii) the Pareto-optimal NE. The plots were generated by solving 100 randomly
generated problems, for N = 10 and N = 15 agents. Computing the payment mechanism
which satisfies the constraints (12) and (13) requires significantly more time, hence the
lower number of generated problems. Moreover, the capabilities of our solver were exceeded
for payments using more than 15 agents. Nevertheless, the loss in computational efficiency
is clearly rewarded by both lower cost of the mechanism, and coverage of greater coalitions.

4.5 Partial Coalitions on Asymmetric Strategies, Transferable Utilities

As a last scenario we assume that one strategic agent controls a number of fake online
identities, or sybils. From the agent’s perspective, the individual revenues obtained by each
sybil is irrelevant; the objective of the agent is to maximize the cumulated revenue obtained
by all sybils.

The fact that utilities are transferable makes the problem of the mechanism designer
significantly harder. In all previous scenarios, the constraints that made an incentive-
compatible mechanism collusion-resistant ensured that lying coalitions are either unstable
or unprofitable. However, transferable utilities allow some colluders to subsidize others,
such that non-equilibrium colluding strategies can still exist. Therefore, the necessary (and
sufficient) condition for collusion resistance in this context requires that the cumulated
revenue of the coalition is maximized when reporting the truth.
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Figure 3: Average normalized cost of collusion-resistant payment mechanism. Different
equilibrium concepts.

Another difference from the settings in Sections 4.2 and 4.4 is that colluders coordinate
their reporting strategy after observing the quality signals. This assumption is supported
by the interpretation that one strategic entity controls several fake online identities.

Concretely, we are looking for a payment mechanism with the following property: when-
ever Ncol colluding agents observe c high quality signals, their cumulated revenue is max-
imized when reporting c positive reports. An underlying assumption is that non-colluders
(the other N̄ = N −Ncol agents) are reporting honestly. The revenue of the coalition that
reports r (out of Ncol) can be computed as follows. The r colluders that report positively
are rewarded τ(1, r−1+n), while the Ncol−r colluders that report negatively are rewarded
τ(0, r + n); n is the number of positive reports submitted by the (honest) non-colluders.
The expected revenue of the coalition is therefore:

V (r|c) =
N̄∑

n=0

P̄ r[n|c]
(
r · τ(1, r − 1 + n) + (Ncol − r) · τ(0, r + n)

)
; (15)

where P̄ r[n|c] is the probability that n out of N̄ honest agents report positively, given that
c out of Ncol colluders observed high quality signals.

Honest reporting is the best strategy for the coalition, when for all c ∈ {0, . . . Ncol},
arg maxr V (r|c) = c:

N̄∑
n=0

P̄ r[n|c]
(
c · τ(1, c− 1 + n) + (Ncol − c) · τ(0, c + n)− r · τ(1, r − 1 + n)

− (Ncol − r) · τ(0, r + n)
)
≥ Λ; ∀r 6= c ∈ {0, . . . Ncol}

(16)

The cheapest incentive-compatible, collusion-resistant payment mechanism minimizes
the objective function (5) under the linear constraints (16):
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LP 4.3.

min E
[
V (s̄i, s̄−i)

]
= Pr[1]

N−1∑
n=0

Pr[n|1]τ(1, n) + Pr[0]
N−1∑
n=0

Pr[n|0]τ(0, n);

s.t. (16) is true, ∀c, r ∈ {0, . . . Ncol}, c 6= r

τ(0, n), τ(1, n) ≥ 0; ∀n = {0, 1, . . . , N − 1};

For the example described in Section 2, assuming that Alice controls Ncol = 3 different
online identities that may submit feedback about Bob, the following payments based on
N = 6 reports deter Alice from lying:

τ(·, ·) 0 1 2 3 4 5
0 20.85 0 0 0 4.40 9.98
1 45.54 28.78 0 0 0 4.31

Even if Alice controlled Ncol = 5 out of the N = 6 reports, we can still find payments
that make honest reporting rational. These payments, however, are significantly higher:

τ(·, ·) 0 1 2 3 4 5
0 3455 0 1378 615 0 1125
1 1530 5569 4674 3736 0 2585

It turns out that for the general case, one honest report is enough to allow the design
of incentive-compatible payments that also deter sybil attacks of size N − 1. An example
of such payments are presented in the proposition below:

Proposition 4.8. Given the set of types Θ, the conditional probabilities Pr[1|θ], the prior
belief over types Pr[θ] and a number N of reports, the following payments encourage honest
reporting from a strategic agent who controls N − 1 different reports:

τ(0, 0) =
SR(0, 0)

Ncol
; τ(0, 1) =

SR(1, 0)
Ncol

; τ(1, N) =
SR(1, N − 1)

Ncol
;

τ(0, x + 1) =
(x + 1)SR(1, x)− xSR(0, x + 1)

Ncol
; x = 1 . . . N − 1

τ(1, x) =
(N − 1− x)SR(0, x + 1)− (N − 2− x)SR(1, x)

Ncol
; x = 1 . . . N − 1

where SR(i, j), i ∈ {0, 1}, j = {0, . . . , N − 1} is a proper scoring rule: e.g., SR(i, j) =
log(P̄ r[i|j]).
Proof. The expected payment of an agent who controls N−1 different identities, observes
c out of N − 1 positive signals and reports r positive reports to the reputation mechanism
can be computed as in Eq. (15):

V (r|c) = Pr[0|c]
(
r · τ(1, r − 1) + (N − 1− r) · τ(0, r)

)
+

Pr[1|c]
(
r · τ(1, r) + (N − 1− r) · τ(0, r + 1)

)

= . . . = Pr[0|c]SR(0, r) + Pr[1|c]SR(1, r);
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which by the definition of a proper scoring rule is strictly maximized when r = c: i.e.
V (c|c)− V (r|c) > 0 for all r 6= c. By scaling the scoring rule appropriately (i.e., multiplica-
tion and addition with a constant), honest reporting can be made better by lying with at
least the margin Λ. ¤

Proposition 4.8 grantees the existence of incentive-compatible collusion resistant rewards
when all but one report are controlled by the same strategic agent. However, as we have seen
for the example in Section 2, such payments can be very expensive, and hence unpractical.
We therefore used numerical simulations to evaluate the marginal cost of increasing collusion
resistance, as we increase the number of colluders (i.e., reports controlled by the same agent).
As in Section 4.4, we generated 5000 random problems and computed the optimal payments
for N = 5,10,15,20 and 25 reports. For each case, we gradually increased the coalition size
(i.e., Ncol) from 1 to N − 1.

Figure 4 plots the average normalized cost of the collusion-resistant mechanism as a
function of the coalition fraction. The cost grows exponentially once the coalition fraction
covers more than one half of the entire population. This behavior was also observed in Sec-
tion 4.4 when we evaluated the cost of incentive-compatible, collusion-resistant mechanisms
in the absence of transferable utilities (Figure 2). However, the payments required under the
assumption of non-transferable utilities are significantly smaller than the payments derived
in this section for settings with transferable utilities.
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Figure 4: The average cost of the mechanism as we increase the colluding fraction (setting
with transferable utilities). The cost is normalized to the cost of the corresponding
incentive-compatible mechanism that is not collusion resistant.
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The mechanisms defined in the present and the previous sections assume that the mech-
anism designer knows the total number of colluders. Formally, a mechanism designed to
be robust against the collusion of Ncol agents is not necessarily robust against all coalition
sizes smaller than Ncol. Take for example the mechanism defined by Proposition 4.8: a
strategic agent that controls less than N − 1 identities observes less than N − 1 quality
signals, and therefore has less precise beliefs about the signals received (and reported) by
the non-colluders. These noisy beliefs make it such that in some cases, a smaller coalition
may regard a certain lying strategy as more profitable than honest reporting. There is one
caveat, however: the colluders know that their lying strategy is provably inefficient had
they had access to more information (i.e., the remaining up to N − 1 reports). We there-
fore believe that for all practical purposes, a mechanism designed to be robust against Ncol

colluders will effectively deter all coalitions smaller than Ncol.

5. Related Work

One interesting alternative to payment schemes that encourage honest feedback is to develop
mechanisms that make it in the best interest of the providers to truthfully reveal their hidden
quality attributes. The truthful declaration of quality eliminates the need for reputation
mechanisms and significantly reduces the cost of trust management.

Braynov and Sandholm (2002), for example, consider exchanges of goods for money and
prove that a market in which agents are trusted to the degree they deserve to be trusted
is equally efficient as a market with complete trustworthiness. By scaling the amount of
the traded product, the authors prove that it is possible to make it rational for sellers to
truthfully declare their trustworthiness. However, the assumptions made about the trading
environment (i.e. the form of the cost function and the selling price which is supposed to
be smaller than the marginal cost) are not common in most electronic markets.

Another interesting work that addresses the trustworthiness of reputation information is
the Goodwill Hunting mechanism by Dellarocas (2002). The mechanism works for eBay-like
markets and provides a way to make sellers indifferent between lying or truthfully declaring
the quality of the good offered for sale. The particularity of this work is that the goods are
advertised to the buyers through the reputation mechanism, which can modify the asking
price initially set by the seller. The reputation mechanism thus compensates the momentary
gains or losses made by the seller from misstating the quality of the good, and creates an
equilibrium where all sellers find it rational to truthfully announce the quality. A major
advantage of the mechanism is that it works even when the sellers offer various goods with
different values.

Mechanisms for encouraging honest reporting are also present in a number of commercial
applications. The most famous is perhaps the ESP Game (von Ahn & Dabbish, 2004),
designed to encourage human users to label web images. The game8 pairs two users at
random, and shows them the same image. Each player must individually write tags about
the image, without being able to see the tags written by the partner. As soon as the two
player write the same tag, they gain points and can pass to the next picture. The goal is to
get as many points as possible in a fixed amount of time. Intuitively, this game has a very
simple strategy: players must write as many correct tags as possible, since the image they

8. http://www.espgame.org
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see is the only synchronization device that allows them to reach agreement on a tag. The
game is very successful, and the authors claim that in this way, all images on the web can
be tagged in several months.

The incentive mechanism behind the ESP game has, however, several problems. First,
it is vulnerable to cheating strategies where a group of players agree to reach agreement on
a very simple tag like “a” or “the”. This strategy could be posted to a popular blog and
exposed rapidly to the ESP players. These simple collusion strategies will give colluders
a significant competitive advantage, at the detriment of the game designers who collect
only garbage tags. The problem can be partly addressed by “taboo” lists containing all
confirmed tags which were already submitted about the picture.

The second problem is that rewards are equal for all possible tags. For a Picasso, the
players that match on the tag “painting” are equally rewarded as the players who correctly
identify that the painting is a Picasso. This gives incentives to the players to concentrate
on the simplest possible tags like “person”, “man”, “woman”, etc, without spending effort
to provide more informative tags. This problem has been partly corrected by the Google
Image Labeler9, a franchise of the ESP Game, which rewards players inversely proportional
to the frequency of the tag they agree on. However, the exact algorithm for computing the
rewards is not public. Yahoo! is also known to use a version of the ESP Game to tag their
collection of images.

Another example of a commercial application using payment mechanisms to encourage
honest reporting is Amazon’s Mechanical Turk10. The role of the system is to provide a
marketplace in which human users can solve tasks that are very difficult for machines, but
easy for people (i.e., short translations, tagging, face recognition, natural language search,
etc). Task owners can pay the workers for answering their tasks, and can also specify
payment rules: e.g., a worker gets paid (or receives a bonus) only if the answer is confirmed
by a different worker solving the same task.

A number of feedback forums reward raters independently based on the impact of their
reviews on the other users. ePinion.com, for example, has professional reviewers who get
paid depending on the votes expressed by normal users, and on the purchases made after
reading the reviews. Another example is the startup Friend2Friend.com11 who allows users
to gain commissions by recommending products to their friends.

Central to the results of this paper is the principle of automated mechanism design
(AMD). The mechanism is created automatically (using optimization algorithms) for the
specific problem instance, given the specific information available to the mechanism de-
signer. The idea has important advantages since (a) it can be used to address classes
of problems for which there are no known manually designed mechanisms, (b) it can cir-
cumvent impossibility results by restricting the mechanism to one particular setting, (c) it
can generate better mechanisms by capitalizing on the specific information available in the
present setting, and (d) it shifts the effort of mechanism design to a machine.

Since first introduced by Conitzer and Sandholm (2002), AMD was used to generate
several impressive results. Conitzer and Sandholm (2003a) (a) reinvented the Mayerson
auction which maximizes the seller’s expected revenue in a single-object auction, (b) created

9. http://images.google.com/imagelabeler/

10. http://www.mturk.com/mturk/welcome

11. http://www.friend2friend.com/

241



Jurca & Faltings

expected revenue maximizing combinatorial auctions, and (c) created optimal mechanisms
for a public good problem. Guo and Conitzer (2007) use AMD to optimally redistribute the
payments generated by the VCG mechanism, Conitzer and Sandholm (2007) incrementally
design incentive compatible mechanisms, while Hajiaghayi, Kleinberg, and Sandholm (2007)
focus on AMD for online settings. Conitzer and Sandholm (2003b) show that the AMD
can potentially be exponentially faster for settings with structured preferences that allow
a concise representation of the input. Conitzer and Sandholm (2004) describe an efficient
algorithm for AMD when the mechanism is deterministic, does not allow payments and there
is only one type-reporting agent. AMD can also be used to design multi-stage mechanisms
that reduce the burden of information elicitation by querying the agents only for relevant
information (Sandholm, Conitzer, & Boutilier, 2007). The results of this paper add to this
already long list of results obtained through AMD.

The results of Section 4 are mostly related to the literature on implementation theory
and incentive contracts for principle-(multi)agent settings. The main goal of implemen-
tation theory is to characterize the space of social choice rules that are implementable by
some mechanism given a game-theoretic equilibrium concept. For complete information set-
tings, well established results characterize the necessary and sufficient conditions for a social
choice rule (SCR) to be implementable in dominant strategy or in Nash equilibrium. For
example, SCRs can be implemented in dominant strategies only if they are strategy-proof
(Gibbard, 1973), while the SCRs that can be Nash-implemented must satisfy the property
of monotonicity and no veto power (Maskin, 1999). Unfortunately, SCRs of practical inter-
est do not satisfy the monotonicity requirement. Fortunately, non-monotonic SCRs can be
implemented in undominated Nash equilibria (Palfrey & Srivastava, 1991), or in subgame
perfect equilibria by multi-stage mechanisms. Another relaxation that extends the set of
implementable SCRs is to consider virtual implementation, where the socially optimal out-
come is required to occur only with probability close to one (Matsushima, 1988; Abreu &
Sen, 1991).

In environments with incomplete information agents have private information that is
not shared by other agents. The truthful revelation of the private information can only be
ensured by social choice rules that are Bayesian incentive-compatible. Moreover, a Bayesian
monotonicity condition is necessary for Bayesian implementation (Jackson, 1991). Moore
and Repullo (2005) characterize SCRs that can be virtually Bayesian implemented in pure
strategies, and derive the necessary and sufficient conditions of incentive compatibility and
virtual monotonicity.

However, applying the implementation theory to the feedback reporting setting (an
environment with incomplete information) provides nothing more than the constraints on
the payment function such that honest reporting is the unique Bayesian Nash equilibrium.
In implementation theory terms, the set of possible world states consists of all combinations
of N privately perceived quality signal (one signal for each agent). The outcome space
contains all possible sets of N feedback reports and all possible combinations of N positive
payments made to the N agents. The desirable SCR contains all social choice functions
that map the possible states of the world (i.e., the set of privately perceived signals) to
the outcomes where the reported feedback correspond to the privately perceived signals).
Implementation theory tells that the SCR must be incentive compatible (i.e., the social
choice functions prescribe outcomes where the payments to the agents make them truthfully
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reveal their private information) and Bayesian monotone (i.e., the social choice functions
prescribe outcomes where the payments received by the agents make honest reporting the
unique equilibrium). The results of Section 4 translate these requirements into practical
constraints that allow the computation of payment functions (and therefore social choice
functions) that are Bayesian Nash implementable.

A number of papers discuss incentive contracts that a principal should offer to several
agents whose effort levels are private. The reward received by each agent depends on the
output observed by the principal, and on the declarations of other agents. Holmström
(1982), Ma (1988), and Li and Balachandran (2000) show that efficient contracts exist that
are also incentive-compatible and collusion-proof. While the feedback reporting problem is
similar, it differs in one major aspect: the reputation mechanism designer (i.e., the principal)
does not observe a direct signal which is correlated to the reporters’ (i.e., agents’) private
information.

6. Discussion and Future Work

Throughout this paper we only considered pure reporting strategies. Extending our results
to mixed -strategy equilibria remains an open question, and poses non-trivial computational
problems: the constraints required to prevent mixed equilibria are no longer linear, and this
significantly increases the complexity of the design problem.

In this paper we limit our investigation to binary settings where the quality signal
observed by the agents and the feedback reported to the reputation mechanism is either 0
or 1. While the extension to n-ary feedback is conceptually straight-forward (see Appendix
D), the resulting mechanism design problem becomes exponentially more complex as we
increase the number of possible feedback values. It remains a challenge for future work
to design efficient algorithms that are able to quickly compute incentive-compatible and
collusion-resistant reward mechanisms for non-binary feedback.

Another challenge is to relax the requirement of common prior information. The model
we introduce in Section 2 assumes that all agents share the same prior beliefs regarding the
probability of positive or negative feedback. Jurca and Faltings (2007b) show that incentive
compatible reward schemes can still be designed when agents have small amounts of private
information. However, the same methodology cannot be easily extended to also address
collusion.

Yet another direction for future research is to design payment mechanisms that are
resistant against more complex collusion scenarios, where, for example, several strategic
agents, each controlling several fake identities, try to manipulate the reporting mechanism.

We believe, however, that there are many practical scenarios where the techniques we
presented in this paper can be successfully used to ensure safety against collusion. One
example is the monitoring of service quality. Jurca, Binder, and Faltings (2007) describe
a framework for monitoring the quality of web service based on client feedback. The idea
is to estimate the quality delivered by a service provider directly from the reports of the
clients. This approach is much cheaper and more precise when compared to traditional
monitoring devices that proxy and analyze the communication between the client and the
server. Nevertheless, the mechanism must provide incentives for honest reporting which
also discourage lying coalitions. The feedback in such settings is often binary, and specifies
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whether or not a certain service level agreements (SLA) has been met by the provider. The
quality of a provider is than defined by its capacity to fulfill the SLA, and usually becomes
public information. The quality at time t defines the priors for designing the mechanism at
time t + 1, and it is quite natural that the majority of the clients will consider these priors
to be public knowledge.

Many tasks on Amazon’s Mechanical Turk also fit the model we used in this paper. For
example, certain tasks ask human raters to specify whether two descriptions refer to the
same item or not. In other tasks, raters must vote thumbs up or down for a piece of news, or
must tag photographs that contain a certain visual clue, such as a human face. The answer
to all these tasks can be modeled by a binary feedback signal (e.g., items are the same or
not, positive or negative vote, a photograph contains or not a human face) and the answers
of different users may be considered as conditionally independent given the description of
the task. Moreover, these conditional probabilities may quite often be assumed common
knowledge: for example, the assumption that 98% of the raters will correctly identify a
human face in a decent quality photograph, is not only natural, but is also likely to be a
belief of most internet-savvy humans.

More generally, we believe our techniques can be useful in providing incentives for human
raters to label training data for supervised machine learning algorithms. Many practical
classifiers are binary (e.g., a photograph contains or not a certain feature, a word is mis-
spelled or not) or composed of other binary classifiers (e.g., recognizing a hand-written
digit). A framework similar to the Mechanical Turk can harvest the power of the crowds to
produce extensive training sets for different algorithms.

Another potential application can be the collaborative question answering forums like
Yahoo! Answers. In such forums users may post questions that remain open for a predefined
period of time. During this period, other users can write new answers, or vote for existing
answers. The voting mechanism is essential for differentiating good from bad answers,
and proper incentives may ensure higher participation and more accurate results. These
forums are especially vulnerable to collusion, since the author providing the best answer is
often rewarded by the forum with points, public recognition, or other benefits. The biggest
challenge in such contexts is to obtain accurate estimates on the different probabilities that
enter the design problem. For example, the prior probability of a high quality answer can be
estimated from the history of the site. On the other hand, the conditional probability that a
user will find a given answer as high quality is more complicated to estimate. For example,
the mechanism designer might use a natural language processing algorithm to figure out a
degree of matching between the question and the answer. The designer could also search for
documents that contain keywords related to the question and to the answer, and analyze
these documents to refine the matching degree of an answer to the given question. General
user statistics can also be factored in to estimate the likelihood that a random user will find
a given answer useful. Although these estimates will inevitably be noisy, they might work
well enough for the average user.

If our results can be fully extended to feedback sets of arbitrary size, the techniques
of this paper will be relevant for most feedback reporting scenarios. To mention just one
supplementary examples, the ESP game, where every photo tag can be assumed to be drawn
from a finite set of concepts, and the conditional probabilities of seeing a certain tag can be
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Non-Transferable Utilities Transferable Utilities
symmetric
strategies

asymmetric
strategies

symmetric
strategies

asymmetric
strategies

all agents
collude

-unique honest NE;
-Pareto-optimal
honest NE

-Pareto-optimal
honest NE

unreasonable
assumption

impossible to pre-
vent collusion

some agents
collude

-unique honest NE;
-Pareto-optimal
honest NE

-unique honest NE;
-Pareto-optimal
honest NE;
-sometimes honest
dominant strategy
(not if Ncol ≥ N

2
);

unreasonable
assumption

-(sybil attack),
the coalition
maximizes its rev-
enue by reporting
honestly;

Table 3: Summary of results.

estimated by using word frequencies in different languages, image recognition techniques,
and historical data regarding the distribution of tags in similar photos.

7. Conclusion

As online feedback and reputation become increasingly important sources of information,
explicit measures must guarantee that honest reporting is in the best interest of the par-
ticipants. Previous work shows that it is possible to construct payment mechanisms that
make honest reporting a Nash equilibrium, because agents expect to get rewarded more for
a truthful report than for a lie. Unfortunately, such mechanisms also have other equilibria
where reporters lie. This creates collusion opportunities, since several agents can coordinate
their lies in order to improve their revenues.

In this paper we addressed the design of incentive-compatible payments that are also
resistant to collusion. We consider different collusion scenarios where (i) all or only some
of the agents collude, (ii) colluders can coordinate on symmetric or asymmetric strategy
profiles, and (iii) colluders can transfer or not payments to each other. Table 3 summarizes
the results obtained for each scenario.

In Section 4.1 we assume that all agents may collude but cannot make side-payments to
each other. We showed that incentive-compatible payments can be efficiently constructed
such that honest reporting is the unique pure strategy symmetric NE, or a Pareto-optimal
pure symmetric NE. In Section 4.2 we keep the same assumptions, but investigate asym-
metric collusion strategies. We find that any incentive-compatible payment mechanism also
accepts asymmetric lying equilibria. Nevertheless, there are payment mechanisms where
honest reporting is a Pareto-optimal NE.

Sections 4.3 and 4.4 assume that only a fraction of the agents may collude, and that non-
colluders report honestly. If colluders can only coordinate on symmetric strategy profiles
and they cannot make side-payments to each other, payments always exist such that honest
reporting can be made the unique NE or (with lower payments) a Pareto-optimal NE.
If colluders can coordinate on asymmetric strategies (Section 4.4), payments can still be
devised that make honest reporting the unique or Pareto-optimal NE. If less than one half
the population can collude, then payments can sometimes be devised that make honest
reporting a dominant strategy. Numerical simulations, however, show that the payments
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required to deter coalition fractions greater than one third become exponentially expensive.

Finally, Section 4.5 describes incentive-compatible payments that are resistant to sybil
attacks: i.e., the same strategic agents creates several fake identities in order to manipulate
the payment mechanism. The designer can ensure that the set of reports submitted by
the coalition reflects the aggregated experience of the coalitions. Individual colluders do
not necessarily report the truth, but overall, the reputation mechanism obtains correct
information.
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Appendix A. Proof of Proposition 3.1

For solving LP 3.1, let us write the corresponding dual problem:

max Λy0 + Λy1;
s.t. Pr[n|0]y0 − Pr[n|1]y1 ≤ Pr[0]Pr[n|0]

Pr[n|1]y1 − Pr[n|0]y0 ≤ Pr[1]Pr[n|1]
∀n ∈ {0, . . . , N − 1};

where y0 (respectively y1) is the dual variable corresponding to the constraint where the
agent observes 0 (respectively 1). By dividing the first set of constraints by Pr[n|0] and the
second set of constraints by Pr[n|1], we have:

y0 − y1Pr[n|1]/Pr[n|0] ≤ Pr[0], ∀n ∈ {0, . . . , N − 1};
y1 − y0Pr[n|0]/Pr[n|1] ≤ Pr[1], ∀n ∈ {0, . . . , N − 1};

Clearly, among the 2(N − 1) constraints of the dual problem, only two are active, corre-
sponding to: n1 = arg minn

Pr[n|1]
Pr[n|0] , and n2 = arg minn

Pr[n|0]
Pr[n|1] . It follows that only two of

the variables of LP 3.1 have non-zero values (i.e., τ(0, n1) 6= 0 and τ(1, n2) 6= 0), and they
satisfy the linear equations:

Pr[n1|0]τ(0, n1)− Pr[n2|0]τ(1, n2) = Λ;
−Pr[n1|1]τ(0, n1) + Pr[n2|1]τ(1, n2) = Λ;

The remaining part of the proof is to show that n1 = 0 and n2 = N − 1. For that, we
will prove that Pr[n|1]

Pr[n|0] < Pr[n+1|1]
Pr[n+1|0] for all n = 0, 1, . . . , N − 2.
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Pr[n|1]Pr[n + 1|0]− Pr[n|0]Pr[n + 1|1] =
( ∑

θ∈Θ

Pr[θ]
Pr[1|θ]
Pr[1]

Pr[n|θ]
)( ∑

θ∈Θ

Pr[θ]
Pr[0|θ]
Pr[0]

Pr[n + 1|θ]
)
−

( ∑

θ∈Θ

Pr[θ]
Pr[0|θ]
Pr[0]

Pr[n|θ]
)( ∑

θ∈Θ

Pr[θ]
Pr[1|θ]
Pr[1]

Pr[n + 1|θ]
)

=
( ∑

θ∈Θ

Pr[θ]
Pr[1|θ]
Pr[1]

Pr[n|θ]
)( ∑

θ∈Θ

Pr[θ]
Pr[0|θ]
Pr[0]

Pr[n|θ] (N − 1− n)Pr[1|θ]
(n + 1)Pr[0|θ]

)
−

( ∑

θ∈Θ

Pr[θ]
Pr[0|θ]
Pr[0]

Pr[n|θ]
)( ∑

θ∈Θ

Pr[θ]
Pr[1|θ]
Pr[1]

Pr[n|θ] (N − 1− n)Pr[1|θ]
(n + 1)Pr[0|θ]

)

=
(N − 1− n)

(n + 1)Pr[1]Pr[0]

(( ∑

θ∈Θ

Pr[θ]Pr[1|θ]Pr[n|θ]
)2−

( ∑

θ∈Θ

Pr[θ]Pr[0|θ]Pr[n|θ]
)( ∑

θ∈Θ

Pr[θ]
Pr[1|θ]2
Pr[0|θ] Pr[n|θ]

))
< 0;

by the Cauchy-Schwartz inequality applied to the vectors (
√

Pr[θ]Pr[0|θ]Pr[n|θ])θ∈Θ and

(Pr[1|θ]
√

Pr[θ]Pr[n|θ]√
Pr[0|θ] )θ∈Θ.

Appendix B. Proof of Proposition 4.5

The idea of the proof is to show that we can find the positive values x and y such that the
payment scheme defined in Proposition 4.5 has only three NE: honest reporting, everybody
reporting 0 or everybody reporting 1.

No NE where n agents report according to slie and 4 − n agents report honestly. From
Proposition 4.2 we know that x and y can be found to prevent an equilibrium where all
agents lie. Similarly, the incentive-compatible constraints ensure that a strategy profile
where one agent always lies and three agents always report the truth cannot be a NE. Let
us show that the profile s = (3 × slie, s̄) where three agents lie and one agent reports the
truth. The honest reporter observing a low quality signal will report honestly if and only
if:

Pr[2|0]x− Pr[1|0]y > 0;

The same honest agent reports a positive report after observing high quality if and only if:

−Pr[2|1]x + Pr[1|1]y > 0;

However, by Lemma 3.1 we have Pr[1|0]
Pr[2|0] > Pr[1|1]

Pr[2|1] , so the two inequalities can never be
simultaneously satisfied.

Consider the profile s = (2× slie, 2× s̄) where two agents lie and two agents report the
truth is not NE. One honest reporter reports the truth if and only if:

(3Pr[3|0] + 2Pr[1|0])x− (3Pr[0|0] + 2Pr[2|0])y > 0;
−(3Pr[3|1] + 2Pr[1|1])x + (3Pr[0|1] + 2Pr[2|1])y > 0;

A liar, on the other hand, reports according to slie if and only if:

(3Pr[0|1] + 2Pr[2|1])x− (3Pr[3|1] + 2Pr[1|1])y > 0;
−(3Pr[0|0] + 2Pr[2|0])x + (3Pr[3|0] + 2Pr[1|0])y > 0;
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All 4 inequalities are satisfied if and only if

3Pr[3|1] + 2Pr[1|1] < 3Pr[0|1] + 2Pr[2|1];
3Pr[0|0] + 2Pr[2|0] < 3Pr[3|0] + 2Pr[1|0];

which is impossible.
No NE where one agent always reports 1, n agents report according to slie and 3 − n

agents report honestly. Clearly, when all 3 agents report honestly, the agent always reporting
1 has the incentive to deviate and report 0 after observing low quality. Consider the strategy
profile s = (spos, 2 × s̄, slie) where one agent reports according to spos, two agents report
honestly and one agent reports according to slie. For the liar, slie is an equilibrium iff:

−P̂ r[0|0]x + P̂ r[1|0]y > 0;

P̂ r[0|1]x− P̂ r[1|1]y > 0;

where P̂ r[n|oi] is the probability that n out of the 2 honest reporters will observe 1, given

the observation oi ∈ Q2. By Lemma 3.1, we have P̂ r[1|1]

P̂ r[0|1]
> P̂ r[1|0]

P̂ r[0|0]
, so the above inequations

cannot hold simultaneously.
Consider the strategy profile s = (spos, s̄, 2 × slie) where one agent reports according

to spos, one agent reports honestly and two agents report according to slie. The agent
reporting honestly, does so iff:

P̂ r[2|0]x− P̂ r[0|0]y > 0;

−P̂ r[2|1]x + P̂ r[0|1]y > 0;

where P̂ r[n|oi] is the probability that n out of the 2 liars observe 1, given the observation

oi ∈ Q2. This is impossible since by Lemma 3.1 P̂ r[0|0]

P̂ r[2|0]
> P̂ r[0|1]

P̂ r[2|1]
.

Similar techniques can be used to prove that no strategy profile
(
sneg, n×slie, (3−n)× s̄

)
or

(
sneg, spos, n × slie, (2 − n) × s̄

)
can be NE. Therefore, the only constraint (besides the

incentive-compatibility constraints) acting on the payments x and y is intended to prevent
the all lying equilibrium. x and y take exactly the values described by Proposition 4.2.

Appendix C. Proof of Proposition 4.6

Consider the strategy profile s =
(
n̄ × s̄, (N − n̄) × slie

) ∈ S̃ where n̄ ≥ 1 agents report
honestly, and the others always lie. If s were a NE, an honest reporter must expect a
higher payment by reporting the truth, while a liar must expect a higher payment by lying.
Consider an honest reporter observing 0. She will report a negative signal if and only if
Pr[r−i = 1|0]x > Pr[r−i = N − 2|0]y, where Pr[r−i = 1|0] and Pr[r−i = N − 2|0] are
the probabilities that exactly 1, respectively N − 2 of the remaining N − 1 agents report
positive signals. Exactly one of the other agents reports a positive signal when:

• all but one of the other honest reporters observes low quality, and all liars observe
high quality, or

• all honest reporters observe low quality, and all but one of the liars observe high
quality.
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Pr[r−i = 1|0] =
∑

θ∈Θ

Pr[θ|0]
( n̄− 1

1

)
Pr[1|θ]Pr[0|θ]n̄−2

( N − n̄
N − n̄

)
Pr[1|θ]N−n̄+

∑

θ∈Θ

Pr[θ|0]
( n̄− 1

0

)
Pr[0|θ]n̄−1

( N − n̄
N − n̄− 1

)
Pr[1|θ]N−n̄−1Pr[0|θ]

=
(n̄− 1)!(N − n̄ + 1)!

(N − 1)!
Pr[N − n̄ + 1|0] +

(n̄)!(N − n̄)!

(N − 1)!
Pr[N − n̄− 1|0]

=
(n̄− 1)!(N − n̄)!

(N − 1)!

(
(N − n̄ + 1)Pr[N − n̄ + 1|0] + n̄P r[N − n̄− 1|0]

)
;

Similarly,

Pr[r−i = N − 2|0] =
(n̄− 1)!(N − n̄)!

(N − 1)!

(
(N − n̄ + 1)Pr[n̄− 2|0] + n̄P r[n̄|0]

)
;

Hence the honest reporter has the incentive to truthfully submit a negative report if and
only if:

(N − n̄ + 1)
(
Pr[N − n̄ + 1|0]x− Pr[n̄− 2|0]y

)
+ n̄

(
Pr[N − n̄− 1|0]x− Pr[n̄|0]y

)
> 0;

On the other hand, the honest reporter will submit a positive report after observing a high
quality signal if and only if:

(N − n̄ + 1)
(
Pr[n̄− 2|1]y − Pr[N − n̄ + 1|1]x

)
+ n̄

(
Pr[n̄|1]y − Pr[N − n̄− 1|1]x

)
> 0;

Exactly the same reasoning leads to the following two inequations for the liar:

(N − n̄)
(
Pr[n̄− 1|0]y − Pr[N − n̄|0]x

)
+ (n̄ + 1)

(
Pr[n̄ + 1|0]y − Pr[N − n̄− 2|0]x

)
> 0;

(N − n̄)
(
Pr[N − n̄|1]x− Pr[n̄− 1|1]y

)
+ (n̄ + 1)

(
Pr[N − n̄− 2|1]x− Pr[n̄ + 1|1]y

)
> 0;

There exist x and y such that the four inequalities are satisfied in the same time only if:

(N − n̄ + 1)Pr[n̄− 2|0] + n̄P r[n̄|0]

(N − n̄ + 1)Pr[N − n̄ + 1|0] + n̄P r[N − n̄− 1|0]
<

(N − n̄ + 1)Pr[n̄− 2|1] + n̄P r[n̄|1]

(N − n̄ + 1)Pr[N − n̄ + 1|1] + n̄P r[N − n̄− 1|1]

(N − n̄)Pr[n̄− 1|1] + (n̄ + 1)Pr[n̄ + 1|1]

(N − n̄)Pr[N − n̄|1] + (n̄ + 1)Pr[N − n̄− 2|1]
<

(N − n̄)Pr[n̄− 1|0] + (n̄ + 1)Pr[n̄ + 1|0]

(N − n̄)Pr[N − n̄|0] + (n̄ + 1)Pr[N − n̄− 2|0]

or equivalently:

(N − n̄ + 1)Pr[n̄− 2|0] + n̄P r[n̄|0]

(N − n̄ + 1)Pr[n̄− 2|1] + n̄P r[n̄|1]
<

(N − n̄ + 1)Pr[N − n̄ + 1|0] + n̄P r[N − n̄− 1|0]

(N − n̄ + 1)Pr[N − n̄ + 1|1] + n̄P r[N − n̄− 1|1]

(N − n̄)Pr[n̄− 1|1] + (n̄ + 1)Pr[n̄ + 1|1]

(N − n̄)Pr[n̄− 1|0] + (n̄ + 1)Pr[n̄ + 1|0]
<

(N − n̄)Pr[N − n̄|1] + (n̄ + 1)Pr[N − n̄− 2|1]

(N − n̄)Pr[N − n̄|0] + (n̄ + 1)Pr[N − n̄− 2|0]

However, one can show that:

(N − n̄)Pr[N − n̄|1] + (n̄ + 1)Pr[N − n̄− 2|1]

(N − n̄)Pr[N − n̄|0] + (n̄ + 1)Pr[N − n̄− 2|0]
<

(N − n̄ + 1)Pr[n̄− 2|0] + n̄P r[n̄|0]

(N − n̄ + 1)Pr[n̄− 2|1] + n̄P r[n̄|1]

and

(N − n̄ + 1)Pr[N − n̄ + 1|0] + n̄P r[N − n̄− 1|0]

(N − n̄ + 1)Pr[N − n̄ + 1|1] + n̄P r[N − n̄− 1|1]
<

(N − n̄)Pr[n̄− 1|1] + (n̄ + 1)Pr[n̄ + 1|1]

(N − n̄)Pr[n̄− 1|0] + (n̄ + 1)Pr[n̄ + 1|0]
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which means that the honest reporter and the liar cannot both believe that their strategies
are optimal (given the strategies of the other agents).

Consider the strategy profile s = (sneg, n̄ × s̄, N − n̄ − 1 × slie) ∈ S̃ where one agent
always reports 0, n̄ ≥ 1 agents report honestly, and N − n̄ − 1 ≥ 1 agents always lie. An
honest reporter and a liar both believe that s is a NE if and only if:

(
n̄P̄ r[N − n̄− 2|0] + (N − n̄)P̄ r[N − n̄|0]

)
x− P̄ r[n̄− 1|0]y > 0

−
(
n̄P̄ r[N − n̄− 2|1] + (N − n̄)P̄ r[N − n̄|1]

)
x + P̄ r[n̄− 1|1]y > 0

−
(
(n̄ + 1)P̄ r[N − n̄− 3|0] + (N − n̄− 1)P̄ r[N − n̄− 1|0]

)
x + P̄ r[n̄|0]y > 0

(
(n̄ + 1)P̄ r[N − n̄− 3|1] + (N − n̄− 1)P̄ r[N − n̄− 1|1]

)
x− P̄ r[n̄|1]y > 0

(17)

where P̄ r[j|oi] is the probability that j out of N − 2 agents observe high quality signals,
given the observation oi.

Nevertheless,

P̄ r[n̄|0]

P̄ r[n̄|1]
<

P̄r[n̄− 1|0]

P̄ r[n̄− 1|1]

and

n̄P̄ r[N − n̄− 2|0] + (N − n̄)P̄ r[N − n̄|0]

n̄P̄ r[N − n̄− 2|1] + (N − n̄)P̄ r[N − n̄|1]
<

(n̄ + 1)P̄ r[N − n̄− 3|0] + (N − n̄− 1)P̄ r[N − n̄− 1|0]

(n̄ + 1)P̄ r[N − n̄− 3|1] + (N − n̄− 1)P̄ r[N − n̄− 1|1]

which means that the inequalities in (17) can never be simultaneously satisfied.
Using exactly the same technique one can show that:

• s =
(
spos, n̄× s̄, (N− n̄−1)×slie

) ∈ S̃ where one agent always reports 0, n̄ ≥ 1 agents
report honestly, and N − n̄− 1 ≥ 1 agents always lie is not a NE;

• s =
(
sneg, spos, n̄ × s̄, (N − n̄ − 2) × slie

) ∈ S̃ where one agent always reports 0, one
agent always reports 1, n̄ ≥ 0 agents report honestly, and N− n̄−1 ≥ 0 agents always
lie is not a NE.

Appendix D. Extending the results to n-ary feedback

We have assumed so far that agent can observe and report only two signals: 0 or 1. The
framework can be extended to n-ary feedback by imposing supplementary constraints on
the design problems. For example, let’s assume the set of quality signals (and feedback
reports) contains M elements: Q = {q1, q2, . . . qM}. The incentive compatibility constraints
equivalent to (4) become:

∑

r−i∈Q(N−1)

Pr[r−i|qj ]
(
τ(qj , r−i)− τ(qk, r−i)

)
≥ Λ; ∀qj , qk ∈ Q;

where qj ∈ Q is the signal actually observed by agent i, qk ∈ Q is every other lie agent i
could report, and r−i ∈ Q(N−1) is the configuration of the other N − 1 reference reports.
When compared to (4) three observations become apparent. First, the 2 constraints for
the binary feedback case must be replaced by M(M − 1) constraints for the n-ary feedback

250



Mechanisms for Making Crowds Truthful

setting. Second, the ’size’ of each constraint grows from a sum of N terms to a sum of
CM−1

N+M−2 terms (all possible unordered sequences of N − 1 signals drawn from Q). Finally,
the reward mechanism is defined by M · CM−1

N+M−2 payments instead of 2N .
All other constraints will suffer a similar blowup, which makes the design problem for

the general n-ary feedback case significantly harder to solve.
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