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Abstract

Experience in the physical sciences suggests that the only realistic means of under-
standing complex systems is through the use of mathematical models. Typically, this has
come to mean the identification of quantitative models expressed as differential equations.
Quantitative modelling works best when the structure of the model (i.e., the form of the
equations) is known; and the primary concern is one of estimating the values of the param-
eters in the model. For complex biological systems, the model-structure is rarely known
and the modeler has to deal with both model-identification and parameter-estimation. In
this paper we are concerned with providing automated assistance to the first of these prob-
lems. Specifically, we examine the identification by machine of the structural relationships
between experimentally observed variables. These relationship will be expressed in the
form of qualitative abstractions of a quantitative model. Such qualitative models may
not only provide clues to the precise quantitative model, but also assist in understand-
ing the essence of that model. Our position in this paper is that background knowledge
incorporating system modelling principles can be used to constrain effectively the set of
good qualitative models. Utilising the model-identification framework provided by Induc-
tive Logic Programming (ILP) we present empirical support for this position using a series
of increasingly complex artificial datasets. The results are obtained with qualitative and
quantitative data subject to varying amounts of noise and different degrees of sparsity.
The results also point to the presence of a set of qualitative states, which we term kernel
subsets , that may be necessary for a qualitative model-learner to learn correct models. We
demonstrate scalability of the method to biological system modelling by identification of
the glycolysis metabolic pathway from data.

1. Introduction

There is a growing recognition that research in the life sciences will increasingly be con-
cerned with ways of relating large amounts of biological and physical data to the structure
and function of higher-level biological systems. Experience in the physical sciences suggests
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that the only realistic means of understanding such complex systems is through the use of
mathematical models. A topical example is provided by the Physiome Project which seeks
to utilise data obtained from sequencing the human genome to understand and describe the
human organism using models that: “. . . include everything from diagrammatic schema,
suggesting relationships among elements composing a system, to fully quantitative, com-
putational models describing the behaviour of the physiological systems and an organism’s
response to environmental change” (see http://www.physiome.org/). This paper is con-
cerned with a computational tool that aims to assist in the identification of mathematical
models for such complex systems.

Broadly speaking, system identification can be viewed as “the field of modelling dy-
namic systems from experimental data” (Soderstrom & Stoica, 1989). We can distinguish
here between: (a) “classical” system identification techniques, developed by control engi-
neers and econometricians; and (b) machine learning techniques, developed by computer
scientists. There are two main aspects to this activity. First, an appropriate structure has to
be determined (the model-identification problem). Second, acceptably accurate values for
parameters in the model are to be obtained (the parameter-estimation problem). Classical
system identification is usually (but not always) used when the possible model structure is
known a priori . Machine learning methods, on the other hand, are of interest when little or
nothing is known about the model structure. The tool described here is a machine learning
technique that identifies qualitative models from observational data. Qualitative models are
non-parametric; therefore all the computational effort is focussed on model-identification
(there are no parameters to be estimated). The task is therefore somewhat easier than
more ambitious machine learning programs that attempt to identify parametric quantita-
tive models (Bradley, Easley, & Stolle, 2000; Džeroski, 1992; Džeroski & Todorovski, 1995;
Todorovski, Srinivasan, Whiteley, & Gavaghan, 2000). Qualitative model-learning has a
number of other advantages: the models are quite comprehensible; system-dynamics can
be obtained relatively easily; the space of possible models is finite; and noise-resistance is
fairly high. On the down-side, qualtitative model-learners have often produced models that
are under- or over-constrained; the models can only provide clues to the precise mathe-
matical structure; and the models are largely restricted to being abstractions of ordinary
differential equations (ODEs). We attempt to mitigate the first of these shortcomings by
adopting the framework of Inductive Logic Programming (ILP) (see Bergadano & Gunetti,
1996; Muggleton & Raedt, 1994). Properly constrained models are identified using a li-
brary of syntactic and semantic constraints—part of the background knowledge in the ILP
system—on physically meaningful models. Like all ILP systems, this library is relatively
easily extendable. Our position in this paper is that:

Background knowledge incorporating physical (and later, biological) system mod-
elling principles can be used to constrain the set of good qualitative models.

Using some some classical physical systems as test-beds we demonstrate empirically that:

– A small set of constraints, in conjunction with a Bayesian scoring function, is sufficient
to identify correct models.

– Correct models can be identified from qualitative or quantitative data which need not
contain measurements for all variables in the model; and they can be learned with

826



Qualitative System Identification

sparse data with large amounts of noise. That is, the correct models can be identified
when the input data are incomplete, incorrect, or both.

A closer examination of the performance on these test systems has led to the discovery of
what we term kernel subsets: minimal qualitative states that when present guarantee our
implementation will identify a model correctly. This concept may be of value to other model
identification systems.

Our primary interests, as made clear at the outset, lie in biological system identification.
The completion of the sequencing of the key model genomes and the rise of new technologies
have opened up the prospect of modelling cells in silico in unprecedented detail. Such mod-
els will be essential to integrate the ever-increasing store of biological knowledge, and have
the potential to transform medicine and biotechnology. A key task in this emerging field
of systems biology is to identify cellular models directly from experimental data. In apply-
ing qualitative system identification to systems biology we focus on models of metabolism:
the interaction of small molecules with enzymes (the domain of classical biochemistry).
Such models are the best established in systems biology. To this end, we demonstrate
that the approach scales up to identify the core of a well-known, complex biological system
(glycolysis) from qualitative data. This system is modelled here by a set of 25 qualita-
tive relations, with several unmeasured variables. The scale-up is achieved by augmenting
the background knowledge to incorporate general chemical and biological constraints on
enzymes and metabolites.

The rest of the paper is organised as follows. In the next section we present the learning
approach ILP-QSI by means of an example: the u-tube. We also describe the details of
the learning algorithm in this section. In Section 3 we apply the learning experiments to a
number of other systems in the same class as the u-tube, present the results obtained, and
discuss the results for all the experiments reported thus far. Section 4 extends the work
from learning from qualitative data to a set of proof-of-concept experiments to assess the
ability of ILP-QSI to learn from quantitative data. The scalability of the method is tested
in Section 5 by application to a large scale metabolic pathway: glycolysis. In Section 6 we
discuss related work; and finally in Section 7 we provide a general discussion of the research
and draw some general conclusions.

2. Qualitative System Identification Using ILP

In order to aid understanding of the method presented in this paper we will first present
a detailed description of the process as applied to an illustrative system: the u-tube. The
u-tube has been chosen because it is a well understood system, and is one that has been
used in the literature (Muggleton & Feng, 1990; Say & Kuru, 1996). The results emerging
from this set of experiments will allow us to draw some tentative conclusions regarding
qualitative systems identification.

In subsequent sections we will present the results of applying the method described
in this section to further examples from the same class of system; this will enable us to
generalise our tentative conclusions. We will also apply the method to a large scale biological
system to demonstrate the scalability of the method.
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State h1 h2 qx −qx

1 < 0, std > < 0, std > < 0, std > < 0, std >

2 < 0, inc > < (0,∞), dec > < (−∞, 0), inc > < (0,∞), dec >

3 < (0,∞), dec > < 0, inc > < (0,∞), dec > < (−∞, 0), inc >

4 < (0,∞), dec > < (0,∞), inc > < (0,∞), dec > < (−∞, 0), inc >

5 < (0,∞), std > < (0,∞), std > < 0, std > < 0, std >

6 < (0,∞), inc > < (0,∞), dec > < (−∞, 0), inc > < (0,∞), dec >

Table 1: The envisionment states used for the u-tube experiments. The qualitative values
are in the standard form used by QSIM. Positive values for the magnitude are
represented by the interval (0,∞), negative values by the interval (−∞, 0) and zero
by 0. The directions of change are self explanatory with increasing represented by
inc, decreasing by dec and steady by std.

2.1 An Illustrative System: The U-tube

The u-tube system (Fig. 1) is a closed system consisting of two tanks containing (or poten-
tially containing) fluid, joined together at their base by a pipe. Assuming there is fluid in
the system it passes from one tank to the other via the pipe – from the tank with the higher
fluid level to the tank with the lower fluid level (as a function of the difference in height).
If the height of fluid is the same in both tanks then the system is in equilibrium and there
is no fluid flow.

The u-tube can be represented by a system of ordinary differential equations as follows:

dh1

dt
= k · (h1 − h2)

dh2

dt
= k · (h2 − h1)











(1)

A qualitative model may be obtained simply by abstracting from the real numbers, which
would normally be associated with Equation 1, into the quantity space of the signs. A
common formalism used to represent qualitative models is QSIM (Kuipers, 1994). In this
representation models are conjunctions of constraints, each of which are two or three place
predicates representing abstractions of real valued arithmetic and functional operations. All
variables in a model have values represented by two element vectors consisting of (in the
most abstract case) the sign of both the magnitude and direction of change of the variable.
In order to accommodate this restriction on the number of variables in a constraint we may
rewrite Equation 1 as follows:

∆h = (h1 − h2)
qx = k · ∆h
dh1

dt
= qx

dh2

dt
= −qx



















(2)

where h1 and h2 are the height of fluid in Tank 1 and Tank 2 respectively; ∆h is the
difference in the height of fluid in the tanks; and qx is the flow of fluid between the tanks.
This can be converted directly to QSIM constraints as shown in Fig. 1.
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Tank 1 Tank 2

h1

h2

∆h

qx

+

dt

- M+

dt

h1

h2

qx-qx

Delta_h
DERIV(h1,qx),

DERIV(h2,−qx),

ADD(h2,Delta h, h1),

M+(Delta h,qx),

MINUS(qx,−qx).

Figure 1: The u-tube: (left) physical; (middle) QSIM diagrammatic; (right) QSIM con-
straints. In the QSIM version of the model Delta h corresponds to ∆h in the
physical model. In QSIM, M+(·, ·) is the qualitative version of a functional relation
which indicates that there is a monotonically increasing relation between the two
variables which are its arguments. The M+(·, ·) constraint represents a family of
functions that includes both linear and non-linear relations.

2 6

5 1

3 4

Figure 2: The u-tube envisionment graph.

Appropriate qualitative analysis of the u-tube will produce the states shown in Table 1,
which are the states of the envisionment. These represent all the distinct qualitative states
in which the u-tube may exist and Fig. 2 depicts all the possible behaviours (in terms of
transitions between states)1. This figure represents a complete envisionment of the system,
which is the graph containing all the qualitative states of the system and all the transitions
between them for a particular input value. In the case of the u-tube presented here there
is no input (which is equivalent to a value of zero). On the other hand the behaviours
of a u-tube may be observed under a number of experimental (initial) conditions, with
measurements being taken of the height of fluid in each tank and the flow between the
tanks. These can be converted (by means of a quantitative-to-qualitative converter) into a
set of qualitative observations (or states). If sufficient temporal information is available to
enable the calculation of qualitative derivatives, each observation will be a tuple stating the
magnitude and direction of change of the measured variable. These observations will also
contain the states in the complete envisionment of Table 1 (or some subset thereof).

1. State 1 represents the situation where there is no fluid in the system, so nothing happens and it is not

interesting.
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The u-tube is a member of a large class of dynamic systems which are defined by their
states: state systems. In such systems the values of the variables at all future times are
defined by the current state of the system regardless of how that state was achieved (Healey,
1975). This means that for simulation, any system state can act as an initial state. In the
current context it means that in order to learn the structure of such systems we need
only focus on the states themselves and may ignore the transitions between states. This
enables us to explore the power set of the envisionment to ascertain the conditions under
which system identification is possible. Given these qualitative observations as examples,
background knowledge consisting of constraints on models (described later) and QSIM
relations, the learning system (which we name ILP-QSI) performs a search for acceptable
models. To a suitable first approximation, the basic task can be viewed as a discrete
optimisation problem of finding the lowest cost elements amongst a finite set of alternatives.
That is, given a finite discrete set of models S and a real-valued cost-function f : S → <,
find a subset H ⊆ S such that H = {H|H ∈ S and f(H) = minHi∈S

f(Hi)}. This problem
may be solved by employing a procedure that searches through a directed acyclic graph
representation of possible models. In this representation, a pair of models are connected in
the graph if one can be transformed into another by an operation called refinement. Fig. 3
shows some parts of a graph for the u-tube in which a model is refined to another by the
addition of a qualitative constraint. An optimal search procedure (the branch-and-bound
procedure) traverses this graph in some order, at all times keeping the cost of the best nodes
so far. Whenever a node is reached where it is certain that it and all its descendents have
a cost higher than that of the best nodes, then the node and its descendents are removed
from the search.

There are a number of features apparent in the u-tube model that are relevant to the
learning method utilised in this work (and discussed in Section 2.3) that will be described
here since they regard general modelling issues relevant to the learning of qualitative models
of dynamic systems.

The first thing that may be noted in this regard is that the expressions in Equation
2 and the resulting qualitative constraints are ordered ; that is, given the values for the
exogenous variables and the magnitude of the state variables (the height of fluid in the
tanks in this case) the equations can be placed in an order such that the variables on the
left hand side all may have their values calculated before they appear on the right hand
side of an equation2. This particular form of ordering in known as causal ordering (Iwasaki
& Simon, 1986). A causally ordered system can be depicted graphically as shown in Fig. 4.

A causally ordered model contains no algebraic loops. In quantitative systems one tries
to avoid algebraic loops because they are hard to simulate, requiring additional simultaneous
equation solvers to be used.

A qualitative model combined with a Qualitative Reasoning (QR) inference engine will
provide an envisionment of the system of interest. That is, it will generate all the qualita-
tively distinct states in which the system may exist. In the case of the u-tube there are six
such states as given in Table 1. Example behaviours resulting from these states are shown
in Fig. 2.

2. This ordering is not required by QSIM in order to preform qualitative simulation. However, the ability

to order equations in this manner can be utilised as a filter in the learning system in order to eliminate

models containing algebraic loops.
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 ADD(h1, h2, h1)  ADD(h1, h2, h1)  ADD(h1, h2, h1) 
   DERIV( h2,h1 )  DERIV( h2,h1 ) 
   MPLUS( h2,f12)  MPLUS( h2,f12) 
 ADD(h 2, h2, h1)    MINUS( x8,f12 ) 
     MPLUS( x8,h1 ) 
      
 ADD(h1, h2, x1)  ADD(h1, h2, x1)   
   MPLUS( x1,f12 )   
   MPLUS( h2,x4)   
 DERIV(h1,x2 )     
      
      
 DERIV( h1,x2 )     
      
      
[] DERIV( h1,h2 )     
      
      
 DERIV( h1,f12)          DERIV( h1,f12)         DERIV( h1,f12) 
   DERIV( h2,x5)  DERIV( h2,x5) 
   ADD(h2,x6,h1 )  ADD(h2,x6,h1 ) 
 MPLUS( h1,f12)    MPLUS( x6,f12 ) 
     MINUS( f12,x6 ) 
      
 MPLUS( h1,f12)     
      
      
 MPLUS( h1,f12)  MPLUS( h1,f12)   
   ADD( f12,x7,h2 )   
   DERIV( h2,f12)   
 

Figure 3: Some portions of the u-tube lattice (with the target model in the box).

It may be noted that the differential equation model captures the essence of the expla-
nation given in the first paragraph of this section. It is sufficient to explain the operation
of such a system, as well as to predict the way it will behave, and it contains only those
variables and constants necessary to achieve this task - i.e. the model is parsimonious.3

Furthermore, examination of the causal diagram in Fig. 4 indicates that the causal
ordering is in a particular direction – from the magnitudes of the state variables to their
derivatives. The link between the derivatives and the magnitudes of the state variables is
through an integration over time. This is integral causality and is the preferred kind

3. It is possible that for didactic purposes we may want to include more detail, for example a relation

between the intertank flow and the pressure difference, or between the height of fluid and the pressure.

There is no reason why we would expect such relations to be found; although in the context of an

adequate theoretical framework into which the model fits, the model provides pointers in that direction.

On the other hand, one can envisage simpler models existing which may be suitable for prediction but

inadequate for the required kind of explanation. See Section 6 for more on this.
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h1’

h2’h2

h1 k

∆h qx

Figure 4: A causal ordering of the u-tube model given in Equation 2.

of causality in systems engineering modelling; and simulation generally. This is because
integration smooths out noise whereas differentiation introduces it.

All variables are either endogenous or exogenous. Exogenous variables influence the sys-
tem but are not influenced by it. Well posed models do not have any flapping variables;
that is, endogenous variables that appear in only one constraint. Because QSIM includes
a DERIV constraint linking the state variables directly to their derivatives, and all the sys-
tems in which we are interested are regulatory, containing feedback paths, all endogenous
variables must appear in at least two constraints.

Well posedness and parsimony are mandatory properties of the model, the other prop-
erties are desirable but not always achievable and so may have to be relaxed. However, for
all the systems examined in this paper each of these properties holds.

A final feature of the u-tube model is that it represents a single system. It is an
assumption implicit in all the learning experiments described in this paper that the data
measured belongs to a single coherent system. This is in keeping with general experimental
approaches where it is assumed that the measurements are related in some way by being
part of the same system. Of course we may get this wrong and have to relax the requirement
because we discover that what we thought were related cannot actually be brought together
in a single model. This generalises the requirement for parsimony in line with Einstein’s
adage that a model should be “as simple as possible and no simpler”. In this case it
translates to minimising the number of disjoint sub-systems identified.

2.2 A Qualitative Solution Space

In Section 2.3 we shall present an algorithm for automatically constructing models from
data. With this method we utilise background knowledge consisting of QSIM modelling
primitives combined with systems theory meta-knowledge (e.g. parsimony and causality).
Later we shall also provide an analysis of the models learned and the states utilised to learn
them in order to ascertain which, if any, states are more important for successful learning.
One way to facilitate this analysis is to make use of a solution space to relate the qualitative
states to the critical points of the relevant class of systems (via the isoclines of the system)4

4. The critical points of a dynamic system are points where one or more of the derivatives of the state

variables is zero. The isoclines are contours of critical points.
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(Coghill, 2003; Coghill, Asbury, van Rijsbergen, & Gray, 1992). As stated previously, a
qualitative analysis of the u-tube will generate an envisionment containing six states, as
shown in Table 1, and depicted in the envisionment graph given in Fig. 2. Continuing with

height

2 

5

time

h1

h2

h1

f12 = 02

6

4

5

h2

31

Figure 5: The qualitative states of the u-tube system presented on representative time
courses (left) and on the solution space (right). The state numbers refer to the
states of the u-tube described above. (State 5 represents the steady state which
is strictly speaking only reached at t = ∞, but is in practice taken to occur when
the two trajectories are “sufficiently close”, as shown here.)

the u-tube; there are two ways it can behave (ignoring state 1), captured in Fig. 5. Either
the head of fluid in tank 1 is greater than that in tank 2 (state 4) (in the extreme tank
1 is empty – state 3), or the head is greater in tank 2 than tank 1 (state 6). Fig. 5 (left)
shows the transient behaviour for the extreme case where tank 1 is empty (state 2); it can
be seen from this diagram that while the head starts in this condition its eventual end is
equilibrium (state 5). In this state Equation 1 can be rewritten as:

0 = k · (h1 − h2)

0 = k · (h2 − h1)











(3)

By definition k must be non-zero; so the only solution to this pair of equations is:

h2 = h1

This relation can be plotted on a graph as shown on the right hand side of Fig. 5. Now
the qualitative states of the u-tube may be placed on this solution space graph in relation
to the equilibrium line. This representation (similar in form to a phase space diagram) is
useful because it provides a global picture of the location of the qualitative states of an
envisionment relative to the equilibria or critical points of the system. It has also been
utilised in the construction of diagnostic expert systems (Warren, Coghill, & Johnstone,
2004). For further details of this means of analysing envisionments see the work of Coghill
(2003) and Coghill et al. (1992).
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bb(i, ρ, f) : Given an initial element i from a discrete set S; a successor function ρ : S → 2S ; and a cost function
f : S → <, return H ⊆ S such that H contains the set of cost-minimal models. That is for all hi,j ∈ H, f(hi) =
f(hj) = fmin and for all s′ ∈ S\H f(s′) > fmin.

1. Active := 〈(i,−∞)〉.

2. worst := ∞

3. selected := ∅

4. while Active 6= 〈〉

5. begin

(a) remove element (k, costk) from Active

(b) if costk < worst

(c) begin

i. worst := costk

ii. selected := {k}

iii. let Prune1 ⊆ Active s.t. for each j ∈ Prune1, f(j) > worst where f(j) is the lowest cost
possible from j or its successors

iv. remove elements of Prune1 from Active

(d) end

(e) elseif costk = worst

i. selected := selected ∪ {k}

(f) Branch := ρ(k)

(g) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2, fmin(j) > best where fmin(j) is the lowest cost
possible from j or its successors

(h) Bound := Branch\Prune2

(i) for x ∈ Bound

i. add (x, f(x)) to Active

6. end

7. return selected

Figure 6: A basic branch-and-bound algorithm. The type of Active determines specialised
variants: if Active is a stack (elements are added and removed from the front)
then depth-first branch-and-bound results; if Active is a queue (elements added
to the end and removed from the front) then breadth-first branch-and-bound
results; if Active is a prioritised queue then best-first branch-and-bound results.

2.3 The Algorithm

The ILP learner used in this research is a multistage procedure, each of which addresses
a discrete optimisation problem. In general terms, this is posed as follows: given a finite
discrete set S and a cost-function f : S → <, find a subset H ⊆ S such that H =
{s|s ∈ S and f(s) = minsi∈Sf(si)}. An optimal algorithm for solving such problems is the
“branch-and-bound” algorithm, shown in Fig. 6 (the correctness, complexity and optimality
properties of this algorithm are presented in a paper by Papadimitriou & Steiglitz, 1982).
A specific variant of this algorithm is available within the software environment comprising
Aleph (Srinivasan, 1999). The modified procedure is in Fig. 7. The principal differences
from Fig. 6 are:

1. The procedure is given a set of starting points H0, instead of a single one (i in Fig. 6);
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2. A limitation on the number of nodes explored (n in Fig. 7);

3. The use of a boolean function acceptable : H×B × E → {FALSE, TRUE}.
acceptable(k,B,E) is TRUE, if and only if: (a) Hypothesis k ”explains” the examples
E, given B in the usual sense understood in ILP (that is, B ∧ k |= E in the absence
of noise); and (b) Hypothesis k is consistent with any constraints I contained in the
background knowledge (that is B∧k∧I 6|= 2). In practice, it is possible to merge these
requirements by encoding the requirement for entailing some or all of the examples
as a constraint in B;

4. Inclusion of background knowledge and examples (B and E in Fig. 7). These are
arguments to both the refinement operator ρ (the reason for this will become apparent
shortly) and the cost function f .

The following points are relevant for the implementation used here:

• Each qualitative model is represented as a single definite clause. Given a definite
clause C, the qualitative constraints in the model (the size of the model) are obtained
by counting the number of qualitative constraints in C. This will also be called the
“size of C”.

• Constraints, such as the restriction to well-posed models (described below), are as-
sumed to be encoded in the background knowledge;

• The initial set H0 in Fig. 7 consists of the empty clause denoted here as ∅. That is,
H0 = {∅};

• acceptable(C,B,E) is TRUE for any qualitative model C that is consistent with the
constraints in B, given E.

• Active is a prioritised queue sorted by f ;

• The successor function used is ρA. This is defined as follows. Let S be the size of
an acceptable model and C be a qualitative model of size S ′ with n = S − S ′. We
assume B contains a set of mode declarations in the form described by (Muggleton,
1995). Then, given a definite clause C, obtain a definite C ′ ∈ ρA(C,B,E) where ρA =
ρn

A = 〈D′| ∃D ∈ ρn−1
A (C,B,E) s.t. D′ ∈ ρ1

A(D,B,E)〉, (n ≥ 2). C ′ ∈ ρ1
A(C,B,E) is

obtained by adding a literal L to C, such that:

– Each argument with mode +t in L is substituted with any input variable of type
t that appears in the positive literal in C or with any variable of type t that
occurs in a negative literal in C;

– Each argument with mode −t in L is substituted with any variable in C of type
t that appears before that argument or by a new variable of type t;

– Each argument with mode #t in L is substituted with a ground term of type t.
This assumes the availability of a generator of elements of the Herbrand universe
of terms; and

– acceptable(C ′, B,E) is TRUE.
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bbA(B, E,H0, ρ, f, n) : Given background knowledge B ∈ B; examples E ∈ E ; a non-empty set of initial elements
H0 from a discrete set of possible hypotheses H; a successor function ρ : H × B × E → 2H; a cost function
f : H×B× E → <; and a maximum number of nodes n ∈ N (n ≥ 0) to be explored, return H ⊆ H such that
H contains the set of cost-minimal models of the models explored.

1. Active = 〈〉

2. for i ∈ H0

(a) add (i,−∞) to Active

3. worst := ∞

4. selected := ∅

5. explored := 0

6. while (explored < n and Active 6= 〈〉)

7. begin

(a) remove element (k, costk) from Active

(b) increment explored

(c) if acceptable(k,B, E)

(d) begin

i. if costk < worst

ii. begin

A. worst := cost

B. selected := {k}

C. let Prune1 ⊆ Active s.t. for each j ∈ Prune1, f(j,B, E) > worst where f(j, B, E) is the
lowest cost possible from j or its successors

D. remove elements of Prune1 from Active

iii. end:

iv. elseif costk = worst

A. selected := selected ∪ {k}

(e) end

(f) Branch := ρ(k,B, E)

(g) let Prune2 ⊆ Branch s.t. for each j ∈ Prune2, f(j, B,E) > worst where f(j,B, E) is the lowest
cost possible from j or its successors

(h) Bound := Branch\Prune2

(i) for x ∈ Bound

i. add (x, f(x,B, E)) to Active

8. end

9. return selected

Figure 7: A variant of the basic branch-and-bound algorithm, implemented within the
Aleph system. Here B and E are sets of logic programs; and N the set of
natural numbers.

The following properties of ρ1
A (and, in turn of ρA) can be shown to hold (Riguzzi,

2005):

– It is locally finite. That is, ρ1
A(C,B,E) is finite and computable (assuming the

constraints in B are computable);

– It is weakly complete. That is, any clause containing n literals can be obtained
in n refinement steps from the empty clause;
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– It is not proper. That is, C ′ can be equivalent to C;

– It is not optimal. That is, C ′ can be obtained multiply by refining different
clauses.

In addition, it is clear by definition that given a qualitative model C, acceptable(C ′, B,E)
is TRUE for any model C ′ ∈ ρ1

A(C,B,E). In turn, it follows that acceptable(C ′, B,E)
is TRUE for any C ′ ∈ ρA(C,B,E).

• The cost function used (following Muggleton, 1996) is fBayes(C,B,E) = −P(C|B,E)
where P(C|B,E) is the Bayesian posterior probability estimate of clause C, given
background knowledge B and positive examples E. Finding the model with the max-
imal posterior probability (that is, lowest cost) involves maximising the function (Mc-
Creath, 1999):

Q(C) = logDH(C) + p log
1

g(C)

where DH is a prior probability measure over the space of possible models; p is the
number of positive examples (that is, p = |E|); and g is the generality of a model.
We use the approach used in the ILP system C-Progol to obtain values for these two
functions. That is, the prior probability is related to the complexity of models (more
complex models are taken to be less probable, a priori); and the generality of a model
is estimated using the number of random examples entailed by the model, given the
background knowledge B (the details of this are presented by Muggleton in his paper
of 1996).

We have selected this Bayesian function to score hypotheses since it represents, to
the best of our knowledge, the only one in the ILP literature explicitly developed
for the case where data consist of positive examples only (as is the situation in this
paper, where examples are observations of system behaviour: system identification
from “non-behaviour” does not represent the usual understanding of the task we are
attempting here).

It is evident that these choices make the branch-and-bound procedure a simple “generate-
and-score” approach. Clearly, the approach is only scalable if the constraints encoding
well-posed models are sufficient to restrict acceptable models to some reasonable number:
we describe a set of such constraints that are sufficient for the models examined in this
paper. In the rest of the paper, the term ILP-QSI will be taken to mean the Aleph
branch-and-bound algorithm with the specific choices above.

2.3.1 Well-posed models

Well-posed models were introduced in Section 2.1; in the current implementation they are
defined as satisfying at least the following syntactic constraints:

1. Size. The model must be of a particular size (measured by the number of qualitative
relations for physical models in Sections 2.4 and 3 or the number of metabolites for
the biological model in Section 5). This size is pre-specified.

2. Complete. The model must contain all the measured variables.
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3. Determinate. The model must contain as many relations as variables (a basic principle
of systems theory—the reader may recall a version from school algebra, where a system
of equations contains as many equations as unknowns).

4. Language. The number of instances of any qualitative relation in the model must be
below some pre-specified limit. This kind of restriction has been studied in greater
detail in the work of Camacho (2000).

and at least the following semantic constraints:

5. Sufficient. The model must adequately explain the observed data. By “adequate”, we
intend to acknowledge here that due to noise in the measurements, not all observations
may be logical consequences of the model5. The percentage of observations that must
be explainable in this sense is a user-defined value.

6. Redundant. The model must not contain relations that are redundant. For ex-
ample, the relation ADD(inflow, outflow, x1) is redundant if the model already has
ADD(outflow, inflow, x1).

7. Contradictory. The model must not contain relations that are contradictory given
other relations present in the model.

8. Dimensional. The model must contain relations that respect dimensional constraints.
This prevents, for example, addition of relations like ADD(inflow, outflow, amount)
that perform arithmetic on variables that have different units of measurement.

The following additional constraints which are here incorporated in the algorithm could be
ignored (because they are preferences rather than absolute rules), but all results presented
in this paper require them to be satisfied:

9. Single. The model must not contain two or more disjoint models. The assumption
is that if a set of measurements are being made within a particular context then the
user desires a single model that includes those measurement variables.

10. Connected. All intermediate variables should appear in at least two relations.

11. Causal. The model must be causally ordered (Iwasaki & Simon, 1986) with an integral
causality (Gawthrop & Smith, 1996). That is, the causality runs through the algebraic
constraints of the model from the magnitudes of the state variables to their derivatives;
and from the derivatives to the magnitudes through a DERIV constraint only.

This list is not intended to be exhaustive: we fully expect that they would need to be aug-
mented by other domain-specific constraints (the biological system identification problem
described in Section 5 provides an instance of this). The advantage of using ILP is that
such augmentation is possible in a relatively straightforward manner.

5. Strictly speaking, the model in conjunction with the background knowledge.
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2.4 Experimental Investigation of Learning the U-tube System

In this section we present a comprehensive experimental test of the learning algorithm
described in the previous section. We again focus on the u-tube to illustrate the approach
and explain the results obtained. In a subsequent section we will present the results of
applying ILP-QSI to learning the structure of a number of different systems of a similar
kind. The data utilised in these experiments is qualitative. It is assumed that either the
measurements themselves yield qualitative values or that they are quantitative time series
that have been converted to qualitative values. This latter may be necessary in situations
where the quantitative time series data are not available in sufficient quantity to permit
quantitative system identification to be performed.

The following is the general method applied to learning all the systems studied for this
paper.

2.4.1 Experimental Aim

Using the u-tube system, investigate the model identification capabilities of ILP-QSI using
qualitative data that are subject to increasing amounts of noise and are made increas-
ingly sparse in order to ascertain the circumstances under which the target system may be
accurately identified, as a function of the number of qualitative observations available.

2.4.2 Materials and Method

The model learning system ILP-QSI seeks to learn qualitative structural models from qual-
itative data; therefore the focus of the experiments is on learning from qualitative data.

Data There are no inputs (exogenous variables) to this system. The data required for
learning are combinations of the qualitative states (of which there are 6) from the envision-
ment shown in Table 1.

Method There are two distinct sets of experiments reported here: those based on noise

free data and those based on noisy data. The former assume that the data provided are
correct and are used to test the capability of ILP-QSI in handling sparse data. The latter set
of experiments captures the situation where the qualitative data may be incorrect because
of measurement errors due to noise in the original signal, or through errors introduced in
a quantitative to qualitative transformation (which may occur in cases where the original
data is numerical).

Noise-free data. We use the following method for evaluating ILP-QSI’s system-identification
performance from noise-free data:

For the system under investigation:

1. Obtain the complete envisionment from specific values of exogeneous variables.

(In the particular case of the u-tube discussed in this section there are exogenous
variables and the envisionment states are as shown in Table 1, as stated above.)
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2. With non-empty subsets of states in the envisionment as training data construct a
set of models using ILP-QSI and record the precision of the result.6 The number of
possible non-empty sets of states for the different test scenarios for the u-tube is 63.
(2N − 1, where N is the number of states in the complete envisionment)

3. Plot learning curves showing average precision versus size of training data.

Noisy data. We use the following method for evaluating ILP-QSI’s system-identification
performance from noisy qualitative data:

For the system under investigation:

1. Obtain the complete envisionment from specific values of exogeneous variables.

2. Replace non-empty subsets of states in the envisionment with randomly generated
noise states. With each such combination of correct and random states, as training
data construct a set of models using ILP-QSI and record the precision of the result.7

Given a complete envisionment of N states, replacing a random subset k > 0 of these
with random states will result in a “noisy” envisionment consisting of N − k noise-
free states and k random states. As with Step 2 for noise-free data, an exhaustive
replacement of all possible subsets of the complete envisionment with random states
will result in 2N − 1 noisy test sets.

3. Plot learning curves showing average precision versus size of training data.

2.4.3 Results

The results of performing these experiments, showing the precision of learning the target
model versus the number of states used (for both noise-free and noisy data) are shown in
Fig. 8. It is evident that for both situations precision improves with the number of states
used and that the results from the experiments with noisy data have lower precision than
those with the noise-free data (though the curves have the same general shape). Both these
results are as one would expect.

With noise-free data we find that it was not possible to identify the target model using
just one state as data. However it was possible to identify the target model using pairs of
states in 53% of cases. These states are:

[2, 3], [2, 4], [2, 5], [3, 5], [3, 6], [4, 5], [4, 6], [5, 6]

We refer to these as Kernel sets. For the time being we merely report this finding and delay
a discussion of its significance until after reporting the results for the experiments on the
other systems in the class.

6. This is the proportion of the models in the result that are equivalent to the correct model. Thus, for each

training data set, the result returned by ILP-QSI will have a precision between 0.0 and 1.0. The term

precision as used here has the meaning usually associated with it in the Machine Learning community

rather than that familiar in Qualitative Reasoning.

7. As with the non-noisy data, for each training data set, the result returned by ILP-QSI will have a

precision between 0.0 and 1.0.
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Figure 8: Precision of models obtained for the u-tube.

3. Experiments on Other Systems

In this section we present the same experimental setup applied to a number of other systems:
coupled tanks, cascaded tanks and a mass spring damper. These systems are representative
of a class of system appearing in industrial contexts (e.g. the cascaded tanks system has
been used as a model for diagnosis of an industrial Ammonia Washer system by Warren
et al., 2004) as well as being useful analogs to metabolic and compartmental systems.

In each case the experimental method is identical to that utilised for the u-tube as
described in Section 2.4. For each system we give a description of the system and the target
model, the envisionment associated with the system, a statement of the data used in the
experiments, and a summary of the results obtained from the experiments.

3.1 Experimental Aim

For three physical systems: coupled tanks, cascaded tanks and mass-spring-damper (a well
known example of a servomechanism), investigate the model identification capabilities of
ILP-QSI using qualitative data that are subject to increasing amounts of noise and are
made increasingly sparse.

3.2 Materials and Method

Data Qualitative data available consist of the complete envisionment arising from specific
values for input variables. The precise details of the data are given with each experiment.

Method The method used is the same as that for the u-tube and described in Section 2.4.
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State h1 h2 qx qo

1 < 0, std > < 0, std > < 0, std > < 0, std >

2 < 0, inc > < (0,∞), dec > < (−∞, 0), inc > < (0,∞), dec >

3 < (0,∞), dec > < 0, inc > < (0,∞), dec > < 0, inc >

4 < (0,∞), dec > < (0,∞), inc > < (0,∞), dec > < (0,∞), inc >

6 < (0,∞), inc > < (0,∞), dec > < (−∞, 0), inc > < (0,∞), dec >

7 < (0,∞), dec > < (0,∞), std > < (0,∞), dec > < (0,∞), std >

8 < (0,∞), std > < (0,∞), dec > < 0, inc > < (0,∞), dec >

9 < (0,∞), dec > < (0,∞), dec > < (0,∞), dec > < (0,∞), dec >

10 < (0,∞), dec > < (0,∞), dec > < (0,∞), std > < (0,∞), dec >

11 < (0,∞), dec > < (0,∞), dec > < (0,∞), inc > < (0,∞), dec >

Table 2: The envisionment states used for the coupled tanks experiments. (The states are
labeled to be in accord with those for the u-tube; since state 5 in the u-tube does
not appear in the coupled tanks envisionment there is no state labeled ‘5’ in this
table.)

3.3 The Coupled Tanks

This is an open system consisting of two reservoirs as shown in Fig. 9. Essentially, it can
be seen as a u-tube with an input and an output. The input, qi, flows into the top of tank
1 and the output, qo, flows out of the base of tank 2 (see Fig. 9).

Tank 1 Tank 2

h2

∆h

qx qo

h1

qi

+

dt M+ M+dt

∆h

h1
h2

qx qo++qi

h’1 h’2

DERIV(h1,h
′

1),

DERIV(h2,h
′

2),

ADD(h2,Delta h, h1),

M+(Delta h,qx),

M+(h2,qo),

ADD(h′

2,qo,qx),

ADD(qx,h
′

1,qi).

Figure 9: The coupled tanks: (left) physical; (middle) QSIM diagram; (right) QSIM rela-
tions.

In these experiments we assume that we can observe: qi, qx, h1, h2, and qo. Thus system
identification must discover a model with three intermediate variables, h ′

1, h′
2 and ∆h.

Data There is one exogenous variable, namely the flow of liquid into tank 1 (qi). In the
experiments described here the input flow is kept at zero (that is, qi = 〈0, std〉), making
the system for this particular case just moderately more complex than the u-tube. The
complete envisionment consists of 10 states, as shown in Table 2 and Fig. 10, which means
there are 1024 experiments in this set.
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3.3.1 Results

The precision graphs for the coupled tanks experiments are shown in Fig. 11. Here again
results show the improvement in precision as the number states used increases and also the
deterioration in precision when noise is added. The effect of noise is worse when fewer states
are used than was the case for the u-tube, though its effect is nullified when all states are
used.
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Figure 11: Coupled tanks precision graphs.

For the noise free data it was again not possible to identify any models using a single
datum but utilising pairs of states yielded the target model in 11% of cases. The relevant
pairs of states (kernel sets) are:

[2, 7], [3, 8], [4, 8], [6, 7], [7, 8]
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Whereas in the u-tube experiments all the states in which the target model was successfully
learned were supersets of the pairs, in the coupled tanks case there are sets of three states
(which are not supersets of the pairs listed above) that result in successful identification of
the target model:

[2, 3, 9], [2, 3, 10], [2, 3, 11]
[2, 4, 9], [2, 4, 10], [2, 4, 11]
[3, 6, 9], [3, 6, 10], [3, 6, 11]
[4, 6, 9], [4, 6, 10], [4, 6, 11]

3.4 Cascaded Tanks

This system is also an open system. However, flow through the system is always uni-
directional (unlike the coupled tanks system). In principle, the system can be broken into
two sub-systems each containing one reservoir, each with their own input and output.

An example of the system is shown in Fig. 12. Liquid flows into tank 1, and then uni-
directionally from tank 1 into tank 2. As is apparent from the figure, the flow is into the
top of tank 1 and out of the base of tank 2.

dt M+ M+dt

h1 h2

qx qo++qi

h’1 h’2Tank A

Tank B

h1

h2

qi

qx

qo

DERIV(h1,h
′

1),

DERIV(h2,h
′

2),

M+(h1,qx),

M+(h2,qo),

ADD(h′

2,qo,qx),

ADD(qx,h
′

1,qi).

Figure 12: The cascaded tanks: (left) physical; (middle) QSIM diagrammatic; (right) QSIM
relations.

We assume that we can observe: qi, h1, h2, and qx. Thus system identification must
discover a model with two intermediate variables, h′

1 and h′
2. The numbered list of states

(or complete envisionment) for this case is shown in Fig. 13 and Table 3.

Data There is one exogenous variable, namely the flow of liquid into tank 1 (qi). We
increase the complexity by allowing a steady positive input flow (that is, qi = 〈(0,∞), std〉).
The complete envisionment consists of 14 states, as shown in Fig. 13 and Table 3 which
means 16,383 experiments are required .

3.4.1 Results

The precision graphs for the cascaded tanks are shown in Fig. 14. The graphs are similar
in shape to the coupled systems, but showing generally lower precision with noisy-data.
Further examination shows that we are unable to identify the target model from fewer than
three states. The subset triples (which form the kernel sets in this case) from which the
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Figure 13: Cascaded tanks envisionment graph.

State h1 h2 qx qo

1 < 0, inc > < 0, std > < 0, inc > < 0, std >

2 < 0, inc > < (0,∞), dec > < 0, inc > < (0,∞), dec >

3 < (0,∞), dec > < 0, inc > < (0,∞), dec > < 0, inc >

4 < (0,∞), dec > < (0,∞), dec > < (0,∞), dec > < (0,∞), dec >

5 < (0,∞), dec > < (0,∞), std > < (0,∞), dec > < (0,∞), std >

6 < (0,∞), dec > < (0,∞), inc > < (0,∞), dec > < (0,∞), inc >

7 < (0,∞), std > < 0, inc > < (0,∞), std > < 0, inc >

8 < (0,∞), std > < (0,∞), dec > < (0,∞), std > < (0,∞), dec >

9 < (0,∞), std > < (0,∞), std > < (0,∞), std > < (0,∞), std >

10 < (0,∞), std > < (0,∞), inc > < (0,∞), std > < (0,∞), inc >

11 < (0,∞), inc > < 0, inc > < (0,∞), inc > < 0, inc >

12 < (0,∞), inc > < (0,∞), dec > < (0,∞), inc > < (0,∞), dec >

13 < (0,∞), inc > < (0,∞), std > < (0,∞), inc > < (0,∞), std >

14 < (0,∞), inc > < (0,∞), inc > < (0,∞), inc > < (0,∞), inc >

Table 3: The envisionment states used for the cascaded tanks experiments.

target model was identified are:

[1, 3, 4], [1, 3, 5], [1, 3, 8], [1, 3, 9], [1, 7, 4], [1, 7, 5], [1, 7, 8], [1, 7, 9]
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Figure 14: Cascaded tanks precision graph.

3.5 Mass-Spring-Damper

The final physical system considered is an abstraction of a wide variety of servomechanisms
with a displacing force. An example of the system is shown in Fig. 15. In this situation, a
mass is held in equilibrium between two forces. If the equilibrium is disturbed, oscillatory
behaviour is observed. The motion of the mass is damped so that the oscillations do not
continue indefinitely, and will eventually return to the original equilibrium position. If an
external force is applied (for example pulling the mass down) its final resting place will be
displaced from the natural equilibrium point (see Fig. 15). The mass M has displacement
dispM from its rest position, and at any time, t, it is moving with velocity velM and
accelerating at rate accM . We assume that we can observe the variables: dispM , velM , accM ,

M+

M+

M+

+

+

dt

dt

1H

2

a=v/sec

H

H

H3

DampingSpring

disp

acc

force

force

vel

disp

vel

M

M

M

DERIV(dispM,velM),

DERIV(velM,accM),

M+(dispM,H1),

M+(velM,H2),

M+(accM,H3),

ADD(H1,H2,H4),

ADD(H3,H4,force).

Figure 15: The spring system (a) physical; (b) QSIM diagrammatic; (c) QSIM relations

and force. Qualitative system identification must now find a model with four intermediate
variables, H1, H2, H3 and H4; as well as a intermediate relation ADD(H1,H2,H4), between
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three of these variables. The input force, force, is exogenous. In the experiments here,
we only consider the case where there is a steady force being applied to the system (that
is, ForceA = 〈(0,∞), std〉). The complete envisionment for this case is shown in Fig. 16,
where the equilibrium point is represented by state 2. The precision graphs are shown in
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Figure 16: Mass-spring-damper envisionment graph

Fig. 17. For this system the envisionment contains 31 states, which makes exhaustive testing
unrealistic. Instead sets of clean and noisy states were randomly selected from the space of
possible experiments. Nonetheless it can be observed that the average precision graphs are
in-line with those obtained for the tanks experiments. However, the actual precision values
suggest that both sparse data and noise have less of an effect here than the other systems.
This may be due to the tight relationship between the two derivatives in the spring model,
making the system extremely constrained.

3.6 Discussion of Results

An inspection of the experimental results reveals an expected pattern: in all cases the
precision curves (for both noisy and noise free experiments) have the same general shape.
Experiments which utilise fewer states identify the target model less often than when a
greater number of states are used. However, a closer examination of the results reveals
that even when few states are used (pairs or triples) the target model may be consistently
found when particular combinations of states are used. In order to understand why this is
so requires us to look at the solution spaces for the systems concerned.8

We will examine the u-tube and coupled tanks together because they are very closely
related systems and both had zero input. The cascaded tanks system is slightly different
and had a non-zero input and so will be discussed later in the section.

8. We do not discuss the spring system here because of its complexity.
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Figure 17: Mass-spring-damper precision graph

3.6.1 The U-tube and Coupled Tanks

The bare results, while interesting, do not give any indication of why the particular pairs or
triples highlighted should precisely identify the target model. In order to ascertain ‘why?’
we must examine the envisionment states given in Tables 1 and 2, from these we can itemise
the relevant features of the sets of states as follows:

• For both the u-tube and coupled tanks there is at least one critical point in each pair.

• For both these systems each pair of states contains one state for each branch in the
envisionment graph (Fig. 2 & Fig. 10); and of these at least one is at the extreme of
its branch. That is, states where one tank is either empty or the state immediately
succeeding this, and the other tank is relatively full so that that the derivatives for
that height in each tank have opposite signs.

• For both systems all supersets of these minimal sets will precisely learn the target
model.

These observations lead us to suggest that for coupled systems the ability of the learning
system to identify the structure of a model is dependent on the data used including the
critical points and on having data that covers all the different types of starting point that
the system behaviours can have. This is in keeping with what systems theory would lead
us to expect (Gawthrop & Smith, 1996).

In order properly to appreciate what is indicated by these kernel sets and the relation
of the systems to each other we need to look at the solution spaces (Coghill et al., 1992;
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Coghill, 2003) for the two systems. These are shown in Fig. 18 (and their derivation is
similar to that given in Section 2.2 and detailed in Appendix A). From these we can get a
clear picture of where the kernel pairs and triples lie with respect to the critical points of
the system.
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Figure 18: The solution spaces for the u-tube and coupled tanks systems.

From the system diagrams provided in Fig. 1 and Fig. 9 it can be seen that the u-tube
and coupled tanks systems differ only in the fact that the coupled tanks has an outlet orifice,
whereas the u-tube does not. This accounts for the major difference in their solution spaces;
namely that the coupled tanks has two critical points (states 7 and 9) whereas the u-tube
has only one (state 5) – which is actually the steady state. This gives rise to the additional
states: 9, 10 and 11 which lie between the critical points.9 It can be observed that as the
outlet orifice from tank 2 in the coupled tanks system decreases in size the space between
the isoclines in the solution space will become narrower until it disappears when the orifice
closes. This can be seen more formally by comparing equations 6 and 10 in Appendix A.
There it is clear that as k2 approaches zero, equation 6 approximates equation 10 (and when
k2 = 0 the two equations are the same).

If we now look again at the sets of pairs we can observe that they are related in ways
that reflect the relationship between the two coupled systems. Firstly, looking at the pairs.
For the u-tube there are 4 pairs which include the critical point (steady state), state 5: [2,
5], [3, 5], [4, 5], and [5, 6]. Now noting from the discussion above that state 5 in the u-tube
relates to either of states 7 or 8 in the coupled tanks then we find that the analogous pairs
exist in the kernel set for the coupled tanks: [2, 7], [3,8], [4, 8], and [6, 7]. This leaves one
pair from the coupled tanks pairs unaccounted for: [7, 8]. However, this is no surprise since
that pair is taken to map to state 5 in the u-tube; and it is the consistent finding that no
singleton state is sufficient to learn a model of the system.

9. There are three states here because they differ only in the magnitude of the qx or qdir of h′
1 and h′

2,

neither of which appear explicitly in the solution space. Readers may convince themselves of this by

comparing Table 1 with the envisionment in Table 2.
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There are still 4 pairs in the u-tube experiments from which we are able to learn reliably
the target model that do not have a corresponding coupled tanks pair. These are: [2, 3],
[2, 4], [3, 6], and [4, 6]. A comparison with the triples for the learning of the coupled tanks
model reveals that these states are the pairs which are conjoined with either state 9, 10 or
11 to make up the triples. The inclusion of these states warrants further explanation since
they are the states which distinguish the closed u-tube from the open coupled tanks. In all
three of these states the state variables both have the value 〈(0,∞), dec)〉; a situation that
cannot occur in the u-tube. Combining this with the fact that the four pairs listed above
do not contain a critical point and are qualitatively identical in both systems leads one to
the conclusion that the additional information contained in these triple kernel sets enables
one to distinguish between the u-tube and coupled tanks in such a case.

These results extend, strengthen and deepen those reported in Coghill et al. (2004) and
Garrett et al. (2007).

3.6.2 The Cascaded Tanks

The cascaded tanks system is asymmetrical with the flow only being possible in one direc-
tion. The fact that the input is a positive steady flow makes the setup marginally more
complex in that regard than for the coupled systems, where there was no input flow.

The kernel sets from which a model of this system may be learned (presented in Section
3.4.1 are depicted schematically in Fig. 19 in order to explain the results obtained. If we
look at the first and middle columns of this diagram and ignore, for the time being, the
downstream tank, we can see that what is represented are two pairs of states: the tank
empty combined with the tank being at steady state, or the tank empty combined with the
state where the amount of fluid in the tank is greater than steady state. We have confirmed
experimentally that these are kernel sets from which a single tank model can be learned.

If we now ignore the upstream tank (apart from its outflow) and examine the middle
and third columns of the diagram we can see that these divide into two groups according to
whether the input to the downstream tank is steady or decaying (positive and decreasing).
For each of these there are two pairs of states, which are the same as for the upstream tank:
the tank empty combined with the tank being at steady state, or the tank empty combined
with the state where the amount of fluid in the tank is greater than steady state. In the
case of this tank it can be seen that the cross product of states appear in the kernel sets
because each case represents a valid possible situation.

These results lead to two major conclusions with regard to the cascaded tanks system:

1. ILP-QSI effectively identifies the individual components of the cascade and combines
them through the cascade point.

2. The situation with the downstream tank, where the input was either a steady flow or a
decreasing flow, indicates that utilising a variety of inputs can aid in the identification
process.

The former conclusion may serve as a pointer to the possibility of incremental learning
of cascaded systems.
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Figure 19: A schematic representation of the triples of states from which the target model
for the cascaded tanks systems is learned.
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4. Experiments with Quantitative Data

This part of the experimental testing of our system is a “ proof-of-concept” test. As has been
stated our system has been designed to learn qualitative models from qualitative data. As
such it is assumed that the conversion of any quantitative data has already been performed,
not least because the needed qualitative data analysis would require another research project
and is beyond the scope of this paper. However, in order to test the usability of our system
with quantitative data and to test its ability to go through the whole process from receiving
the data to producing the model, we have implemented a rudimentary data analysis package
to facilitate this. Of course this is not exhaustive, but it will permit us to test the results
produced via such a process for consistency with those produced from the experiments with
qualitative data.

4.1 Experimental Aim

Using the four physical systems, investigate the model identification capabilities of ILP-
QSI using numeric traces of system behaviour that are subject to increasing amounts of
noise.

4.1.1 Quantitative to Qualitative Conversion

Before proceeding to describe the experiments carried out, we present the method used
to convert numerical data into the qualitative form required by ILP-QSI because this is
utilised in each set of experiments.

We have adopted a straightforward and simple approach to performing the conversion.
For a quantitative variable x, values at N real-valued time series steps were numerically
differentiated by means of a central difference approach (Shoup, 1979) such that,

dxi

dt
= (xi−xi−1)+(xi+1−xi)

2

d2xi

dt2
= (xi − xi−1) − (xi+1 − xi)











i = 2 · · ·N − 1

A quantitative variable x is converted into a qualitative variable q = 〈qmag, qdir〉, where
qmag ∈ {(-∞,0), 0, (0,∞)} is generated from x, and qdir ∈ {dec, std, inc} is generated from
dx/dt. The qualitative derivative of q, q̇, is obtained in a similar manner but is generated
from from dx/dt and d2x/dt2 respectively.

The data are typically noisy—either inherently, or because of the process of differentiation—
and we perform some simple smoothing of the first and second derivatives using a Blackman
filter (a relative of the moving average filter – see Blackman & Tukey, 1958). In each case,
the filter is actually applied to the result of a Fast Fourier Transform (FFT) and the re-
sult obtained by taking the real part of the inverse FFT. We note here that this form of
smoothing is appropriate only when a sufficient number of time steps are present.

Having obtained a (smoothed) numerical value xi for variable x at instant i, its quali-
tative magnitude qmag(xi) is, in principle, simply obtained by the following:

qmag(xi) =











(−∞, 0) if xi < 0
0 if xi = 0
(0,+∞) otherwise
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In practice, since floating-point values are unlikely to be exactly zero, we have found
it advantageous to re-apply the filtering process to data straddling zero to eliminate small
fluctuations around this value. Despite these measures, in addition to generating correct
qualitative states (true positives) the conversion can produce errors: states generated may
not correspond to true states (false positives); and some true states may not be generated
(false negatives). Fig. 20 shows an example of this (the problem is, of course, exacerbated
further if the original quantitative data are noisy). The reason for these imperfect results
from noise free quantitative data are twofold: one is the smoothing process on small fluctua-
tions around zero; but the main reason is that, as discussed above, creating a full qualitative
state involves numerical differentiation which introduces noise into the data for the deriva-
tives that affects the ability of the process to convert from quantitative to qualitative with
absolute accuracy.

System True Generated True False False
States States Positives Positives Negatives

u-tube 6 6 4 2 0
Coupled 10 14 6 8 0
Cascaded 14 8 5 3 6
Spring 33 33 20 13 0

Figure 20: An example of the errors resulting from generating qualitative states from traces
of system behaviour. Here, the traces were generated by the following initial
conditions: h1 = 2.0, h2 = 0.0 for all three tank systems; and dispM = 2.0,
velM = 0.0 for the spring.

4.2 Materials and Method

Numerical simulations of the four physical systems were constructed using the same general
relations as the qualitative models. Once again the experiments were carried out utilising
both noise free and noisy data, as described in the rest of this section.

4.2.1 Data

The models used for the numerical simulations had the same structure as the qualitative
models, but with the substitution of a real valued parameter for each monotonic function
relation. This gives a linear relation between the two variables; more complex, non-linear
functions might have been used, but linear functions provided a suitable approximation of
the known behavior of these systems, as shown graphically in Fig. 21 (a)–(d); which is as
much as is required for this proof-of-concept study.

For a given set of function parameter values, initial conditions, and input value, a
quantitative model produces a single quantitative behaviour (this contrasts with qualitative
models that can produce a list of all possible behaviours for the model). Parameter values
were chosen so that the models approached a steady state during the time period of the
test. The models were implemented in Matlab 5.3 using the ODE15s ODE solver. Each
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Figure 21: A graph of example numeric behavior of (a) the u-tube, top left; (b) the coupled
tanks, top right; (c) the cascaded tanks, bottom left, and (d) damped spring,
bottom right.

time point generated by the simulation was made available as part of the sampled data.
This ensures that the sampling rate is suitably fast with respect to the Nyquist criterion.
It also guarantees that a sufficient number of data points are available as required by the
Beckman filter.

4.2.2 Method

Noise-free data. We use the following method for evaluating ILP-QSI’s system-identification
performance from noise-free data:

For each of the four test-systems:

(a) Obtain the system behaviour of the test system with a number of different initial
conditions and input values. Convert each of these into qualitative states using
the procedure in Section 4.1.1.

(b) Using all the qualitative states obtained as training data construct a set of models
using ILP-QSI and record the precision of the result (this is the proportion of
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the models in the result that are equivalent to the correct model). Thus, for each
training data set, the result returned by ILP-QSI will have a precision between
0.0 and 1.0.

The following details are relevant: (a) The quantitative models were each put into three
separate initial conditions, so that the magnitude of the two state variables were set to (2, 0),
(0, 3) and (2, 3). Specifically, these were the initial values of the two tank levels for all three
tank systems, and the displacement and velocity for the spring. These values were not
crucial but were chosen for the initial conditions because they caused the numerical models
to converge on the steady state for each system in a reasonable number of iterations; (b)
Each initial condition gave rise to a system behaviour and hence a set of qualitative states.
In the second step above, qualitative states from all behaviours is used as training data.
This is because kernel subsets necessary for correct system identification usually contain
qualitative states from multiple quantitative behaviours. (c) The conversion process results
in erroneous qualitative states (see Section 4.1.1). Thus, the training data used here contain
both false positives and false negatives.

Noisy data. We use the following method for evaluating ILP-QSI’s system-identification
performance from noisy quantitative data:

For each of the four test-systems:

(a) Obtain the system behaviour of the test system with a number of different initial
conditions and input values.

(b) Corrupt each system behaviour with additive noise;

(c) Convert each corrupted behaviour into qualitative states using the procedure in
Section 4.1.1.

(d) Using all the qualitative states obtained as training data construct a set of models
using ILP-QSI and record the precision of the result (this is the proportion of
the models in the result that are equivalent to the correct model). Thus, for each
training data set, the result returned by ILP-QSI will have a precision between
0.0 and 1.0.

In the second step noise was added to the numerical data sets as follows. A Gaussian noise
signal (with a µ of 0.0 and σ of 1.0) was generated using by the built-in Matlab function
normrnd and scaled to three orders of magnitude of the original noise, namely 0.01, 0.1 and
1.0 (representing “low”, “medium” and “high” amounts of noise respectively). These scaled
noise variants were added to the numerical values of the system behaviour obtained from
each initial condition.

4.3 Quantitative Experimental Results

The process of converting from quantitative to qualitative states introduces errors, even
for noise free data. Table 4 shows the proportion of correct qualitative states to the total
number of qualitative states that were obtained from the numerical signal, including noisy
states. The table shows this proportion for all four systems, under the different degrees
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Initial States
Model Noise level (2,0) (0,3) (2,3)

u-tube 0 4/6 4/6 3/5
0.01 2/8 2/8 2/9
0.1 2/10 2/10 2/15
1 2/37 2/37 2/53

Coupled 0 6/14 5/13 5/14
0.01 6/16 4/14 4/12
0.1 6/16 5/25 4/15
1 6/58 6/61 4/46

Cascaded 0 5/8 5/8 3/8
0.01 4/10 4/12 2/9
0.1 4/17 4/21 2/13
1 4/39 4/49 4/38

Spring 0 20/33 19/35 22/39
0.01 23/48 20/36 18/41
0.1 23/49 20/38 18/44
1 20/65 20/52 19/53

Table 4: The input data for the numeric experiments, described as the proportion of the
number of clean states / the total number of converted states for different systems
and degrees of noise.

of noise. The numerical simulations were not intended to be exhaustive and do not cover
every possible such behaviour; so it is not surprising to observe that there is no case where
all the states of the complete envisionment are generated.

The results of the qualitative experiments detailed in the previous section indicate that
in order successfully to learn the target model data from all branches of the envisionment
are required, and the greater the number of such states used the greater the liklihood of
learning the target model structure. Therefore in these experiments we utilised all the states
generated from the numerical simulations.

The results from the numerical data experiments are shown in Fig. 22. These experi-
ments show that it is possible to learn models from clean and noisy numerical data even
when the qualitative states generated from the clean numerical data contain a number of
unavoidable data transformation errors. The results for each of the systems used are as
follows:

The spring system This system has 31 states in the complete envisionment and Table 4
shows that the quantitative to qualitative conversion process yields around 20 of those
states. It can be seen from Fig. 17 that learning from 20 states gives 100% precision
in learning this target model, even in the presence of noise. It is not surprising,
therefore, to find that the learning precision is perfect up to the highest noise level.
Since the qualitative experiments were done by sampling, the slight downturn at the
highest noise level could be due to the large number of noisy states generated in this
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Figure 22: A comparison of the results from the numerical learning tests, averaged over all
three initial conditions. Tests that attempted to learn from few states, such as
the cascaded tanks, are more likely to fail than those that have large numbers
of states, such as the spring. This is consistent with the kernel subset principle
introduced in Section 2.4 since model-learning is not precise without the presence
of certain key states in the input data.

experiment. Hence we can say that these results are in keeping with the qualitative
experiments.

u-tube & coupled tanks The complete envisonments for these systems contain 6 and 10
states respectively. Table 4 shows that the number of true states generated is less than
the complete envisionment, and significantly less than the number of noisy states in
each case. As one would expect from the results presented in Fig. 8 the u-tube gives
better results than the coupled tanks (having a higher proportion of the envisionment
states present). Ultimately, the ability to learn the model is completely curtailed
by the noise; though sooner in the case of the coupled tanks (which the qualitative
experiments show to be more sensitive to the presence of noise). This is consistent
with the results of the qualitative experiments.

The cascaded tanks In the qualitative learning experiments all the kernel subset triples
had state 0 included. This is the state representing the situation where both tanks
are empty to begin with, and is not one of the initial states included in the numerical
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simulations. Also, a perusal of Fig. 14 reveals that the introduction of noise radically
reduces the learning precision, and for 4 states (the average number of true states
generated by the qualitative to quantitative conversion process) it is zero. Taking
account of all these facts it was to be expected that the cascaded tanks model would
not be successfully identified by these experiments. This is again consistent with the
findings of the qualitative experiments.

5. Application to Biological System Identification

The work reported thus far has been aimed at demonstrating the viability of ILP-QSI and of
identifying the bounds of operation of the approach. In this section we examine scalability
of the method to identify a complex real world biological network. We use the glycolysis
pathway as a test case for identification.

5.1 The Test System: Glycolysis

We chose to study the metabolic pathway of glycolysis as a test case. Glycolysis is one of
the most important and ubiquitous in biology, it was also historically one of the first to be
discovered, and still presents a challenge to model accurately.

The QSIM primitives are sufficient to model adequately the qualitative behaviour of
the glycolysis pathway. There are, however, two problems. First, few biologists would
understand such a model, as he or she would reason at a much higher level of abstrac-
tion. Second, the computational complexity of the corresponding system identification task
for glycolsis (a qualitative model with 100 or more QSIM relations) is, at least currently,
intractable. We address both these by modelling metabolic pathways in a more abstract
manner using biologically meaningful metabolic components (MC) (a similar approach to
constructing complex qualitative models of the human heart was used in Bratko, Mozetic,
& Lavrac, 1989). Specifically, we note that in metabolic pathways, there are essentially two
types of object: metabolites (small molecules) and enzymes (larger molecules that catalyze
reactions). We use component models of each of these objects as described below (King,
Garrett, & Coghill, 2005).

5.1.1 Modelling Metabolites and Enzymes

The concentrations of metabolites vary over time as they are synthesised or utilised by
enzymatically catalysed reactions. As a result their concentration at any given time-point
is a function of: (a) their concentration at the previous time-point; and (b) the degree to
which they are used or created by various enzyme reactions.

When modelling enzymes, each enzyme is assumed to have at most two substrates and
at most two products. If there are two substrates or products these are considered to form
a substrate or product complex, such that the amount of the complex is proportional to
the amount of the substrates or products multiplied together. This models the probability
that both substrates (or products) will collide with the enzyme with sufficient timeliness to
be catalysed into the product complex (or substrate complex). The substrate complex is
converted into the product complex, which then disassociates into the product metabolites,
and vice versa. We shall use the phrase “flow through the enzyme” to denote the amount
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of substrate complex formed minus the amount of product complex formed. (See the work
of Voit and Radivoyevitch (2000) for details of enzyme kinetics.)
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Figure 23: The Metabolic Components (MCs) used in the biological experiments, with the
underlying QSIM primitives.

Quantitative, and corresponding qualitative representations of the metabolite and en-
zymes using QSIM relations, are therefore:

Metabolites:

dM

dt
=

n
∑

i=1

F lowi (4)

DERIV(Metabolite,Mdt),
SUM(F low1, . . ., F lown,

Mdt).

Enzymes:

F lowi = f(

S
∏

s=1

Metabolites) − g(

P
∏

p=1

Metabolitep) (5)

PROD(Metabolite1, . . ., Metabolites, S-for),
PROD(Metabolite1, . . ., Metabolitep, P-rev),
M+(S-for, Ds),

M+(P-rev, Dp),

SUB(Ds, Dp, F low),
MINUS(F low,F lowminus).

Here, S refers to the input metabolites to an enzymatic reaction, or its substrates, and P
refers to the products of an enzymatic reaction. The SUM() and PROD() predicates are simply
extensions of the ADD() and MULT() predicates, over any number of inputs. Fig. 23 shows
how these constraints are grouped together as metabolic components (MCs). This permits
us to create more general constraints representing the metabolite and enzyme components
as follows:

ENZYME((S1, S2) (P1, P2) enzymeF low)
METABOLITE(metaboliteConc metaboliteF low (enzymeF low1 . . . enzymeF lown))
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1. (Hexokinase): Glc + ATP → G6P + ADP.
2. (Phosphoglucose isomerase): G6P → F6P.
3. (Phosphofructokinase): F6P + ATP → F16BP + ADP
4. (Aldolase): F16BP → DHAP + G3P
5. (Triose phosphate isomerase): DHAP → G3P
6. (Glyceraldehyde 3-phosphate dehydrogenase): G3P + NAD → 13BP + NADH.
7. (Phosphoglycerate kinase): 13BP + ADP → 3PG + ATP.
8. (Phosphoglycerate mutase): 3PG → 2PG.
9. (Enolase): 2PG → PEP

10. (Pyruvate kinase): PEP + ADP → Pyr + ATP.

Figure 24: The reactions included in our qualitative model of glycolysis. The reactions that
consume ATP and NADH are not explicitly included.

Here the ENZYME predicate identifies the substrates and products (the first argument) and
returns a single variable representing the flow through the enzyme (the second argument).
The METABOLITE predicate relates the level and flow of metabolites (the first and second
arguments) with the flow through enzymes (the third argument).

5.1.2 Modelling Glycolysis

Using qualitative components representing metabolites and enzymes, we construct a qual-
itative model of glycolysis. Our model uses 15 metabolites, namely: pyruvate (Pyr), glu-
cose (Glc), phosphoenolpyruvate (PEP), fructose 6-phosphate (F6P), glucose 6-phosphate
(G6P), dihydroxyacetone phosphate (DHAP), 3-phosphoglycerate (3PG), 1,3-bisphosphoglycerate
(13BP), fructose 1,6-biphosphate (F16BP), 2-phosphoglycerate (2PG), glyceraldehyde 3-
phosphate (G3P), ADP, ATP, NAD, and NADH. We have not included H+, H2O, or Or-
thophosphate as they are assumed to be ubiquitous (in addition, the restriction of substrates
and products to being at most three in number prevents their inclusion).

The qualitative state of glycolysis is defined by the set of qualitative states of the 15
metabolites. Table 5 is a representation of one such qualitative state. To understand this
state consider the first entry intended to represent the qualitative state of NAD (that is,
NAD concentration: < 0,∞), dec >, and NAD flow: < (−∞, 0), dec >). The meaning
of this is that the concentration of NAD is positive (0,∞) and decreasing (dec), and the
rate of change of the concentration of NAD (in analogy to the physical systems, the “flow”
of NAD) is negative (−∞, 0) and decreasing (dec). Similar meanings apply to the other
metabolites. Note that metabolic concentrations must be between 0 and ∞; it cannot be
negative, and the 0 state is uninteresting.

Using this representation, a possible model for glycolysis is shown in Fig. 25. The model de-
scribes constraints on the levels and “flows” of metabolites. Thus, the constraint enzyme((G3Pc,
NADc), (13BPc, NADHc), Enz6f) states that the flow through enzyme 6 (Enz6f) con-
trols the transformation of the concentrations G3Pc and NADc into the levels 13BPc and
NADHc; whereas the constraint metabolite(NADc, NADc, (Enz6f, -)) states that the
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Metabolite Concentration Flow

NAD < (0,∞), dec > < (−∞, 0), dec >
NADH < (0,∞), inc > < (0,∞), inc >
ATP < (0,∞), dec > < (−∞, 0), dec >
ADP < (0,∞), dec > < (−∞, 0), dec >
Pyr < (0,∞), inc > < (0,∞), dec >
Glc < (0,∞), dec > < (−∞, 0), inc >
PEP < (0,∞), dec > < (−∞, 0), dec >
F6P < (0,∞), dec > < (−∞, 0), dec >
G6P < (0,∞), dec > < (−∞, 0), dec >
DHAP < (0,∞), dec > < (−∞, 0), dec >
3PG < (0,∞), inc > < (0,∞), std >
13BP < (0,∞), std > < 0, inc >
F16PB < (0,∞), inc > < (0,∞), dec >
2PG < (0,∞), dec > < (−∞, 0), dec >
G3P < (0,∞), inc > < (0,∞), inc >

Table 5: A legal qualitative state of the 15 metabolites observed during glycolysis.

ENZYME((Glcc, ATPc),(G6Pc,ADPc),Enz1f),

ENZYME((G6Pc),(F6Pc),Enz2f),

ENZYME((F6Pc,ATPc),(F16BPc,ADPc),Enz3f),

ENZYME((F16BPc),(G3Pc,DHAPc),Enz4f),

ENZYME((DHAPc),(G3Pc),Enz5f),

ENZYME((G3Pc,NADc),(13BPc,NADHc),Enz6f),

ENZYME((13BPc,ADPc),(3PGc,ATPc),Enz7f),

ENZYME((3PGc),(2PGc),Enz8f),

ENZYME((2PGc),(PEPc),Enz9f),

ENZYME((PEPc,ADPc),(Pyrc,ATPc),Enz10f),

METABOLITE(ATPc,ATPf, (Enz10f +), (Enz7f, +),(Enz1f, -),(Enz3f, -)),

METABOLITE(ADPc,ADPf,(Enz1f, +),(Enz3f, +),(Enz10f, -)(Enz7f, -)),

METABOLITE(NADc,NADf,(Enz6f, -)),

METABOLITE(NADHc,NADHf,(Enz6f, +)),

METABOLITE(Pyrc,Pyrf,(Enz10f, +)),

METABOLITE(Glcc,Glcf,(Enz1f, -)),

METABOLITE(PEPc,PEPf,(Enz9f, +),(Enz10f, -)),

METABOLITE(F6Pc,F6Pf,(Enz2f, +),(Enz3f, -)),

METABOLITE(G6Pc,G6Pf,(Enz1f, +),(Enz2f, -)),

METABOLITE(DHAPc,DHAPf,(Enz4f, +),(Enz5f, -)),

METABOLITE(3PGc,3PGf,(Enz7f, +),(Enz8f, -)),

METABOLITE(13BPc,13BPf,(Enz6f, +),(Enz7f, -)),

METABOLITE(F16BPc,F16BPf,(Enz3f, +), (Enz4f, -)),

METABOLITE(2PGc,2PGf,(Enz8f, +),(Enz9f, -)),

METABOLITE(G3Pc,G3Pf,(Enz5f, +),(Enz4f, +),(Enz6f, -)).

Figure 25: A representation of a qualitative model of glycolysis (see text for details).

concentration (NADc) and flow (NADf) of the metabolite NAD is controlled by flow through
the single enzyme number 6 (Enz6f : Glyceraldehyde 3-phosphate dehydrogenase), and that
this enzyme removes (signified by the ‘-’) NAD (‘+’ would mean the enzyme flow adds the
corresponding metabolite).

861



Coghill, Srinivasan, & King

5.2 Experimental Aim

The specific system identification task we were interested in is: Given qualitative observa-
tions of metabolic states, can ILP-QSI identify a correct qualitative model for glycolysis?

5.3 Materials and Method

Our methodology is depicted in Fig. 26, where we describe two separate ways of identifying
biochemical pathways. We make the following assumptions:

1. The data are sparse and not necessarily measured as part of a continuous time series.
This is realistic given current experimental limitations in metabolomics, and rules out
the possibility of numerical system identification approaches.

2. Only metabolites of known structure are involved in the model. The reason for this
is that we employ a chemoinformatic heuristic to decrease the number of possible
reactions. The heuristic is based on the reasonable assumption that any chemical
reaction catalysed by an enzyme only breaks a few chemical bonds. Full details are in
the paper by King et al. (2005). This is the strongest assumption we make. Even given
the rapid advance of metabolomics (NMR, mass-spectroscopy, etc.), it is not currently
realistic to assume that all the relevant metabolites in a pathway are observed and
their structure determined.

3. Only metabolites of known structure are involved in a particular pathway. This is
a restriction because current metabolomics technology can observe more compounds
than can be structurally identified.

4. All reactions involve at most three substrates and three products.

5. For the qualitative states: we can measure the direction of change in metabolite level
and first-derivative. This requires sampling the level at least three times in succession.

5.3.1 Logical/Graph-based Constraints

We first considered the logical/graph-based (LG) nature of the problem. The specific do-
main of metabolism imposes strong constraints on possible LG based models. We used
these constraints in the following way:

1. Chemical reactions conserve matter and atom type (Valdes-Perez, 1994). For glycoly-
sis we generated all possible ways of combining the 18 metabolites to form matter and
atom type balance reactions (≤ 3 reactants and ≤ 3 products). This produced 172
possible reactions where the substrates balanced the products in the number and type
of each element. The number compares well with the 2,300,000 possible reactions
which would naively be possible.

2. Typical biochemical reactions only make/break a few bonds, and cannot arbitrarily
rearrange atoms to make new compounds. A reaction was considered plausible if it
broke 1 bond per reactant. This analysis was done originally by hand, and we have
subsequently developed a general computer program that can automate this task.
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Figure 26: Our Metabolic System Identification methodology.

Of the 172 balanced reactions 18 were considered chemically plausible. Of these 18
reactions, 10 are the actual reactions of glycolysis and 8 are decoy reactions.

5.3.2 Qualitative Reasoning Constraints

We used a simple generate and test approach to learning. For the first computational
experiment we used the 10 reactions of glycolysis and the 8 decoy reactions that were
considered chemically feasible, see Fig. 24. All these reactions, in the absence of evidence
to the contrary, are considered to be irreversible. We first generated all possible ways of
combining the 18 reactions which connected all the 15 main substrates in glycolysis (models
are non-disjoint). This generated 27,254 possible models with ≤ 10 reactions - it was not
necessary to look for models with more reactions than that of the target (parsimony), as
the models can be generated in size order. The smallest number of reactions necessary to
include all 15 metabolites was of size 5. All of the 27,254 models involved the reaction:
glyceraldehyde 3-phosphate + NAD ⇔ 1,3-bisphosphoglycerate + NADH (reaction 6); so
we could immediately conclude that this reaction occurred in glycolysis.
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We formed example qualitative states of glycolysis using our QR simulator (in a pseudo
random manner) to test these models. The states thus generated did not contain any noise.
The 27,254 possible models were then tested against these states, and if a model could
not generate a particular state it was removed from consideration (accuracy constraint).
Note that the flows of the metabolites through each enzyme are not observed - they are
intermediate variables. All we observe are the overall levels and flows of the metabolites.
This makes the system identification task much harder.

For efficiency, we used the fast YAP Prolog compiler. We also formed compiled down
versions of the enzyme and metabolite MCs (input/output look-up tables), and compiled
down parts of QSIM. We also adopted a resource allocation method that employed increas-
ingly computationally expensive tests: i.e. forming filter tests with exponentially increasing
numbers of example states.

5.3.3 Results

After several months of compute time on a 65 node Beowulf cluster we reduced the 27,254
possible models down to 35 (a 736 fold reduction). These models included the target model
(glycolysis), plus 34 other models that could not be qualitatively distinguished from it. All
35 models included the following six reactions (see Fig. 24):

3. F6P + ATP → F16BP + ADP
4. F16BP → DHAP + G3P
5. DHAP → G3P
6. G3P + NAD → 13BP + NADH
8. 3PG → 2PG
9. 2PG → PEP
These reactions form the core of glycolysis.

Examining the 35 models also revealed that the correct model had the fewest cycles,
however we do not know if this is a general phenomenon.

We attempted to use the Progol positive only compression measure to distinguish be-
tween these models. This is based on comparing the models on randomly generated states.
However, this was unsuccessful as no model covered any of the 100,000 random states we
generated! We believe this is due to the extremely large state space. However, a simple
modification of this approach does work. If we produce random states from glucogenesis
(glycolysis driven in the reverse direction), then the true model of glycolysis covers fewer
examples than any of the 34 alternatives, and so is identified as the true model. Note that
this approach, unlike the use of Progol positive only compression measure, requires that
new experimental data is obtained.

Thus we have demonstrated that the method for learning qualitative models of dynamic
systems is scalable to handle a relatively large metabolic system. We have achieved this by
means of MCs that represent meaningful units in the domain, and which map directly to
the QSIM constraints from which they are abstracted. They also enable us to present these
more complex models in a more “user friendly” manner, removing the need to understand
the structure of high order differential equations.
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6. Related Work

System identification has a long history within machine learning: we present below some
of the important signposts that were directly relevent to the work here. We focus on the
strand of research which deals with learning qualitative models of dynamic systems.

The earliest description of which we are aware concerning a computer program identify-
ing a quantitative model to explain experimental data is the work by Collins (1968). There
a procedure is described that heuristically searches through equation structures, which are
linear combination of functions of the observed variables. Better known is the Bacon
system (Langley, 1981), early versions of which largely concentrated on the parameter es-
timation problem, in particular selecting the most appropriate values for any exponents in
the equations. For example, given a class of algebraic equation structures Bacon.1 was able
to reconstruct Kepler’s model for planetary motion from data. While later work (for exam-
ple the work of Nordhausen & Langley, 1993) attempted to extend this work to deal with
identifying both the algebraic structure and the relevant parameters, Bacon highlighted
the importance of bias (Mitchell, Keller, & Kedar-Cabelli, 1986) in machine learning, both
in constraining the possible model structures and in the space of possible models conform-
ing to those structures. Other quantitative equation discovery systems in this lineage are:
Coper (Kokar, 1985), that uses dimensional analysis to restrict the space of equations;
Fahrenheit/EF (Langley & Zytkow, 1989) and E∗ that only examine the space of bi-
variate equations; Abacus (Falkenhainer & Michalski, 1986) that can identify piecewise
equations; Sds that uses type and dimensionality restrictions to constrain the space of
equations; the Lagrange family of equation finders (Džeroski & Todorovski, 1993; Todor-
ovski & Džeroski, 1997; Todorovski et al., 2000; Todorovski, 2003) which attempt to identify
models in the form of ordinary and partial differential equations; and IPM (Langley, George,
Bay, & Saito, 2003) with its extensions and developments, Prometheus/RPM (Bridewell,
Sandy, & Langley, 2004; Asgharbeygi, Bay, Langley, & Arrigo, 2006), which incorporate
process descriptions (Forbus, 1984) to aid the construction and revision of quantitative
dynamic models.

Focussing specifically on non-classical system identification for metabolic models, per-
haps the most notable work on identification is that of Arkin, Shen, and Ross (1997) who
identified a graphical model of the reactions in a part of glycolysis from experimental data.
The work of Reiser, King, Kell, Muggleton, Bryant, and Oliver (2001) presents a unified
logical approach to simulation (deduction) and system identification (induction and abduc-
tion). An interesting recent approach, presented by Koza, Mydlowec, Lanza, Yu, and Keane
(2000), examines the identification of metabolic ODE models using genetic programming
techniques. In this, the cellular system is viewed as an electrical circuit and the space of
possible circuits is searched by means of a genetic programming approach.

The earliest reported work on the identification of qualitative models is that of Mozetic,
1987, and colleagues, who identified a model of the electrical activity of the heart. This work,
reported more fully in (Bratko et al., 1989) remains a landmark effort in the qualitative
modelling of a complex biological system. However, as other researchers have noted (Bratko,
Muggleton, & Varsek, 1992), these results were obtained only for static models and did not
provide insight into how models of dynamic systems should be identified.
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The first machine learning system for learning qualitative models of dynamic systems
was Genmodel (Coiera, 1989a, 1989b). Genmodel did not need any negative examples of
system behaviour and models learned were restricted to qualitative relationships amongst
the observed variables only (that is, no intermediate, or hidden, variables were hypothe-
sized). The model, obtained using the notion of a most specific generalization of observed
variables (in the sense of Plotkin, 1971), was usually over-constrained. That is, it contained
more constraints than necessary to characterize fully the dynamics of the system being
modeled. An updated version of Genmodel developed by Hau and Coiera (1993) showed
that dimensional analysis (Bhaskhar & Nigam, 1990) could be used as a form of directed
negative example generation. The new version could learn from from real-valued experi-
mental data (which were converted internally into a qualitative form), but still required all
variables to be known and measured from the outset. The system MISQ, entirely similar
in complexity and abilities to the earlier version of Genmodel was developed by Kraan,
Richards, and Kuipers (1991). This was later re-implemented in a general-purpose rela-
tional learning program Forte (Richards & Mooney, 1995), which allowed the hypothesis
of intermediate variables (Richards, Kraan, & Kuipers, 1992). The relational pathfinding
approach used by MISQ (through the auspices of Forte) is a special form of Inductive Logic
Programming, the general framework of which is much more powerful

Bratko and colleagues were the first to view the problem of learning dynamic qualitative
models explicitly as an exercise in Inductive Logic Programming (ILP) and first demon-
strated the possibility of introducing intermediate (unobserved) variables in the models.
They used the ILP system Golem (Muggleton & Feng, 1990) along with the QSIM repre-
sentation to produce a model of the u-tube system. The model identified was equivalent to
the accepted model (in the sense that it predicted the same behaviour) but the structure
generated was not in a form that could help explain the behaviour (Coghill & Shen, 2001).
Like Genmodel, the model produced was over constrained. Unlike Genmodel, Golem
required both positive and negative examples of system behaviour and was shown by Hau
and Coiera (1993) to be sensitive to the actual negative examples used.

Say and Kuru (1996) describe a program for system identification from qualitative data
called QSI. QSI first finds correlations between variables, and then iteratively introduces
new relations (and intermediate variables), building a model and comparing the output
of that model with the known states until a satisfactory model is found. Say and Kuru
characterized this approach as one of “diminishing oscillation” as it approaches the correct
model. Like Genmodel and MISQ, QSI does not require “negative” observations of system
behaviour. Unlike those systems, it does not use dimensional analysis and there does not
appear to be any mechanism of incorportating such constraints easily within the program.
The importance of dimensional analysis is recognised though: the authors suggest that it
should be central to the search procedure.

Thus, while the identification of quantitative models has had a longer history in machine
learning, learning qualitative models has also been the subject of notable research efforts.
In our view, MISQ (the version as implemented within Forte) and QSI probably represent
the state-of-the-art in this area. Their primary shortcomings are these:
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– It is not apparent from the description or experimental evaluation of MISQ whether
or not it is able to handle imperfect data (the correctness theorem presented only
applies for complete, noise-free data).

– MISQ seeks the most constrained model that is consistent with the data. Often,
exactly the opposite is sought (that is, we want the most parsiomonius model).

– QSI only deals with qualitative data and does not appear to include any easy mech-
anism for the incorporation of new constraints to guide its search.

7. General Discussion

In this paper we have presented a method for learning qualitative models of dynamic systems
from time-series data (both qualitative and quantitative). In this section we discuss the
general findings and limitations, as well as suggesting a number of directions for developing
this research theme.

7.1 Computational Limitations

A major limitation of the ILP-QSI system in identifying glycolysis was the time taken
(several months on a Beowulf cluster) to reduce the models from the 27,000 possible ones
generated using chemoinformatic constraints, to the single correct one using the qualitative
state constraints. While it would be preferable for this process to be faster, it is important
to note that identifying a system with 10 reactions and 15 metabolites from scratch is an
extremely hard identification task. We doubt that any human could achieve it, and we
believe it would be a challenge for all the system identification methods we are aware of.
It is difficult to compare system identification methods and we believe there is a need for
competitions such as those run by KDD to compare methods.

The computational time of identification is dominated by the time taken to test if a
particular model can produce certain observed states: examining 27,000 models is not
unusual for a machine learning program, but it is unusual for a program to take hours
to test if individual examples are covered. The slow speed of our identification method is
therefore not a problem with what is normally considered the learning method (i.e. how
the search of the space of possible models is done), but rather, is intrinsic to the complex
relationship between a model and the states it defines. The cover-test method is, in the worst
case, exponential in the maximum size of the model. Note that our lack of an efficient, i.e.
polynomial algorithm, to determine cover is not because we are using qualitative states. We
believe that the inherent difficulty of this task applies to both quantitative and qualitative
models. In some areas of mathematics moving from the discrete to the real domain can
simplify problems - this is the basis of much of the power of analysis. However, there
is currently little evidence that this is the case in system identification, and quantitative
models would seem to aggravate the problem. As cover tests are essentially deductions: can
a set of axioms and rules (computer program/model) produce a particular logical sentence
(observed state); they are in general non-computable. However, in real scientific systems,
as they are bounded in space and time, non-computability is not a problem, however we
expect all system identification methods to struggle with the task (Sadot, Fisher, Barak,
Admanit, Stern, Hubbard, & Harel, 2008).
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7.2 Kernel Subsets

From our presentation of the results of the experimentation it is clear that certain subsets
of states (termed the kernel subsets) guarantee that the target model will be learned. From
the analysis of these kernel subsets of state sets, we hypothesise that the kernel sets reflect
the qualitative structure of the system of interest.

For a coupled system, in order to learn the structure of a system with a high degree of
precision, the data used should come from tests yielding qualitatively different behaviors:
i.e. behaviors which would appear as distinct branches in an envisionment graph. However,
this hypothesis only provides a necessary, not a sufficient, condition for learning because it
does not identify which states in each branch are suitable starting points for an experiment.
For example consider the coupled tanks system. One could select states 9 and 11; these are
from different branches yet they do not form a kernel subset. On the other hand, it was
noted in presenting the results for this system that the key states in these kernel subsets
were states 7 and 8. These states are in different branches and represent the critical points
of the first derivative of the state variables of the system. This indicates the importance of
these states to the definition of a system.

If a test were set up in which all the state variables were at their critical points then the
test could be run for a very short time and the correct model structure identified. However,
it is probably impossible in practice to set up such a test; especially in the situation where
the structure of the system is completely unknown. An alternative is to set up multiple tests
with the state variables set to their extrema: from which initial conditions all the states
of the envisionment will eventually be passed through. However it still may be difficult to
set up such tests, and they could take a long time to complete. These two scenarios form
the ends of a spectrum within which the most practical experimental setting will lie. The
identification of the best strategies is an important area of research to which the present
work is clearly relevant.

On the other hand, for cascaded systems the kernel sets capture the asymmetry in the
structure. Here again the extrema and critical points play an important role; but in this
case it is subordinate to the fact that ILP-QSI automatically decomposes the system into
its constituent parts for learning. This fact points to an important conclusion for learning
larger scale complex systems; namely that the learning can be facilitated by, where possible,
decomposing the system into cascaded subsystems.

7.3 Future Work

Having validated ILP-QSI on data derived from real biological systems, the next step is to
explore how successful it can be at modelling real experimental data. It would be relatively
straightforward to obtain data from water tanks and springs, but it would be much more
interesting to work on real biological data. For such work to be successful it is likely that
the quantitative to qualitative conversion process will need to be improved. Although not
the focus of the work here, developing a more rigorous approach would be crucial in using
ILP-QSI in a laboratory setting (Narasimhan, Mosterman, & Biswas, 1998). Once this has
been done it will be much easier to use real experimental data for analysis by ILP-QSI.
Specifically, the improvements required are the ability to extract all the qualitative states
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passed through during a numerical simulation, whilst minimizing noise. Nevertheless, this
is not a direct limitation of our ILP-QSI method.

The following possibilities would benefit from further investigation:

• The QR representation used could be changed from QSIM to a more detailed and
flexible one such as Morven (Coghill & Chantler, 1994; Coghill, 1996).

• The hypotheses presented about kernel subsets, such as why they are formed from
some states and not others, need to be confirmed and analyzed further.

• The ability to map and explore the features of the model space would be of great
use in planning further enhancements and, alongside kernel subsets, will help give an
understanding of exactly which states will allow reliable learning.

• Large scale complex systems are generally identified piece by piece. The results from
the cascaded tanks experiments indicate some circumstances under which this may
be most easily facilitatied. Further investigation of this is warranted.

• As an alternative to the methods described in this paper, an incremental approach that
identifies subsystems of the complete system is an interesting avenue of investigation
(Srinivasan & King, 2008).

8. Summary and Conclusions

In this paper we have presented a novel system, named ILP-QSI, which learns qualitative
models of dynamic processes. This system stands squarely in a strand of research that
integrates Machine Learning with Qualitative Reasoning and extends the work in that area
in the following ways:

The ILP-QSI algorithm itself extends the work; it is a branch and bound algorithm that
makes use of background knowledge of (at least) three kinds in order to focus and guide
the search for well posed models of dynamic processes.

Syntactic Constraints: The model size is prespecified; models must be complete and
determinate; and must not proliferate instances of qualitative relations.

Semantic Constraints: The model must adequately explain the data; it must not contain
relations that are redundant or contradictory; and the relations in the model must
respect dimensional constraints.

System Theoretic Constraints: The model should be singular and not disjoint; all en-
dogenous variables must appear in at least two relations; and the model should be
causally ordered.

We have thoroughly tested the system on a number of well known dynamic processes.
This has enabled us to ascertain that ILP-QSI is capable of learning under a variety of
conditions of noisy and noise free data. This testing has also allowed us to identify some
conditions under which it is possible to learn an appropriate model of a dynamic system.
The conclusions from this aspect of the work are:
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• Learning precision is related to the richness (or sparcity) and noisiness of the data
from which the learning is performed.

• The target model is precisely learnt if the data used is a kernel subset.

• These kernels are made up of states from different branches in the envisionment graph.

• The system critical points play an important role in identifying the model structure.

• There is a spectrum of possibilities with regard to the setting up of suitable experi-
ments to garner data from which to learn models of the physical or biological systems
of interest.

• Cascaded parts of systems help to identify suitable points of decomposition for model
learning.

While ILP-QSI is designed to learn a qualitative structural model from qualitative data,
it is sometimes the case that the original measurements are quantitative (albeit sparse and
possibly noisy). In order to ascertain how ILP-QSI would cope with qualitative data gener-
ated from quantitative measurements we carried out a “proof-of-concept” set of experiments
from each of the physical process models previously utilised. The results from these were
in keeping with the results obtained from the qualitative experiments. This adds weight
to the conclusions regarding the viability of our approach to learning structural models of
dynamic systems under adverse conditions.

Finally, in order to test the scalability of the method, we applied ILP-QSI to a large
scale metabolic pathway: glycolysis. In this case the search space was deemed too large to
attempt learning the QSIM primitives alone. However, knowledge of the domain enabled us
to group these primitives into a set of Metabolic Components from which models of metabolic
pathways can more easily be constructed. Also, for this part of the research Logical graph
based models were used to represent background domain knowledge. Utilising these, we
were able to identify 35 possible structures for the glycolysis pathway (out of a possible
27,254); of these the target model had the fewest cycles (though we do not know if this is a
general phenomenon) and minimally covered the data generated from the reverse pathway
of glucogenesis.

The overall conclusions of the this work are that qualitative reasoning methods combined
with machine learning (specifically ILP) can successfully learn qualitative structural models
of systems of high complexity under a number of adverse circumstances. However, the work
reported herein constitutes a step in a line of research that has only recently begun; and,
as with all interesting lines of research, it raises in its turn interesting questions that need
to be addressed.
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Appendix A. The Derivation of the Solution Space for the Tanks Systems

In this appendix we provide a summary of whence the solution spaces for the tanks systems
utilised in this project are constructed. Further details regarding envisionments and their
associated solution spaces may be found in the work of Coghill et al. (1992) and Coghill
(2003).

In order to facilitate this analysis we will need to make use of a quantitative version of
the system models. For ease of exposition we will make the additional assumption that the
systems are linear.10

A.1 The U-tube

A quantitative model of the u-tube system is

dh1

dt
= k(h1 − h2)

dh2

dt
= k(h2 − h1)

By inspection of these two equations it is easy to see that (ignoring the trivial case where
k = 0) the derivatives in these two equations are both zero when:

h1 = h2 (6)

That is:

h1 = h2 ⇒
dh1

dt
=

dh2

dt
= 0

This accounts for the relationship, depicted in Fig. 18, between h1 and h2 when the
derivatives are zero. From the envisionment table for the u-tube (Table 1 in Section 2.2) we
see that the only state with zero derivatives is state 5; hence it is represented by this line.

A.2 The Coupled Tanks

A quantitative model of the coupled tanks system is

dh1

dt
= qi − k1(h2 − h1) (7)

dh2

dt
= k1(h2 − h1) − k2 · h2 (8)

When dh1

dt
= 0 Equation 7 can be rewritten as:

0 = qi − k1(h2 − h1)

= qi − k1h2 − k1h1

10. In fact for the types of non-linearity normally associated with systems of this kind the solution spaces

are qualitatively identical to those described here, although the analysis required to construct them is

slightly more complicated.
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which can be re-arranged to give

h2 =
qi

k1
− h1

When qi is zero this reduces to

h2 = h1 (9)

When dh2

dt
= 0 Equation 8 can be rewritten as:

0 = k1(h2 − h1) − k2h2

= k1h1 − k1h1 − k2h2

= (k1 − k2)h2 − k1h1

so

(k1 − k2)h2 = k1h1

Re-arranging gives

h2 =
k1

(k1 − k2)
h1 (10)

This accounts for the relations between h1 and h2 depicted in the solution space of Fig.
18.

A.3 The Cascaded Tanks

A quantitative model of the cascaded tanks system is:

dh1

dt
= qi − k1h1 (11)

dh2

dt
= k1h1 − k2h2 (12)

When dh1

dt
= 0 Equation 11 can be re-arranged as:

qi = k1h1

or

h1 =
qi

k1

When dh2

dt
= 0 Equation 12 can be rewritten as:

k2h2 = k1h1

or
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h2 =
k1

k2
h1

This accounts for the relations between h1 and h2 depicted in the solution space of Fig.
27.
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Figure 27: The solution space for the cascaded tanks system.
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