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Abstract

This paper proposes and experimentally validates a Bayesian network model of a range
finder adapted to dynamic environments. All modeling assumptions are rigorously ex-
plained, and all model parameters have a physical interpretation. This approach results in
a transparent and intuitive model. With respect to the state of the art beam model this
paper: (i) proposes a different functional form for the probability of range measurements
caused by unmodeled objects, (ii) intuitively explains the discontinuity encountered in the
state of the art beam model, and (iii) reduces the number of model parameters, while main-
taining the same representational power for experimental data. The proposed beam model
is called RBBM, short for Rigorously Bayesian Beam Model. A maximum likelihood and
a variational Bayesian estimator (both based on expectation-maximization) are proposed
to learn the model parameters.

Furthermore, the RBBM is extended to a full scan model in two steps: first, to a
full scan model for static environments and next, to a full scan model for general, dynamic
environments. The full scan model accounts for the dependency between beams and adapts
to the local sample density when using a particle filter. In contrast to Gaussian-based state
of the art models, the proposed full scan model uses a sample-based approximation. This
sample-based approximation enables handling dynamic environments and capturing multi-
modality, which occurs even in simple static environments.

1. Introduction

In a probabilistic approach, inaccuracies are embedded in the stochastic nature of the model,
particularly in the conditional probability density representing the measurement process.
It is of vital importance that all types of inaccuracies affecting the measurements are incor-
porated in the probabilistic sensor model. Inaccuracies arise from sensor limitations, noise,
and the fact that most complex environments can only be represented and perceived in a
limited way. The dynamic nature of the environment in particular is an important source
of inaccuracies. This dynamic nature results from the presence of unmodeled and possibly
moving objects and people.

This paper proposes a probabilistic range finder sensor model for dynamic environments.
Range finders, which are widely used in mobile robotics, measure the distances z to objects
in the environment along certain directions θ relative to the sensor. We derive the sensor
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model in a form suitable for mobile robot localization, i.e.: P (Z = z | X = x, M = m)1,
where Z indicates the measured range, X the position of the mobile robot (and of the
sensor mounted on it), and M the environment map. The presented model is however
useful in other applications of range sensors as well.

First, this paper derives a probabilistic sensor model for one beam of a range finder,
i.e. the beam model. In particular, this paper gives a rigorously Bayesian derivation us-
ing a Bayesian network model while stating all model assumptions and giving a physical
interpretation for all model parameters. The obtained model is named RBBM, short for
Rigorously Bayesian Beam Model. The innovations of the presented approach are (i) to
introduce extra state variables A = a for the positions of unmodeled objects in the prob-
abilistic sensor model P (z | x, m, a), and (ii) to marginalize out these extra state variables
from the total probability before estimation. The latter is required because extra variables
(exponentially!) increase the computational complexity of state estimation while in a lot
of applications estimating the position of unmodeled objects is not of primary interest. In
summary, the marginalization avoids the increase in complexity to infer the probability
distributions P (x) and P (m), while maintaining the modeling of the dynamic nature of
the environment.

This paper furthermore presents a maximum-likelihood and a variational Bayesian es-
timator (both based on expectation-maximization) to learn the model parameters of the
RBBM.

Next, the paper presents an extension of the RBBM to a full scan model i.e.: P (z | θ, x, m)
where z and θ contain all the measured distances and beam angles, respectively. This full
scan model accounts for the dependency between beams and adapts to the local sample
density when using a particle filter. In contrast to Gaussian-based state of the art models,
the proposed full scan model uses a sample-based approximation. The sample-based ap-
proximation allows us to capture the multi-modality of the full scan model, which is shown
to occur even in simple static environments.

1.1 Paper Overview

This paper is organized as follows. Section 2 gives an overview of the related work. Section 3
(i) presents a Bayesian beam model for range finders founded on Bayesian networks, the
RBBM, (ii) mathematically derives an analytical formula for the probabilistic sensor model
while clearly stating all assumptions, (iii) provides useful insights in the obtained beam
model and (iv) shows that the obtained analytical sensor model agrees with the proposed
Bayesian network. Section 4 presents a maximum likelihood and a variational Bayesian
estimator (both based on expectation-maximization) to learn the model parameters. In
Section 5 the model parameters of the RBBM are learned from experimental data and the
resulting model is compared with the state of the art beam model proposed by Thrun,
Burgard, and Fox (2005), further on called Thrun’s model. Section 6 extends the RBBM
to an adaptive full scan model for dynamic environments. Section 7 discusses the obtained
RBBM and adaptive full scan model and compares them with previously proposed range
finder sensor models.

1. To simplify notation, the explicit mention of the random variable in the probabilities is omitted whenever
possible, and replaced by the common abbreviation P (x) instead of writing P (X = x).
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2. Related Work

Three basic approaches to deal with dynamic environments exist in the literature (Fox,
Burgard, & Thrun, 1999; Thrun et al., 2005): state augmentation, adapting the sensor
model and outlier detection.

In state augmentation the latent states, e.g. the position of moving objects and peo-
ple in the environment, are included in the estimated states. Wang, Thorpe, and Thrun
(2003) developed an algorithm ‘SLAM with DATMO’, short for SLAM with the detection
and tracking of moving objects. State augmentation however is often infeasible since the
computational complexity of state estimation increases exponentially with the number of
independent state variables to estimate. A closely related solution consists of adapting the
map according to the changes in the environment. Since such approaches assume that the
environment is almost static, they are unable to cope with real dynamics as in populated
environments (Fox et al., 1999). A more recent, related approach proposed by Wolf and
Sukhatme (2004) maintains two coupled occupancy grids of the environment, one for the
static map and one for the moving objects, to account for environment dynamics.

Probabilistic approaches are to some extent robust to unmodeled dynamics, since they
are able to deal with sensor noise. In such approaches however, the sensor noise should
reflect the real uncertainty due to the unmodeled dynamics of the environment. Therefore,
a second approach for dealing with dynamic environments is to adapt the sensor model to
correctly reflect situations in which measurements are affected by the unmodeled environ-
ment dynamics. Fox et al. (1999) show that such approaches are only capable to model such
noise on average, and, while these approaches work reliably with occasional sensor blockage,
they are inadequate in situations where more than fifty percent of the measurements are
corrupted.

To handle measurement corruption more effectively, an approach based on outlier de-
tection can be used. This approach uses an adapted sensor model, as explained in the
previous paragraph. The idea is to investigate the cause of a sensor measurement and to
reject measurements that are likely to be affected by unmodeled environment dynamics.
Hähnel, Schulz, and Burgard (2003a) and Hähnel, Triebel, Burgard, and Thrun (2003b)
studied the problem of performing SLAM in environments with many moving objects using
the EM algorithm for filtering out affected measurements. By doing so, they were able to
acquire maps in the environment where conventional SLAM techniques failed. Fox et al.
(1999) propose two different kinds of filters: an entropy filter, suited for an arbitrary sen-
sor, and a distance filter, designed for proximity sensors. These filters detect whether a
measurement is corrupted or not, and discard sensor readings resulting from objects that
are not contained in the map.

This paper focuses on (sonar and laser) range finders, whose physical principle is the
emission of a sound or light wave, followed by the recording of its echo. Highly accurate
sensor models would include physical parameters such as surface curvature and material
absorption coefficient. These parameters are however difficult to estimate robustly in un-
structured environments. Hence, the literature typically relies on purely basic geometric
models.

The range finder sensor models available from the literature are traditionally divided
in three main groups: feature-based approaches, beam-based models and correlation-based
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methods. Feature-based approaches extract a set of features from the range scan and match
them to features contained in an environmental model. Beam-based models, also known
as ray cast models, consider each distance measurement along a beam as a separate range
measurement. These models represent the one-dimensional distribution of the distance
measurement by a parametric function, which depends on the expected range measurement
in the respective beam directions. In addition, these models are closely linked to the ge-
ometry and the physics involved in the measurement process. They often result in overly
peaked likelihood functions due to the underlying assumption of independent beams. The
last group of range finder sensor models, correlation-based methods, build local maps from
consecutive scans and correlate them with a global map. The simple and efficient likelihood
field models or end point model (Thrun, 2001) are related to these correlation-based meth-
ods. Plagemann, Kersting, Pfaff, and Burgard (2007) nicely summarize the advantages and
drawbacks of the different range finder sensor models.

Range finder sensor models can also be classified according to whether they use discrete
geometric grids (Hähnel et al., 2003a, 2003b; Fox et al., 1999; Burgard, Fox, Hennig, &
Schmidt, 1996; Moravec, 1988) or continuous geometric models (Thrun et al., 2005; Choset,
Lynch, Hutchinson, Kantor, Burgard, Kavraki, & Thrun, 2005; Pfaff, Burgard, & Fox,
2006). Moravec proposed non-Gaussian measurement densities over a discrete grid of possi-
ble distances measured by sonar; the likelihood of the measurements has to be computed for
all possible positions of the mobile robot at a given time. Even simplified models (Burgard
et al., 1996) in this approach turned out to be computationally too expensive for real-time
application. Therefore, Fox et al. proposed a beam model consisting of a mixture of two
physical causes for a measurement: a hit with an object in the map, or with an object
not yet modeled in the map. The last cause accounts for the dynamic nature of the envi-
ronment. An analogous mixture (Thrun et al., 2005; Choset et al., 2005) adds two more
physical causes: a sensor failure and an unknown cause resulting in a ‘max-range’ measure-
ment and a ‘random’ measurement, respectively. While Thrun et al. and Pfaff et al. use
a continuous model, Choset et al. present the discrete analog of the mixture, taking into
account the limited resolution of the range sensor. Pfaff et al. extend the basic mixture
model for use in Monte Carlo localization. To overcome problems due to the combination of
the limited representational power and the peaked likelihood of the accurate range finder,
they propose an adaptive likelihood model. The likelihood model is smooth during global
localization and more peaked during tracking.

Recently, different researchers tried to tackle the problems associated with beam-based
models, caused by the independence assumptions between beams. Plagemann et al. (2007)
propose a sensor model for the full scan. The model treats the sensor modeling task as a
non-parametric Bayesian regression problem, and solves it using Gaussian processes. It is
claimed that the Gaussian beam processes combine the advantages of the beam-based and
the correlation-based models. Due to the underlying assumption that the measurements
are jointly Gaussian distributed, the Gaussian beam processes are not suited to take into
account the non-Gaussian uncertainty due to the dynamic nature of the environment. An
alternative approach to handle the overly-peaked likelihood functions resulting from the
traditional beam models is proposed by Pfaff, Plagemann, and Burgard (2007). A location-
dependent full scan model takes into account the approximation error of the sample-based
representation, and explicitly models the correlations between individual beams introduced
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by the pose uncertainty. The measurements are assumed to be jointly Gaussian distributed
just as Plagemann et al. proposed. While Plagemann et al. represent the covariance
matrix as a parametrized covariance function using Gaussian processes whose parameters
are learned from data, Pfaff et al. learn the full covariance matrix being less restrictive in
this manner. Despite the modeled correlation between beams, the measurements are still
assumed to be jointly Gaussian distributed, which again limits the applicability in dynamic
environments.

This paper proposes a rigorously Bayesian modeling of the probabilistic range sensor
beam model for dynamic environments, referred to as RBBM. Similar to the work of Thrun
et al. (2005) and Pfaff et al. (2006) the sensor model is derived for a continuous geometry.
Unlike previous models of Thrun et al. (2005), Pfaff et al. (2006), Fox et al. (1999) and
Choset et al. (2005), the mixture components are founded on a Bayesian modeling. This
modeling makes use of probabilistic graphical models, in this case Bayesian networks. Such
graphical models provide a simple way to visualize the structure of a probabilistic model,
and can be used to design and motivate new models (Bishop, 2006). By inspection of the
graph, insights of the model, including conditional independence properties are obtained.
Next, inspired by the adaptive full scan models in the literature (Pfaff et al., 2006, 2007;
Plagemann et al., 2007), the RBBM is extended to an adaptive full scan model. The
underlying sample-based approximation of the full scan model, in contrast to the Gaussian-
based approximation proposed by Pfaff et al. (2007) and Plagemann et al., enables handling
dynamic environments and capturing multi-modality, which occurs even in simple static
environments.

3. Beam Model

We model the probabilistic beam model P (Z = z | X = x, M = m) for dynamic environ-
ments as a Bayesian network. We introduce extra state variables A = a for the positions
of unmodeled objects in the probabilistic sensor model P (z | x, m, a). To prevent an expo-
nential increase of the computational complexity of the state estimation due to the extra
variables, these variables are marginalized out from the total probability before estimation.
The marginalization:

P (z | x, m) =

∫

a

P (z | x, m, a) P (a) da, (1)

avoids increasing the complexity to infer the conditional probability distributions of interest,
P (x) and P (m), while it maintains the modeling of the dynamic nature of the environment.
Section 3.1 explains which extra state variables are physically relevant, while Section 3.3
explains the marginalization of these extra state variables. Section 3.5 summarizes all as-
sumptions and approximations. Finally, Section 3.6 provides useful insights in the obtained
beam model, called RBBM, and in its derivation. Section 3.7 shows that the obtained an-
alytical expression for the RBBM agrees with the proposed Bayesian network by means of
a Monte Carlo simulation.
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Figure 1: The Bayesian network for the probabilistic measurement model supplemented
with the deterministic parameters represented by the smaller solid nodes. A
compact representation with plates (the rounded rectangular boxes) is used. A
plate represents a number, indicated in the lower right corner, of independent
nodes of which only a single example is shown explicitly.
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3.1 Bayesian Model

Bayesian networks graphically represent probabilistic relationships between variables in a
mathematical model, to structure and facilitate probabilistic inference computations with
those variables (Jensen & Nielsen, 2007; Neapolitan, 2004). A Bayesian network is defined
as follows: (i) a set of nodes, each with an associated random variable, connected by directed
edges forming a directed acyclic graph (DAG); (ii) each discrete (continuous) random vari-
able has a finite (infinite) set of mutually exclusive states; (iii) each random variable A with
parents B1, . . . , BN has a conditional probability distribution P (A | B1, . . . , Bn) (known as
conditional probability table in the case of discrete variables). Although the definition of
Bayesian networks does not refer to causality, and there is no requirement that the directed
edges represent causal impact, a well-known way of structuring variables for reasoning under
uncertainty is to construct a graph representing causal relations (Jensen & Nielsen, 2007).
In this case the graphical models are also known as generative models (Bishop, 2006), since
they capture the causal process generating the random variables.

In this application, the range sensor ideally measures z⋆, the distance to the closest
object in the map. An unknown number n of unmodeled objects, possibly preventing the
measurement of the closest object in the map, are however present in the environment.
Depending on the position of the jth unmodeled object along the measurement beam, xNj ,
the unmodeled object occludes the map or not. The unmodeled object only occludes the
map if it is located in front of the closest object contained in the map. k is the total number
of occluding objects out of the n unmodeled objects. The positions of these occluding
objects on the measurement beam are denoted by {xKi}i=1:k. If the map is occluded by an
unmodeled object, the range sensor will ideally measure z⋆

occl = xKc, with xKc the position
of the closest occluding object.

The following extra state variables, a in Eq. (1), are included in the Bayesian model: N

is the discrete random variable indicating the unknown number of unmodeled objects in the
environment; XNj is the continuous random variable for the position of the jth unmodeled
object on the measurement beam; K is the discrete random variable indicating the number
of objects occluding the measurement of the map; XKi is the continuous random variable
for the position of the ith occluding object on the measurement beam; and Z⋆

occl is the
continuous random variable indicating the ideal range measurement of the closest occluding
object. Fig. 1 shows the Bayesian network for the probabilistic range finder sensor model
with the variables Z, X and M that occur in the probabilistic sensor model (defined in
Section 1), all the extra variables N, XN = {XNj}j=1:n, K, XK = {XKi}i=1:k, Z

⋆
occl and the

model parameters p and σm (defined in Section 3.2).

The directed edges in the graphical model represent causal relationships between the
variables. For example, X and M unambiguously determine the measured range Z for
a perfect sensor in the absence of unmodeled occluding objects. The number of occluding
objects K depends on the total number N of unmodeled objects and their positions XN with
respect to the measurement beam. X and M also have a causal impact on K: the larger the
expected measurement z⋆, the higher the possibility that one or more unmodeled objects are
occluding the modeled object corresponding to the expected measurement. The positions
along the measurement beam XK of the occluding objects are equal to the positions of
the K of N unmodeled objects occluding the map. Therefore, random variables XK are
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Figure 2: P (n) (Eq. (2)) for p = 0.65.

not only influenced by K but also by XN . Since the K objects are occluding the map,
their positions along the measurement beam are limited to the interval [0, z⋆], so XK has a
causal dependency on X and M . The ideal measurement z⋆

occl of an occluding object is the
position of the occluding object closest to the sensor, so Z⋆

occl depends on the positions XK

of the occluding objects. Finally, measurement Z also depends on the ideal measurement
of the occluding object Z⋆

occl and the number of occluding objects K. In case of occlusion
(k ≥ 1), z⋆

occl is ideally measured, else (no occlusion, k = 0) z⋆ is ideally measured.

3.2 Conditional Probability Distributions

Inferring the probability distribution of the extra state variables such as P (n) is often in-
feasible. Marginalization of the extra state variables Z, X, M, N, XN , K, XK , Z⋆

occl avoids
the increase in complexity of the estimation problem, but still takes into account the dy-
namic nature of the environment. Marginalization requires the modelling of all conditional
probability tables and conditional probability distributions (pdf) of each random variable
conditionally on its parents.

First of all, some assumptions have to be made for P (n). Assume that the probability
of the number of unmodeled objects decreases exponentially, i.e. P (n) is given by:

P (n) = (1 − p) pn, (2)

with p a measure for the degree of appearance of unmodeled objects. More precisely, p is
the probability that at least one unmodeled object is present. While p is indicated in Fig. 1,
Fig. 2 shows the resulting distribution P (n).

Secondly, assume that nothing is known a priori about the position of the unmodeled
objects along the measurement beam. Hence each unmodeled object’s position is assumed
to be uniformly distributed over the measurement beam (Fig. 3):

P (xNj) =

{
1

zmax
if xNj ≤ zmax

0 otherwise,
(3)
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Figure 3: P (xNj | n) (Eq. (3)).
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Figure 4: P (k | n, x, m) (Eq. (5)) for n = 10 and u = 0.25.

with zmax the maximum range of the range sensor.
Thirdly, assume the positions of the unmodeled objects are independent :

P (xN | n) =
n∏

j=1

P (xNj) . (4)

Next, an expression is needed for the conditional probability: P (k | n, xN , x, m), i.e. the
probability that k of the n unmodeled objects are occluding the map m. An unmodeled
object is occluding the map m if it is located along the measurement beam and in front
of the closest object in the map. It is straightforward to show that P (k | n, xN , x, m) is a
binomial distribution:

P (k | n, xN , x, m) =







(

n

k

)

uk (1 − u)n−k if k ≤ n

0 otherwise,

(5)

where u is the probability that an unmodeled object is occluding the map and

(
n

k

)

=

n!
(n−k)!k! is the number of ways of selecting k objects out of a total of n objects. Fig. 4 shows
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Figure 5: The selection scheme, where each cross eliminates an unmodeled object that is
not occluding the map.

this binomial distribution. Since it was assumed that the positions of the unmodeled objects
were uniformly distributed, u, the probability that an unmodeled object is occluding the
map is:

u = P (xNj < z⋆) =
z⋆

zmax
, (6)

as depicted in Fig. 3.

Furthermore, an analytical expression for P (xK | xN , k) is necessary. The positions of
the occluding objects xK are equal to the positions of the unmodeled objects xN that are
occluding the map, as shown in Fig. 5. In other words, xKi equals xNj if and only if the
unmodeled object is occluding the map, i.e. if xNj ≤ z⋆:

P (xKi | xNj , k, x, m) =







1
P(xNj≤z⋆)

δ (xKi − xNj) = zmax
z⋆ δ (xKi − xNj) if xNj ≤ z⋆

0 otherwise,
(7)

with δ the Dirac function and xKi the occluding object corresponding to xNj .

In case of occlusion, the range sensor ideally measures the distance to the closest oc-
cluding object xKc:

P (z⋆
occl | xK) = δ (z⋆

occl − xKc) . (8)

While range finders are truly quite deterministic since the measurements are to a great
extent explainable by underlying physical phenomena such as specular reflections, inference,
... these underlying phenomena are complex and therefore costly to model. On top of these
underlying phenomena additional uncertainty on the measurement is due to (i) uncertainty
in the sensor position, (ii) inaccuracies of the world model and (iii) inaccuracies of the sensor
itself. So far only disturbances on the measurements due to unmodeled objects in the envi-
ronment are included. To capture the additional uncertainty, additional measurement noise
is added. After taking into account the disturbances by unmodeled objects, unexplainable
measurements and sensor failures (Section 3.4), there is no physical reason to expect that
the mean value of the true measurements deviates from the expected measurement and
that the true measurements are distributed asymmetrically around the mean. Therefore
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symmetrical noise with mean value zero is added. Two facts justify the modeling of the
measurement noise as a normal distribution: (i) the normal distribution maximizes the
information entropy among all distributions with known mean and variance, making it the
natural choice of underlying distribution for data summarized in terms of sample mean and
variance; and (ii) if the underlying phenomena are assumed to have a small, independent
effect on the measurement, the central limit theorem states that under certain conditions
(such as being independent and identically distributed with finite variance), the sum of a
large number of random variables is approximately normally distributed. If the measure-
ment noise is modeled by a zero mean Gaussian with standard deviation σm, the conditional
probability P (z | x, m, z⋆

occl, k) is:

P (z | x, m, z⋆
occl, k) =

{

N (z; z⋆, σm) if k = 0

N (z; z⋆
occl, σm) if k ≥ 1,

(9)

where the conditional probability P (z | x, m, z⋆
occl, k) has two main cases, the first for k = 0

where no occlusion is present and the sensor is observing the map m, and the second case
for k ≥ 1 where the sensor observes an occluding object. σm is included in the Bayesian
network of Fig. 1.

3.3 Marginalization

This section shows the different steps needed to marginalize out the extra state variables in
Eq. (1), and motivates the approximation that leads to an analytical sensor model.

The product rule rewrites the sensor model P (z | x, m) as:

P (z | x, m) =
P (z, x, m)

P (x, m)
=

P (z, x, m)

P (x) P (m)
, (10)

since X and M are independent. The numerator is obtained by marginalizing the joint
probability of the whole Bayesian network pjoint = P (z, x, m, xN , n, xK , k, z⋆

occl) over xN ,
n, xK , k and z⋆

occl:

P (z, x, m) =

∫

z⋆
occl

∑

k

∫

xK

∑

n

∫

xN

pjoint dxN dxK dz⋆
occl. (11)

Using the chain rule to factorize the joint distribution while making use of the conditional
dependencies in the Bayesian network (Fig. 1) yields:

pjoint = P (z | x, m, z⋆
occl, k) P (z⋆

occl | xK)P (k | n, xN , x, m)

P (xK | xN , k, x, m)P (xN | n)P (n)P (x)P (m) . (12)

Substituting (12) and then (11) into (10) gives:

P (z | x, m) =

∫

z⋆
occl

∑

k

P (z | x, m, z⋆
occl, k)

∫

xK

P (z⋆
occl | xK)

∑

n

P (k | n, x, m) P (n)P (xK | n, k, x, m) dxK dz⋆
occl, (13)
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1
z⋆

xKiz⋆ zmaxxKi

P (xKi | x, m)

0

Figure 6: P (xKi | n, k, x, m) (Eq. (15))

where

P (xK | n, k, x, m) =

∫

xN

P (xK | xN , k, x, m)P (xN | n) dxN . (14)

Since the binomial distribution P (k | n, xN , x, m) of Eq. (5) is independent of xN , it is
moved out of the integral over xN in (14), and is further on denoted by P (k | n, x, m).

Marginalizing xN Now study the integral over xN in Eq. (14) and focus on xNj , the
position of one unmodeled object. Substituting (3) and (7) results in:

P (xKi | n, k, x, m) =

∫ z⋆

xNj=0

zmax

z⋆
δ (xKi − xNj)

1

zmax
dxNj

=

{
1
z⋆ if xKi ≤ z⋆

0 otherwise.
(15)

This equation expresses that xKi is uniformly distributed when conditioned on n, k, x

and m as shown in Fig. 6. Since all occluding objects are considered independent:

P (xK | n, k, x, m) =

{(
1
z⋆

)k
if ∀ 0 ≤ i ≤ k : xKi ≤ z⋆

0 otherwise.
(16)

This equation shows that P (xK | n, k, x, m) is independent of n and thus can be moved out
of the summation over n in Eq. (13):

P (z | x, m) =

∫

z⋆
occl

∑

k

P (z | x, m, z⋆
occl, k)P (z⋆

occl | k, x, m)P (k | x, m) dz⋆
occl, (17)

with

P (k | x, m) =
∑

n

P (k | n, x, m)P (n) , (18)

and

P (z⋆
occl | n, k, x, m) =

∫

xK

P (z⋆
occl | xK)P (xK | k, x, m) dxK . (19)
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Marginalizing n First focus on the summation over n in Eq. (18) and substitute (2) and
(5):

P (k | x, m) =
∞∑

n=k

[(
n

k

)

uk (1 − u)n−k (1 − p) pn

]

. (20)

Appendix A proves that this infinite sum simplifies to:

P (k | x, m) =
(
1 − p′

)
p′k, (21)

with

p′ =
up

1 − (1 − u) p
. (22)

Marginalizing xK Now focus on the integral over xK in Eq. (19). Substituting (8) into
this equation results in:

P (z⋆
occl | k, x, m) =

∫

xKc

δ (z⋆
occl − xKc) P (xKc | k) dxKc

= P (xKc = z⋆
occl | k, x, m) . (23)

This equation shows that the conditional probability P (z⋆
occl | k, x, m) represents the prob-

ability that the perfect measurement of the nearest occluding object is z⋆
occl, i.e. the prob-

ability that the nearest occluding object is located at z⋆
occl. This is only the case when one

of the k objects along the measurement beam is located such that z⋆
occl is measured, while

all other objects along the measurement beam are located behind the occluding object, or
expressed in probabilities:

P (z⋆
occl | k, x, m) =

k∑

i=1

P (xK 6=i ≥ z⋆
occl | k, x, m) P (xKi = z⋆

occl | k, x, m) . (24)

Since xK is uniformly distributed over [0, z⋆] as shown by Eq. (15), it follows that:

P (xKi = z⋆
occl | k, x, m) =

1

z⋆
, (25)

P (xKi ≥ z⋆
occl | k, x, m) =

z⋆ − z⋆
occl

z⋆
, (26)

and (24) can be written as:

P (z⋆
occl | k, x, m) = k

1

z⋆

(
z⋆ − z⋆

occl

z⋆

)k−1

. (27)

Marginalizing k After obtaining expressions for P (k | x, m) (Eq. (21)) and P (z⋆
occl | k, x, m)

(Eq. (27)) we turn the attention to the summation over k in Eq. (17):

P (z, z⋆
occl | x, m) =

∑

k

P (z | x, m, z⋆
occl, k)P (z⋆

occl | k, x, m)P (k | x, m) . (28)
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Split this summation in two parts: one for k = 0, when there is no occlusion, and one
for k ≥ 1, and substitute the expressions for P (k | x, m) and P (z | x, m, z⋆

occl, k) given by
Eq. (21) and Eq. (9), respectively:

P (z, z⋆
occl | x, m) = N (z; z⋆, σm) P (z⋆

occl | k = , x, m) P (k =  | x, m) +

N (z; z⋆
occl, σm) P (z⋆

occl | k ≥ , x, m)P (k ≥  | x, m)

= N (z; z⋆, σm) P (z⋆
occl | k = , x, m)

(
 − p′

)
+

N (z; z⋆
occl, σm)α (z⋆

occl | x, m) , (29)

where α (z⋆
occl | x, m) = P (z⋆

occl | k ≥ 1, x, m)P (k ≥ 1 | x, m)

=
∞∑

k=1

P (z⋆
occl | k, x, m)

(
1 − p′

)
p′k. (30)

Substituting (27) into (30) results in:

α (z⋆
occl | x, m) =

∞∑

k=1

k
1

z⋆

(
z⋆ − z⋆

occl

z⋆

)k−1
(
1 − p′

)
p′k, (31)

which is simplified using Eq. (114) in Appendix A:

α (z⋆
occl | x, m) =

1

z⋆

(
1 − p′

)
p′

∞∑

k=1

k

(
z⋆ − z⋆

occl

z⋆
p′
)k−1

=
p′ (1 − p′)

z⋆
[

1 −
(

z⋆−z⋆
occl

z⋆ p′
)]2 . (32)

Substituting (32) into (29) gives:

P (z, z⋆
occl | x, m) = N (z; z⋆, σm)P (z⋆

occl | k = , x, m)
(
 − p′

)
+

N (z; z⋆
occl, σm)

( − p′) p′

z⋆
[

 −
(

z⋆−z⋆
occl

z⋆ p′
)] . (33)

Marginalizing z
⋆

occl
Substituting (33) into (17) shows that only the integration over z⋆

occl

still has to be carried out:

P (z | x, m) = (1 − p′)N (z; z⋆, σm) + p′
∫ z⋆

z⋆
occl=

N (z; z⋆
occl, σm)

 − p′

z⋆
[

 −
(

z⋆−z⋆
occl

z⋆ p′
)] dz⋆

occl .(34)

The first term of the right hand side is a Gaussian distribution around the ideal measure-
ment, multiplied with the probability of no occlusion (k = 0). The second term is an
integration over all possible positions of the occluding object of a scaled Gaussian distribu-
tion centered at the ideal measurement of the occluding object (z⋆

occl). The scaling factor
represents the probability that the occluding objects are located such that z⋆

occl is measured.
From Eq. (20) and Eq. (32) it follows that the scaling factor can be written as:

α (z⋆
occl | x, m) =

p (1 − p)

zmax

[

1 −
(

1 −
z⋆
occl

zmax

)

p
]2 , (35)
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Figure 7: Comparison of the approximation (Eq.(36)) of the integral in Eq. (34) with a
finite sum approximation with small step size for p = 0.8, zmax = 10, z⋆ = 5 and
σm = 0.15.
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Figure 8: Comparison of the obtained RBBM P (z | x, m) (Eq. (37)) with a finite sum ap-
proximation of Eq. (34) with small step size for p = 0.8, zmax = 10, z⋆ = 5 and
σm = 0.15.
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which is independent of z⋆.
Until now, no approximations where made to obtain Eq. (34) for the beam model

P (z | x, m). The integral over the scaled Gaussian distributions however, cannot be ob-
tained analytically. Therefore, a first approximation in the marginalization is made by
neglecting the noise on the range measurement in case of occlusion, i.e.: N (z; z⋆

occl, σm) ≈
δ (z − z⋆

occl). Using this approximation the second term in the right hand side of Eq. (34)
becomes:

p′ (1 − p′)

z⋆
[
1 − z⋆−z

z⋆ p′
]2 =

p (1 − p)

zmax

[

1 −
(

1 − z
zmax

)

p
]2 . (36)

Fig. 7 shows the quality of the approximation of the integral in Eq. ( 34) compared to a
finite sum approximation with small step size. The approximation introduces a discontinuity
around z = z⋆. Using the proposed approximation for the integral the resulting beam model
is:

P (z | x, m) =







(1 − p′)N (z; z⋆, σm) + p′
(−p′)

z⋆[−( z⋆
−z

z⋆ p′)]
 if z ≤ z⋆

(1 − p′)N (z; z⋆, σm) otherwise,
(37)

as shown in Fig. 8.
The RBBM can be written as a mixture of two components:

P (z | x, m) = π1Phit (z | x, m) + π2Poccl (z | x, m) , (38)

with π1 =
(
1 − p′

)
(39)

π2 = p′ (40)

Phit (z | x, m) = N (z; z⋆, σm) (41)

Poccl (z | x, m) =







1
z⋆

1−p′

[1−( z⋆
−z

z⋆ p′)]
2 if 0 ≤ z ≤ z⋆

0 otherwise.
(42)

3.4 Extra Components

Occasionally, range finders produce unexplainable measurements, caused by phantom read-
ings when sonars bounce off walls, or suffer from cross-talk (Thrun et al., 2005). Fur-
thermore additional uncertainty on the measurements is caused by (i) uncertainty in the
sensor position, (ii) inaccuracies of the world model and (iii) inaccuracies of the sensor itself.
These unexplainable measurements are modeled using a uniform distribution spread over
the entire measurement range [0, zmax]:

Prand (z | x, m) =

{
1

zmax
if 0 ≤ z ≤ zmax,

0 otherwise.
(43)

Furthermore, sensor failures typically produce max-range measurements, modeled as a
point-mass distribution centered around zmax:

Pmax (z | x, m) = I (zmax) =

{

1 if z = zmax,

0 otherwise.
(44)
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These two extra components can be added to Eq. (38), resulting in the final RBBM:

P (z | x, m) = π1 Phit (z | x, m) + π2 Poccl (z | x, m) + π3 Prand (z | x, m) + π4 Pmax (z | x, m) ,

(45)
where π3 and π4 are the probabilities that the range finder returns an unexplainable mea-
surement and a maximum reading, respectively. Furthermore,

π1 =
(
1 − p′

)
(1 − π3 − π4) and (46)

π2 = p′(1 − π3 − π4), (47)

while Phit (z | x, m), Poccl (z | x, m), Prand (z | x, m) and Pmax (z | x, m) are given by (41),
(42), (43) and (44) respectively.

3.5 Assumptions and Approximations

This section summarizes the assumptions and approximations made to arrive at the RBBM
of Eq. (45).
Section 3.2 makes four assumptions:

(i) the probability of the number of unmodeled objects decreases exponentially, Eq. (2);
(ii) the unmodeled object’s position is uniformly distributed over the measurement beam

(Fig. 3, Eq. (3));
(iii) the positions of the unmodeled objects are independent, Eq. (4); and
(iv) the measurement noise is zero mean normally distributed with standard deviation

σm (Eq. 9).
Furthermore, Section 3.3 makes one approximation to obtain an analytical expression

by neglecting the noise on the range measurement in case of occlusion (Eq. (34)).

3.6 Interpretation

The following paragraphs give some insights in the RBBM and its derivation.
The mixture representation (45) shows the four possible causes of a range measurement:

a hit with the map, a hit with an unmodeled object, an unknown cause resulting in a
random measurement and a sensor failure resulting in a maximum reading measurement.

The derivation of Section 3.3 shows that the position of each of the occluding objects is
uniformly distributed between the sensor and the ideally measured object in the environment
(Eq. (15), Fig. 6). This is perfectly reasonable considering the assumption of uniformly
distributed unmodeled objects.

Furthermore, some insights are provided concerning α (z⋆
occl | x, m) (Eq. (35), Fig. 7),

the probability that the occluding objects are located such that z⋆
occl is measured. First

of all, this probability is independent of the location of the ideally measured object in the
environment (z⋆) (except that this probability is zero for z > z⋆). This agrees with intuition,
since one expects the measurements caused by the occluding objects to be independent of z⋆,
the measurement in the case of no occlusion. Second, the probability of sensing unmodeled
objects decreases with the range, as expected. This is easily explained with the following
thought experiment: if two objects are present with the same likelihood in the perception
field of the range finder, and the first object is closest to the range sensor, then the sensor
is more likely to measure the first object. To measure the second object, the second object
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should be present and the first object should be absent (Thrun et al., 2005). Moreover, the
rate of decrease of the likelihood of sensing unmodeled objects is only dependent on p, the
degree of appearance of unmodeled objects.

The probability of measuring a feature of the map, and therefore the integral under the
scaled Gaussian (1−p′)Phit (z | x, m) (45), decreases with the expected range. This is easily
explained since the probability that the map is not occluded decreases when the feature is
located further away.

Finally, the discontinuity of the RBBM (Fig. 8) was shown to be caused by the only
approximation made (Section 3.5). Since the state of the art range sensors are very accu-
rate, neglecting the measurement noise on the measurement of an occluding object is an
acceptable approximation. This is also shown by the experiments presented in Section 5.

With respect to the state of the art beam model of Thrun et al. (2005), the model pro-
posed here, Eq. (45), has: (i) a different functional form for the probability of range mea-
surements caused by unmodeled objects, (ii) an intuitive explanation for the discontinuity
encountered in the cited paper, and (iii) a reduction in the number of model parameters.
Thrun et al. find that Poccl (z | x, m) has an exponential distribution. This exponential
distribution results from the following underlying assumptions (although not revealed by
the authors): (i) the unmodeled objects are equally distributed in the environment and (ii)
a beam is reflected with a constant probability at any range. The last assumption equals
assuming that the probability that an unmodeled object is located at a certain distance is
constant. This assumption fails to capture that the number of unmodeled object is finite
and that it is more probable to have a limited number of unmodeled objects than a huge
number of them. While we also assume that unmodeled objects are equally distributed in
the environment (Eq. (3)), we assume that the number of unmodeled objects is geomet-
rically distributed (Eq. (2)) capturing the finiteness of the number of unmodeled objects
and the higher probability of a smaller number of unmodeled objects. The modeling of
the finiteness of the number of unmodeled objects and the higher probability of a smaller
number of unmodeled objects results in a quadratic decay of Poccl (z | x, m), instead of the
exponential decay of Poccl (z | x, m) found by Thrun et al..

As stated in the previous paragraph, the discontinuity of the RBBM (Fig. 8) is caused
by an approximation. While Thrun’s model considers the rate of decay of Poccl (z | x, m)
to be independent of π2, the probability of an occlusion, it is shown here that they both
depend on the same parameter p′ (Eq. (42), Eq. (47)). Therefore the RBBM has fewer
parameters than Thrun’s model.

3.7 Validation

The goal of this section is to show by means of a Monte Carlo simulation2 that the RBBM,
Eq. (45), agrees with the Bayesian network in Fig. 1. A Monte Carlo simulation is an approx-
imate inference method for Bayesian networks. The idea behind the Monte Carlo simulation
is to draw random configurations of the network variables Z, X, M , N , XN = {XNj}j=1:n,
K, XK = {XKi}i=1:k and Z⋆

occl and to do this a sufficient number of times. Random con-
figurations are selected by ancestral sampling (Bishop, 2006), i.e. by successively sampling

2. A Monte Carlo simulation is also known as stochastic simulation in the Bayesian network literature
(Jensen & Nielsen, 2007).
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Figure 9: Comparison of the obtained RBBM P (z | x, m) (45), a finite sum approximation
of Eq. (34) with small stepsize and the normalized histogram of 500 samples
obtained by a Monte Carlo Simulation of the proposed Bayesian network (Fig. 1)
for p = 0.8, zmax = 10, z⋆ = 5, σ = 0.15, π3 = 0.2 and π4 = 0.02.

the states of the variables following the causal model defined by the directed acyclic graph
of the Bayesian network.

Fig. 9 shows that the RBBM agrees with a Monte Carlo simulation with 500 samples of
the proposed Bayesian network.

4. Variational Bayesian Learning of the Model Parameters

The RBBM, Eq. (45), depends on four independent model parameters:

Θ =
[
σm, p′, π3, π4

]
, (48)

while zmax is a known sensor characteristic. This set of parameters has a clear physical
interpretation; σm is the standard deviation of the zero mean Gaussian measurement noise
in Eq. (9) governing Phit (z | x, m) (Eq. (41)); p′, defined in Eq. (21), is the probability that
the map is occluded (P (k ≥ 1 | x, m)); π3 and π4 are the probabilities that the range finder
returns an unexplainable measurement (unknown cause) and a maximum reading (sensor
failure), respectively.

An alternative non-minimal set of parameters containing all the mixing coefficients π =
[π1, π2, π3, π4] could be used: Θ′ = [σm, π], provided that the constraint:

S=4∑

s=1

πs = 1, (49)
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π1, π2, π3, π4

σm

Figure 10: Graphical representation of the mixture measurement model (Eq. (45)) with
latent correspondence variable Dι = {Dι1, Dι2, Dι3, Dι4} and model parameters
Θ′ = [σm, π1, π2, π3, π4].

is taken into account. The set of minimal parameters Θ straightforwardly follows from the
non-minimal set Θ′ since:

p′ =
π2

1 − π3 − π4
, (50)

as can be seen from Eq. (47).

The physical interpretation of the parameters Θ allows us to initialize them by hand
with plausible values. However, another, more flexible way is to learn the model parameters
from actual data containing J measurements Z = {zι}ι=1:J with corresponding states X =
{xι}ι=1:J and map m. Furthermore, learning the model parameters is also a validation
for the proposed analytical model: if the learning algorithm succeeds in finding model
parameters such that the resulting distribution gives a good explanation of the data, the
analytical model is likely to agree well with reality.

In this paper two different estimators3, a maximum likelihood (ML) (Dempster, Laird,
& Rubin, 1977; McLachlan & Krishnan, 1997; Bishop, 2006) and a variational Bayesian
(VB) (Beal & Ghahramani, 2003; Bishop, 2006) estimator, are presented to learn the model
parameters from data. Section 4.1 derives a maximum likelihood estimator, which is a
known approach for this problem, but reformulated for the RBBM. This ML estimator
only provides point estimates of the parameters and leads to overfitting since the likelihood
function is generally higher for more complex model structures. Therefore, we propose a
variational Bayesian (VB) estimator in Section 4.2, which is a new approach for learning the
parameters for beam models. The VB estimator is a fully Bayesian learning approach; priors
over the unknown parameters are included, complex (overfitting) models are punished, and
a full probability distribution over the parameters is obtained.

3. This paper approximately follows the notation by Bishop (2006).
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4.1 Maximum Likelihood Learning

A maximum likelihood estimator is proposed to identify the model parameters Θ that
maximize the likelihood of the data Z with corresponding X and map m:

Θ = arg max
Θ

log P (Z | X, m,Θ) . (51)

When using the mixture representation of the RBBM (Eq. (45)), the estimation problem
can be formulated as finding the ML estimates for the parameters Θ′ = [σm, π] provided
that the constraint in Eq. (49) is included. In general it is not known which of the four
possible causes actually caused each of the measurements. In that case the ML estimation
problem is difficult and lacks a closed-form solution. If however, the corresponding causes
of each of the measurements are known, the solution is easily obtained in closed form.
Therefore, introduce a latent correspondence variable d = [d1, d2, d3, d4], representing the
unknown cause, using a 1-of-S representation. The elements ds of d give the probability
that the measurement is a result of the s’th cause. The graphical representation of the
mixture formulation including the latent correspondence d variable is shown in Fig. 10.
Although the ML estimation problem lacks a closed-form solution due to the unknown
correspondences, an expectation-maximization approach (EM) can solve the problem by
iterating an expectation and a maximization step. The expectation step calculates an
expectation for the correspondence variables ds while the maximization step computes the
other model parameters under these expectations.

Algorithm 1 ML estimator for model parameters

while convergence criterion not satisfied do

for all zι in Z, with ι = 1 : J , where J = |Z|−1 do

calculate z⋆
m

η = [ π1 Phit (zι | xι, m) + π2 Poccl (zι | xι, m) + π3 Prand (zι | xι, m)+
π4 Pmax (zι | xι, m)]−1

γ (dι1) = η π1 Phit (zι | xι, m)
γ (dι2) = η π2 Poccl (zι | xι, m)
γ (dι3) = η π3 Prand (zι | xι, m)
γ (dι4) = η π4 Pmax (zι | xι, m)

end for

π1 = J−1
∑

ι γ (dι1)
π2 = J−1

∑

ι γ (dι2)
π3 = J−1

∑

ι γ (dι3)
π4 = J−1

∑

ι γ (dι4)
p′ = π2

1−π3−π4

σm =

√
P

ι γ(dι1)(zι−z⋆
ι )2

P

ι γ(dι1)

end while

return Θ = [σm, p′, π3, π4]
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The marginal distribution over the correspondence variable d is specified in terms of the
mixing coefficients πs such that:

P (ds = 1) = πs, (52)

where the parameters π must satisfy the following two conditions:
{

0 ≤ πs ≤ 1,
∑S

s=1 πs = 1.
(53)

Since d uses a 1-of-S representation, the marginal distribution can be written as:

P (d) =
S∏

s=1

πds
s . (54)

The EM-algorithm expresses the complete-data log likelihood, i.e. the log likelihood of
the observed and the latent variables:

log P
(
Z, D | X, Θ′, m

)
=

J∑

ι=1

(dι1 (log π1 + log Phit (zι | xι, m)) + · · ·

dι2 (log π2 + log Poccl (zι | xι, m)) + · · ·

dι3 (log π3 + log Prand (zι | xι, m)) + · · ·

dι4 (log π4 + log Pmax (zι | xι, m))) , (55)

where Z = {zι}ι=1:J is the vector containing the observed data and D = {dι} is the vector
containing the matching correspondences.

Expectation step: Taking the expectation of the complete-data log likelihood in Eq. (55)
with respect to the posterior distribution of the latent variables gives:

Q(Θ′, Θ′old) = ED

[
log P

(
Z, D | X, Θ′, m

)]

=
J∑

ι=1

(γ (dι1) (log π1 + log Phit (zι | xι, m)) + · · ·

γ (dι2) (log π2 + log Poccl (zι | xι, m)) + · · ·

γ (dι3) (log π3 + log Prand (zι | xι, m)) + · · ·

γ (dι4) (log π4 + log Pmax (zι | xι, m))) , (56)

where γ (dιs) = E [dιs] is the discrete posterior probability, or responsibility (Bishop, 2006),
of cause s for data point zι. In the E-step, these responsibilities are evaluated using Bayes’
theorem, which takes the form:

γ (dι1) = E [dι] =
π1Phit (zι | xι, m)

Norm
, (57)

γ (dι2) = E [dι] =
π2Poccl (zι | xι, m)

Norm
, (58)

γ (dι3) = E [dι] =
π3Prand (zι | xι, m)

Norm
, and (59)

γ (dι4) = E [dι] =
π4Pmax (zι | xι, m)

Norm
, (60)
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where Norm is the normalization constant:

Norm = π1Phit (zι | xι, m) + π2Poccl (zι | xι, m) + π3Prand (zι | xι, m) + π4Pmax (zι | xι, m) .

(61)
Two measures are derived from the responsibilities:

Js =
J∑

ι=1

γ (dιs) , and (62)

z̄s =
1

Js

J∑

ι=1

γ (dιs) zι, (63)

where Js is the effective number of data points associated with cause s, and z̄s is the mean
of the effective data points associated with cause s.

Maximization step: In the M-step the expected complete-data log likelihood in Eq. (56)
is maximized with respect to the parameters Θ′ = [σm, π]:

Θ′new = arg max
Θ′

Q(Θ′, Θ′old). (64)

Maximization with respect to πs using a Lagrange multiplier to enforce the constraint
∑

s πs = 1 results in:

πs =
Js

J
, (65)

which is the effective fraction of points in the data set explained by cause s. Maximization
with respect to σm results in:

σm =

√
√
√
√ 1

J1

J∑

ι=1

γdι1 (zι − z⋆
ι )2. (66)

Algorithm 1 summarizes the equations for the ML estimator, further on called ML-EM
algorithm.

4.2 Variational Bayesian Learning

The ML estimator only provides point estimates of the parameters and is sensitive to
overfitting (Bishop, 2006). Therefore, we propose a variational Bayesian (VB) estimator,
which is a new approach for learning the parameters for beam models. The VB estimator is a
fully Bayesian learning approach; priors over the unknown parameters are included, complex
(overfitting) models are punished, and a full probability distribution over the parameters is
obtained. The VB estimator has only a little computational overhead as compared to the
ML estimator (Bishop, 2006).

The Bayesian approach attempts to integrate over the possible values of all uncertain
quantities rather than optimize them as in the ML approach (Beal, 2003; Beal & Ghahra-
mani, 2003). The quantity that results from integrating out both the latent variables and the
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parameters is known as the marginal likelihood4: P (Z) =
∫

P (Z | D, Θ) P (D, Θ) d(D, Θ),
where P (D, Θ) is a prior over the latent variables and the parameters of the model. In-
tegrating out the parameters penalizes models with more degrees of freedom, since these
models can a priori model a larger range of data sets. This property of Bayesian integrations
is known as Occam’s razor, since it favors simpler explanations for the data over complex
ones (Jeffreys & Berger, 1992; Rasmussen & Ghahramani, 2000).

Unfortunately, computing the marginal likelihood, P (Z), is intractable for almost all
models of interest. The variational Bayesian method constructs a lower bound on the
marginal likelihood, and attempts to optimize this bound using an iterative scheme that
has intriguing similarities to the standard EM algorithm. To emphasize the similarity with
ML-EM, the algorithm based on variational Bayesian inference is further on called VB-EM.

By introducing the distribution Q over the latent variables the complete log marginal
likelihood can be decomposed as (Bishop, 2006):

log P (Z) = L (Q) + KL (Q||P ) , (67)

where

L (Q) =

∫

Q (D, Θ) log

(
P (Z, D, Θ)

Q (D, Θ)

)

d (D, Θ) , (68)

and KL (Q||P ) is the KL-divergence between Q and P . Since this KL-divergence is always
greater or equal than zero, L (Q) is a lower bound on the log marginal likelihood. Maximiz-
ing this lower bound with respect to the distribution Q (D, Θ) is equivalent to minimizing
the KL-divergence. If any possible choice for Q (D, Θ) is allowed, the maximum of the
lower bound would occur when the KL-divergence vanishes, i.e. when Q (D, Θ) is equal
to the posterior distribution P (D, Θ | Z). Working with the true posterior distribution is
however often intractable in practice. One possible approximate treatment considers only a
restricted family of distributions Q (D, Θ) and seeks the member of this family minimizing
the KL-divergence. The variational Bayesian treatment uses a factorized approximation, in
this case between the latent variables D and the parameter Θ:

Q (D, Θ) = QD(D)QΘ (Θ) . (69)

The variational approach makes a free form (variational) optimization of L (Q) with respect
to the distributions QD(D) and QΘ (Θ), by optimizing with respect to each of the factors
in turn. The general expressions for the optimal factors are (Bishop, 2006):

log Q⋆
D(D) = EΘ [log P (Z, D, Θ)] + Cte, and (70)

log Q⋆
Θ (Θ) = ED [log P (Z, D, Θ)] + Cte, (71)

where ⋆ indicates the optimality. These expressions give no explicit solution for the factors,
because the optimal distribution for one of the factors depends on the expectation computed
with respect to the other factor. Therefore an iterative procedure, similar to EM, that cycles
through the factors and replaces each in turn with a revised optimal estimate is used.

4. To avoid overloading the notation the conditioning on the map m and the positions X = {xι} associated
with the data Z = {zι} is not explicitly written.
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Introducing priors Since the variational Bayesian approach is a fully Bayesian approach,
priors have to be introduced over the parameters Θ′′ = [µ, σm, π]. Remark that in the
variational Bayesian estimator not only the standard deviation σm governing Phit (z | x, m)
(Eq. (41)) is estimated but also the means, referred to as µ further on. Since the analysis is
considerably simplified if conjugate prior distributions are used, a Dirichlet prior is chosen
for the mixing coefficients π:

P (π) = Dir (π|α0) , (72)

as well as an independent Gaussian-Wishart prior5 for the mean µ and the precision λm =
σ−1

m of the Gaussian distribution Phit (z | x, m) (Eq. (41)):

P (µ, λm) = N
(
µ|µ̄, (βλm)−

)
W (λm|W, ν) . (73)

α0 gives the effective prior number of observations associated with each component of the
mixture. Therefore, if the value of α0 is set small, the posterior distribution will be mainly
influenced by the data rather than by the prior.

Expectation step Using these conjugate priors, it can be shown that the factor Q⋆
D

(D)
can be written as:

Q⋆
D(D) =

J∏

ι=1

rdι1
ι1 rdι2

ι2 rdι3
ι3 rdι4

ι4 , (74)

where the quantities rιs are responsibilities analogous to the γιs of Eq. (57) and are given
by:

rιs =
ριs

ρι1 + ρι2 + ρι3 + ρι4
, (75)

where

log ρι1 = E [log π1] + E [log Phit (zι | xι, m)] , (76)

log ρι2 = E [log π2] + E [log Poccl (zι | xι, m)] , (77)

log ρι3 = E [log π3] + E [log Prand (zι | xι, m)] , and (78)

log ρι4 = E [log π4] + E [log Pmax (zι | xι, m)] . (79)

The above equations can be rewritten as:

log ρι1 = E [log π1] +



E [log |λm|] −




log (π) −




Eµ,λm

[

(zι − µ)T λ (zι − µ)
]

, (80)

log ρι2 = E [log π2] + log Poccl (zι | xι, m) , (81)

log ρι3 = E [log π3] + log Prand (zι | xι, m) , and (82)

log ρι4 = E [log π4] + log Pmax (zι | xι, m) , (83)

5. The parameters are as defined by Bishop (2006).
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in which the expectations can be calculated as follows:

E [log πs] = Ψ (αs) − Ψ (α1 + α2 + α3 + α4) , (84)

E [log |λm|] = Ψ
(ν

2

)

+ log 2 + log |W |, and (85)

Eµ,λm

[

(zι − µ)T λ (zι − µ)
]

= β−1 + ν (zι − µ̄)T W (zι − µ̄) , (86)

where Ψ is the digamma function.

Three measures are derived from the responsibilities:

Js =

J∑

ι=1

rιs, (87)

z̄s =
1

Js

J∑

ι=1

rιszι, and (88)

Cs =
1

Js

J∑

ι=1

rιs (zι − z̄s) (zι − z̄s)
T , (89)

where Js is the effective number of data points associated with cause s, z̄s is the mean of
the effective data points associated with cause s and Cs the covariance of the effective data
points associated with cause s. Due to the similarity with the E-step of the EM-algorithm,
the step of calculating the responsibilities in the variational Bayesian inference is known as
the variational E-step.

Maximization step In accordance with the graphical representation in Fig. 10, it can
be shown that the variational posterior QΘ (Θ) factorizes as Q (π)Q (µ1, σm) and that the
first optimal factor is given by a Dirichlet distribution:

Q⋆ (π) = Dir (π|α) , (90)

with

αs = α0 + Js. (91)

The second optimal factor is given by a Gaussian-Wishart distribution:

Q⋆ (µ1, λm) = N
(
µ|µ̄, (βλm)−

)
W (λm|W, ν) , (92)

with

β = β0 + J1, (93)

µ̄ =
1

β
(β0µ̄0 + J1z̄1) , (94)

W−1 = W−1
0 + J1C1 +

β0J1

β0 + J1
(z̄1 − µ̄0) (z̄1 − µ̄0)

T , and (95)

ν = ν0 + J1. (96)
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These update equations are analogous to the M-step of the EM-algorithm for the maximum
likelihood solution and is therefore known as the variational M-step. The variational M-step
computes a distribution over the parameters (in the conjugate family) rather than a point
estimate as in the case of the maximum likelihood estimator. This distribution over the
parameters allows us to calculate a predictive density P (z | Z).

Due to the use of conjugate priors, the integrals in the predictive density can be calcu-
lated analytically:

P (z | Z) =
α1St

(

z|µ̄, νβ
1+β

W, ν
)

+ α2Poccl (z | x, m) + α3Prand (z | x, m) + α4Pmax (z | x, m)

α1 + α2 + α3
,

(97)
where St (.) is a Student’s t-distribution. When the size J of the data is large, the Student’s
t-distribution approximates a Gaussian and the predictive distribution can be rewritten as:

P (z | Z) =
α1N (z|µ, λm) + αPoccl (z | x, m) + αPrand (z | x, m) + αPmax (z | x, m)

α1 + α2 + α3 + α4
. (98)

If point estimates are desired for the parameters, maximum a posteriori estimates can be
obtained as follows:

π̂s = E [πs] =
αs

α + α + α + α
(99)

σm =

(
νβ

1 + β
W

)− 1
2

, and (100)

p′ =
π̂2

1 − π̂3 − π̂4
. (101)

Algorithm 2 summarizes the equations for the VB-EM estimator.

5. Experiments

The goal of this section is threefold: (i) to learn the model parameters (Eq. (48)) of the
RBBM (Eq. (45)) from experimental data, (ii) to compare the results of the proposed
ML-EM and VB-EM estimator (Section 4), and (iii) to compare the results of the proposed
estimators with the learning approach of Thrun’s model proposed by Thrun et al. (2005). To
this end two experimental setups from different application areas in robotics are used. The
data for the first learning experiment is gathered during a typical mobile robot application
in which the robot is equipped with a laser scanner and is travelling in an office environment.
The data for the second learning experiment is gathered during a typical industrial pick-
and-place operation in a human populated environment. A laser scanner is mounted on
the industrial robot to make it aware of people and other unexpected objects in the robot’s
workspace.

To see how well the learned model explains the experiment, the learned continuous pdf
P (z | x, m,Θ) of Eq. (45) has to be compared with the discrete pdf of the experimental
data (histogram) H (z). To this end, the learned pdf is first discretized using the same bins
{zf}f=1:F as the experimental pdf. To quantize the difference between the learned and the
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Algorithm 2 Variational Bayesian estimator for model parameters

while convergence criterion not satisfied
for all zι in Z, with ι = 1 : J , where J = |Z|−1

calculate z⋆
m

ρι1 = exp
[
Ψ (α1) − Ψ (α1 + α2 + α3 + α4) + 1

2

(
Ψ
(

ν
2

)
+ log 2 + log |W |

)
− 1

2 log (2π) . . .

· · · − 1
2

(

β−1 + ν (zι − µ̄)T W (zι − µ̄)
)]

ρι2 = exp [Ψ (α2) − Ψ (α1 + α2 + α3 + α4) + log Poccl (zι | x, m)]
ρι3 = exp [Ψ (α3) − Ψ (α1 + α2 + α3 + α4) + log Prand (zι | x, m)]
ρι4 = exp [Ψ (α4) − Ψ (α1 + α2 + α3 + α4) + log Pmax (zι | x, m)]
η = ρι1 + ρι2 + ρι3 + ρι4

rι1 = η−1ρι1

rι2 = η−1ρι2

rι3 = η−1ρι3

rι4 = η−1ρι4

end for

J1 =
∑J

ι=1 rι1

J2 =
∑J

ι=1 rι2

J3 =
∑J

ι=1 rι3

J4 =
∑J

ι=1 rι4

z̄1 = 1
J1

∑J
j=1 rι1zι

C1 = 1
J1

∑J
ι=1 rι1 (zι − z̄1) (zι − z̄1)

T ,

α1 = α0 + J1.
α2 = α0 + J2.
α3 = α0 + J3.
α4 = α0 + J4.
β = β0 + J1

µ̄ = 1
β

(β0µ̄0 + J1z̄1)

W−1 = W−1
0 + J1C1 + β0J1

β0+J1
(z̄1 − µ̄0) (z̄1 − µ̄0)

T

ν = ν0 + J1

π1 = α1
α1+α2+α3+α4

π2 = α2
α1+α2+α3+α4

π3 = α3
α1+α2+α3+α4

π4 = α4
α1+α2+α3+α4

p′ = π2
1−π3−π4

σm =
(

νβ
1+β

W
)− 1

2

end while

return {α1, α2, α3, α4, β, µ̄, W, ν,Θ′′ = [µ, σm, p′, π3, π4]}
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Figure 11: Data for second learning experiment reported by Thrun et al. (2005). These
data consist of two series of measurements obtained with a mobile robot travel-
ing through a typical office environment. From the set of measurements 10000
measurements that are centered around two different expected ranges are se-
lected.

experimental pdf two ‘distance’ measures are used: the discrete KL-divergence:

d1 = KL (H||P ) ≈
F∑

f=1

H (zf ) log
H (zf )

P (zf | x, m, Θ)
, (102)

and the square root of the discrete Hellinger distance:

d2 = DH (H||P ) ≈

√
√
√
√

F∑

f=1

(

H (zf )
1
2 − P (zf | x, m,Θ)

1
2

)2
. (103)

The latter is known to be a valid symmetric distance metric (Bishop, 2006).

5.1 First Learning Experiment

In a first learning experiment, the experimental data reported by Thrun et al. (2005) is used.
The data consists of two series of measurements obtained with a mobile robot traveling
through a typical office environment. From the set of measurements, 10000 measurements
that are centered around two different expected ranges, are selected. The two obtained
sets with different expected ranges are shown in Fig. 11. The parameters of the learning
algorithms are listed in Table 1. Fig. 12 and Table 2 show the results of the ML-EM and
VB-EM estimators for the RBBM compared to the results of the ML estimator for Thrun’s
model (Thrun et al., 2005) for these two sets. The results are obtained by running the
learning algorithms for 30 iteration steps.
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ML-EM VB-EM ML-EM
RBBM RBBM Thrun’s model

σm,init = 0.5 p′init = 1
3 α3,init = 1

8 σm,init = 0.5
p′init = 0.4 βinit = 5000 α4,init = 1

8 zhit,init = 0.4
π3,init = 0.2 Winit = 12 β0 = 5 zshort,init = 0.3
π4,init = 0.1 µ̄init = xmp W0 = 50 zmax,init = 0.1

νinit = 100 µ̄0 = xmp zrand,init = 0.2
α1,init = 5

8 ν0 = 100 λshort,init = 0.1
α2,init = 1

8 α0 = 1

Table 1: EM-parameters for first and second learning experiment (all in SI-units). In the
ML approaches, the mean of Phit (z | x, m) is set to xmp, i.e. the most probable
bin of the histogram of the training set H (z).
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Figure 12: Comparison of the results of the ML-EM and VB-EM estimators for the RBBM
and the results of a maximum likelihood estimator for Thrun’s model (Thrun
et al., 2005) for the data of Fig. 11.

The proposed ML-EM and VB-EM estimator outperform the ML-EM estimator for
Thrun’s model for the studied data sets. Despite the reduced number of parameters of
the RBBM compared to Thrun’s model (Section 3.6), the RBBM has at least the same
representational power.
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Experiment d1 (Eq. (102)) d2 (Eq. (103))

ML-EM VB-EM ML-EM ML-EM VB-EM ML-EM
RBBM RBBM Thrun’s model RBBM RBBM Thrun’s model

short range 0.5295 0.5127 0.7079 0.3166 0.2971 0.5629
long range 0.4366 0.4368 0.5852 0.1683 0.2100 0.3481

average 0.4830 0.4747 0.6465 0.2425 0.2535 0.4555

Table 2: Discrete KL-divergence (d1) and square root Hellinger distance (d2) for the first
learning experiment between the training set and the results of the ML-EM and
VB-EM estimators for the RBBM and the ML-EM estimator for Thrun’s model
(Thrun et al., 2005).

(a) Front view (b) Side view (c) Zoomed front view

Figure 13: Setup for the second learning experiment with a Sick LMS 200 laser scanner
mounted on the first axis of an industrial Kuka 361 robot.

5.2 Second Learning Experiment

The data for the second learning experiment is gathered during the execution of a typical
industrial pick-and-place operation in a human-populated environment. A Sick LMS 200
laser scanner is mounted on the first axis of an industrial Kuka 361 robot (Fig. 13). The
laser scanner provides measurements of the robot environment and therefore of people and
other unexpected objects in the robot’s workspace. Processing these measurements is a first
step towards making industrial robots aware of their possibly changing environment and as
such of moving these robots out of their cages.

209



De Laet, De Schutter & Bruyninckx

 

 

selected ranges
cut out region
environment

x[m]

y
[m

]

Robot

-6

-6

-4

-4

-2

-2

0

0

2

2

4

4 6

Figure 14: Map build of the robot’s static environment, i.e. without any unexpected objects
or people moving around, by rotating the first axis of the industrial robot. For
safety reasons, people were not allowed to move inside the safety region (circle
with radius 1m). Therefore, measurements smaller than 1m are discarded. The
studied expected ranges in the second learning experiment range from 3.0m to
4.5m in steps of 0.1m and are indicated in the figure by the selected ranges
region.

In a first step, a map (Fig. 14) is build of the robot’s static environment, i.e. without
any unexpected objects or people moving around, by rotating the first axis of the industrial
robot. Next, the robot performs a pick-and-place operation while a number of people are
walking around at random in the robot environment. Different sets of measurements are
acquired each with a different number of people. Similar to the first learning experiment,
measurements are selected centered around different expected ranges from the acquired
data. The studied expected ranges in the second learning experiment range from 3.0m to
4.5m in steps of 0.1m (Fig. 14). For safety reasons, people were not allowed to move closer
than 1m to the robot, i.e. the safety region (Fig. 14). Therefore, measurements smaller
than 1m are discarded.

From the data, the model parameters are learning using the same learning parameters
as in the first learning experiment (Table. 1).

Table 3 shows the Kullback Leibler divergence (Eq. (102)) and the Hellinger distance
(Eq. (103)) averaged for the studied expected range for the different set of measurements
after running the ML-EM and VB-EM estimators for the RBBM and the ML estimator for
Thrun’s model (Thrun et al., 2005). The results were obtained after running each of the
learning algorithms for 30 iteration steps.

210



Rigorously Bayesian Beam Model and Adaptive Full Scan Model

Experiment d1 (Eq. (102)) d2 (Eq. (103))

number of ML-EM VB-EM ML-EM ML-EM VB-EM ML-EM
people RBBM RBBM Thrun’s model RBBM RBBM Thrun’s model

1 1.7911 1.5271 1.9697 5.6141 4.3449 6.5582
2 1.8002 1.5172 1.9735 5.7038 4.3334 6.6119
3 1.7789 1.5199 1.9606 5.6033 4.3468 6.5365
4 1.8277 1.5140 1.9853 5.7563 4.2972 6.6744
6 1.8007 1.5168 1.9655 5.6483 4.3126 6.5596
8 1.7676 1.5157 1.9498 5.4989 4.2843 6.4257

average 1.7944 1.5185 1.9674 5.6375 4.3199 6.5611

Table 3: Discrete KL-divergence (d1) and square root Hellinger distance (d2) averaged for
the studied expected range for the different set of measurements of the second
learning experiment. Distances are between the training set and the results of
the ML-EM and VB-EM estimators for the RBBM and the ML-EM estimator for
Thrun’s model (Thrun et al., 2005). The first column indicates the number of
people walking around in the environment in that particular set of measurements.

The proposed ML-EM and VB-EM estimator outperform the ML-EM estimator for
Thrun’s model for the studied data sets. Despite the reduced number of parameters of
the RBBM compared to Thrun’s model (Section 3.6), the RBBM has at least the same
representational power.

6. Adaptive Full Scan Model

This section extends the RBBM to an adaptive full scan model for dynamic environments;
adaptive, since it automatically adapts to the local density of samples when using sample-
based representations; full scan, since the model takes into account the dependencies be-
tween individual beams.

In many applications using a range finder, the posterior is approximated by a finite
set of samples (histogram filter, particle filters). The peaked likelihood function associated
with a range finder (small σm due to its accuracy) is problematic when using such finite set
of samples. The likelihood P (z | x, m) is evaluated at all samples, which are approximately
distributed according to the posterior estimate. Basic sensor models typically assume that
the estimate x and the map m are known exactly, that is, they assume that one of the
samples corresponds to the true value. This assumption, however, is only valid in the limit
of infinitely many samples. Otherwise, the probability that a value exactly corresponds to
the true location is virtually zero. As a consequence, these peaked likelihood functions do
not adequately model the uncertainty due to the finite, sample-based representation of the
posterior (Pfaff et al., 2007). Furthermore, the use of a basic range finder model typically
results in even more peaked likelihood models, especially when using a large number of
beams per measurement, due to multiplication of probabilities. In practice, the problem
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Figure 15: Comparison of the results of the ML-EM and VB-EM estimators for the RBBM
and the results of a maximum likelihood estimator for two different expected
ranges and two different number of people populating the robot environment.
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of peaked likelihoods, is dealt with in various ways: sub-sampling the measurement (fewer
beams); introducing minimal likelihoods for beams; inflating the measurement uncertainty;
or other means of regularization of the resulting likelihoods. These solutions are not sat-
isfactory however, since the additional uncertainty due to the sample-based representation
is not known in advance. The additional uncertainty strongly varies with the number of
samples and the uncertainty of the estimate (Pfaff et al., 2006). Fox (2003) proposes to
dynamically adapt the number of samples by means of KLD sampling (KLD stands for
Kullback-Leibler divergence). For very peaked likelihoods however, this might result in a
huge number of samples. Lenser and Veloso (2000) and Thrun, Fox, Burgard, and Del-
laert (2001) ensure that a critical mass of samples is located at the important parts of the
state space by sampling from the observation model. Sampling from the observation model
however, is often only possible in an approximate and inaccurate way. Pfaff et al. (2006)
introduced an adaptive beam model for dynamic environments, which explicitly takes lo-
cation uncertainty due to the sample-based representation into account. They compute
the additional uncertainty due to the sample-based representation, using techniques from
density estimation. When evaluating the likelihood function at a sample, they consider a
certain region around the sample, depending on the sample density at that location. Then,
depending on the area covered by the sample, the variance of the Gaussian, σm, governing
the beam model in Eq. (38), is calculated for each sample. As a result, the beam model
automatically adapts to the local density of samples. Such a location dependent model re-
sults in a smooth likelihood function during global localization and a more peaked function
during position tracking without changing the number of samples.

Plagemann et al. (2007) and Pfaff et al. (2007) showed that by considering a region
around samples, the individual beams become statistically dependent. The degree of de-
pendency depends on the geometry of the environment and on the size and location of the
considered region. Beam models, such as the RBBM, implicitly assume however that the
beams are independent, that is:

P (z | θ, x, m) =
B∏

b=1

P (zb | θb, x, m) , (104)

where z = {zb}b=1:B and θ = {θb}b=1:B are the vectors containing the measured ranges
and the angles of the different beams respectively; zb is the range measured at the beam
with angle θb; B is the total number of beams and P (zb | θb, x, m) is for instance the
RBBM (Eq. (45)). By neglecting the dependency between beams, the resulting likelihoods
P (z | θ, x, m) are overly peaked. Models taking into account the dependencies between
beams consider the full range scan and are therefore called full scan models further on.
The full scan models proposed by Plagemann et al. (2007) and Pfaff et al. (2007) both
assume that the beams of a range scan are jointly Gaussian distributed. The off-diagonal
elements of the covariance matrix associated with the Gaussian distribution represent the
dependency. To learn the model parameters, both methods draw samples from the region
around a sample and perform ray-casting using these samples. Plagemann et al. train a
Gaussian process which models the full scan, while Pfaff et al. directly provide a maximum
likelihood estimate for the mean and covariance of the Gaussian.

Section 6.1 shows that the dependency between beams may introduce multi-modality,
even for simple static environments. Multi-variate Gaussian models as proposed by Plage-
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mann et al. (2007) and Pfaff et al. (2007) cannot handle this multi-modality. Therefore, a
new sample-based method for obtaining an adaptive full scan model from a beam model,
able to handle multi-modality, is proposed. Section 6.2 extends the adaptive full scan model
for dynamic environments by taking into account non-Gaussian model uncertainty.

6.1 Sample-based Adaptive Full Scan Model for Static Environments

Plagemann et al. (2007) and Pfaff et al. (2007) estimate the full scan model, P (z | x, m)6,
based on a local environment U (x) of the exact estimate x:

P (z | x, m) ≈

∫

P (x̃ | x) Phit (z | x̃, m) dx̃, (105)

with P (x̃ | x) the distribution representing the probability that x̃ is an element of the
environment U (x), i.e: x̃ ∈ U (x). The environment U (x) is modeled as a circular region
around x. Since this section does not consider the dynamics of the environment, only one
component of the RBBM in Eq. (37) is used: Phit (z | x, m). The marginalization over the
environment U (x) in Eq.(105) introduces dependencies between the measurements zb of the
measurement vector z.

The environment U (x), as explained above, depends on the sample density around
the sample x under consideration. Pfaff et al. (2006) proposed to use a circular region
with diameter dU(x), which is a weighted sum of the Euclidean distance and the angular
difference. Like Plagemann et al. (2007) and Pfaff et al. (2007), an approximation of the
above likelihood can be estimated online for each sample x by simulating L complete range
scans at locations drawn from U (x) using the given map m of the environment. Contrary
to the multivariate Gaussian approximation proposed by Plagemann et al. and Pfaff et al.,
we propose a sample-based approximation, able to handle multi-modality. Sampling from
the environment U (x) immediately results in a sample-based approximation of P (x̃ | x):

P (x̃ | x) ≈
1

L

L∑

l=1

δx̃(l) , (106)

where δx̃(l) denotes the delta-Dirac mass located in x̃(l), and the samples are distributed
according to P (x̃ | x):

x̃(l) ∼ P (x̃ | x) . (107)

Using this sample-based approximation of P (x̃ | x) the likelihood of Eq. (105) can be ap-
proximated as:

P (z | x, m) ≈
1

L

L∑

l=1

Phit

(

z | x̃(l), m
)

. (108)

Since this sample-based approximation has to be calculated online, the number of samples
has to be limited. If the used environment U (x) is large, the resulting approximation will be

6. To simplify the notation θ and θ are omitted from P (z | θ, x, m) and P (zb | θb, x, m), respectively.
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Figure 16: Panorama taken from the Sick LMS 200 range finder mounted on a Kuka 361
industrial robot. The environment consists of a rectangular ‘room’ with an
object (a Kuka KR 15/2 robot) in the middle. We show that even for this simple
static environment, the presented sample-based full scan model outperforms the
Gaussian-based state of the art models.

bad. To smooth the undesired bumpy behavior due to the limited number of samples, the
measurement noise σm governing Phit (z | x, m) in Eq. (45), is artificially increased depending
on the size of U (x) by multiplying it with a factor:

1 + C
√

dU(x). (109)

In further experiments, C was set to 20.

6.1.1 Experiment

A simple environment consisting of a rectangular ‘room’ with an object (a Kuka KR 15/2
robot) in the middle (Fig. 16) is used to show that the marginalization over (even small)
U (x) to obtain the true likelihood not only introduces dependencies between the beams but
also multi-modality. The U (x) results from a local uncertainty on the x- and y−position
of 0.01m and a rotational uncertainty of 5◦. To obtain a reference, a Sick LMS 200 range
finder is used to take a large number of measurements (L = 1500) at random locations
sampled in U (x). To allow for exact positioning, the Sick LMS 200 is placed on a Kuka 361
industrial robot. The Sick LMS 200 range finder is connected to a laptop that controls the
motion of the Kuka 361 industrial robot over the network using Corba-facilities in the Open
Robot Control Software, Orocos (Bruyninckx, 2001; Soetens, 2006). A simplified map of the
environment (Fig. 16) is built to simulate the 150 complete range scans needed to construct
a full scan model. The marginal P (zb | x, m) of two selected beams are studied in more
detail. The marginal likelihoods for the selected beam using the proposed sample-based ap-
proximation of Eq. (108) and the Gaussian approximation proposed by Pfaff et al. (2007),
are compared in Fig. 17(b)-17(c). The histogram of the measurements of the selected beam
in this figure clearly shows the multi-modality of the likelihood caused by the dependency
between beams. In contrast to the Gaussian-based state of the art full scan model, the pro-
posed sample-based approximation is able to handle the multi-modality of the range finder
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data. Fig. 17(d) shows the difference for all beams between the experimentally obtained
cumulative marginal (L = 1500) and the Gaussian-based and sample-based approximation
for all beams. The mean difference with the experimental data for the sample-based ap-
proximation is 2.8 times smaller than the difference for the Gaussian-based approximation,
even for the simple static environment of Fig. 16 and the small U (x).

6.2 Sample-based Adaptive Full Scan Model for Dynamic Environments

The adaptive beam model proposed by Pfaff et al. (2006) is suited for use in dynamic
environments since it uses the four component mixture beam model (Thrun et al., 2005;
Choset et al., 2005). To date however, the adaptive full scan likelihood models of Pfaff et al.
(2007) and Plagemann et al. (2007) have not been adapted for dynamic environments. The
assumption that the beams are jointly Gaussian distributed, unable to capture the non-
Gaussian uncertainty due to environment dynamics, prevents the straightforward extension
for dynamic environments. In contrast, the sample-based approximation of the full scan
likelihood, as proposed in Section 6.1, can be extended to include environment dynamics.
To this end, replace Phit (z | x, m) in Eq. (105) and Eq. (108) by the full mixture of Eq. (38).

6.2.1 Experiment

Fig. 18(a) and Fig. 18(b) compare the marginals for the selected beams (Fig. 17(a)) obtained
from the adaptive full scan model for dynamic environments using the proposed sample-
based approximation and the Gaussian approximation proposed by Pfaff et al. (2007). In
contrast to the Gaussian-based state of the art full scan model, the proposed sample-based
approximation is able to handle the multi-modality of the range finder data. Fig. 18(c) shows
a probability map of the adaptive full scan model (sample-based approximation) suited for
dynamic environments for the example environment of Fig. 16. The probability map plots
P (z | x, m) as a function of the position in the map and shows that the marginalization over
the environment U (x) of a sample in Eq. (105) not only introduces dependency between
beams but also introduces multi-modality.

7. Discussion

This paper proposed and experimentally validated the RBBM, a rigorously Bayesian net-
work model of a range finder adapted to dynamic environments. All modeling assumptions
are rigorously explained, and all model parameters have a physical interpretation. This
approach resulted in a transparent and intuitive model. The rigorous modeling revealed all
underlying assumptions and parameters. This way a clear physical interpretation of all pa-
rameters is obtained providing intuition for the parameter choices. In contrast to the model
of Thrun et al. (2005), the assumption underlying the non-physical discontinuity in the
RBBM is discovered. Furthermore, the paper proposes a different functional form for the
probability of range measurements caused by unmodeled objects Poccl (z | x, m) (Eq. (45)),
i.e. quadratic rather than exponential as proposed by Thrun et al. Furthermore, compared
to the work of Thrun et al. (2005), Choset et al. (2005), Pfaff et al. (2006) the RBBM
depends on fewer parameters, while maintaining the same representational power for exper-
imental data. Bayesian modeling revealed that both the rate of decay of Poccl (z | x, m) and
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Figure 17: Experimental results for sample-based adaptive full scan model for static en-
vironments. (a) models the simple environment of Fig. 16. The range finder
is located at (0.15m, 0.75m). Samples from U (x) (resulting from a local un-
certainty on the x- and y−position of 0.01m and a rotational uncertainty of
5◦) are shown with black dots, and some simulated measurements are shown in
grey. (b) and (c) show the marginal likelihood P (zb | x, m) for the two selected
beams together with the histogram of the experimentally recorded range finder
data, the Gaussian-based approximation (L = 150) of Pfaff et al. (2007), and
the sample-based approximation (L = 150) of this paper. (d) shows the dif-
ference for all beams between the experimentally obtained cumulative marginal
(L = 1500) and the Gaussian-based and sample-based approximation.

217



De Laet, De Schutter & Bruyninckx

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 

 

P
(z

|x
,m

)

z[m]

Large sample approximation

Gaussian appr. (Pfaff, 2007)
Sample-based approximation

(a) Marginal likelihood for left beam

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

P
(z

|x
,m

)
z[m]

Large sample approximation

Gaussian appr. (Pfaff, 2007)
Sample-based approximation

(b) Marginal likelihood for right beam

(c) Probability map P (z | x, m) from sample-based
approximation

Figure 18: Results for sample-based adaptive full scan model for dynamic environments. (a)
and (b) show the marginal likelihood P (zb | x, m) for the two selected beams of
Fig. 17(a) together with the Gaussian-based approximation (L = 150) of Pfaff
et al. (2007) and the sample-based approximation (L = 150) extended for the
use in dynamic environments. (c) shows the probability map resulting from
the sample-based approximation. The probability map shows P (z | x, m) as a
function of the x- and y− position in the map.
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the probability of an occluded measurement π2 depend on one parameter p′. State of the art
sensor models however, assume independency of these two parameters. Finally, a maximum-
likelihood and a variational Bayesian estimator (both based on expectation-maximization)
were proposed to learn the model parameters of the RBBM. Learning the model parameters
from experimental data benefits from the RBBM’s reduced number of parameters. Using
two sets of learning experiments from different application areas in robotics (one reported
by Thrun et al. (2005)) the RBBM was shown to explain the obtained measurements at
least as well as the state of the art model of Thrun et al.

Furthermore, the paper extended the RBBM to an adaptive full scan model in two
steps: first, to a full scan model for static environments and next, to a full scan model for
general, dynamic environments. The full scan model adapts to the local sample density
when using a particle filter, and accounts for the dependency between beams. In contrast
to the Gaussian-based state of the art models of Plagemann et al. (2007) and Pfaff et al.
(2007), the proposed full scan model uses a sample-based approximation, which can cope
with dynamic environments and with multi-modality (which was shown to occur even in
simple static environments).
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Appendix A. Simplification of Infinite Sum

To goal of this appendix is to prove that

∑

n

P (k | n, x, m)P (n) =
∞∑

n=k

[(
n

k

)

uk (1 − u)n−k (1 − p) pn

]

, (110)

can be simplified to:
∑

n

P (k | n, x, m) P (n) =
(
1 − p′

)
p′k, (111)

with p′ = up
1−(1−u)p .

Expand Eq. (110) and move terms out of the summation so that:

∑

n

P (k | n, x, m)P (n) = (1 − p) ukpk
∞∑

n=k

[
n!

(n − k)!k!
[(1 − u) p]n−k

]

. (112)

Next introduce variables t = n − k and a e = (1 − u) p:

∑

n

P (k | n, x, m) P (n) = (1 − p)ukpk
∞∑

t=0

[
(t + k)!

t!k!
et

]

. (113)
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The next step is to prove by induction that:

∞∑

t=0

[
(t + k)!

t!k!
et

]

=
1

(1 − e)k+1
. (114)

First, show that the above equality holds for k = 0:

∞∑

t=0

t!

t!
et =

∞∑

t=0

et, (115)

which is the well-known geometric series, so:

∞∑

t=0

et =
1

1 − e
, (116)

showing that equality (114) indeed holds for k = 0. Next it is proved that, if the expression
holds for k − 1, it also holds for k. Introduce variable V for the solution of the infinity sum
for k and split up (114) in two parts:

V =
∞∑

t=0

[
(t + k)!

t!k!
et

]

=
∞∑

t=0

[
(t + k)!

t!k!
−

(t + k − 1)!

t! (k − 1)!

]

et +
∞∑

t=0

[
(t + k − 1)!

t! (k − 1)!
et

]

︸ ︷︷ ︸
1

(1−e)k

, (117)

where the fact is used that the equality (114) holds for k − 1. Simplify the first term of the
summation to:

∞∑

t=0

[
(t + k)!

t!k!
−

(t + k − 1)!

t! (k − 1)!

]

et =
∞∑

t=0

[
(t + k − 1)!

t!k!
tet

]

. (118)

The term in the summation for t = 0 is equal to zero. Hence, introduce the variable t′ = t−1
and simplify:

∞∑

t=0

[
(t + k)!

t!k!
−

(t + k − 1)!

t! (k − 1)!

]

et =
∞∑

t′=0

[
(t′ + k)!

(t′ + 1)!k!

(
t′ + 1

)
et′+1

]

(119)

= e

∞∑

t′=0

[
(t′ + k)!

t′!k!
et′
]

︸ ︷︷ ︸

V

, (120)

from which the series V we were looking for is recognized. Substitute the above result in
Eq. (117) so that:

V = eV +
1

(1 − e)k
. (121)

Solving this equation for V gives:

V =
1

(1 − e)k+1
, (122)
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proving that equality (114) holds for k if it assumed to hold for k− 1, and closing the proof
by induction.

Now substitute Eq. (114) in Eq. (113):

∑

n

P (k | n, x, m)P (n) =
(1 − p) ukpk

[1 − (1 − u) p]k+1
, (123)

or rewrite as:
∑

n

P (k | n, x, m) P (n) =
(
1 − p′

)
p′k, (124)

where p′ = up
1−(1−u)p , what is exactly what had to be proved.
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