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Abstract

Asynchronous Partial Overlay (APO) is a search algorithm that uses cooperative me-
diation to solve Distributed Constraint Satisfaction Problems (DisCSPs). The algorithm
partitions the search into different subproblems of the DisCSP. The original proof of com-
pleteness of the APO algorithm is based on the growth of the size of the subproblems. The
present paper demonstrates that this expected growth of subproblems does not occur in
some situations, leading to a termination problem of the algorithm. The problematic parts
in the APO algorithm that interfere with its completeness are identified and necessary
modifications to the algorithm that fix these problematic parts are given. The resulting
version of the algorithm, Complete Asynchronous Partial Overlay (CompAPO), ensures
its completeness. Formal proofs for the soundness and completeness of CompAPO are
given. A detailed performance evaluation of CompAPO comparing it to other DisCSP
algorithms is presented, along with an extensive experimental evaluation of the algorithm’s
unique behavior. Additionally, an optimization version of the algorithm, CompOptAPO,
is presented, discussed, and evaluated.

1. Introduction

Algorithms that solve Distributed Constraint Satisfaction Problems (DisCSPs) attempt to
achieve concurrency during problem solving in order to utilize the distributed nature of these
problems. Distributed backtracking, which forms the majority of DisCSP algorithms, can
take many forms. Asynchronous Backtracking (ABT) (Yokoo, Durfee, Ishida, & Kuwabara,
1998; Yokoo & Hirayama, 2000), Asynchronous Forward-Checking (AFC) (Meisels & Zi-
van, 2007), and Concurrent Dynamic Backtracking (ConcDB) (Zivan & Meisels, 2006a) are
representative examples of the family of distributed backtracking algorithms. All of these
algorithms maintain one or more partial solutions of the DisCSP and attempt to extend the
partial solution into a complete one. The ABT algorithm attempts to achieve concurrency
by asynchronously assigning values to the variables. The AFC algorithm performs value
assignments synchronously, but achieves its concurrency by performing asynchronous com-
putation in the form of forward checking. The ConcDB algorithm concurrently attempts
to extend multiple partial solutions, scanning different parts of the search space.

A completely different approach to achieve concurrency can be by the merging of partial
solutions into a complete one. The inherent concurrency of merging partial solutions makes
it a fascinating paradigm for solving DisCSPs. However, such an approach is prone to many
errors – deadlocks could prevent termination, and failures could occur in the attempt to
merge all of the partial solutions. Consequently, it is hard to develop such an algorithm
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that is both correct and well performing. A recently published algorithm, Asynchronous
Partial Overlay (APO) (Mailler, 2004; Mailler & Lesser, 2006), attempts to solve DisCSPs
by merging partial solutions. It uses the concept of mediation to centralize the search
procedure in different parts of the DisCSP. Due to its unique approach, several researchers
have already proposed changes and modifications to the APO algorithm (Benisch & Sadeh,
2006; Semnani & Zamanifar, 2007). Unfortunately, none of these studies has examined the
completeness of APO. Additionally, the distinctive behavior of the APO algorithm calls for
a thorough experimental evaluation. The present paper presents an in-depth investigation
of the completeness and termination of the APO algorithm, constructs a correct version of
the algorithm – CompAPO – and goes on to present extensive experimental evaluation of
the complete APO algorithm.

The APO algorithm partitions the agents into groups that attempt to find consistent
partial solutions. The partition mechanism is dynamic during search and enables a dynamic
change of groups. The key factor in the termination (and consequently the completeness) of
the APO algorithm as presented in the original correctness proof (Mailler & Lesser, 2006)
is the monotonic growth of initially partitioned groups during search. This growth arises
because the subproblems overlap, allowing agents to increase the size of the subproblems
they solve. We have discovered that this expected growth of groups does not occur in
some situations, leading to a termination problem of the APO algorithm. Nevertheless, the
unique way in which APO attempts to solve DisCSPs has encouraged us to try and fix it.

The termination problem of the APO algorithm is shown in section 4 by construct-
ing a scenario that leads to an infinite loop of the algorithm’s run (Grinshpoun, Zazon,
Binshtok, & Meisels, 2007). Such a running example is essential to the understanding of
APO’s completeness problem, since the algorithm is very complex. To help understand
the problem, a full pseudo-code of APO that follows closely the original presentation of
the algorithm (Mailler & Lesser, 2006) is given. The erroneous part in the proof of APO’s
completeness as presented by Mailler and Lesser (2006) is shown and the problematic parts
in the algorithm that interfere with its completeness are identified. Necessary modifications
to the algorithm are proposed, in order to fix these problematic parts. The resulting version
of the algorithm ensures its completeness, and is termed Complete Asynchronous Partial
Overlay (CompAPO) (Grinshpoun & Meisels, 2007). Formal proofs for the soundness and
completeness of CompAPO are presented.

The modifications of CompAPO may potentially affect the performance of the algorithm.
Also, in the evaluation of the original APO algorithm (Mailler & Lesser, 2006), it was com-
pared to the AWC algorithm (Yokoo, 1995), which is not an efficient DisCSP solver (Zivan,
Zazone, & Meisels, 2007). Moreover, the tests in the work of Mailler and Lesser (2006)
were only performed on relatively sparse problems, and the comparison with AWC was
made by the use of some problematic measures. An extensive experimental evaluation of
CompAPO compares its performance with other DisCSP search algorithms on randomly
generated DisCSPs. Our experiments show that CompAPO performs significantly differ-
ent than other DisCSP algorithms, which is not surprising considering its singular way of
problem solving.

Asynchronous Partial Overlay is actually a family of algorithms. The completeness and
termination problems that are presented and corrected in the present study apply to all the
members of the family. The OptAPO algorithm (Mailler & Lesser, 2004; Mailler, 2004) is
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an optimization version of APO that solves Distributed Constraint Optimization Problems
(DisCOPs). The present paper proposes similar modifications to those of APO in order
to achieve completeness for OptAPO. The resulting CompOptAPO algorithm is evaluated
extensively on randomly generated DisCOPs.

The plan of the paper is as follows. DisCSPs are presented briefly in section 2. Sec-
tion 3, gives a short description of the APO algorithm along with its pseudo-code. An
infinite loop scenario for APO is described in detail in section 4 and the problems that
lead to the infinite looping are analyzed in section 5. Section 6 presents a detailed solution
to the problem that forms the CompAPO version of the algorithm, followed by proofs for
the soundness and completeness of CompAPO (section 7). An optimization version of the
algorithm, CompOptAPO, is presented and discussed in section 8. An extensive perfor-
mance evaluation of CompAPO and CompOptAPO is in section 9. Our conclusions are
summarized in section 10.

2. Distributed Constraint Satisfaction

A distributed constraints satisfaction problem – DisCSP, is composed of a set of k agents
A1, A2, ..., Ak. Each agent Ai contains a set of constrained variables xi1 , xi2 , ..., xini

. Con-
straints or relations R are subsets of the Cartesian product of the domains of the con-
strained variables. For a set of constrained variables xik , xjl

, ..., xmn , with domains of values
for each variable Dik , Djl

, ..., Dmn , the constraint is defined as R ⊆ Dik × Djl
× ... × Dmn .

A binary constraint Rij between any two variables xj and xi is a subset of the Cartesian
product of their domains – Rij ⊆ Dj ×Di. In a distributed constraint satisfaction problem
(DisCSP), the agents are connected by constraints between variables that belong to differ-
ent agents (Yokoo et al., 1998). In addition, each agent has a set of constrained variables,
i.e. a local constraint network.

An assignment (or a label) is a pair < var, val >, where var is a variable of some agent
and val is a value from var ‘s domain that is assigned to it. A compound label is a set of
assignments of values to a set of variables. A solution s to a DisCSP is a compound label
that includes all variables of all agents, which satisfies all the constraints. Agents check
assignments of values against non-local constraints by communicating with other agents
through sending and receiving messages.

Current studies of DisCSPs follow the assumption that all agents hold exactly one vari-
able (Yokoo & Hirayama, 2000; Bessiere, Maestre, Brito, & Meseguer, 2005). Accordingly,
the present study often uses the variable’s name xi to represent the agent it belongs to (Ai).
In addition, the following common assumptions are used in the present study:

• The amount of time that passes between the sending and the receiving of a message
is finite.

• Messages sent by agent Ai to agent Aj are received by Aj in the order they were sent.

3. Asynchronous Partial Overlay

Asynchronous Partial Overlay (APO) is an algorithm for solving DisCSPs that applies
cooperative mediation. The pseudo-code in Algorithms 1, 2, and 3 follows closely the
presentation of APO in the work of Mailler and Lesser (2006).
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Algorithm 1 APO procedures for initialization and local resolution.

procedure initialize
1: di ← random d ∈ Di;
2: pi ← sizeof(neighbors) + 1;
3: mi ← true;
4: mediate ← false;
5: add xi to the good list ;
6: send (init, (xi, pi, di, mi, Di, Ci)) to neighbors;
7: init list ← neighbors;

when received (init, (xj , pj , dj , mj , Dj , Cj)) do
1: add (xj , pj , dj , mj , Dj , Cj) to agent view ;
2: if xj is a neighbor of some xk ∈ good list do
3: add xj to the good list ;
4: add all xl ∈ agent view ∧ xl /∈ good list that can now be connected to the good list ;
5: pi ← sizeof(good list);
6: if xj /∈ init list do
7: send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
8: else
9: remove xj from init list ;

10: check agent view;

when received (ok?, (xj , pj , dj , mj)) do
1: update agent view with (xj , pj , dj , mj);
2: check agent view;

procedure check agent view
1: if init list 6= ∅ or mediate 6= false do
2: return;
3: m′

i ← hasConflict(xi);
4: if m′

i and ¬∃j(pj > pi ∧ mj == true) do
5: if ∃(d′i ∈ Di)(d

′
i∪agent view does not conflict) and di conflicts exclusively with lower

priority neighbors do
6: di ← d′i;
7: send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
8: else
9: mediate;

10: else if mi 6= m′
i do

11: mi ← m′
i;

12: send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
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Algorithm 2 Procedures for mediating an APO session and for choosing a solution during
an APO mediation.
procedure mediate
1: preferences ← ∅;
2: counter ← 0;
3: for each xj ∈ good list do
4: send (evaluate?, (xi, pi)) to xj ;
5: counter ← counter + 1;
6: mediate ← true;

when received (wait!, (xj , pj)) do
1: update agent view with (xj , pj);
2: counter ← counter − 1;
3: if counter == 0 do choose solution;

when received (evaluate!, (xj , pj , labeled Dj)) do
1: record (xj , labeled Dj) in preferences;
2: update agent view with (xj , pj);
3: counter ← counter − 1;
4: if counter == 0 do choose solution;

procedure choose solution
1: select a solution s using a Branch and Bound search that:
2: 1. satisfies the constraints between agents in the good list
3: 2. minimizes the violations for agents outside of the session
4: if ¬∃s that satisfies the constraints do
5: broadcast no solution;
6: for each xj ∈ agent view do
7: if xj ∈ preferences do
8: if d′j ∈ s violates an xk and xk /∈ agent view do
9: send (init, (xi, pi, di, mi, Di, Ci)) to xk;

10: add xk to init list ;
11: send (accept!, (d′j , xi, pi, di, mi)) to xj ;
12: update agent view for xj ;
13: else
14: send (ok?, (xi, pi, di, mi)) to xj ;
15: mediate ← false;
16: check agent view;
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Algorithm 3 Procedures for receiving an APO session.

when received (evaluate?, (xj , pj)) do
1: mj ← true;
2: if mediate == true or ∃k(pk > pj ∧ mk == true) do
3: send (wait!, (xi, pi)) to xj ;
4: else
5: mediate ← true;
6: label each d ∈ Di with the names of the agents that would be violated by setting

di ← d;
7: send (evaluate!, (xi, pi, labeled Di)) to xj ;

when received (accept!, (d, xj , pj , dj , mj)) do
1: di ← d;
2: mediate ← false;
3: send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
4: update agent view with (xj , pj , dj , mj);
5: check agent view;

At the beginning of its problem solving, the APO algorithm performs an initialization
phase, in which neighboring agents exchange data through init messages (procedure ini-
tialize in Algorithm 1). Following that, agents check their agent view to identify conflicts
between themselves and their neighbors (procedure check agent view in Algorithm 1). If
during this check, an agent finds a conflict with one of its neighbors, it expresses desire to
act as a mediator. In case the agent does not have any neighbors that wish to mediate and
have a wider view of the constraint graph than itself, the agent successfully assumes the
role of mediator.

Using mediation (Algorithms 2, and 3), agents can solve subproblems of the DisCSP
by conducting an internal Branch and Bound search (procedure choose solution in Algo-
rithm 2). For a complete solution of the DisCSP, the solutions of the subproblems must be
compatible. When solutions of overlapping subproblems have conflicts, the solving agents
increase the size of the subproblems that they work on. The original paper (Mailler &
Lesser, 2006) uses the term preferences to describe potential conflicts between solutions
of overlapping subproblems. In the present paper we use the term external constraints to
describe such conflicts. A detailed description of the APO algorithm can be found in the
work of Mailler and Lesser (2006).

4. An Infinite Loop Scenario

Consider the 3-coloring problem presented in Figure 1 by the solid lines. Each agent can
assign one of the three available colors Red, Green, or Blue. To the standard inequality
constraints that the solid lines represent, four weaker constraints (diagonal dashed lines)
are added. The dashed lines represent constraints that do not allow only the combinations
(Green,Green) and (Blue,Blue) to be assigned by the agents. Ties in the priorities of agents
are broken using an anti-lexicographic ordering of their names.
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Figure 1: The constraints graph with the initial assignments.

Agent Color mi dj values mj values

A1 R m1 = t d2 =R, d3 =B, d7 =B, d8 =G m2 = t, m3 = f , m7 = f , m8 = f

A2 R m2 = t d1 =R, d3 =B m1 = t, m3 = f

A3 B m3 = f d1 =R, d2 =R, d4 =G, d5 =R m1 = t, m2 = t, m4 = f , m5 = t

A4 G m4 = f d3 =B, d5 =R m3 = f , m5 = t

A5 R m5 = t d3 =B, d4 =G, d6 =R, d7 =B m3 = f , m4 = f , m6 = t, m7 = f

A6 R m6 = t d5 =R, d7 =B m5 = t, m7 = f

A7 B m7 = f d1 =R, d5 =R, d6 =R, d8 =G m1 = t, m5 = t, m6 = t, m8 = f

A8 G m8 = f d1 =R, d7 =B m1 = t, m7 = f

Table 1: Configuration 1.

The initial selection of values by all agents is depicted in Figure 1. In the initial state,
two constraints are violated – (A1, A2) and (A5, A6). Assume that agents A3, A4, A7, and
A8 are the first to complete their initialization phase by exchanging init messages with all
their neighbors (procedure initialize in Algorithm 1). These agents do not have conflicts,
therefore they set mi←false and send ok? messages to their neighbors when each of them
runs the check agent view procedure (Algorithm 1). Only after the arrival of the ok?
messages from agents A3, A4, A7, and A8, do agents A1, A2, A5, and A6 accept the last init
messages from their other neighbors and complete the initialization phase. Agents A2 and
A6 have conflicts, but they complete the check agent view procedure without mediating
or changing their state. This is true, because in the agent views of A2 and A6, m1 = true
and m5 = true, respectively. These neighbors have higher priority than agents A2 and A6

respectively. We denote by configuration 1 the states of all the agents at this point of the
processing and present the configuration in Table 1.

After all agents complete their initializations, agents A1 and A5 detect that they have
conflicts, and that they have no neighbor with a higher priority that wants to mediate.
Consequently, agents A1 and A5 start mediation sessions, since they cannot change their
own color to a consistent state with their neighbors.
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Agent Color mi dj values mj values

A1 G m1 = f d2 =B, d3 =R, d7 =B, d8 =R m2 = f , m3 = f , m7 = f , m8 = f

A2 B m2 = f d1 =G, d3 =R m1 = f , m3 = f

A3 R m3 = f d1 =G, d2 =B, d4 =G, d5 =R m1 = f , m2 = f , m4 = f , m5 = t

A4 G m4 = f d3 =B, d5 =R m3 = f , m5 = t

A5 R m5 = t d3 =B, d4 =G, d6 =R, d7 =B m3 = f , m4 = f , m6 = t, m7 = f

A6 R m6 = t d5 =R, d7 =B m5 = t, m7 = f

A7 B m7 = f d1 =G, d5 =R, d6 =R, d8 =G m1 = f , m5 = t, m6 = t, m8 = f

A8 R m8 = f d1 =G, d7 =B m1 = f , m7 = f

Table 2: Configuration 2 – obsolete data in agent views is in bold face.

Let us first observe A1’s mediation session. A1 sends evaluate? messages to its neigh-
bors A2, A3, A7, and A8 (procedure mediate in Algorithm 2). All these agents reply with
evaluate! messages (Algorithm 3). A1 conducts a Branch and Bound search to find a
solution that satisfies all the constraints between A1, A2, A3, A7, and A8, and also mini-
mizes external constraints (procedure choose solution in Algorithm 2). In our example,
A1 finds the solution (A1 ←Green, A2 ←Blue, A3 ←Red, A7 ←Blue, A8 ←Red), which
satisfies the internal constraints, and minimizes to zero the external constraints. A1 sends
accept! messages to its neighbors, informing them of its solution. A2, A3, A7, and A8

receive the accept! messages and send ok? messages with their new states to their neigh-
bors (Algorithm 3). However, the ok? messages from A8 to A7 and from A3 to A4 and to
A5 are delayed. Observe that the algorithm is asynchronous and naturally deals with such
scenarios.

Concurrently with the above mediation session of A1, agent A5 starts its own mediation
session. A5 sends evaluate? messages to its neighbors A3, A4, A6, and A7. Let us assume
that the message to A7 is delayed. A4 and A6 receive the evaluate? messages and reply
with evaluate!, since they do not know any agents of higher priority than A5 that want
to mediate. A3, is in A1’s mediation session, so it replies with wait!. We denote by
configuration 2 the states of all the agents at this point of the processing (see Table 2).

Only after A1’s mediation session is over, A7 receives the delayed evaluate? message
from A5. Since A7 is no longer in a mediation session, nor does it expect a mediation session
from a node of higher priority than A5 (see A7’s view in Table 2), agent A7 replies with
evaluate!. Notice that A7’s view of d8 is obsolete (the ok? message from A8 to A7 is still
delayed). When agent A5 receives the evaluate! message from A7, it can continue the
mediation session involving agents A4, A5, A6, and A7. Since the ok? messages from A3

to A4 and A5 are also delayed, agent A5 starts its mediation session with knowledge about
agents A3 and A8 that is not updated (see bold-faced data in Table 2).

Agent A5 conducts a Branch and Bound search to find a solution that satisfies all the
constraints between A4, A5, A6, and A7, that also minimizes external constraints. In our
example, A5 finds the solution (A4 ←Red, A5 ←Green, A6 ←Blue, A7 ←Red), which
satisfies the internal constraints, and minimizes to zero the external constraints (remember
that A5 has wrong data about the assignments of A3 and A8). A5 sends accept! messages
to A4, A6, and A7, informing them of its solution. The agents receive these messages and
send ok? messages with their new states to their neighbors. By now, all the delayed
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Figure 2: The graph in configuration 3.

Agent Color mi dj values mj values

A1 G m1 = f d2 =B, d3 =R, d7 =R, d8 =R m2 = f , m3 = t, m7 = t, m8 = t

A2 B m2 = f d1 =G, d3 =R m1 = f , m3 = t

A3 R m3 = t d1 =G, d2 =B, d4 =R, d5 =G m1 = f , m2 = f , m4 = t, m5 = f

A4 R m4 = t d3 =R, d5 =G m3 = t, m5 = f

A5 G m5 = f d3 =R, d4 =R, d6 =B, d7 =R m3 = t, m4 = t, m6 = f , m7 = t

A6 B m6 = f d5 =G, d7 =R m5 = f , m7 = t

A7 R m7 = t d1 =G, d5 =G, d6 =B, d8 =R m1 = f , m5 = f , m6 = f , m8 = t

A8 R m8 = t d1 =G, d7 =R m1 = f , m7 = t

Table 3: Configuration 3.

messages get to their destinations, and two constraints are violated – (A3,A4) and (A7,A8).
Consequently, agents A3, A4, A7, and A8 want to mediate, whereas agents A1, A2, A5, and
A6 do not wish to mediate, since they do not have any conflicts. We denote by configuration
3 the states of all the agents after A5’s solution has been assigned and all delayed messages
arrived at their destinations (see Figure 2 and Table 3).

Until now, we have shown a series of steps that led from configuration 1 to configuration
3. A careful look at Figures 1 and 2 reveals that these configurations are actually isomorphic.
Consequently, we will next show a very similar series of steps that will lead us right back
to configuration 1.

Agents A3 and A7 detect that they have conflicts and that they have no neighbor with
a higher priority that wants to mediate. Consequently, agents A3 and A7 start mediation
sessions, since they cannot change their own color to a consistent state with their neighbors.

We will first observe A3’s mediation session. A3 sends evaluate? messages to its
neighbors A1, A2, A4, and A5. All these agents reply with evaluate! messages. A3

conducts a Branch and Bound search to find a solution that satisfies all the constraints
between A1, A2, A3, A4, and A5, and also minimizes external constraints. Agent A3 finds
the solution (A1 ←Green, A2 ←Red, A3 ←Blue, A4 ←Green, A5 ←Red), which satisfies
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Agent Color mi dj values mj values

A1 G m1 = f d2 =B, d3 =B, d7 =R, d8 =R m2 = f , m3 = f , m7 = t, m8 = t

A2 R m2 = f d1 =G, d3 =B m1 = f , m3 = f

A3 B m3 = f d1 =G, d2 =R, d4 =G, d5 =R m1 = f , m2 = f , m4 = f , m5 = f

A4 G m4 = f d3 =B, d5 =R m3 = f , m5 = f

A5 R m5 = f d3 =B, d4 =G, d6 =B, d7 =R m3 = f , m4 = f , m6 = f , m7 = t

A6 B m6 = f d5 =G, d7 =R m5 = f , m7 = t

A7 B m7 = t d1 =G, d5 =G, d6 =B, d8 =R m1 = f , m5 = f , m6 = f , m8 = t

A8 R m8 = t d1 =G, d7 =R m1 = f , m7 = t

Table 4: Configuration 4 – obsolete data in agent views is in bold face.

the internal constraints, and minimizes to zero the external constraints. A3 sends accept!
messages to its neighbors, informing them of its solution. A1, A2, A4, and A5 receive
the accept! messages and send ok? messages with their new states to their neighbors.
However, the ok? messages from A2 to A1 and from A5 to A6 and to A7 are delayed.

Concurrently with the above mediation session of A3, agent A7 starts its own mediation
session. A7 sends evaluate? messages to its neighbors A1, A5, A6, and A8. Let us assume
that the message to A1 is delayed. A6 and A8 receive the evaluate? messages and reply
with evaluate!, since they do not know any agents of higher priority than A7 that want
to mediate. A5, is in A3’s mediation session, so it replies with wait!. We denote by
configuration 4 the states of all the agents at this point of the processing (see Table 4).

Only after A3’s mediation session is over, A1 receives the delayed evaluate? message
from A7. Since A1 is no longer in a mediation session, nor does it expect a mediation session
from a node of higher priority than A7 (see A1’s view in Table 4), agent A1 replies with
evaluate!. Notice that A1’s view of d2 is obsolete (the ok? message from A2 to A1 is still
delayed). When agent A7 receives the evaluate! message from A1, it can continue the
mediation session involving agents A1, A6, A7, and A8. Since the ok? messages from A5

to A6 and A7 are also delayed, agent A7 starts its mediation session with knowledge about
agents A2 and A5 that is not updated (see bold-faced data in Table 4).

Agent A7 conducts a Branch and Bound search to find a solution that satisfies all the
constraints between A1, A6, A7, and A8, that also minimizes external constraints. In our
example, A7 finds the solution (A1 ←Red, A6 ←Red, A7 ←Blue, A8 ←Green), which
satisfies the internal constraints, and minimizes to zero the external constraints (remember
that A7 has wrong data about A2 and A5). A7 sends accept! messages to A1, A6, and A8,
informing them of its solution. The agents receive these messages and send ok? messages
with their new states to their neighbors. By now, all the delayed messages get to their
destination, and two constraints are violated – (A1,A2) and (A5,A6). Consequently, agents
A1, A2, A5, and A6 want to mediate, whereas agents A3, A4, A7, and A8 do not wish to
mediate, since they do not have any conflicts. Notice that all the agents have returned to
the exact states they were in configuration 1 (see Figure 1 and Table 1).

The cycle that we have just shown between configuration 1 and configuration 3 can
continue indefinitely. This example contradicts the termination and completeness of the
APO algorithm.
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It should be noted that we did not mention all the messages passed in the running of our
example. We mentioned only those messages that are important for the understanding of the
example, since the example is complicated enough. For instance, after agent A1 completes
its mediation session (before configuration 2 ), there is some straightforward exchange of
messages between agents, before the mj values of all the agents become correct (as presented
in Table 2).

5. Analyzing the Problems

In the previous section a termination problem of the APO algorithm was described by
constructing a scenario that leads to an infinite loop of the algorithm’s run. To better
understand the completeness problem of APO, one must refer to the completeness proof
of the APO algorithm as given by Mailler and Lesser (2006). The proof is based on the
incorrect assertion that when a mediation session terminates it has three possible outcomes:

1. A solution with no external conflicts.
2. No solution exists.
3. A solution with at least one external violated constraint.

In the first case, the mediator presumably finds a solution to the subproblem. In the
second case, the mediator discovers that the overall problem is unsolvable. In the third
case, the mediator adds the agent (or agents) with whom the external conflicts were found
to its good list, which is used to define future mediations. In this way, either a solution
or no solution is found (first two cases), or the good list grows, consequently bringing the
problem solving closer to a centralized solution (third case).

However, the infinite loop scenario in section 4 shows that the assertion claiming that
these three cases cover all the possible outcomes of a mediation session is incorrect. There
are two possible reasons for this incorrectness. The first reason is the possibility that a
mediator initiates a partial mediation session without obtaining a lock on all the agents in
its good list. The second reason is incorrect information about external constraints when
neighboring mediation sessions are performed concurrently. Both reasons relate to the
concurrency of mediation sessions.

5.1 Partial Mediation Sessions

The first reason for the incorrectness of the ”always growth” assertion is the possibility
that a mediator initiates a partial mediation session without obtaining a lock on all the
agents in its good list. This possibility can occur because of earlier engagements of some of
its good list ’s members with other mediation sessions. In APO’s code, these agents send a
wait! message.

Let us consider some partial mediation session. Assume that the mediator finds a
solution to the subproblem, but such that has external conflicts with agents outside the
mediation session. Assume also that all these conflicts are with agents that are already in
the mediator’s good list. Notice that this is possible, since these agents can be engaged in
other mediation sessions and have earlier sent wait! messages to the mediator. The present
mediation session falls into case 3 of the original proof. However, it is apparent that no new
agents will be added to the good list – contradicting the assertion.
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Another possible outcome of partial mediation sessions is a situation in which an agent
or several agents that have the entire graph in their good list try to mediate, but fail to
get a lock on all the agents in their good list. Consequently, the situation in which a single
agent holds the entire constraint graph, does not necessarily lead to a solution, due to an
oscillation.

5.2 Neighboring Mediation Sessions

The second reason for the incorrectness of the assertion in the original proof (Mailler &
Lesser, 2006) is the potential existence of obsolete information of external constraints. This
reason involves a scenario in which two neighboring mediation sessions are performed con-
currently. Both the mediation sessions in the scenario end with finding a solution that
presumably has no external conflicts, but the combination of both solutions causes new
conflicts. This was the case with the mediation sessions of agents A1 and A5 in the example
of section 4. Such a scenario seemingly fits the first case in the assertion, in which no
external conflicts are found by each of the mediation sessions. Consequently, no external-
conflict-free partial solution is found – contradicting the assertion. Furthermore, none of
the mediators increase their good list. This enables the occurrence of an infinite loop, as
displayed in section 4.

6. Complete Asynchronous Partial Overlay

A two-part solution that solves the completeness problem of APO is presented. The first
part of the solution insures that the first reason for the incorrectness of the assertion (see
section 5.1) could not occur. This is achieved by preventing partial mediation sessions that
go on without the participation of the entire mediator’s good list. The second part of the
solution addresses the scenario in which two neighboring mediation sessions are performed
concurrently. In such a scenario, the results of the mediation sessions can create new
conflicts. In order to ensure that good lists grow and rule out an infinite loop, the second
part of the solution makes sure that at least one of the good lists grows. Combined with
the first part that insures that mediation sessions will involve the entire good lists of the
mediators, the completeness of APO is secured.

6.1 Preventing Partial Mediation Sessions

Our proposed algorithm disables the initiation of partial mediation sessions by making the
mediator wait until it obtains a lock on all the agents in its good list. Algorithm 4 presents
the changes and additions to APO that are needed for preventing partial mediation sessions.

When the mediator receives a wait! message from at least one of the agents in its
good list, it simply cancels the mediation session (wait!, line 2) and sets the counter to a
special value of -1 (wait!, line 3). To notify the other participants of the canceled mediation
session, the mediator sends a cancel! message to each of the participants (wait!, line 4).
Upon receiving a cancel! message, the receiving agent updates its agent view (cancel!,
line 1) and frees itself from the mediator’s lock (cancel!, line 2). However, the agent is still
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Algorithm 4 Preventing partial mediation sessions.

when received (wait!, (xj , pj)) do
1: update agent view with (xj , pj);
2: mediate ← false;
3: counter ← −1;
4: send (cancel!, (xi, pi)) to all xj ∈ good list;
5: check agent view;

when received (evaluate!, (xj , pj , labeledDj)) do
1: update agent view with (xj , pj);
2: if counter 6= −1 do
3: record (xj , labeledDj) in preferences;
4: counter ← counter − 1;
5: if counter = 0 do choose solution;

when received (cancel!, (xj , pj)) do
1: update agent view with (xj , pj);
2: mediate ← false;
3: check agent view;

aware of the mediator’s willingness to mediate. Consequently, it will not join a mediation
session of a lower priority agent. The special value of counter is used by the mediator to
disregard evaluate! messages that arrive after a wait! message (that causes a cancellation)
due to asynchronous message passing (evaluate!, line 2).

The cancellation of a mediation session upon receiving a single wait! message introduces
a need for a unique identification for mediation sessions. Consider a wait! message that a
mediator receives. Upon receiving the message, the mediator cancels the mediation session
and calls check agent view. It may decide to initiate a new mediation session. However,
it might receive a wait! message from another agent corresponding to the previous, already
cancelled, mediation session. Consequently, the new mediation session would be mistakenly
cancelled too. To prevent the occurrence of such a problem, a unique id has to be added to
each mediation session. This way, a mediator could disregard obsolete wait! and evaluate!
messages. The unique identification of mediation sessions is removed from the pseudo-code
in order to keep it as simple as possible.

This approach may imply some kind of a live-lock, where repeatedly no agent succeeds at
initiating a mediation sessions. However, such a live-lock cannot occur due to the priorities
of the agents. Consider agent xp that has the highest priority among all the agents that
wish to mediate. In case agent xp obtains a lock on all the agents in its good list, it can
initiate a mediation session and there is no live-lock. The interesting situation is when agent
xp fails to get a lock on all the agents in its good list (receives at least one wait! message).
Even in this case agent xp will eventually succeed at initiating a mediation session, since
all the agents in its good list are aware of its willingness to mediate. The agents that are
at the moment locked by other mediators (both initiated mediation sessions and mediation
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sessions that are to be canceled) will eventually be freed by either cancel! or accept!
messages. Since these agents are all aware of agent xp’s willingness to mediate, they will
not join any mediation session other than agent xp’s (unless xp informs them that it no
longer wishes to mediate). Consequently, agent xp will eventually obtain a lock on all the
agents in its good list – contradicting the implied live-lock.

6.2 Neighboring Mediation Sessions

Sequential and concurrent neighboring mediation sessions may result in new conflicts being
created without any of the good lists growing. Such mediation sessions may lead to an
infinite loop as depicted in section 4. A7 in configuration 2 is an example of an agent that
participates in sequential neighboring mediation sessions (of the mediators A1 and A5). On
the other hand, A3 in configuration 2 is an example of an agent whose neighbors have an
incorrect view of, due to concurrent mediation sessions.

A solution to the problem of subsequent neighboring mediation sessions could be ob-
tained if an agent (for example, A7 in configuration 2 ) would agree to participate in a new
mediation session only when its agent view is updated with all the changes of the previous
mediation session. This is achieved by the mediator sending its entire solution s in the
accept! messages, instead of just specific d′j ’s. Therefore, the sending of accept! messages
(choose solution, line 11) in Algorithm 2 is changed to the following:

send (accept!, (s, xi, pi, di, mi)) to xj ;

Upon receiving the revised accept! message (Algorithm 5), agent i now updates all the
dk’s in the received solution s accept for dk’s that are not in i’s agent view (accept!, lines
1-3). Notice that agent i still has to send ok? messages to its neighbors (accept!, line 7),
since not all of its neighbors were necessarily involved in the mediation session.

A solution to the problem of concurrent neighboring mediation sessions could be ob-
tained if the mediator is informed post factum that a new conflict has been created due to
concurrent mediation sessions. In this manner, the mediator can add the new conflicting
agent to its good list. Algorithm 5 presents the changes and additions to APO that are
needed for handling concurrent neighboring mediation sessions.

When an agent xi participating in a mediation session receives the accept! message
from its mediator, it keeps a list of all its neighbors (in the constraint graph) that are not
included in the accept! message (not part of the mediation session), each associated with
the mediator (accept!, lines 4-5). The list is named conc list, since it contains agents that
are potentially involved in concurrent mediation sessions.

Upon receiving an ok? message from an agent xj belonging to the conc list (ok?, line
2), agent xi checks if the data from the received ok? message generates a new conflict
with xj (ok?, line 3). If no new conflict was generated, agent xj is just removed from the
conc list (ok?, line 6). However, in case a conflict was generated (ok?, lines 3-5), agent xi

perceives that agent xj and itself have been involved in concurrent mediation sessions that
created new conflicts. In this case, agent xi’s mediator should add agent xj to its agent view
and good list. Hence, agent xi sends a new add! message to the mediator (associated with
agent xj in the conc list). When the mediator receives the add! message it adds agent xj

to its agent view and its good list (add!, lines 1-2).
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Algorithm 5 Handling neighboring mediation sessions.

when received (accept!, (s, xj , pj , dj , mj)) do
1: for each xk ∈ agent view (starting with xi) do
2: if xk ∈ s do
3: update agent view with (xk, dk);
4: else if di does not generate a conflict with the existing dk do
5: add (xk, xj) to conc list ;
6: mediate ← false;
7: send (ok?, (xi, pi, di, mi)) to all xj ∈ agent view;
8: update agent view with (xj , pj , dj , mj);
9: check agent view;

when received (ok?, (xj , pj , dj , mj)) do
1: update agent view with (xj , pj , dj , mj);
2: if xj ∈ conc list do
3: if dj generates a conflict with di do
4: for each tuple (xj , xk) in conc list do
5: send (add!, (xj)) to xk;
6: remove all tuples (xj , xk) from conc list ;
7: check agent view;

when received (add!, (xj)) do
1: send (init, (xi, pi, di, mi, Di, Ci)) to xj ;
2: add xj to init list ;

There is a slight problem with this solution, since it may push the problem solving
process to become centralized. This may happen because an ok? message from agent xj

that generates a new conflict may actually have been the result of a later mediation session
that agent xj was involved in. In such a case, xj ’s mediator already added agent xi to
its good list. Adding agent xj to the good list of xi’s mediator is not necessary for the
completeness of the algorithm. It does lead to a faster convergence of the problem into a
centralized one. Nevertheless, experiments show that the effect of such growth of good lists
is negligible (see section 9.3).

6.3 Preventing Busy-Waiting

To insure that partial mediation sessions do not occur, a wait! message received by a medi-
ator (Algorithm 4) causes it to cancel the mediation session (section 6.1). The cancellation
of the session is immediately followed by a call to check agent view (wait!, line 5). Such
a call will most likely result in an additional attempt by the agent to start a mediation
session, due to the high probability that the agent’s view did not change since its previous
mediation attempt. The reasons that failed the previous mediation attempt may very well
cause the new mediation session not to succeed also. Such subsequent mediation attempts
may occur several times before the mediation session succeeds or the mediator decides to
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stop its attempts. As a matter of fact, the mediator remains in a busy-waiting mode, until
either its view changes, or the reasons for the mediation session’s failure are no longer valid.
The latter case enables the mediation session to take place.

Such a state of busy-waiting adds unnecessary overhead to the computation load of the
problem solving. In particular, it increases the number of sent messages. To prevent this
overhead, the mediating agent xm has to work in an interrupt-based manner rather than a
busy-waiting manner. In an interrupt-based approach the mediator is notified (interrupted)
when the reason for the previous mediation session’s failure is no longer valid. This is done
by an ok? message that is sent to the mediator by the agent xw that sent the preceding
wait! message, which caused the mediation session to fail. The agent xw will send such
an ok? message only when the reason that caused it to send the wait! message becomes
obsolete. Namely, when one of the following occurs:

• The mediation session that xw was involved in is over.
• An agent with a higher priority than xm no longer wants to mediate.
• The init list of xw has been emptied out.

In order to remember which agents have to be notified (interrupted) when one of the
above instances occurs, an agent maintains a list of pending mediators called wait list. Each
time an agent sends a wait! message to a mediator, it adds that mediator to its wait list.
Whenever an agent sends ok? messages, it clears its wait list.

A few changes to the pseudo-code must be applied in order to use the interrupt-based
method. To maintain the wait list, the following line has to be added to Algorithm 3 after
line 3 in evaluate? (inside the if statement):

add xj to wait list ;

Also, after sending ok? messages to the entire agent view, as done for example in procedure
check agent view line 7 (Algorithm 1), the following line should be added:

empty wait list ;

Finally, there is need to interrupt pending mediators whenever the reason for their mediation
session’s failure may be no longer valid. For example, when an agent is removed from the
init list (init, line 9) in Algorithm 1, the following lines need to be added (inside the else
statement):

if init list == ∅ do
send (ok?, (xi, pi, di, mi)) to all xw ∈ wait list;
empty wait list ;

These lines handle the case when the init list has been emptied out. Similar additions must
be applied to deal with the other mentioned cases. Applying this interrupt-based method
rules out the need for busy-waiting. Thus, the call for check agent view (wait!, line 5)
can be discarded.
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7. Soundness and Completeness

In this section we will show that CompAPO is both sound and complete. Our proofs
follow the basic structure and assumptions of the original APO proofs (Mailler & Lesser,
2006). The original completeness proof was incorrect because of the incompleteness of
the original algorithm. Consequently, we will not use the assertion that was discussed
in detail in section 3 and that played a key role in the original (and incorrect) proof of
completeness (Mailler & Lesser, 2006). The following lemmas are needed for the proofs of
soundness and completeness.

Lemma 1 Links are bidirectional. i.e. if xi has xj in its agent view then eventually xj will
have xi in its agent view.

Proof (as appears in the work of Mailler and Lesser, 2006):
Assume that xi has xj in its agent view and that xi is not in the agent view of xj . In

order for xi to have xj in its agent view, xi must have received an init message at some
point from xj . There are two cases.

Case 1: xj is in the init list of xi. In this case, xi must have sent xj an init message
first, meaning that xj received an init message and therefore has xi in its agent view – a
contradiction.

Case 2: xj is not in the init list of xi. In this case, when xi receives the init message
from xj , it responds with an init message. That means that if the reliable communication
assumption holds, eventually xj will receive xi’s init message and add xi to its agent view
– also a contradiction.

Definition 1 An agent is considered to be in a stable state if it is waiting for messages,
but no message will ever reach it.

Definition 2 A deadlock is a state in which an agent that has conflicts and desires to
mediate enters a stable state.

Lemma 2 A deadlock cannot occur in the CompAPO algorithm.

Proof:
Assume that agent xi enters a deadlock. This means that agent xi desires to mediate,

but is in a stable state. The consequence of this is that agent xi would not be able to get
a lock on all the agents in its good list.

One possibility is that xi already invited the members in its good list to join its me-
diation session by sending evaluate? messages. After a finite time it will receive either
evaluate! or wait! messages from all the agents in its good list. Depending on the replies,
xi either initiates a mediation session or cancels it. Either way, xi is not in a stable state –
contradicting the assumption.

The other possibility is that xi did not reach the stage in which it invites other agents
to join its mediation session. This can only happen, if there exists at least one agent xj that
in xi’s point of view both desires to mediate (m′

j = true) and has a higher priority than xi

(p′j > pi). There are two cases in which xj would not mediate a session that included xi,
when xi was expecting it to:
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Case 1: xi has m′
j = true in its agent view when the actual value should be false.

Assume that xi has m′
j = true in its agent view when actually mj = false. This would

mean that at some point xj changed the value of mj to false without informing xi about
it. There is only one place in which xj changes the value of mj – the check agent view
procedure. Note that in this procedure, whenever the flag changes from true to false,
the agent sends ok? messages to all the agents in its agent view. Since by Lemma 1 we
know that xi is in the agent view of xj , agent xi must have eventually received the message
informing it that mj = false, contradicting the assumption.

Case 2: xj believes that xi should be mediating when xi does not believe it should be.
In xj ’s point of view, m′

i = true and p′i > pj . By the previous case, we know that if xj

believes that mi is true (m′
i = true) then this must be the case. We only need to show

that the condition p′i > pj is impossible. Assume that xj believes that p′i > pj when in fact
pi < pj . This means that at some point xi sent a message to xj informing it that its current
priority was p′i. Since we know that priorities only increase over time (all the good lists can
only get larger), we know that p′i ≤ pi (xj always has the correct value or an underestimate
of pi). Since pi < pj and p′i ≤ pi then p′i < pj – a contradiction to the assumption.

Definition 3 The algorithm is considered to be in a stable state when all the agents are in
a stable state.

Theorem 1 The CompAPO algorithm is sound. i.e., it reaches a stable state only if it has
either found an answer or no solution exists.

Proof:

We assume that all the agents reach a stable state, and consider all the cases in which
this can happen.

Case 1: No agent has conflicts. In this case, all the agents are in a stable state and
with no conflicts. This means that the current value that each agent has for its variable
satisfies all its constraints. Consequently, the current values are a valid solution to the
overall problem, and the CompAPO algorithm has found an answer.

Case 2: A no solution message has been broadcast. In this case, at least one agent
found out that some subproblem has no solution, and informed all the agents about it by
broadcasting a no solution message. Consequently, each agent that receives this message
(all the agents) stops its run and reports that no solution exists.

Case 3: Some agents have conflicts. Let us consider some agent xi that has a conflict.
Since it has a conflict, xi desires to mediate. If it is able to perform a mediation session then
it is not in a stable state in contradiction to the assumption. Therefore, the only condition
in which xi can remain in a stable state is if it is expecting a mediation request from a
higher priority agent xj that does not send it – in other words, when it is deadlocked. By
Lemma 2 this cannot happen.

Since only cases 1 and 2 can occur, the CompAPO algorithm reaches a stable state
only if it has either found an answer or no solution exists. Consequently, the CompAPO
algorithm is sound. ¤
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Lemma 3 If there exist agents that hold the entire graph in their good list and desire to
mediate, then one of these agents will perform a mediation session.

Proof:
We shall consider two cases – when there is only one such agent that holds the entire

graph in its good list and desires to mediate, and when there are several such agents.
Case 1: Consider agent xi to be the only agent that holds the entire graph in its

good list and desires to mediate. Since xi has the entire graph in its good list it has the
highest possible priority. Moreover, all of the agents are aware of xi’s priority (pi) and desire
to mediate (mi) due to ok? messages they received from xi containing this information
(xi sent ok? messages to all the agents in its agent view, which holds the entire graph).
Consequently, no agent will engage from this point on, in any mediation session other than
xi’s. Since all mediation sessions are finite and no new mediation sessions will occur, agent
xi will eventually get a lock on all the agents and will perform a mediation session.

Case 2: If several such agents exist, then the tie in the priorities is broken by the
agents’ index. Consider xi to be the one with the highest index out of these agents, and
apply the same proof of case 1.

Lemma 4 If an agent holding the entire graph in its good list performs a mediation session,
the algorithm reaches a stable state.

Proof:
Consider the mediator to be agent xi. Following the first part of CompAPO’s solution

(section 6.1), an agent can perform a mediation session only if it received evaluate! mes-
sages from all the agents in its good list. Since xi holds the entire graph in its good list, it
means that all the agents in the graph have sent evaluate! messages to xi and set their
mediate flags to be true. This means that until xi completes its search and returns ac-
cept! messages with its solution, no agent can change its assignment. Assuming that the
centralized internal solver that xi uses is sound and complete, it will find a solution to the
entire problem if such a solution exists, or alternatively conclude that no solution exists.
If no solution exists, then xi informs all the agents about this and the problem solving
terminates. Otherwise, each agent receives the accept! message from xi that contains the
solution to the entire problem. Consequently, no agent has any conflicts and the algorithm
reaches a stable state.

Lemma 5 Infinite value changes without any mediation sessions cannot occur.

Proof:
The proof will focus on line 6 of the check agent view procedure, the only place in

the code in which a value is changed without a mediation session. As a reminder, notice
that all the agents in the graph are ordered by their priority (ties are broken by the IDs of
the agents).

Consider the agent with the lowest priority (xp1
). Agent xp1

cannot change its own
value, since line 5 in the check agent view procedure states that in order to reach the
value change in line 6, the current value must conflict exclusively with lower priority agents.
Clearly this is impossible for agent xp1

, which has the lowest priority in the graph.
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Now, consider the next agent in the ordering, xp2
. Agent xp2

can change its current
value when it is in conflict exclusively with lower priority agents. The only lower priority
agent in this case is xp1

. If xp1
and xp2

are not neighbors, then agent xp2
cannot change

its own value for the same reason as agent xp1
. Otherwise, agent xp2

will know the up-
to-date value of agent xp1

in finite time (any previously sent updates regarding xp1
’s value

will eventually reach agent xp2
), since we proved that the value of xp1

cannot be changed
without a mediation session. After xp2

has the up-to-date value of all its lower priority
neighbors (only xp1

), it can change its own value at most once without a mediation session.
Eventually, all the neighbors of xp2

will be updated with the final change of its value.
In general, any agent xpi

(including the highest priority agent) will in finite time have
the up-to-date values of all its lower priority agents. When this happens, it can change its
own value at most once without a mediation session. Eventually, all the neighbors of xpi

will be updated with the final change of its value. Thus, infinite value changes without any
mediation sessions cannot occur.

This proof implicitly relies on the fact that the ordering of agents does not change.
However, the priority of an agent may change in time. Nevertheless, the priorities are
bounded by the size of the graph, so the number of priority changes is finite. This proves
that value changes cannot indefinitely occur without any mediation sessions.

Lemma 6 If from this point on no agent will mediate or desire to mediate, the algorithm
will reach a stable state.

Proof:
We shall consider two cases – when there are no messages that have not yet arrived to

their destinations, and when there are such messages.
Case 1: Consider the case when there are no messages that have not yet arrived to their

destination. If no agent desires to mediate, then all the mi’s are false, meaning that no
agent in the graph has conflicts. Consequently, the current state of the graph is a solution
that satisfies all the constraints, and the algorithm reaches a stable state.

Case 2: Consider the case when there are some messages that have not yet arrived to
their destinations. Eventually these messages will arrive. According to the assumption of
the lemma, the arrival of these messages will not make any of the agents desire to mediate.
Next, we consider the arrival of each type of message and show that it cannot lead to infinite
exchange of messages:

• evaluate?, evaluate!, wait!, cancel!: These messages must belong to an obsolete
mediation session, or otherwise contradict the assumption of the lemma. Accordingly,
they may result in some limited exchange of messages (e.g., sending wait! in line 3
of evaluate?). Some of these messages may lead to a call to the check agent view
procedure.

• accept!: This message cannot be received without contradicting the assumption,
since the receiving agent has to be in an active mediation session when receiving an
accept! message.

• init: This message is part of a handshake between two agents. Consequently, at
most a single additional init message will be sent. This leads to a call to the
check agent view procedure by each of the involved agents.
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• add!: This message results in the sending of a single init message.
• ok?: This message may result in the sending of a finite number of add! messages. It

also leads to a call to the check agent view procedure.

By examining all the types of messages, we conclude that each message can at most lead
to a finite exchange of messages, and to a finite number of calls to the check agent view
procedure. We only need to show that a call to check agent view cannot lead to infinite
exchange of messages.

The check agent view procedure has 4 possible outcomes. It may simply return (line
2), change the value of the variable (lines 6-7), mediate (line 9), or update its desire to medi-
ate (lines 11-12). According to the assumption of the lemma, it cannot mediate. An update
of its desire to mediate, means that the value of mi was true, or will be updated to true.
Either way, this is again in contradiction to the assumption of the lemma. Consequently,
the only possibilities are a simple return, or a change in the value of its own variable. Ac-
cording to Lemma 5, such value changes cannot indefinitely occur without any mediation
sessions. Consequently, the final messages will eventually arrive to their destinations, and
the first case of the proof will hold.

Definition 4 One says that the algorithm advances if at least one of the good lists grows.

Lemma 7 After every n mediation sessions, the algorithm either advances or reaches a
stable state.

Proof:
Consider a mediation session of agent xi. The mediation session has three possible

outcomes – no solution satisfying the constraints within the good list, a solution satisfying
the constraints within the good list but with violations of external constraints, and a solution
satisfying all the constraints within the good list and all the external constraints.

Case 1: No solution that satisfies the constraints within xi’s good list exists, therefore
the entire problem is unsatisfiable. In this case, xi informs all the agents about this and
the problem solving terminates.

Case 2: xi finds a solution that satisfies the constraints within its good list but violates
external constraints. In this case, xi adds the agents with whom there are external conflicts
to its good list. These agents were not already in xi’s good list, since the mediation session
included the entire good list of xi (according to section 6.1). Consequently, xi’s good list
grows and the algorithm advances.

Case 3: xi finds a solution that satisfies the constraints within its good list and all the
external constraints. Following the second part of CompAPO’s solution (section 6.2), agents
from xi’s good list maintain a conc list, and would notify xi to add agents to its good list
in case they experience new conflicts due to concurrent mediation sessions. In such a case,
xi would be notified, its good list would grow and the algorithm would advance.

The only situation in which the algorithm does not advance or reach a stable state, is
when all the mediation sessions experience case 3, and no concurrent mediation sessions
create new conflicts. In that case, after at most n mediation sessions (equal to the overall
number of agents), all the agents would have no desire to mediate. According to Lemma 6,
the algorithm reaches a stable state.
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Lemma 8 If there exists a group of agents that desire to mediate, a mediation session will
eventually occur.

Proof:

No agent will manage to get a lock on all the agents in its good list (essential for a
mediation session to occur) only if all the agents in the group that sent evaluate? messages
got at least one wait! message each. If this is the case, consider xi to be the highest priority
agent among this group.

Each wait! message that agent xi received is either from an agent that is a member
of the group or from an agent outside the group, currently involved in another mediation
session. In case this agent (xj) belongs to the group, xj also got some wait! message
(clearly, this wait! message arrived after xj sent wait! to xi). xj will therefore cancel its
mediation session, and will wait for xi’s next evaluate? message (since xj is now aware of
xi’s desire to mediate and pi is the highest priority among the agents that currently desire to
mediate). In case xj does not belong to the group, the mediation session that xj is involved
in will eventually terminate, and xi will get the lock, unless xj has a higher priority than
xi (pj > pi) and also xj desires to mediate when the session terminates. If this is the case,
xj will eventually get the lock for the same reasons.

Theorem 2 The CompAPO algorithm is complete. i.e., if a solution exists, the algorithm
will find it, and if a solution does not exist, the algorithm will report that fact.

Proof:

Since we have shown in Theorem 1 that whenever the algorithm reaches a stable state,
the problem is solved and that when it finds a subset of variables that is unsatisfiable it
terminates, we only need to show that it always reaches one of these two states in a finite
time.

According to Lemma 6, if from some point in time no agent will mediate or desire
to mediate, the algorithm will reach a stable state. According to Lemma 8 if there exist
agents that desire to mediate, eventually a mediation session will occur. From Lemmas 6
and 8 we conclude that the only possibility for the algorithm not to reach a stable state
is by continuous occurrences of mediation sessions. According to Lemma 7, after every n
mediation sessions, the algorithm either advances or reaches a stable state. Consequently,
the algorithm either reaches a stable state or continuously advances.

In case the algorithm continuously advances, the good lists continuously grow. At some
point, some agents (eventually all the agents) will hold the entire graph in their good list.
One of these agents will eventually desire to mediate (if not, then according to Lemma 6, the
algorithm reaches a stable state). According to Lemma 3, one of these agents will perform
a mediation session. According to Lemma 4, the algorithm reaches a stable state. ¤

8. OptAPO – an Optimizing APO

Distributed Constraint Optimization Problems (DisCOPs) are a version of distributed con-
straint problems, in which the goal is to find an optimal solution to the problem, rather
than a satisfying one. In an optimization problem, an agent associates a cost with violated
constraints and maintains bounds on these costs in order to reach an optimal solution that
minimizes the number of violated constraints.
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A number of algorithms were proposed in the last few years for solving DisCOPs. The
simplest algorithm of these is Synchronous Branch and Bound (SyncBB) (Hirayama &
Yokoo, 1997), which is a distributed version of the well-known centralized Branch and
Bound algorithm. Another algorithm which uses a Branch and Bound scheme is Asyn-
chronous Forward Bounding (AFB) (Gershman, Meisels, & Zivan, 2006), in which agents
perform sequential assignments which are propagated for bounds checking and early detec-
tion of a need to backtrack. A number of algorithms use a pseudo-tree which is derived
from the structure of the DisCOP in order to improve the process of acquiring a solution
for the optimization problem. ADOPT (Modi, Shen, Tambe, & Yokoo, 2005) is such an
asynchronous algorithm in which assignments are passed down the pseudo-tree. Agents
compute upper and lower bounds for possible assignments and send costs up to their par-
ents in the pseudo-tree. These costs are eventually accumulated by the root agent. Another
algorithm which exploits a pseudo tree is DPOP (Petcu & Faltings, 2005). In DPOP, each
agent receives from the agents which are its sons in the pseudo-tree, all the combinations of
partial solutions in their sub-tree and their corresponding costs. The agent calculates and
generates all the possible partial solutions which include the partial solutions it received
from its sons and its own assignments and sends the resulting combinations up the pseudo-
tree. Once the root agent receives all the information from its sons, it produces the optimal
solution and propagates it down the pseudo-tree to the rest of the agents.

Another very different approach was implemented in the Optimal Asynchronous Par-
tial Mediation (OptAPO) (Mailler & Lesser, 2004; Mailler, 2004) algorithm, which is an
optimization version of the APO algorithm. Differently to APO, the OptAPO algorithm
introduces a second type of mediation sessions called passive mediation sessions. The goal
of the passive sessions is to update the bounds on the costs without changing the values of
variables. These sessions add parallelism to the algorithm and accelerate the distribution of
information. This might solve many problems that result from incorrect information, which
is discussed in section 5.2. However, active mediation sessions also occur in OptAPO. The
active sessions may consist of parts of the good list (partial mediation sessions), and as a
result lead to the problems described in section 5.1. Moreover, a satisfiable problem should
also be solved by OptAPO, returning a zero optimal cost. Therefore, the infinite loop sce-
nario described in section 4 will also occur in OptAPO, which behaves like APO when the
problem is satisfiable.

The OptAPO algorithm must be corrected in order for the aforementioned problems to
be solved. In section 6 several modifications to the APO algorithm are proposed. These
changes turn APO into a complete search algorithm – CompAPO. Equivalent modifications
must also be applied to the OptAPO algorithm in order to ensure its correctness. Interest-
ingly, these modifications to APO are to procedures that are similar in APO and OptAPO.
The main differences between APO and OptAPO are in the addition of passive media-
tion sessions (procedure check agent view) to OptAPO, and in the internal search that
mediators perform (procedure choose solution). However, neither of these procedures is
effected by the modifications of CompAPO. Thus, the pseudo-code of the changes that must
be applied to OptAPO is very similar to the modifications of CompAPO, and is therefore
omitted from this paper. The performance of the resulting algorithm – CompOptAPO –
is evaluated in section 9.5. The full pseudo-code of the original OptAPO algorithm can be
found in the work of Mailler and Lesser (2004).
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9. Experimental Evaluation

The original (and incomplete) version of the APO algorithm was evaluated by Mailler and
Lesser (2006). It was compared to the AWC algorithm (Yokoo, 1995), which is not an
efficient DisCSP solver (Zivan et al., 2007). The experiments were performed on 3-coloring
problems, which are a subclass of uniform random constraints problems. These problems are
characterized by a small domain size, low constraints density, and fixed constraints tightness
(for the characterization of random CSPs see the works of Prosser, 1996 and Smith, 1996).
The comparison between APO and AWC (Mailler & Lesser, 2006) was made with respect to
three measures – the number of sent messages, the number of cycles, and the serial runtime.
While the number of sent messages is a very important and widely accepted measure, the
other measures are problematic. During a cycle, incoming messages are delivered, the
agent is allowed to process the information, and any messages that were created during
the processing are added to the outgoing queue to be delivered at the beginning of the
next cycle. The meaning of such a cycle in APO is that a mediation session that possibly
involves the entire graph takes just a single cycle. Such a measure is clearly problematic,
since every centralized algorithm solves a problem in just one cycle. Measuring the serial
runtime is also not adequate for distributed CSPs, since it does not take into account any
concurrent computations during the problem solving. In order to measure the concurrent
runtime of DisCSP algorithms in an implementation independent way, one needs to count
non-concurrent constraint checks (NCCCs) (Meisels, Razgon, Kaplansky, & Zivan, 2002).
This measure has gained global agreement in the DisCSP and DisCOP community (Bessiere
et al., 2005; Zivan & Meisels, 2006b) and will be used in the present evaluation.

The modifications of CompAPO, and especially the prevention of partial mediation
sessions (section 6.1) add synchronization to the algorithm, which may tax heavily the
performance of the algorithm. Thus, it is important to evaluate the effect of these changes by
comparing CompAPO to other (incomplete) versions of the APO algorithm. Additionally,
we evaluate the effectiveness of the interrupt-based method compared to busy-waiting.

9.1 Experimental Setup

In all our experiments we use a simulator in which agents are simulated by threads, which do
not hold any shared memory and communicate only through message passing. The network
of constraints, in each of our experiments, is generated randomly by selecting the probability
p1 of a constraint among any pair of variables and the probability p2, for the occurrence
of a violation among two assignments of values to a constrained pair of variables. Such
uniform random constraints networks of n variables, k values in each domain, a constraints
density of p1 and tightness p2 are commonly used in experimental evaluations of CSP
algorithms (Prosser, 1996; Smith, 1996).

Experiments were conducted for several density values. Our setup included problems
generated with 15 agents (n = 15) and 10 values (k = 10). We drew 100 different instances
for each combination of p1 and p2. Through all our experiments each agent holds a single
variable.
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Figure 3: Mean NCCCs in sparse problems (p1 = 0.1).

Figure 4: Mean NCCCs in medium density problems (p1 = 0.4).

9.2 Comparison to Other Algorithms

The performance of CompAPO is compared to three asynchronous search algorithms – the
well known Asynchronous Backtracking (ABT) (Yokoo et al., 1998; Yokoo & Hirayama,
2000), the extremely efficient Asynchronous Forward-Checking with Backjumping (AFC-
CBJ) (Meisels & Zivan, 2007), and to Asynchronous Weak Commitment (AWC) (Yokoo,
1995), which was used in the original APO evaluation (Mailler & Lesser, 2006).

Results are presented for three sets of tests with different values of problem density –
sparse (p1 = 0.1), medium (p1 = 0.4), and dense (p1 = 0.7). In all the sets the value of p2

varies between 0.1 and 0.9, to cover all ranges of problem difficulty.
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Figure 5: Mean NCCCs in dense problems (p1 = 0.7).

Figure 6: Mean number of messages in medium density problems (p1 = 0.4).

In order to evaluate the performance of the algorithms, two independent measures of
performance are used – search effort in the form of NCCCs and communication load in
the form of the total number of messages sent. Figures 3, 4, and 5 present the number of
NCCCs performed by CompAPO while solving problems with different densities. Figure 6
shows the total number of messages sent during the problem solving process. All figures
exhibit the phase-transition phenomenon – for increasing values of the tightness, p2, problem
difficulty increases, reaches a maximum, and then drops back to a low value. This is
termed the easy-hard-easy transition of hard problems (Prosser, 1996), and was observed
for DisCSPs (Meisels & Zivan, 2007; Bessiere et al., 2005).
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The performance of CompAPO in NCCCs turns out to be very poor in the phase
transition region compared to other asynchronous search algorithms. The worst results are
when the problems are relatively sparse (Figures 3 and 4). However, even for dense problems
both ABT and AFC-CBJ clearly outperform CompAPO (Figure 5). When comparing
CompAPO to AWC, the results are significantly different. AWC is known to perform best
in sparse problems. Thus, like ABT and AFC-CBJ it clearly outperforms CompAPO for
such problems (Figure 3). For medium density problems, AWC still performs better than
CompAPO but the difference between the performances of these algorithms is much smaller
(Figure 4). For dense problems, AWC performs extremely bad with about ten times more
NCCCs than CompAPO. The results of AWC are omitted from Figure 5, since it did not
finish running this set of tests in a reasonable time and we had to stop its run after 40
hours.

Notice that the scale in Figure 4 is different than in Figures 3 and 5. This is due
to especially poor performance of APO around the phase transition of medium density
problems. Such behavior is untypical, since most DisCSP algorithm suffer from their worst
performance around the phase transition of high density problems (Figure 5). The fact
that the performance of CompAPO is better on high density problems than on medium
density ones can be explained by the faster convergence to a centralized solution in dense
problems. In problems around the phase transition, the CompAPO algorithm frequently
reaches full centralization anyway. Thus, the faster convergence to a centralized solution
actually improves the performance of the algorithm.

While the search effort performed by the agents running CompAPO is extremely high,
the communication load on the system remains particularly low. This can be seen in
Figure 6, for medium density problems. Similar results were achieved for sparse and dense
problems. This is not surprising, since the major part of the search effort is carried out
by agents performing mediation sessions without the need for an extensive exchange of
messages.

9.3 Comparison to Other Versions of APO

Several versions of the APO algorithm were proposed by Benisch and Sadeh (2006). One of
these versions (APO-BT) uses simple backtracking as its mediation procedure, instead of
the Branch and Bound that was originally proposed with APO (APO-BB). The performance
of CompAPO is compared to these two incomplete versions of the algorithm.

The modifications of CompAPO, and especially the prevention of partial mediation
sessions (section 6.1) add synchronization to the algorithm. A potential partial mediation
session must wait for other sessions to end until the mediator is able to get a lock on its entire
good list. Such synchronization may tax the performance of the algorithm. Nevertheless,
our experiments show that CompAPO actually performs slightly better than APO-BB as
measured by NCCCs (Figures 7 and 8). The improved performance can be explained by
the better distribution of data when the entire solution is sent with the accept! message
(section 6.2). Figure 9 shows that the effect of CompAPO’s modifications is even greater
on the communication load. This substantial advantage of CompAPO may be explained by
the use of the interrupt-based approach (section 6.3) that helps performance by eliminating
the unnecessary overhead of busy-waiting.

249



Grinshpoun & Meisels

Figure 7: Mean NCCCs in medium density problems (p1 = 0.4).

Figure 8: Mean NCCCs in dense problems (p1 = 0.7).

Figure 10 presents the mean size of the largest mediation session occurring during search,
for medium density problems (p1 = 0.4) with 15 variables. The average size of the largest
mediation session is around 12 (out of a maximum of 15). It occurs for problems in the
phase transition region when p2 is 0.5 and 0.6. Although this number is not very far from
the maximum of 15, it does suggest that a considerable portion of the hard problems are
solved without reaching a full centralization.

The part of the code of CompAPO that solves the neighboring mediation sessions prob-
lem (section 6.2) implies a potential additional growth to good lists (ok?, line 5), which
may result in a faster centralization during problem solving. Nevertheless, Figure 10 clearly
shows that CompAPO does not centralize faster than the original version of APO (APO-
BB), except for very tight, unsolvable problems.
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Figure 9: Mean number of messages in medium density problems (p1 = 0.4).

Figure 10: Mean size of the largest mediation session (p1 = 0.4 and n = 15).

Our experiments show that in medium density problems, the APO-BT version performs
poorly with respect to both NCCCs and the number of sent messages in comparison to
APO-BB and CompAPO (Figures 7 and 9). The reason for ABO-BT’s poor performance
can be easily explained by its frequent convergence to full centralization as shown in Fig-
ure 10. Nevertheless, APO-BT has a lower communication load than APO-BB in the phase
transition. The reason for this is actually the same reason that leads to APO-BT’s exten-
sive search effort. A prompt convergence to full centralization yields a high search effort
(NCCCs), but at the same time may reduce the communication load.

Figure 8 shows that on dense problems APO-BT performs better than APO-BB and
almost the same as CompAPO. This supports the results reported by Benisch and Sadeh
(2006) for dense random DisCSPs. The same paper also presents the results for structured
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Figure 11: Interrupt-based vs. busy-waiting (mean NCCCs with p1 = 0.4).

3-coloring problems, in which APO-BT is outperformed by APO-BB. Similar behavior is
observed in the experiments that we conducted on sparser problems (Figure 7), which
suggests that the variance in APO-BT’s performance has more to do with the density of
the problem than with its structure.

Benisch and Sadeh propose an additional version to the APO algorithm, in which the
mediation session selection rule is the inverse of the original selection rule (Benisch & Sadeh,
2006). The version called IAPO instructs agents to choose the smallest mediation session
rather than the largest one. It is not clear that IAPO can be turned into a correct algorithm,
since the correctness proofs presented in section 7 rely on the fact that the largest mediation
sessions are chosen. Consequently, the evaluation of IAPO is omitted from this paper.

9.4 Interrupt-Based Versus Busy-Waiting

Figures 11 and 12 present two measures of performance comparing different methods for
synchronization that is needed in order to avoid conflicts between concurrent mediation
sessions – interrupt-based and busy-waiting (section 6.3). The interrupt-based method
clearly outperforms busy-waiting for harder problem instances. Predictably, the difference
in performance is more pronounced when measuring the number of messages (Figure 12).

9.5 Evaluation of CompOptAPO

The original (and incomplete) version of the OptAPO algorithm was evaluated by Mailler
and Lesser (2004). It was compared to the ADOPT algorithm (Modi et al., 2005), which
is not the best DisCOP solver. Similarly to the original results of APO (Mailler & Lesser,
2006), the comparison between OptAPO and ADOPT (Mailler & Lesser, 2004) was made
with respect to three measures – the number of sent messages, the number of cycles, and
the serial runtime. For the same reasons as in DisCSP algorithms, cycles and serial runtime
are also problematic for measuring the performance of DisCOP algorithms. As was the case
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Figure 12: Interrupt-based vs. busy-waiting (mean number of messages with p1 = 0.4).

with CompAPO, the CompOptAPO algorithm will also be evaluated by counting NCCCs
and the number of sent messages.

The Distributed Optimization problems used in the following experiments are random
Max-DisCSPs. Max-DisCSP is a subclass of DisCOP in which all constraint costs (weights)
are equal to one (Modi et al., 2005). This feature simplifies the task of generating ran-
dom problems, since by using Max-DisCSPs one does not have to decide on the costs of
the constraints. Max-CSPs are commonly used in experimental evaluations of constraint
optimization problems (COPs) (Larrosa & Schiex, 2004). Other experimental evaluations
of DisCOPs include graph coloring problems (Modi et al., 2005; Zhang, Xing, Wang, &
Wittenburg, 2005), which are a subclass of Max-DisCSP. The advantage of using random
Max-DisCSP problems is the fact that they create an evaluation framework that is known
to exhibit the phase-transition phenomenon in centralized COPs. This is important when
evaluating algorithms for solving DisCOPs, enabling a known analogy with behavior of cen-
tralized algorithms as the problem difficulty changes. The problems solved in this section
are randomly generated Max-DisCSP with 10 agents (n = 10) and 10 values (k = 10), con-
straint density of either p1 = 0.4 or p1 = 0.7, and varying constraint tightness 0.4 ≤ p2 < 1.

The performance of CompOptAPO is compared to three search algorithms – Syn-
chronous Branch and Bound (SyncBB) (Hirayama & Yokoo, 1997), AFB (Gershman et al.,
2006), and ADOPT (Modi et al., 2005). ADOPT was used in the original OptAPO evalu-
ation (Mailler & Lesser, 2004).

It must be noted that in our experiments with the original OptAPO algorithm, we
have experienced several runs in which the algorithm failed to advance and did not reach a
solution. This shows that the termination problem of OptAPO occurs in practice and not
just in theory, for a scenario that involves particular message delays as the one presented
in section 4 for the APO algorithm. Additionally, we discovered that OptAPO may not
always be able to report the optimal cost (i.e., the number of broken constraints in our Max-
DisCSP experiments). To understand how this can happen consider an ”almost” disjoint
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Figure 13: An example 3-coloring problem.

Figure 14: Mean NCCCs in sparse optimization problems (p1 = 0.4).

graph, such as the one depicted in Figure 13. In this example we assume that agents A1

and A2 do not have any conflicts. Consequently, the knowledge regarding the cost F is
not exchanged between the two groups, and no agent holds the correct overall cost of the
problem (F = 3). Nevertheless, when the OptAPO algorithm terminates, it does so with
the optimal solution. Thus, the optimal value can be derived upon termination by summing
the number of broken constraints of all of the agents. The result must be divided by two
to account for broken constraints being counted by each of the involved agents.

The performance of CompOptAPO in NCCCs is comparable with other DisCOP al-
gorithms when the problems are relatively loose (low p2 value), with only the ADOPT
algorithm performing slightly better. This is the case for both sparse and dense problems
(Figures 14 and 15, respectively). As the problems become tighter, CompOptAPO clearly
outperforms both ADOPT and SyncBB. In fact, the ADOPT algorithm failed to terminate
in reasonable time for tight problems (p2 > 0.8 in Figure 14 and p2 > 0.6 in Figure 15). How-
ever, on tight problems the AFB algorithm is much faster than CompOptAPO. Actually,
AFB was the only algorithm in our experiments that managed to terminate in reasonable
time for problems that are both dense (p1 = 0.7) and tight (p2 = 0.9).
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Figure 15: Mean NCCCs in dense optimization problems (p1 = 0.7).

Figure 16: Mean number of messages in dense optimization problems (p1 = 0.7).

Similarly to CompAPO, the communication load on the system remains particularly
low when running the CompOptAPO algorithm. This can be seen in Figure 16 for dense
problems. Similar results are observed for sparse problems. This is not surprising, since
the major part of the search effort is carried out by agents performing mediation sessions
without the need for an extensive exchange of messages.
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10. Conclusions

The APO search algorithm is an asynchronous distributed algorithm for DisCSPs. The
algorithm partitions the search into different subproblems. Each subproblem is solved by
a selected agent – the mediator. When conflicts arise between a solution to a subproblem
and its neighboring agents, the conflicting agents are added to the subproblem. Ideally,
the algorithm either leads to compatible solutions of constraining subproblems, or to the
growth of subproblems whose solution is incompatible with neighboring agents. This two-
option situation was used in the original APO paper (Mailler & Lesser, 2006) to prove the
termination and completeness of the algorithm.

The proof of completeness of the APO algorithm as presented by Mailler and Lesser
(2006) is based on the growth of the size of the subproblems. It turns out that this expected
growth of groups does not occur in some situations, leading to a termination problem of
the algorithm. The present paper demonstrates this problem by following an example
that does not terminate. Furthermore, the paper identifies the problematic parts in the
original algorithm that interfere with its completeness and applies modifications that solve
the problematic parts. The resulting CompAPO algorithm ensures the completeness of the
search. Formal proofs for the soundness and completeness of CompAPO are presented.

The CompAPO algorithm forms a class by itself of DisCSP search algorithms. In con-
trast to backtracking or concurrent search processes, it achieves concurrency by solving
subproblems concurrently. It is therefore both interesting and important to evaluate the
performance of CompAPO and to compare it to other DisCSP search algorithms.

Asynchronous Partial Overlay is actually a family of algorithms. The completeness and
termination problems that are presented and corrected in the present study apply to all the
members of the family. The OptAPO algorithm (Mailler & Lesser, 2004; Mailler, 2004) is
an optimization version of APO that solves Distributed Constraint Optimization Problems
(DisCOPs). The present paper shows that similar modification to the ones made to the
APO algorithm must also be applied to OptAPO in order to ensure its correctness. These
changes call for performance evaluation of the resulting CompOptAPO algorithm.

The experimental evaluation that was presented in section 9 demonstrates that the
performance of CompAPO is poor compared to other asynchronous search algorithms. On
randomly generated DisCSPs the runtime of APO, as measured by NCCCs, is longer by
up to two orders of magnitude than that of ABT (Yokoo et al., 1998; Yokoo & Hirayama,
2000) and AFC-CBJ (Meisels & Zivan, 2007).

The total number of messages sent by CompAPO is considerably smaller than the corre-
sponding number for ABT or AFC-CBJ. This is a clear result of the fact that hard problem
instances tend to be solved by a small number of mediators in a semi-centralized manner.

The runtime performance of CompOptAPO is better than that of ADOPT (Modi et al.,
2005) and SyncBB (Hirayama & Yokoo, 1997) for hard instances of randomly generated
DisCOPs. Similarly to the DisCSP case, the total number of messages sent by CompOp-
tAPO is considerably smaller than the corresponding number for other DisCOP algorithms.
However, in the phase-transition region of randomly generated DisCOPs, the runtime of
CompOptAPO is longer by more than an order of magnitude than that of AFB (Gershman
et al., 2006).
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