
Journal of Artificial Intelligence Research 34 (2009) 165–208 Submitted 07/08; published 03/09

Behavior Bounding:

An Efficient Method for High-Level Behavior Comparison

Scott Wallace wallaces@vancouver.wsu.edu

Washington State University Vancouver

14204 NE Salmon Creek Avenue

Vancouver, WA 98686

Abstract

In this paper, we explore methods for comparing agent behavior with human behavior to
assist with validation. Our exploration begins by considering a simple method of behavior
comparison. Motivated by shortcomings in this initial approach, we introduce behavior
bounding, an automated model-based approach for comparing behavior that is inspired,
in part, by Mitchell’s Version Spaces. We show that behavior bounding can be used to
compactly represent both human and agent behavior. We argue that relatively low amounts
of human effort are required to build, maintain, and use the data structures that underlie
behavior bounding, and we provide a theoretical basis for these arguments using notions of
PAC Learnability. Next, we show empirical results indicating that this approach is effective
at identifying differences in certain types of behaviors and that it performs well when
compared against our initial benchmark methods. Finally, we demonstrate that behavior
bounding can produce information that allows developers to identify and fix problems in
an agent’s behavior much more efficiently than standard debugging techniques.

1. Introduction

Over the past few decades, intelligent systems have been asked to perform increasingly
complex and mission critical tasks in domains such as medical diagnosis (Shortliffe, 1987)
and simulated aerial combat (Jones et al., 1999). Despite a number of successes, these
complex agents have yet to become fully integrated into mainstream software. Much of this
impasse may be attributable to the fact that developing these agents is often extremely
time consuming and expensive.

Development requires three high-level steps: specification, implementation, and valida-
tion. The difficulties associated with each step are determined by the properties of the agent
and the task it is intended to perform. In this paper, we focus on a class of agents we term
interactive human-level agents. Such agents are typified by training simulations in which
agents participate in mixed human-computer teams to accomplish a particular training ob-
jective (e.g., Swartout et al., 2001; Traum et al., 2003; Jones et al., 1999; Rickel et al., 2002).
In these domains, the agent plays a role normally fulfilled by an expert human who may not
be available for all training episodes. These agents are distinguished by three properties.
First, the agent’s performance is judged based on its ability to behave as a human expert
would behave in a similar situation. Such a design criterion is often particularly important
in training simulations where agents operate as part of a mixed human-computer team play-
ing a role that is normally occupied by another person. Second, like humans themselves,
interactive human-level agents must interact with an external, and typically very complex,

c©2009 AI Access Foundation. All rights reserved.

Wallace

environment in order to perform many of their tasks. Finally, unlike the situation faced in
other design problems, complete specifications for correct behavior are often impracticable
if not impossible to obtain. This, unfortunately, is a well documented property of many
systems built to model human domain experts (e.g., Tsai, Vishnuvajjala, & Zhang, 1999;
Weitzel & Kerschberg, 1989; Lee & O’Keefe, 1994; Menzies, 1999). For interactive human-
level agents, the specification of how a task should be performed typically comes directly
from the human domain expert, and as a result, comparing the agent’s behavior with this
gold standard is the only way to determine if the design criteria have been met.

A good example of an interactive human-level agent is TacAir-Soar (Jones et al., 1999).
TacAir-Soar flies virtual military planes as part of a simulated training exercise. Teammates
may be other TacAir-Soar agents or human counterparts. Because the agents are intended
to be used when there are not enough human participants for a complex exercise, these
agents must model expert-level behavior very closely so as to achieve the same training
results as if a fully human team was used. Thus, it is not acceptable for the agents simply
to achieve correct final states (e.g., by shooting down the enemy planes). Instead, the
agent must pursue a trajectory through the state/action space that emulates the human’s
trajectory (behavior). As in most complex domains, meeting this requirement is challenging
because the expert may perform the task differently on different occasions.

For many human-level agents, the development steps of specification and implementation
are often woven together during knowledge acquisition—the process through which the
developer interviews a human expert to identify and encode the parameters for correct
behavior. Often, this process involves exposing the rules or procedures that govern how
the expert decomposes a task into a series of goals, subgoals and primitive actions (task
decomposition). Once these rules or procedures have been elicited, the developer can encode
that knowledge in a form that is usable by the underlying agent architecture.

This traditional approach of knowledge acquisition is rarely free of errors. The process
of task decomposition works well enough to identify the relationships between task goals
and subgoals that it is considered a useful means of both acquiring and encoding task
knowledge (e.g., Lee & O’Keefe, 1994; Yen & Lee, 1993; Yost, 1996). However, at a finer
level of granularity, knowledge acquisition is highly prone to errors. In part, this is due
to the fact that the human participants are stretched beyond their areas of expertise. For
the domain expert, this means communicating how tasks should be performed instead of
simply performing them. For the engineer, this means understanding the problem space well
enough to determine how to translate the expert’s descriptions into instructions that can be
interpreted by the computer and that can be applied to appropriate situations. Although
alternative methods of knowledge acquisition have been proposed and tested within a limited
setting (e.g., van Lent & Laird, 1999), for the most part they have not been incorporated
into widespread use. As a result, developing complex intelligent agents remains a time
consuming and difficult process.

A distinguishing characteristic of the work presented here is the previous stated assump-
tion that correct specifications are difficult or impossible to obtain. This is in contrast to
the majority of recent agent validation approaches using model checking or temporal logic
(e.g., Bordini, Fisher, Visser, & Wooldridge, 2004, 2006; Fisher, 2005). These systems seek
to identify implementation errors by proving whether a particular implementation upholds
strict logical constraints (specifications). The underlying assumption in model checking is

166

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

that errors originate in the implementation—not in the specification. If this assumption is
violated, the system must be tested against a gold standard of behavior to ensure correct-
ness as the specification cannot be fully trusted. In this sense, the testing methods proposed
in the paper can be viewed as a complementary approach for achieving the same objective:
a correctly functioning agent.

Our work is further distinguished from typical machine learning approaches because
we are interested in creating artifacts that can help a person validate an existing agent’s
behavior—we do not necessarily need to learn how to produce the behavior. Our approach
is intended for applications in which current learning systems are unable to perform well
or are untrusted by the end users. We will revisit our distinction from traditional machine
learning approaches again in Sections 4 and 10.

1.1 From Manual to Semi-Automated Behavior Comparison

The standard approach to test-based validation requires that both the knowledge devel-
oper and the domain expert monitor the agent’s behavior in a large number of scenarios
(Kirani, Zualkernan, & Tsai, 1994; Tsai et al., 1999). Although standard, it is clear that
this approach has a number of significant drawbacks. Principal among these is that the
participation of two humans is required to assess the agent’s performance in each test. By
the time validation takes place, however, gross inadequacies in the agent’s behavior will
have been corrected. Thus, although it is very likely that some errors will still exist, their
manifestations will probably be relatively few and far between. This means that much of the
time spent on validation will not be useful for identifying problems in the agent’s behavior.

To improve upon the standard validation approach, a semi-automated method that
makes more efficient use of the domain expert and the developer’s time would be highly
desirable as it could substantially decrease the cost of testing. In this paper, we explore
the issue of how to meaningfully compare two actors’ trajectories through state/action/goal
space (i.e., their behavior) given a set of examples.

Comparison, in this paper, simply means identifying how the actors’ trajectories are
similar or different to one another. Thus, we are interested in a comparison that goes well
beyond simply indicating if two actors achieved the same final states. Rather, it should take
into account the actions performed and the motivations behind these actions. This could
be done simply by comparing observed trajectories directly, or by inferring a general model
for the actors’ trajectories and comparing these models. In either case, a key challenge is
that we are interested in producing artifacts that are easy for a human to interpret and
could be used to assist her in tasks such as validation.

The potential uses of behavior comparison extend well beyond agent validation and into
many other tasks where humans may want to know how two actors perform tasks differ-
ently. Scoring a modified (non-speech based) Turing test, for example, requires humans to
perform a comparison between two actors’ behavior. Similarly, consider a human supervisor
examining a student’s performance on a lesson with an intelligent tutoring or training sys-
tem. The examination and review could be facilitated if the tutoring system were capable
of comparing how the student’s behavior differed from an internal gold standard and could
then relay this information to the instructor in a manner that was easy to interpret. In each
of these applications, the basic process for comparing behavior and the artifacts produced

167

Wallace

remains constant. The differences stem only from the source of behavior (e.g., human or
machine, expert or novice) and how the results are used (to identify programming errors,
to score a test, or to evaluate a student’s performance). For simplicity and cohesiveness,
this paper will focus on using behavior comparisons to aid the agent validation problem,
but the discussion and results can also be applied to other tasks as well.

1.2 Outline

In the remainder of this paper, we examine two methods for comparing interactive goal-
oriented behavior such as that exhibited by human-level agents and their human coun-
terparts. We begin by describing a primitive representation of behavior upon which we
can build our comparison methods. Next, we describe a simple sequence-based compari-
son, but deficiencies with this method lead us to examine more sophisticated model-based
approaches.

The main contributions of this paper are fourfold. First, in Section 4, we identify the re-
quirements of a useful comparison system. Then, beginning in Section 5, we describe a novel
model-based approach for comparing two actors’ behavior. This approach, called behavior
bounding, uses a hierarchical behavior representation that can be built from observations of
human or computer-agent behavior. Third, we demonstrate that behavior bounding meets
the requirements of a useful behavior comparison system and support these claims with
both theoretical and empirical evidence. Finally, we show that information from behavior
bounding’s comparison can significantly aid the process of identifying problems in an agent’s
behavior, thus speeding agent validation by a significant factor.

2. Behavior Traces

At its most primitive, behavior can be represented as a trajectory though state/action/goal
space that we will refer to as a behavior trace. A behavior trace is a sequence of tuples
B = ((s,G, a)0, (s,G, a)1, . . . , (s,G,A)n) in which each tuple (s,G, a)i indicates the environ-
mental state (s), the goals being pursued by the actor (G), and the action being performed
(a) at the ith sampling point. The actor’s goals are not directly observable and must be
explicitly provided by the actor performing the task. Goals are important for our purposes
because we are not only interested in what the actors do, but we are also interested in the
motivation behind their actions.

In this project, we make three main assumptions about the nature of the actor’s goals.
First, we assume that the actor’s goals are part of the actor’s internal state. These goals
are not simply given by the task description. Although the task certainly informs goal
selection, these goals arise from the interactions between the agent’s internal desires and the
environmental situations encountered during the task. Second, we assume that the actor’s
goals can change as the environment changes and as the task moves toward completion. This
means that goals can be used to structure the agent’s task into subtasks and that appropriate
goals and subgoals will generally differ during distinct phases of the task. Third, we assume
that the actor’s choice of goals (and actions) is based upon a static set of knowledge. That
is, the agent does not learn.

Note that as we have defined it, the behavior trace does not give complete information
about the agent’s internal state. Indeed, the actor is likely to perform a potentially large

168

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

amount of reasoning in order to select G or a. For example, the actor may perform an
expected utility calculation or a look-ahead search. However, this process and any infor-
mation that is not explicitly represented in G or a is completely absent from the behavior
trace. Although this provides us with only a limited amount of information with which to
perform a behavior comparison, it also ensures that it will be possible to collect behavior
from either human or computer agent actors.

Behavior capture is the process of collecting information from an actor to build a behav-
ior trace. As noted above, limiting the information in a behavior trace is critical to ensure
that behavior capture is possible. The state and action portion of the behavior trace can be
captured simply by observing the actor perform the specified task. Depending on whether
the actor is human or a computer agent, the way in which the actor records how goals
change during a task will vary. For the computer agent, (G, s) pairs can simply be writ-
ten to a file during task performance. For a human expert, goal annotations can be made
verbally during task performance or immediately following task completion as suggested by
van Lent and Laird (1999).

3. Sequence-Based Comparison

A simple approach to comparing the actors’ behavior can be performed with the following
steps:

Acquire a set of behavior traces from the human expert and the agent for the specified task.
These sets, H and A, represent the human expert’s and agent’s behavior respectively
over a number of different trials.

Extract relevant symbols from the behavior traces. Some information gathered through
observation may be irrelevant for detecting errors. For example, if the human expert’s
behavior never changes given different values of the state symbol z, then z is likely
to be irrelevant for detecting errors. In this step, the salient symbols from the sets H

and A are used to create two new sets of sequences H ∗ and A∗.

Compare each sequence a ∈ A∗, to the contents of H∗. Compute the minimal number of
edit operations (insert, delete, modify) that would be required to transform a into h,
where h is the sequence in H∗ that is initially most similar to a. Each edit operation
indicates a potential error.

Report all deviations (after removing any redundancies) between the human’s and agent’s
behavior. This report summarizes all potential errors.

This simple approach performs a more detailed analysis of behavior than simply checking
that the agent and the expert reach the same final (goal) state. In this way, the agent’s
externally observable behavior as well as some aspects of its internal reasoning process can
be inspected to ensure consistency with the human expert’s. In addition, this methodology
has the ability to identify a large number of possible errors because it has access to all the
salient properties of the behavior trace. However, this simple approach also suffers from a
number of potentially serious flaws.

169

Wallace

1. The actors’ behavior is represented as a set of sequences. As the complexity of the
domain increases it is likely that two effects will be noticed: the average length of
sequences in H∗ and A∗ will grow (i.e., the complex tasks will take longer to solve),
and these sequences will be composed of a larger number of symbols (e.g., the state
space will become richer). The number of distinct sequences with lengths between
lmin and lmax and composed of s symbols grows as

∑lmax

l=lmin
sl. Thus, enumerating

this space is likely to be infeasible. Moreover, because interactive human-level agents
can typically solve problems in a number of different ways, and typically operate
within complex domains, it is likely that the sequential approach described in this
section will be particularly susceptible to this effect.

2. The sequence based comparison fails to make any assumptions about how the actors’
behavior may be constrained. That is, the sequential behavior representation provides
no method for expressing a priori knowledge about how symbols can be placed relative
to one another within a particular sequence. Instead, the representation is completely
unconstrained; sequences of length l can be constructed by making l independent
symbol selections. Although this makes it possible to use this simple approach with
any variety of behavior (even behavior that is completely unstructured), it also makes
it impossible to leverage regularities that might exist in a large classes of goal directed
tasks (such as the fact that unlocking a door must always be accomplished before the
door is opened).

4. Model Based Approaches

To improve upon the simple sequence-based method of error detection, we propose a com-
parison method that leverages an abstract representation of the actors’ behavior. We call
such methods model-based because they do not compare instances of the actors’ behav-
ior directly (as the simple sequential approach would). Instead, these methods compare
abstract representations of the actor’s behavior (models), to identify similarities and dif-
ferences in the underlying behavior. Central to any such approach are the considerations
that influenced the model’s design. Our choice of models is guided by the following design
requirements:

Low Complexity The behavior model must be significantly less complex than the repre-
sentations that define the agent itself. If this requirement is violated, two problems
may result. First, constructing the model (either by hand, or automatically through
some observational framework) is likely to be as difficult as constructing the agent’s
knowledge base. Second, understanding the model and the behavior it represents
is likely to be no easier than examining the agent’s internal representation. If the
comparison is being used to validate the agent’s underlying knowledge base, this is
clearly undesirable as it results in a recursive validation problem. However, we can
achieve this low complexity requirement by using a model that represents behavior at
a relatively high level of abstraction compared to the agent’s internal implementation.

Low Human Effort The human effort required to build the behavior model must remain
low. We have argued that one of the main uses of the behavior comparison would be to

170

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

reduce the cost of validating a human-level agent. If the low human effort requirement
is violated, the original validation costs (due, for example, to the time requirements
of examining numerous test scenarios) have simply been replaced with new costs,
resulting in no net benefit. We can achieve this low cost requirement by using an
automated system to build behavior representations from a series of observations
with little or no human supervision.

Compatibility It must be possible to build and use the behavior model with both human
actors and software agents. As we discussed in previous sections, behavior comparison
has a number of potential applications, but many rely on being able to examine both
human and software agent behavior. Thus, the contents of our model must be limited
to data that can be collected from either of these types of participants. In Section 2,
we described how behavior traces could be collected from both human actors and
computer agents. As a result, we can achieve this requirement by using a model that
is built from behavior traces.

Efficiency The computational costs associated with building and using the model must
not become infeasible as the complexity of the domain increases. Although a primary
motivation of automated behavior comparison is to replace human effort with compu-
tational effort, we must be careful to construct the model in such a way that it does
not become impossible to use. We can achieve this requirement by using an abstract
model of the actors’ behavior that does not grow directly as a function of the number
of behaviors it encapsulates.

Efficacy A good model must be effective at identifying similarities and differences between
two actors’ behavior. This is perhaps the most basic requirement we have presented.
However, the desire for an effective model that captures all the subtleties of an actor’s
behavior is likely to be in direct conflict with the previously presented requirements.
As a result, a good model must balance its need to represent actors’ behavior precisely
and thus to be able to distinguish all similarities and differences in their behavior
with the other overall needs. Unfortunately, there can be little a priori assurance that
a particular model will be effective. This requirement must be addressed through
theoretical and empirical testing once the model has been implemented.

Note that unlike any traditional machine learning tasks, we do not necessarily need to
produce a model that can be used to perform the task. That is, we do not need to learn
a policy or a set of plan operators. As described above, there is a trade-off between the
model’s efficacy and its complexity. At one end of this spectrum are executable models
of the task. Here, efficacy is maximized, but the model would be necessarily complex and
would likely be more difficult for a human to use to validate behavior than if they were
looking directly at hand coded rules or procedures. Such models are certainly valuable if
the goal is to learn behavior directly from a set of examples, and a variety of approaches
have been pursued in the machine learning literature; the most closely related are discussed
later in Section 10. Our approach, however, attempts to target a different point in the
efficacy/complexity spectrum where the model cannot perfectly describe many complex
tasks, but as a result the model can be examined much more quickly than the agent’s

171

Wallace

internal implementation. Thus, while the standard approach in machine learning literature
is to empirically evaluate a learned model by comparing it to an optimal model or to a
hand-coded model, here we are interested in something else: namely, whether our model
can maintain efficacy in complex environments and whether it can improve a person’s ability
to quickly uncover and fix problems in existing agents. In Sections 8.2 and 9 we examine
these issues.

4.1 Model-Based Diagnosis

Prior work in model-based diagnosis (e.g., Anrig & Kohlas, 2002; Lucas, 1998) has examined
how to detect errors given a model of correct behavior. In general, however, the models in
these systems are relatively complicated and intended to identify problems with mechanical
or solid state devices as opposed to software agents. The CLIPS-R (Murphy & Pazzani,
1994) system was designed expressly to ensure correct software agent behavior, and bears
some similarity to our approach.

In CLIPS-R, the behavior model consists of a set of tuples (Si, CSf
, CE), each of which

specifies the initial world state (Si), a set of constraints describing acceptable final world
states (CSf

), and execution constraints (CE) which must be met as the task is being per-
formed. Final state constraints indicate facts about the environment or the agent that must
be either true or false once the task is complete (e.g., (not (gas-empty car))). Note that
the final state constraints define a behavior model in the classical planning sense; there is
no description of what sequence of events should lead to the final state. This information is
provided by the execution constraints (CE), which are represented as a finite state machine
describing acceptable orderings of the agent’s observable actions. Execution constraints can
be used to describe relationships between these actions. For example, a constraint might
specify that the action unlock-door should always proceed open-door. Superficially, the
requirements for the CLIPS-R approach seem relatively simple to meet. However, two
serious problems exist.

First, specifying the exact set of execution constraints required for correct operation is
very similar to writing the conditions of rules. If the execution constraints govern behavior
at a very fine level of granularity, it is likely that they will be similarly difficult to design
and validate as the agent’s rule base itself (a recursive validation problem). In this case,
the requirements of low complexity and low human effort would be violated. On the other
hand, if they constrain behavior at a higher level of granularity, such as the task level, the
efficacy requirement is called into question: will they be powerful enough to work in the
complex environments of human-level agents?

A second serious problem arises because the CLIPS-R approach provides little guidance
as to how to determine appropriate constraints, especially appropriate execution constraints.
The benefits of the approach hinge completely on the developer’s ability to enumerate
adequate and appropriate execution constraints for any particular task. Yet if the developer
can enumerate the constraints required to judge whether the agent’s behavior is correct,
why were they not included in the agent’s knowledge base directly?

It should be noted that although the problems mentioned above may be encountered
when CLIPS-R is used with any particular agent, they are likely to become most obvious
(and problematic) as the complexity of the agent and domain increases. As already noted,

172

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

these are exactly the types of agents and environments that interest us, and so the concerns
raised above are particularly salient for our work with interactive human-level agents. In
contrast, the original CLIPS-R work (Murphy & Pazzani, 1994) examines the system’s
ability to correctly identify flaws in two very simple agents whose knowledge bases contain
nine and fifteen rules respectively. Both agents examined in the CLIPS-R work performed
tasks that were more akin to classification than they were to the highly interactive tasks
that interest us.

5. Behavior Bounding

As an improvement to CLIPS-R and to the simple method presented in Section 3, our
approach to behavior comparison, called behavior bounding, automatically and efficiently
builds concise high-level models of both the human expert’s and agent’s behavior by ex-
amining behavior traces to meet the first three requirements described in Section 4. The
human expert’s behavior model is used to identify boundaries on acceptable behavior in
a manner reminiscent of Mitchell’s Version Spaces (Mitchell, 1982). Potential errors are
reported by comparing the model of agent behavior to these boundaries. Behavior bound-
ing can be used to identify programming errors in the agent’s knowledge base and can also
identify discrepancies between the expert’s explanation of how the task should be performed
and how the expert actually performs the task. This is in contrast to a high-level model
built similarly to the agent’s knowledge base (as, presumably, in CLIPS-R) using indirect
information such as interviews to determine what constraints should be met during task
performance.

5.1 The Hierarchical Model

Behavior bounding leverages the assumption that although knowledge acquisition is highly
prone to errors with respect to the details of how a task should be performed, high-level
information (specifically general relationships between goals, sub-goals and primitive ac-
tions) is much more reliable. Behavior bounding’s hierarchical behavior representation is
inspired by the hierarchical models used in And/Or trees, HTN planning (Erol, Hendler,
& Nau, 1994) and GOMS modeling (John & Kieras, 1996) to encode the variety of ways
in which particular tasks can be accomplished. Conceptually, behavior bounding encodes
three relationships. First, it identifies decomposition relationships between goals, sub-goals
and primitive actions. Second, it identifies ordering relationships between nodes in the
hierarchy. Finally, behavior bounding identifies how goals and actions are instantiated by
saving generalized parameters (i.e., features from the internal or world state that are directly
associated with the goals and actions begin pursued).

The hierarchical behavior representation (HBR) used in our approach is an And/Or

tree with binary temporal constraints representing the relationships between the actor’s
goals and actions. In this representation, internal nodes correspond to goals and leaves
correspond to primitive actions. A node’s children indicate the set of sub-goals or primitive
actions that are relevant to accomplishing the specified goal.

Figure 1 illustrates a small subsection of a hierarchical behavior representation. Goal
nodes are drawn with ovals and primitive actions with rectangles. And constraints are
represented in the standard fashion with an arc across all child nodes; temporal constraints

173

Wallace

Fly-Mission

Achieve-Waypoint Return-to-Base

Set
Altitude

Compute
Heading

Set
Heading

Contact
Teammates

Ensure
Adequate

Fuel

Contact
Tower

Set
VHF

Set
UHF

Send
Message

Figure 1: A Hierarchical Behavior Representation

are represented with directed arcs between sibling nodes. Note that total order between
siblings is possible but not required by the representation. The semantics of Or nodes in
our representation does not necessarily indicate that only one subgoal (or action) is required
to accomplish a given goal. Rather, the Or node indicates simply that the complete set of
subgoals (or actions) is not always required to accomplish the task. Thus, the semantics of
Or nodes does not preclude the use of temporal relations; they merely state the order that
multiple goals/actions occur if indeed more than one is pursued.

The HBR can be viewed as a simple constraint model based on observations of the
actor’s behavior. It encodes some of the same relationships that Fisher uses in his temporal
logic models of agents (Fisher, 2005): namely step rules (what goals/actions to expect next);
and sometimes rules (what goals/actions to expect in the future). As a result, the HBR
could be used as a source for the types of temporal logic constraints required for model
checking when (as in the case of human-level agents) the expert is not capable of providing
such logical constraints directly.

5.2 Building the HBR from Behavior Traces: An Overview

In Section 6 we present a detailed explanation of how a HBR is acquired from behavior
traces along with the underlying algorithm. Here, we present a conceptual overview of this
process by describing how the partial behavior trace on the left-hand side of Figure 2 is
used to build the HBR on the right side of the same figure.

Initially, we begin with an empty HBR. The behavior trace (Figure 2, left hand side)
is processed in a single pass, reading from beginning to end. As new goals and actions are

174

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

encountered, nodes are added to the hierarchical representation. The hierarchy of goals
the actor is currently pursuing is indicated in this behavior trace by each line’s level of
indentation. In this example, the goal stack is generated incrementally beginning with
the selection of a top-level goal that is decomposed into a lower-level goal before again
begin decomposed into a series of primitive actions. A goal is considered completed when
it is no longer a member of the actor’s goal stack. For example, in Figure 2, the goal
Achieve-Waypoint is completed when the actor commits to performing a new goal at the
same level of abstraction (i.e., when the goal Return-to-Base is selected). As the behavior
trace is processed, the requirements for goal completion are tracked including the subgoals
necessary to accomplish the current goal and their ordering as well as the parameters of
the goal and its respective subgoals. These requirements are represented as the descendants
in the hierarchy and the constraints between them. Note that if an action or subgoal is
encountered in multiple contexts (as a descendant of two or more distinct parents) the HBR
will create a node for each such context. This is appropriate as the parameters associated
with the goal/action and its interaction with sibling goals/actions will likely depend on its
higher-level context.

This generation process results in the HBR on the right-hand side of Figure 2 (note
that the parameters associated with each goal and action, and listed in the behavior trace
segment, are not displayed to improve the clarity of the figure). Here goal nodes (ovals)
with children are all of type And. In addition, all siblings are totally ordered as indicated
by temporal constraints (directed arcs between siblings). The highly constrained nature of
this HBR (And goals and total ordering) is typical of representations built from a single
behavior trace. As more behavior traces are used to generate the structure, the HBR is
generalized to cover all input observations.

At a structural or topological level, generalization occurs in two ways. The first is when
an And constraint is turned into an Or constraint. In our example, Achieve-Waypoint
is an And goal because every time it was observed, it was completed by pursuing all
three of the subgoals: Set-Altitude; Compute-Heading; and Set-Heading. If a second
behavior trace indicated that Achieve-Waypoint was successfully completed by performing
only the subgoal Set-Heading, then Achieve-Waypoint would become an Or node to
correspondingly indicate that it does not require all subgoals to be accomplished.

Similarly, generalization of binary temporal constraints occurs as needed to repre-
sent the observed orderings of goals and actions. Returning to our example in Figure 2,
Achieve-Waypoint was observed to occur only once. Thus, its representation in the HBR
indicates a total order between its three subgoals. If Achieve-Waypoint were performed
a second time with a new sequence of these same three subgoals, the ordering constraints
within the HBR would change. For example, if Achieve-Waypoint were performed by
pursing: Compute-Heading; Set-Altitude; and Set-Heading, in that order, the temporal
constraint between Set-Altitude and Compute-Heading would be removed. This pro-
cess of building the HBR and the underlying algorithm will be discussed in more detail in
Section 6.

Generalization also occurs for the parameters associated with each goal or action, effec-
tively expanding the set of parameters associated with each node as more and more obser-

175

Wallace

Set goal: Fly-Mission
Set goal parameter: (altitude 30000)
Set goal parameter: (patrol-speed 800)

Set goal: Achieve-Waypoint
Set goal parameter: (waypoint AZ-12)
Set goal parameter: (threat-level low)
Set goal parameter: (ETA 10 minutes)

Action: (set-altitude 30000)
Action: (compute-heading AZ-12)
Action: (set-heading)

Set goal: Return-to-Base
...

Achieve-Waypoint

Fly-Mission

Set
Altitude

Compute
Heading

Set
Heading

Return-to-Base

Figure 2: Constructing the hierarchical behavior representation from a behavior trace

vations are made1. Consider Figure 2 where the parameter associated with Set-Altitude

is 30000. If we later see Set-Altitude performed with the parameter 20000, the HBR
will contain the generalization of these two observations, namely that Set-Altitude can
have parameters in the range 20000–30000. Each parameter associated with a goal or ac-
tion is generalized to cover observations in the behavior traces. For numerical parameters,
generalization is performed by expanding the acceptable range to include the new value.
For symbolic parameters, generalization is performed by adding the new symbol to a set of
acceptable values.

5.3 Representational Simplicity

The HBR discussed above is clearly a much less complex representation of behavior than
most agents’ underlying knowledge base. Indeed, the hierarchical structure ensures that
constraints cannot be formed between arbitrary goals or actions. This property also means
that the HBR may be less complex even than the model used by CLIPS-R, which allows
an arbitrary finite state machine to describe the acceptable sequences of external actions.

Behavior bounding ensures a high-level model of behavior by abstracting away internal
data-structures the agent may use to perform the task if they cannot be represented by the
hierarchy. While it is possible to store arbitrarily complex information in the HBR, it is
unlikely to happen in practice. Consider, for example, depth first search which uses an an
open list to discriminate between alternative behaviors. While the final result of the search
(a goal or action) is naturally captured by the HBR, forcing the HBR to capture the details
of the search is impractical as it requires pushing all information captured by the open list
into the goal hierarchy.

More specifically, consider an agent using search to select between two potential ac-
tions: Set-Altitude; and Set-Heading. First, note that the search process itself would
only be represented in behavior bounding’s HBR if the agent explicitly made searching a
goal. However, even if Search was an explicit goal, information about the open-list (states
that still need to be tested) would only be available to the HBR if it was made an ex-

1. For the purposes of this paper, parameter generalization is less interesting than structural generalization.
We include this brief discussion mainly for completeness.

176

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

plicit parameter of the goal. Even this formulation, however, would leave a large amount
of information about the search process unrepresented in the HBR. Specifically, because
search is encapsulated as a single goal without any substructure, it would be impossible
to determine the manner in which various search nodes were visited. In order to represent
this information, we would need to push all the relevant data structures (in this case the
open-list) into the goal hierarchy itself. Thus, we would need to create explicit goals for
each (state, open-list) pair. This approach of pushing arbitrary information into the goal
hierarchy is clearly both undesirable and unlikely to occur frequently in any well designed
agent. Thus, we can be reasonably certain that behavior bounding’s HBR will always be a
high-level, abstract, representation of the agent’s (or actor’s) behavior.

The representational limitations of the HBR leads us to ask: if the agent’s behavior
can be represented using such a simple structure, why was it not programmed in this
representation to begin with? The hypothesis here is not that this representation is sufficient
to completely capture the agent’s behavior, nor is it sufficient to generate behavior. Most
human-level agents rely on intermediate data-structures that are not available through the
environment or through the structure of the goal hierarchy (for example agents that use
look-ahead to select the next goal or action, or perform an expected utility calculation).
Rather, our hypothesis is that the representation provided by behavior bounding is sufficient
to identify a large class of errors in agent behavior without sacrificing efficiency. Moreover,
we hypothesize that behavior bounding can help identify potential problem spots in the
agent’s knowledge (e.g., the ordering of actions in a specific goal) even if an exact error
cannot be identified.

5.4 Representational Assumptions

In contrast to the behavior representation used for the simple comparison described in
Section 3, the HBR makes three strong assumptions about the organization of the actors’
knowledge and the effects of this organization on the actors’ behavior. These assumptions
increase the efficiency and efficacy of error detection for certain types of human-level agents.

The first assumption used by behavior bounding is that the actor’s goals are organized
hierarchically, with more abstract goals located toward the top of the tree. Hierarchical task
structure is exploited by a number of agents and agent architectures, thus this assumption
is not particularly limiting. We also assume that at any point in the problem solving
process the actor pursues a set of goals belonging to different levels in the hierarchy. This
set, referred to as the goal stack, corresponds to a path in the hierarchy beginning at the
top node and descending to the most concrete sub-goal that is currently being pursued by
the actor. The goal stack assumption implies that concurrent goals (two or more goals
simultaneously pursued at the same depth of the hierarchy) cannot be modeled explicitly
by the HBR. One way to circumvent this limitation is to implement concurrent goals as
nested goals. Because our test architecture (Soar) does not directly support concurrent
goals, this is the approach typically taken to achieve such behavior. As we will see in
Section 8.2.5, this approach does allow us to create and use a HBR but may also result in
some representational problems. The hierarchical goal assumptions described above provide
the important benefit of constraining acceptable orderings of goal and actions that an agent
may pursue. This property will be analyzed in more detail in Section 8.1.

177

Wallace

The second assumption leveraged by behavior bounding relates to the independence
of goals. In the HBR, temporal constraints can only be formed between sibling nodes,
and And/Or classification determines which of a node’s children must be performed for a
particular task. This makes it is easy to constrain the way a particular goal is achieved, but
difficult to represent constraints between arbitrary parts of the hierarchy. Although this
may cause problems with some agent implementations, this property has significant benefits.
Most importantly, it decreases the number of observations that are required to build the
model. Consider a task that requires completing two goals, each of which could be fulfilled
in four distinct ways. The behavior is represented as an ordered pair (a1, a2) indicating the
action taken to fulfill goals one and two respectively. A sequential representation that makes
no assumptions about goal independence (such as the one described in Section 3) would
require sixteen distinct observations to cover the acceptable behavior space (one for each
distinct (a1, a2) pair). In contrast, behavior bounding would only require four observations
so long as the set of observations included every possible value of a1 and every possible
value of a2

2. This impact on efficiency is significant and is the direct result of leveraging
the assumption about how goals are likely to add regular structure to an actor’s behavior.

Finally, recall from Section 5.1 the third assumption upon which behavior bounding is
built. This is that knowledge acquisition is relatively reliable for correctly identifying the
general goal/subgoal relationships an expert uses to perform the target task even though this
same process of knowledge acquisition is very prone to errors when attempting to identify
all the rules necessary to encode the task. This assumption provides a justification for
using a behavior representation that focuses on the relationships between goals, subgoals
and primitive actions while purposefully neglecting much of the internal information an
actor may use to select her behavior.

The net effect of building the HBR based on these assumptions is a model that meets
the criteria set forth in Section 4. The model is likely to be much more concise than the
agent’s implementation (low complexity)—we are not learning complete plan operators, but
instead a generalization of the actor’s trajectories through goal/action space. In addition,
the HBR can be generated automatically by examining an actor’s behavior traces thus
meeting our second requirement (low human effort). Because the behavior traces can be
captured from either human or computer agent actors, the HBR meets the third requirement
(compatibility). In the following sections, we will present the method behavior bounding
uses the HBR to perform comparisons. In addition, we will examine the remaining two
requirements of an ideal model-based approach (efficiency and efficacy) in detail.

6. Learnability

In this section, we examine two aspects of behavior bounding’s hierarchical representation:
the effort required to create and maintain it, and its ability to represent behavior efficiently.
Both of these requirements are addressed by the overall learnability of the representation.
That is, if the representation can be learned from observations (as we have suggested), then
it requires human effort only to initiate the learning process. If the learning procedure is
efficient, and the data structure’s growth is limited, we can further say that the hierarchy

2. Thus, if a1, a2 ∈ {1, 2, 3, 4} then the pairs (1, 1), (2, 2), (3, 3), (4, 4), would be sufficient to cover the
acceptable behavior space in behavior bounding but not in the sequential representation.

178

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

represents behavior efficiently and thus meets the fourth requirement (efficiency) outlined
in Section 4.

Create-Hierarchy(B,H)
1 W ← empty tree
2 lastStk ← nil // previous goal/action stack
3 for each (s,G, a) in B

4 do
5 for i = 0 to length[lastStk]
6 do
7 if Goal-Completed(lastStk[i])
8 then hg ← Find-Node(H, lastStk[i])
9 if hg = nil

10 then
11 Add-SubTree(H,Parent(lastStk[i]), lastStk[i])
12 else
13 Generalize(H,hg,W, lastStk[i])
14 for each gi in [G, a]
15 do
16 pg ← Parent(gi)
17 wg ← Find-Node(W,pg, gi)
18 if wg = nil

19 then
20 wg ← Add-Node(W,pg, gi)
21 Constrain-Children(W,pg)
22 else
23 if Out-of-Order(W,pg, wg)
24 then Update-Constraints(W,pg, wg)
25 Generalize(wg, gi)
26 lastStk ← [G, a]
27 return H

Figure 3: The Create-Hierarchy algorithm

In Section 5.2 we presented an overview of the process behind building the HBR from
a behavior trace. The Create-Hierarchy algorithm (Figure 3) specifies this process ex-
plicitly. The algorithm takes two arguments as input: B, a behavior trace; and H, a HBR
representing previously observed behavior (or nil if no behavior has yet been observed).
Create-Hierarchy returns a new HBR covering the behavior in H and the new observa-
tion B. Thus, calling this procedure with a single behavior trace B and H ←nil generates
a hierarchical representation of a single behavior trace by examining the way in which goals
decompose into subgoals and primitive actions during task performance. Iteratively calling
Create-Hierarchy with different behavior traces will augment and generalize H until it
covers all of the example traces. This algorithm can be executed in O(lN 2) time where l

179

Wallace

is the (maximum) length of the behavior trace and N is the number of nodes in the goal
hierarchy.

Classifying the sample complexity of our hierarchical representation is straightforward.
From Haussler’s equation (Haussler, 1988; Mitchell, 1997), we know that the number of
training examples required for a consistent learner to learn any target concept (with prob-
ability (1− δ) and error bound ε) in its hypothesis space (H) is m where:

m ≥
1

ε

(

ln(|H|) + ln

(

1

δ

))

(1)

The HBR can be viewed as an ordered tuple P = (p1, p2, . . . , p|N |) where each pi is
itself a tuple containing the type of the node i (either And or Or) as well as a list
L = (l1, l2, . . . , l|N |) such that la = 1 iff gi is ordered before la. Note that since ordering
constraints only occur between siblings, the length of the list L would only need to be
length |N | in the degenerate case. The size of this hypothesis space is bounded by 2 |N |+|N |2

in the worst case, but based on the shape of the hierarchy may be much smaller. Substitut-
ing the size of the hypothesis space back into Equation 1 we find that m does indeed grow
polynomially:

m ≥
1

ε

(

(|N |2 + |N |) ln(2) + ln

(

1

δ

))

(2)

This indicates that the required sample size is polynomial with respect to the number
of goals in the hierarchy (|N |). This, together with the fact that the time required to
incorporate a new behavior trace into the learned HBR is also polynomial in |N |, shows
that our representation is PAC-Learnable. This means that the HBR efficiently represents
aggregate behavior as well an individual instance of behavior, thus meeting our fourth
requirement.

7. Identifying Errors

In general, we can view a behavior comparison method as an algorithm which divides the
space of possible behaviors into two regions: behaviors that are likely to be consistent with
the expert, and behaviors that are likely to be inconsistent with the expert. The simple
comparison method described in Section 3 does this by enumerating consistent behaviors.
The model used in behavior bounding, however, allows us to divide the space of possible
behaviors more efficiently and into more refined regions without enumerating their contents.
Intuitively, the idea is to organize HBRs into a lattice; individual points in this lattice are
then used to define boundaries between different quality behaviors in a manner reminiscent
of Mitchell’s Version Spaces (Mitchell, 1982).

Recall that the hierarchical behavior representation is a hierarchy with nodes corre-
sponding to goals, subgoals and primitive actions. Nodes are linked hierarchically based on
the goal/subgoal decomposition relationships observed in behavior traces. The HBR can
be viewed as consisting of two parts:

1. The basic structure which is a hierarchy of nodes that are labeled with the names
of goals, subgoals and actions and are connected by parent/child relationships in a
manner that corresponds to the observed behavior.

180

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

2. A set of constraints that are imposed upon the nodes in the basic structure. Con-
straints include the And/Or typing of nodes, binary temporal constraints, and con-
straints on the allowable parameter space of any goal, subgoal, or action.

Because the constraints are formed through a specific to general learning algorithm, the
generalization process creates a lattice of HBRs that are related in the following manner: 1)
they share the same basic structure; and 2) they differ in the specificity of their constraints.
Thus, the hierarchical behavior representation allows us to define an ordering from specific
to general over the space of behavior hierarchies by starting with a maximally constrained
hierarchy (at the top) and iteratively removing constraints until none remain.

Behavior bounding leverages this ordering over hierarchies to efficiently partition the
behavior space into different regions. The process begins by using traces of expert behav-
ior (the specification) to create a corresponding HBR. Once created, we can identify the
node it occupies in this ordered space (call this node A in Figure 4). This node (the upper
boundary node) allows us to easily determine if the agent’s behavior is likely to be correct.
By definition, correct behavior must be consistent with expert behavior. An agent whose
behavior representation is a specialization of the expert’s (i.e., lies above A in the general-
ization lattice) exhibits behavior that is consistent with the expert’s and is therefore likely
to be correct. As in the sequential approach to behavior comparison, the upper boundary
node allows us to partition the behavior space into two regions: correct, and incorrect.

A second partition is formed by the node representing the completely unconstrained
version of the expert’s goal hierarchy. This node is illustrated at the bottom of Figure 4 (la-
beled B). It contains the basic structure (goal/subgoal relationships) for what may constitute
acceptable agent behavior and as a result could be used to identify behavior representations
that are known to be incorrect (because the agent’s behavior hierarchy is topologically in-
consistent with the expert’s behavior hierarchy). Such representations would have a goal
decomposition structure that was inconsistent with (i.e., contained different parent/child re-
lationships than) this lower boundary (nodes in the right side of Figure 4 labeled as neither
more nor less specific than A).

Together, the upper and lower boundaries create three regions in the behavior space.
Nodes that are a specialization of the expert’s behavior (above the upper boundary node)
correspond to behavior that is very likely to be correct. Nodes that are not a specialization
of the unconstrained version of the expert’s goal hierarchy (the lower boundary node) cor-
respond to behaviors that are known to be incorrect. The region between the upper and
lower boundary nodes corresponds to behavior that is likely to be incorrect but perhaps
with a lower probability than the region below the lower boundary node3.

Mitchell (1997) defines the version space as a subset of hypotheses (from a hypothesis
space) that are consistent with a given set of training examples. By ordering the hypothesis
space from specific to general, Mitchell’s learning algorithm (Mitchell, 1982, 1997) identifies
the version space without enumerating its contents. Instead, the version space is represented
by the concepts (hypotheses in the ordered hypothesis space) that form its upper and lower

3. Here we assume that it is easier to ensure that the HBR reflects the correct agent topology than it is
to ensure constraints on the upper boundary node’s HBR are adequately generalized. In practice, the
degree to which this assumption holds will depend on properties of the agent and on how the HBR
corresponding to the lower boundary node was formed (see Section 11 for an alternative method).

181

Wallace

boundaries. These are the S-Set and G-Set that specify the most specific hypotheses
and most general hypotheses in the version space respectively. As training examples are
obtained, the S-Set becomes progressively more general while the G-Set becomes increas-
ingly specific until both converge on the correct hypothesis.

Just as Mitchell’s S-Set and G-Set are used to delimit a set of consistent hypotheses
without enumerating them, the upper and lower boundary nodes in our approach serve
a similar purpose. The upper boundary node (UBN) plays a similar role to the S-Set.
However, while the S-Set is used to incrementally converge on the correct hypothesis (and
in doing so becomes increasingly general), the upper boundary node is viewed as the correct
hypothesis. Thus the UBN’s value is in delimiting the portion of the lattice that is consistent
with its specification. The lower boundary node, on the other hand, plays a similar role to
the G-Set. But, while the G-Set identifies hypotheses inconsistent with training data, the
lower boundary node simply identifies HBRs that are not in the same lattice because they
have a distinct topological structure.

Once these boundaries have been established, we can quickly determine whether any
arbitrary HBR is a specialization of either boundary node. This analysis, which can clearly
be done in polynomial time with respect to the number of distinct goals, subgoals, and
actions, allows us to quickly determine the degree to which the behaviors of two actors are,
or are not, consistent with one another. The inconsistencies uncovered in this process form
the basis of behavior bounding’s error report and can be displayed in either a standard text
format or visually using a graphical user interface. For the remainder of this paper, we will
use terminology appropriate for comparing two actors playing the roles of either expert or
novice. The actor referred to as the expert represents the correct behavior specification.
The actor referred to as the novice we expect to exhibit partially incorrect behavior. As
described in Section 1, these roles could be played by either software agents or humans
depending on the situation at hand.

8. Error Identification Efficacy

At this point, we have provided a good deal of support for behavior bounding and its
HBR by presenting analytical arguments on its behalf. The final criteria that must be
addressed is its efficacy with respect to identifying errors. To do this, we will examine two
components of the HBR. First, we will provide analytic results indicating the effectiveness of
the unconstrained hierarchical representation (the lower boundary) at identifying behavior
that is known to be incorrect. Second, we will provide empirical evidence that behavior
bounding as a whole is effective at distinguishing between correct and incorrect behavior.

8.1 The Lower Boundary Node

At first glance, it is not obvious how much behavior can be classified by the lower boundary
node. Without And/Or constraints or binary temporal constraints, the lower boundary
node only specifies which subgoals belong to which goals. Through this specification, the
lower boundary node constrains the set of allowable goal/sub-goal/action sequences. The
effectiveness of this simple constraint mechanism is quite surprising.

Consider an unconstrained behavior representation with branching factor b and depth
d. Without loss of generality, assume that the nodes are uniquely labeled. For simplicity,

182

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

B

A

General

Specific

G1

SG1,1 SG1,2

A1 A2 A3

G1

SG1,1 SG1,2

A1 A2 A3

G1

SG1,1 SG1,2

A1 A2 A3

Behavior Representations
Inconsistent with A and B

G1

A1 A3 A5 A7

Figure 4: Imposing Order on the Behavior Space

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 2 3 4 5 6 7 8

M
ax

im
um

 S
eq

ue
nc

es
 (

lo
g(

lo
g(

y)
)

Depth of Hierarchy

B=2
B=4
B=6

Figure 5: Filtering Capability of the Lower Boundary Node

183

Wallace

also assume that at any level in this hierarchy, the actor completes its current goal before
starting the next goal. Then, we could define an actor’s behavior as a sequence of symbols
chosen from the lowest level of the unconstrained hierarchy. For behavior sequences of
length bd, in which no symbol is repeated, there are b!s|s =

∑d−1
j=0 bj possible sequences that

are consistent with the goal decomposition of the unconstrained hierarchy. In contrast,
there are bd! sequences in which the symbols may be placed without necessarily conforming
to the unconstrained hierarchy. For hierarchical structures of reasonable size, this makes
the lower boundary node effective at filtering an exponential number of potential behavior
sequences. For example, in a small hierarchical structure of depth 4 and branching factor
2, only 1 in approximately 6.4 · 108 of the possible sequences of length 16 are consistent
with the goal decomposition specified by the unconstrained hierarchy. Figure 5 illustrates
the filtering capability of the lower boundary node. The x-axis of the figure indicates the
depth of the hierarchy and lines are plotted for branching factors 2,4, and 6. The y-axis
indicates the ratio of possible sequences accepted by a goal hierarchy to the number of total
possible sequences for an unconstrained symbol set of the same size; note that the y-axis is
doubly-logarithmic (log log(y) is plotted).

Although the lower boundary node is an extremely simple data structure, the informa-
tion it stores is of significant value. Used alone, it can identify a very large (exponentially
increasing) number of behavior sequences as inconsistent with the expert’s goal decompo-
sition structure and therefore incorrect.

8.2 Empirical Evaluation

Our empirical study has two aims. First, we want to determine whether behavior bounding
identifies errors in agent behavior well enough to be considered useful for the purposes of
validation. Second, we want to compare behavior bounding’s effectiveness to that of the
simple sequential approaches described in Section 3. To this end, we implemented behav-
ior bounding along with two versions of the sequential approach to serve as benchmarks.
The first benchmark, M1, extracts the sequence of actions A = (a0, a1, . . . , an) from the
behavior trace B = ((s,G, a)0, (s,G, a)1, . . . , (s,G, a)n) while the second benchmark, M2,
extracts the sequence of goals G = (G0, G1, . . . , gn) from B. In both cases comparison is
performed by computing the minimal edit distance between two behavior traces. Remember
that the sequential methods are not particularly efficient representations; they can grow ex-
ponentially in the length of the behavior trace and have an exponential sample complexity.
However, for this same reason, they do make interesting benchmarks of efficacy.

Performance is judged based on ability to: 1) correctly identify errors in agent behavior;
2) identify all errors that have occurred; and 3) produce minimal amounts of spurious
information when reporting errors. To make such an assessment, we must compare the
errors identified by the automated comparison to a record of errors that were manually
identified and known to have actually occurred. This requires a manual inspection of the
behavior traces and a taxonomic classification of possible differences. In the following
subsections we begin by describing how errors are classified and then move on to discuss
the experimental method and assessment process in detail.

184

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

8.2.1 Behavioral Differences

At the simplest level, all differences (potential errors) can be identified by a single discrep-
ancy between two particular symbols in the behavior traces such as a particular pair of
goals or actions. This type of mismatch can occur in one of three ways. As before, we will
refer to desired behavior as being captured in the expert’s behavior traces, while untrusted
or imperfect behavior is captured in the novice’s behavior traces.

Commission If the novice’s behavior trace and the expert’s behavior trace both contain
a goal or action symbol at the specified location but these goals or actions are incon-
sistent, an error of commission has occurred. For example, consider an agent flying a
tactical military aircraft patrolling the air space between two waypoints. Assume the
specification for correct behavior dictates that agent travel between the way-points
until an enemy aircraft is spotted at which point the agent should contact the com-
mand center to receive clearance to engage the enemy. In this situation, an error of
commission would occur if the agent contacts his wingman instead of the command
center and then proceeds to enter the engagement.

Omission If the expert’s behavior trace contains a goal or action symbol where there
is no corresponding symbol in the novice’s behavior trace, this error is an omission.
Following the example above, an omission would occur if the agent immediately begins
to engage the enemy without interjecting any other substitute goal or action to replace
the missing call to the command center.

Intrusion The final simple error type, intrusion, is identical to omission except that the
goal or action symbol occurs in the novice’s behavior trace but not in the expert’s
behavior trace. An intrusion would occur if the agent contacts the command center
and receives clearance to engage the enemy but then proceeds to continue to the
waypoint before returning back to engage the enemy.

In our experiments, it was often relatively straightforward to classify errors into these
three categories. However, in some situations there were enough differences between the two
actors’ behavior that it was difficult to determine whether a deviation was a commission
or one of the other forms. In such situations, we marked the error as belonging to either
category and considered it acceptable for a comparison method to identify it as either form.

When more than one of the simple errors listed above occurs, it may be possible to
identify a relationship between them. We call such related errors compound errors and note
that uncovering a single compound error is preferable to identifying many simple errors
because the compound error is a more concise description of the underlying problem. Note
that clearly we cannot consider all possible relationships between multiple errors as this
would have problematic computational implications. Rather, we are interested in relation-
ships that occur frequently in practice. We identify two such compound errors. The first
is a misplacement error in which two goal or action symbols are transposed in the novice’s
behavior trace; often this is due to incomplete specification of the constraints for one or
both of the goals or actions that take part in the error. The second is a duplication error
in which one or more goal or action symbols reoccurs inappropriately. In computer agents,

185

Wallace

E1 (P,M)

Sa
lie

nc
e

E2 (P,C) E3 (P,C)

E1 is a Primary (P)
Mismatch Error (M)

E2 & E3: are both
Commission Errors
(C), that together

create E1. They are
also Primary Errors
in a causal chain.

E4 (S,C) E5 (S,I) E6 (S,I) E7 (S,I)

E3 gives rise to 3
Secondary Errors
(S) all of which

happen to be
Intrusions (I)

Figure 6: Multiple related errors result in a salience hierarchy

this type of error often occurs because the termination condition for a particular goal or
action is incorrectly specified.

Errors can also occur among subsequences in the behavior trace. This typically happens
after the novice begins to pursue an incorrect goal. In such a situation, there is a causal
relationship between the initial error and the sequence of errors that follows. We define two
more error forms based on these attributes: a primary error is the first in a causally linked
sequence of errors, secondary errors are subsequent errors in such a sequence. Although
problems in their own right, secondary errors can be corrected simply by correcting the
primary error. Often these occur because a higher level goal was incorrectly selected and
naturally led to an entire sequence of incorrect behavior.

Just as compound errors are more salient than simple errors because they concisely
describe multiple simple errors as well as the interactions between them, a primary error
is more salient than the secondary errors that follow. Note that since a single error can
act as both a primary and secondary error (if a hierarchy of cascading errors occurs),
the primary/secondary relationship creates a corresponding salience hierarchy. Figure 6
illustrates this relationship. Towards the top are primary compound errors and toward the
bottom are secondary individual errors. Correcting an error at any level in the hierarchy
will also resolve all descendant errors.

8.2.2 Method

Ideally, an empirical evaluation would directly examine how much human effort is saved by
using the behavior comparison methods during the development of a number of complex
human-level agents. However, developing the complex agents we’re interested in is a time
consuming task and developing multiple independent versions is beyond the scope of this
experiment. Instead, we have selected an approach that identifies the effectiveness of error
detection methods without directly examining development time. Using our method, we
evaluate the effectiveness of each error detection method by examining its ability to identify
different types of errors in development versions (novice versions) of a particular agent. By
examining the number of true errors detected, as well as false negatives and false positives,

186

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

1. Acquire a specification of correct (expert) behavior.

2. Construct a set of flawed novice agents.

3. Identify general differences by comparing the expert’s and the novice’s
knowledge.

4. Acquire suitable behavior traces from the expert and novice.

5. Manually catalog errors in each novice behavior trace.

6. Construct individual experiments by partitioning behavior traces into
multiple groups.

7. Evaluate how well each error detection method identifies the cataloged
errors.

Figure 7: An overview of the steps in our evaluation process

we can obtain a measure of the relative strengths and weakness of each approach without
directly examining how development time is impacted in a ongoing project. Our evaluation
process is described by seven high level steps outlined in Figure 7 and described in detail
below.

Our evaluation begins with a specification of correct behavior. Under normal develop-
ment circumstances, the specification of correctness would be the domain expert’s behav-
ior. For our experiments, however, we replace the domain expert with a correctly specified
expert-level agent, E, whose behavior we will attempt to reproduce. The idea of replacing
the human expert with a software agent may initially seem counterintuitive. After all, our
research seeks, in large part, to make it easier to create agents that reproduce human be-
havior, not the behavior of other software agents. However, this approach offers significant
advantages over other evaluations methods.

The first advantage gained by replacing the human domain expert with an expert-
level agent is that we can ensure that both the expert-level agent and the novice agent
(the agent that is being validated) represent their knowledge in a similar manner. This
provides a means of determining how the expert’s and novice’s behavior differ that might
not otherwise be available—not only can we examine instances of the actors’ behavior to
determine differences, but we can also directly compare the knowledge that guides their
behavior. This attribute is important for conducting performance assessments.

The second advantage gained by replacing the human expert with a software agent
is that we can test an error detection method’s efficacy without being influenced by the
complications of the knowledge acquisition process. Moreover, since we ultimately believe
that many aspects of human-level behavior can be duplicated by software agents, replacing
the human expert with an expert-level software agent should not change the generality of
our measurements. On the other hand, by examining behavior that is already encoded in
the software agent’s knowledge, there is the potential that this methodology will bias us

187

Wallace

toward examining behaviors that are easy to encode in software as opposed to the complete
breadth of human behavior.

Our expert-level agents, as well as the novice agents described below were implemented
with Soar (Laird, Newell, & Rosenbloom, 1987), a forward-chaining rule based system. Soar
provides natural constructs for defining the goal-subgoal relationships required by behav-
ior bounding. In addition, Soar provides a programming interface that allows behavior
traces to be captured easily. Although Soar is naturally compatible with behavior bound-
ing, it is by no means the only agent architecture that fits this criteria. Most rule based
systems can use task decomposition as a basis for problem solving even if the goal hierar-
chy must be implemented in the agent’s working memory. Such an agent design is easily
done in CLIPS (Giarratano & Riley, 1998) as demonstrated by Wallace and Laird (2000).
Apart from rule-based systems, many other agent architectures allow developers to define
an agent’s knowledge base and behavior using task decomposition relations. Two such
examples are PRS (Ingrand, Georgeff, & Rao, 1992) and PRODIGY (Veloso et al., 1995).

Given the expert-level agent (E), we begin the second step by constructing novice agents
(N0, . . . , Nn) which are partially correct implementations of the final desired behavior. The
novices are only partially correct since they pursue different sequences of goals and actions
than the expert-level agent. These differences arise because the novice-level agents do not
have the same knowledge as the expert-level agent. Instead, some portion of the novice’s
knowledge base has been purposely corrupted. Each expert/novice pair (E,Ni) will later
be examined by the comparison methods to identify similarities and differences between the
actors’ behavior.

Novices can be constructed in a number of different ways, but we focus on novices that
are generated by introducing random changes into the expert-level agent. Introducing ran-
dom changes helps to ensure that we examine a wide range of possible errors and that
we minimize the potential to bias the experiments’ results. Moreover, by effectively main-
taining a large body of shared knowledge between the expert and the novice agents, it is
straightforward to map the novice agent’s correct knowledge onto the expert’s knowledge as
well as to isolate problematic knowledge to a specific portion of the novice’s knowledge base.
This allows us to take maximum advantage of the fact that we are using an expert-level
agent as opposed to a human domain expert and mitigates some of the complications that
arise when counting elements in the confusion matrix.

The major drawback of constructing novice-level agents in this fashion is that it is
unclear whether the manner in which we manipulate the agent’s knowledge base is rep-
resentative of flaws that would occur naturally during the development process. If our
comparison methods examined the novice-level agent’s knowledge base directly, this would
indeed be a serious concern. However, all of our comparison methods identify errors
phenomenologically—by examining the agent’s behavior. As a result, the main concern
should be that the novice-level agents we construct generate the same types of observable
errors as development version of these agents. Our novice-level agents create flaws that cover
all the error types we identified in Section 8.2.1. Thus, we should have a high degree of
confidence that the changes we introduced in the following experiments do represent many
of the observable errors we would expect to see in an actual development environment.

Once we have constructed a set of novice-level agents, we must determine the exact
set of behavioral errors they are capable of producing. This third step requires careful

188

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

manual examination of the knowledge used by, and the behavior produced by, both the
novice and the expert. We begin the process of documenting errors by analyzing how
the novice’s knowledge differs from the expert’s knowledge. Based on this analysis, we can
often identify general situations in which the novice’s behavior will diverge from the expert’s
behavior. These general situations provide a high-level description about the errors that
will arise. For example, we might be able to determine that the novice will fail to perform
a specific action when trying to accomplish a particular goal, or that it might pursue a goal
on inappropriate occasions. However, if we consider how difficult it can be to predict the
behavior of an intelligent agent simply by examining its knowledge, it is not surprising that
in many cases it is hard to determine the exact forms in which each of these general errors
may manifest using information about the differences in the agents’ knowledge alone. Some
of this information will require examinations of the behavior traces collected in the next
step.

The fourth step is to acquire concrete examples of both the expert’s and novice’s behavior
by gathering the behavior traces, BTE and BTNi

, that will be used to compare the agents’
behavior. In most situations including those examined in this study, human-level agents will
be capable of performing their specified task in many different ways. In order to examine a
significant range of these behaviors, traces are selected randomly from this pool of possible
behaviors and then examined to ensure that two properties hold: 1) no two behavior traces
are identical; and 2) all of the predicted errors actually occur in at least one of the novice’s
behavior trace.

While we are examining the novice’s behavior traces to ensure that the second property
holds, we can also perform the fifth step in our process by cataloging the specific form or
forms in which each error manifests. In this way, we annotate all of the attributes of the error
(e.g., whether it is primary or secondary, omission or commission). This includes details that
may not have been clear during the initial assessment of how both actor’s knowledge differed
(step 3). The information cataloged during this process will be used later to determine the
set of errors that were and were not detected by a particular approach.

Cataloging which errors occur in each behavior trace is an extremely tedious process
representing the bulk of the experimental effort. As a result, we try to maximize our use
of each behavior trace by constructing families of individual experiments to evaluate the
impact of different sets of observational data without capturing and inspecting new behavior
traces.

Instead of simply running one experiment for each (E,Ni) pair, we run multiple ex-
periments using different subsets of our observational data. This process begins after the
actor pair (E,Ni) has been selected and after the behavior traces, BTNi

and BTE , have
been captured and inspected. At this point, we split the observations into a number of
subsets: nij ⊂ BTNi

and ek ⊂ BTE to form individual experiments. A single experiment
consists of examining each comparison method’s performance on a pair of these subsets (nij

and ek). A family of experiments contains the experiments that compare all nij to all ek

for a particular novice/expert pair. Thus, comparing four expert/novice pairs results in
four experiment families although the total number of individual experiments may be much
larger. By constructing experiment families in the way, we are able to examine the impact
of different observational data without being overwhelmed by the manual inspection task.

189

Wallace

At this point we are ready to begin evaluating each of the individual error detection
methods. It is important to recall that any error detection method that relies on examining
examples of behavior suffers from the potential problem that unless an error manifests in the
examples that are being examined, it cannot be detected. Thus, the goal of our experiments
is to determine how many of the errors that occur in the novice behavior traces can be
identified by a particular error detection method. Because our validation approach relies
on testing, we cannot hope to identify errors that do not occur in the captured behavior
traces.

Given two sets of behavior traces, one corresponding to the expert-level agent and the
other corresponding to the novice agents, the automated error detection method examines
these traces and prepares a report indicating similarities and differences in the behaviors.
This report will be more or less useful depending on how well the error detection method
performs. By definition, the expert-level agent is the standard of correct behavior, so
any true differences are instances of inappropriate behavior or errors. By examining the
information in the report, we determine whether any of the information in the summary
maps on to error forms identified in the manual examination of the novice’s behavior traces.
If so, these are instances of true positives (correctly detected errors) that improve the error
detection method’s performance score. At the same time we also want to identify how many
true negatives (as well as false positives and false negatives) have been identified. Used in
a real validation setting, as opposed to an evaluation setting, the process would be much
the same. The critical difference is that determining whether information in the summary
maps to true errors or to false positives would be likely to require additional investigation
either by manually examining some examples of behavior or by examining the novice agent’s
knowledge base.

8.2.3 Counting Errors

Because the error forms identified in Section 8.2.1 do not form sets with mutually exclusive
membership and because some forms are more salient than others, we must be careful
how true and false positives and negatives are calculated. Consider, for example, a high-
level error description such as The pilot does not always contact the control tower prior to
initiating a landing. Suppose that this error manifests in two ways: by the pilot failing to
contact the control tower completely, or by the pilot contacting the control tower after the
landing has been initiated. Depending on the circumstances, these manifestations may take
the form of an omission in the first case, and as an omission plus an intrusion in the second
case. In addition, since the second case involves an action being moved to an inappropriate
location in the agent’s behavior sequence, it is also an instance of a misplacement error.
This means that depending on the set of behavior traces being examined, the high level
error may manifest as just a single simple error (perhaps an omission), or as a set of three
errors (two simple errors and a misplacement). Exactly how we calculate what errors were
and were not recognized depends both on what errors manifest in the behavior traces, and
what errors are detected by the automated system.

Our approach to counting can be generalized by the following rules:

190

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

• If only simple errors (omission, commission, intrusion) are detected, count each as a
true or false positive depending on whether they correspond to actual errors in the
novice’s behavior.

• If compound errors (duplication, misplacement) are detected correctly, count true pos-
itives for the compound error and all of the simple errors that comprise the compound
error. If the compound error is detected incorrectly count it as a false positive.

• If a primary error (first error in a causal string) is detected correctly, count true
positives for the primary error and all of the secondary errors (subsequent errors in a
causal string) that are causally linked to it.

• False negatives are counted first by finding the set of errors that were not identified by
the error detection method. The count is then incremented by the minimum number
of additional errors required to cover all true errors.

One of the side effects of our counting method is that the number of errors reported
(RP) by an error detection method may no longer be the sum of FP + TP . Instead,
one piece of information in the report can map to multiple true positives, thus TP ≥
RP −FP . To illustrate differences of brevity between reports that identify similar numbers
of true positives, we introduce the metric Report Density which we will use to assess each
comparison method’s performance.

Report Density =
TP

RP

Because report density makes no reference to the number of errors that go unidentified
by a particular behavior comparison metric, a complete assessment requires the use of a
second metric. For our experiments, we use sensitivity which is calculated as follows:

Sensitivity =
TP

TP + FN

Sensitivity measurements fall in the range [0, 1]. As sensitivity goes to one, all errors
are identified by information in the summary. Conversely, as sensitivity goes to zero, no
errors are identified by the data in the summary. Thus, we favor comparison methods
which can obtain higher report density without sacrificing sensitivity. In the following two
subsections we put the experimental framework and assessment metrics described thus far
to use evaluating the performance of behavior bounding and the benchmark sequential
methods in two distinct domains.

8.2.4 Object Retrieval Domain

Our first test environment is a simulated object retrieval domain in which an agent must
navigate a grid-based world to find and collect a pre-specified object (initial results ap-
pear in Wallace & Laird, 2003). This environment is relatively simple because it is both
discrete (no real valued sensors) and deterministic (no exogenous events). In addition,
agents operating in this environment generate behavior sequences of relatively short length:

191

Wallace

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

Se
ns

iti
vi

y

Experiment Family

BB
action

goal

Figure 8: Sensitivity in the object retrieval domain

P

A B

P

A B

P
A

P P
B

P P
A

P
A

P P
B

P
B

P P
A

P
A

P P
B

P P
A

P
A

P P
B

Expert Behavior Novice Behavior

Figure 9: Limitations of behavior bounding’s HBR in experiment family seven

approximately 20 to 30 goal or action elements are generated and the agent visits approx-
imately 65 states. The agent’s complete goal hierarchy has a maximum depth of 5 and
contains 32 goal and action nodes together. Although this environment is simple in many
ways, it does serve as a reasonable test for behavior bounding. Critically, correct behavior
in the object retrieval domain requires reasoning (e.g., route planning) that relies on data
structures that are not fully represented within the goal/sub-goal hierarchy.

Figure 8 illustrates the sensitivity across the seven experiment families in the object
retrieval domain (ordering in the figure is arbitrary). The figure illustrates two main phe-
nomena. The first and most obvious is that overall, behavior bounding is better at identi-
fying behavior errors than either the goal or action based sequential comparison methods.
In fact, behavior bounding equals or betters the sensitivity of the combined action and goal
sequence described in Section 3 on all but the final experiment family. The poor perfor-
mance on this final experiment family is the second phenomena. This is due to limitations
of the hierarchical representation itself which we discuss below.

192

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

R
ep

or
t D

en
si

ty

Experiment Family

BB
action

goal

Figure 10: Report Density in the object retrieval domain

In the seventh experiment family, the expert’s behavior contains traces in which a par-
ticular goal is decomposed in two ways. For simplicity, we’ll call this problematic goal P .
The first way the expert completes P is by pursuing two subgoals, A and B, in the following
sequence: A,B,A. The second decomposition is performed by pursuing these same sub-
goals but in the simplified sequence: A,B. Importantly, the expert will never attempt the
following decomposition: P → B,A. However, when the first behavior trace is processed
to form the hierarchical behavior representation, over-generalization occurs. As discussed
previously, the HBR contains only a single node to represent each instance of identically
named goals with the same lineage. Thus when the first trace, containing the decomposition
P → A,B,A, is processed, only three nodes are formed—one for P , A, and B respectively.
To accommodate the fact that A is observed to occur both before and after B, temporal
constraints are completely generalized between these two nodes. This situation is illustrated
on the left hand side of Figure 9. Unfortunately, this behavior representation fails to capture
the fact that the expert would never perform P → B,A. Thus, when the novice’s behavior
traces are processed (illustrated on the right hand side of Figure 9), it is of little surprise
that the same HBR is produced and no differences are detected between the expert and the
novice. In contrast, this error is readily identified by the goal-based benchmark approach
(M2). We could address this particular problem using a modified version of the HBR as we
will describe in Section 11.2. However, even this approach requires some additional changes
to the agent’s internal representation for this particular behavior to be encoded correctly.

Behavior bounding’s ability to detect errors while maintaining very concise reports is
illustrated by its relatively high report density (see Figure 10). Recall that report density
measures the amount of useful information in an error detection method’s summary. Scores
of one indicate that on average one error could be detected for each discrepancy indicated
in the summary; scores less than one indicate the summary contains false positives. Report
density scores higher than one are also possible but only when reports remain exceedingly
concise by identifying high-level errors that correspond to multiple low-level errors. Because
of behavior bounding’s ability to concisely represent relationships between goals via decom-
position and ordering constraints, it is well suited to identifying misplacement and goal-level

193

Wallace

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6

Se
ns

iti
vi

y

Experiment Family

BB
action

goal

Figure 11: Sensitivity in the MOUT domain

primary errors. Moreover, because the structures being compared are relatively small (com-
pared to the set of sequences being compared in the sequential approach) behavior bounding
can maintain a relatively low false positive count.

Behavior bounding’s performance in the object-retrieval environment is encouraging.
Overall, it performs well against the benchmark sequential comparison approaches even
though its internal representation of behavior is constrained by our desires to maintain
efficiency across environments of differing complexity.

8.2.5 MOUT Domain

In contrast to the object retrieval domain, the MOUT Environment represents a significant
increase in overall complexity. The environment is built on top of Unreal, a commercial 3-D
video game. It is continuous, non-deterministic (exogenous events occur frequently) and
has much longer sequence lengths than the object retrieval domain: between 30 and 200
goal/action elements are generated and the agent visits approximately 4000 distinct states
per behavior trace (the state typically changes many times between the selection of a new
goal or action). The goal hierarchy for the MOUT domain is larger than for the object
retrieval domain containing 44 nodes and a maximum depth of 6. Equally important to the
added complexity of this environment is the fact that MOUT was built independently from
our research into behavior comparison techniques. Thus, it provides an important reference
point for judging the overall effectiveness of our techniques.

Figure 11 illustrates behavior bounding’s sensitivity compared to that of the sequential
approaches. Results here are not particularly dramatic, but behavior bounding does have
fewer instances of zero sensitivity (inability to identify any errors) than either of the sequen-
tial approaches. In addition, this figure points out the inherent scaling problems associated
with the sequential method and illustrates their dramatic effects in more complicated envi-
ronments. Experiment families three and six where behavior bounding’s sensitivity drops
to zero are worthy of note. Here, errors are again due to one aspect of the hierarchical
behavior representation becoming over-generalized.

194

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6

R
ep

or
t D

en
si

ty

Experiment Family

BB
action

goal

Figure 12: Report Density in the MOUT domain

Some of behavior bounding’s strengths are better illustrated when we examine report
density, as in Figure 12. Compared against either of the sequential approaches, behavior
bounding’s report density is exceedingly high. In cases where true errors are detected, the
report density averages near 0.20, detecting about one true error for every five differences
reported in the summary. Even though report density is lower than in the relatively simple
object-retrieval domain, it is still high enough to be useful for testing an agent’s knowledge
base. Equally worthy of note is the fact that even when the two benchmarks methods were
more sensitive than behavior bounding, the usefulness of their error reports are questionable
at best due to the exceedingly low report density.

Although behavior bounding clearly outperformed the sequential methods in the MOUT
domain, there is obvious room for improvement. To identify why its efficacy was low
compared to the object-retrieval domain, we looked back at the domain itself and at the
novice-level agents that we examined.

One noticeable source of false positives was due to so called floating operators. Floating
operators are not performed in service of their parent goal. Essentially, they are goals
or actions that occur opportunistically, potentially at any location in the goal hierarchy
in order to respond to the dynamics of the environment without explicitly suspending or
canceling the agent’s other goals. In other agent architectures, floating operators may be
better described as concurrent top-level goals. Soar does not support concurrent goals,
however, and floating operators are the prevailing method for this encoding this type of
opportunistic behavior.

Because floating operators do not work in service of their parent goal, they effectively
break the paradigm of the hierarchical behavior representation and their effects can be
twofold. First, they are likely to cause over-generalization by inappropriately changing the
parent’s node type from And to Or. Second, if limited observations are available, floating
operators can result in representations of the novice agent’s behavior that are inconsistent
with the structure of the expert’s behavior representation (i.e., the floating operator may
be observed in different parts of the expert’s and novice’s hierarchy). This situation will

195

Wallace

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6

R
ep

or
t D

en
si

ty

Experiment Family

BB (if)
BB

Figure 13: Report Density in the MOUT domain ignoring floating operators

result in a behavior representation that fails to satisfy the basic structure requirements of
the lower boundary node.

There are a number of potential methods that could be used to circumvent these prob-
lems. One method would be to create a level of indirection between the expert’s native
behavior representation and what is presented in the behavior traces. Through some pre-
processing of the behavior traces, it would be possible to modify the topology of the expert’s
goal hierarchy so that floating operators no longer appeared (i.e., so they were mapped to
static locations in the hierarchy). Although this could help circumvent the issues with float-
ing operators, it may require significant engineering resources to process the behavior traces.
More importantly, however, this introduces another source for errors and confusion and is
probably best avoided as a result. Another approach would be to tag floating operators
so they could be treated differently by the Create-Hierarchy algorithm4. This would
increase the initial cost of using behavior bounding to validate an agent but it is likely
that this cost would remain minor. A third method is simply to ignore floating operators
altogether. Although this, of course, has the potential of reducing the number of errors that
can be detected, it is also likely to have a significant payoff in terms of reducing false pos-
itives. Moreover, because floating operators do not fit naturally into behavior bounding’s
structure, it is likely that errors that do occur in the floating operators might be missed
even if they were included in the HBR.

Figure 13 illustrates the effect on report density when floating operators are ignored
(note change of scale on y-axis). As expected, the number of false positives is reduced, thus
increasing the report density on all experiment families other than 3 and 6 (where no errors
are correctly identified with either method). Although the effect is somewhat subtle, it does
raise the average report density (excluding experiment families 3 and 6) by nearly a factor
of 2, from 0.18 to 0.35, an effect that makes the already acceptable error summary more
useful.

4. While it may be possible to tag floating operators automatically based on where they occur in the goal
hierarchy and by what generalizations they cause, it would be safest to require the knowledge engineer
to provide the tags before the behavior comparison was performed.

196

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

Expert Novice-A Novice-B

Modification N/A New Proposal Missing Preference
Manifestation N/A Intrusion Commission
Distinct Behaviors 4 12 8
Consistent BTs N/A 4 4
Avg. BT Length 67 69 68

Table 1: Properties of expert & novice agents in the validation efficacy test

9. Efficacy as a Validation Tool

We have shown that behavior bounding has acceptable performance in two domains of
distinct complexity and argued that it would be well suited for detecting errors in many
other goal oriented environments. However, up to this point, we have only hypothesized
that the error reports provided by behavior bounding will decrease validation cost; we have
not provided any direct evidence.

To substantiate this claim, we performed an experiment in which five human participants
attempted to find and correct flaws in an agent’s behavior both with and without infor-
mation from behavior bounding’s error report5. As in previous experiments, agents were
implemented in the Soar architecture. Each participant was a member of the Soar research
group with at least six months of Soar programming experience. Participants identified two
behavior flaws: one with, and one without the aid of behavior bounding’s error report. In
the unaided situation, participants relied on standard debugging tools and techniques that
they were already in the practice of using. Once the flaw was identified, the participants
corrected the agents’ knowledge using VisualSoar, the standard Soar development environ-
ment. In the aided situation, participants were given behavior bounding’s error report to
help make sense of the agent’s behavior. Thus, in the experiments presented below, there
are two conditions: aided, and unaided. Condition is a within-subject variable, which is to
say that each participant experiences both.

Our test-bed agent was taken from the object retrieval domain discussed in Section 8.2.4.
The initial setup followed similar lines as our earlier experiments. We began by constructing
an expert-level agent that exhibited “correct” behavior. This agent could perform its task
in four distinct but similar ways and required 78 Soar rules to encode. Note that in normal
use, observations of correct behavior are likely to come from human experts. However, by
creating a correct agent first, it is possible to describe precisely how flawed agents differ
from the ideal (both in behavior and in their implementation). This property is critical for
the experiment.

After creating the expert-level agent, we constructed two novice-level agents (Novice-A
and Novice-B). The participants’ task was to identify and correct any behavioral differences
between the novice agents and the expert-level agent. Because each participant would
validate both novice agents (using a different method for each one), one of our primary

5. Initial results reported by Wallace (2007).

197

Wallace

desires was to construct novice-level agents in such a way that they would be similarly
difficult to validate. To help ensure that this was the case, we limited the differences in
the novice’s and expert’s knowledge to a single rule. In the case of Novice-A, one rule was
added that resulted in the agent performing a different sequence of actions than the expert.
In the case of Novice-B, a preference rule was removed resulting in two discrepancies: one
in the parameters of the agent’s internal goal, and another in the parameters of the agent’s
primitive action. Aside from the differences mentioned above, the behavior of both novice-
level agents was similar to that of the expert in all other respects.

Table 1 illustrates some of the important properties of the expert-level and novice-level
agents. The first and second rows indicate the change that we made to construct each of
the novice agents and the form of error that results from these changes. The third row
indicates how many distinct behavior traces each agent is capable of generating. This value
is important because it gives an indication of how many behavior traces the user might
need to examine in order to get a good understanding of the range of behavior each agent
is capable of producing. The fourth row indicates how many of the novice’s behavior traces
were consistent with expert behavior traces (i.e., error free). Finally, the fifth row indicates
the average length of each agent’s behavior trace. This gives some indication as to how
much information must be examined in each instance of behavior.

It is worth noting that the flaws introduced into these agents are minor by most stan-
dards. In this experiment, flawed behavior does not result in deadlocks or infinite loops.
Indeed, when viewed in the classical sense, these agents are not necessarily “flawed”. They
are successful in achieving the desired final state (finding the lost object). However, the
agents do not pursue the same trajectories through state/action/goal space, and the par-
ticipants’ task is to determine how these trajectories differ and then find and correct the
fault that causes the difference.

Because none of the participants had used, or even seen, the graphical behavior com-
parisons generated by behavior bounding, they were given a short, 15 minute, tutorial to
become familiar with the graphical behavior summary provided by our interface. In addi-
tion, participants were asked to read a short summary that provided a description of the
debugging task, a summary of the agent’s behavior, and a plain English description of some
salient goals and actions that would be pursued during task performance. This overview
was intended to familiarize the users with the agents and the domain without requiring each
participant to build their own agent from the ground up.

At this point, participants were randomly assigned an agent to validate. We attempted
to mitigate bias by varying the order in which the aided and unaided tests were presented as
well as the pairing between the agent and the validation method. For each experiment, we
asked the participants to indicate when they were ready to modify the agent’s knowledge
and to articulate what changes they believed were required. This allowed us to measure the
amount of time needed to identify the behavioral flaw as well as the total time required to
correct the agent’s behavior.

During the first phase of the debugging session, participants identified how the novice
agent’s behavior differed from the standard set by the correct expert-level agent. In the
unaided situation, no specific instructions were given on how to identify errors. Participants
were free to look for errors using whatever debugging techniques they had developed in the
course of working with Soar. Similarly, in the aided situation no specific instructions on

198

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15 20 25 30 35

U
na

id
ed

Aided

Identify
Correct

Only Fix

Figure 14: Time required to identify and correct errors using two techniques

how to identify errors were given. Participants generalized their tutorial experience to
interpret the information in behavior bounding’s error report and to identify what changes
would be required to make the flawed agents behave correctly. In both situations, when the
participant correctly identified the error in the flawed agent’s behavior (e.g., by saying “The
novice does not always perform action X before action Y”), the elapsed time was recorded.
We call this the time required to identify the error.

The second phase of the debugging session began once the participant determined that
they were ready to try modifying the flawed agent’s knowledge in order to correct the
observed error. Regardless of whether the error was identified using standard techniques or
behavior bounding in the first phase, participants used the VisualSoar editing environment
(a standard part of Soar’s development environment) for this portion of the task. Once
the participant had made changes, they re-examined the novice agent’s behavior to ensure
that the problem had in fact been corrected. When the participant was confident that the
problem was resolved, the clock was stopped and the time spent from the beginning of
phase one until the end of phase two was recorded as the time needed to correct the agent’s
behavior6.

Figure 14 shows the time spent by each participant on both the aided and unaided tasks
and highlights the benefits of behavior bounding. The x-coordinate indicates time spent
debugging in the aided situation when information from behavior bounding’s error summary
was used while the y-coordinate indicates time spent in the unaided situation when only

6. There were no cases in which the participant believed the agent’s behavior had been corrected when in
fact errors remained.

199

Wallace

the participant’s normal debugging techniques were used. Three sets of points are plotted:
time to identify the error; time to correct the error; and time required only for the fix (i.e.,
the difference between time to correct and time to identify). The line y = x is also plotted
for reference; points that lie to the left of this line indicate that the participant performed
better (i.e., faster) in the aided situation.

The cluster of points nearest to the origin (labeled “only fix” in the legend) indicate
that behavior bounding had little if any effect on the time required to fix the agent’s
knowledge error once it was identified. Instead, behavior bounding’s impact, as expected,
comes from the reduction in time required to identify the error. This leads to a reduction
in the overall time required for the validation task. A paired t-test was used to determine
statistical significance of each of the three timed operations illustrated in the figure. Not
surprisingly, the test confirms a statistically significant performance advantage is gained
by using information from behavior bounding on both the time to identify and time to
correct the error (p = .0006, p = .0002 respectively). The paired t-test does not indicate a
statistically significant difference in the times required simply to fix the error for the aided
and unaided situations (p = .85), again matching expectations.

From this data, it seems safe to conclude that the error report provided by behavior
bounding does, in fact, provide information that is both relevant to identifying differences
between two agents’ behavior and useful in isolating faulty knowledge. Although on one
level these results may be considered best cases because we constructed errors that we
believed would demonstrate the effectiveness of behavior bounding, there are a number of
reasons why these results may be on the conservative side of optimistic.

First, we would expect the HBR to be more useful as the complexity of the domain
and of the agent’s behavior increases—developers wishing to examine raw behavior traces
will need to look at longer traces and more traces for complex environments whereas with
the HBR, they only need to view one data structure. Second, the test conducted above is
clearly influenced by the design of behavior bounding’s user interface. We conducted no
formal experiments to increase the quality of the interface, so it is quite possible that future
implementations would be capable of delivering information more effectively to the user,
thus producing an increase in efficiency.

10. Related Work

As noted previously in Section 4, a number of other areas of artificial intelligence, particu-
larly machine learning have addressed problems closely related to those we examined here.
In the following subsections, we briefly comment on some of the most salient areas.

10.1 Plan Recognition

The behavior comparison we have described is related to keyhole plan recognition (Albrecht,
Zukerman, & Nicholson, 1998), or more closely, to the team monitoring by overhearing
work of Kaminka, Pynadath, and Tambe (2002). In team monitoring, the objective is to
determine what task an agent or set of agents is performing given limited observations of
their actions and the communications that pass between them. Plan recognition is possi-
ble, in part, because a complete team-level plan allows the monitoring system to identify
the agent’s goals as observational information is acquired. When enough information is ob-

200

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

tained, a single plan can be identified and ascribed to the agent(s). In behavior comparison,
the objective is similar. The salient difference between our work and plan recognition is
that we are not given the plan library; instead we are attempting to recreate a model of its
execution through a series of observations in order to determine whether both actors will
pursue their goals in the same manner (i.e., have the same plan library).

10.2 Learning By Observation

A number of systems (e.g, van Lent & Laird, 1999; Wang, 1995; Konik & Laird, 2006)
have also been developed to learn procedural rules or plan operators from observations
of expert behavior. Wang’s OBSERVER (Wang, 1995) learns STRIPS style operators;
van Lent’s KnoMic (van Lent & Laird, 1999) learns production rules for the Soar agent
architecture and Konik’s system (Konik & Laird, 2006) creates first order logic rules that
are later converted into Soar productions. All three systems use similar behavior traces as
our approach, although Wang’s OBSERVER works only with primitive actions so there is
no notion of non-atomic goals and thus no need to annotate them in the behavior traces.
Of these systems, Konik’s has been demonstrated within the most complex domain (a 3-D
virtual environment in which an agent must learn to successfully navigate a series of rooms).

The key difference between our approach and theirs lies in the fundamental premise.
While we are interested in learning a simple and concise model of behavior that an outside
third-party can use to validate an existing (but untrusted) agent, these systems aim to
learn the agent’s knowledge altogether. While learning complete task knowledge is clearly
an important goal for the community, there remain a set of important task domains (e.g.,
military and mission critical applications) where learned systems are often treated with
skepticism and human coded systems are still preferred. The approach we have described,
however, could be useful to help bridge this gap by allowing skeptical parties to validate
the behavior of learned systems. Thus, while it may seem on the surface that by solving
the “learning executable task knowledge” problem one also solves the behavior comparison
problem we have outlined, that is not the case—in mission critical applications, the agent’s
behavior still requires validation and a human in the loop to “sign off” on its correctness.
Moreover, when knowledge is learned instead of engineered, the validation task is likely to
become much more difficult as there is no one to document the system or to field questions
about the function of any particular component.

10.3 Hierarchical Reinforcement Learning

Reinforcement Learning seeks to provide methods by which an agent can learn to approx-
imate an optimal behavioral strategy while interacting with its environment. In reinforce-
ment learning, optimality is defined by a reward function that is outside of the agent’s
control (it is part of the environment) and the agent learns through interaction with the
environment how to maximize this function. Traditional (flat) approaches to reinforcement
learning such as Q-Learning (Watkins & Dayan, 1992) may require a long training time to
converge on an optimal policy. Price and Boutilier (2003) show how reinforcement learning
can be facilitated by observing a mentor perform a task while Hierarchical Reinforcement
Learning (Dietterich, 2000; Andre & Russell, 2002; Marthi, Russell, Latham, & Guestrin,

201

Wallace

2005) seeks, in part, to reduce the complexity of the learning problem with the use of
external domain knowledge in the form of a programmer-defined action hierarchy.

Both traditional Reinforcement Learning (RL) and Hierarchical Reinforcement Learn-
ing (HRL) differ significantly from our approach in three fundamental ways. First, as
with the method described in the previous subsection, the goal in (H)RL is to learn an
executable model for behavior, not a model that can be used to help validate a system.
Second, in (H)RL, models are learned via interaction with the environment and with an
environmentally defined reward function. Instead, we are interested in learning directly
from observation of expert behavior without experimental interaction in the environment.
Finally, unlike both RL and HRL, we do not assume the existence of a reward function and
moreover we are not interested in optimal behavior in any sense other than close approxi-
mation to human behavior.

Aside from these important differences, there is a commonality between Hierarchal Re-
inforcement Learning and our approach that stems from the behavior model. An open issue
in Dietterich’s presentation of MAXQ (Dietterich, 2000) and restated by Barto and Ma-
hadevan (2003) is whether the programmer-supplied information (the MAXQ task-graph)
in Hierarchical Reinforcement Learning could be acquired automatically. Each subtask Mi

in a MAXQ task-graph is a three tuple 〈Ti, Ai, R̃i〉. Ti(si) partitions the state space into
active states Si and terminal states Ti (a subtask can only be executed if the current state
is in Si). Ai is a set of actions that can be performed to achieve the subtask and R̃i(s

′|s, a)
is a pseudo reward function indicating how desirable each terminal state is for this subtask.

Our approach could be used to help construct part of the MAXQ task graph directly
from observations. First, the goal/subgoal hierarchy we build can be used directly to identify
Ai, the set of actions that can be performed in each subtask. Second, some task parameters
that we learn are tied to information in the state (this relation can be observed directly in
the behavior trace). This information combined with the temporal constraints we learn for
all goal/action nodes could be used to identify some of the conditions when a task could
be entered (some properties of the active states identified by the predicate Ti). Together
this could help construct the MAX-Q task graph based on observations of an expert’s
performance.

10.4 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) (e.g., Abbeel & Ng, 2004; Ramachandran & Amir,
2007) attempts to reconstruction an implicit reward function given a set of example behav-
iors. IRL in combination with RL has been used in simple domains to reproduce behavior
for which there is no explicit reward function. This would permit a system to, for example,
learn to model a human expert’s behavior by 1) reconstructing the expert’s implicit reward
function by observing example behaviors and then 2) interacting with the environment to
generate a policy that maximizes this implicit reward. Together, these technologies provide
a potentially powerful alternative to the learning by observation methods described previ-
ously. However, to the best of our knowledge IRL has not yet been demonstrated within
a hierarchical setting, and so the learning by observation methods still present the current
state of the art for learning hierarchical task knowledge.

202

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

11. Extensions to Behavior Bounding and Future Directions

Our experiments with behavior bounding have all yielded encouraging results. Yet, in
the complex MOUT domain, our results do leave room for improvement. In Section 5,
we noted some of the representational limitations of behavior bounding’s HBR. Here, we
examine extensions to behavior bounding that could positively affect its performance and
briefly describe a promising direction for future work. We leave the implementation of these
extensions and detailed discussion as future work.

11.1 Manual Definition of Lower Boundary Node

By itself, the lower boundary is a minimal specification of the parameters necessary for
correct behavior. That is, it does not contain all the constraints required to discriminate
between correct and incorrect behavior. Although we have suggested that the lower bound-
ary node is easily formed by completely generalizing the upper boundary node, a better
approach may be to construct it manually.

The hierarchy represented by the lower boundary node simply identifies the space of
potentially acceptable goal decompositions. As a result, it would be logical to create this
structure early in the design phase as expert knowledge is being acquired for the agent.
Lee and O’Keefe (1994) as well as Yen and Lee (1993) have argued independently that
constructing an overview of the ways in which goals decompose into sub-goals and primitive
actions is an important step in knowledge acquisition. Moreover, they argue that identifying
the relationship between goals, sub-goals and primitive actions helps to organize the agent’s
knowledge and serves as a foundation for further knowledge acquisition. Thus, it may be the
case that constructing the lower boundary node manually is a process that introduces little
or no additional effort on the part of the domain expert and the knowledge engineer. In
fact, it may actually benefit knowledge acquisition by making the process more structured
and directed.

If constructing the lower boundary node by hand is a relatively low cost process, it is
reasonable to ask how this manual effort could be leveraged to improve behavior bounding’s
performance. One such use of the manually constructed HBR is to help validate the agent’s
design early during the implementation process. It is generally believed that the earlier
validation can take place, the less costly it will be. By constructing the lower boundary
by hand, it may be possible to identify whether the agent adheres to these constraints
by statically analyzing its knowledge—without needing to see the agent interact with the
environment.

11.2 Sometimes/Always Constraints

Another potentially useful modification to the HBR would be to change the association
of the node type constraints. In the current version of behavior bounding, And and Or

constraints are associated with parent goal nodes. Alternatively, we might associate similar
labels with the child nodes such as Sometimes and Always. Although the change is subtle,
it would offer modestly more representational power. The semantics of And and Or nodes
are easily covered: an And node is simply one in which all children are Always while an
Or node is one in which all children are Sometimes. The semantics of Sometimes and

203

Wallace

Always also make it possible to encapsulate new decomposition relations that do not occur
with the And/Or relation.

Recall the problematic behavior in Section 8.2.4 where the HBR fails to correctly encode
the proper decomposition relations (specifically that goal P can decompose into subgoals
A,B,A or into subgoals A,B but not into B,A). Sometimes/Always constraints can
encode this decomposition, albeit only if an additional layer of subgoal is added to the
task specification. By introducing two new subgoals so that P decomposes into C ∗, D7 and
C decomposes into A∗, B∗ while D decomposes into A∗, we would be able to encode the
correct behavioral patterns with respect to P,A, and B with the only caveat of having to
interject two new goals C and D. Of course, the point of this discussion is not to justify
such ad-hoc modifications to the task structure, but rather to show a concrete instance
where Sometimes/Always constraints may add beneficial representational power.

Sometimes/Always constraints have no effect on the learnability or construction cost
of the HBR. And while we have not tested this modification in detail, preliminary results
in the MOUT data sets do indicate a minor improvement in performance for this domain.

11.3 Additional Enhancements

Two additional enhancements to the HBR are also left as future work. The first is the ability
to deal with concurrent goals or actions. As Soar does not support concurrent operators,
this cannot be tested within our exiting system. However, if such support were added to
the HBR, it may be possible to avoid some of the issues associated with floating events
encountered in the MOUT domain. The second enhancement would be to allow more than
one node to be constructed to represent a given action/goal within a particular context.
In the current representation, there are no two sibling nodes with the same name (there is
exactly one node to represent all identically named goal/actions within any context). While
this keeps the representation simple, it also can be held responsible for some representational
problems like the one discussed in Section 8.2.4. The disadvantage of this approach is that
it is unclear when new nodes should be added to the hierarchy. If a new node is added each
time a goal/action is pursued, then the hierarchy grows much more rapidly (directly as a
function of the length of the behavior tracing) increasing the computational complexity and
decreasing the rate of generalization.

11.4 Behavior Bounding in the Runtime Environment

A promising direction for additional future work is to use the ideas presented in this paper,
specifically the constraints contained in the upper-boundary node’s behavior representa-
tion, to monitor an agent’s behavior at runtime. This approach, which we have recently
begun to explore, provides a mechanism for determining when an agent may be making
inappropriate decisions (Wallace, 2005b, 2005a). Inconsistencies between an agent’s desired
course of action and the constraints specified by the upper boundary node could be used
to enforce social policies such as interaction protocols between groups of agents or to dy-
namically adjust an agent’s degree of autonomy if it begins to make questionably choices.
Moreover, the high-level constraints specified by the hierarchical behavior model require

7. ∗ indicates an ALWAYS node

204

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

no direct knowledge of the agent’s underlying implementation language (only of its goal
decomposition). This means that our approach could also be used as a safeguard against
implementation errors in agents built by third parties that may not have been adequately
validated.

12. Contributions

We have introduced behavior bounding, a model-based approach for comparing two actors’
behavior. This novel approach uses a hierarchical behavior representation motivated by
the desire to build a high-level model of behavior from observations of either human or
computer agent performance that is efficient to create and maintain and effective in use.
We have demonstrated how behavior bounding meets these requirements by providing both
theoretical and empirical support for these claims. Finally, we have shown that informa-
tion from behavior bounding’s comparison can significantly aid the process of identifying
problems in an agent’s behavior, thus speeding knowledge-base validation by a significant
factor.

Acknowledgments

I would like to thank John Laird for his help in reviewing early versions of this paper, along
with members of the UM Soar research group who participated in the user study. Portions of
this work were supported by the Office of Naval Research under contract N61339-99-C-0104.

References

Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning.
In Proceedings of the Twenty First International Conference on Machine Learning,
pp. 1–8.

Albrecht, D. W., Zukerman, I., & Nicholson, A. E. (1998). Bayesian models for keyhole
plan recognition in an adventure game. User Modeling and User-Adapted Interaction,
8 (1-2), 5–47.

Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement
learning agents. In Proceedings of the Eighteenth National Conference on Artificial
Intelligence, pp. 119–125.

Anrig, B., & Kohlas, J. (2002). Model-based reliability and diagnostic: A common frame-
work for reliability and diagnostics. In Stumptner, M., & Wotawa, F. (Eds.), DX’02
Thirteenth International Workshop on Principles of Diagnosis, pp. 129–136, Semmer-
ing, Austria.

Barto, A. G., & Mahadevan, S. (2003). Recent advances in hierarchical reinforcement
learning. Discrete Event Dynamic Systems: Theory and Applications, 13, 343–379.

Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2004). State-space reduction
techniques in agent verification. In AAMAS ’04: Proceedings of the Third International
Joint Conference on Autonomous Agents and Multiagent Systems, pp. 896–903.

205

Wallace

Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2006). Verifying multi-agent
programs by model checking. Autonomous Agents and Multi-Agent Systems, 12, 239–
256.

Dietterich, T. G. (2000). Hierarchical reinforcement learning with the MAXQ function
decomposition. Journal of Artificial Intelligence Research, 13, 227–303.

Erol, K., Hendler, J., & Nau, D. S. (1994). HTN planning: Complexity and expressivity. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, pp. 1123–
1128. AAAI Press/MIT Press.

Fisher, M. (2005). Temporal development methods for agent-based systems. Autonomous
Agents and Multi-Agent Systems, 10, 41–66.

Giarratano, J., & Riley, G. (1998). Expert Systems: Principles and Programming. PWS
Publishing Co., Boston, MA.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant’s learn-
ing framework.. Artificial Intelligence, 36, 177–221.

Ingrand, F. F., Georgeff, M. P., & Rao, A. S. (1992). An architecture for real-time reasoning
and system control. IEEE Expert, 7 (6), 33–44.

John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques:
Comparison and contrast. ACM Transactions on Computer–Human Interaction, 3 (4),
320–351.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999).
Automated intelligent pilots for combat flight simulation. AI Magazine, 20 (1), 27–42.

Kaminka, G. A., Pynadath, D. V., & Tambe, M. (2002). Monitoring teams by overhearing:
A multi-agent plan-recognition approach. Journal of Artificial Intelligence Research,
17, 83–135.

Kirani, S. H., Zualkernan, I. A., & Tsai, W.-T. (1994). Evaluation of expert system testing
methods. Communications of the ACM, 37 (11), 71–81.

Konik, T., & Laird, J. E. (2006). Learning goal hierarchies from structured observations
and expert annotations. Machine Learning, 64 (1–3), 263–287.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. Artificial Intelligence, 33 (1), 1–64.

Lee, S., & O’Keefe, R. M. (1994). Developing a strategy for expert system verification and
validation. IEEE Transactions on Systems, Man and Cybernetics, 24 (4), 643–655.

Lucas, P. (1998). Analysis of notions of diagnosis. Artificial Intelligence, 105, 295–343.

Marthi, B., Russell, S., Latham, D., & Guestrin, C. (2005). Concurrent hierarchical rein-
forcement learning. In Proceedings of the International Joint Conference on Artificial
Intelligence 2005, pp. 779–785.

Menzies, T. (1999). Knowledge maintenance: the state of the art. The Knowledge Engi-
neering Review, 14 (1), 1–46.

Mitchell, T. M. (1982). Generalization as search. Artificial Intelligence, 18 (2), 203–226.

206

Behavior Bounding: An Efficient Method for High-Level Behavior Comparison

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Murphy, P. M., & Pazzani, M. J. (1994). Revision of production system rule-bases. In
Proceedings of the Eleventh International Conference on Machine Learning, pp. 199–
207. Morgan Kaufmann.

Price, B., & Boutilier, C. (2003). Accelerating reinforcement learning through implicit
imitation. Journal of Artificial Intelligence Research, 19, 569–629.

Ramachandran, D., & Amir, E. (2007). Bayesian inverse reinforcement learning. In Proceed-
ings of the International Joint Conference on Artificial Intelligence 2007, pp. 2586–
2591.

Rickel, J., Marcella, S., Gratch, J., Hill, R., Traum, D., & Swartout, W. (2002). Toward
a new generation of virtual humans for interactive experiences. IEEE Intelligent
Systems, 17 (4), 32–38.

Shortliffe, E. H. (1987). Computer programs to support clinical decision making. Journal
of the American Medical Association, 258 (1), 61–66.

Swartout, W., Hill, R., Gratch, J., Johnson, W. L., Kyriakakis, C., LaBore, C., Lindheim,
R., Marsella, S., Miraglia, D., Moore, B., Morie, J., Rickel, J., Thiebaux, M., Tuh,
L., Whitney, R., & Douglas, J. (2001). Toward the holodeck: Integrating graphics,
sound, character and story. In Proceedings of the Fifth International Conference on
Autonomous Agents, pp. 409–416.

Traum, D., Rickel, J., Gratch, J., & Marsella, S. (2003). Negotiation over tasks in hybrid
human-agent teams for simulation-based training. In AAMAS ’03: Proceedings of
the Second International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 441–448.

Tsai, W.-T., Vishnuvajjala, R., & Zhang, D. (1999). Verification and validation of
knowledge-based systems. IEEE Transactions on Knowledge and Data Engineering,
11 (1), 202–212.

van Lent, M. C., & Laird, J. E. (1999). Learning hierarchical performance knowledge
by observation. In Proceedings of the 1999 International Conference on Machine
Learning, pp. 229–238.

Veloso, M., Carbonell, J., Perez, A., Borrajo, D., Fink, E., & Blythe, J. (1995). Integrat-
ing planning and learning: The PRODIGY architecture. Journal of Theoretical and
Experimental Artificial Intelligence, 7 (1), 81–120.

Wallace, S. A. (2005a). Abstract behavior representations for self-assessment. In AAAI
Spring Symposium on Meta-Cognition in Computation (ASSMC 2005). AAAI Tech-
nical Report SS-05-04., pp. 120–125.

Wallace, S. A. (2005b). S-Assess: A library for self-assessment. In Proceedings of the Fourth
International Conference on Autonomous Agents and Multiagent Systems (AAMAS-
05), pp. 256–263.

Wallace, S. A. (2007). Enabling trust with behavior metamodels. In AAAI Spring Sympo-
sium on Interaction Challenges for Intelligent Agents (ASSICIA 2007). AAAI Tech-
nical Report SS-07-04., pp. 124–131.

207

Wallace

Wallace, S. A., & Laird, J. E. (2000). Toward a methodology for AI architecture evaluation:
Comparing Soar and CLIPS. In Jennings, N., & Lespérance, Y. (Eds.), Intelligent
Agents VI — Proceedings of the Sixth International Workshop on Agent Theories,
Architectures, and Languages (ATAL-99), Lecture Notes in Artificial Intelligence, pp.
117–131. Springer-Verlag, Berlin.

Wallace, S. A., & Laird, J. E. (2003). Behavior Bounding: Toward effective comparisons of
agents & humans. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence, pp. 727–732.

Wang, X. (1995). Learning by observation and practice: An incremental approach for plan-
ning operator acquisition. In Proceedings of the Twelfth International Conference on
Machine Learning, pp. 549–557.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8, 279–292.

Weitzel, J. R., & Kerschberg, L. (1989). Developing knowledge-based systems: Reorganizing
the system development life cycle. Communications of the ACM, 32 (4), 482–488.

Yen, J., & Lee, J. (1993). A task-based methodology for specifying expert systems. IEEE
Expert, 8 (1), 8–15.

Yost, G. R. (1996). Implementing the Sisyphus-93 task using Soar/TAQL. International
Journal of Human-Computer Studies, 44, 281–301.

208

