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Abstract

A new search algorithm for solving distributed constraint optimization problems (DisCOPs)
is presented. Agents assign variables sequentially and compute bounds on partial assignments
asynchronously. The asynchronous bounds computation is based on the propagation of partial
assignments. The asynchronous forward-bounding algorithm (AFB) is a distributed optimization
search algorithm that keeps one consistent partial assignment at all times. The algorithm is de-
scribed in detail and its correctness proven. Experimental evaluation shows that AFB outperforms
synchronous branch and bound by many orders of magnitude, and produces a phase transition as
the tightness of the problem increases. This is an analogous effect to the phase transition that has
been observed when local consistency maintenance is applied to MaxCSPs. The AFB algorithm is
further enhanced by the addition of a backjumping mechanism, resulting in theAFB-BJalgorithm.
Distributed backjumping is based on accumulated information on bounds of all values and on pro-
cessing concurrently a queue of candidate goals for the next move back. The AFB-BJ algorithm is
compared experimentally to other DisCOP algorithms (ADOPT, DPOP, OptAPO) and is shown to
be a very efficient algorithm for DisCOPs.

1. Introduction

The Distributed Constraint Optimization Problem (DisCOP) is a general framework for distributed
problem solving that has a wide range of applications in Multi-Agent Systems and has generated
significant interest from researchers (Modi, Shen, Tambe, & Yokoo, 2005; Zhang, Xing, Wang, &
Wittenburg, 2005; Petcu & Faltings, 2005a; Mailler & Lesser, 2004; Ali, Koenig, & Tambe, 2005;
Silaghi & Yokoo, 2006). DisCOPs are composed of agents, each holding one or more variables.
Each variable has a domain of possible value assignments. Constraints among variables (possibly
held by different agents) assign costs to combinations of value assignments. Agents assign values to
their variables and communicate with each other, attempting to generate a solution that is globally
optimal with respect to the costs of the constraints (Modi et al., 2005; Petcu & Faltings, 2004).

There is a wide scope of motivation for research on DisCOP, since distributed COPs are an
elegant model for many every day combinatorial problems that are distributed by nature. Take for
example a large hospital that is composed of many wards. Each ward constructs a weekly timetable
assigning its nurses to shifts. The construction of a weekly timetable involves solving a constraint
optimization problem for each ward. Some of the nurses in every ward are qualified to work in
the Emergency Room. Hospital regulations require a certain number of qualified nurses (e.g. for
Emergency Room) in each shift. This imposes constraints among the timetables of different wards
and generates a complex Distributed COP (Solotorevsky, Gudes, & Meisels, 1996).
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Another example is the sensor networks tracking problem (Zhang, Xing, Wang, & Wittenburg,
2003; Zhang et al., 2005), in which the task is to assign sensors to tracking targets, such that the
maximal number of the targets will be tracked by the sensor collection. This too can be solved using
the DisCOP model.

DisCOP modeling can also solve problems like log based reconciliation (Chong & Hamadi,
2006), in which copies of a data base exist in several physical locations. Users perform actions on
these data base copies, each user on its own local copy. The actions cause the data base to change,
so only initially all copies are identical, but later actions change some of them and they are no longer
identical. Logs of all user actions are kept. The problem is how to merge these logs, into a single log
that keeps as many of the actions as possible. It is not always possible to keep all local logs intact,
since actions are constrained with other actions (for example you can not reconcile the deletion of
an item from the database and a later print or update of it).

DisCOPs represent real life problems that cannot or should not be solved centrally for several
reasons, among them are lack of autonomy, single point of failure and privacy of agents. In the
hospital wards example, wards want to maintain a degree of autonomy over their local problems
involving the constraints of every single nurse. In the sensor example, the sensors have a very small
memory and computing power and therefore cannot solve the problem in a centralized fashion. In
the database example, centralization is possible, but issues such as network bottleneck, computing
power and single point of failure encourage looking for a distributed solution.

The present paper proposes a new distributed search algorithm forDisCOPs, Asynchronous
Forward-Bounding (AFB). In theAFBalgorithm agents assign their variables and generate a partial
solution sequentially. The innovation of the proposed algorithm lies in propagating partial solu-
tions asynchronously. Propagation of partial solutions enables asynchronous updating of bounds on
their cost, and early detection of a need to backtrack, hence the algorithm’s nameAFB. This form
of propagating bounds asynchronously turns out to generate a very efficient form of concurrent
computation by all the participating agents. More efficient than algorithms that use asynchronous
assignment processes, especially on hard instances of DisCOPs.

The overall framework of theAFB algorithm is based on aBranch and Boundscheme. Agents
extend a partial solution as long as the lower bound on its cost does not exceed the global bound,
which is the cost of the best solution found so far. In the proposedAFB algorithm, the state of the
search process is represented by a data structure calledCurrent Partial Assignment (CPA). The CPA
starts empty at some initializing agent that records its assignments on it and sends it to the next agent.
The cost of a CPA is the sum on the costs of constraints it includes. Besides the current assignment
cost, the agents maintain on a CPA alower boundwhich is updated according to information they
receive from yet unassigned agents. Each agent which receives the CPA, adds assignments of its
local variables to the partial assignment on the received CPA, if an assignment with a lower bound
smaller than the current global upper bound can be found. Otherwise, it backtracks by sending the
CPA to a former agent to revise its assignment.

An agent that succeeds to extend the assignment on the CPA sends forward copies of the updated
CPA, requesting all unassigned agents to compute lower bound estimations on the cost of the partial
assignment. The assigning agent will receive these estimations asynchronously over time and use
them to update the lower bound of the CPA.

Gathering updated lower bounds from future assigning agents, may enable an agent to discover
that the lower bound of the CPA it sent forward is higher than the current upper bound (i.e. in-
consistent). This discovery triggers the creation of a new CPA which is a copy of the CPA it sent
forward. The agent resumes the search by trying to replace its inconsistent assignment. The time
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stamp mechanism proposed by Nguyen, Sam-Hroud, and Faltings (2004) and used by Meisels and
Zivan (2007) is used by agents to determine the most updated CPA and to discard obsolete CPAs.

The concurrency of theAFB algorithm is achieved by the fact that forward-bounding is per-
formed concurrently and asynchronously by all agents. This form of asynchronicity is similar to
that employed by the Asynchronous Forward-Checking (AFC) algorithm for distributed constraint
satisfaction problems (DisCSPs) (Meisels & Zivan, 2006; Meseguer & Jimenez, 2000). WhenAFB
is enhanced with backjumping (Zivan & Meisels, 2007), the resulting algorithm performs concur-
rently distributed forward bounding and backjumping and prunes the search space of DisCOPs very
efficiently. This is demonstrated by the extensive experimental evaluation in Section 6 whereAFB
demonstrates a phase transition on randomly generated DisCOPs (Larrosa & Schiex, 2004). The
extensive evaluation includes comparisons of the performance ofAFB to that of the best DisCOP
search algorithms. These include asynchronous branch and bound like ADOPT (Modi et al., 2005),
as well as algorithms that are based on other principles - DPOP (Petcu & Faltings, 2005a) that uses
two passes on a pseudo-tree andOpt APO,that divides the DisCOP into sub-problems (Mailler &
Lesser, 2004).

The plan of the paper is as follows. Distributed Constraint Optimization are presented in Sec-
tion 2. In Section 3, theAFB algorithm in full details is presented. In Section 4 a version of the
AFB algorithm which is enhanced with conflict directed backjumping (CBJ) is presented. A cor-
rectness proof of theAFB algorithm is presented in Section 5. In Section 6 an extensive empirical
evaluation of theAFB algorithm is presented.AFB is compared with the state of the art DisCOP
algorithms,ADOPT which like AFB does not include centralization of the problem’s data and
DPOP andOpt APO (Petcu & Faltings, 2005a; Mailler & Lesser, 2004), which are based on very
different principles. Our Conclusions are presented in Section 7.

2. Distributed Constraint Optimization

Formally, aDisCOP is a tuple< A,X ,D,R >. A is a finite set of agentsA1, A2, ..., An. X is a
finite set of variablesX1,X2,...,Xm. Each variable is held by a single agent (an agent may hold more
than one variable).D is a set of domainsD1, D2,...,Dm. Each domainDi contains the finite set of
values which can be assigned to variableXi. R is a set of relations (constraints). Each constraint
C ∈ R defines a none-negativecostfor every possible value combination of a set of variables, and
is of the formC : Di1 ×Di2 × . . . ×Dik → R+ ∪ {0}. A binary constraintrefers to exactly two
variables and is of the formCij : Di ×Dj → R+ ∪ {0}. A binary DisCOPis a DisCOP in which
all constraints are binary. Anassignment(or a label) is a pair including a variable, and a value from
that variable’s domain. Apartial assignment(PA) is a set of assignments, in which each variable
appears at most once.vars(PA)is the set of all variables that appear in PA,vars(PA) = {Xi |
∃a ∈ Di∧(Xi, a) ∈ PA}. A constraintC ∈ R of the formC : Di1×Di2× . . .×Dik → R+∪{0}
is applicableto PA if Xi1 , Xi2 , . . . , Xik ∈ vars(PA). Thecost of a partial assignmentPA is the
sum of all applicable constraints to PA over the assignments in PA. Afull assignmentis a partial
assignment that includes all the variables (vars(PA) = X ). The goal is to find a full assignment of
minimal cost.

In this paper, we will assume each agent owns a single variable, and use the term “agent”
and “variable” interchangeably, and assume agentAi holds variableXi (Modi et al., 2005; Petcu &
Faltings, 2005a; Mailler & Lesser, 2004). We will assume that constraints are at most binary and the
delay in delivering a message is finite (Yokoo, 2000a; Modi et al., 2005). Furthermore, we assume
a static final order on the agents, known to all agents participating in the search process (Yokoo,
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Figure 1: An example DisCOP. Each variable has two values R and B, all constraints are of the
same form as shown in the table to the left.

2000a). These assumptions are commonly used by DisCSP and DisCOP algorithms (Yokoo, 2000a;
Modi et al., 2005).

Example 1 An example of a DisCOP is presented in figure 1. There are 4 variables, each variable
is held by a different agent. The domains of all variables contain exactly the two values R and B.
Lines between variables represent (binary) constraints. The cost of these constraints is shown in the
table to the left. A partial assignment of{(X1, R)} has a cost of zero, since there is no constraint
applicable to it. A partial assignment of{(X1, R), (X4, R)} also has a cost of zero, since there is
no constraint applicable to it. A partial assignment of{(X1, R), (X2, R)} has a cost of two, due to
the constraintC1,2. A partial assignment of{(X1, R), (X2, R), (X3, B)} has a cost of four, due to
the constraintsC1,2, C2,3, C1,3. One solution is{(X1, R), (X2, B), (X3, R), (X4, R)} which has a
cost of five. This is a solution since there is no other full assignment of lower cost.

3. Asynchronous Forward Bounding

In theAFBalgorithm a single most up-to-date current partial assignment is passed among the agents.
Agents assign their variables only when they hold the up-to-date CPA.

TheCPA is a unique message that is passed between agents, and carries the partial assignment
that agents attempt to extend into a complete and optimal solution by assigning their variables on
it. The CPA also carries the accumulated cost of constraints between all assignments it contains, as
well as a unique time-stamp.

Due to the asynchronous nature of the algorithm, multiple CPAs may be present at any instant,
however only a single CPA includes the most update to date partial assignment. This CPA has the
highest timestamp.

Only one agent performs an assignment on a single CPA at any time. Copies of the CPA are
sent forward and are concurrently processed by multiple agents. Each unassigned agent computes a
lower bound on the cost of assigning a value to its variable, and sends this bound back to the agent
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which performed the assignment. The assigning agent uses these bounds to prune sub-spaces of the
search-space which do not contain a full assignment with a cost lower than the best full assignment
found so far. A total order among agents is assumed (A1 is assumed to be the first agent in the order,
andAn is assumed to be the last).

In more detail, every agent that adds its assignment to the CPA sends forward copies of the CPA,
in messages we termFB CPA, to all agents whose assignments are not yet on the CPA. An agent
receiving anFB CPA message computes a lower bound on the cost increment caused by adding
an assignment to its variable. This estimated cost is sent back to the agent who sent theFB CPA
message viaFB ESTIMATEmessages. The computation of this bound is detailed in section 3.1.

Notice that it is possible that the assigning agent already sent its CPA forward by the time the
estimations are received. Should the estimations indicate that the CPA exceeds the bound, the agent
will generate a new CPA, with a different local assignment (and a higher timestamp associated
with it) and continue the search with this new CPA. The timestamping mechanism insures that
the obsolete CPA will (eventually) be discarded regardless of its current location. The timestamp
mechanism is described in section 3.3.

3.1 AFB - Computing the Lower Bound Estimation On Cost Increment

The computation of the lower bound on the cost increment caused by adding an assignment to the
agent’s local variable is done as follows.

Denote bycost((i, v), (j, u)) the cost of assigningAi = v andAj = u. For each agentAi and
each value in its domainv ∈ Di, we denote the minimal cost of the assignment (i,v) incurred by
an agentAj by hj(v) = minu∈Dj (cost((i, v), (j, u))). We defineh(v), the total cost of assigning
the valuev, to be the sum ofhj(v) over all j > i. Intuitively, h(v) is a lower bound on the cost
of constraints involving the assignmentAi = v and all agentsAj such thatj > i. Note that this
bound can be computed once per agent, since it is independent of the assignments of higher priority
agents.

An agentAi, which receives anFB CPA message, can compute for everyv ∈ Di both the
cost increment of assigningv as its value, i.e. the sum of the cost thatv has with the assignments
included in theCPA, andh(v). The sum of these, is denoted byf(v). The lowest calculatedf(v)
among all valuesv ∈ Di is chosen to be the lower bound estimation on the cost increment by agent
Ai.

Figure 2 presents a constraint network. Large ovals represent variables while small circles rep-
resent values. In the presented constraint network,A1 already assigned the valuev1 andA2, A3, A4

are unassigned. Let us assume that the cost of every constraint is one. The cost ofv3 will increase
by one due to its constraint with the current assignment thusf(v3) = 1. Sincev4 is constrained with
bothv8 andv9, assigning this value will trigger a cost increment whenA4 performs an assignment.
Thereforeh(v4) = 1 is an admissible lower bound of the cost of the constraints between this value
and lower priority agents. Sincev4 does not conflict with assignments on the CPA,f(v4) = 1 as
well. f(v5) = 3 because this assignment conflicts with the assignment on the CPA and in addition
conflicts with all the values of the two remaining agents.

Sinceh(v) takes into account only constraints ofAi with lower priority agents (Aj s.t. j > i),
unassigned lower priority agents do not need to estimate their cost of constraints withAi. Therefore,
these estimations can be accumulated and summed up by the agent which initiated the forward
bounding process to compute a lower bound on the cost of a complete assignment extended from
the CPA.
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Figure 2: A simple DisCOP, demonstration

More formally we can define:

Definition 1 CPA is the current partial assignment, containing the assignments made by agents
A1, . . . , Ai−1.

Let us define the notions of past, local and future costs in definitions 2, 3 and 4.

Definition 2 PC (Past-Cost) is the added cost of assignments made by higher priority agents on the
CPA (the costs incurred by agentsA1, . . . , Ai−1.

Definition 3 LC(v) (Local-Cost) is the cost incurred to the CPA ifAi would assign the valuev and
add it to the CPA. Therefore,

LC(v) =
∑

(Aj ,w)∈CPA

cost((i, v), (j, w))

Definition 4 FC(v) (Future-Cost) is the sum of all lower bounds on cost increments caused by
agentsAi+1, . . . , An for the CPA with the additional assignment ofAi = v.

FC(v) =
∑
j>i

minw∈Dj (f(w)), s.t Ai = v added to CPA

The above definitions allow us to compute a lower bound on the cost of any full assignment
extended from the CPA, and use this bound in order to prune parts of the search space. An agent
(Ai) which receives the CPA, can question, what be its lower bound if it would be extended with
an assignment ofAi = v. PC and LC(v) are both known to the agent, and FC(v) can be computed
over time, by requesting future agents (lower priority agents) to compute their lower bounds and
send them back toAi. The sum PC + LC(v) + FC(v) composes this lower bound, and can be used
to prune search spaces. This can happen when the agent knows that a full assignment was already
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found with cost lower than this sum, and therefore exploring this search-space would not lead to
any better cost solutions.

Thus, asynchronous forward bounding enables agents an early detection of partial assignments
that cannot be extended into complete assignments with cost smaller than the known upper bound,
and initiate backtracks as early as possible.

3.2 AFB - Algorithm Description

TheAFBalgorithm is run on each of the agents in theDisCOP. Each agent first calls the procedure
init and then responds to messages until it receives aTERMINATE message. The algorithm
is presented in Figure 3.1. The computation of bounds, and the time-stamping mechanism are not
shown, as they are explained in the text.

In the initialization, each agent updatesB to be the cost of the best full assignment found so far
and since no such assignment was found, it is set to infinity (line 1). Only the first agent (A1) creates
an empty CPA and then begins the search process by callingassignCPA (lines 3-4), in order to find
a value assignment for its variable.

An agent receiving a CPA (when receivedCPA MSG), first makes sure it is relevant. The time
stamp mechanism is used to determine the relevance of the CPA and will be explained in Section 3.3.

If the CPA’stime-stamp reveals that it is not the most up to date CPA, the message is discarded.
In such a case, the agent processing the message has already received a message implying that an
assignment of some agent which has a higher priority than itself, has been changed. When the
message is not discarded, the agent saves the received PA in its local CPA variable (line 7). Then,
the agent checks that the received PA (without an assignment to its own variable) does not exceed
the allowed costB (lines 8-10). If it does not exceed the bound, it tries to assign a value to its
variable (or replace its existing assignment in case it has one already) by callingassignCPA (line
13). If the bound is exceeded, a backtrack is initiated (line 11) and the CPA is sent to a higher
priority agent, since the cost is already too high (even without an assignment to its variable).

ProcedureassignCPA attempts to find a value assignment, for the current agent, within the
bounds of the current CPA. First, estimates related to prior assignments are cleared (line 19). Next,
the agent attempts to assign every value in its domain it did not already try. If the CPA arrived
without an assignment to its variable, it tries every value in its domain. Otherwise, the search for
such a value is continued from the value following the last assigned value. The assigned value must
be such that the sum of the cost of the CPA and the lower bound of the cost increment caused by
the assignment will not exceed the upper boundB (lines 20-22). If no such value is found, then
the assignment of some higher priority agent must be altered, and so backtrack is called (line 23).
Otherwise, the agent assigns the selected value on the CPA.

When the agent is the last agent (An), a complete assignment has been reached, with an accu-
mulated cost lower thanB, and it is broadcasted to all agents (line 27). This broadcast will inform
the agents of the new bound for the cost of a full assignment, and cause them to update their upper
boundB.

The agent holding the CPA (An) continues the search, by updating its boundB, and calling
assignCPA (line 29). The current value will not be picked by this call, since theCPA’scost with
this assignment is now equal to B, and the procedure requires the cost to be lower thanB. So the
agent will continue the search, testing other values, and backtracking in case they do not lead to
further improvement.
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procedureinit :
1. B←∞
2. if (Ai = A1)
3. generate CPA()
4. assign CPA()

when received (FB CPA, Aj , PA)
5. f ← estimation based on the receivedPA.
6. send (FB ESTIMATE, f , PA, Ai) to Aj

when received (CPA MSG, PA)
7. CPA← PA
8. TempCPA← PA
9. if TempCPA contains an assignment toAi, remove it
10. if (TempCPA.cost ≥ B)
11. backtrack()
12. else
13. assign CPA()

when received (FB ESTIMATE , estimate,PA , Aj)
14. save estimate
15. if ( CPA.cost + all saved estimates)≥ B )
16. assign CPA()

when received (NEW SOLUTION , PA)
17. B CPA← PA
18. B ← PA.cost

procedureassignCPA:
19. clear estimations
20. if CPA contains an assignmentAi = w, remove it
21. iterate (from last assigned value) overDi until found

v ∈ Di s.t.CPA.cost + f(v) < B
22. if no such value exists
23. backtrack()
24. else
25. assignAi = v
26. if CPA is a full assignment
27. broadcast (NEW SOLUTION , CPA )
28. B← CPA.cost
29. assign CPA()
30. else
31. send(CPA MSG, CPA) toAi+1

32. forall j > i
33. send(FB CPA, Ai, CPA) toAj

procedurebacktrack:
34. clear estimates
35. if (Ai = A1)
36. broadcast(TERMINATE )
37. else
38. send(CPA MSG, CPA) toAi−1

Figure 3: The procedures of the AFB Algorithm
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When the agent holding the CPA is not the last agent (line 30), the CPA is sent forward to the
next unassigned agent, for additional value assignment (line 31). Concurrently, forward bounding
requests (i.e.FB CPA messages) are sent to all lower priority agents (lines 32-33).

An Agent receiving a forward bounding request (when receivedFB CPA) from agentAj , again
uses the time-stamp mechanism to ignore irrelevant messages. Only if the message is relevant, then
the agent computes its estimate (lower bound) of the cost incurred by the lowest cost assignment to
its variable (line 5). The exact computation of this estimation was described in Section 3.1 (it is the
minimalf(v) over allv ∈ Di). This estimation is then attached to the message and sent back to the
sender, as aFB ESTIMATE message.

An agent receiving a bound estimation (when receivedFB ESTIMATE ) from a lower priority
agentAj (in response to a forward bounding message) ignores it if it is an estimate to an already
abandoned partial assignment (identified by using the time-stamp mechanism). Otherwise, it saves
this estimate (line 14) and checks if this new estimate causes the current partial assignment to exceed
the boundB (line 15). In such a case, the agent callsassign CPA (line 16) in order to change its
value assignment (or backtrack in case a valid assignment cannot be found).

The call tobacktrack is made whenever the current agent cannot find a valid value (i.e. below
the bound B). In such a case, the agent clears its saved estimates, and sends the CPA backwards to
agentAi−1 (line 38). If the agent is the first agent (nowhere to backtrack to), the terminate broadcast
ends the search process in all agents (line 36). The algorithm then reports that the optimal solution
has a cost ofB, and the full assignment with such a cost isB CPA.

3.3 The Time-Stamp Mechanism

As mentioned previously, AFB uses a time-stamp mechanism (Nguyen et al., 2004; Meisels &
Zivan, 2007) to determine the relevance of the CPA. The requirements from this mechanism are
that given two messages with two different partial assignments, it must determine which one of
them is obsolete. An obsolete partial assignment is one that was abandoned by the search process
because one of the assigned agents has changed its assignment. This requirement is accomplished by
the time-stamping mechanism in the following way. Each agent keeps a local running-assignment
counter. Whenever it performs an assignment it increments its local counter. Whenever it sends
a message containing its assignment, the agent copies its current counter onto the message. Each
message holds a vector containing the counters of the agents it passed through. The i-th element
of the vector corresponds toAi’s counter. This vector is in fact the time-stamp. A lexicographical
comparison of two such vectors will reveal which time-stamp is more up-to-date.

Each agent saves a copy of what it knows to be the most up-to-date time-stamp. When receiving
a new message with a newer time-stamp, the agent updates its local saved “latest” time-stamp.
Suppose agentAi receives a message with a time-stamp that is lexicographically smaller than the
locally saved “latest”, by comparing the firsti − 1 elements of the vector. This means that the
message was based on a combination of assignments which was already abandoned and this message
is discarded. Only when the message’s time-stamp in the firsti − 1 elemental is equal or greater
than the locally saved ”best” time-stamp is the message processed further.

The vector’s counters might appear to require a lot of space, as the number of assignments can
grow exponentially in the number of agents. However, if the agent (Ai) resets its local counter to
zero each time the assignments of higher priority agents are altered, the counters will remain small
(log of the size of the value domain), and the mechanism will remain correct.
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3.4 AFB - Example Run

Suppose we run AFB on the DisCOP in figure 1.X1 will create an empty CPA, assign its first value
R and pass the CPA toX2. The CPA will travel fromX2, to X3 and finally toX4, with each agent
assigning its first value (R) on it along the way until finally atX4 we will have a full assignment
with total accumulated cost of 8. This cost will be broadcasted to all agents (line 27 in figure 3.1) as
the new upper bound (instead of infinity). Next,X4 will call the assign CPA procedure (line 29).
This call will result in a new assignment forX4, with the valueB, since the resulting full assignment
will have a cost of only 7. This will cause another broadcast update of the upper bound and another
call toassign CPA. In this next call,X4 will have an empty domain and be forced to backtrack the
CPA toX3. This CPA contains the assignmentsX1 = X2 = X3 = R, with a total accumulated cost
of 6 which is below the upper bound. ThereforeX3 will call its assign CPA (line 13). Examining
its remaining values,X3 explores the assignment ofB which will result in a CPA with a cost of 4
(line 21), which is below the current upper bound B. The CPA is sent toX4 (line 31). X4 calls the
assign CPA procedure (line 13). The valueR will result in a CPA with a cost of 6, which is better
than the upper boundB of 7, and therefore is broadcasted (line 27). The next value,B, explored
by X4 results in a CPA with cost 5, which is also broadcasted. The CPA is sent backwards toX3.
X3 has no more values to try, so it also backtracks the CPA, toX2. X2 assigns its next value,B,
and sends the CPA toX3. In additionX2 also sends copies of the CPA in FBCPA messages toX3

andX4 (line 33). IfX3 now receives this FBCPA, it computes an estimation of 3 (because ifX3 is
R then it would increase this CPA’s cost by 3 and if it wereB it would increase it by 4), and sends
this information back toX2 (line 6). SupposeX4 also receives hisFB CPA, it then replies with
an estimation of 1. While the CPA explores the sub-search in whichX2 = B (passing betweenX3

andX4), these estimations arrive atX2. X2 saves these estimations and adds them up. This leads to
the discovery that a backtrack is needed, since the CPA’s cost is 1 (becauseX1 = R,X2 = B) with
the additional estimations of 4 results in a sum equal to the upper boundB (line 15). Therefore,
X2 abandons its assignment and attempts to assign its next value (callingassign CPA - line 16).
SinceX2 has no values, this call results in a backtrack (line 23). The CPA sent from this backtrack
has a higher timestamp value than the CPA previously sent forward byX2, and the former CPA
would eventually be discarded.

3.5 Discussion - Concurrency, Robustness, Privacy and Asynchronicity

At any point in time during the run of AFB, there is a single most-up-to-date CPA in the system.
Each agent adds an assignment when it holds it, so assignments are performed sequentially. One
might think that this would necessarily result in poor performance, as the search process does not try
to take advantage of the existing multiple computational resources available to it. The concurrency
of AFB comes from the use of the forward-bounding mechanism. While the CPA is held by one
agent, many copies of it are sent forward, and a collection of agents compute concurrently lower
bounds for that CPA. When the CPA advances to the next agent, again this process repeats, and so
the unassigned agents are constantly kept working, either when they receive the CPA, or when they
need to compute bounds for some other partial assignment.

This degree of asynchronicity is similar to that employed by the Asynchronous Forward-Checking
AFC algorithm for DisCSPs (Meseguer & Jimenez, 2000; Meisels & Zivan, 2006).AFC performs
a similar process in which the agents receive ”forward-checking” messages by agents which per-
formed assignments. The unassigned agents perform forward-checking (checking they have at least
one value which is consistent with all previous assignments). InAFB these agents compute a lower
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bound on their local cost increment due to all assignments made by previous agents. Due to this
similarity we named our algorithm Asynchronous Forward-Bounding.

AFB’s approach is quite different from that used by asynchronous assignments algorithms such
as ADOPT or ABT (Modi et al., 2005; Bessiere, Maestre, Brito, & Meseguer, 2005). In these
algorithms the search process attempts to perform assignments concurrently by the collection of
agents. Since many agents are assigning their variables simultaneously, there is a probability that
must be handled by the algorithm, that the current agent’s view of assignments made by other agents
is incorrect. This is due to the fact that agents concurrently alter their assignments. The algorithm
must be able to deal with this uncertainty.

A search process which performs assignments asynchronously may be expected to save time
since agents need not wait for all assignments of past agents to reach them, as is done by a se-
quentially assigning algorithm. However, asynchronously assigning algorithms must also deal with
inconsistencies caused by message delay. For example, if several higher priority agents change
their assignments and only some of the messages are received (the others are delayed) computation
performed will be based on this inconsistent agent view. This type of scenario, which has compu-
tation based on an inconsistent partial assignment, is completely avoided by sequentially assigning
algorithms.

One variation of the AFB algorithm has agents which sent out FB-CPA messages, send these
messages only to the subset of the target agents which have a direct constraint with the sending
agent. This may be useful if the communication between agents is limited (agents may only com-
municate with agents with whom they have a direct conflict) and would keep the algorithm correct.
This change may have two effects. First, less agents will return bounds to the sending agents. These
bounds can be significant (greater than zero) since they take into account constraints with assign-
ments of previous agents (which they may be conflicted with) and also constraints between the
receiving agent and agents of lower priority (constraint between unassigned agents). Receiving less
lower bounds would not invalidate the correctness of the algorithm but it may cause the search pro-
cess to needlessly explore sub-spaces which could have been discovered to be dead-ends. Second,
the detection of obsolete CPAs may be delayed since less agents receive a higher timestamp (which
the FB-CPA may contain). The mechanism would remain correct since eventually another FB-CPA
or the CPA itself would reach an agent which did not receive the FB-CPA, however this may take
more time than a single ”cycle” of messages (in other words, more time than the travel time of a
single message between two agents). The AFB algorithm was intentionally presented as an algo-
rithm which sends out FB messages to all unassigned agents, since no constraint on communication
between agents is assumed. In case such constraints exist, or one attempts to reduce the number of
messages sent by the algorithm, this variation should be explored.

Privacy is considered one of the main motivations for solving problems distributively. The com-
mon model for distributed search algorithms on DisCSPs and DisCOPs enables assignments and
Nogoodsto be passed among agents (Yokoo, Ishida, Durfee, & Kuwabara, 1992; Yokoo, 2000b;
Bessiere et al., 2005; Modi et al., 2005; Zivan & Meisels, 2006; Meisels & Zivan, 2007).AFB fol-
lows the model proposed by Yokoo, sending assignments forward and bounds on partial assignments
(Nogoods) backwards. An additional privacy drawback ofAFB is the fact that agents can learn
about the assignments of non neighboring agents via CPAs which they receive from their neighbors.
This problem can be easily solved inAFB by a simple use of encryption. If every pair neighboring
agents will share an encryption key, then an agent would be able to learn only the assignments of
its neighbors when it receives a CPA. Such use of limited encryption in DisCOP algorithms was
recently proposed forDPOP by (Greenstadt, Grosz, & Smith, 2007).
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If, due to privacy, the constraints are partially known so that between two constrained agents,
only a part of the constraint is known to each of the constrained agents, then the bound computation
mechanism must be adjusted in AFB. These type of constraints were discussed for DisCSP algo-
rithms (Brito, Meisels, Meseguer, & Zivan, 2008). To the best of our knowledge, no DisCOP solver
so far has handled such constraints. This remains an interesting possible extension to AFB as part
of future work.

Robustness is another important aspect of a distributed search algorithm. We assumed that all
messages are delivered in the order in which they are sent and no messages are lost. However if
message passing is susceptible to losses or corruption of the data, AFB may not terminate (if, say, the
CPA message is lost). It is also possible that the local data held by some agents will be corrupt (due
to some mechanical failure for example). A solution would be to build a self-stabilizing algorithm.
Self stabilization in distributed systems (Dijkstra, 1974) is the ability of a system to respond to
transient failures by eventually reaching and maintaining a legal state. A self stabilizing version
was shown for a simple DFS algorithm for DisCSPs (Collin, Dechter, & Katz, 1999). Based on
that self-stabilizing DFS algorithm, a self-stabilizing version of DPOP was developed (Petcu &
Faltings, 2005b). However these are the only self-stabilizing DisCSP/DisCOP solvers to the best
of the authors’ knowledge. Clearly, a more thorough study of robustness and self-stabilization is
required for DisCOP algorithms.

To conclude, TheAFB algorithm includes concurrent computation by multiple agents, without
having to deal with the uncertainty that comes with asynchronous assignments. Each agent that
receives a message containing a partial assignment knows with certainty that the given partial as-
signment is the one it was supposed to receive, and not a result of a network delay inconsistency.
Therefore,AFB has both concurrent computation and the certainty of working with consistent par-
tial assignments. This results in a much better performance on hard instances of random DisCOPs,
as will be demonstrated in the empirical evaluation in section 6.

4. AFB with CBJ

In both centralized and distributedCSPs backjumping can be accomplished by maintaining data
structures that allow an agent to deduce who is the latest agent (in the order in which assignments
were made) whose changed assignment could possibly lead to a solution. Once such an agent is
found, the assignments of all following agents are unmade and the search process “backjumps” to
that agent (Prosser, 1993).

A similar process can be designed for branch and bound based solvers forCOPs andDisCOPs.
Consider a sequence of assignments by the agentsA1, A2, A3, A4, A5 whereA5 determined that
none of its possible value assignments can lead to a full assignment with a cost lower than the cost
of the best full assignment found so far. Clearly,A5 must backtrack.

In chronological backtracking, the search process would simply return to the previous agent,
namelyA4, and have it change its assignment. However,A5 can sometimes determine that no value
change ofA4 would suffice to reach a full assignment with a lower cost. Intuitively,A5 can safely
backjump toA3, if it can compute a lower bound on the cost of a full assignment extended from the
assignments ofA1, A2 andA3, and show that this bound is greater or equal to the cost of the best
full assignment found so far. This is the intuitive basis of how backjumping can be added toAFB.

More formally, let us consider a scenario in whichAi decides to backtrack, and the cost of the
best full assignment found so far isB (e.g. the upper bound of the current state of the search). The
current partial assignment includes the assignments of agentsA1, ..., Ai−1.
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Definition 5 CPA[1..k] is the set of assignments made by agentsA1, . . . , Ak in the current partial
assignment. We defineCPA[1..0] = {}.

Definition 6 FA[k] is the set of all full assignments, which include all the assignments appearing
in CPA[1..k]. In other words, this set contains all full assignments which can be extended from the
assignments appearing in CPA[1..k]. Naturally, FA[0] is the set of all possible full assignments.

On a backtrack, instead of simply backtracking to the previous agent,Ai performs the following
actions: It computes a lower bound on the cost of any full assignment in FA[i-2]. If this bound is
smaller thanB, it backtracks toAi−1 just like it would do in chronological backtracking. However,
if this bound is greater or equal toB, then backtracking toAi−1 would do little good. No value
change ofAi−1 alone could result in a full assignment of cost lower thanB. As a result,Ai knows
it can safely backjump toAi−2. It may be possible forAi to backjump even further, depending on
the lower bound on the cost of any full assignment in
FA[i-3]. If this bound is smaller thanB, it backjumps toAi−2. Otherwise, it knows it can safely
backjump toAi−3. Similar checks can be made about the necessity to backjump further.

The backjumping procedure relies on the computation of lower bounds for sets of full assign-
ments (FA[k]). Next, we will show how canAi compute such lower bounds. Let us define the
notions of past, local and future costs in definitions 7, 8 and 9.

Definition 7 PC (Past-Costs) is a vector of size n+1, in which the k-th element (0 ≤ k ≤ n) is
equal to the cost of CPA[1..k].

Definition 8 LC(v) (Local-Costs) is a vector of sizen + 1 computed byAi and held by it, in which
the k-th element (0 ≤ k ≤ n) is

LC(v)[k] =
∑

(Aj ,vj)∈CPA s.t j≤k

cost(Ai = v,Aj = vj)

Since the CPA held byAi only includes assignments ofA1, . . . , Ai−1, then

∀j ≥ i, LC(v)[i− 1] = LC(v)[j]

Intuitively, LC(v)[i] is the accumulated cost of the valuev of Ai, with respect to all assignments in
CPA[1..i].

Definition 9 FCj(v) (Future-Costs) is a vector of size n+1, in which the k-th element (0 ≤ k ≤ n)
contains a lower bound on the cost of assigning a value toAj with respect to the partial assign-
ment CPA[1..k]. Assume this structure is held by agentAi. If k ≥ i then CPA[1..k] contains the
assignmentAi = v, but fork < i the valuev of Ai is irrelevant as it does not appear in CPA[1..k].

The above vectors provide additive lower bounds on full assignments that start with the current
CPA up tok, FA[k]. PC[k] is the exact cost of the firstk assignments, LC(v)[k] is the exact cost of
the assignmentAi = v, and

∑
j>i FCj(v)[k] is a lower bound on the assignments ofAi+1, ..., An.

Therefore, the sum

FALB(v)[k] = LC(v)[k] + PC[k] +
∑
j>i

FCj(v)[k]
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Figure 4: An example DisCOP

is aFull Assignment Lower Boundon the cost of any full assignment extended from CPA[1..k] in
whichAi = v.

FA[k] contains all full assignments extended from CPA[1..k], and is not limited to assignments
in whichAi = v. If we go over all FALB(v)[k], for all possible valuesv ∈ Di we produce a lower
bound on any assignment in FA[k].

Definition 10 FALB[k] = minv∈Di(FALB(v)[k]).
FALB[k] is a lower bound on the cost of any full assignment extended from CPA[1..k].

In a distributed branch and bound algorithm, this bound is computed byAi. PC - the cost
of previous agents is sent along with their value assignment messages toAi. LC(v) - the cost of
assigningv to Ai can be computed byAi. Ai requests all agents ordered after it,Aj (j > i), to
compute FCj and send the results back toAi. This is part of the already existing AFB mechanism
for forward bounding.

In the AFB algorithm (Gershman, Meisels, & Zivan, 2007)Ai already requests unassigned
agents to compute lower bounds on the CPA and send back the results. The additional bounds
needed for backjumping can be easily added to the existingAFB framework.

4.1 A Backjumping Example

To demonstrate the backjumping possibility, consider the DisCOP in Figure 4 (again, large ovals
represent variables while small circles represent values). Let us assume that the search begins with
A1 assigning “a” as its value and sending theCPA forward toA2. A2, A3, A4, andA5 all assign
the value “a” and we get a full assignment with cost 12. The search continues, and after fully
exploring the sub-space in whichA1 = a,A2 = a, the best assignment found isA1 = a,A2 =
a,A3 = b, A4 = a,A5 = b with a total cost ofB=6. Assume thatA3 is now holding theCPA
after receiving it from some future agent (A4 or A5). A3 has exhausted its value domain and must
backtrack. It computes:

FALB(a)[1] = PC[1] + LC(a)[1] + (FC4(a)[1] + FC5(a)[1])
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= 0 + 2 + (3 + 2) = 7

FALB(b)[1] = PC[1] + LC(b)[1] + (FC4(b)[1] + FC5(b)[1])

= 0 + 1 + (3 + 2) = 6

FALB[1] = min(FALB(a)[1], FLAB(b)[1]) = 6

FALB[1] ≥ B, thereforeA3 knows that any full assignment extended from{A1 = a} would cost
at least 6. A full assignment with that cost was already discovered, so there is no need to explore
the rest of this sub-space, and it can safely backjump the search process back toA1, to change its
value to “b”. Backtracking toA2 leaves the search process within the{A1 = a} sub-space, which
A3 knows cannot lead to a full assignment with a lower cost.

4.2 The AFB-BJ Algorithm

TheAFB-BJalgorithm is run on each of the agents in theDisCOP. Each agent first calls the proce-
dureinit and then responds to messages until it receives a TERMINATE message. The algorithm is
presented in figures 5 and 6. As in pureAFB, a timestamping mechanism is used on all messages.

The same timestamping mechanism used by AFB is used in AFB-BJ to determine which mes-
sages are relevant and which are obsolete. For simplicity we choose to omit the pseudo-code detail-
ing the calculation of LC, PC, FC and FALB, as they were described in Section 4.1.

The algorithm starts by each agent callinginit and then awaiting messages until termination.
At first, each agent updatesB to be the cost of the best full assignment found so far and since no
such assignment was found, it is set to infinity (line 1). Only the first agent (A1) creates an empty
CPA and then begins the search process by callingassignCPA (lines 3-4), in order to find a value
assignment for its variable.

An agent receiving a CPA (when receivedCPA MSG), checks the time-stamp associated with
it. An out of dateCPA is discarded. When the message is not discarded, the agent saves the
received PA in its local CPA variable (line 7). In case the CPA was received from a higher priority
agent, the estimations of future agents inFCj are no longer relevant and are discarded, and the
domain values must be reordered by their updated cost (lines 9-11). Then, the agent attempts to
assign its next value by callingassignCPA (line 16) or to backtrack if needed (line 14).

ProcedureassignCPA attempts to find a value assignment, for the current agent. The assigned
value must be such that the sum of the cost of the CPA and the lower bound of the cost increment
caused by the assignment will not exceed the upper boundB (lines 23). If no such value is found,
then the assignment of some higher priority agent must be altered, so backtrack is called (line 25).
When a full assignment is found which is better than the best full assignment known so far, it is
broadcast to all agents (line 29). After succeeding to assign a value, the CPA is sent forward to the
next unassigned agent (line 33). Concurrently, forward bounding requests (i.e. FBCPA messages)
are sent to all lower priority agents (lines 34-35).

An agent receiving a bound estimation (when receivedFB ESTIMATE ) from a lower priority
agentAj (in response to a forward bounding message) ignores it if it is an estimate to an already
abandoned partial assignment (identified using the time-stamp mechanism). Otherwise, it saves this
estimate (line 17) and checks if this new estimate causes the current partial assignment to exceed
the boundB (line 18). In such a case, the agent callsassign CPA (line 19) in order to change its
value assignment (or backtrack in case a valid assignment cannot be found).
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procedureinit :
1. B←∞
2. if (Ai = A1)
3. generate CPA()
4. assign CPA()

when received (FB CPA, Aj , PA)
5. V ← estimation vector for each PA[1..k] (0 ≤ k ≤ n)
6. send (FB ESTIMATE, V , PA, Ai) to Aj

when received (CPA MSG, PA, Aj)
7. CPA← PA
8. TempCPA← PA
9. if (j = i− 1)
10. ∀j re-initializeFCj(v)
11. reorder domain valuesv ∈ Di by LC(v)[i] (from low to high)
12. if (TempCPA contains an assignment toAi) remove it
13. if (TempCPA.cost ≥ B)
14. backtrack()
15.else
16. assign CPA()

when received (FB ESTIMATE , V , PA , Aj)
17.FCj(v)← V
18. if ( FALB(v)[i] ≥ B )
19. assign CPA()

when received (NEW SOLUTION , PA)
20.B CPA← PA
21.B ← PA.cost

Figure 5: Initialization and message handling procedures of the AFB-BJ Algorithm

The call tobacktrack is made whenever the current agent cannot find a valid value (i.e. below
the bound B). In such a case, the agent calls backtrackTo() to compute to which agent the CPA
should be sent, and backtracks the search process (by sending the CPA) back to that agent. If the
agent is the first agent (nowhere to backtrack to), the terminate broadcast ends the search process
in all agents (line 37). The algorithm then reports that the optimal solution has a cost ofB, and the
full assignment corresponding to this cost isB CPA.

The functionbacktrackTo computes to which agent the CPA should be sent. This is the kernel
of the backjumping (BJ) mechanism. It goes over all candidates, fromj − 1 down to 1, looking
for the first agent it finds that has a chance of reaching a full assignment with a lower cost than
B. FALB(v)[j-1] is a lower bound on the cost of a full assignment extended from CPA[1..j-1], and
PC[j]-PC[j-1] is the cost added to that CPA byAj ’s assignment. SinceAj picked the lowest cost
value in its domain (its domain was ordered in line 11), the addition of these two components
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procedureassignCPA:
22. if CPA contains an assignmentAi = w, remove it
23. iterate (from last assigned value) overDi until the first value satisfying

v ∈ Di s.t.CPA.cost + f(v) < B
24. if no such value exists
25. backtrack()
26. else
27. assignAi = v
28. if CPA is a full assignment
29. broadcast (NEW SOLUTION , CPA )
30. B← CPA.cost
31. assign CPA()
32. else
33. send(CPA MSG, CPA,Ai) to Ai+1

34. forall j > i
35. send(FB CPA, Ai, CPA) toAj

procedurebacktrack:
36. if (Ai = A1)
37. broadcast(TERMINATE )
38. else
39. j← backtrackTo()
40. remove assignments ofAj+1, .., Ai from CPA
41. send(CPA MSG, CPA,Ai) to Aj

functionbacktrackTo:
42. for j = i− 1 downto 1
43. foreachv ∈ Di

44. if ( FALB(v)[j-1] + (PC[j] - PC[j-1]) < B )
45. return j
46. broadcast(TERMINATE )

Figure 6: The assigning and backtracking procedures of the AFB-BJ Algorithm.

produces a more accurate lower bound on the cost of a full assignment extended from CPA[1..j-1].
This can be safely added to the FALB since the it adds a lower bound on the cost increment by an
agent for which the FALB did not include a lower bound.

Example 2 In the example presented in section 4.1, whenA3 computed the FALB(b)[1] it added
the past costs of the partial assignments (cost incurred byA1), the local cost ofA3, and a lower
bound on the cost increment by future agents (A4 andA5). To this sum we can safely add the cost
added byA2 if we know thatA2 picked its lowest cost assignment.

This addition helps tighten the FALB and reduce search. If this combined bound is not smaller
thanB, then surely any combination of assignments made byAj and any following agent could
only raise the cost, which is already too high. In case even backjumping back toA1 will not prove
helpful, the search process is terminated (line 46).

77



GERSHMAN, MEISELS, & Z IVAN

5. Correctness of AFB

In order to prove correctness forAFB two claims must be established. First, that the algorithm
terminates and second that when the algorithm terminates its global upper boundB is the cost of
the optimal solution. To prove termination one can show that theAFB algorithm never goes into
an endless loop. To prove the last statement it is enough to show that the same partial assignment
cannot be generated more than once.

Lemma 1 TheAFB algorithm never generates two identical CPAs.

Assume by negation thatAi is the highest priority agent (first in the order of assignments)
that generates a CPA for the second time. Now lets consider all possible events that immediately
preceded this creation.

Case 1 -Ai received a CPA message from a lower priority agent. Let us denote that agent asAj ,
wherej > i. WhenAi received this message, he executed lines 7-13 (see Figure 3.1). The procedure
backtrack in line 14 was not executed since we knowAi generated a CPA, and that procedure would
not do so. Therefore line 16 was executed, and the procedure assignCPA was invoked.Ai executed
lines 22-24. Line 25 was not executed since invoking the backtrack procedure could not lead to
the creation of the CPA. Therefore, in line 24 a value as described in line 23 was found to exist.
Line 23 searches for a value inAi’s remaining value domain, not exploring any value previously
attempted for the current set of assignments of higher priority agents. Since we assumedAi to
be the highest priority agent that generates a CPA for the second time, this combination of higher
priority assignments did not repeat itself. Therefore, sinceAi received the current set of higher
priority assignmentsAi does not re-pick any local value, and the set of high priority assignments
did not repeat itself, thereforeAi cannot pick a value that would generate the same CPA for the
second time.

Case 2 -Ai received a CPA message from a higher priority agent. Let us denote that agent as
Aj , wherej < i. Since we assumedAi to be the highest priority agent that generates a CPA for
the second time, this combination of higher priority assignments did not repeat itself. Therefore any
valueAi would assign next would generate a unique CPA, one which he could not have generated
before.

Case 3 -Ai received a CPA message from itself. This cannot be sinceAi never sends such a
message to itself.

Case 4 -Ai received an FBESTIMATE message fromAj . j > i since FBESTIMATE are
only sent in response to FBCPA messages. Which are only sent (line 34) to agents of lower priority
thanAi. Since this message caused the creation of a CPA, the condition in line 19 must have been
evaluated to be true, and the procedure assignCPA in line 19 invoked. Similar to case 1, lines 22-24
were executed and line 25 was not. Similar to case 1, a value was found in line 23. This value does
not repeat any value previously picked under the current set of higher priority agent assignments.
This is the only time the agent received such current set of higher priority agent assignments due to
the assumption thatAi is the first to generate a CPA twice.

Case 5 - the procedure init was invoked. This cannot be since no CPAs were previously gener-
ated, any CPA generated now must be unique.

No other events could have immediately preceded the creation of the second identical CPA,
therefore it is impossible for this event to occur. This completes the proof of the lemma.

Termination follows immediately from Lemma 1.
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Next, one needs to prove that upon termination the complete assignment, corresponding to the
optimal solution, is inB CPA (see Figure 3.1). There is only one point of termination for the
AFB algorithm, in procedurebacktrack. So, one needs to prove that during search no partial
assignment that can lead to a solution of lower cost thanB is discarded. Let us consider all possible
cases where an agent discards a CPA, changes a value or skips over a value and let us show that
this cannot be. Skipping over or changing a value is only done inside the procedure assignCPA
in lines 22-24. Ifv is a value that is skipped over, then by the condition itself in line 23 it holds
thatCPA.cost + f(v) ≥ B. SinceB ≥ B CPA, CPA.cost + f(v) ≥ B ≥ B CPA and this
means thatv could not possibly lead to a solution of cost lower thanB CPA at termination. Let
us consider all possible cases in which a value is changed. This only occurs inside the procedure
assignCPA. Let us then consider all possible cases in which this procedure is invoked that result in
a value change.

Case 1 - invoking assignCPA from the init procedure (line 4). No solution could be lost since
this is the very first assignment performed, no part of the search space is skipped over by this
assignment.

Case 2 - invoking assignCPA from inside the assignCPA procedure (line 31). This happens
when a new best (so far) solution was found. obviously changing the assignment now would not lose
this solution since it is saved and broadcasted as the new current solution. It will only be discarded
if a better solution is later found.

Case 3 - invoking assignCPA following a received FBESTIMATE message (line 19). The
current partial assignment can be safely discarded, knowing that no solution will be lost since the
condition in line 18 indicated that the current partial assignment has a lower bound that exceeds the
best solution found so far.

Case 4 - invoking assignCPA following a received CPAMSG message (line 16) fromAj where
j > i. This means the CPA returned from a backtrack after fully exploring the current sub-space,
and therefore changing the current assignment would not lead to any potential solution lost.

Case 5 - invoking assignCPA following a received CPAMSG message (line 16) fromAj where
j < i. This means that the CPA was received from a higher priority agent.Ai did not yet pick an
assignment, so any assignment it will make will not lose out on any potential solutions.

Therefore, any value skipped over and any change to the CPA will not lead to the loss of a
potential solution. The only remaining event that may lead to a solution being skipped over is a
CPA being discarded. This is done by the time-stamping mechanism and only occurs when the
agent knows of the existence of a more up-to-date CPA. That CPA was created because some agent
changed its assignment by calling assignCPA. We showed that in such a case no better solution can
be lost, therefore it is safe to discard the CPA.

In conclusion, in any event a value is skipped over or changed or a CPA is discarded, no pos-
sible better solution is lost. Therefore at termination, the AFB algorithm reports the best solution
possible. This completes the correctness proof of theAFB algorithm.�

In order to prove the correctness of theAFB-BJalgorithm we first prove the correctness of the pro-
posed backjumping method and then show that its combination withAFB does not violateAFB’s
correctness which has been proven.

In order to prove the correctness of the backjumping method one need only show that none
of the agents’ assignments that the algorithm backjumps over, can lead to a solution with a lower
cost than the current upper bound. The condition for performing backjumping over an agentAj

(line 44) is that the lower bound on the cost of a full assignment extended from the assignments of
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Figure 7: Total non-concurrent computational steps by AFB, ADOPT and SBB on low density
(p1=0.4) Max-DisCSP

A1, .., Aj−1 and of the assignment cost ofAj exceeds the global upper boundB. SinceAj picked
the lowest cost value in its remaining domain (as the domain is ordered), extending the assignments
of A1, .., Aj−1 must lead to a cost greater or equal toB. Therefore, backjumping back toAj−1

cannot discard any potentially lower cost solutions. This completes the correctness proof of the
AFB-BJbackjumping (functionbacktrackTo) method.

Assuming the correctness ofAFB, in order to prove the correctness of the composite algorithm
AFB-BJit is enough to prove the consistency of the lower bounds computed by the agents inAFB-
BJ. The lower bounds computed byAFB-BJinclude FC, LC and PC as described in section 4. PC
is contained in the CPA, and is updated by any agent that receives it and adds an assignment (not
shown in the code). LC(v) is computed by the current agentAi whenever it assigns v as its value
assignment. FCj is computed byAj in line 5 (in figure 5), and is sent back toAi in line 6. Ai

receives and saves this in line 17. The lower bounds contained inside these vectors are correct
because PC was exactly calculated when holding the CPA, LC was exactly calculated by the current
agentAi, and the bounds in FCj are the same bounds computed inAFB which were proven to be
correct lower bounds for the assignment ofAj . The FCj bounds are accurate and based on the
current partial assignment since the timestamp mechanism prevents processing of bounds which are
based on an obsolete CPA. Whenever the CPA is altered by some higher priority agent, the previous
bounds are cleared (line 10 of figure 5). This completes the correctness proof ofAFB −BJ . �

6. Experimental Evaluation

All experiments were performed on a simulator in which agents are simulated by threads which
communicate only through message passing. The Distributed Optimization problems used in all of
the presented experiments are randomMax-DisCSPs. The network of constraints, in each of the
experiments, is generated randomly by selecting the probabilityp1 of a constraint among any pair
of variables and the probabilityp2, for the occurrence of a violation (a non zero cost) among two
assignments of values to a constrained pair of variables. Such uniform random constraints networks
of n variables,d values in each domain, a constraints density ofp1 and tightnessp2 are commonly
used in experimental evaluations of CSP algorithms (cf. (Prosser, 1996)).Max-CSPs are commonly
used in experimental evaluations of constraint optimization problems (COPs) (Larrosa & Schiex,
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Figure 8: Total number of messages sent by AFB, ADOPT and SBB on low density (p1=0.4) Max-
DisCSP

(a) (b)

Figure 9: (a) Number of none-concurrent steps performed by ADOPT, AFB, AFB-minC and AFB-
BJ for high density Max-DisCSP (p1 = 0.7). (b) A closer look atp2 > 0.9

2004). Other experimental evaluations of DisCOPs include graph coloring problems (Modi et al.,
2005; Zhang et al., 2005), which are a subclass ofMax-DisCSP.

In order to evaluate the performance of distributed algorithms, two independent measures of
performance are used - run time, in the form of non-concurrent steps of computation (Zivan &
Meisels, 2006b), and communication load, in the form of the total number of messages sent (Lynch,
1997; Yokoo, 2000a).

In the first set of experiments, the performance ofAFB is compared to that of two algorithms.
The synchronousB&B algorithm (SBB) (Hirayama & Yokoo, 1997) and the asynchronous dis-
tributed optimization algorithm (ADOPT ) (Modi et al., 2005). Figure 7 presents the average run-
time in number of non-concurrent computation steps, on randomly generated Max-DisCSPs with
n = 10 agents, domain sized = 10, and a constraint tightness ofp1 = 0.4. Figure 8 compares the
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(a) (b)

Figure 10: (a) Number of messages sent by ADOPT, AFB, AFB-minC and AFB-BJ for high density
Max-DisCSP (p1 = 0.7). (b) A closer look atp2 > 0.9

same algorithms on the same problems by the total number of messages sent. From these figures
it is clear that ADOPT outperforms the basic algorithm SBB, in accordance with the past experi-
mental evaluation of these two algorithms (Modi et al., 2005). It is also clear that AFB outperforms
ADOPT by a large margin for tight (highp2) problems. This is true for both measures.

The second set of experiments includes the ADOPT algorithm and three versions of theAFBal-
gorithm:AFB, AFB-minC- a variation ofAFBwhich includes dynamic ordering of values based on
minimal cost (of the current CPA), andAFB-BJwhich is the composite backjumping and forward-
bounding algorithm.AFB-BJuses the same value ordering heuristic asAFB-minC. This was se-
lected in order to show that the improved performance ofAFB-BJdoes indeed arise from the back-
jumping feature and not from the value ordering heuristic.

Figure 9 presents the average run-time in number of non-concurrent computation steps, of all
the algorithms:ADOPT, AFB, AFB-minCand AFB-BJ, on Max-DisCSPs withn = 10 agents,
domain sized = 10, and a constraint density ofp1 = 0.7. Asynchronous optimization (ADOPT) is
much slower than the standard version ofAFB. Also clear from this figure, is that the value ordering
heuristic greatly improvesAFB’s performance. The added backjumping improves the performance
much further. The RHS of the figure provides a “zoom in” on the section of the graph between
p2 = 0.9 andp2 = 0.98. For such tight problems, ADOPT did not terminate in a reasonable
amount of time and had to be terminated manually (and thus is missing from the graph).

For tightness values that are higher thanp2 > 0.9 AFB and its variants demonstrate a “phase
transition”. This “phase transition” behavior of theAFB algorithms is very similar to that of looka-
head algorithms on centralizedMax-CSPs (Larrosa & Meseguer, 1996; Larrosa & Schiex, 2004).
Our explanation for this “phase transition” is that problem difficulty increase exponentially with
tightness but only up to some point. When the problem becomes over-constrained such that many
combinations produce the highest cost possible all these combinations are in fact equal in quality,
and can be easily pruned by an intelligent search.
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Figure 11: Number of Non-Concurrent Constraint Checks (NCCCs) performed by several DisCOP
solvers for high density Max-DisCSP (p1 = 0.7) in both linear scale (top) and logarith-
mic scale (bottom)

Figure 10 presents the total number of messages sent by each of the algorithms. The results
of this measurement closely match the results of run-time, as measured by non-concurrent steps.
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Figure 12: Number of Non-Concurrent Constraint Checks (NCCCs) performed by several DisCOP
solvers for low density MaxDisCSP (p1 = 0.4) in logarithmic scale

We can see that ADOPT has an exponentially rapid growth of messages. The explanation for this
growth is simple. Following each message an agent receives in ADOPT, several VALUE messages
are sent to lower priority agents, and a single COST message is sent to a higher priority agent (Modi
et al., 2005). On the average, at least two messages are sent for every message received, therefore
the total number of messages in the system increases exponentially over time.

The third batch of experiments, includes a comparison with two additional DisCOP solvers -
DPOP (Petcu & Faltings, 2005a) and OptAPO (Mailler & Lesser, 2004). DPOP performs only a
linear number of computational steps, but each step performs an exponential number of computa-
tions. The number of messages in DPOP is linear (2n) in the number of agents. Similar to ADOPT,
DPOP also uses a pseudo-tree ordering of the agents and so we use the same ordering for both
algorithms. OptAPO performs a partial centralization of the problem, and has agents that solve a
part of the problem they are in charge of. Therefore, for both algorithms, evaluation measures that
use the number of (non-concurrent)computational stepsare inappropriate, since the steps can be
exponentially time consuming. For this reason, the performance of all algorithms must be evalu-
ated by a different metric. The canonical choice is the number of non-concurrent constraint checks
(NCCCs). This implementation independent measure includes the computations performed within
every single step (Zivan & Meisels, 2006b, 2006a, 2006). The number of messages sent is also not
a good measure in this case, since DPOP sends out exponentially large messages (but only a linear
number of them) while the other algorithms send out an exponential amount of messages but of
only linear size. Thus we only present the results using theNCCCs metric. We repeat the ex-
perimental setup of the previous experiment on randomly generated problems, and report the total
number of non-concurrent constraint checks (NCCCs) in figure 11. The results are presented in
both logarithmic and linear scales.

In this experiment OptAPO, SBB and ADOPT did not terminate in a reasonable time on some
of the harder problem instances and are therefore partially absent in the graphs. The computation
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in DPOP is composed of each agent sending out a message containing its subtree’s optimal cost
for every possible combination of higher priority constrained agents. For a given constraint density
the size of the message each agent sends would not be effected by changing the constraint tight-
ness. Therefore, the computation performed by each agent is unaffected by changing the constraint
tightness (p2). DPOP’s run time is expected to remain roughly the same for all tightness values in
our experiment. For problems with a low constraint tightness DPOP’s performance is poor when
compared to the rest of the algorithms. However, as problem tightness increases the gap between
DPOP’s run time and the rest of the algorithms narrows, until atp2 = 0.9 DPOP and OptAPO and
SBB have roughly the same run time. Atp2 = 0.99 DPOP outperforms ADOPT, OptAPO and SBB
(which did not terminate). AFB and its variants outperform DPOP for the whole range of constraint
tightness by orders of magnitude. OptAPO appears to perform only slightly better than SBB and
AFB clearly outperforms it by orders of magnitude. AFB and its variations produce the same ”phase
transition” as reported in previous experiments, andAFB − BJ comes out as the best performing
algorithm for solving random DisCOPs.

The results for a similar experiment in low density (p1 = 0.4) Max-DisCSPs are presented in
figure 12 (notice the logarithmic scale). As in high density problems, DPOP performance is un-
affected by the problem tightness, producing roughly similar results for all tightness values. At
low tightness values, OptAPO and AFB are vastly superior to DPOP while OptAPO slightly out-
performs AFB. As tightness increases, OptAPO increases exponentially in run-time to become the
worst performing algorithm. AFB outperforms DPOP at all tightness values except atp2 = 0.9.

7. Conclusions

The Asynchronous Forward-Bounding algorithm (AFB) uses asynchronous and concurrent con-
straint propagation on top of the distributed Branch and Bound scheme. In its forward-bounding
protocolAFB maintains local consistency, and prevents exploration of ”dead-ends” of the search-
space. The run-time and network load of AFB were evaluated by an asynchronous simulator on
randomly generatedMax − DisCSPs. The results of this evaluation revealed a phase-transition
in AFB’s performance, as the tightness of the problems increased beyond some point. No other
DisCOP solver was reported to display such a behavior. A similar phase-transition was previously
reported for centralizedCOP solvers, as part of the work of Larrosa et. al. (Larrosa & Meseguer,
1996; Larrosa & Schiex, 2004). The phase-transition observed there is reported to occur only by
COP solvers, that enforce a strong enough form of local consistency (Larrosa & Meseguer, 1996;
Larrosa & Schiex, 2004). We therefore attribute this behavior of AFB to itsconcurrent enforcement
of local consistency.

AFB can be extended. One extension is to include a value ordering heuristic. A good order-
ing heuristic is the minimum-cost heuristic, where values with lower cost due to assignments of
higher priority agents are selected first. We named this version of the algorithmAFB-minC. In the
experiments, the use of this heuristic substantially improved the performance ofAFB.

A further extension ofAFB enhanced it with a backjumping mechanism. By adding a small
amount of information to the bounding messages, agents which detect that the lower bound of the
current partial assignment is too large (i.e. the state is inconsistent and backtracking is required)
are now able to check whether backtracking to the previous agent will indeed help to reduce the
lower bound so that the resulting partial assignment is consistent. Otherwise, the search process
backtracks even further. The resulting algorithm,AFB-BJ, performs significantly better than the
other versions of AFB. By comparingAFB-minCandAFB-BJ, it was shown that the backjumping
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does indeed affect performance, and the improvement over standardAFB is not only a result of the
addition of the ordering heuristic.

The AFB algorithm was compared to two algorithms that are based on the branch & bound
mechanism in its distributed form - ADOPT and SBB (Yokoo, 2000b; Modi et al., 2005). The
experimental evaluation clearly demonstrates a substantial difference in performance between the
algorithms. Asynchronous distributed optimization (ADOPT ) outperformsSBB, butAFB out-
performsADOPT by a large margin in both measures of performance. To the best of our knowl-
edge this is the only evaluation ofADOPT on increasingly tighter problems. Other experimental
evaluations measuredADOPT ’s scalability (by increasing the number of variables) and not by in-
creasing the difficulty (tightness) of problems of a fixed size. The exponential growth of the number
of messages inADOPT is also apparent in Figures 8 and 10(a). OutperformingAFB are the two
extended versions ofAFB, AFB-minCandAFB-BJ, with AFB-BJhaving the best performance.
The proposed value ordering heuristic improves performance, and when adding the backjumping
mechanism on top of that, performance is even further enhanced.

AlthoughAFB andADOPT perform concurrent computation the nature of concurrency used
by them is very different. Concurrency inADOPT is achieved by performing asynchronous as-
signments. In such an algorithm each agent picks its value assignment and is free to change it at
any time. Multiple agents may change their assignments concurrently. Asynchronous assignments
introduce some degree of uncertainty with regard to the consistency of the current partial assign-
ment as known to an agent. In fact, there are scenarios in which an agent may base its computation
on an inconsistent partial assignment, which is a combination of assignments performed by higher
priority agents that are not aware of each other’s most-up-to-date assignment.

Two algorithms that were used for comparisons withAFB - ADOPT andDPOP - use the
pseudo-tree ordering of agents, which allows independent subproblems to be solved concurrently.
A good pseudo-tree ordering can be problematic to find (it is NP-hard to find the optimal ordering),
and sometimes even the best ordering is not good enough, due to the structure of the specific prob-
lem. Overall, these orderings become less useful when dealing with problems with high constraint
density.

In order to further evaluate the performance of AFB, it was compared and tested against two
additional DisCOP algorithms. Both DPOP and OptAPO do not use branch and bound to find an
optimal solution. The DPOP algorithm delivers all possible partial assignments up the pseudo-tree
and performs an exponential number of constraints checks in two passes over the pseudo-tree (Petcu
& Faltings, 2005a). OptAPO partitions the DisCOP into sub-problems, each solved by a mediator
of that sub-problem (Mailler & Lesser, 2004). The performance of these algorithms is expected to
be different than algorithms that use branch & bound search. In fact, the performance of DPOP
on randomly generated DisCOPs is independent of the tightness of the problems. The results of
extensive empirical evaluations of all algorithms on random DisCOPs are described in section 6
and are conclusive. The AFB algorithm is the best performing DisCOP algorithm on randomly
generated DisCOPs in both measures of performance. It performs less non-concurrent constraints
checks and it sends a smaller number of messages.

In essence, the idea behindAFB can be summed up as follows - run a sequential assignment
optimization process and concurrently run in parallel many additional processes that check the con-
sistency of the partial assignment. The main search process is slow. At any point in time only one
agent holds the current partial assignment in order to extend it. Concurrency is achieved via the
forward bounding, which is performed concurrently.
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The results of the experimental evaluation show that adding concurrent maintenance of bounds
to a sequential assignment process results in an efficient optimization algorithm (AFB). This algo-
rithm outperforms all other concurrent algorithms on the hard instances of random DisCOPs.
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