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Abstract
This paper presents Networks of Influence Diagrams (NID), a compact, natural and

highly expressive language for reasoning about agents’ beliefs and decision-making pro-
cesses. NIDs are graphical structures in which agents’ mental models are represented as
nodes in a network; a mental model for an agent may itself use descriptions of the mental
models of other agents. NIDs are demonstrated by examples, showing how they can be used
to describe conflicting and cyclic belief structures, and certain forms of bounded rational-
ity. In an opponent modeling domain, NIDs were able to outperform other computational
agents whose strategies were not known in advance. NIDs are equivalent in representation
to Bayesian games but they are more compact and structured than this formalism. In par-
ticular, the equilibrium definition for NIDs makes an explicit distinction between agents’
optimal strategies, and how they actually behave in reality.

1. Introduction

In recent years, decision theory and game theory have had a profound impact on the design
of intelligent systems. Decision theory provides a mathematical language for single-agent
decision-making under uncertainty, whereas game theory extends this language to the multi-
agent case. On a fundamental level, both approaches provide a definition of what it means
to build an intelligent agent, by equating intelligence with utility maximization. Mean-
while, graphical languages such as Bayesian networks (Pearl, 1988) have received much
attention in AI because they allow for a compact and natural representation of uncertainty
in many domains that exhibit structure. These formalisms often lead to significant savings
in representation and in inference time (Dechter, 1999; Cowell, Lauritzen, & Spiegelhater,
2005).

Recently, a wide variety of representations and algorithms have augmented graphical
languages to be able to represent and reason about agents’ decision-making processes. For
the single-agent case, influence diagrams (Howard & Matheson, 1984) are able to represent
and to solve an agent’s decision making problem using the principles of decision theory.
This representation has been extended to the multi-agent case, in which decision problems
are solved within a game-theoretic framework (Koller & Milch, 2001; Kearns, Littman, &
Singh, 2001).

The focus in AI so far has been on the classical, normative approach to decision and
game theory. In the classical approach, a game specifies the actions that are available to
the agents, as well as their utilities that are associated with each possible set of agents’
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actions. The game is then analyzed to determine rational strategies for each of the agents.
Fundamental to this approach are the assumptions that the structure of the game, including
agents’ utilities and their actions, is known to all of the agents, that agents’ beliefs about
the game are consistent with each other and correct, that all agents reason about the game
in the same way, and that all agents are rational in that they choose the strategy that
maximizes their expected utility given their beliefs.

As systems involving multiple, autonomous agents become ubiquitous, they are increas-
ingly deployed in open environments comprising human decision makers and computer
agents that are designed by or represent different individuals or organizations. Examples of
such systems include on-line auctions, and patient care-delivery systems (MacKie-Mason,
Osepayshivili, Reeves, & Wellman, 2004; Arunachalam & Sadeh, 2005). These settings are
challenging because no assumptions can be made about the decision-making strategies of
participants in open environments. Agents may be uncertain about the structure of the
game or about the beliefs of other agents about the structure of the game; they may use
heuristics to make decisions or they may deviate from their optimal strategies (Camerer,
2003; Gal & Pfeffer, 2003b; Rajarshi, Hanson, Kephart, & Tesauro, 2001).

To succeed in such environments, agents need to make a clear distinction between their
own decision-making models, the models others may be using to make decisions, and the
extent to which agents deviate from these models when they actually make their decisions.
This paper contributes a language, called Networks of Influence Diagrams (NID), that makes
explicit the different mental models agents may use to make their decisions. NIDs provide
for a clear and compact representation with which to reason about agents’ beliefs and
their decision-making processes. It allows multiple possible mental models of deliberation
for agents, with uncertainty over which models agents are using. It is recursive, so that
the mental model for an agent may itself contain models of the mental models of other
agents, with associated uncertainty. In addition, NIDs allow agents’ beliefs to form cyclic
structures, of the form, “I believe that you believe that I believe,...”, and this cycle is
explicitly represented in the language. NIDs can also describe agents’ conflicting beliefs
about each other. For example, one can describe a scenario in which two agents disagree
about the beliefs or behavior of a third agent.

NIDs are a graphical language whose building blocks are Multi Agent Influence Diagrams
(MAID) (Koller & Milch, 2001). Each mental model in a NID is represented by a MAID,
and the models are connected in a (possibly cyclic) graph. Any NID can be converted to
an equivalent MAID that will represent the subjective beliefs of each agent in the game.

We provide an equilibrium definition for NIDs that combines the normative aspects of
decision-making (what agents should do) with the descriptive aspects of decision-making
(what agents are expected to do). The equilibrium makes an explicit distinction between
two types of strategies: Optimal strategies represent agents’ best course of action given
their beliefs over others. Descriptive strategies represent how agents may deviate from their
optimal strategy. In the classical approach to game theory, the normative aspect (what
agents should do) and the descriptive aspect (what analysts or other agents expect them
to do), have coincided. Identification of these two aspects makes sense when an agent can
do no better than optimize its decisions relative to its own model of the world. However,
in open environments, it is important to consider the possibility that an agent is deviating
from its rational strategy with respect to its model.
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NIDs share a relationship with the Bayesian game formalism, commonly used to model
uncertainty over agents’ payoffs in economics (Harsanyi, 1967). In this formalism, there
is a type for each possible payoff function an agent may be using. Although NIDs are
representationally equivalent to Bayesian games, we argue that they are a more compact,
succinct and natural representation. Any Bayesian game can be converted to a NID in
linear time. Any NID can be converted to a Bayesian game, but the size of the Bayesian
game may be exponential in the size of the NID.

This paper is a revised and expanded version of previous work (Gal & Pfeffer, 2003a,
2003b, 2004), and is organized as follows: Section 2 presents the syntax of the NID language,
and shows how they build on MAIDs in order to express the structure that holds between
agents’ beliefs. Section 3 presents the semantics of NIDs in terms of MAIDs, and provides
an equilibrium definition for NIDs. Section 4 provides a series of examples illustrating
the representational benefits of NIDs. It shows how agents can construct belief hierarchies
of each other’s decision-making in order to represent agents’ conflicting or incorrect belief
structures, cyclic belief structures and opponent modeling. It also shows how certain forms
of bounded rationality can be modeled by making a distinction between agents’ models of
deliberation and the way they behave in reality. Section 5 demonstrates how NIDs can model
“I believe that you believe” type reasoning in practice. It describes a NID that was able
to outperform the top programs that were submitted to a competition for automatic rock-
paper-scissors players, whose strategy was not known in advance. Section 6 compares NIDs
to several existing formalisms for describing uncertainty over decision-making processes. It
provides a linear time algorithm for converting Bayesian games to NIDs. Finally, Section 7
concludes and presents future work.

2. NID Syntax

The building blocks of NIDs are Bayesian networks (Pearl, 1988), and Multi Agent Influence
Diagrams (Koller & Milch, 2001). A Bayesian network is a directed acyclic graph in which
each node represents a random variable. An edge between two nodes X1 and X2 implies
that X1 has a direct influence on the value of X2. Let Pa(Xi) represent the set of parent
nodes for Xi in the network. Each node Xi contains a conditional probability distribution
(CPD) over its domain for any value of its parents, denoted P (Xi | Pa(Xi)). The topology
of the network describes the conditional independence relationships that hold in the domain
— every node in the network is conditionally independent of its non-descendants given its
parent nodes. A Bayesian network defines a complete joint probability distribution over its
random variables that can be decomposed as the product of the conditional probabilities of
each node given its parent nodes. Formally,

P (X1, . . . , Xn) =
n∏

i=1

P (Xi | Pa(Xi))

We illustrate Bayesian networks through the following example.

Example 2.1. Consider two baseball team managers Alice and Bob whose teams are play-
ing the late innings of a game. Alice, whose team is hitting, can attempt to advance a runner
by instructing him to “steal” a base while the next pitch is being delivered. A successful
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steal will result in a benefit to the hitting team and a loss to the pitching team, or it may
result in the runner being “thrown out”, incurring a large cost to the hitting team and a
benefit to the pitching team. Bob, whose team is pitching, can instruct his team to throw
a “pitch out”, thereby increasing the probability that a stealing runner will be thrown out.
However, throwing a pitch out incurs a cost to the pitching team. The decisions whether
to steal and pitch out are taken simultaneously by both team managers. Suppose that the
game is not tied, that is either Alice’s or Bob’s team is leading in score, and that the identity
of the leading team is known to Alice and Bob when they make their decision.

Suppose that Alice and Bob are using pre-specified strategies to make their decisions
described as follows: when Alice is leading, she instructs a steal with probability 0.75,
and Bob calls a pitch out with probability 0.90; when Alice is not leading, she instructs
a steal with probability 0.65, and Bob calls a pitch out with probability 0.50. There are
six random variables in this domain: Steal and PitchOut represent the decisions for Alice
and Bob; ThrownOut represents whether the runner was thrown out; Leader represents the
identity of the leading team; Alice and Bob represent the utility functions for Alice and Bob.
Figure 1 shows a Bayesian network for this scenario.

Steal PitchOut
ThrownOut

BobAlice

Leader

Figure 1: Bayesian network for Baseball Scenario (Example 2.1)

The CPD associated with each node in the network represents a probability distri-
bution over its domain for any value of its parents. The CPDs for nodes Leader, Steal,
PitchOut, and ThrownOut in this Bayesian network are shown in Table 1. For example, the
CPD for ThrownOut, shown in Table 1d, represents the conditional probability distribution
P (ThrownOut | Steal, PitchOut). According to the CPD, when Alice instructs a runner to
steal a base there is an 80% chance to get thrown out when Bob calls a pitch out and a 60%
chance to get thrown out when Bob remains idle. The nodes Alice and Bob have determin-
istic CPDs, assigning a utility for each agent for any joint value of the parent nodes Leader,
Steal, PitchOut and ThrownOut. The utility for Alice is shown in Table 2. The utility for
Bob is symmetric and assigns the negative value assigned by Alice’s utility for the same
value of the parent nodes. For example, when Alice is leading, and she instructs a runner
to steal a base, Bob instructs a pitch out, and the runner is thrown out, then Alice incurs
a utility of −60, while Bob incurs a utility of 60.1

1. Note that when Alice does not instruct to steal base, the runner cannot be thrown out, and the utility
for both agents is not defined for this case.
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Leader
alice bob none
0.4 0.3 0.3

(a) node Leader

Steal
Leader true false
alice 0.75 0.25
bob 0.65 0.35

(b) node Steal

PitchOut
Leader true false
alice 0.90 0.10
bob 0.50 0.50

(c) node PitchOut

ThrownOut
Steal PitchOut true false
true true 0.8 0.2
true false 0.6 0.4
false true 0 1
false false 0 1

(d) node ThrownOut

Table 1: Conditional Probability Tables (CPDs) for Bayesian network for Baseball
Scenario (Example 2.1)

Leader Steal PitchOut ThrownOut Alice
alice true true true −60
alice true true false 110
alice true false true −80
alice true false false 110
alice false true true —
alice false true false 10
alice false false true —
alice false false false 0
bob true true true −90
bob true true false 110
bob true false true −100
bob true false false 110
bob false true true —
bob false true false 20
bob false false true —
bob false false false 0

Table 2: Alice’s utility (Example 2.1) (Bob’s utility is symmetric, and assigns negative value to
Alice’s value).
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2.1 Multi-agent Influence Diagrams

While Bayesian networks can be used to specify that agents play specific strategies, they
do not capture the fact that agents are free to choose their own strategies, and they cannot
be analyzed to compute the optimal strategies for agents. Multi-agent Influence Diagrams
(MAID), address these issues by extending Bayesian networks to strategic situations, where
agents must choose the values of their decisions to maximize their own utilities, contingent
on the fact that other agents are choosing the values of their decisions to maximize their
own utilities. A MAID consists of a directed graph with three types of nodes: Chance
nodes, drawn as ovals, represent choices of nature, as in Bayesian networks. Decision nodes,
drawn as rectangles, represent choices made by agents. Utility nodes, drawn as diamonds,
represent agents’ utility functions. Each decision and utility node in a MAID is associated
with a particular agent. There are two kinds of edges in a MAID: Edges leading to chance
and utility nodes represent probabilistic dependence, in the same manner as edges in a
Bayesian network. Edges leading into decision nodes represent information that is available
to the agents at the time the decision is made. The domain of a decision node represents
the choices that are available to the agent making the decision. The parents of decision
nodes are called informational parents. There is a total ordering over each agent’s decisions,
such that earlier decisions and their informational parents are always informational parents
of later decisions. This assumption is known as perfect recall or no forgetting. The CPD
of a chance node specifies a probability distribution over its domain for each value of the
parent nodes, as in Bayesian networks. The CPD of a utility node represents a deterministic
function that assigns a probability of 1 to the utility incurred by the agent for any value of
the parent nodes.

In a MAID, a strategy for decision node Di maps any value of the informational parents,
denoted as pai, to a choice for Di. Let Ci be the domain of Di. The choice for the decision
can be any value in Ci. A pure strategy for Di maps each value of the informational
parents to an action ci ∈ Ci. A mixed strategy for Di maps each value of the informational
parents to a distribution over Ci. Agent α is free to choose any mixed strategy for Di

when it makes that decision. A strategy profile for a set of decisions in a MAID consists of
strategies specifying a complete plan of action for all decisions in the set.

The MAID for Example 2.1 is shown in Figure 2. The decision nodes Steal and PitchOut
represent Alice’s and Bob’s decisions, and the nodes Alice and Bob represent their utilities.
The CPDs for the chance node Leader and ThrownOut are as described in Tables 1a and
1d.

A MAID definition does not specify strategies for its decisions. These need to be com-
puted or assigned by some process. Once a strategy exists for a decision, the relevant
decision node in the MAID can be converted to a chance node that follows the strategy.
This chance node will have the same domain and parent nodes as the domain and infor-
mational parents for the decision node in the MAID. The CPD for the chance node will
equal the strategy for the decision. We then say that the chance node in the Bayesian
network implements the strategy in the MAID. A Bayesian network represents a complete
strategy profile for the MAID if each strategy for a decision in the MAID is implemented
by a relevant chance node in the Bayesian network. We then say that the Bayesian network
implements that strategy profile. Let σ represent the strategy profile that implements all
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Steal PitchOut

ThrownOut

BobAlice

Leader

Figure 2: MAID for Baseball Scenario (Example 2.1)

decisions in the MAID. The distribution defined by this Bayesian network is denoted by
P σ.

An agent’s utility function is specified as the aggregate of its individual utilities; it is the
sum of all of the utilities incurred by the agent in all of the utility nodes that are associated
with the agent.

Definition 2.2. Let E be a set of observed nodes in the MAID representing evidence that
is available to α and let σ be a strategy profile for all decisions. Let U(α) be the set of all
utility nodes belonging to α. The expected utility for α given σ and E is defined as

Uσ(α | E) =
∑

U∈U(α)

Eσ[U | E] =
∑

U∈U(α)

∑

u∈Dom(U)

P σ(u | E) · u

Solving a MAID requires computing an optimal strategy profile for all of the decisions,
as specified by the Nash equilibrium for the MAID, defined as follows.

Definition 2.3. A strategy profile σ for all decisions in the MAID is a Nash equilibrium if
each strategy component σi for decision Di belonging to agent α in the MAID is one that
maximizes the utility achieved by the agent, given that the strategy for other decisions is
σ−i.

σi ∈ argmax
τi∈∆Si

U 〈τi,σ−i〉(α) (1)

These equilibrium strategies specify what each agent should do at each decision given the
available information at the decision. When the MAID contains several sequential decisions,
the no-forgetting assumption implies that these decisions can be taken sequentially by the
agent, and that all previous decisions are available as observations when the agent reasons
about its future decisions.

Any MAID has at least one Nash equilibrium. Exact and approximate algorithms have
been proposed for solving MAIDs efficiently, in a way that utilizes the structure of the
network (Koller & Milch, 2001; Vickrey & Koller, 2002; Koller, Meggido, & von Stengel,
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1996; Blum, Shelton, & Koller, 2006). Exact algorithms for solving MAIDs decompose
the MAID graph into subsets of interrelated sub-games, and then proceed to find a set of
equilibria in these sub-games that together constitute a global equilibrium for the entire
game. In the case that there are multiple Nash equilibria, these algorithms will select one
of them, arbitrarily. The MAID in Figure 2 has a single Nash equilibrium, which we can
obtain by solving the MAID: When Alice is leading, she instructs her runner to steal a base
with probability 0.2, and remain idle with probability 0.8, while Bob calls a pitch out with
probability 0.3, and remains idle with probability 0.7. When Bob is leading, Alice instructs
a steal with probability 0.8, and Bob calls a pitch out with probability 0.5.

The Bayesian network that implements the Nash equilibrium strategy profile for the
MAID can be queried to predict the likelihood of interesting events. For example, we can
query the network in Figure 2 and find that the probability that the stealer will get thrown
out, given that agents’ strategies follow the Nash equilibrium strategy profile, is 0.57.

Any MAID can be converted to an extensive form game — a decision tree in which
each vertex is associated with a particular agent or with nature. Splits in the tree represent
an assignment of values to chance and decision nodes in the MAID; leaves of the tree
represent the end of the decision-making process, and are labeled with the utilities incurred
by the agents given the decisions and chance node values that are instantiated along the
edges in the path leading to the leaf. Agents’ imperfect information regarding the actions
of others are represented by the set of vertices they cannot tell apart when they make a
particular decision. This set is referred to as an information set. Let D be a decision in
the MAID belonging to agent α. There is a one-to-one correspondence between values of
the informational parents of D in the MAID and the information sets for α at the vertices
representing its move for decision D.

2.2 Networks of Influence Diagrams

To motivate NIDs, consider the following extension to Example 2.1.

Example 2.4. Suppose there are experts who will influence whether or not a team should
steal or pitch out. There is social pressure on the managers to follow the advice of the
experts, because if the managers’ decision turns out to be wrong they can assign blame to
the experts. The experts suggest that Alice should call a steal, and Bob should call a pitch
out. This advice is common knowledge between the managers. Bob may be uncertain as to
whether Alice will in fact follow the experts and steal, or whether she will ignore them and
play a best-response with respect to her beliefs about Bob. To quantify, Bob believes that
with probability 0.7, Alice will follow the experts, while with probability 0.3, Alice will play
best-response. Alice’s beliefs about Bob are symmetric to Bob’s beliefs about Alice: With
probability 0.7 Alice believes Bob will follow the experts and call a pitch out, and with
probability 0.3 Alice believes that Bob will play the best-response strategy with respect
to his beliefs about Alice. The probability distribution for other variables in this example
remains as shown in Table 1.

NIDs build on top of MAIDs to explicitly represent this structure. A Network of Influ-
ence Diagrams (NID) is a directed, possibly cyclic graph, in which each node is a MAID.
To avoid confusion with the internal nodes of each MAID, we will call the nodes of a NID
blocks. Let D be a decision belonging to agent α in block K, and let β be any agent. (In
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particular, β may be agent α itself.) We introduce a new type of node, denoted Mod[β, D]
with values that range over each block L in the NID. When Mod[β, D] takes value L, we
say that agent β in block K is modeling agent α as using block L to make decision D.
This means that β believes that α may be using the strategy computed in block L to make
decision D. For the duration of this paper, we will refer to a node Mod[β, D] as a “Mod
node” when agent β and decision D are clear from context.

A Mod node is a chance node just like any other; it may influence, or be influenced
by other nodes of K. It is required to be a parent of the decision D but it is not an
informational parent of the decision. This is because an agent’s strategy for D does not
specify what to do for each value of the Mod node. Every decision D will have a Mod[β, D]
node for each agent that makes a decision in block K, including agent α itself that owns
the decision. If the CPD of Mod[β, D] assigns positive probability to some block L, then
we require that D exists in block L either as a decision node or as a chance node. If D is a
chance node in L, this means that β believes that agent α is playing like an automaton in
L, using a fixed, possibly mixed strategy for D; if D is a decision node in L, this means that
β believes α is analyzing block L to determine the course of action for D. For presentation
purposes, we also add an edge K → L to the NID, labeled {β, D}.

Steal PitchOutThrownOut

Mod[Bob, Steal] Mod[Alice, PitchOut]

BobAlice

Mod[Alice, Steal] Mod[Bob, PitchOut]Leader

(a) Top-level Block

Steal

Leader

(b) block S

PitchOut

Leader

(c) block P

Top-level

S P

Alice,PITCHOUTBob,STEAL

(d) Baseball NID

Figure 3: Baseball Scenario (Example 2.1)

We can represent Example 2.4 in the NID described in Figure 3. There are three blocks
in this NID. The Top-level block, shown in Figure 3a, corresponds to an interaction between
Alice and Bob in which they are free to choose whether to steal base or call a pitch out,
respectively. This block is identical to the MAID of Figure 2, except that each decision node
includes the Mod nodes for all of the agents. Block S, presented in Figure 3b, corresponds to
a situation where Alice follows the expert recommendation and instructs her player to steal.
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Mod[Bob, Steal]
Top-level S

0.3 0.7
(a) node
Mod[Bob, Steal]

Mod[Alice, PitchOut]
Top-level P

0.3 0.7
(b) node
Mod[Alice, PitchOut]

Mod[Bob, PitchOut]
Top-level

1
(c) node
Mod[Bob, PitchOut]

Mod[Alice, Steal]
Top-level

1
(d) node
Mod[Alice, Steal]

Table 3: CPDs for Top-level block of NID for Baseball Scenario (Example 2.1)

In this block, the Steal decision is replaced with a chance node, which assigns probability
1 to true for any value of the informational parent Leader. Similarly, block P, presented in
Figure 3c, corresponds to a situation where Bob instructs his team to pitch out. In this
block, the PitchOut decision is replaced with a chance node, which assigns probability 1 to
true for any value of the informational parent Leader.

The root of the NID is the Top-level block, which in this example corresponds to reality.
The Mod nodes in the Top-level block capture agents’ beliefs over their decision-making
processes. The node Mod[Bob, Steal] represents Bob’s belief about which block Alice is
using to make her decision Steal. Its CPD assigns probability 0.3 to the Top-level block,
and 0.7 to block S. Similarly, the node Mod[Alice, PitchOut] represents Alice’s beliefs about
which block Bob is using to make the decision PitchOut. Its CPD assigns probability 0.3 to
the Top-level block, and 0.7 to block P. These are shown in Table 3.

An important aspect of NIDs is that they allow agents to express uncertainty about the
block they themselves are using to make their own decisions. The node Mod[Alice, Steal]
in the Top-level block represents Alice’s beliefs about which block Alice herself is using to
make her decision Steal. In our example, the CPD of this node assigns probability 1 to
the Top-level. Similarly, the node Mod[Bob, PitchOut] represents Bob’s beliefs about which
block he is using to make his decision PitchOut, and assigns probability 1 to the Top-level
block. Thus, in this example, both Bob and Alice are uncertain about which block the other
agent is using to make a decision, but not about which block they themselves are using.

However, we could also envision a situation in which an agent is unsure about its own
decision-making. We say that if Mod[β, D] at block K equals some block L $= K, and
β owns decision D, then agent β is modeling itself as using block L to make decision
D. In Section 3.2 we will show how this allows to capture interesting forms of bounded
rational behavior. We do impose the requirement that there exists no cycle in which each
edge includes a label {α, D}. In other words, there is no cycle in which the same agent is
modeling itself at each edge. Such a cycle is called a self-loop. This is because the MAID
representation for a NID with a self-loop will include a cycle between the nodes representing
the agent’s beliefs about itself at each block of the NID.

In future examples, we will use the following convention: If there exists a Mod[α, D] node
at block K (regardless of whether α owns the decision) and the CPD of Mod[α, D] assigns
probability 1 to block K, we will omit the node Mod[α, D] from the block description.
In the Top-level block of Figure 3a, this means that both nodes Mod[Alice, Steal] and
Mod[Bob, PitchOut], currently appearing as dashed ovals, will be omitted.
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3. NID Semantics

In this section we provide semantics for NIDs in terms of MAIDs. We first show how a
NID can be converted to a MAID. We then define a NID equilibrium in terms of a Nash
equilibrium of the constructed MAID.

3.1 Conversion to MAIDs

The following process converts each block K in the NID to a MAID fragment OK , and then
connects them to form a MAID representation of the NID. The key construct in this process
is the use of a chance node DK

α in the MAID to represent the beliefs of agent α regarding
the action that is chosen for decision D at block K. The value of Dα depends on the block
used by α to model decision D, as determined by the value of the Mod[α, D] node.

1. For each block K in the NID, we create a MAID OK . Any chance or utility node N
in block K that is a descendant of a decision node in K is replicated in OK , once for
each agent α, and denoted NK

α . If N is not a descendant of a decision node in K, it
is copied to OK and denoted NK . In this case, we set NK

α = NK for any agent α.

2. If P is a parent of N in K, then PK
α will be made a parent of NK

α in OK . The CPD
of NK

α in OK will be equal to the CPD of N in K.

3. For each decision D in K, we create a decision node BR[D]K in OK , representing the
optimal action for α for this decision. If N is a chance or decision node which is an
informational parent of D in K, and D belongs to agent α, then NK

α will be made an
informational parent of BR[D]K in OK .

4. We create a chance node DK
α in OK for each agent α. We make Mod[α, D]K a parent

of DK
α . If decision D belongs to agent α, then we make BR[D]K a parent of DK

α . If
decision D belongs to agent β $= α, then we make DK

β a parent of DK
α .

5. We assemble all the MAID fragments OK into a single MAID O as follows: We add
an edge DL

α → DK
β where L $= K if L is assigned positive probability by Mod[β, D]K ,

and α owns decision D. Note that β may be any agent, including α itself.

6. We set the CPD of DK
α to be a multiplexer. If α owns D then the CPD of DK

α assigns
probability 1 to BR[D]K when Mod[α, D]K equals K, and assigns probability 1 to
DL

α when Mod[α, D]K equals L $= K. If β $= α owns D then the CPD of DK
α assigns

probability 1 to DK
β when Mod[α, D]K equals K, and assigns probability 1 to DL

β

when Mod[α, D]K equals L $= K.

To explain, Step 1 of this process creates a MAID fragment OK for each NID block. All
nodes that are ancestors of decision nodes — representing events that occur prior to the
decisions — are copied to OK . However, events that occur after decisions are taken may
depend on the actions for those decisions. Every agent in the NID may have its own beliefs
about these actions and the events that follow them, regardless of whether that agent owns
the decision. Therefore, all of the descendant nodes of decisions are duplicated for each agent
in OK . Step 2 ensures that if any two nodes are connected in the original block K, then
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the nodes representing agents’ beliefs in OK are also connected. Step 3 creates a decision
node in OK for each decision node in block K belonging to agent α. The informational
parents for the decision in OK are those nodes that represent the beliefs of α about its
informational parents in K. Step 4 creates a separate chance node in OK for each agent α
that represents its belief about each of the decisions in K. If α owns the decision, this node
depends on the decision node belonging to α. Otherwise, this node depends on the beliefs
of α regarding the action of agent β that owns the decision. In the case that α models β as
using a different block to make the decisions, Step 5 connects between the MAID fragments
of each block. Step 6 determines the CPDs for the nodes representing agents’ beliefs about
each other’s decisions. The CPD ensures that the block that is used to model a decision is
determined by the value of the Mod node. The MAID that is obtained as a result of this
process is a complete description of agents’ beliefs over each other’s decisions.

We demonstrate this process by converting the NID of Example 2.4 to its MAID repre-
sentation, shown in Figure 4. First, MAID fragments for the three blocks Top-level, P, and
S are created. The node Leader appearing in blocks Top-level, P, and S is not a descen-
dant of any decision. Following Step 1, it is created once in each of the MAID fragments,
giving the nodes LeaderTL, LeaderP and LeaderS . Similarly, the node Steal in block S and
the node PitchOut in block P are created once in each MAID fragment, giving the nodes
StealS and PitchOutP . Also in Step 1, the nodes Mod[Alice, Steal]TL, Mod[Bob, Steal]TL,
Mod[Alice, PitchOut]TL and Mod[Bob, PitchOut]TL are added to the MAID fragment for the
Top-level block.

Step 3 adds the decision nodes BRTL[Steal] and BRTL[PitchOut] to the MAID fragment
for the Top-level block. Step 4 adds the chance nodes PitchOutTL

Bob, PitchOutTL
Alice, StealTL

Alice

and StealTL
Bob to the MAID fragment for the Top-level block. These nodes represent agents’

beliefs in this block about their own decisions or the decisions of other agents. For ex-
ample, PitchOutTL

Bob represents Bob’s beliefs about its decision whether to pitch out, while
PitchOutTL

Alice represents Alice’s beliefs about Bob’s beliefs about this decision. Also follow-
ing Step 4, edges BRTL[PitchOut] → PitchOutTL

Bob and StealTL
Alice → StealTL

Bob are added to the
MAID fragment for the Top-level block. These represent Bob’s beliefs over its own decision
at the block. An edge StealTL

Alice → StealTL
Bob is added to the MAID fragment to represent

Bob’s beliefs over Alice’s decision at the Top-level block. There are also nodes representing
Alice’s beliefs about her and Bob’s decisions in this block.

In Step 5, edges StealS → StealTL
Bob and PitchOutP → PitchoutTL

Alice are added to the
MAID fragment for the Top-level block. This is to allow Bob to reason about Alice’s decision
in block S, and for Alice to reason about Bob’s decision in block P. This action unifies the
MAID fragments into a single MAID. The parents of StealTL

Bob are Mod[Bob, Steal]TL, StealS

and StealTL
Alice. Its CPD is a multiplexer node that determines Bob’s prediction about Alice’s

action: If Mod[Bob, Steal]TL equals S, then Bob believes Alice to be using block S, in which
her action is to follow the experts and play strategy StealS . If Mod[Bob, Steal]TL equals
the Top-level block, then Bob believes Alice to be using the Top-level block, in which
Alice’s action is to respond to her beliefs about Bob. The situation is similar for Alice’s
decision StealTL

Alice and the node Mod[Alice, Steal]TL with the following exception: When
Mod[Alice, Steal]TL equals the Top-level block, then Alice’s action follows her decision node
BRTL[Steal].

In the Appendix, we prove the following theorem.
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Theorem 3.1. Converting a NID into a MAID will not introduce a cycle in the resulting
MAID.

StealTL
Bob PitchOutTL

Bob

ModTL[Bob, Steal]

BobTL
Bob

AliceTL
Bob

ModTL[Bob, PitchOut]

ThrownOutTL
Bob

BRTL[PitchOut]

StealTL
Alice PitchOutTL

Alice

ModTL[Alice, PitchOut]

BobTL
AliceAliceTL

Alice

ModTL[Alice, Steal]

ThrownOutTL
Alice

BRTL[Steal]

StealS

LeadBobLeaderTL

PitchOutP

LeadBobLeaderS

LeadBobLeaderP

Figure 4: MAID representation for the NID of Example 2.4

As this conversion process implies, NIDs and MAIDs are equivalent in their expressive
power. However, NIDs provide several advantages over MAIDs. A NID block structure
makes explicit agents’ different beliefs about decisions, chance variables and utilities in the
world. It is a mental model of the way agents reason about decisions in the block. MAIDs
do not distinguish between the real world and agents’ mental models of the world or of each
other, whereas NIDs have a separate block for each mental model. Further, in the MAID,
nodes simply represent chance, decision or utilities, and are not inherently interpreted in
terms of beliefs. A DK

α node in a MAID representation for a NID does not inherently
represent agent α’s beliefs about how decision D is made in mental model K, and the
ModK for agent α does not inherently represent which mental model is used to make a
decision. Indeed, there are no mental models defined in a MAID. In addition, there is no
relationship in a MAID between descendants of decisions NK

α and NK
β , so there is no sense

in which they represent the possibly different beliefs of agents α and β about N .
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Together with the NID construction process described above, a NID is a blueprint
for constructing a MAID that describes agents’ mental models. Without the NID, this
process becomes inherently difficult. Furthermore, the constructed MAID may be large and
unwieldy compared to a NID block. Even for the simple NID of Example 2.4, the MAID of
Figure 4 is complicated and hard to understand.

3.2 Equilibrium Conditions

In Section 2.1, we defined pure and mixed strategies for decisions in MAIDs. In NIDs, we
associate the strategies for decisions with the blocks in which they appear. A pure strategy
for a decision D in a NID block K is a mapping from the informational parents of D to
an action in the domain of D. Similarly, a mixed strategy for D is a mapping from the
informational parents of D to a distribution over the domain of D. A strategy profile for a
NID is a set of strategies for all decisions at all blocks in the NID.

Traditionally, an equilibrium for a game is defined in terms of best response strategies.
A Nash equilibrium is a strategy profile in which each agent is doing the best it possibly can,
given the strategies of the other agents. Classical game theory predicts that all agents will
play a best response. NIDs, on the other hand, allow us to describe situations in which an
agent deviates from its best response by playing according to some other decision-making
process. We would therefore like an equilibrium to specify not only what the agents should
do, but also to predict what they actually do, which may be different.

A NID equilibrium includes two types of strategies. The first, called a best response
strategy, describes what the agents should do, given their beliefs about the decision-making
processes of other agents. The second, called an actually played strategy, describes what
agents will actually do according to the model described by the NID. These two strategies
are mutually dependent. The best response strategy for a decision in a block takes into
account the agent’s beliefs about the actually played strategies of all the other decisions.
The actually played strategy for a decision in a block is a mixture of the best response for
the decision in the block, and the actually played strategies for the decision in other blocks.

Definition 3.2. Let N be a NID and let M be the MAID representation for N. Let σ be an
equilibrium for M. Let D be a node belonging to agent α in block K of N. Let the parents
of D be Pa. By the construction of the MAID representation detailed in Section 3.1, the
parents of BR[D]K in M are PaK

α and the domains of Pa and PaK
α are the same. Let

σBR[D]K (pa) denote the mixed strategy assigned by σ for BR[D]K when PaK
α equals pa.

The best response strategy for D in K, denoted θK
D (pa), defines a function from values of

Pa to distributions over D that satisfy

θK
D (pa) ≡ σBR[D]K (pa)

In other words, the best response strategy is the same as the MAID equilibrium when
the corresponding parents take on the same values.

Definition 3.3. Let P σ denote the distribution that is defined by the Bayesian network
that implements σ. The actually played strategy for decision D in K that is owned by
agent α, denoted φK

D(pa), specifies a function from values of Pa to distributions over D
that satisfy

φK
D(pa) ≡ P σ(DK

α | pa)
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Note here, that DK
α is conditioned on the informational parents of decision D rather than its

own parents. This node represents the beliefs of α about decision K. Therefore, the actually
played strategy for D in K represents α’s belief about D in K, given the informational
parents of D.

Definition 3.4. Let σ be a MAID equilibrium. The NID equilibrium corresponding to σ
consists of two strategy profiles θ and φ, such that for every decision D in every block K,
θK
D is the best response strategy for D in K, and φK

D is the actually played strategy for D
in K.

For example, consider the constructed MAID for our baseball example in Figure 4. The
best response strategies in the NID equilibrium specify strategies for the nodes Steal and
PitchOut in the Top-level block that belong to Alice and Bob respectively. For an equi-
librium σ of the MAID, the best response strategy for Steal in the Top-level block is the
strategy specified by σ for BRTL[Steal]. Similarily, the best response strategy for Pitchout
in the Top-level block is the strategy specified by σ for BRTL[Pitchout]. The actually played
strategy for Steal in the Top-level is equal to the conditional probability distribution over
StealTL

Alice given the informational parent LeaderTL. Similarly, the actually played strategy
for Pitchout is equal to the conditional probability distribution over PitchoutTL

Bob given the
informational parent LeaderTL. Solving this MAID yields the following unique equilibrium:
In the NID Top-level block, the CPD for nodes Mod[Alice, Steal] and Mod[Bob, Pitchout]
assigns probability 1 to the Top-level block, so the actually played and best response strate-
gies for Bob and Alice are equal and specified as follows: If Alice is leading, then Alice steals
base with probability 0.56 and Bob pitches out with probability 0.47. If Bob is leading,
then Alice never steals base and Bob never pitches out. It turns out that because the ex-
perts may instruct Bob to call a pitch out, Alice is considerably less likely to steal base,
as compared to her equilibrium strategy for the MAID of Example 2.1, where none of the
managers considered the possibility that the other was being advised by experts. The case
is similar for Bob.

A natural consequence of this definition is that the problem of computing NID equilibria
reduces to that of computing MAID equilibria. Solving the NID requires to convert it to its
MAID representation and solving the MAID using exact or approximate solution algorithms.
The size of the MAID is bounded by the size of a block times the number of blocks times
the number of agents. The structure of the NID can then be exploited by a MAID solution
algorithm (Koller & Milch, 2001; Vickrey & Koller, 2002; Koller et al., 1996; Blum et al.,
2006).

4. Examples

In this section, we provide a series of examples demonstrating the benefits of NIDs for
describing and representing uncertainty over decision-making processes in a wide variety of
domains.

4.1 Irrational Agents

Since the challenge to the notion of perfect rationality as the foundation of economic sys-
tems presented by Simon (1955), the theory of bounded rationality has grown in different
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directions. From an economic point of view, bounded rationality dictates a complete de-
viation from the utility maximizing paradigm, in which concepts such as “optimization”
and “objective functions” are replaced with “satisficing” and “heuristics” (Gigerenzer &
Selten, 2001). These concepts have recently been formalized by Rubinstein (1998). From
a traditional AI perspective, an agent exhibits bounded rationality if its program is a solu-
tion to the constrained optimization problem brought about by limitations of architecture
or computational resources (Russell & Wefald, 1991). NIDs serve to complement these
two prevailing perspectives by allowing to control the extent to which agents are behaving
irrationally with respect to their model.

Irrationality is captured in our framework by the distinction between best response and
actually played strategies. Rational agents always play a best response with respect to
their models. For rational agents, there is no distinction between the normative behavior
prescribed for each agent in each NID block, and the descriptive prediction of how the agent
actually would play when using that block. In this case, the best response and actually
played strategies of the agents are equal. However, in open systems, or when people are
involved, we may need to model agents whose behavior differs from their best response
strategy. In other words, their best response strategies and actually played strategies are
different. We can capture agent α behaving (partially) irrationally about its decision Dα

in block K by setting the CPD of Mod[α, Dα] to assign positive probability to some block
L $= K.

There is a natural way to express this distinction in NIDs through the use of the Mod
node. If Dα is a decision associated with agent α, we can use Mod[α, Dα] to describe which
block α actually uses to make the decision Dα. In block K, if Mod[α, Dα] is equal to K with
probability 1, then it means that within K, α is making the decision according to its beliefs
in block K, meaning that α will be rational; it will play a best response to the strategies
of other agents, given its beliefs. If, however, Mod[α, Dα] assigns positive probability to
some block L other than K, it means that there is some probability that α will not play
a best response to its beliefs in K, but rather play a strategy according to some other
block L. In this case, we say α self-models at block K. The introduction of actually played
strategies into the equilibrium definition represents another advantage of NIDs over MAIDs,
in that they explicitly represent strategies for agents that may deviate from their optimal
strategies.

In some cases, making a decision may lead an agent to behave irrationally by viewing
the future in a considerably more positive light than is objectively likely. For example, a
person undergoing treatment for a disease may believe that the treatment stands a better
chance of success than scientifically plausible. In the psychological literature, this effect
is referred to as motivational bias or positive illusion (Bazerman, 2001). As the following
example shows, NIDs can represent agents’ motivational biases in a compelling way, by
making Mod nodes depend on the outcome of decision nodes.

Example 4.1. Consider the case of a toothpaste company whose executives are faced
with two sequential decisions: whether to place an advertisement in a magazine for their
leading brand, and whether to increase production of the brand. Based on past analysis,
the executives know that without advertising, the probability of high sales for the brand in
the next quarter will be 0.5. Placing the advertisement costs money, but the probability
of high sales will rise to 0.7. Increasing production of the brand will contribute to profit
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if sales are high, but will hurt profit if sales are low due to the high cost of storage space.
Suppose now that the company executives wish to consider the possibility of motivational
bias, in which placing the advertisement will inflate their beliefs about sales to be high in
the next quarter to probability 0.9. This may lead the company to increase the production
of the brand when it is not warranted by the market and consequently, suffer losses. The
company executives wish to compute their best possible strategy for their two decisions
given the fact that they attribute a motivational bias.

A NID describing this situation is shown in Figure 5c. The Top-level block in Figure 5a
shows the situation from the point of view of reality. It includes two decisions, whether
to advertise (Advertise) and whether to increase the supply of the brand (Increase). The
node Sales represents the amount of sales for the brand after the decision of whether to
advertise, and the node Profit represents the profit for the company, which depends on
the nodes Advertise, Increase and Sales. The CPD of Sales in the Top-level block assigns
probability 0.7 to high if Advertise is true and 0.5 to high if Advertise is false, as described
in Table 4a. The utility values for node Profit are shown in Table 4.1. For example, when
the company advertises the toothpaste, increases its supply, and sales are high, it receives
a reward of 70; when the company advertises the toothpaste, does not increase its supply,
and sales are low, it receives a reward of −40. Block Bias, described in Figure 5b, represents
the company’s biased model. Here, the decision to advertise is replaced by an automaton
chance node that assigns probability 1 to Advertise = true. The CPD of Sales in block Bias
assigns probability 0.9 to high if Advertise is true and 0.5 to high if Advertise is false, as
described in Table 4b. In the Top-level block, we have the following:

1. The node Mod[Company, Advertise] assigns probability 1 to the Top-level block.

2. The decision node Advertise is a parent of the node Mod[Company, Increase].

3. The node Mod[Company, Increase] assigns probability 1 to block Bias when Advertise
is true, and assigns probability 0 to block Bias when Advertise is false.

Intuitively, Step 1 captures the company’s beliefs that it is not biased before it makes the
decision to advertise. Step 2 allows the company’s uncertainty about whether it is biased
to depend on the decision to advertise. Note that this example shows when it is necessary
for a decision node to depend on an agent’s beliefs about a past decision. Step 3 captures
the company’s beliefs that it may use block Bias to make its decision whether to increase
supply, in which it is over confident about high sales.

Solving this NID results in the following unique equilibrium: In block Bias, the com-
pany’s actually played and best response strategy is to increase supply, because this is its
optimal action when it advertises and sales are high. In block Top-level, we have the follow-
ing: If the company chooses not to advertise, it will behave rationally, and its best response
and actually played strategy will be not to increase supply; if the company chooses to ad-
vertise, its actually played strategy will be to use block Bias in which it increases supply,
and its best response strategy will be not to increase supply. Now, the expected utility for
the company in the Top-level block is higher when it chooses not to advertise. Therefore,
its best response strategies for both decisions are not to advertise nor to increase supply.
Interestingly, if the company was never biased, it can be shown using backwards induction
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that its optimal action for the first decision is to advertise. Thus, by reasoning about its
own possible irrational behavior for the second decision, the company revised its strategy
for the first decision.

Sales

Advertise

Increase

Prot

Mod[Company, Increase]

Mod[Company, Advertise]

(a) Block Top-level

Sales Increase

Prot

Advertise

(b) Block Bias

Top-level

Bias

Company, INCREASE

(c) NID

Figure 5: Motivational Bias Scenario (Example 4.1)

Sales
Advertise low high

true 0.3 0.7
false 0.5 0.5

(a) node Sales (Top-level
Block)

Sales
Advertise low high

true 0.1 0.9
false 0.5 0.5

(b) node Sales (Bias Block)

Table 4: CPDs for Top-level block of Motivational Bias NID (Example 4.1)

Example 4.2. Consider the following extension to Example 2.4. Suppose that there are
now two successive pitches, and on each pitch the managers have an option to steal or pitch
out. If Bob pitches out on the first pitch, his utility for pitching out on the second pitch
(regardless of Alice’s action) decreases by 20 units because he has forfeited two pitches.
Bob believes that with probability 0.3, he will succumb to social pressure during the second
pitch and call a pitch out. Bob would like to reason about this possibility when making the
decision for the first pitch.
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Advertise Increase Sales Profit
true true high 70
true true low −70
true false high 50
true false low −40
false true high 80
false true low −60
false false high 60
false false low −30

Table 5: Company’s utility (node Profit) for Top-level block of Motivational Bias NID
(Example 4.1)

In this example, each manager is faced with a sequential decision problem: whether to
steal or pitch out in the first and second pitch. The strategy for the second pitch is relevant
to the strategy for the first pitch for each agent. Now, each of the managers, if they were
rational, could use backward induction to compute optimal strategies for the first pitch, by
working backwards from the second pitch. However, this is only a valid procedure if the
managers behave rationally on the second pitch. In the example above, Bob knows that he
will be under strong pressure to pitch out on the second pitch and he wishes to take this
possibility into account, while making his decision for the first pitch.

Mod[Bob, PitchOut2]
Top-level 0.7

L 0.3

Table 6: CPD for Mod[Bob, PitchOut2] node in Top-level block of Irrational Agent Scenario
(Example 4.2)

We can model this situation in a NID as follows. The Top-level block of the NID is shown
in Figure 6a. Here, the decision nodes Steal1 and PitchOut1 represent the decisions for Alice
and Bob in the first pitch, and the nodes Steal2 and Pitchout2 represent the decisions for
Alice and Bob in the second pitch. The nodes Leader, Steal1, PitchOut1 and ThrownOut1
are all informational parents of the decision nodes Steal2 and PitchOut2. For expository
convenience, we have not included the edges leading from node Leader to the utility nodes
in the block. Block L, shown in Figure 6b, describes a model for the second pitch in which
Bob is succumbing to social pressure and pitches out, regardless of who is leading. This is
represented by having the block include a chance node PitchOut2 which equals true with
probability 1 for each value of Leader. The node Mod[Bob, PitchOut2] will assign probability
0.3 to block L, and 0.7 probability to the Top-level block, as shown in Table 4.1. The node
Mod[Bob, PitchOut2] is not displayed in the Top-level block. By our convention, this implies
that its CPD assigns probability 1 to the Top-level block, in which Bob is reasoning about
the possibility of behaving irrationally with respect to the second pitch. In this way, we
have captured the fact that Bob may behave irrationally with respect to the second pitch,
and that he is reasoning about this possibility when making the decision for the first pitch.
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Steal1

PitchOut1

ThrownOut1

Bob1

Alice1

Steal2

PitchOut2

ThrownOut2

Bob2

Alice2

Mod[Bob, PitchOut2]

Leader

(a) Block Top-level

PitchOut2

Leader

(b) Block L

Top level

L

Bob, PITCHOUT2

(c) Irrational NID

Figure 6: Irrational Agent Scenario (Example 4.2)
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There is a unique equilibrium for this NID. Both agents behave rationally for their first
decision so their actually played and best response strategies are equal, and specified as
follows: Alice steals a base with probability 0.49 if she is leading, and never steals a base
if Bob is leading. Bob pitches out with probability 0.38 if Alice is leading and pitches out
with probability 0.51 if Bob is leading. In the second pitch, Alice behaves rationally, and
her best response and actually played strategy are as follows: steal base with probability
0.42 if Alice is leading and never steal base if Bob is leading. Bob may behave irrationally
in the second pitch: His best response strategy is to pitch out with probability 0.2 if Alice
is leading, and pitch out with probability 0.52 if Bob is leading; his actually played strategy
is to pitch out with probability 0.58 if Alice is leading, and with probability 0.71 if Bob is
leading. Note that because Bob is reasoning about his possible irrational behavior in the
second pitch, he is less likely to pitch out in the first pitch as compared to the case in which
Bob is completely rational (Example 2.4).

4.2 Conflicting Beliefs

In traditional game theory, agents’ beliefs are assumed to be consistent with a common prior
distribution, meaning that the beliefs of agents about each other’s knowledge is expressed
as a posterior probability distribution resulting from conditioning a common prior on each
agent’s information state. One consequence of this assumption is that agents’ beliefs can
differ only if they observe different information (Aumann & Brandenburger, 1995). This
result led to theoretic work that attempted to relax the common prior assumption. Myerson
(1991) showed that a game with inconsistent belief structure that is finite can be converted
to a new game with consistent belief structures by constructing utility functions that are
equivalent to the original game in a way that they both assign the same expected utility
to the agents. However, this new game will include beliefs and utility functions that are
fundamentally different to the original game exhibiting the inconsistent belief structure. For
a summary of the economic and philosophical ramifications of relaxing the common prior
assumption, see the work of Morris (1995) and Bonanno and Nehring (1999).

Once we have a language that allows us to talk about different mental models that
agents have about the world, and different beliefs that they have about each other and
about the structure of the game, it is natural to relax the common prior assumption within
NIDs while preserving the original structure of the game.

Example 4.3. Consider the following extension to the baseball scenario of Example 2.1.
The probability that the runner is thrown out depends not only on the decisions of both
managers, but also on the speed of the runner. Suppose a fast runner will be thrown out
with 0.4 probability when Bob calls a pitch out, and with 0.2 probability when Bob does
not call a pitch out. A slow runner will be thrown out with 0.8 probability when Bob calls
a pitch out, and with 0.6 probability when Bob does not call a pitch out.

Now, Bob believes the runner to be slow, but is unsure about Alice’s beliefs regarding
the speed of the runner. With probability 0.8, Bob believes that Alice thinks that the
stealer is fast, and with probability 0.2 Bob believes that Alice thinks that the stealer is
slow. Assume that the distributions for other variables in this example are as described in
Table 1.
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In this example, Bob is uncertain whether Alice’s beliefs about the speed of the runner
conflict with his own. NIDs allow to express this in a natural fashion by having two blocks
that describe the same decision-making process, but differ in the CPD that they assign
to the speed of the runner. Through the use of the Mod node, NIDs can specify agents’
conflicting beliefs about which of the two blocks is used by Alice to make her decision,
according to Bob’s beliefs. The NID and blocks for this scenario are presented in Figure 7.

Speed

Steal PitchOut
ThrownOut

Mod[Bob, Steal]

BobAlice

Leader

(a) Top-level Block

Speed

Steal PitchOut
ThrownOut

BobAlice

Lead

(b) Block L

Top level

L

Bob,STEAL

(c) Conflicting Beliefs NID

Figure 7: Conflicting Beliefs Scenario (Example 4.3)

In the Top-level block, shown in Figure 7a, Bob and Alice decide whether to pitch out or
to steal base, respectively. This block is identical in structure to the Top-level block of the
previous example, but it has an additional node Speed that is a parent of node ThrownOut,
representing the fact that the speed of the runner affects the probability that the runner is
thrown out.

The Top-level corresponds to Bob’s model, in which the runner is slow. The CPD of
the node Speed assigns probability 1 to slow in this block, as shown in Table 7a. Block
L, shown in Figure 7b, represents an identical decision-making process as in the Top-level
block, except that the CPD of Speed is different: it assigns probability 1 to fast, as shown
in Table 7b. The complete NID is shown in Figure 7c. Bob’s uncertainty in the Top-
level block over Alice’s decision-making process is represented by the node Mod[Bob, Steal],
whose CPD is shown in Table 7c. With probability 0.8, Alice is assumed to be using block
L, in which the speed of the runner is fast. With probability 0.2, Alice is assumed to
be using the Top-level block, in which the speed of the runner is slow. Note that in the
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Speed
fast slow

0 1
(a) node Speed
(block Top-level)

Speed
fast slow

1 0
(b) node Speed
(block L)

Mod[Bob, Steal]
Top-level L

0.2 0.8
(c) node
Mod[Bob, Steal] (block
Top-level)

Table 7: CPDs for nodes in Conflicting Beliefs NID (Example 4.3)

Top-level block, the nodes Mod[Alice, Steal], Mod[Alice, PitchOut] and Mod[Bob, PitchOut]
are not displayed. By the convention introduced earlier, all these nodes assign probability
1 to the Top-level block and have been omitted from the Top-level block of Figure 7a.
Interestingly, this implies that Alice knows the runner to be slow, even though Bob believes
that Alice believes the runner is fast. When solving this NID, we get a unique equilibrium.
Both agents are rational, so their best response and actually played strategies are equal,
and specified as follows: In block L, the runner is fast, so Alice always steals base, and Bob
always calls a pitch out. In the Top-level block, Bob believes that Alice uses block L with
high probability, in which she seals a base. In the Top-level block the speed of the runner is
slow and will likely be thrown out. Therefore, Bob does not pitch out in order to maximize
its utility given its beliefs about Alice. In turn, Alice does not steal base at the Top-level
block because the speed of the runner is slow at this block.

4.3 Collusion and Alliances

In a situation where an agent is modeling multiple agents, it may be important to know
whether those agents are working together in some fashion. In such situations, the models
of how the other agents make their decisions may be correlated, due to possible collusion.

Example 4.4. A voting game involves 3 agents Alice, Bob, and Carol, who are voting one
of them to be chairperson of a committee. Alice is the incumbent, and will be chairperson
if the vote ends in a draw. Each agent would like itself to be chairperson, and receives
utility 2 in that case. Alice also receives a utility of 1 if she votes for the winner but loses
the election, because she wants to look good. Bob and Carol, meanwhile, dislike Alice and
receive utility -1 if Alice wins.

It is in the best interests of agents Bob and Carol to coordinate, and both vote for the
same person. If Bob and Carol do indeed coordinate, it is in Alice’s best interest to vote for
the person they vote for. However, if Bob and Carol mis-coordinate, Alice should vote for
herself to remain the chairperson. In taking an opponent modeling approach, Alice would
like to have a model of how Bob and Carol are likely to vote. Alice believes that with
probability 0.2, Bob and Carol do not collude; with probability 0.3, Bob and Carol collude
to vote for Bob; with probability 0.4, Bob and Carol collude to vote for Carol. Also, Alice
believes that when they collude, both agents might renege and vote for themselves with
probability 0.1.

This example can easily be captured in a NID. The Top-level block is shown in Figure 8.
There is a node Collude, which will have three possible values: none indicating no collusion;
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Bob and Carol indicating collusion to vote for Bob or Carol respectively. The decision nodes
A, B, C represent the decisions for Alice, Bob and Carol, respectively. The CPD for Collude
is presented in Table 8a. The nodes Mod[Alice, B] and Mod[Alice, C], whose CPD is shown
in Table 8b and 8c respectively, depend on Collude. If Collude is none, Mod[Alice, B] will
assign probability 1 to the Top-level block. If Collude is Bob, Mod[Alice, B] will equal a block
B describing an automaton in which Bob and Carol both vote for Bob. If Collude is Carol,
Mod[Alice, B] will equal a block C, in which Bob and Carol vote for Carol with probability
0.9, and block B with probability 0.1. This accounts for the possibility that when Bob
and Carol have agreed to vote for Carol, Bob might renege. The CPD for Mod[Alice, B]
is similar, and is described in Table 8b. The CPD for Mod[Alice, C] is symmetric, and is
described in Table 8c.

Caroll

A B C

Collude

Mod[Alice, B] Mod[Alice, C]

Alice Bob

Figure 8: Top-level block of Collusion Scenario (Example 4.4)

Collude
none Bob Carol
0.2 0.3 0.5

(a) node Collude

Collude
Mod[Alice, B] none Bob Carol

Top-level 1 0 0
B 0 1 0
C 0 0.1 0.9

(b) node Mod[Alice, B]

Collude
Mod[Alice, C] none Bob Carol

Top-level 1 0 0
B 0 0.9 0.1
C 0 0 1

(c) node Mod[Alice, C]

Table 8: CPDs for Top-level block of Collusion Scenario (Example 4.4)

In the unique NID equilibrium for this example, all agents are rational so their actually
played and best response strategies are equal. In the equilibrium, Alice always votes for
Carol because she believes that Bob and Carol are likely to collude and vote for Carol.
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In turn, Carol votes for herslef or for Bob with probability 0.5, and Bob always votes for
himself. By reneging, Bob gives himself a chance to win the vote, in the case that Carol
votes for him.

Moving beyond this example, one of the most important issues in multi-player games is
alliances. When players form an alliance, they will act for the benefit of the alliance rather
than purely for their own self-interest. Thus an agent’s beliefs about the alliance structure
affects its models of how other agents make their decisions. When an agent has to make a
decision in such a situation, it is important to be able to model its uncertainty about the
alliance structure.

4.4 Cyclic Belief Structures

Cyclic belief structures are important in game theory, where they are used to model agents
who are symmetrically modeling each other. They are used to describe an infinite regress of
“I think that you think that I think...” reasoning. Furthermore, cyclic belief structures can
be expressed in economic formalisms, like Bayesian games, so it is vital to allow them in
NIDs in order for NIDs to encompass Bayesian games. Cyclic belief structures can naturally
be captured in NIDs by including a cycle in the NID graph.

Example 4.5. Recall Example 4.3, in which Alice and Bob had conflicting beliefs about
the speed of the runner. Suppose that Bob believes that the runner is slow, and that with
probability 0.8, Alice believes that the runner is fast, and is modeling Bob as reasoning
about Alice’s beliefs, and so on...

We model this scenario using the cyclic NID described in Figure 9c. In the Top-level
block, shown in Figure 9b, Bob believes the runner to be slow and is modeling Alice as
using block L to make her decision. In block L, Alice believes the runner to be fast, and is
modeling Bob as using the Top-level block to make his decision. Bob’s beliefs about Alice
in the Top-level block are represented by the CPD of node Mod[Bob, Steal], shown in Table
9c, which assigns probability 1 to block L.

In block L, the CPD of Speed, shown in Table 9b assigns probability 1 to fast. Alice’s
beliefs about Bob in block L are represented by the CPD of node Mod[Alice, PitchOut],
shown in Table 9d, which assigns probability 1 to block L. In the Top-level block, the CPD
of Speed assigns probability 1 to slow, shown in Table 4.4a. The NID equilibrium for this
scenario is as follows. In both blocks L and Top-level, Alice does not steal base, and Bob
does not pitch out, regardless of who is leading.

5. Application: Opponent Modeling

In some cases, agents use rules, heuristics, patterns or tendencies when making decisions.
One of the main approaches to game playing with imperfect information is opponent mod-
eling, in which agents try to learn the patterns exhibited by other players and react to their
model of others. NIDs provide a solid, coherent foundation for opponent modeling.

Example 5.1. In the game of RoShamBo (commonly referred to as Rock-Paper-Scissors),
players simultaneously choose one of rock, paper, or scissors. If they choose the same item,
the result is a tie; otherwise rock crushes scissors, paper covers rock, or scissors cut paper,
as shown in Table 10.
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Speed
fast slow

0 1
(a) node Speed
(block Top-level)

Speed
fast slow

1 0
(b) node Speed
(block L)

Mod[Bob, Steal]
Top-level L

1 0
(c) node
Mod[Bob, Steal]
(block Top-level)

Mod[Alice, PitchOut]
Top-level L

1 0
(d) node
Mod[Alice, PitchOut]
(block L)

Table 9: CPDs for nodes in Cyclic NID (Example 4.5)

Speed

Steal PitchOut
ThrownOut

Mod[Alice, PitchOut]

BobAlice

(a) Block L

Speed

Steal PitchOut
ThrownOut

Mod[Bob, Steal]

BobAlice

(b) Block Top-level

Top level

L

Bob,STEAL Alice,PITCHOUT

(c) Cyclic NID

Figure 9: Cyclic Baseball Scenario (Example 4.5)

rock paper scissors
rock (0, 0) (−1, 1) (1,−1)
paper (1,−1) (0, 0) (−1, 1)
scissors (−1, 1) (1,−1) (0, 0)

Table 10: Payoff Matrix for Rock-paper-scissors
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The game has a single Nash equilibrium in which both players play a mixed strategy
over {rock, paper, scissors} with probability {1

3 , 1
3 , 1

3}. If both players do not deviate from
their equilibrium strategy, they are guaranteed an expected payoff of zero. In fact, it is
easy to verify that a player who always plays his equilibrium strategy is guaranteed to
get an expected zero payoff regardless of the strategy of his opponent. In other words,
sticking to the equilibrium strategy guarantees not to lose a match in expectation, but it
also guarantees not to win it!

However, a player can try and win the game if the opponents are playing suboptimally.
Any suboptimal strategy can be beaten, by predicting the next move of the opponent and
then employing a counter-strategy. The key to predicting the next move is to model the
strategy of the opponent, by identifying regularities in its past moves.

Now consider a situation in which two players play repeatedly against each other. If
a player is able to pick up the tendencies of a suboptimal opponent, it might be able to
defeat it, assuming the opponent continues to play suboptimally. In a recent competi-
tion (Billings, 2000), programs competed against each other in matches consisting of 1000
games of RoShamBo. As one might expect, Nash equilibrium players came in the middle
of the pack because they broke even against every opponent. It turned out that the task
of modeling the opponent’s strategy can be surprisingly complex, despite the simple struc-
ture of the game itself. This is because sophisticated players will attempt to counter-model
their opponents, and will hide their own strategy to avoid detection. The winning program,
called Iocaine Powder (Egnor, 2000), did a beautiful job of modeling its opponents on mul-
tiple levels. Iocaine Powder considered that its opponent might play randomly, according
to some heuristic, or it might try to learn a pattern used by Iocaine Powder, or it might
play a strategy designed to counter Iocaine Powder learning its pattern, or several other
possibilities.

5.1 A NID for Modeling Belief Hierarchies

Inspired by “Iocaine Powder”, we constructed a NID for a player that is playing a match
of RoShamBo and is trying to model his opponent. Suppose that Bob wishes to model
Alice’s play using a NID. The block Top-level of the NID, shown in Figure 10a, is simply a
MAID depicting a RoShamBo round between Bob and Alice. Both players have access to a
predictor P, an algorithm that is able to predict the next move in a sequence as a probability
distribution over the possible moves. The only information available to the predictor is the
history of past moves for Alice and Bob.

Alice may be ignoring P, and playing the Nash Equilibrium strategy. Bob has several
alternative models of Alice’s decision. According to block Automaton, shown in Figure 10c,
Alice always follows the signal P. In block B1, shown in Figure 10b, Bob is modeling Alice
as using block Automaton to make her decision. This is achieved by setting the CPD of
Mod[Bob, Alice] in block B1 to assign probability 1 to Automaton. We can analyze the NID
rooted at block B1 to determine Bob’s best response to Alice. For example, if Bob thinks,
based on the history, that P is most likely to tell Alice to play rock, then Bob would play
paper. Let us denote this strategy as BR(P).

However, Alice can also model Bob by assigning probability 1 to Mod[Alice, Bob] in block
A1. In this way, Alice is reasoning about Bob modeling Alice as following the predictor P.
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P

bobalice

bob alice

Mod[Alice, Bob]

(a) Blocks Top-level, A1,A2

P

bobalice

bob alice

Mod[Bob, Alice]

(b) Blocks B1,B2

P

Alice

(c) Block Au-
tomaton

Top-level

A2

B2

Bob,ALICE

Bob,ALICE

Automaton

Bob, ALICE

B1

Bob, ALICE

A1

Alice, BOB

Bob, ALICE

Alice, BOB

(d) RoShamBo NID

Figure 10: RoShamBo Scenario (Example 5.1)
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When we analyze the NID originating in block A1, shown in Figure 10a, we will determine
Alice’s best-response to Bob’s model of her as well as Bob’s best-response to his model of
Alice. Since Alice believes that Bob plays BR(P) as a result of Bob’s belief that Alice plays
according to P, she will therefore play a best response to BR(P), thereby double-guessing
Bob. Alice’s strategy in block A1 is denoted as BR(BR(P)). Following our example, in
block A1 Alice does not play rock at all, but scissors, in order to beat Bob’s play of paper.
Similarly, in block B2, Bob models Alice as using block A1 to make her decisions, and in
block A2, Alice models Bob as using block B2 to make his decision. Therefore, solving the
NID originating in block B2 results in a BR(BR(BR(P))) strategy for Bob. This would
prompt Bob to play rock in B2 in our example, in order to beat scissors. Lastly, solving
the NID originating in block A2 results in a BR(BR(BR(BR(P)))) strategy for Alice.
This would prompt Alice to play paper in block A2, in order to beat rock. Thus, we have
shown that for every instance of the predictor P, Alice might play one of the three possible
strategies. Any pure strategy can only choose between rock, paper, or scissors for any
given P, so this reasoning process terminates.

The entire NID is shown in Figure 10d. In block Top-level, Bob models Alice as using
one of several possible child blocks: block Automaton, in which Alice follows her predictor;
block A1, in which Alice is second-guessing her predictor; or block A2, in which Alice is
triple-guessing her predictor. Bob’s uncertainty over Alice’s decision-making processes is
captured in the Mod[Bob, Alice] node in block Top-level. Analyzing the Top-level block of
this NID will extract Bob’s best response strategy given his beliefs about Alice’s decision-
making processes.

To use this NID in practice, it is necessary to compute the MAID equilibrium and extract
Bob’s best-response strategy at the Top-level block. To this end, we need to estimate the
values of the NID parameters, represented by the unknown CPDs at each of its blocks,
and solve the NID. These parameters include Mod[Bob, Alice], representing Bob’s beliefs
in the Top-level block regarding which block Alice is using; and node P, representing the
distributions governing the signals for Alice and Bob, respectively.2 To this end, we use
an on-line version of the the EM algorithm that was tailored for NIDs. We begin with
random parameter assignments to the unknown CPDs. We then revise the estimate over
the parameters of the NID given the observations at each round. Then Bob plays the best-
response strategy of the MAID representation for the NID given the current parameter
setting. Interleaving learning and using the NID to make a decision helps Bob to adapt to
Alice’s possibly changing strategy.

5.2 Empirical Evaluation

We evaluated the NID agent against the ten top contestants from the first automatic
RoShamBo competition. All of these agents used an opponent modeling approach, that
is, they learned some signal of their opponent’s play based on the history of prior rounds.
Contestants can be roughly classified according to three dimensions: the type of signal used
(probabilistic vs. deterministic); the type of reasoning used (pattern vs. meta-reasoners);
and, their degree of exploration versus exploitation of their model. Probabilistic agents

2. Technically, the CPDs for the nodes representing prior history are also missing. However, they are
observed at each decision-making point in the interaction and their CPDs do not affect players’ utilities.
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estimated a distribution over the strategies of their opponents while deterministic agents
predicted their opponents’ next move with certainty. Pattern reasoners directly modeled
their opponents as playing according to some rule or distribution, and did not reason about
the possibility that their opponents were modeling themselves. In contrast, meta-reasoners
attempted to double- or triple-guess their opponents’ play. Exploitative agents played a best
response to their model of their opponents, while explorative agents deviated, under certain
conditions, from their best response strategy to try and learn different behavioral patterns
of their opponents. Iocaine Powder used the strategy of reverting to the Nash equilibrium
when it was losing. Because this made it impossible to evaluate whether our NID model
could learn Iocaine powder’s reasoning process, we turned off this strategy. Also, we limited
all contestants’ strategies to depend on the last 100 rounds of play, in order to allow a fair
comparison with the NID agent that only used four rounds of play. We did not limit them
to four rounds because they were not originally designed to use such a short history. Our
purpose was to show that explicitly reasoning and learning about mental models can make
a difference, and not to optimize learning the model of the signal.

Figure 11 shows the performance of the RoShamBo NID when playing 10 matches of
3,000 rounds with each contestant. The overall standings were determined by ordering
the total scores for each contestant in all rounds played (+1 for winning a round against a
contestant by the NID player; −1 for losing a round; 0 for ties). Therefore, it was important
for each player to maximize its win against the weaker opponents, and minimize its loss to
stronger opponents. The x-axis includes the contestant number while the y-axis describes
the difference between the average score of the RoShamBo NID and the contestant; error
bars indicate a single standard deviation difference.

As shown by the figure, the RoShamBo NID was able to defeat all contestant in all
matches, including a version of Iocaine Powder. The best performance for the NID was
achieved when playing pattern reasoners that used deterministic signals (Contestants 3, 5
and 6). Each of these contestants directly predicted their opponents’ play as a function of
the history, without reasoning about their opponents’ model of themselves. Consequently,
it was difficult for them to detect change in the strategies of adaptive opponents, such as
the RoShamBo NID. In addition, the use of deterministic signals made it harder for these
contestants to capture probabilistic players like the NID algorithm.

The RoShamBo NID also outperformed those contestants that attempted to trick their
opponents, by reasoning about the possibility that the opponents are double- and triple-
guessing their model (Contestants 4 and 1). This shows that the NID was able to determine
the level of reasoning employed by its opponents.

6. Relationship with Economic Models

In this section, we describe the relationship between NIDs and several existing formalisms
for representing uncertainty over decision-making processes. NIDs share a close relation-
ship with Bayesian games (Harsanyi, 1967), a game-theoretic framework for representing
uncertainty over players’ payoffs. Bayesian games capture the beliefs agents have about
each other as well as define an equilibrium that assigns a best response strategy for each
agent given its beliefs. Bayesian games are quite powerful in their ability to describe belief
hierarchies and cyclic belief structures.
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Figure 11: Difference in average outcomes between NID player and opponents

In a Bayesian game, each agent has a discrete type embodying its private information.
Let N be a set of agents. For each agent i a Bayesian game includes a set of possible types
Ti, a set of possible actions Ci, a conditional distribution pi and a utility function ui. Let
T = ×i∈NTi and let C = ×i∈NCi. For each agent i, let T−i = ×j &=iTj denote the set of
all possible types other than those of agent i. The probability distribution pi is a function
from ti to ∆T−i, that is, pi(.|ti) specifies for each type ti ∈ Ti a joint distribution over
the types of the other agents. The utility function ui is a function from C × T to the real
numbers. It is a standard assumption that the game, including agents’ strategies, utilities
and type distributions, is common knowledge to all agents.

The solution concept most commonly associated with Bayesian games is a Bayesian
Nash equilibrium. This equilibrium maps each type to a mixed strategy over its actions
that is the agent’s best response to the strategies of the other agents, given its beliefs about
their types. Notice that in a Bayesian game, an agent’s action can depend on its own types
but not on the types of the other agents, because they are unknown to that agent when it
analyzes the game. It is assumed that each agent knows its own type, and that this type
subsumes all of the agent’s private information before the game begins. Because the types
of other agents are unknown, each agent maximizes its expected utility given its distribution
over other types.

Let N−i denote all of the agents in the Bayesian game apart from agent i. Let σi(.|ti)
denote a random strategy for agent i given that its type is ti. A Bayesian Nash equilibrium
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is any mixed strategy profile σ such that for any agent i and type ti ∈ Ti we have

σi(.|ti) ∈ argmaxτ∈∆Ci

∑
t−i∈T−i

pi(t−i|ti)·∑
c∈C

(∏
j∈N−i

σj(cj |tj)
)
τ(ci)ui(t, c) (2)

Bayesian games have been used extensively for modeling interaction in which agents have
private information, such as auction mechanisms (Myerson, 1991) and they can be used to
express uncertainty over agents’ decision-making models. In general, Bayesian games are
just as expressive as NIDs. As we show, any Bayesian game can be converted into a NID
in time and space linear in the size of the Bayesian game. Conversely, any NID can be
converted into a Bayesian game, because any NID can be converted to a MAID, which can
in turn be converted to an extensive form game. The extensive form game can be converted
to a normal form game which is a trivial Bayesian game with only one type per agent.
However, in the worst case, the size of the extensive form game will be exponential in the
number of informational parents for decision nodes in the MAID, and the size of the normal
form game will be exponential in the size of the extensive form game. Of course, this is a
brute force conversion; more compact conversions may be possible.

We now consider more formally the question of whether Bayesian games can be repre-
sented by NIDs. The idea is to align each type in a Bayesian game with a decision in a
NID block. The resulting best response strategy for the decision in the NID equilibrium
will equal the Bayes Nash equilibrium strategy for the type.

Definition 6.1. Let B be a Bayesian game and N a NID. We say that N is equivalent to
B if there exists an injective mapping f from types in B to (block,agent) pairs in N , such
that the following conditions hold:

1. For any Bayesian Nash equilibrium σ of B, there exists a NID equilibrium of N , such
that for every type ti, if f maps ti to (K,α), the best-response and actually-played
strategies for α in K are equal to σi(.|ti).

2. For any NID equilibrium of N , there exists a Bayesian Nash equilibrium σ of B such
for every (K,α) in the image of f , σi(.|ti) where ti = f−1(K,α) is equal to the
best-response and actually-played strategies for α in K.

The following theorem is proved in Appendix 8.

Theorem 6.2. Every Bayesian game can be represented by an equivalent NID whose size
is linear in the size of the Bayesian game.

In this section, we will use the term Bayesian games to specify a representation that
includes type distributions and utility functions that are presented explicitly. NIDs enjoy the
same advantages over fully specified Bayesian games that graphical models typically enjoy
over unstructured representations. In general, NIDs may be exponentially more compact
than Bayesian games because Bayesian games require, for every type of every agent, a full
joint distribution over the types of all other agents. In addition, the utility function in a
Bayesian game specifies a utility for each joint combination of types and actions of every
player. These distributions and utility functions are exponential in the number of players.
In NIDs, because they are based on MAIDs, the type distributions can be decomposed
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into a product of small conditional distributions, and the utility functions can be additively
decomposed into a sum of small functions that depend only on a small number of actions.

In addition, Bayesian games are representationally obscure. First, types in Bayesian
games are atomic entities that capture all the information available to an agent in a single
variable. A type is used to capture both an agent’s beliefs about the way the world works
(including its preferences), and its private information. For example, in poker, both the
player’s beliefs about the other player’s tendency to bluff and her knowledge of what cards
she has received are captured by a type. We believe that these two aspects are fundamentally
different; one describes the actual state of the world and the other describes what is going on
in a player’s head. Conflating these two aspects leads to confusion. In NIDs, the two aspects
are differentiated. Private information about the world is represented by informational
parents, whereas mental models are represented by blocks.

Second, a type in a Bayesian game does not decompose different aspects of information
into variables. Thus in poker, the hand must be represented by a single variable, whereas in
NIDs it can be represented by different variables representing each of the cards. A final point
is that in Bayesian games all of the uncertainty must be folded into the utility functions
and the distribution over agents’ types. Consider the scenario in which two agents have
conflicting beliefs about a chance variable, such as in Example 4.3. In a NID, there will
be a separate block for each possible mental model that differs in the CPD assignments
for the chance variable. In contrast, each type in the Bayesian game would sum over the
distribution over the chance variable. Looking at the Bayesian game, we would not know
whether the reason for the different utility functions is because the agent has different beliefs
about the chance variable, or whether it is due to different preferences of the agent.

NIDs also exhibit a relationship with more recent formalisms for games of awareness,
in which agents may be unaware of other players’ strategies or of the structure of the
game (Halpern & Rego, 2006; Feinberg, 2004). A game description in this formalism shows
how players’ awareness about each other’s strategies changes over time. A game of awareness
includes a set of extensive form game descriptions, called augmented games, that represent
an analyst’s beliefs about the world, as well as separate descriptions for each game that
may become true according to agents’ subjective beliefs. The analyst’s augmented game is
considered to be the actual description of reality, while each subjective augmented game can
differ from the analyst’s game in agents’ utility functions, their decisions, and the strategies
available to agents at each of their decisions. A history for an agent in an augmented game
is a sub-path in the tree leading to a node in which the agent makes a move. Awareness is
modeled by a function that maps an agent-history pair in one augmented game to another
augmented game which the agent considers possible given the history. Uncertainty over
agents’ awareness in an augmented game can be quantified by having nature choose a
move in the tree leading to agents’ information sets. The definition of Nash equilibrium
is extended to include a set of strategies for each agent-game pairthat the agent considers
to be possible, given a history and the best-response strategies used by other agents in the
augmented game. This formalism can capture an analyst’s model about agents’ awareness
as well as agents’ model about their own, or other agents’ awareness.

There are fundamental differences between NIDs and games of awareness. First, like
Bayesian games, the equilibrium conditions for this representation do not allow for agents to
deviate from their best-response strategies. Second, they require the presence of a modeler
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agent, that in reality, is modeling its uncertainty about levels of awareness of other agents.
NIDs allow for such a modeler agent, but they do not require it. This allows to capture
situations where no agent has certain knowledge of reality, such as in the Baseball NID of
Example 2.4. Third, each augmented game of awareness is represented as an extensive form
game, that as we have shown above, may be exponentially larger than the MAID used to
represent each decision-making model in a NID. Lastly, agents’ awareness over each other’s
strategies is just one type of reasoning that can be captured by a NID. Other types of
reasoning processes were described in Section 4.

Lastly, Gmytrasiewicz and Durfee (2001) have developed a framework for representing
uncertainty over decision-making using a tree structure in which the nodes consist of payoff
matrices for a particular agent. Like Bayesian games, uncertainty is folded into the payoff
matrices. Each agent maintains its own tree, representing its model of the decision-making
processes used by other agents. Like traditional representations, this language assumes that
all agents behave rationally. In addition, it assumes that each agent believes others to use
a fixed strategy, that is folded into the environment.

7. Conclusion

We have presented a highly expressive language for describing agents’ beliefs and decision-
making processes in games. Our language is graphical. A model in our language is a
network of interrelated models, where each mental model itself is a graphical model of a
game. An agent in one mental model may believe that another agent (or possibly itself) uses
a different mental model to make decisions; it may have uncertainty about which mental
model is used. We presented semantics for our language in terms of multi-agent influence
diagrams. We analyzed the relationship between our language and Bayesian games. They
are equally expressive, but NIDs may be exponentially more compact.

We showed how our language can be used to describe agents who play irrationally, in the
sense that their actual play does not correspond to the best possible response given their
beliefs about the world and about other agents. This is captured by a novel equilibrium
concept that captures the interaction between what agents should do and what they actually
do. We also showed how to express situations in which agents have conflicting beliefs,
including situations in which the agents do not have a common prior distribution over the
state of the world. Finally, we showed how to capture cyclic reasoning patterns, in which
agents engage in infinite chains of “I think that you think that I think...” reasoning.

A vital question is the use of our language to learn about agents’ behavior and reasoning
processes. As we have shown, our language can be used to learn non-stationary strategies
in rock-paper-scissors. In other work, we have shown how models that were inspired by
NIDs can learn people’s play in negotiation games (Gal, Pfeffer, Marzo, & Grosz, 2004; Gal
& Pfeffer, 2006). The focus of our continuing work will be to develop a general method for
learning models in NIDs.
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8. Appendix A

Theorem 3.1: Converting a NID into a MAID will not introduce a cycle in the resulting
MAID.

Proof. First, let us ignore the edges added by step 5 of the construction, and focus on the
MAID fragment OK constructed from a single block K. Since the block is acyclic, we can
number the nodes of the block with integers in topological order. We now number the nodes
of OK as follows. For a node Nα that derives from a chance or utility node N in K, Nα

gets the same number as N . A node BR[D]K gets the same number as D. A node DK
α ,

where α owns D, gets the same number as D plus 1/3. A node DK
α , where α does not own

D, gets the same number as D plus 2/3. By construction, if P is a parent of N in OK , P
has a lower number than N .

Now let us consider the entire constructed MAID O. Suppose, by way of contradiction,
that there is a cycle in O. It follows from the above argument that it must consist entirely
of edges between fragments added by step 5. Since all such edges emanate from a node
DK

α where α owns D, and end at a node DL
α , all nodes in the cycle must refer to the same

decision D, and must belong to the agent who owns D. Thus the cycle must be of the form
DK1

α , . . . , DKn
α , DK1

α where α owns D. Since an edge has been added from DKi
α to DKi+1 in

O, α must be modeling itself in block Ki as using block Ki+1 to make decision D. Therefore
there is a self-loop in the NID, which is a contradiction.

Theorem 6.2: Every Bayesian game can be represented as an equivalent NID whose size
is linear in the size of the Bayesian game.

Proof. Given a Bayesian game B, we construct a NID N as follows. The set of agents in N
is equal to the set of agents in B. For each type ti of agent i in B there is a corresponding
block in N labeled ti. The block ti contains a decision node Dj and utility node Uj for
every agent j. Dj has no informational parents. The domain of Dj is the set of choices Cj

for agent j in B. We add a new chance node Qi in block ti whose domain is the set T−i.
Each node Mod[i, Dj ] where j $= i will have the node Qi as a parent. The parents of Ui are
all the decision nodes as well as the node Qi. For an agent j $= i, Uj has only the parent
Dj . For each agent j we define a distinguished action c∗j ∈ Cj .

We set the CPD for nodes in ti as follows:

1. The CPD of Mod[i, Di] assigns probability 1 to ti.

2. The CPD of Qi assigns probability pi(t−i | ti), as defined in B, for each type profile
t−i ∈ T−i.

3. The CPD of a node Mod[i, Dj ] where j $= i assigns probability 1 to block tj when the
jth element of the value of the parent node Qi equals tj . This projects the probability
distribution Qi in B to the node Mod[i, Dj ] representing i’s beliefs about which block
agent j is using in the NID.
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4. The CPD of Ui assigns probability 1 to ui(t, c), as defined in B, given that Qi equals
t, and D equals c.

5. The CPD of Uj assigns probability 1 to utility 1 when Dj = c∗j , and probability 1 to
0 otherwise.

6. The CPD of Mod[j, Dk], for all k, when j $= i, assigns probability 1 to ti.

Our construction is accompanied by the injective mapping f that maps a type ti to the
(block,agent) pair (ti, i).

Let M be the constructed MAID for N. To prove condition 1 of Definition 6.1, let τ be
a Bayes Nash equilibrium of B. For each agent, τi is a conditional probability distribution
τi(· | ti). We define the strategy profile σ in M as follows. σBR[Di]ti

= τi(· | ti) for decisions
owned by agent i, and σBR[Dj ]ti

assigns probability 1 to c∗j when j $= i.
We claim the following:

1. σ is a MAID equilibrium in M, according to Definition 2.3.

2. In the resulting NID equilibrium, the best response strategy for i in ti is τi(· | ti).

3. In the resulting NID equilibrium, the actually played strategy is the same as the best
response strategy.

Claim 3 is true because Mod[i, Di] assigns probability 1 to ti.
Note that there are no informational parents in N. Therefore, by the definition of NID

equilibrium, the best response strategy θti
Di

= σBR[Di,ti]
= τi(· | ti). Therefore, Claim 2 is

true.
To prove Claim 1, note first that in block ti, the utility node Uj , where j $= i, is fully

determined by Dj , because Dj is the sole parent of Uj . Also, player j is not self-modeling
at Dj , because the CPD of node Mod[j, Dj ] assigns probability 1 to ti. The same holds in
M: the decision node BR[Dj ]ti is the sole parent of U ti

j . Therefore, in any equilibrium for
M, the strategy for BR[Dj ]ti will assign probability 1 to the distinguished action c∗j that
causes U ti

j to be 1.
In block ti, the CPD of Mod[i, Dj ] assigns probability 0 to ti. This means that player

j is not using block ti to make its decision, according to i’s beliefs. Therefore, BR[Dj ]ti
is independent of U ti

i , and the equilibrium strategies for BR[Di]ti are independent of the
distinguished action chosen for the BR[Di]tj .

By the definition of MAID equilibrium of Definition 2.3, the strategy profile σ is an
equilibrium if each σi maximizes EUσ(i). We need to show that maximizing this is equivalent
to maximizing the right hand side of Equation 2. There is a utility U ti

i and decision node
BR[Di]ti in every block ti. Let cti

i denote a choice for agent i at decision BR[Di]ti in block
ti. Let t′i denote a block corresponding to a different type t′i for agent i. Let c

t′i
i be a choice

for the agent in decision BR[Di]t
′
i at block t′i and c−i all the choices for other decisions

BR[D−i]ti . By the construction of M, U ti
i is d-separated from BR[Di]t

′
i given BR[Di]ti and

BR[D−i]ti .
As a result, we can optimize U ti

i separately from all other utility nodes belonging to
agent i, considering only BR[Di]ti . We then get that the utility for i in M given the
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strategy profile σ can be written as

Eσ[U ti
i ] =

∑

c
ti
i

σti
i (cti

i )
∑

c−i

σ−i(c−i)
∑

u
ti
i

P σ(U ti
i = ui | cti

i , c−i) · uti
i (3)

We now condition on agent i’s beliefs about the decisions of other agents in block ti. Let
Mod[i,D−i]ti denote the set of nodes Mod[i, Dj ]ti where j $= i, and let the tuple t−i refer
to the block label profile for blocks T−i. We now obtain

∑

c
ti
i

σti
i (cti

i )
∑

c−i

σ−i(c−i)
∑

t−i

P (Mod[i,D−i]ti = t−i)
∑

u
ti
i

(uti
i | cti

i , c−i, t−i) · uti
i (4)

Now observe that the role of Mod[i,D−i]ti is to determine which choices for decisions
BR[D−i]ti are relevant for the utility of player i. In particular, if Mod[i, Dj ]ti is equal to
tj , then it is j’s choice in block tj that player i needs to consider when it makes decision
BR[Di]ti . Let ct−i

i denote the relevant choices for BR[D−i]ti when Mod[i,D−i]ti = t−i.
Since other choice variables are irrelevant, we can marginalize them out and obtain

∑
c
ti
i
σti

i (cti
i )

∑
c
t−i
−i

σ−i(c
t−i
−i )

∑
t−i

P (Mod[i,D−i]ti = t−i) (5)
∑

u
ti
i

P σ(U ti
i = ui | cti

i , ct−i
−i ) · uti

i

Rearranging terms, we rewrite Equation 5.

∑
t−i

P (Mod[i,D−i]ti = t−i)
∑

c

(∏
j &=i σ

tj
j (ctj

j )
)

(6)

σti
i (cti

i )
∑

u
ti
i

P σ(U ti
i = ui | cti

i , ct−i
−i ) · uti

i

By our construction, P (Mod[i,D−i]ti = t−i) is pi(t−i | ti) as defined in B, σ
tj
j (ctj

j ) is
τj(cj | tj) as defined in B, and

∑
u

ti
i

P σ(U ti
i = ui | cti

i , ct−i
−i ) · uti

i is ui(t, c). We therefore get

∑

t−i

pi(t−i | ti)
∑

c




∏

j &=i

τj(cj | tj)



 τi(ci | ti)ui(t, c) (7)

Therefore σ is a MAID equilibrium of M if and only if τ is a Bayesian Nash equilibrium of
B. Claim 1 is established and therefore Condition 1 of Definition 6.1 is satisfied.

Finally, to prove Condition 2, given a NID equilibrium of N we construct a MAID
equilibrium σ for M by copying the best response strategies, and then construct strategies
τ for B in exactly the reverse manner to above. The previous reasoning applies in reverse
to show that τ is a Bayes Nash equilibrium of B and the best response and actually played
strategies for N are equal to τ .
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