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Abstract

Although recent years have seen a surge of interest in the computational aspects of
social choice, no specific attention has previously been devoted to elections with multiple
winners, e.g., elections of an assembly or committee. In this paper, we characterize the
worst-case complexity of manipulation and control in the context of four prominent multi-
winner voting systems, under different formulations of the strategic agent’s goal.

1. Introduction

Computational aspects of voting have been the focus of much interest, in a variety of fields.
In multiagent systems, the attention has been motivated by applications of well-studied
voting systems1 as a method of preference aggregation. For instance, Ghosh, Mundhe,
Hernandez, and Sen (1999) designed an automated movie recommendation system, in which
the conflicting preferences a user may have about movies were represented as agents, and
movies to be suggested were selected according to a voting scheme (in this example there are
multiple winners, as several movies are recommended to the user). In general, the candidates
in a virtual election can be entities such as beliefs, joint plans (Ephrati & Rosenschein, 1997),
or schedules (Haynes, Sen, Arora, & Nadella, 1997).

Different aspects of voting rules have been explored by computer scientists. An issue
that has been particularly well-studied is manipulation. In many settings, a voter may be
better off revealing its preferences untruthfully. For instance, in real-life elections where
each voter awards a single point to its favorite candidate, it may be judged pointless to
vote for a candidate that appears, from polls, to be a sure loser, even if that candidate is a
voter’s truthful first choice.

The celebrated Gibbard-Satterthwaite Theorem (Gibbard, 1973; Satterthwaite, 1975)
implies that under any non-dictatorial voting scheme (i.e., there is no single voter that
always dictates the outcome of the election), there always exist elections in which a voter
can improve its utility by lying about its true preferences.2 Nevertheless, it has been
suggested that bounded-rational agents may find it hard to determine exactly which lie to
use, and thus may give up on manipulations altogether. In other words, computational
complexity may be an obstacle that prevents strategic behavior. The first to address this

1. We use the terms “voting schemes”, “voting rules”, “voting systems”, and “voting protocols” inter-
changeably.

2. This theorem has also been generalized to the multiple winner setting (Duggan & Schwartz, 2000).
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point were Bartholdi, Tovey and Trick (1989); Bartholdi and Orlin (1991) later showed that
manipulating the important Single Transferable Vote (STV) voting rule is an NP-complete
problem.

More recently, it has been shown that voting protocols can be tweaked by adding an
elimination preround, in a way that makes manipulation hard (Conitzer & Sandholm, 2003).
Conitzer, Sandholm, and Lang (2007) studied a setting where there is an entire coalition of
manipulators. In this setting, the problem of manipulation by the coalition is NP-complete
in a variety of protocols, even when the number of candidates is constant.

Another related issue that has received significant attention is the computational diffi-
culty of controlling an election. Here, the authority that conducts the elections attempts to
achieve strategic results by adding or removing registered voters or candidates. The same
rationale is at work here as well: if it is computationally hard to determine how to improve
the outcome of the election by control, the chairman might give up on cheating altogether.
Bartholdi, Tovey and Trick (1992) first analyzed the computational complexity of different
methods of controlling an election in the Plurality and Condorcet protocols.

In this paper, we augment the classical problems of manipulation and control by in-
troducing multiple winners. Specifically, we assume the manipulator has a utility function
over the candidates, and that the manipulator’s goal is to achieve a set of winners with
total utility above some threshold. We study the abovementioned problems with respect
to four simple but important multi-winner voting schemes: SNTV, Bloc voting, Approval,
and Cumulative voting.

The paper proceeds as follows. In Section 2, we describe the voting rules in question. In
Section 3, we deal with manipulation problems. In Section 4, we deal with control problems.
We discuss related work in Section 5, and conclude in Section 6.

2. Multi-Winner Voting Schemes

In this section we present several multi-winner voting systems of significance. Although the
discussion is self-contained, interested readers can find more details in an article by Brams
and Fishburn (2002).

Let the set of voters be V = {v1, v2, . . . vn}; let the set of candidates be C = {c1, . . . cm}.
Furthermore, assume that k ∈ N candidates are to be elected.

Multi-winner voting rules differ from single-winner ones in the properties that they are
expected to satisfy. A major concern in multi-winner elections is proportional representa-
tion: a faction that consists of a fraction X of the population should be represented by
approximately a fraction X of the seats in the assembly. This property is not satisfied
by (generalizations of) many of the rules usually considered with respect to single-winner
elections.

Thus, we here examine four of the prevalent multi-winner voting rules. In all four, the
candidates are given points by the voters, and the k candidates with the most points win
the election. The schemes differ in the way points are awarded to candidates.

• Single Non-Transferable Vote (SNTV): each voter gives one point to a favorite candi-
date.3

3. SNTV in single winner elections is also known as Plurality.
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• Bloc voting : each voter gives one point to each of k candidates.4

• Approval voting : each voter approves or disapproves any candidate; an approved
candidate is awarded one point, and there is no limit to the number of candidates a
voter can approve.

• Cumulative voting : allows voters to express intensities of preference, by asking them
to distribute a fixed number of points among the candidates. Cumulative voting
is especially interesting, since it encourages minority representation and maximizes
social welfare (Brams & Fishburn, 2002).

Scoring rules are a prominent family of voting rules. A voting rule in this family is
defined by a vector of integers ~α = 〈α1, . . . , αm〉, where αl ≥ αl+1 for l = 1, . . . , m − 1.
Each voter reports a ranking of the candidates, thus awarding α1 points to the top-ranked
candidate, α2 points to the second candidate, and in general αl points to the candidate
ranked in place l. Notice that SNTV is a family of scoring rules defined for each |C| by
the vector 〈1, 0, . . . , 0〉, and Bloc is the family of scoring rules defined for each |C|, k by the
vector 〈1, . . . , 1, 0, . . . , 0〉, where the number of 1’s is k.

3. Manipulation

A voter is considered to be a manipulator, or is said to vote strategically, if the voter
reveals false preferences in an attempt to improve its outcome in the election. Settings
where manipulation is possible are to be avoided, since it may lead to a socially undesirable
outcome emerging as the winner of the election. Therefore, computational resistance to
manipulation is considered an advantage.

In the classical formalization of the manipulation problem (Bartholdi et al., 1989), we
are given a set C of candidates, a set V of voters, and a distinguished candidate p ∈ C. We
also have full knowledge of the voters’ votes. We are asked whether it is possible to cast an
additional vote, the manipulator’s ballot, in a way that makes p win the election.

When generalizing this problem for the k-winner case, several formulations are possible.
A very general formulation is given by the following definition.

Definition 3.1. In the Manipulation problem, we are given a set C of candidates, a
set V of voters that have already cast their vote, the number of winners k ∈ N, a utility
function u : C → Z, and an integer t ∈ N. We are asked whether the manipulator can cast
its vote such that in the resulting election,

∑

c∈W u(c) ≥ t, where W is the set of winners,
|W | = k.

Notice that the number of winners k is a parameter of the problem.

Remark 3.2. The manipulator’s utility function is implicitly assumed to be additive. One
can consider more elaborate utility functions, such as the ones investigated in the context
of combinatorial auctions, but that is beyond the scope of this paper.

4. Bloc voting is also known as k-Approval.
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Remark 3.3. We make the standard assumption that tie-breaking is adversarial to the
manipulator (Conitzer et al., 2007), i.e., if there are several candidates that perform equally
well in the election, the ones with the lower utility for the manipulator will be elected.
When the number of winners is k = 1, this assumption is equivalent to formulating the
manipulation problems in their unique winner version, where the ballot must be cast in a
way that some designated candidate is strictly better than the rest (e.g., has higher score).

One might argue that the general formulation of the problem given above makes ma-
nipulation harder. Indeed, the manipulator might have the following, more specific, goals
in mind.

1. The manipulator has a specific candidate whom he is interested in seeing among the
winners (constructive manipulation).

2. The manipulator has a specific candidate whom he is interested in excluding from the
set of winners (destructive manipulation) (Conitzer et al., 2007).

3. The manipulator has some (additive) boolean-valued utility function over the candi-
dates u : C → {0, 1}.

The first and second settings are naturally special cases of the third, while the third is
a special case of Definition 3. We intend to explore all the foregoing formulations of the
Manipulation problem. Notice that one can also consider other goals, for example when
the manipulator has a favorite set of candidates and he is interested in seeing all of them,
or as many as possible of them, among the winners. However, we will only investigate these
goals insofar as they are special cases of a boolean-valued utility function.

Remark 3.4. Unless explicitly mentioned otherwise, we usually assume a general (additive)
utility function, as in Definition 3.1.

We will find it convenient to represent SNTV and Bloc voting using a common frame-
work. We consider l-Bloc voting rules—voting rules where every voter gives one point to
each of exactly l candidates, where l ≤ k. Notice that in SNTV l = 1, while in Bloc voting
l = k. We remind the reader that the number of winners k is not constant, but is rather a
parameter of the Manipulation problem.

Proposition 3.5. Let l ∈ {1, . . . , k}. Then Manipulation in l-Bloc voting is in P.

Proof. The manipulator is faced with the score awarded to the candidates by the voters in
V ; let s[c] be the total score of candidate c. Order the candidates by their score, and let
s0 be the score of the k’th highest candidate. For example, if k = 3, |C| = m = 4, and the
initial scores are 8, 5, 5, 3, then s0 = 5. In addition, let

A = {c ∈ C : s[c] > s0}.

Notice that |A| ≤ k − 1. Let
B = {c ∈ C : s[c] = s0}.

B may be large, and in particular if all the candidates have the same score, then B = C.
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Now, candidates in A with at least s0 + 2 initial points will be elected regardless of
the actions of the manipulator, as the manipulator can award at most one point to any
candidate. Candidates in A with exactly s0+1 points will be elected, unless other candidates
with lower utility ultimately receive s0 + 1 points due to the manipulator’s vote—as ties
are broken adversarially to the manipulator. Let us now examine the candidates with less
than s0 points. Notice that candidates with s[c] ≤ s0 − 2 will lose in any case. Moreover,
since ties are broken adversarially, voting for candidates with s0 − 1 points cannot benefit
the manipulator. To conclude the point, the manipulator can do no better than to make
sure the candidates in B (with exactly s0 points) that are eventually elected have as high
utility as possible.

Therefore, to put it simply, the manipulator’s optimal strategy is to vote for the top
(in terms of utility) k − |A| (top l if l < k − |A|) candidates in B, thus guaranteeing
that these candidates be among the winners, and cast its remaining votes in favor of some
candidates in A (which will win anyway). This discussion leads to the conclusion that
Algorithm 1 decides the Manipulation problem. Clearly the computational complexity of

Algorithm 1 Decides the Manipulation problem in l-Bloc voting

1: procedure Manipulate-Bloc(V, C, k, u, t, l)
2: s[c]← |{v ∈ V : v votes for candidate c}|
3: s0 ← score of k’th highest candidate
4: A← {c ∈ C : s[c] > s0} ⊲ |A| ≤ k − 1
5: B ← {c ∈ C : s[c] = s0}, ordered by u(c) in decreasing order
6: if l ≤ k − |A| then

7: manipulator votes for top l candidates in B
8: else

9: manipulator votes for top k − |A| candidates in B and l + |A| − k candidates in
A

10: end if

11: if utility of winners ≥ t then

12: return true

13: else

14: return false

15: end if

16: end procedure

the algorithm is polynomial in the input size.

We have the following immediate corollary:

Corollary 3.6. Manipulation in SNTV and Bloc voting is in P.

The situation in Approval voting is not dissimilar. Indeed, the question is: can a voter
gain by approving more than k candidates? A priori, the answer is yes. However, given
the votes of all other voters, clearly the manipulator cannot gain by approving candidates
other than the k eventual winners of the election. On the other hand, the manipulator also
does not benefit from approving less than k voters. Say the manipulator approved l < k
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voters, and the candidates in W , where |W | = k, eventually won the election. Let C∗ be
the candidates that the manipulator approved, and W ∗ = W \ C∗ be the winners that the
manipulator did not approve; W ∗ ≥ k − l. If the manipulator approves the l candidates
in C∗ as well as some k − l candidates in W ∗, the set of winners is clearly still going to
be W . Therefore, the manipulator can do no better than approve exactly k candidates; we
have already demonstrated in Proposition 3.5 that this can be accomplished optimally and
efficiently. Therefore:

Corollary 3.7. Manipulation in Approval is in P.

Remark 3.8. Formally, manipulation in Approval is a subtle issue, since the issue may be
ill-defined when the voters are assumed to have linear preferences over the candidates. In
this case, there are multiple sincere ballots (where all approved candidates are preferred to
all disapproved candidates). In some specific settings, a voter cannot gain by casting an
insincere ballot (Endriss, 2007), but this is not always true. In any case, the manipulation
problem according to our definition is well-defined and nontrivial in Approval.

In contrast to the abovementioned three voting rules, Cumulative voting turns out to
be computationally hard to manipulate under a general utility function.

Proposition 3.9. Manipulation in Cumulative voting is NP-complete.

The implicit assumption made in the proposition is that the number of points to be
distributed is not a constant, but rather a parameter of the Manipulation problem under
Cumulative voting.

The proof of Proposition 3.9 relies on a reduction from one of the most well-known
NP-complete problems, the Knapsack problem.

Definition 3.10. In the Knapsack problem, we are given a set of items A = {a1, . . . , an},
for each a ∈ A a weight w(a) ∈ N and a value υ(a), a capacity b ∈ N, and t ∈ N. We are
asked whether there is a subset A′ ⊆ A such that

∑

a∈A′ υ(a) ≥ t while
∑

a∈A′ w(a) ≤ b.

Proof of Proposition 3.9. The problem is clearly in NP.
To see that Manipulation in Cumulative voting is NP-hard, we prove that Knapsack

reduces to this problem. We are given an input 〈A, w, υ, b, t〉 of Knapsack, and construct
an instance of Manipulation in Cumulative voting as follows.

Let n = |A|. There are 2n voters, V = {v1, . . . , v2n}, 3n candidates, C = {c1, . . . , c3n},
and n winners. In addition, each voter may distribute b points among the candidates. We
want the voters in V to cast their votes in a way that the following three conditions are
satisfied:

1. For j = 1, . . . , n, cj has b− w(aj) + 1 points.

2. For j = n + 1, . . . , 2n, cj has at most b points.

3. For j = 2n + 1, . . . , 3n, cj has exactly b points.

This can easily be done. Indeed, for i = 1, . . . , n, voter vi awards b − w(ai) + 1 points
to candidate ci, and awards its remaining w(ai) − 1 points to candidate cn+i. Now, for
i = 1, . . . , n, voter n + i awards all its b points to candidate c2n+i.
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We define the utility u of candidates as follows:

u(cj) =

{

υ(aj) j = 1, . . . , n

0 j = n + 1, . . . , 3n

The transformation is clearly polynomial time computable, so it only remains to verify
that it is a reduction. Assume that there is a subset A′ ⊆ A with total weight at most b
and total value at least t. Let C ′ = {cj : aj ∈ A′}. The manipulator awards w(aj) points
to each candidate c ∈ C ′, raising the total score of these candidates to b + 1. Since initially
all candidates have at most b points, all candidates c ∈ C ′ are among the n winners of the
election. The total utility of these candidates is:

∑

c∈C′ u(c) =
∑

a∈A′ υ(a) ≥ t (since for
all j = 1, . . . , n, u(cj) = υ(aj)).

In the other direction, assume that the manipulator is able to distribute b points in a way
that the winners of the election have total utility at least t. Recall that there are initially at
least n candidates with b points and utility 0, and that ties are broken adversarially to the
manipulator. Therefore, there must be a subset C ′ ⊆ C of candidates that ultimately have
a score of at least b+1, such that their total utility is at least t. Let A′ be the corresponding
items in the Knapsack instance, i.e., aj ∈ A′ if and only if cj ∈ C ′. The total weight of
items in A′ is at most b, as only b points were distributed among the candidates in C ′ by
the manipulator, and each cj ∈ C ′ initially has b− w(aj) + 1 points. It also holds that the
total utility of the items in A′ is exactly the total utility of the candidates in C ′, namely at
least t.

The next proposition gives a negative answer to the question of whether Manipulation
in Cumulative voting is still hard under more restricted formulations of the manipulator’s
goal, as discussed at the beginning of the section. Indeed, we put forward an algorithm that
decides the problem under any boolean-valued utility function.

Proposition 3.11. Manipulation in Cumulative voting with any boolean-valued utility
function u : C → {0, 1} is in P.

Remark 3.12. The result holds even if the number of points to be distributed is exponential
in the number of voters and candidates.

Proof of Proposition 3.11. Let s[c] be the score of candidate c ∈ C before the manipulator
has cast his vote, and s∗[c] be c’s score when the manipulator’s vote is taken into account.
Assume without loss of generality that s[c1] ≥ s[c2] ≥ . . . ≥ s[cm]. Let D = {d1, d2, . . .} be
the set of desirable candidates d ∈ C with u(d) = 1, and again assume these are sorted by
nonincreasing scores.

Informally, we are going to find a threshold thresh such that pushing t candidates above
the threshold guarantees their victory. Then we will check whether it is possible to distribute
L points such that at least t candidates pass this threshold, where L is the number of points
available to each voter.

Formally, consider Algorithm 2 (w.l.o.g. k ≥ t and |D| ≥ t, otherwise manipulation is
impossible). The algorithm clearly halts in polynomial time. It only remains to prove the
correctness of the algorithm.
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Algorithm 2 Decides Manipulation in Cumulative voting with boolean-valued utility

1: j∗ ← max{j : |{c1, c2, . . . , cj−1} ∩D|+ k + 1− j ≥ t and cj /∈ D}⊲ j∗ exists, since the
condition holds for the first candidate not in D

2: thresh← s[cj∗ ]
3: S ←

∑t
j=1 max{0, thresh + 1− s[dj ]}

4: if S ≤ L then

5: return true

6: else

7: return false

8: end if

Lemma 3.13. Algorithm 2 correctly decides Manipulation in Cumulative voting with
any boolean-valued utility function.

Proof. Denote by Ŵ = {c1, . . . , ck} the k candidates with highest score (sorted) before
the manipulator’s vote, and by W the final set of k winners. The threshold candidate cj∗

partitions Ŵ into two disjoint subsets: Ŵu = {c1, . . . , cj∗−1}, Ŵd = {cj∗ , . . . , ck}. By the
maximality of j∗, it holds that:

|Ŵu ∩D|+ |Ŵd| = |Ŵu ∩D|+ (k + 1− j∗) = t. (1)

Note that S is the exact number of votes required to push t desirable candidates above
the threshold. Now, we must show that the manipulator can cast his vote in a way such
that the winner set W satisfies |W ∩D| ≥ t if, and only if, L ≥ S.

Suppose first that S ≤ L. Then it is clearly possible to push t desirable candidates
above thresh. Ŵu ∩ D were above the threshold already; it follows that Ŵd was replaced
entirely by desirable candidates.

Let W = {w1, . . . , wk} be the set of new winners. In particular, we can write W =
Ŵu∪{wj∗ , . . . , wk}. Ŵu contains |Ŵu∩D| desirable candidates, while {wj∗ , . . . , wk} consists
purely of desirable candidates. By Equation (1):

|W ∩D| = |Ŵu ∩D|+ |{wj∗ , . . . , wk}|

= |Ŵu ∩D|+ |Ŵd|

= t

Conversely, suppose S > L. We must show that the manipulator cannot distribute L
points in a way such that t candidates from D are among the winners.

Clearly there is no possibility to push t desirable candidates above thresh. Consider
some ballot cast by the manipulator, and assume w.l.o.g. that the manipulator distributed
points only among the candidates in D. Denote the new set of winners by W = Wu ⊎Wd,
where

Wu = {c ∈ C : s∗[c] > thresh}

Wd = {c ∈ C : s∗[c] ≤ thresh}.

We claim that
|Wu ∩D| = k − t, (2)
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where D = C \D. Indeed, by Equation (1)

|Ŵu ∩D| = t− k − 1 + j∗,

and therefore

|Wu ∩D| = |Ŵu ∩D| = |Ŵu| − |Ŵu ∩D|

= (j∗ − 1)− (t− k − 1 + j∗)

= k − t

The first equality follows from the fact that no points were distributed to the candidates in
D.

Denote by F the set of candidates that were pushed above the threshold. Formally:

F = {c ∈ D : s∗[c] > thresh and s[c] ≤ thresh}

Thus:
Wu = Ŵu ⊎ F.

Let w∗ be the new position of candidate cj∗ when the candidates are sorted by nonin-
creasing s∗[c]. It holds that

w∗ = j∗ + |F |.

We now claim that
|Wd ∩D| ≥ 1. (3)

Indeed,

|Wu ∩D| < t ⇒

|Ŵu ∩D|+ |F | = |Wu ∩D| < t = |Ŵu ∩D|+ k + 1− j∗ ⇒

|F | < k + 1− j∗ ⇒

w∗ = j∗ + |F | < j∗ + k + 1− j∗ = k + 1 ⇒

w∗ ≤ k ⇒

cj∗ ∈Wd ⇒

|Wd ∩D| ≥ 1

By combining Equations (2) and (3), we finally obtain:

|W ∩D| = k − |W ∩D|

= k − (|Wu ∩D|+ |Wd ∩D|)

≤ k − (k − t + 1)

= t− 1

< t

The proof of Proposition 3.11 is completed.
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Remark 3.14. The proof shows that the manipulation of Cumulative voting by a coalition
of (even weighted) voters, as in the work of Conitzer et al. (2007), is tractable under a
boolean-valued utility function. This follows by simply joining the (weighted) score pools
of all the voters in the coalition.

Remark 3.15. It is possible to show that if the number of points to be distributed is
polynomially bounded, manipulation of Cumulative voting is in P even under general utility
functions.

4. Control

In the control setting, we assume that the authority controlling the election (hereinafter,
the chairman) has the power to tweak the election’s electorate or slate of candidates in a
way that might change the outcome. This is also a form of undesirable strategic behavior,
but on the part of a behind-the-scenes player who is not supposed to take an active part in
the election.

In one setting, the chairman might add or remove voters that support his candidate,
but the number of voters he can add/remove without alerting attention to his actions is
limited. The problems are formally defined as follows:

Definition 4.1. In the problem of Control by Adding Voters, we are given a set
C of candidates, a set V of registered voters, a set V ′ of unregistered voters, the number
of winners k ∈ N, a utility function u : C → Z, and integers r, t ∈ N. We are asked
whether it is possible to register at most r voters from V ′ such that in the resulting election,
∑

c∈W u(c) ≥ t, where W is the set of winners, |W | = k.

Definition 4.2. In the problem of Control by Removing Voters, we are given a set C
of candidates, a set V of registered voters, the number of winners k ∈ N, a utility function
u : C → Z, and integers r, t ∈ N. We are asked whether it is possible to remove at most
r voters from V such that in the resulting election,

∑

c∈W u(c) ≥ t, where W is the set of
winners, |W | = k.

Another possible misuse of the chairman’s authority is tampering with the slate of
candidates. Removing candidates is obviously helpful, but even adding candidates can
sometimes tip the scales in the direction of the chairman’s favorites.

Definition 4.3. In the problem of Control by Adding Candidates, we are given a
set C of registered candidates, a set C ′ of unregistered candidates, a set V of voters, the
number of winners k, a utility function u : C∪C ′ → Z, and integers r, t ∈ N. All voters have
preferences over all candidates C ∪ C ′. We are asked whether it is possible to add at most
r candidates C ′′ from C ′, such that in the resulting elections on C ∪ C ′′,

∑

c∈W u(c) ≥ t,
where W is the set of winners, |W | = k.

Definition 4.4. In the problem of Control by Removing Candidates, we are given a
set C of candidates, a set V of voters, the number of winners k, a utility function u : C → Z,
and integers r, t ∈ N. We are asked whether it is possible to remove at most r candidates
from C ′, such that in the resulting elections

∑

c∈W u(c) ≥ t, where W is the set of winners,
|W | = k.
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Some clarification is in order. In the context of scoring rules, the assumption in the above
two problems is that the voters have rankings of all the candidates in C ∪C ′. Therefore, if
some candidates are added or removed, the voters’ preferences over the new set of candidates
are still well-defined. The same goes for Approval: each voter approves or disapproves
every candidates in C ∪ C ′. However, in the context of Cumulative voting, the problems
of control by adding/removing candidates are not well-defined. Indeed, one would require
a specification of how the voters distribute their points among every possible subset of
candidates, and this would require a representation of exponential size.5 Consequently, we
do not consider control by adding or removing candidates in Cumulative voting.

Remark 4.5. Some authors (e.g., Hemaspaandra et al., 2007b) have considered other types
of control, such as control by partitioning the set of voters. In this paper, we will restrict
our attention to the four types of control mentioned above.

Remark 4.6. Unless stated otherwise, we assume that ties are broken adversarially to the
chairman.

As before, unless explicitly mentioned otherwise, we are going to assume a general
additive utility function, as in the above definitions.

Remark 4.7. It is clear that all the above computational problems are in NP for all voting
rules in question. Therefore, in our NP-completeness proofs we will only show hardness.

4.1 Controlling the Set of Voters

Control by Adding Voters is tractable in SNTV, though the procedure is not trivial.
Bartholdi et al. (1992) showed that control by adding voters is easy in SNTV when there is
a single winner, so the former result can be seen as an extension of the latter (to the case
where there are multiple winners and a general [additive] utility function).

Proposition 4.8. Control by Adding Voters in SNTV is in P.

Proof. We describe an algorithm, Control-SNTV, that efficiently decides Control in
SNTV. Informally, the algorithm works as follows. It first calculates the number of points
awarded to candidates by voters in V . Then, at each stage, the algorithm analyzes an
election where the l top winners in the original election remain winners, and attempts to
select the other k − l winners in a way that maximizes utility. This is done by setting the
threshold to be one point above the score of the (l + 1)-highest candidate; the algorithm
pushes the scores of potential winners to this threshold (see Figure 1 for an illustration).

A formal description of Control-SNTV is given as Algorithm 3. The procedure Push
works as follows: its first parameter is the threshold thr, and its second parameter is the
number of candidates to be pushed, pushNum. The procedure also has implicit access to the
input of Control-SNTV, namely the parameters of the given Control instance. Push
returns a subset V ′′ ⊆ V ′ to be registered. We say that the procedure pushes a candidate
c to the threshold if exactly thr − s[c] voters v ∈ V ′ that vote for c are registered. In
other words, the procedure registers enough voters from V ′ in order to ensure that c’s score

5. It is possible to imagine compact representations, but that is beyond the scope of this paper.
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Figure 1: The left panel illustrates an input of the Control problem in SNTV. Each
candidate is represented by a circled number—the utility of the candidate. The
location of the circle determines the score of the candidate, based on the voters in
V . Let k = 5; the winners are blackened. Now, assume that there are 6 voters in
V ′, 3 voting for each of the two bottom candidates, and that r = 3. The chairman
can award 3 points to the candidate with utility 5 and score 0, but that would
not change the result of the election. Alternatively, the chairman can award 3
points to candidate with utility 2 and score 1, thus improving the utility by 1, as
can be seen in the right panel. This election is considered by the algorithm when
l = 4, s[ci5 ] = 3, and the threshold is 4.

reaches the threshold. Push finds a subset C ′ of candidates of size at most pushNum that
maximizes

∑

c∈C′ u(c), under the restriction that all candidates in C ′ can be simultaneously
pushed to the threshold by registering a subset V ′′ ⊆ V ′ s.t. |V ′′| ≤ r. The procedure returns
this subset V ′′.

Now, assume we have a procedure Push that is always correct (in maximizing the utility
of at most k − l candidates it is able to push to the threshold s[cl+1] + 1, while registering
no more than r voters) and runs in polynomial time. Clearly, Control-SNTV also runs
in polynomial time. Furthermore:

Lemma 4.9. Control-SNTV correctly decides the Control problem in SNTV.

Proof. Let W = {cj1 , . . . , cjk
} be the k winners of the election that does not take into

account the votes of voters in V ′ (the original election), sorted by descending score, and
for candidates with identical score, by ascending utility. Let W ∗ = {c∗j1 , . . . , c

∗
jk
} be the

candidates that won some controlled election with maximum utility, sorted by descending
score, then by ascending utility; let s∗[c] be the final score of candidate c in the optimal
election. Let min be the smallest index such that cjmin

/∈W ∗ (w.l.o.g. min exists, otherwise
W = W ∗ and we are done). It holds that for all candidates c ∈ W ∗, s∗[c] ≥ s[cjmin

]. Now,
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Algorithm 3 Decides the Control problem in SNTV.

1: procedure Control-SNTV(C, V, V ′, k, u, r, t)
2: s[c]← |{v ∈ V : v votes for candidate c}|
3: Sort candidates by descending score ⊲ Break ties by ascending utility
4: Let the sorted candidates be {ci1 , . . . , cim}
5: for l = 0, . . . , k do ⊲ Fix l top winners
6: V ′′ ←Push(s[cl+1] + 1, k − l) ⊲ Select other winners; see details below
7: ul ← utility from election where V ′′ are registered
8: end for

9: if maxl ul ≥ t then return true

10: else

11: return false

12: end if

13: end procedure

we can assume w.l.o.g. that if c ∈ W ∗ and s∗[c] = s[cjmin
] then c ∈ W (and consequently,

c = cjq for some q < min). Indeed, it must hold that u[c] ≤ u[cjmin
] (as tie-breaking is

adversarial to the chairman), and if indeed c /∈W even though c ∈W ∗, then the chairman
must have registered voters that vote for c, although this can only lower the total utility or
keep it unchanged.

It is sufficient to show that one of the elections that is considered by the algorithm has a
set of winners with utility at least that of W ∗. Indeed, let W ′ = {cj1 , . . . , cjmin−1

} ⊆W ; all
other k−min + 1 candidates c ∈W ∗ \W ′ have s[c] ≥ s[cjmin

] + 1. The algorithm considers
the election where the first min − 1 winners, namely W ′, remain fixed, and the threshold
is s[cjmin

] + 1. Surely, it is possible to push all the candidates in W ∗ \W ′ to the threshold,
and in such an election, the winners would be W ∗. Since Push maximizes the utility of
the k − min + 1 candidates it pushes to the threshold, the utility returned by Push for
l = min− 1 is at least as large as the total utility of the winners in W ∗.

It remains to explain why the procedure Push can be implemented to run in polynomial
time. Recall the Knapsack problem; a more general formulation of the problem is when
there are two resource types. Each item has two weight measures, w1(ai) and w2(ai),
that specify how much resource it consumes from each type, and the knapsack has two
capacities: b1 and b2. The requirement is that the total amount of resource of the first
type that is consumed does not exceed b1, and the total use of resource of the second
type does not exceed b2. This problem, which often has more than two dimensions, is
called Multidimensional Knapsack. Push essentially solves a special case of the two-
dimensional knapsack problem, where the capacities are b1 = r (the number of voters
the chairman is allowed to register), and b2 = pushNum (the number of candidates to
be pushed). If the threshold is thr, for each candidate cj that is supported by at least
thr − s[cj ] voters in V ′, we set w1(aj) = thr − s[cj ], w2(aj) = 1, and υ(aj) = u(cj). The
Multidimensional Knapsack problem can be solved in time that is polynomial in the
number of items and the capacities of the knapsack (Kellerer, Pferschy, & Pisinger, 2004)
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(via dynamic programming, for example). Since in our case the capacities are bounded by
|V ′| and m, Push can be designed to run in polynomial time.

The following lemma allows us to extend our results for Control by Adding Voters
to Control by Removing Voters, and vice versa. We shall momentarily apply it to
SNTV, but it will also prove useful later on.

Lemma 4.10. Let R = 〈V, C, r, t, k, u〉 be an instance of Control by Removing Voters
in some voting rule, and let A = 〈V ′, V ′′, C∗, r∗, t∗, k∗, u∗〉 be an instance of Control by
Adding Voters in the same voting rule, such that:

C∗ = C

r∗ = r

t∗ = t−
∑

c∈C

u(c)

k∗ = |C| − k

u∗(c) = −u(c)

V ′′ = V

Let U be the subset of voters selected by the chairman from V = V ′′. Denote by sU [c], s∗U [c]
the final score of candidate c in the election obtained by removing or adding the voters in
U , respectively. If it holds that

∀c, c′ ∈ C,∀U ⊆ V, s∗U [c] ≥ s∗U [c′] ⇔ sU [c] ≤ sU [c′] (4)

then R is in Control by Removing Voters if and only if A is in Control by Adding
Voters.

Proof. From the condition (4) on sU , s∗U it holds that the k∗ = |C| − k winners of the
constructed instance are exactly the |C| − k losers of the original instance.6 That is, if W
are the winners in the given instance and W ∗ are the winners in the constructed instance,
we have that W ∗ = C \W .

From this it follows that,
∑

c∈W

u(c)− t =
∑

c∈C\W ∗

u(c)− (t∗ +
∑

c∈C

u(c))

= −
∑

c∈C\W ∗

u∗(c) +
∑

c∈C

u∗(c)− t∗

=
∑

c∈W ∗

u∗(c)− t∗

Thus, for any choice of subset U to be removed or added,
∑

c∈W u(c) ≥ t if, and only
if,
∑

c∈W ∗ u∗(c) ≥ t∗. We conclude that the given instance is a “yes” instance if and only if
the constructed instance is a “yes” instance.

6. This statement also takes into account the tie-breaking scheme, as candidates with lower utility in the
original instance are now candidates with higher utility.
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Applying the lemma, we easily obtain:

Proposition 4.11. Control by Removing Voters in SNTV is in P.

Proof. We will give a polynomial time reduction from Control by Removing Voters
in SNTV to Control by Adding Voters in SNTV, which was shown above (Proposi-
tion 4.8) to be in P. Given an instance 〈V, C, r, t, k, u〉 of Control by Removing Voters,
define an equivalent instance 〈V ′, V ′′, C∗, r∗, t∗, k∗, u∗〉 of the latter problem. We want to
use Lemma 4.10, so we need to define V ′ correctly.

For each voter v ∈ V = V ′′, let f(v) ∈ C be the candidate that voter v ranks first; f(v)
gives all the relevant information about voter v’s ballot. The ballots of the voters in V ′ are
defined by the following rule. For each candidate c ∈ C,

|{v′ ∈ V ′ : f(v′) = c}| = |V | − |{v ∈ V : f(v) = c}|

It holds that:
sU [c] = |{v ∈ V : f(v) = c}| − |{v ∈ U : f(v) = c}|

From the definition of V ′,

s∗U [c] = |{v′ ∈ V ′ : f(v′) = c}|+ |{v′ ∈ U : f(v′) = c}|

= |V | − |{v ∈ V : f(v) = c}|+ |{v ∈ U : f(v) = c}|

= |V | − (|{v ∈ V : f(v) = c}| − |{v ∈ U : f(v) = c}|)

= |V | − sU [c]

Hence for all c, c′ ∈ C, and for any U ⊆ V :

s∗U [c] ≥ s∗U [c′] ⇔ sU [c] ≤ sU [c′].

This implies that the conditions of Lemma 4.10 hold, thus there is a polynomial reduction
from Control by Removing Voters in SNTV to Control by Adding Voters in
SNTV. Since the latter problem is in P, so is the former.

In the rest of the section we prove that control by adding/removing voters is hard in the
other three voting rules under consideration, even if the chairman simply wants to include
or exclude a specific candidate. In fact, this statement includes 12 different results (3 voting
rules × adding/removing × include/exclude). Instead of proving each result separately, we
will use some generic reductions. Our proof scheme is as follows: we shall first establish
that Control by Removing Voters is hard in Approval, Bloc, and Cumulative voting,
even if the chairman wants to include a candidate. We will then use Lemma 4.10 to show
that adding voters is hard in the foregoing rules, even if the chairman wants to exclude
a candidate. Finally, Lemma 4.17 will give us the six remaining results: removing while
excluding, and adding while including. The overall scheme is illustrated in Figure 2.

The following result is known from the work of Hemaspaandra et al. (2007b).

Proposition 4.12. (Hemaspaandra et al., 2007b) Control by Removing voters in
Approval is NP-complete, even if the chairman is trying to make a distinguished candidate
win in single winner elections.
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Figure 2: Scheme of the hardness proofs of control by adding/removing voters when the
chairman wants to include/exclude a distinguished candidate, in the voting rules:
Bloc, Approval, Cumulative voting.

This result, as with some other results that appear later, is stated for single winner
elections, i.e., when the number of winners k satisfies k = 1. Clearly the hardness of the
problem when k = 1 implies the hardness of the more general formulation of the problem
when k is also a parameter.

Proposition 4.13. Control by Removing Voters in Cumulative voting is NP-complete,
even if the chairman is trying to make a distinguished candidate win in single winner elec-
tions.

Remark 4.14. In instances of control problems where the chairman simply wants to in-
clude/exclude a distinguished candidate, we replace the utility function u with the distin-
guished candidate p, i.e., u(p) = 1 (respectively, u(p) = −1) for include (resp., for exclude)
and u(c) = 0 for all other candidates c. The threshold is t = 1 (resp., t = 0).

Proof of Proposition 4.13. We will use a reduction from Control by Removing Voters
in Approval. Let 〈V, C, p, r〉 be an instance of this problem in Approval, where p ∈ C is the
distinguished candidate (and k = 1). Define an instance of the above problem in Cumulative
voting as follows: The pool of points satisfies L∗ = |C|; r∗ = r; p∗ = p; C∗ = C ⊎C ′, where
C ′ contains |V | · L∗ candidates.

We now construct a set of voters. For each voter v ∈ V , we add to V ′ a voter that
awards 1 point to every candidate whom v approves, and then gives all other points (no
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more than L∗) to distinct candidates in C ′. V ′′ contains two more voters; each of these
voters gives one point to each candidate in C. Finally, let V ∗ = V ′ ⊎ V ′′.

Removing voters from V ′′ cannot promote p∗, so the chairman may limit himself without
loss of generality to removing voters from V ′. Now, every candidate in C ′ has at most one
point, so none of them beats any candidate from C (each of whom has at least two points).
Furthermore, for every selection of voters from V ′ and corresponding voters from V to
remove, each candidate in C gets the same score in the new instance as he got in the original
instance, plus 2. This directly implies that control is possible in the constructed instance
(of Cumulative voting) if and only if it is possible in the given instance (of Approval).

In order to complete our hardness proofs for removing voters while including a distin-
guished candidate, we give a similar result for Bloc. Notice, however, that here the reduction
constructs instances with multiple winners.

Proposition 4.15. Control by Removing Voters in Bloc is NP-complete, even when
the chairman simply wants to include a distinguished candidate among the winners.

Proof. We prove the proposition by a polynomial time reduction from Control by Re-
moving Voters in Approval. Let 〈V, C, p, k, r〉 be an instance of the latter problem (with
k winners; it is possible to let k = 1). Denote, as usual, n = |V | and m = |C|. Define:
C∗ = C ⊎ C ′ ⊎ C ′′, where C ′ contains m new candidates, and C ′′ contains 10 · k · n new
candidates; p∗ = p; k∗ = k + m; r∗ = r. We need to design the new instance such that all
the candidates in C ′ will be among winners, and all the candidates in C ′′ to be among the
losers. We define the a voter set accordingly.

1. V ′ contains one voter for each voter in V (n in total). For each v ∈ V , v′ gives a point
to all candidates in C that v approved. His other points go to candidates in C ′, and
then to C ′′.

2. V ′′ contains r + 2 voters. Each voter gives a point to each candidate in C, and gives
his other k points to candidates in C ′ (arbitrarily).

3. V ′′′ contains 4n voters. Each voter awards points to all C ′, and to k more candidates
from C ′′ (in a way that will be specified later).

Finally let V ∗ = V ′ ⊎ V ′′ ⊎ V ′′′.
We claim that 〈V ∗, C∗, p∗, k∗, r∗〉 ∈ Control by Removing Voters in Bloc if and

only if 〈V, C, p, k, r〉 ∈ Control by Removing Voters in Approval.
For each candidate c, denote s[c], s∗[c] the total number of votes c obtains in original

and constructed instances, before removing any voters. Note that the whole set C ′′ gets at
most (4n)k+nk votes, which is less than its size (10kn), so it is possible to scatter the votes
of V ′′ such that each candidate in C ′′ has at most 1 point. In addition, each candidate in
C ′ has at least 4n points. It also holds that

∀c ∈ C, s∗[c] = s[c] + r + 2,

(from the votes of V ′, V ′′), and thus:

∀c ∈ C, 4n− r > r + n + 2 ≥ s∗[c] > r + 1.
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We can now conclude that:

∀c ∈ C, c′ ∈ C ′, s∗[c] < s∗[c′]− r,

and

∀c ∈ C, c′′ ∈ C ′′, s∗[c] > s∗[c′′] + r.

Without loss of generality the chairman removes only voters from V ′(= V ), since only
these votes may influence the result of the elections. Denote by sU [c], s∗U [c] the score of
candidate c in both instances, after removing the subset U ⊆ V = V ′. For any U such that
|U | ≤ r it holds that:

∀c1, c2 ∈ C, s∗U [c1] ≥ s∗U [c2] ⇐⇒ sU [c1] ≥ sU [c2].

Moreover,

∀c ∈ C, c′ ∈ C ′, s∗U [c] < s∗U [c′],

and

∀c ∈ C, c′′ ∈ C ′′, s∗U [c] > s∗U [c′′].

In other words, all the candidates in C ′ will be among winners, whereas all the candidates
in C ′′ will be among losers, and the ranking of the candidates in C will not change.

We conclude that the k∗ winners of the constructed instance are exactly the m candidates
of C ′ together with the k winners of the given Approval instance. Thus control is possible
in the original instance of Approval (i.e., it is possible to make p win) if and only if it is
possible in the constructed instance of Bloc.

As promised, we now use Lemma 4.10 to transform the results of all three voting rules
from Control (Include winner) by Removing Voters to Control (Exclude winner) by Adding
Voters.

Proposition 4.16. Control by Adding Voters in Approval, Bloc, and Cumulative vot-
ing is NP-hard, even when the chairman simply wants to exclude a distinguished candidate
from the set of winners.

Proof. We prove the proposition using Lemma 4.10 and with similar notations. Consider
an instance of Control by Removing Voters when the chairman wants to include a
candidate. Then the utility function u is 1 on p and 0 otherwise, while t = 1. The utility
function u∗ constructed by Lemma 4.10 is -1 on p and 0 otherwise, and the threshold t∗

is t − 1 = 0; that is, the chairman wants to exclude p. Now we can obtain the desired
result directly by showing that the lemma’s condition holds. In other words, we must show
that for the three voting rules in question, given an instance of Control by Removing
Voters, it is possible to construct an instance of Control by Adding Voters that
satisfies the condition (4).

Approval and Bloc: The proof here is very similar to that of Proposition 4.11. For
each voter in the Control by Removing Voters instance, we add a voter to V ′ that gives
points to the complement subset of candidates. Formally, denote by Cv ⊆ C the candidates
to which v awards points. For each v ∈ V , add v′ to V ′, such that Cv′ = C \Cv. Note that
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this construction creates a legal Bloc instance since |Cv′ | = |C \ Cv| = |C| − k = k∗, and
thus

(∀v ∈ V, |Cv| = k)⇒
(

∀v′ ∈ V ′, |Cv′ | = k∗
)

.

Let U ⊆ V ; it holds for both voting rules that:

sU [c] = |{v ∈ V : c ∈ Cv}| − |{v ∈ U : c ∈ Cv}|

and,

s∗U [c] = |{v′ ∈ V ′ : c ∈ Cv′}|+ |{v ∈ U : c ∈ Cv}|

= |{v ∈ V : c /∈ Cv}|+ |{v ∈ U : c ∈ Cv}|

= |V | − |{v ∈ V : c ∈ Cv}|+ |{v ∈ U : c ∈ Cv}|

= |V | − (|{v ∈ V : c ∈ Cv}| − |{v ∈ U : c ∈ Cv}|)

= |V | − sU [c],

and thus:
∀c, c′ ∈ C,∀U ⊆ V, s∗U [c] ≥ s∗U [c′] ⇔ sU [c] ≤ sU [c′].

Cumulative voting: For each original voter, we will add a new voter to V ′ that
distributes his pool in a way that complements the original distribution. Formally, let sv

c be
the score that voter v gives to candidate c; ∀v ∈ V,

∑

c∈C sv
c = L. The point distribution

of the new voter v′ ∈ V ′ is sv′

c = L− sv
c , for all c ∈ C. Note that this is a legal Cumulative

voting instance, with L∗ = L(m− 1):

∀v′ ∈ V ′,
∑

c∈C

sv′

c =
∑

c∈C

L− sv
c = mL−

∑

c∈C

sv
c = mL− L = L(m− 1) = L∗.

Once again we will look at the final score after adding/removing the voters of U ⊆ V :

sU [c] =
∑

v∈V \U

sv
c =

∑

v∈V

sv
c −

∑

v∈U

sv
c .

Further,

s∗U [c] =
∑

v∈V ′⊎U

sv
c

=
∑

v′∈V ′

sv′

c +
∑

v∈U

sv
c

=
∑

v∈V

(L− sv
c) +

∑

v∈U

sv
c

= L|V | −
∑

v∈V

sv
c +

∑

v∈U

sv
c

= L|V | −

(

∑

v∈V

sv
c −

∑

v∈U

sv
c

)

= L|V | − sU [c]
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Therefore, we have:

∀c, c′ ∈ C,∀U ⊆ V, s∗U [c] ≥ s∗U [c′] ⇔ sU [c] ≤ sU [c′].

Our final generic transformation lemma shows that the constructive and destructive
settings, i.e., including/excluding a distinguished candidate, are basically equivalent under
the three voting rules in question. A subtle point, that we shall deal with after we formulate
and prove the lemma, is that the lemma reverses the tie-breaking scheme: adversarial tie-
breaking (as we have assumed so far) becomes friendly tie-breaking, i.e., ties are broken in
favor of candidates with higher utility; and vice versa.

Lemma 4.17. For every instance of Control by Adding (resp., Removing) Voters
with adversarial tie-breaking where W ⊆ C can be made to win by adding (resp., removing)
r voters, there is an instance of Control by Adding (resp., Removing) Voters with
friendly tie-breaking with the same candidate set C where C\W can be made to win by adding
(resp., removing) r voters. Similarly, friendly tie-breaking is transformed to adversarial tie-
breaking. This statement holds in Approval, Bloc, and Cumulative Voting.

Proof. For clarity, we will prove the lemma for adding voters; the proof for removing voters
is practically identical. We will also prove the result for Cumulative voting (with a pool of
points of size L), but it is straightforward to extend it to Approval and Bloc, generally by
replacing L with 1.

Given an instance 〈V, V ′, C, p, k, r〉, let U ⊆ V ′ be a subset of r voters such that adding
these voters induces the set of winners W . Construct an instance of Control by Adding
Voters as follows: set the number of winners to be k∗ = |C|−k, and set the pool of points
to be L∗ = L(|C| − 1). For each voter v ∈ V, V ′ we have a voter v∗ who gives L − sv

c to
candidate c, where sv

c is the score given to c by the voter v. Define the set V ∗ (resp., V ′∗)
as the set containing all such voters corresponding to voters in V (resp., V ′). Note that

∀v∗ ∈ V ∗ ⊎ V ′∗,
∑

c∈C

sv∗

c =
∑

c∈C

L− sv
c = L|C| −

∑

c∈C

sv
c = L|C| − L = L(|C| − 1) = L∗.

Denote by V̂ the final set of voters that results from adding the voters of U , and by V̂ ∗

the corresponding set of voters in the constructed instance (i.e., v∗ ∈ V̂ ∗ ⇔ v ∈ V̂ ). Also
denote by s[c], ŝ[c] the score of each candidate c ∈ C in the original instance and in the new
instance, after adding the voters.

168



Complexity of Strategic Behavior in Multi-Winner Elections

As in previous proofs, we get that the candidates’ order has reversed. Formally, when
comparing the score of two candidates:

ŝ[c1]− ŝ[c2] =
∑

v∗∈V̂ ∗

ŝv∗

c1
−
∑

v∗∈V̂ ∗

ŝv∗

c2

=
∑

v∈V̂

(L− sv
c1

)−
∑

v∈V̂

(L− sv
c2

)

= |V̂ |L−
∑

v∈V̂

(sv
c1

)− |V̂ |L +
∑

v∈V̂

(sv
c2

)

=
∑

v∈V̂

sv
c2
−
∑

v∈V̂

sv
c1

= s[c2]− s[c1]

Therefore, since we assumed the tie-breaking scheme is reversed, the k candidates with
highest score in the original instance are the k candidates with the lowest score in the
constructed instance, and, moreover, C \ W form the k∗ = m − k winners of the new
instance.7

Lemma 4.17 allows us to derive straightforward reductions between versions of Control
where the chairman wants to include/exclude a distinguished candidate: it is possible to
include a candidate in a given instance if and only if it is possible to exclude a candidate in
the constructed instance, and vice versa. The only point we have to address is the change
in the tie-breaking scheme. Fortunately, it is easy to obtain versions of Propositions 4.12,
4.13, and 4.15 under friendly tie-breaking, by slight modifications to the proofs. Hence, the
lemma, when applied to these three propositions, yields:

Proposition 4.18. Control by Removing Voters in Bloc, Approval, and Cumulative
voting is NP-complete, even when the chairman simply wants to exclude a distinguished
candidate.

Recall that Lemma 4.10 preserves the tie-breaking scheme. Thus, we can obtain a
“friendly” version of Proposition 4.16. Then, Lemma 4.17 applied to the “friendly” Propo-
sition 4.16 gives us the final result of this section. Note that the constructive version (i.e.,
including a distinguished candidate) of Control by Adding Voters in Approval is al-
ready known to be NP-hard even for single winner elections (Hemaspaandra et al., 2007b).

Proposition 4.19. Control by Adding Voters in Approval (Hemaspaandra et al.,
2007b), Bloc, and Cumulative voting is NP-complete, even when the chairman simply wants
to include a distinguished candidate.

Here emerges an issue worth clarifying. As noted above, the constructive version (i.e.,
including a distinguished candidate) of Control by Adding/Removing Voters in Ap-
proval is already known to be NP-hard even for single winner elections (Hemaspaandra
et al., 2007b). On the other hand, Hemaspaandra et al. (2007b) show that the destructive

7. To be precise, candidates with utilities identical to those of C \ W are the winners; the names of the
winners may change, but this is irrelevant for our purposes.

169



Meir, Procaccia, Rosenschein, & Zohar

version of the same problems (i.e., adding/removing voters while excluding a distinguished
candidate) is in P when k = 1. Our surprising results imply that this is no longer the case
when the number of winners k is also a parameter.

At first it may appear that it follows from Lemma 4.17 that the constructive and de-
structive versions of this problem are equivalent, which would seem contradictory. A closer
examination reveals that there is no such conflict: if we apply the lemma to the constructive
result with k = 1, we obtain a reduction to the destructive version, but with k∗ = |C| − 1.

4.2 Controlling the Set of Candidates

We now turn to the problem of controlling the set of candidates. As noted at the beginning
of this section, this problem is ill-defined when it comes to Cumulative voting, so in the
following we restrict ourselves to SNTV, Bloc voting, and Approval voting.

Another subtle point is that in the problem of destructive control by removing candidates
in single winner elections, it is assumed that the chairman cannot remove the distinguished
candidate p. There does not seem to be an elegant way to generalize this assumption to
multi-winner elections. Hence, we do not discuss control by removing candidates when the
goal is to exclude a distinguished candidate.

Now, we recall that Bartholdi et al. (1992) show that control by adding/removing can-
didates in SNTV is NP-complete, even in single winner elections (in particular, even when
the chairman wants to include a single candidate among the winners). Hemaspaandra et
al. (2007b) extended this result to destructive control. Crucially, since these results hold
for single winner elections, they also apply to Bloc voting, as Bloc voting and SNTV are
identical when k = 1. So, in fact, Bartholdi et al. and Hemaspaandra et al. together
imply that control by adding candidates in SNTV and Bloc is NP-complete, even when the
chairman just wants to include or exclude a distinguished candidate, and control by remov-
ing candidates in SNTV and Bloc is NP-complete, even when the chairman just wants to
include a distinguished candidate (again, we do not discuss the exclusion of a candidate).

Although Approval voting seems more complicated than SNTV (or even Bloc), surpris-
ingly it is much easier to control by tampering with the set of candidates.

Proposition 4.20. Control by Adding Candidates in Approval is in P, under any
utility function.

Interestingly, in the single winner setting, Approval is immune to control by adding
candidates (Hemaspaandra et al., 2007b), i.e., it is not possible to get a candidate elected
by adding other candidates. However, in our multiple winner model it is clearly possible to
gain utility by adding candidates.

Proof of Proposition 4.20. We will actually solve the following problem: can the chairman
add exactly r candidates, in a way that all the added candidates become winners, and the
utility is at least t? Solving this problem entails that the chairman can also solve the original
problem, as he can simply run the algorithm for every r′ ≤ r.

First note that each candidate in c ∈ C, C ′ has a fixed number of points s[c], regardless
of the participation of any other candidate. The chairman selects a subset D ⊆ C ′, |D| = r,
and the winners are the k candidates in C ⊎D with the highest score. Therefore, it is only
effective to add candidates that will actually be winners.
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Say indeed that D ⊆ W , where W is the set of winners. Regardless of the identity of
the candidates in D, the winners from C are exactly the |C|−r candidates with the highest
score in C. Since r is fixed and (without loss of generality) r ≤ k, the utility of the winners
from C is also fixed, and we only need to optimize D, i.e., select the best r candidates from
C ′ that can be made to be winners.

Lemma 4.21. Let C = {c1, . . . , cm} be sorted by nonincreasing score, then by nondecreasing
utility, i.e., s[cj ] ≥ s[cj+1] for all j = 1, . . . , m − 1, and if s[cj ] = s[cj+1] then u(cj) ≤
u(cj+1). Let W be the set of winners after the candidates D ⊆ C ′, |D| = r, have been
added. Then D ⊆W if and only if for all d ∈ D, one of the following holds:

1. s[d] > s[ck−r+1].

2. s[d] = s[ck−r+1] and u(d) < u(ck−r+1).

Proof. Assume first that D ⊆ W . Among the k candidates with highest score, at least r
are not from C. Thus, at least r candidates among the highest-scoring k candidates in C
are excluded from W ; the candidates {ck−r+1, . . . , ck} are certainly excluded from the set
of winners. Since candidates with lower score are excluded first, and equality is broken in
favor of candidates with lower utility, we have that either ∀c ∈W , s[ck−r+1] < s[c], or an
equality holds and the utility of c is lower; in particular, this is true for any d ∈ D ⊆W .

Conversely, suppose that for all d ∈ D, either condition 1 or condition 2 holds. Then
exactly k candidates are preferred (by the voting rule and the tie-breaking mechanism) to
ck−r+1: {c1, . . . , ck−r}, as well as the candidates in D. Thus these are the k winners.

Denote thresh(r) = s[ck−r+1]. By Lemma 4.21, it is sufficient to consider the candidates

{c ∈ C ′ : s[c] > thresh(r) or s[c] = thresh(r) ∧ u(c) < u(ck−r+1)}.

Clearly, it is possible to achieve a utility of t if and only if this is accomplished by adding
the r candidates with highest utility in this set.

Proposition 4.22. Control by Removing Candidates in Approval is in P, under any
utility function.

Proof. This is actually an easier problem than the problem of control by adding candidates,
and we give a simpler algorithm: First, sort the candidates by decreasing score, sorting
candidates with tied scores by increasing utilities. Next, remove the r candidates with
lowest utility out of the first k + r candidates. Finally, check if the total utility of the
winner set reaches t.

All candidates ranked below position k+r cannot be elected and are therefore irrelevant
from the chairman’s perspective. From the additivity of the utility function, it is clear that
leaving the k candidates with highest utility maximizes the total utility of the chairman.
Thus, our simple algorithm is optimal, and if it fails then we can deduce that control is
impossible.
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5. Related Work

Academic interest in the complexity of manipulation in voting was initiated by Bartholdi,
Tovey and Trick’s (1989) seminal paper. The authors suggested that computational com-
plexity may prevent manipulation in practice, and presented a voting rule, namely Second-
Order Copeland, which is hard to manipulate. The paper examined single-winner elections,
where the goal of the manipulator is to cast its vote in a way that makes a given candidate
win the election.

Bartholdi and Orlin (1991) later proved that the important Single Transferable Vote
(STV) rule is NP-hard to manipulate. STV is one of the prominent voting rules in the
literature on voting. It proceeds in rounds; in the first round, each voter votes for the
candidate it ranks first. In every subsequent round, the candidate with the least number of
votes is eliminated, and the votes of voters who voted for that candidate are transfered to
the next surviving candidate in their ranking.

Conitzer and Sandholm (2003) examined voting rules that are usually easy to manipulate
in single-winner elections, but induced hardness by introducing the notion of a preround.
In the preround, the candidates are paired; the candidates in each pair compete against
each other. The introduction of a preround can make an election NP-hard, #P-hard, or
PSPACE-hard, depending on whether the preround precedes, comes after, or is interleaved
with the voting rule, respectively. Elkind and Lipmaa (2005a) generalized this approach
using Hybrid voting rules, which are composed of several base voting rules.

Some authors also considered a setting where there is an entire coalition of manipulators.
In this setting, the standard formulation of the manipulation problem is as follows: we are
given a set of votes that have been cast, and a set of manipulators. In addition, all votes
are weighted, e.g., a voter with weight k counts as k voters voting identically. We are asked
whether the manipulators can cast their vote in a way that makes a specific candidate win
the election.

Conitzer, Sandholm, and Lang (2007) have shown that this problem is NP-hard in
a variety of voting rules. Indeed, in this setting the manipulators must coordinate their
strategies, on top of taking the weights into account, so manipulation is made much more
complicated. In fact, the problem is so complicated that the hardness results hold even
when the number of candidates is constant. Hemaspaandra and Hemaspaandra (2007)
generalized some of these last results by exactly characterizing the scoring rules in which
manipulation is NP-hard. Elkind and Lipmaa (2005b) have shown how to use one-way
functions to make coalitional manipulation hard.

However, some recent papers have argued that worst-case computational hardness may
not be sufficient to prevent manipulation. Indeed, although such hardness implies that
the problem has an infinite number of hard instances, it may still be the case that un-
der reasonable real-world distributions over instances, the problem is easy to solve. This
theme was discussed by Procaccia and Rosenschein (2007b, 2007a, 2008), by Conitzer and
Sandholm (2006), and by Erdélyi et al. (2007).

The complexity of control by a chairman has received somewhat less attention, but
nevertheless much is already known. Bartholdi, Tovey and Trick (1992) have studied the
complexity of seven different types of control in two voting rules (and a single-winner set-
ting): adding voters/candidates, deleting voters/candidates, partitioning the voters, and
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Manipulation

Rule In/Ex candidate Boolean utility General utility

SNTV P ⇐ P ⇐ P
Bloc P ⇐ P ⇐ P
Approval P ⇐ P ⇐ P
Cumulative P ⇐ P NP-c

Table 1: The complexity of manipulation in multi-winner elections

two types of candidate partitioning. The authors have reached the conclusion that different
voting rules differ significantly in terms of their resistance to control. Hemaspaandra and
Hemaspaandra (2007b) extended these results to destructive control, where the chairman
wants a candidate not to be elected.

Hemaspaandra, Hemaspaandra and Rothe (2007a) have contributed to this investiga-
tion by examining twenty different types of control. They showed that in the unique winner
setting, there is a voting rule which is resistant to all twenty types. However, it is unclear
whether one of the “natural” single-winner voting rules has this property of total resis-
tance to manipulation (though some voting rules come close (Faliszewski, Hemaspaandra,
Hemaspaandra, & Rothe, 2007)).

Finally, our structured setting, where voters essentially have preferences over subsets of
candidates, is related to recent work on combinatorial voting (see, e.g., Lang (2007) and
the references listed there).

Note that this paper subsumes parts of Procaccia, Rosenschein and Zohar (2007) and
Meir, Procaccia and Rosenschein (2008).

6. Discussion

The analysis in this paper has focused on the complexity of manipulating and control-
ling four simple voting schemes which are often considered in the context of multi-winner
elections: SNTV, Bloc, Approval, and Cumulative voting. In our formulation of the com-
putational problems, we have assumed the manipulator (or chairman) has some additive
utility function over the candidates. We distinguished three major cases: the manipula-
tor wants one candidate to be included in the set of winners, or excluded from the set of
winners; the manipulator has a binary utility function; and the manipulator has a general
utility function.

At this point we wish to direct the reader’s attention to Table 1, which summarizes our
results regarding manipulation. A left (respectively right) implication arrow in the table
means that the result in the cell is implied by the result in the left (respectively right)
cell. For a general utility function, manipulation is hard in Cumulative voting, and easy
in the other three. The results about Cumulative voting, however, do not carry over when
the manipulator has a binary utility function. Another interesting result, which does not
appear above, is that when we restrict ourselves to boolean utility functions, any scoring
rule can be easily manipulated. This result is formally stated and proven in Appendix A.
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Control by Adding/Removing Voters

Rule In/Ex candidate Boolean utility General utility

SNTV P [2] ⇐ P ⇐ P
Bloc NP-c ⇒ NP-c ⇒ NP-c
Approval NP-c* ⇒ NP-c ⇒ NP-c
Cumulative NP-c ⇒ NP-c ⇒ NP-c

Control by Adding/Removing Candidates

Rule In/Ex candidate** Boolean utility General utility

SNTV NP-c [1,2] ⇒ NP-c ⇒ NP-c
Bloc NP-c [1,2] ⇒ NP-c ⇒ NP-c
Approval P ⇐ P ⇐ P
Cumulative Irrelevant Irrelevant Irrelevant

Table 2: The complexity of control by adding/removing voters/candidates in multi-winner
elections. * This result was known for including a candidate (Hemaspaandra et al.,
2007b), even in single-winner elections. However, when k = 1, destructive control
by adding/removing voters in Approval is tractable, while this is not the case
when k is a parameter. ** In the context of control by removing candidates,
we do not discuss the case of excluding a candidate. [1] Bartholdi et al. (1992).
[2] Hemaspaandra et al. (2007b).

It remains an open question which scoring rules (if any) are NP-hard to manipulate under
general utility functions.

Table 2 summarizes our results regarding control. Notice that with respect to control, all
results are true for the three types of utility functions that appear in the table. Our results
imply that control by adding or removing voters is easy in SNTV but hard in the other three
rules. Surprisingly, the situation has turned on its head when it comes to control by adding
or removing candidates: here it is Approval voting which is easy to control, while other
rules are hard. In short, there is no clear hierarchy of resistance to control. We conclude
that one has to adopt a voting rule ad hoc, depending on whether control by tampering
with the set of voters, or with the set of candidates, is the major concern.

Note that some types of control, such as partitioning the set of voters or the set of
candidates (Bartholdi et al., 1992), have not been investigated in this paper.

Finally, we wish to connect this work with the ongoing discussion of worst-case versus
average-case complexity of manipulation and control in elections. As mentioned in Sec-
tion 5, a strand of recent research argues that worst-case hardness is not a strong enough
guarantee of resistance to strategic behavior, by showing that manipulation problems that
are known to beNP-hard are tractable according to different average-case notions (Conitzer
& Sandholm, 2006; Procaccia & Rosenschein, 2007a; Zuckerman et al., 2008; Erdélyi et al.,
2007). However, that research is still highly inconclusive. Therefore, worst-case complex-
ity of manipulation and control remains an important benchmark for comparing different
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voting rules, and still inspires a considerable and steadily growing body of work (Conitzer
et al., 2007; Hemaspaandra et al., 2007a, 2007b; Faliszewski et al., 2007).
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Appendix A. Manipulating Scoring Rules

In Section 3, we have shown that SNTV and Bloc voting, which are both scoring rules, are
easy to manipulate under a general utility function. The next proposition establishes that
this is true for any scoring rule, under a boolean-valued utility function.

Proposition A.1. Let P be a scoring rule defined by the parameters ~α = 〈α1, . . . , αm〉.
Manipulation in P with any boolean-valued utility function u : C → {0, 1} is in P.

Proof. Let ~α = 〈α1, . . . , αm〉 be the parameters of the scoring rule in question. Denote the
score of each candidate c ∈ C, before the manipulator has cast his vote, by s[c]. Let J be
the manipulator’s preference profile, given by:

J = cj1 ≻ cj2 ≻ . . . ≻ cjm

Suppose some candidate c ∈ C was ranked in place l by the manipulator, c = cjl
. Denote

the final score of candidate c, according to the manipulator’s profile J , by:

sJ [c] = s[c] + αl

Finally, denote the winner set that results from the manipulator’s ballot J by WJ .

Lemma A.2. Given C ′ ⊆ C, |C| = k, it is possible to determine in polynomial time if
there exists J s.t. C ′ = WJ .

Proof. Denote C ′ = {c′1 . . . c′k},

C ′′ = C \ C ′ = {c′′1, . . . c
′′
m−k},

where both C ′, C ′′ are sorted by nondecreasing score s[c]. Let

J ∗ = c′1 ≻ c′2 ≻ . . . ≻ c′k ≻ c′′1 ≻ . . . ≻ c′′m−k

This preference profile ranks the players in C ′ first, while giving more points to candidates
with lower initial score. Candidates from C ′′ are ranked next, and the same rule applies.
The intuition is that we would like the candidates in C ′ to have a high-as-possible, more or
less balanced, score. Likewise, we would like the candidates in C ′′ to have a low-as-possible
balanced score. This strategy generalizes the algorithm of Bartholdi et al. (1989).
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We claim that there exists J s.t. C ′ = WJ if and only if C ′ = WJ ∗ . If C ′ = WJ ∗ then
obviously there exists J s.t. C ′ = WJ . Conversely, suppose there exists some J# such
that C ′ = WJ# . Without loss of generality, this holds (by the adversarial tie breaking
assumption)8 if and only if

∀c′ ∈ C ′, c′′ ∈ C ′′, sJ# [c′′] < sJ# [c′]. (5)

We argue that it is possible to obtain J ∗ from J# by iteratively transposing pairs of
candidates, without changing the winner set. Indeed, we distinguish between three cases:

1. ∃j1, j2 ∈ {1, 2, . . . , k} such that s[c′j1 ] > s[c′j2 ] , but in J# it holds that c′j1 ≻ c′j2 .

Now, transpose the rankings of c′j1 and c′j2 in J#, i.e., consider the preference profile

which is identical to J# except that the places of c′j1 and c′j2 are switched. Denote
by W the new set of winners.

The score of c′j2 increased, so he is certainly still in W . Moreover, the new final
(possibly lower) score of c′j1 is:

s[c′j1 ] + αj2 ≥ s[c′j2 ] + αj2 = sJ# [c′j2 ]

By (5) we have that:
∀c′′ ∈ C ′′, sJ# [c′′] < sJ# [c′j2 ]

Therefore, c′j1 ∈ W even after the transposition. We conclude that it still holds that
C ′ = W .

2. ∃j1, j2 ∈ {1, 2, . . . , m− k} such that s[c′′j1 ] > s[c′′j2 ], but in J# it holds that c′′j1 ≻ c′′j2 .
A similar argument holds in this case.

3. ∃c′ ∈ C ′, c′′ ∈ C ′′ such that in J# it holds that c′′ ≻ c′. Clearly the desirable candi-
date c′ can only rank higher if we transpose the two candidates.

Using the three types of transpositions, we can replace a couple of candidates at each
step until we obtain J ∗ from J#. In each such step it remains true that C ′ = W , thus
C ′ = WJ ∗ .

Lemma A.3. Given C ′ ⊆ C, C ′ ≤ k, it is possible to determine in polynomial time if there
exists J s.t. C ′ ⊆WJ .

Proof. Let C ′ ⊆ C, |C ′| = k′ < k. We add to C ′ the k − k′ candidates from C ′′ with the
highest score (according to s[c]), and denote this new set of size k by C∗. According to
Lemma A.2, we can determine efficiently if there exists J such that C∗ = WJ .

We argue that it is enough to check C∗. Indeed, assume that there ∃J such that
C ′ ⊆ WJ . Let c ∈ C \WJ such that there exists c′ ∈ WJ with s[c′] < s[c]. Now, if we
transpose, in the ranking J , the candidates c and c′, clearly c becomes a winner while c′

becomes a loser. Therefore, it is possible to make C∗ the set of winners.

8. Tie breaking works against candidates with utility 1 (which are the ones we ultimately care about), but
in favor of candidates in C

′ with utility 0. However, for ease of exposition, we do not deal with such
borderline cases here.
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To complete the proof of the proposition, we denote by D the set of candidates whose
utility is 1. The total utility is at least t if and only if there is a subset of D of size t that can
be included in W . Let C ′ be the t candidates with the highest score s[c] in D. By similar
arguments as before, if this subset cannot win then no other subset of D of size t can. By
Lemma A.3 we can efficiently find out whether it is possible to include C ′ in W .
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