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Abstract

In the efficient social choice problem, the goal is to ass@aes, subject to side constraints, to
a set of variables to maximize the total utility across a pafian of agents, where each agent has
private information about its utility function. In this papwe model the social choice problem as
a distributed constraint optimization problem (DCOP), inieth each agent can communicate with
other agents that share an interest in one or more varialfereas existing DCOP algorithms
can be easily manipulated by an agent, either by misregpptinate information or deviating from
the algorithm, we introduckl-DPOP, the first DCOP algorithm that providedaithful distributed
implementatiorior efficient social choice. This provides a concrete exangphow the methods of
mechanism design can be unified with those of distributeinipation. Faithfulness ensures that
no agent can benefit by unilaterally deviating from any aspgthe protocol, neither information-
revelation, computation, nor communication, and whatéwveprivate information of other agents.
We allow for payments by agents to a central bank, which isothlg central authority that we
require. To achieve faithfulness, we carefully integraie Vickrey-Clarke-Groves (VCG) mecha-
nism with theDPOP algorithm, such thagach agent is only asked to perform computation, report
information, and send messages that is in its own best sitef@etermining agent’s payment
requires solving the social choice problem without agenitlere, we present a method rieuse
computationperformed in solving the main problem in a way that is robggtimst manipulation
by the excluded agent. Experimental results on structurebl@ms show that as much as 87% of
the computation required for solving the marginal probleas be avoided by re-use, providing
very good scalability in the number of agents. On unstrectyroblems, we observe a sensitivity
of M-DPOP to the density of the problem, and we show that fgilisadecreases from almost
100% for very sparse problems to around 20% for highly cotatkroblems. We close with a dis-
cussion of the features of DCOP that enable faithful impletatgons in this problem, the challenge
of reusing computation from the main problem to marginabfems in other algorithms such as
ADOPTandOptAPQ and the prospect of methods to avoid the welfare loss timabceur because
of the transfer of payments to the bank.

1. Introduction

Distributed optimization problems can model environments where a set of agastsagree on a

set of decisions subject to side constraints. We consider settings in wdtbhagent has its own
preferences on subsets of these decisions. The agents are settauteamd each one would like to
obtain the decision that maximizes its own utility. However, the system as whaesa@r some

social designer determines) that a solution should be selected to maximize thlibtacross all
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agents. Thus, this is a problemaefficient social choiceAs motivation, we have in mind massively
distributed problems such as meeting scheduling, where the decisionsoartenditen and where
to hold each meeting, or allocating airport landing slots to airlines, where ttisiales are what
airline is allocated what slot, or scheduling contractors in constructiongisoje

One approach to solve such problems is with a central authority that contpateptimal so-
lution. In combination with anncentive mechanisrsuch as the Vickrey-Clarke-Groves (VCG)
mechanism (Jackson, 2000), we can also prevent manipulation throaighigreporting of prefer-
ences. However, in many practical settings it is hard to bound the proldehassuch a central
authority is feasible. Consider meeting scheduling: while each agent ortigipates in a few
meetings, it is in general not possible to find a set of meetings that hastherfaonstraints with
any other meetings and thus can be optimized separately. Similarly, contriactoc®nstruction
project simultaneously work on other projects, again creating an welpehdencies that is hard to
optimize in a centralized fashion. Privacy concerns also favor detieattaolutions (Greenstadt,
Pearce, & Tambe, 2006).

Algorithms for distributed constraint reasoning, such as ABT and AW&d@¥as Hirayama,
2000), AAS (Silaghi, Sam-Haroud, & Faltings, 2000), DPOP (Petcu & FgdtirR005b) and
ADOPT (Modi, Shen, Tambe, & Yokoo, 2005), can deal with large proislas long as the in-
fluence of each agent on the solution is limited to a bounded number of variabtavever, the
current techniques assuroeoperative agent&nd do not provide robustness against misreports of
preferences of deviations from the algorithm by self-interested agEnitsis a major limitation. In
recent yeardaithful distributed implementatiofParkes & Shneidman, 2004) has been proposed as
a framework within which to achieve a synthesis of the methods of (centraNdedvith distributed
problem solving.Faithfulnessensures that no agent can benefit by unilaterally deviating from any
aspect of the protocol, neither information-revelation, computation, manamication, and what-
ever the private information of other agents. Until now, distributed implementhtie been applied
to lowest-cost routing (Shneidman & Parkes, 2004; Feigenbaum, Papaalim8ami, & Shenker,
2002), and policy-based routing (Feigenbaum, Ramachandran, &i#ah2006), on the Internet,
but not to efficient social choice, a problem with broad applicability.

In this paper, we make the following contributions:

e We show how to model the problem of efficient social choice as a DCQPadapt the
DPOP algorithm to exploit the local structure of the distributed model and actievsame
scalability as would be possible in solving the problem on a centralized prajyispi.

e We provide an algorithm whose first stage idaghfully generate the DCOP representation
from the underlying social choice problem. Once the DCOP representsatymnerated, the
next stages of ouvl-DPOPalgorithm are also faithful, and form ax post Naslkequilibrium
of the induced non-cooperative game.

e In establishing that DCOP models of social choice problems can be solitbflilfg, we
observe that theommunication and information structune the problem are such that no
agent can prevent the rest of the system, in aggregate, from codetaglynining the marginal
impact that allowing for the agent’s (reported) preferences has onttieutiity achieved by
the other agents. This provides the generality of our techniques to otH@ePR{yorithms.

e Part of achieving faithfulness requires solving the DCOP with each aggeported) prefer-
ences ignored in turn, and doing so without this agent able to interfere watbdimputational
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process. We provide an algorithm with this robustness property, thavéstheless able to
reuse, where possible, intermediate results of computation from solving tinepnadolem
with all agents.

e In experimental analysis, on structured meeting scheduling problems tha enmmon
benchmark in the literature, we demonstrate that as much as 87% of the comprggtioed
for solving the marginal problems can be avoided through reuse. Resuétsa provided for
unstructured resource allocation problemsind show M-DPOP to be sensitive to problem
density: for loose problems, up to around 80% of the computation can bedeand this
decreases for highly connected problems.

The M-DPOP algorithm definesstrategyfor each agent in the extensive-form game induced by
the DCOP for efficient social choice. In particular, the M-DPOP algoritlefimes the messages that
an agent should send, and the computation that an agent should pérnfoesponse to messages
received from other agents. In proving that M-DPOP forms a gamedhe@quilibrium, we show
that no agent can benefit by unilaterally deviating, whatever the utility fumetié other agents and
whatever the constraints. Although not as robust@d@ainant strategy equilibriupbecause thisk
pos) equilibrium requires every other agent to follow the algorithm, ParkesStumgidman (2004)
have earlier commented that this appears to be the necessary “cosenfrdézation.”

The total payment made by each agent to the bank is always non-negadivvd-DPOP never
runs at a deficit (i.e. the bank always receives a non-negativeagetgnt from the agents). In some
settings, this transfer of utility to the bank is undesirable and would be besteak We provide
some statistics for the problem domains studied that show that this loss casemipas much as
35% of the total utility achieved from the solution in some problems studied. Whilpajments
cannot be naively redistributed back to agents without breaking faigsa|rextant work on redistri-
bution mechanisms for VCG payments suggests that this can be mitigated (Guoii&eZc2007;
Faltings, 2004; Cavallo, 2006; Moulin, 2007; Bailey, 1997). We defir ¢éktension to M-DPOP,
the details of which are surprisingly involved and interesting in their own rtghtjture work.

The reuse of computation, in solving the marginal problems with each ageaved in turn, is
especially important in settings dfstributedoptimization because motivating scenarios are those
for which the problem size is massive, perhaps spanning multiple orgamgatia encompassing
thousands of decisions. For example, consider project schedulingfiimidogistics, intra-firm
meeting scheduling, etc. With appropriate problem structure, DCOP algorithtingse problems
can scale linearly in the size of the problem. For instance, DPOP is able tosalkigproblems
through a single back-and-forth traversal over the problem graptwiBhout re-use the additional
cost of solving each marginal problem would make the computationalqe@siratic rather than
linear in the number of agents, which could be untenable in such massive-spéitaapns.

The rest of this paper is organized as follows: after preliminaries (Se2jian Section 3 we
describe the DPOP (Petcu & Faltings, 2005b) algorithm for distributedti@dnts optimization,
which is the focus of our study. Section 4 introduces our model of selfdsted agents and defines
the (centralized) VCG mechanism. Section 4.4 provides a simple medimagdle M-DPORo make
DPOP faithful and serves to illustrate the excellent fit between the informatidrcommunication
structure of DCOPs and faithful VCG mechanisms. In Section 5 we desaritreain algorithm, M-
DPOP, in which computation is re-used in solving the marginal problems withaegeait removed

1. We consider distributed combinatorial auctions, with instances randgenigrated using a distribution in the CATS
problem suite (Leyton-Brown & Shoham, 2006).
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in turn. We present experimental results in Section 6. In Section 7 we diadapting other DCOP
algorithms for social choice (ADOPT and OptAPO, see Section 7.2), andt dlbe waste due to
payments in Section 7.3. We conclude in Section 8.

1.1 Related Work

This work draws on two research areas: distributed algorithms for e@dnisiatisfaction and op-
timization, and mechanism design for coordinated decision making in multi-agsteinss with
self-interested agents. We briefly overview the most relevant resultssa treas.

1.1.1 GONSTRAINT SATISFACTION AND OPTIMIZATION

Constraint satisfaction and optimization are powerful paradigms that caelraadgide range of
tasks like scheduling, planning, optimal process control, etc. Traditiorslth problems were
gathered into a single place, and a centralized algorithm was applied to foldt@is. However,
social choice problems are naturally distributed, and often preclude ¢h&f ascentralized entity to
gather information and compute solutions.

The Distributed Constraint Satisfaction (DisCSP) (Yokoo, Durfee, &sh8dKuwabara, 1992;
Sycara, Roth, Sadeh-Koniecpol, & Fox, 1991; Collin, Dechter, & Kh®91, 1999; Solotorevsky,
Gudes, & Meisels, 1996) and the Distributed Constraint Optimization (DCRIBdli(et al., 2005;
Zhang & Wittenburg, 2003; Petcu & Faltings, 2005b; Gershman, Meisel&jv&n, 2006) for-
malisms were introduced to enable distributed solutions. The agents involvedhinpsoblems
must communicate with each other to find a solution to the overall problem (umktwany one
of them). Briefly, these problems consist of individual subproblemsh(egent holds its own sub-
problem), which are connected with (some of) its peers’ subproblent®ustraintsghat limit what
each individual agent can do. The goal is to find feasible solutions tovélb problem (in the
case of DisCSP), or optimal ones in the case of DCOP.

Many distributed algorithms for DCOP have been introduced, none of wdeels with self-
interested agents. The most well known ones are ADOPT, DPOP and OptAP

e ADOPT (Modi et al., 2005) is a backtracking based, bound propagatgorithm. ADOPT
is completely decentralized and message passing is asynchronous. WIGIETABas the
advantage of requiring linear memory, and linear-size messages, its applidar large
problems? is questionable due to the fact that it produces a number of messagesisvhich
exponential in the depth of the DFS tree chosen.

e OptAPO (Mailler & Lesser, 2005) is a centralized-distributed hybrid thasosediator nodes
to centralize subproblems and solve them in dynamic and asynchronoudioredé&ssions.
The authors show that its message complexity is significantly smaller than ABOR®W-
ever, it is designed for cooperative settings, and in settings with selesiezt agents like the
social choice problem, it is unclear whether agents would agree revehgirgconstraints
and utility functions to (possibly many) other agents, such that they can gwvgartially
centralized subproblems.

e DPOP (Petcu & Faltings, 2005b) is a complete algorithm based on dynamic programming

which generates only a linear number of messages. In DPOP, the sizentéskages depends

2. The largest ADOPT experiments that we are aware of compriségpnsiwith around 20 agents and 40 variables.
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on the structure of the problem: the largest message is exponential iimdifneed widthof

the problem (see Section 3.1.4) As with ADOPT, DPOP maintains the full distribafithe
problem. These features suggest that DPOP is a good foundation édficknt distributed
implementation of a VCG-based mechanism for social choice problems.

A further discussion about the features of these algorithms and theiralpipticto social choice
problems is provided in Section 7. In this paper, we will focus on DPOP amdde appropriate
modifications and payments so that it can be effective for environments elftinterested agents.
In Section 7.2 we will also provide a brief discussion about the opportuaitdschallenges in
applying our methodology to ADOPT and OptAPO.

1.1.2 MECHANISM DESIGN AND DISTRIBUTED IMPLEMENTATION

There is a long tradition of usingentralizedincentive mechanisms within Distributed Al, going
back at least to the work of Ephrati and Rosenschein (1991) whadmred the use of the VCG
mechanism to compute joint plans; see also the work of Sandholm (199®aakels et al. (2001)
for more recent discussions. Also noteworthy is the work of Roseirsane Zlotkin (1994, 1996)
on rules of encounterwhich provided non-VCG based approaches for task allocation inragste
with two agents.

On the other hand, there are very few known methodslisiributed problem solvingn the
presence of self-interested agents. For example, wiRleCDNET (Sandholm, 1993) improved
upon the @NTRACTNET system (Davis & Smith, 1983) of negotiation-based, distributed task re-
allocation, by providing better economic realisnTRACONET was nevertheless studied for simple,
myopically-rational agent behaviors and its performance with game-tteagents was never an-
alyzed; this remains true for more recent works (Endriss, Maudet,,Sadioni, 2006; Dunne,
Wooldridge, & Laurence, 2005; Dunne, 2005). Similarly, Wellman’s wamknarket-oriented pro-
gramming(Wellman, 1993, 1996) considers the role of virtual markets in the supbaptimal
resource allocation, but is developed for a model of “price-taking’ntgyé.e. agents that treat
current prices as though they are final), rather than game-theoretitsage

The first step in providing a more satisfactory synthesis of distributedidigos with MD was
provided by the agenda dfistributed algorithmic mechanism desigbAMD), due to the work
of Feigenbaum and colleagues (Feigenbaum et al., 2002; Feigenbasinergker, 2002). These
authors (FPSS) provided an efficient algorithm for lowest-cost integdlo routing on the Internet,
terminating with optimal routes and the payments of the VCG mechanism. The upratidhat
agents— in this cassutonomous systemsnning network domains —could not benefit by misreport-
ing information about their own transit costs. But missing from this analysssamg consideration
about the robustness of tlaggorithm itselfto manipulation. Distributed implementatioiiParkes
& Shneidman, 2004) introduces this additional requirement. An algorithiaitisful if an agent
cannot benefit by deviating from any of its required actions, includingrin&tion-revelation, com-
putation and message passing. A number of principles for achieving faitstiin arex postNash
equilibrium are provided by Parkes and Shneidman (2004). By carefemhtive design and a small
amount of cryptography they are able to remove the remaining opportumitieghipulation from
the lowest-cost routing algorithm of FPSS. Building on this, Feigenbaum @0&06) recently pro-
vide a faithful method fopolicy-basednterdomain routing, better capturing the typical business
agreements between Internet domains.
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Ours is the first work to achieve faithfulness for general DCOP algorithlermonstrated here
via application to efficient social choice. In other work, Monderer aadnEnholtz (1999) con-
sider a distributed single item allocation problem, but focus on (faittdoimunicatiorand do
not provide distributed computation. Izmalkov et al. (2005) adopt crypfdgc primitives such
asballot boxego show how to conver@ny centralized mechanisms into a DI oriudly connected
communication graph. There interest is in demonstrating the theoretical iipssitiideal mech-
anism design” without a trusted center. Our work has a very diffecents: we seek computational
tractability, do not require fully connected communication graphs, and maleppeal to crypto-
graphic primitives. On the other hand, we are content to retain desirestibein someequilibrium
(remaining consistent with the MD literature) while Izmalkov et al. avoid the inictidn of any
additional equilibria beyond those that exist in a centralized mechanism.

We briefly mention two other related topics. Of note is the well established literatiterative
VCG mechaismgMishra & Parkes, 2007; Ausubel, Cramton, & Milgrom, 2006; Bikhchemid
de Vries, Schummer, & Vohra, 2002). These providpaatially distributed implementation for
combinatorial allocation problems, with the center typically issuing “demandegiesf agents
via prices, these prices triggering computation on the part of agents inagieigea demand set in
response. These auctions can often be interpreted as decentralimatidaral algorithms (Parkes
& Ungar, 2000; de Vries & Vohra, 2003). The setting differs fromsomrthat there remains a center
that performs computation, solving a winner determination problem in eacilyamd each agent
communicates directly with the center and not peer-to-peer. Mu’alem J2@i@iates an orthogonal
direction within computer science related to the topidNaish implementatio@dackson, 2001) in
economics, but her approach relies on information that is part privatpam common knowledge,
so that no one agent has entirely private information about its preisenc

2. Preliminaries: Modeling Social Choice

We assume that the social choice problem consists of a finite but possg@yniamber of decisions
that all have to be made at the same time. Each decision is modeled as a varinbinttake
values in a discrete and finite domain. Each agent has private informaton thie variables on
which it placegelations Each relation associated with an agent defines the utility of that agent for
each possible assignment of values to the variables in the domain of the reldtare may also be
hard constraints that restrict the space of feasible joint assignmentssietsolb variables.

Definition 1 (Social Choice Problem - SCP)An efficient social choice problem can be modeled as
atuple< A, X,D,C, R > such that:

e X = {Xi,...X,,} is the set ofpublic decision variables (e.g. when and where to hold
meetings, to whom should resources be allocated, etc);

e D = {dy,...,dy} is the set of finitgoublic domains of the variablesY (e.g. list of possible
time slots or venues, list of agents eligible to receive a resource, etc);

e C = {ci1,...,cq} is aset ofpublic constraints that specify the feasible combinations of values
of the variables involved. Aonstraint ¢; is a functionc; : d;, x .. x dj, — {—00,0}
that returns O for all allowed combinations of values of the involved vargldaed—oo for
disallowed ones. We denote fype(c;) the set of variables associated with constraint
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o A= {A, .. A,} is a set ofsef-interested agents involved in the optimization problem;
X (A;) C X is a (privately known) 3 set of variables in which agent; is "interested* and
on which it has relations.

e R = {Ry,...,R,} is a set ofprivate relations, whereR; is the set of relations specified by
agent4; and relationr] € R; is a functionr] : dj, x .. x dj, — R specified by agent
A;, which denotes the utilityl; receives for all possible values on the involved variables
{j1,--., 7k} (negative values mean costs). We denotedoye(r;) the domain of variables
thats” is defined on.

The private relations of each agent may, themselves, be induced byltitiersto local opti-
mization problems on additional, private decision variables and with additiomad{¢ constraints.
These are kept local to an agent and not part of the SCP definition.

The optimal solution to the SCP is a complete instantialidgrof all variables inY, s.t.

X~ € arg max RZ-(X)—i-ch(X), 1)
1e{1,..,n} c;eC

where Ri(X) = > g r](X) is agentA;’s total utility for assignmentX. This is the natural
problem of social choice: the goal is to find a solution that maximizes the total utlajl agents,
while respecting hard constraints; notice that the second sunxi$f X is infeasible and precludes
this outcome. We assume throughout that there is a feasible solution. Inucingdhe VCG
mechanism we will require the solution to the SCP with the influence of each’'sgelations
removed in turn. For this, Ie§CP(A) denote the main problem in Eq. (1) afd'P(—A;) denote
the marginal problem without agend;, i.e. maxxep ) ;,; R;(X) + chec ¢;(X). Note that
all decision variables remain. The only difference betw8étP(.A4) and SCP(—A;) is that the
preferences of agent; are ignored in solving CP(—A4;).

For variableX}, refer to the agentd; for which X; € X (A;) as forming thecommunity for
X,;. We choose to emphasize the following assumptions:

e Each agent knows the variables in which it is interested, together with theiofreny such
variable and the hard constraints that involve the variable.

e Each decision variable is supported byr@mmunity mechanisitmat allows all interested
agents to report their interest and learn about each other. For exaugihea mechanism can
be implemented using a bulletin board.

e For each constraint; € C, every agentd;, in a communityX; € scope(c;), i.e. with
X; € X(Ay), can read the membership lists of all other communiligs € scope(c;) for
X # X;. In other words, every agent involved in a hard constraint knowsitadlbother
agents involved in that hard constraint.

e Each agent can communicate directly with all agents in all communities in which it is a
member, and with all other agents involved in the same shared hard constidomtsther
communication between agents is required.

3. Note that the private knowledge of variables of interest is not a remeint; the algorithms we present work with
both public and private knowledge of variables of interest. What is redug that agents interested in the same
variable know about each other - see assumptions below.
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/ (a) Centralized model (b) Distribution via replicated variables \

«3 servers: 81,82,83

«3 users: A1, Az, A3
.each Ai has 1 operator o, to place

*Variables model server loads *Each variable models a server load
*Agents' preferences expressed *Equality constraints model agreement
as relations on server loads *Agents have private preferences
\ (hyper-edges connecting nodes) /

Figure 1: An operator placement probler(a) A centralized model (each variable is a server load —passibl
values are feasible combinations of services to be run by saxwer —, and the edges correspond
to relations and represent agent preferendd@3)A decentralized (DCOP) model with replicated
variables. Each agent has a local replica of variables efést and inter-agent edges denote
equality constraints that ensure agreement. The prefesanodeled by relations are now hyper-
edges local to the respective agents.

In Section 4 we will establish that the step of identifying the SCP, via the communith-me
anism, is itselffaithful so that self-interested agents will choose to volunteer the communities of
which they are a member (and only those communities.)

2.1 Modeling Social Choice as Constraint Optimization

We first introduce a centralized, constraint optimization problem (COP) huddke efficient so-

cial choice problem. This model is represented a=tralized problem graphGiven this, we
then model this as a distributed constraint optimization problem (DCOP), alith@wassociated
distributed problem graphThe distributed problem graph makes explicit the control structure of
the distributed algorithm that is ultimately used by the multi-agent system to solvedbkip.
Both sections are illustrated by reference to an overlay network optimizatargm (Huebsch,
Hellerstein, Lanham, et al., 2003; Faltings, Parkes, Petcu, & Shneidra@6; Rietzuch, Ledlie,
Shneidman, Roussopoulos, Welsh, & Seltzer, 2006):

OVERLAY NETWORK OPTIMIZATION Consider the problem of optimal placement of data aggrega-
tion and processing operators onaerlay networlsuch as a large-scale sensor network (Huebsch
et al., 2003; Pietzuch et al., 2006). In this application, there are multiple asdrmultiple servers.
Each user is associated with a query and has a client machine locatedréit@granode on an
overlay network. A query has an associated sedaif producersknown to the user and located
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at nodes on the network. Each query also requires a set of dategatigneand processing op-
erators, which should be placed on server nodes between the nodesatetproducers and the
user's node. Each user assigns a utility to different assignments ctopeto servers to repre-
sent her preferences for different kinds of data aggregationmpbes of in-network operators for
data aggregation include database style “join” operators; e.g., a userasiag t/olcano data X”
and “earthquake data Y” joined and sent to them. To address this, a spg@fiator that we call
“VolcanoXEarthquakeYJoin” is created and put into the network. Naturally, each user prefers to
have their operators placed on the “best” servers in the network, witkegatd to the costs in-
curred, overloading servers, denying service to other users, eécprbblem is to find the optimal
allocation of operators to servers, subject to capacity and compatibilityraonts.

Faltings et al. (2006) model this problem as one of efficient social chéiadistributed algo-
rithm, to be executed by user clients situated on network nodes, is usednoidetéhe assignment
of data aggregation and processing operators to server nodes.

2.1.1 A CENTRALIZED COP MODEL AS A MULTIGRAPH

Viewed as a centralized problem, the SCP can be defined as a consttamztaiion problem on a
multigraph i.e. a graph in which several distinct edges can connect the sameanselissi. We denote
this COP(.A), and provide an illustration in Figure 1(a). The decision variables aredtiesy and
relations defined over subsets of the variables form edges of the mulitigngpeledges that connect
more than two vertices at once in the case of a relation involving more than tiabls. There
can be multiple edges that involve the same set of variables, with each adgspomding to the
relations of a distinct agent on the same set of variables. The hardaots#re also be represented
as edges on the graph.

Example 1 (Centralized Model for Overlay Optimization) The example in Figure 1(a) contains
3 users4; and 3 serverss;. For simplicity reasons, assume that each udghas one single opera-
tor o; that they want to have executed on some server. According to pigiteguand compatibility
issues, assume th&t can execute bothy andos, but notos. Similarly, assume thaf; can execute
botho, andog, but noto, and.S3 can execute any combination of at most two out of the three oper-
ators. Agents have preferences about where their operators aceitexk(e.g. because of proximity
to data sources, computational capabilities of the servers, cost of elggtetc). For exampled,
extracts utility 10 whem, is executed by, and utility 5 wherv; is executed bys.

To model the problem as an optimization problem, we use the following:

1. variables for each servelS;, we create a variablé&; that denotes the set of operators titat
will execute.

2. values each variableS; can take values from the set of all possible combinations of operators
the server can execute. For examptg, = {null,01,092,01 + 02}, wherenull means the
server executes no operatoy, that it executes operatar;, ando; + o, that it executes both
01 andos.

3. constraints restrict the possible combinations of assignments. Example: no twerserv
should execute the same operator.

4. relations allow agents to express preferences about combinations of assigmmemnmodels
its preference for the placement@f by using the relation, defined over the variable$;
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and S3. This relation associates an utility value to each combination of assignmets to
and.S; (in total 4 x 8 = 32 combinations) as follows:

¢ 0to all combinations where, is executed neither ofi;, or onSs (e.g.(S1 = 02, 53 =
03))

e 10 to all combinations where, is executed only 0f; (e.g.(S; = 01, S3 = 02 + 03))

¢ 5 to all combinations where, is executed only 0f3; (e.g.(S1 = 02, S3 = 01))

We depict variables as nodes in a graph, and constraints and relatioisya®r)edges (see
Figure 1(a)). The problem can get arbitrarily complex, with multiple op@msper agent, groups of
servers being able to execute only certain groups of compatible operatiur.

2.1.2 A DECENTRALIZED COP (DCOP) MODEL USING REPLICATED VARIABLES

It is useful to define an alternate graphical representation of the S@Rh& centralized problem
graph replaced with distributedproblem graph. This distributed problem graph has a direct cor-
respondence with the DPOP algorithm for solving DCOPs. We denofedyP(.A) the problem
with all agents included, which corresponds to the main social choice pnopBIEP (.A). Similarly,
DCOP(—A4;) is the problem with agenti; removed, which corresponds 8CP(—A4;). In our
distributed model, each agent ha®eal replicaof the variables in which it is interestédror each
public variable X, € X (A;), in which agent4; is interested, the agent hatoaal replica denoted
Xi. AgentA; then models its local problef@OP (X (A;), R;), by specifying its relationsf € R;

on the locally replicated variables.

Refer to Figure 1(b) for the translation of the centralized problem frorar€id(a) into a DCOP
model. Each agent has as local variables the loads of the serversdtuitiaterest to itself, i.e.
servers that can execute one of its operators (8grepresentsiy’s local replica of the variable
representing servet; ). Local edges correspond to loedl-differentconstraints between an agent’s
variables and ensure that it does not execute its operator on sereeaksat the same time. Equality
constraints between local replicas of the same value ensure globatregresbout what operators
will run on which servers.

Agents specify their relations via local edges on local replicas. For dearmgentA; with
its relation on the load of servefs andS; can now express a preference for the placement of its
operatoro; with relationr{, which can assign e.g. utility 5 t65 executingo;, and utility 10 toS;
executingo; .

We can begin to understand the potential for manipulation by self-interegtedsathrough this
example. Notice that although the globally optimal solution may require assignitogSs, this is
less preferable tal;, providing utility 5 instead of 10. Therefore, in the absence of an incentiv
mechanismA; could benefit from a simple manipulation: declare utilitgo for (S; = o1), thus
changing the final assignment to a suboptimal one that is nevertheles<deite|f.

4. An alternate model designates an “owner” agent for each deciaitaiole. Each owner agent would then centralize
and aggregate the preferences of other agents interested in its vaBabkequently, the owner agents would use a
distributed optimization algorithm to find the optimal solution. This model limits thsability of computation from
the main problem in solving the marginal problems in which each agent isvehvin turn because when excluding
the owner agent of a variable, one needs to assign ownership to aagtrgrand restart the computational process
in regards to this variable and other connected variables. This reusenpiuitation is important in making M-DPOP
scalable. Our approach is disaggregated and facilitates greater reuse.
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Theneighborhoocf each local copyX? of a variable is composed of three kinds of variables:
Neighbors(X?) = Siblings(X') U Local_neighbors(X') U Hard_neighbors(X_). 2
The siblings are local copies of, that belong to other agents; # A; also interested itk :
Siblings(X:) = {XJ | Aj # A; and X, € X(A;)} (3)

All siblings of X! are connected pairwise with @guality constraint This ensures that all
agents eventually have a consistent value for each variable. Thedseebof variables are the
local neighbors ofX from the local optimization problem of;. These are the local copies of the
other variables that ageurt; is interested in, which are connectedXq via relations inA4;’s local
problem:

Local_neighbors(X!) = {X! | X, € X(4;), and Elrf € R;s.t. X! € scope(r;)} 4)

We must also consider the sethafrd constraintghat contain in their scope the variabtg and
some other public variablesiard(X,) = {Vc; € C|X, € scope(cs)}. These constraints connect
X, with all the other variables(, that appear in their scope, which may be of interest to some
other agents as well. Consequent/, should be connected with all local copiKg{ of the other
variablesX, that appear in these hard constraints:

Hard_neighbors(X!) = {Xg\ﬂcs € Hard(X,) s.t. X; € scope(cs), and X, € X(A4;)}  (5)

In general, each agent can also hawwate variablesand relations or constraints that involve
private variables, and link them to the public decision variables. For exawogbsider a meeting
scheduling application for employees of a company. Apart from the weldted meetings they
schedule together, each one of the employees also has personal itearsageida, like appoint-
ments to the doctor, etc. Decisions about the values for private variatdemrmation about
these local relations and constraints remain private. These providaiimadl complications and
will not be discussed further in the paper.

2.2 Example Social Choice Problems

Before continuing to present our main results we describe three addipicridéms of social choice
that serve to motivate our work. In fact, the problem of efficient sodiaiee is fundamental to
microeconomics and political science (Mas-Colell, Whinston, & Green, 139&ch problem that
we present is both large scale and distributed, and involves actors insteersthat are businesses
and cannot be expected to cooperate, either in revealing their predésrenin following the rules
of a distributed algorithm.

AIRPORT SLOT ALLOCATION. As airports become more congested, governments are turning to
market-based approaches to allocate landing and takeoff slots. Forcmstiaa U.S. Federal Avi-
ation Administration recently commisioned a study on the use of an auction to alldlosteat
New York’s congested LaGuardia airport (Ball, Donohue, & Hoffm2006). This problem is large
scale when it expands to include airports throughout the U.S., and elrgritheaWorld, exhibits
self-interest (airlines are profit-maximizing agents with private informatiauatheir utilities for
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different slot allocations), and is one in which privacy is a major conbewause of the competi-
tiveness of the airline industry. A typical policy goal is to maximize the total utilitthefallocation,
i.e. one of efficient social choice. This problem motivates our studyoaibinatorial auctionsn
Section 6. A combinatorial auction (CA) is one in which a set of heterogeneodivisible goods
are to be allocated to agents, each of which has values expressed ailgseids; e.g., “l only want
the 9am slot if | also get the 10am slot” or “| am indifferent between the 8adthe 9:05am slot.”
The airport slot allocation problem motivated the first paper on CAs @dissSmith, & Bulfin,
1982), in which it was recognized that airlines would likely need to exprakiges on sets of slots
that correspond to the right to flysghedulén and out of an airport.

OPEN-ACCESSWIRELESSNETWORKS. Most wireless spectrum today is owned and operated as
closed networks, for example by cellular companies such as T-Mobile B&d.Adowever there is
plenty of debate about creating open-access wireless networks in bdndwidth must be available

for use on any phone and any softwarBome have recently proposed using an auction protocol to
allow service providers to bid in a dynamic auction for the right to use spadtiua given period of
time to deliver service® Taken to its logical conclusion, and in an idea anticipated by Rosenschein
and Zlotkin (1994) for wired telephony, this suggests a secondary irfarkgireless spectrum and
corresponds to a problem of efficient social choice: allocate spedtrunmaximize the total utility

of consumers. This problem is large scale, exhibits self-interest, andeieimtty decentralized.

THE MEETING SCHEDULING PROBLEM. Consider a large organization with dozens of depart-
ments, spread across dozens of sites, and employing tens of thoutaedple. Employees from
different sites and departments want to setup thousands of meetings eakh due to privacy
concerns among different departments, centralized problem solving deswable. Furthermore,
although the organization as a whole desires to minimize the cost of the whalespreeach de-
partment and employee is self interested in that it wishes to maximize its own utilityrtifinial
currency is created for this purpose and a weekly assignment is madshteraployee. Employees
express their preferences for meeting schedules in units of this currenc

Refer to Figure 2 for an example of such a problem, where 3 agents waetLip 3 meetings.
Figure 2(b) shows that each agent has as local variables the time sletspmr ding to the meetings
it participates in (e.g.M? representsiy’s local replica of the variable representing meeting).
Local edges correspond to local-different constraints between an agent’s variables and ensure
that it does not participate in several meetings at the same time. Equality auisdbetween local
replicas of the same value ensure global agreement. Agents specifyethgons via local edges on
local replicas. For example, agefit with its relation on the time of meetintf; can now express a
preference for a meeting later in the day with relati§nwhich can assign low utilities to morning
time slots and high utilities to afternoon time slots. SimilarlyAif prefers holding meeting/-
after meeting M1, then it can use the local relatiof§ to assign high utilities to all satisfactory
combinations of timeslots and low utility otherwise. For exampld; = 9AM, My = 11AM)
gets utility 10, and M, = 9AM, M, = 8AM) gets utility 2.

5.In a breakthrough ruling, the U.S. Federal Communications Corronisg-CC) will require open access
for around one-third of the spectrum to be auctioned in early '08. Buttdpmed short of mandat-
ing that this spectrum be made available in a wholesale market to would bé&esgroviders. See
http://www.fcc.gov/073107/700mhzewsrelease073107.pdf

6. Google proposed such an auction in a fiing made to the FCC on May 21807.2 See
http://gullfoss2.fcc.gov/prod/ecfs/retrieve.cgi?nativepdf=pdf&id_document=6519412647.
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/(a) Centralized model (b) Distributed model with replicated vars (c) DFS traversal

* Variables = time slots « Each variable is a local copy: M31 =M,forA | - solid = tree-edge

* Inequalities = non-overlaps « Equality constraints synchronize local copies| * dashed = back-edge

 Preferences = relations « Private problems (preferences,constraints) * n-ary constraints treated
\_ ' as cliques (e.g. #(A,)) J

Figure 2: A meeting scheduling problen{a) A centralized model (each vertex is a meeting variable, red
edges correspond to hard constraints on non-overlap fotimysethat share a participant (that
for agentA; is a hyperedge because it particpates in every meetingy, dilges correspond to
relations and represent agent preferencé).A decentralized (DCOP) model with replicated
variables. Each agent has a local replica of variables efést and inter-agent edges denote
equality constraints that ensure agreement. The hardragmsor non-overlap between meetings
My, My andMs3 is now a local hyperedge to agef. (c) A DFS arrangement of the decentralized
problem graph. Used by the DPOP algorithm to control theraséiproblem solving.

In the experimental results presented in Section 6 we adopt meeting sclyeakijinototypical
of structuredsocial choice problems with the problem instances associated with an @tiamaz
hierarchy. Meeting scheduling was introduced in Section 2.1. For a desatrof experiments we
consider combinatorial auctions (CAs), in which agents biddiandlesof goods, and there we
consider a set of problem instances thatwstructuredand provide a comparison point to that of
meeting scheduling. CAs provide a nice abstraction of the kinds of allocatidabgms that exist in
the airport and wireless network domains.

3. Cooperative Case: Efficient Social Choice via DPOP

In this section, we review DPOP (Petcu & Faltings, 2005b), which is a géparpose distributed
optimization algorithm. DPOP (Distributed Pseudotree Optimization Protocol) is bashhamic
programming and adapts Dechter’s (Dechter, 2003) general buakétagion scheme to the dis-
tributed case. Its main advantage is that it only generates a linear numbessdgns. This is in
contrast to other optimization algorithms like ADOPT (Modi et al., 2005) andr@ssaninimal net-
work overhead produced by message exchange. On the other haotbean in DPOP can be the
size of individual messages since this grows exponentially with a paranfeter constraint graph
called theinduced width(see Section 3.1.4). Nevertheless, for problems that exhibit local steuctu
DPOP typically scales to much larger problems, and is orders of magnitudeefficient, than
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other techniques (Petcu & Faltings, 2005b, 2007). To simplify the expositierfirst illustrate

DPOP in a general DCOP context, and then show how to instantiate DPO&tfal choice prob-

lems. In particular, we explain how to leverage the structure provided byeplicas. We consider
only cooperative agents throughout this section.

3.1 The DPOP Algorithm for DCOPs

This section presents the DPOP algorithm for generic DCOPs. To simplifyxihesiion, we
assume — in this section only — that each agéntepresents a single variablg;, and that the
constraint graph is given.

DPOP is composed of three phases:

e Phase one constructs a “DFS arrangemeif’ S (.A), which defines the control flow of mes-
sage passing and computation in DPOP.

e Phase two is a bottom-up utility propagation along the tree constructed in phadseHis
phase utilities for different values of variables are aggregated to trefiticnal decisions that
will be made in subtrees rooted at each node in the tree.

e Phase three is a top-down value assignment propagation along the teteicta in phase
1. In this phase decisions are made based on the aggregate utility infornmatioptiase 2.

In describing these phases we refer to Figure 3 for a running exampeal&t' introduce an
explicit numerical example to illustrate phases two and three in more detail.

3.1.1 DPOP RAse ONE: DFS TREE GENERATION

This first phase performs a depth-first search (DFS) traversalkegpithblem graph, thereby con-
structing a DFSarrangemenbf the problem graph. The DFS arrangement is subsequently used to
provide control flow in DPOP and guide the variable elimination order. Whenitiderlying prob-

lem graph is a tree then the DFS arrangement will also be a tree. In geghe@ES arrangement is

a graph that we define as the union of a sered edgesnd additionaback edgeswhich connect
some of the nodes with their ancestérs.

Definition 2 (DFS arrangement) A DFS arrangement of a grap&y defines a rooted tree on a
subset of the edges (tlieee edges) with the remaining edges included back edges. The tree
edges are defined so that adjacent nodes ifiall in the same branch of the tree.

Figure 3 shows an example DFS arrangement. The tree edges are shewliddines (e.qg.
1 — 3) and the back edges are shown as dashed linesi-g2, 4 — 0). Two nodesX; and X, are
said to be “in the same branch” of the DFS arrangement if there is a pattiiehigher node to the
lower node along tree edges; e.g., nodgsand X; in Figure 3. DFS arrangements have already
been investigated as a means to boost search in constraint optimizatiomp¢breuder & Quinn,
1985; Modi et al., 2005; Dechter & Mateescu, 2006). Their advanitatpat they allow algorithms
to exploit the relative independence of nodes lying in different bramoiiche DFS arrangement

7. For simplicity, we assume in what follows that the original problem is eoted. However there is no difficulty
in applying DPOP to disconnected problems. The DFS arrangemeninkscaDFS forest and agents in each
connected component can simply execute DPOP in parallel in a sepanatel thread. The solution to the overall
problem is just the union of optimal solutions for each independent sblgm.

718



M-DPOP: FAITHFUL DISTRIBUTED IMPLEMENTATION OF EFFICIENT SOCIAL CHOICE PROBLEMS

DFS from X,
_>

Figure 3: A DFS arrangement for a problem graph. Tree edges are showalithand back edges are
dashed. The DFS arrangement is constructed by initialtokgn-passing fronX,. Any k-ary
constraints, such as,, are treated as if they are cliques.

(i.e. nodes that are not direct descendants or ancestors of otfeegnan that it is possible to
perform search in parallel on independent branches and then cothbiresults.
We introduce some definitions related to DFS arrangements:

Definition 3 (DFS concepts)Given a nodeX; in the DFS arrangement, we define:

e parent P; / children C;: X;'s ancestor/descendants connectedXipvia tree-edges (e.g.
Py =Xy, Cy = { Xy, X10})-

e pseudo-parentsPP;: X;'s ancestors connected f%; via back-edgesitP; = {X}).

e pseudo-children PC;: X,'s descendants connected 16, via back-edges (e.g.PCy =
{Xs}).

e separator Sep, of X;: ancestors ofX; which are directly connected witK; or with descen-
dants ofX; (e.g.Sep; = { X1} andSep;; = {Xo, X2, X5}).

e tree neighbors T'N; of X; are the nodes linked t&; via tree edges, that i§N; = P, U C;
(e.g. TN, = {Xl, Xg, XlO})-

Removing the nodes ifep, completely disconnects the subtree rootedafrom the rest of
the problem. In case the problem is a tree, thep, = {P,;},VX; € X. In the general cas&ep;,
containsp;, all PP; and all the pseudoparents of descendants;afvhere these pseudoparents are
also ancestors of;. For example, in Figure 3, the separator of nddlecontains its parenk;, and
its pseudoparenX. It is both necessary and sufficient for the values on variaplgs X } to be
set before the problem rooted at naig is independent from the rest of the problem. Separators
play an important role in DPOP because contingent solutions must be maintdieagpvopagating
utility information up the DFS arrangement for different possible assignmeseparator variables.

Constructing the DFS Tree Generating DFS trees in a distributed manner is a task that has
received a lot of attention, and there are many algorithms available: fonm&aCollin and
Dolev (1994), Barbosa (1996), Cidon (1988), Cheung (1983) toenpust a few. For the pur-
poses of executing DPOP, we can assume for example the algorithm of@{E83), which we
briefly outline below. When we instantiate DPOP for SCPs, we will preseanbwn adaptation of
this DFS generation algorithm to exploit the particulars of SCP.

The simple DFS construction algorithm starts with all agents labeling internallyrteigihbors
asnot-visited One of the agents in the graph is designated asoibte using for example a leader
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election algorithm such as that of Abu-Amara (1988); by simply picking the agent with the
lowest ID. The root then initiates the propagation edken which is a unique message that will be
circulated to all the agents in the graph, thus “visiting” them. Initially, the tokemaions just the
ID of the root. The root sends it to one of its neighbors, and waits fortitsmdnefore sending it to
each one of its (still) unvisited neighbors. When an agenfirst receives the token, it marks the
sender as itparent All neighbors ofX; contained in the token are marked.&ss pseudoparents
(PP;).

After this, X; adds its own ID to the token, and sends the toiketurn to each one of itsot-
visitedneighborsX;, which become itghildren Every time an agent receives the token from one
of its neighbors, it marks the sender\asited The token can return either froid; (the child to
whom X; has sent it in the first place), or from another neightgy, In the latter case, it means
that there is a cycle in the subtree, akiglis marked as @seudochild

When a dead end is reached, the last agent backtracks by sendingahdéxk to its parent.
When all its neighbors are markeibited X; has finished exploring all its subtre&, then removes
its own ID from the token, and sends the token back to its parent; the grecénished forX;.
When the root has marked all its neighbwuisited the entire DFS construction process is over.

Handling Non-binary Constraints. No special treatment is required to construct neighbors to a
variable that correspond foary constraints, fok > 2. For example, in Figure 3 (left), there is a
4-ary constraintCy involving { Xy, X2, X5, X11}. By EQ. 2, this implies thaf X, X2, X5, X11}

are neighbors, and in the DFS construction process and they will aploeay the same branch in
the tree. This produces the result in Figure 3 (right).

3.1.2 DPOP RAse Two: UTIL PROPAGATION (INFERENCE

Phase two is a bottom-to-top pass on the DFS arrangement in which utility infommatiggregated
and propagated from the leaves towards the root from each node todtg pad through tree edges
but not back edges. At a high level, the leaves start by computing anthgasiTIL messages to
their parents, where HTIL message informs the parent about its local utility for solutions to the
rest of the problem, minimally specified in terms of its local utility for different eaissignments

to separator variables. Subsequently each node propagat&d amessage that represents the
contingent utility of the subtree rooted at its node for assignments of valiseparator variables.

In more detail, all nodes perform the following steps:

1. Wait forUTIL messages frorall their children, and store them.

2. Perform araggregation join messages from children, and also the relations they have with
their parents and pseudoparents.

3. Perform aroptimization project themselves out of the resulting join by picking their optimal
values for each combination of values of the other variables in the join.

4. Send the result to parent as a ndWL message.

8. In cases where the problem is initially disconnected, then it is requireldolmse multiple roots, one for each con-
nected component. A standard leader election algorithm, when execyt@tl dgents in the problem, will elect
exactly as many leaders as there are connected components.
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A UTIL message sent by a nodg to its parentP; is a multidimensional matrix which informs
P; how much utility,«} (Sep;) the subtree rooted &; receives for different assignments of values
to variables that define the separatep, for the subtree. One of these variables, by definition, is the
variable managed by pareff. This UTIL message already represents the result of optimization,
where variables local to the subtree have been optimized for differsignasents of separator
variables. To compute ETIL message a node uses two operations: aggregation and optimization.
Aggregations apply the JOIN operator and optimizations apply the PROJg€@tor as described
by Petcu and Faltings (2005b), and briefly summarized here.

Let UTIL;.; and UTIL;_.; denoteUTIL messages sent from nod&s and X, to their parent
node X;. We denote bydim(UTIL;_.;) the set ofdimensionsof such a matrix, i.e. the set of
variables in the separator of sending ndde AssumingX; is the node receiving these messages,
we define:

Definition 4 (JOIN operator) The @ operator (join): UTIL;—.; ® UTIL;_,; is the join of two
UTIL matrices. This is also a matrix witlhim (UTIL;—;) U dim(UTIL;_.;) as dimensions. The
value of each cell in the join is the sum of the corresponding cells in the twoesmatrices.

Definition 5 (PROJECT operator) The L operator (projection): ifX; € dim(UTIL;—.;),
UTIL;—; Lx, is the projection through optimization of théT/L;.; matrix along theX; axis:

for each instantiation of the variables {nlim(UTIL;—.;) \ X;}, all the corresponding values from
UTIL;_.; (one for each value oX;) are tried, and the maximal one is chosen. The result is a matrix
with one less dimensionX(;).

Notice that the subtree rooted &t is influenced by the rest of the problem only throuklis
separator variables. ThereforelJaIL message contains the optimal utility obtained in the subtree
for each instantiation of variable&p; and the separator size plays a crucial role in bounding the
message size.

Example 2 (UTIL propagation) Figure 4 shows a simple example of a UTIL propagation. The
problem has a tree structure (Figure 4(a)), with 3 relatiords r, andr{ detailed in Figure 4(b).
The relations are between variabléX’s, X;), (X2, X;) and (X1, Xo) respectively. These are all
individual variables and there are no local replicas. In the UTIL pha&eand X3 project them-
selves out of andri, respectively. The results are the highlighed cellglimndr3 in Figure 4(b).
For instance, the optimal value foY, given thatX; := a is to assignX, := ¢ and this has utility

5. These projections define the UTIL messages they seXid t&; receives the messages frofm

and X3, and joins them together with its relation wiy, (adds the utilities from the messages into
the corresponding cells of). It then projects itself out of this join. For instance, the optimal value
for X; givenXy := bis X; := a becaus& + 5+ 6 > max{3 +4 + 4,3 + 6 + 3}. The result

is depicted in Figure 4(d). This is the UTIL message tRatreceives fromX;. Each value in the
message represents the total utility of the entire problem for each valiig.ofe return to this
example below in the context of the third phase of value propagation.

Non-binary Relations and Constraints. As with binary constraints/relations,kaary constraint
is introduced in the UTIL propagation only once, by the lowest node in the &Fangement that is
part of the scope of the constraint. For example, in Figure 3, the cortgifais introduced in the
UTIL propagation only once, by, while computing its message for its parek,.
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UTIL, .,

UTIL,_,, UTIL, ,,
ﬁ q

(a) Simple example of (b) Relations of X, (c) Messages to X, and (d) final result
a DCOP with 4 agents and X, with X, join with relation with X

Figure 4: Numerical example o) TIL propagation. (a) A simple DCOP problem in which there areehr
relationsri, i andr) between X3, X1), (X2, X;) and(X1, X,) respectively. (b) Projections of
X5 and X5 out of their relations withX;. The results are sent 8, asUTILy_,1, andUTILs_,,
respectively. (c)X; joins UTILy_,; and UTILs_,; with its own relation withX. (d) X; projects
itself out of the join and sends the resultXq.

3.1.3 DPOP RAse THREE: VALUE PROPAGATION

Phase three is a top-to-bottom pass that assigns values to variables,cistordemade recursively
from the root down to the leaves. Thi$’AL UFE propagation” phase is initiated by the root agent
Xo once it has received TIL messages from all of its children. Based on the3éL messages,
the root assigns to variabl&, the valuev* that maximizes the sum of its own utility and that
communicated by all its subtrees. It then send8\AUE(X) «— v*) message to every child. The
process continues recursively to the leaves, with ag&htassigning the optimal values to their
variables. At the end of this phase, the algorithm finishes, with all variddglesy assigned their
optimal values.

Example 3 (Value propagation) Return to the example in Figure 4. Ondg receives thel/ TIL
message from nod¥; it can simply choose the value fai, that produces the largest utility for the
whole problem:Xy = a (X = a and Xy = ¢ produce the same result in this example, so either one
can be chosen). Now in the value-assignment propagation pkigéeforms X of its choice via a
messagd/ALUE (X, < a). NodeX; then assigns optimal valu€; = c and the process continues
with a messag®’ ALU E(X; < c) sentto its childrenX» and X5. The children assigiXs = band

X3 = a and the algorithm terminates with an optimal solutig¥iy = a, X; = ¢, Xo = b, X3 = a)

and total utility of 15.

3.1.4 GOMPLEXITY ANALYSIS OFDPOP

DPOP produces a number of messages that scales linearly in the size obltepgraph, i.e.
linearly in the number of nodes and edges in the DCOP model (Petcu & Falgfigsp). The
complexity of DPORP lies in the size of th¢TIL messages (note that the tokens passed around in
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constructing thdFS(.A) and theVALUE messages are of size linear in the problem graph). Petcu
and Faltings (2005b) show that the size of the largRl. message is exponential in a parameter
called theinduced width(Kloks, 1994; Dechter, 2003).

The induced width, denoted, of a constraint graph given by a chosen DFS arrangement is a
structural parameter that equals the size of the largest separatorrmd@myn the DFS arrangement
(see Definition 3.):

w = max [Sep;|. (6)
In the example from Figure 3, the induced width of the graph given this p&tiDFS ordering
isw = 3, given bySep;; = {Xo, X2, X5}. Intuitively, the more a problem has a tree-like structure,

the lower its induced width. In particular, if the problem graph is a tree theiilihave an induced
width equal to 1 because the DFS arrangement will always be a trede®rgkaphs that are cliques,
on the other hand, have an induced width equal to the number of nodes himespective of the
DFS-tree arrangement.

Proposition 1 (DPOP Complexity) (Petcu & Faltings, 2005b) The number of messages passed in
DPOP is2m, (n — 1) and(n — 1) for phases one, two and three respectively, whesndm are

the number of nodes and edges in the DCOP model with replicated varidlfiesnaximal number

of utility values computed by any node in DPORISD* 1), and the largest UTIL message has
O(D™) entries, wherev is the induced width of the DFS ordering used.

In the case of trees, DPOP generdtddL messages of dimension equal to the domain size of
the variable defining the parent of each node. In the case of cliquesiakienal message size in
DPOP is exponential in — 1. Not all DFS arrangements yield the same width, and it is desirable to
construct DFS arrangements that provide low induced width. Howemndmg the tree arrangement
with the lowest induced width is an NP-hard optimization problem (Arnbor§5L9Nevertheless,
good heuristics have been identified for finding tree arrangements with Idth {Kloks, 1994;
Bayardo & Miranker, 1995; Bidyuk & Dechter, 2004; Petcu & Falting80?2, 2005b). Although
most were designed and explored in a centralized context, some of thé&bl{noax-degreand
maximum cardinality s¢tre easily amenable to a distributed environment.

3.2 DPOP Applied to Social Choice Problems

In this section, we instantiate DPOP for efficient social choice problenecifggally, we first show
how the optimization problem is constructed by agents from their prefesemcipotential variables
of interest. Subsequently, we show the changes we make to DPOP to adebhieitSCP domain.
The most prominent such adaptation exploits the fact that several varigplieesent local replicas
of the same variable, and can be treated as such both during the UTILeaxidltklE phases. This
adaptation improves efficiency significantly, and allavesnplexity claims to be stated in terms of
the induced width of the centralized COP problem graph rather than the dis&abCOP problem
graph (see Section 3.2.5)

3.2.1 INITIALIZATION : COMMUNITY FORMATION

To initialize the algorithm, each agent first forms the communities around its \esiabinterest,
X (A;), and defines a local optimization problefOP;( X (A;), R;) with a replicated variable!
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for eachX,, € X (A4;). ShorthandX! € COP; denotes that agent; has a local replica of variable
X,. Each agent owns multiple nodes and we can conceptualize each nodeirag én associ-
ated “virtual agent” operated by the owning agent. Each such virtuait ageesponsible for the
associated variable.

All agents subscribe to the communities in which they are interested, and Iégh other
agents belong to these communities. Neighboring relations are establisheatiolocal variable
according to Eq. 2, as follows: all agents in a community connect their corresponding local
copies of X, with equality constraints. By doing so, the local probledi®P;(X (A;), R;) are
connected with each other according to the interests of the owning ageal relations in each
COP;(X(A4;), R;) connect the corresponding local variables. Hard constraints ctimeatcopies
of the variables they involve. Thus, the overall problem graph is formed.

For example, consider again Figure 2(b). The decision variables astaiti¢imes of the three
meetings. Each agent models its local optimization problem by creating lodakamfjihe variables
in which it is interested and expressing preferences with local relatiammdfy, the initialization
process is described in Algorithm 1.

Algorithm 1: DPOP init: community formation and building COP(A).
DPOP.nit( A, X,D,C, R):
1 Each agentl; models its interests aSOP;(X (4;), R;): a set of relationg?; imposed on
a setX (4;) of variablesX? that each replicate a public variablg, € X (A;)
2 Each agent}; subscribes to the communities &f, € X (A;)
3 Each agentd; connects its local copieX? € X (A4;) with the corresponding local copies
of other agents via equality constraints

3.2.2 DFS RAVERSAL

The method for DFS traversal is described in Algorithm 2. The algorithnsstgrchoosing one of
the variables Xy, as the root. This can be done randomly, for example using a distributettfatgo
for random number generation, with a leader election algorithm like Ostr(i/384), or by simply
picking the variable with the lowest ID. The agents involved in the communityfothen randomly
choose one of them¥, as theleader The local copyX of variable X, becomes the root of the
DFS. Making the assumption that virtual agents act on behalf of eachbleiiathe problem,
the functioning of the token passing mechanism is similar to that described tiors8cl.1, with
additional consideration given to the community structure. Once a rootdesdhosen, the agents
participate in alistributed depth-first traversal of the problem gragtor convenience, we describe
the DFS process as a token-passing algorithm in which all members within a cotyican observe
the release or pick up of the token by the other agents. The neighboaslohede are sorted (in
line 7) to prioritize for copies of variables held by other agents, and thesr @ibal variables, and
finally other variables linked through hard constraints.

Example 4 Consider the meeting scheduling example in Figure 2. Assuméfthatas chosen as
the start community ands was chosen within the community as the leadkyr.creates an empty
tokenDFS = () and adds)M3’s ID to the token DFS = {M3}). As in Eq. 2,Neighbors(M3) =

{M3, M3, M2, M3}. Ay sends the toke®FS = {M2} to the first unvisited neighbor from this
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Algorithm 2: DPOP Phase One: DFS construction.

Inputs: eachA; knows itsCOP;, and Neighbors(X:),VX! € COP;
Outputs: eachA; knowsP(X?), PP(X}!), C(X?.), PC(X.),VX. € COP;.

Procedure Initialization
1 The agents choose one of the variabl€g, as the root.
2 Agents inXy’s community elect a “leader’A,..
A, initiates the token passing frofi) to construct the DFS

w

Procedure Token Passindperformed by each “virtual ageni! € COP;)
if X! isrootthen P(X}) = null; create empty toke®WFS := ()
else DF'S:=Handle_incoming_tokens()
Let DFS := DFS U {Xi}
Sort Neighbors(X?) by Siblings(X!), thenLocal _neighbors(X}!), then
Hard _neighbors(X?). SetC(X!) := null.
forall X; € Neighbors(X?) s.t. X; not visited yetlo
‘ C(X?) := C(X!)U X;. SendDFS to X; wait for DF'S token to return.

10 SendDFS token back taP(X?).
Procedure Handleincoming_tokens() //run by each “virtual agent” X’ € COP;

~N o o b~

© o

11 Wait for any incomingDF'S message; leX; be the sender
12 Mark X; asvisited
13 if this is the firstDF'S message (i.eX; is my parentthen
14 ‘ P(X}):= X;; PP(X}) := { Xy # X;| X\, € Neighbors(X’) N DFS}; PP(X}!) :
else
15 | if X; ¢ O(X?) (i.e. this is a DFS coming from a pseudochitti@n
‘ PC(X!):= PC(X})UX,

0

list, i.e. M3, which belongs tod;. Aj; receives the token and adds its copyMf (now DFS =
{M3, M3}). As then sends the token 1d3’s first unvisited neighbor)/; (which belongs tod,).

AgentA; receives the token and adds its own copybfto it (now DFS = { M2, M3, M1 }).
M3's neighbor list isNeighbors(M31) = {M2, M3, M{}. Since the token that; has received
already contains\/§ and M3, this means that they were already visited. Thus, the next variable
to visit is M{, which happens to be a variable that also belongsdto The token is “passed”
to M| internally (no message exchange required), avd is added to the token (noWFS =
{Mg, M3, Mz, My }).

The process continues, exploring sibling variables from each commurnitynipand then pass-
ing on to another community, and so on. Eventually all replicas of a varial@earranged in a
chain and have equality constraints (back-edges) with all the predexseisat are replicas of the
same variable. When a dead end is reached, the last agent backimaslending the token back to
its parent. In our example, this happens whenreceives the token from, in the My community.
Then, A3 sends back the token #, and so on. Eventually, the token returns on the same path all
the way to the root and the process completes.
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3.2.3 HANDLING THE PuBLIC HARD CONSTRAINTS.

Social choice problems, as defined in Definition 1 can contain side cortstraithe form of pub-
licly known hard constraints, that represent domain knowledge suchr@sturce can be allocated
only once”, “this hotel can accomodate 100 people”, “no person can bmre than one meeting
at the same time.” etc. These constraints are not owned by any agene lavadable to all agents
interested in any variable involved in the domain of any such constraint.lidgridese constraints
is essentially unchanged from handling the non-binary constraints inesthBéOP, as described in
Section 3.1.1 for the DFS construction phase, and in Section 3.1.2 for theghi@ke. Specifically:

DFS Construction: Neighboring relationships as defined in Eq. 2 require for each locelbler
that other local copies that share a hard constraint are considersglgibors. Because of the
prioritization in line 7 of Algorithm 2 (for DFS construction), the DFS travéisamostly made
according to the structure defined by the relations of the agents and nrdstdvastraints will
appear as backedges in the DFS arrangement of the problem graph.

UTIL Propagation: Hard constraints are introduced in the UTIL propagation phase by thestowe
agent in the community of the variable from the scope of the hard constrairthe.agent with the
variable that is lowest in the DFS ordering. For example, if there was dreartetween\/, and

M3 in Figure 2 to specify that/, should occur aftel/5 then this becomes a backedge between the
2 communities and would be assigned4gfor handling.

3.2.4 HANDLING REPLICA VARIABLES

Our distributed model of SCP replicates each decision variable for evenggted agent and con-
nects all these copies with equality constraints. By handling replica variable$ully we can
avoid increasing the induced widthof the DCOP model when compared to the induced width
w of the centralized model. With no further adaptation, thEL messages in DPOP on the dis-
tributed problem graph would be conditioned on as many variables as tteei@cal copies of an
original variable. However, all the local copies represent the sane@and must be assigned the
same value; thus, sending many combinations where different local afglessame variable take
different values is wasteful. Therefore, we handle multiple replicas o$aéinee variable itUTIL
propagation as though they are the single, original variable, and concétations on just this one
value. This is realized by updating the JOIN operator as follows:

Definition 6 (Updated JOIN operator for SCP) Defined in two steps:

Step 1: Consider all UTIL messages received as in input. For eachconsider each variable
X! on which the message is conditioned, and that is also a local copy of amalrigariable X, .
RenameX/ from the input UTIL message a$,, i.e. the corresponding name from the original
problem.

Step 2: Apply the normal JOIN operator for DPOP.

Applying the updated JOIN operator makes all local copies of the samédhabacome indis-
tinguishable from each other, and merges them into a single dimension Wirlhemessage and
avoids this exponential blow-up.

Example 5 Consider the meeting scheduling example in Figure 2. The centralized indeg-
ure 2(a) has a DFS arrangement that yields induced width 2 becauseaitlisue with 3 nodes.
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Nevertheless, the corresponding DCOP model in Figure 2(b) has @tlwidth 3, as can be seen
in the DFS arrangement from Figure 2(c), in whishp ;2 = {M3, M3, M?}. Applying DPOP to
this DFS arrangement}/2 would condition its UTIL messageT L)z 2 ON all variables in its

separator: { M3, M3, M?}. However, both\/Z and M3 represent the same variablé/;. There-
fore, M2 can apply the updated JOIN operator, which leverages the equality eamsbetween the
two local replicas and collapse them into a single dimension (callgg in its message fon/2.
The result it that the outgoing message only has 2 dimensighg;, M2}, and it takes much less
space. This is possible because all 3 agents involveddi,e A, and A3 know thatM, M2 and
M3 represent the same variable.

With this change, the VALUE propagation phase is modified so that only the ta lowal
copy of any variable solve an optimization problem and compute the best @loeuncing this
result to all the other local copies which then assume the same value.

3.2.5 GOMPLEXITY ANALYSIS OF DPOP ArPLIED TOSOCIAL CHOICE

By this special handling of replica variables, DPOP applied to SCPs will sa#tlethe induced
width of thecentralizedproblem graph, and independently of the number of agents involved and in
the number of local replica variables.

Consider a DFS arrangement for the centralized model of the SCP thatiisleqt to the
DFS arrangement for the DCOP model. “Equivalent” here means that itiearvariables from
SCP are visited in the same order in which their corresponding communitiegsteel during the
distributed DFS construction. (Recall that the distributed DFS traversatibed in Section 3.1.1
visits all local copies from a community from DCOP before moving on to the caximunity). Let
w denote the induced width of this DFS arrangement of the centralized SCP.r§inliek denote
the induced width of the DFS arrangement of the distributed model DLet max,, |d,,| denote
the maximal domain of any variable. Then, we have the following:

Theorem 1 (DPOP Complexity for SCP) The number of messages passed in DPOP in solving a
SCP is2m, (n — 1) and (n — 1) for phases one, two and three respectively, wheend m are
the number of nodes and edges in the DCOP model with replicated varidlfiesnaximal number
of utility values computed by any node in DPORISD* 1), and the largest UTIL message has
O(D"*+1) entries, wherev is the induced width of theentralized problem graph.

ProoOF The first part of the claim (number of messages) follows trivially fromgd@sition 1. For
the second part (message size and computation): given a DFS arrangdraecDCOP, applying
Proposition 1 trivially gives that in the basic DPOP algorithm, the maximal amdwutroputation
on any node iO(D**1), and the largesUTIL message ha®(D") entries, wherek is the in-
duced width of the DCOP problem graph. To improve this analysis we neamhgider the special
handling of the replica variables.

Consider thaJTIL messages which travel up along the DFS tree, and whose sets of dimensions
contain the separators of the sending nodes. Recall that the updaléda@pses all local replicas
into the original variables. The union of the dimensions ofWfféL messages to join in the DPOP
on the DCOP model becomes identical to the set of dimensions of the nodesDiR @ on the
centralized model. Thus, each node in the DCOP model performs the sametarhocomputation
as its counterpart on the centralized model. It follows thattmaputatiorrequired in DPOP scales
asO(D¥*1) rather tharO(D**1) by this special handling.
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There remains one additional difference between DPOP on the DFSjamant for the cen-
tralized SCP versus DPOP on the DFS arrangement for the DCOP. Aleakialhat is replicated
across multiple agents can only be projected out fromUfié. propagation through local opti-
mization by the top-most agent handling a local replicaXef This is the first node at which all
relevant information is in place to support this optimization step. In particulagnever a node
with the maximal separator set is not also associated with the top-most repitsavafiable then
it must retain dependence on the value assigned to its variable UiTltthemessage that it sends to
its parent. This increases the worst cassssage sizef DPOP toO(D*+!), as opposed t®(D™)
for the normal DPOP. Computation remaifgéD*+!) because the utility has to be determined for
each value ofX,, anyway, and before projecting, out. O

To see the effect on message size described in the proof, in which avlréble cannot be
immediately removed during/ TIL propagation, consider again the problem from Figure 2. Sup-
pose now that agems is also involved in meeting/;. This introduces an additional back-edge
M3 — M3 in the DFS arrangement for the decentralized model shown in Figure 2t@.DFS
arrangement of the COP model that corresponds to the decentralized imsdeply a traversal
of the COP in the order in which the communities are visited during the distribut&lddRstruc-
tion. This corresponds to a chainfs — M7 — M>. The introduction of the additional back-edge
M3 — M3 in the distributed DFS arrangement does not change the DFS of the COP, amutlis
width remainsw = 2. However, asM3 is not the top most copy af/», agentAs cannot project
M, out of its outgoingJTIL message. The result is that it senddEHL message withw + 1 = 3
dimensions, as opposed to just= 2.

4. Handling Self-interest: A Faithful Algorithm for Social Choice

Having adapted DPOP to remain efficient for SCPs, we now turn to the i$sed-interest. With-

out further modification, an agent can manipulate DPOP by misreporting Vistg@rnielations and
deviating from the algorithm in various ways. In the setting of meeting schegiutin example,

an agent might benefit byisrepresenting its local preferencé€s have massively more utility for
the meeting occurring at 2pm than at 9amif)correctly propagating utility information of other
(competing) agenté The other person on my team has very high utility for the meeting at 2pm”),
or byincorrectly propagating value decisiof8t has already been decided that some other meeting
involving the other person on my team will be at 9am so this meeting must be &) 2pm.

By introducing carefully crafted payments, by leveraging the informati@ahc@mmunication
structure inherent to DCOPs for social choice, and by careful paitigoof computation so that
each agent is only asked to reveal information, perform optimization, emdl messages that are
in its own interest, we are able to achideéhfulness This will mean that each agent wighoose
even when self-interested, to follow the modified algorithm. We first defin& @@ mechanism
for social choice and illustrate its ability to prevent manipulation in centralizedlpm solving in
a simple example. With this in place, we next review the definition@itiiful distributed imple-
mentationand the results of a useful principle, thartition principle We then describe th&imple
M-DPOP algorithm — without reuse of computation — and prove its faithfulness.
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4.1 Review: Mechanism Design and the VCG Mechanism

Mechanism design (MD) addresses the problem of optimizing some critextpently social wel-
fare, in the presence of self-interested agents that each have pnf@i®ation relevant to the
problem at hand. In the standard story, agents report private inflomia a “center,” that solves
an optimization problem and enforces the outcome.

The second-price, sealed-bid (Vickrey) auction is a simple example of hanisen: each agent
makes a claim about its value for an item to an auctioneer, who allocates the item highest
bidder for the second-highest price (Krishna, 2002). The Vickregtian is useful because it is
non-manipulable, in that the weakly dominant strategy of each agent isdd iegtrue value, and
efficient, in that the item is allocated to the agent with the highest value.

In our setting of efficient social choice, we will assume the existenceofrancyso that agents
can make payments, and make the standard assumptiasilinearutility functions, so that agent
A;’s net utilityis,

for an assignmenkX < D to variablest and paymenp € R to the center, i.e., its net utility
is that defined by its utility for the assignment;(X) = >_ . r!(X), minus the amount of
its payment. One of the most celebrated results of MD is ﬁrovided by the YicKarke-Groves
(VCG) mechanism, which generalizes Vickrey’s second price auction tpritdem of efficient
social choice:

Definition 7 (VCG mechanism for Efficient Social Choice)Given knowledge of public con-
straintsC, and public decision variabled’, the Vickrey-Clarke-Groves (VCG) mechanism works
as follows:

e Each agentA;, makes a reporR; about its private relations.
e The center’s decisiony*, is that which solveSCP(A) given the report& = (Ry, ..., Ry).

e Each agent4;, makes payment

Tar(A;) = Y (Ri(X7) = B;(X)). (8)
J#i
to the center, wheré(* ., for each4,, is the solution taSCP(—A4;) given reportsR_; =

—11

(Ri,...,Ri_1,Ris1,..., Ry).

Each agent makes a payment that equalsnigative marginal externality that its presence
imposes on the rest of the systdmterms of the impact of its preferences on the solution to the
SCP.

The VCG mechanism has a number of useful properties:

e Strategyproofness:Each agent’s weakly dominant strategy, i.e. its utility-maximizing strat-
egy whatever the strategies and whatever the private information of @betsais to truth-
fully report its preferences to the center. This is the sense in which the ME&hanism is
non-manipulable.
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e Efficiency: In equilibrium, the mechanism makes a decision that maximizes the total utility
to agents over all feasible solutions to the SCP.

e Participation: In equilibrium, the utility to agent4;, R;(X*) — Taz(4;) = (Ri(X™) +
> B (X7)) = X2, Rj(XZ,), is non-negative, by the principle of optimality, and there-
fore agents will choose to participate.

e No-Deficit: The payment made by agem; is non-negative in the SCP, because

Yo B(X) = Y R;(X™*) by the principle of optimality, and therefore the entire
mechanism runs at a budget surplus.

To begin to understand why the VCG mechanism is strategyproof, noticththéitst term in
Taz(A;) is independent ofi;’s report. The second term, when taken together with the agent’s own
true utility from the decision, providesi; with net utility 2;(X*) + >, R;(X*). This is the
total utility for all agents, and to maximize this the agent should simply report itspireference

information, because the center will then explicitly solve this problem in pickirig

Example 6 Return to the example in Figure 4. We can make this into a SCP by associatintpag
Ay, Ay and Az with relationsr{, rl and ri on variables{ Xy, X1}, {X1, X2}, and { X1, X3} re-
spectively. Breaking ties as before, the solutiorbtP(A) is < Xg = a, X1 = ¢, Xo = b, X3 =

a > with utility < 6, 6,3 > to agentsAd;, A, and A3 respectively. Removing agest, the solution
would be< Xy =7, X1 = a, X5 = ¢, X3 = a> with utility < 5,6 > to agentsd, and As. The *?’
indicates that agentds, and A3 are indifferent to the value oXy. Removing agem,, the solution
would be< Xy = ¢, X1 = b, X5 =7, X3 = ¢>, with utility < 7,4 > to agentsd; and A;. Remov-
ing agentAs, the solution would be: Xy = a, X1 = ¢, Xo = b, X3 =7 >, with utility < 6,6 >

to agentsA; and A;. The VCG mechanism would assignXg = a, X1 = ¢, Xo = b, X3 = a >,
with paymentg5 +6) — (6 +3) =2,(7+4) — (64 3) =2,(6 4+ 6) — (6 + 6) = 0 collected from
agentsA;, A, and As respectively.As has no negative impact on agems and As and does not
incur a payment. The other agents make payments: the presentehafips A, but hurts As by
more, while the presence df, hurts bothA; and As;. The only conflict in this problem is about the
value assigned to variabl& ;. AgentsA;, A, and Az each prefer thatX; be assigned té, c and

a respectively. In the chosen solution, only agdntgets its best outcome. Considering the case of
As, it can force eithew or b to be selected by reporting a suitably high utility for this choice, but
for X1 = a it must pay4 while for X7 = b it must payl, and in either case it weakly prefers the
current outcome in which it makes zero payment.

Having introduced the VCG mechanism, it is important to realize that the VCG mischa
provides theonly known, general purpose, method that exists to solve optimization problems in
the presence of self-interest and private information. On the positiee i straightforward to
extend the VCG mechanism (and the techniques of our paper) to maxirimEaaweighted sum
of the utility of each agent, where these weights are fixed and known, $teiioe by a social
planner (Jackson, 2000). Roberts (1979) on the other hand, establisat the Groves mecha-
nisms — of which the VCG mechanism is the most important special case — am@yheoo-trivial
strategyproof mechanisms in the domain of social choice unless there is somg ktructure to
agent preferences; e.g., everyone prefers earlier meetings, orofmaresource is always weakly
preferred to less. Together with another technical assumption, Rotiertisem has also been ex-
tended by Lavi et al. (2003) to domains with this kind of structure, for irtgn combinatorial
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auctions.We see that there is a very real sense in which it is only possible to adstgsterested
in DCOPs when maximizing something like the total utility of participants.

4.2 Faithful Distributed Implementation

Our goal in faithful distributed implementation is to distribute the computation redjtiresolve
the SCP and determine payments to the population of agents, but to do this viditenge an
analog to strategyproofness. This can be challenging because it opeaaklitional opportunities
for manipulation beyond those in the centralized VCG mechanism.

In presenting our results, we introduce the following additional assumptieasand-above
those made so far:

e Agents argational but helpfu] meaning that although self-interested, they will follow a pro-
tocol whenever there is no deviation that will make thetnictly better off (given the behavior
of other agents).

e Each agent is prevented from posing as several independent ageartsexternal technique
(perhaps cryptographic) for providing strong (perhaps pseudong) identities.

e Catastrophic failurewill occur if all agents in the community of a variable do not eventually
choose the same value for the variable.

e There is arusted bankconnected with &rusted communication channtel each agent, and
with the authority to collect payments from each agent.

The property of “rational but helpful” is required in being able to relympgents to compute the
payments that other agents should make. Strong identities is required to awaid kulnerabilities
of the VCG mechanism as shown by Yokoo, Sakurai and Matsubard)2@®erein agents can
sometimes do better by participating under multiple identities. Catastrophic failatgesnthat
the decision determined by the protocol is actually executed. It preverisld-6ut” problem,
where an unhappy agent refuses to adopt the consensus decisioaltefative solution would
be to have agents report the final decision to a trusted party, respofwit@aforcement. By a
“trusted communication channel”, we mean that each agent can send amestse bank without
interference by any other agent. These messages are only sent bgrarupon termination of
M-DPOP, to inform the bank about other agents’ payments. The banloiasdsimed in other work
on distributed MD (Feigenbaum et al., 2002, 2006; Shneidman & Parkég,)2and is the only
trusted entity that we require. Its purpose is to ensure that payments cardb&o align incentives.

To provide a formal definition of a distributed implementation we need the cond¢edocal
state The local state of an agent; corresponds to the sequence of messages that the agent has
received and sent, together with the initial information available to an agehiding both its own
relations, and public information such as constraints). Given this, a digdbmplementation,
dy =< g,%,8 >, is defined in terms of three components (Shneidman & Parkes, 2004sRark
Shneidman, 2004):

e Strategy space:, which defines the set of feasible strategiess > available to agen#;,
where strategy; defines the message(s) that agénwill send in every possible local state.

e Suggested protocok = (s4,...,5,), which defines a strategy that is parameterized by the
private relationsk; of agentA;.
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e Outcomeruleg = (g1, 92), whereg; : ¥ — D defines the assignment of valugs(o) € D,
to variablesY given ajoint strategy o = (o1, ...,0,) € X", andgs : ¥" — R" defines the
paymentys ;(0) € R made by each agent; given joint strategy € X".

By defining the message(s) that are sent in every state, a strategy> encompasses all
computation performed internally to an agent, all information that an agesdlsesbout its private
inputs (e.g. its relations), and all decisions that an agent makes abot [ppapagate information
received as messages from other ag@nhe suggested protocg) corresponds to an algorithm,
which takes as input the private information available to an agent and méldetails about the
agent’s local state, and generates a message or messages to sendwrs@ighe network. When
applied to distributed inpukR = (Ry,...,R,) and the known parts of the input such as hard
constraintsC, the protocols induces a particular execution trace of the algorithm. This in turn
induces the outcomgo), for o = 5(R), whereg, (o) is the final assignment of values (information
about which is distributed across agents) gn(b) is the vector of payments that the bank will
collect from agent&?

The main question that we ask, given a distributed algorithm and its conéispposuggested
protocol, is whether the suggested protocol formsxapositNash equilibrium of the induced game:

Definition 8 (Ex post Nash equilibrium.) Given distributed implementatiothy,;, =< g¢,%,5 >,
the suggested protocel= (s1, ..., $,) is an an ex post Nash equilibrium (EPNE) if, for all agents
A;, all relations R;, all relations of other agent®_;, and all alternate strategies; € X,

Ri(g1(5:(Ri), 5-i(R-:))) — g2(5i(Ri), 5-i(R—)) > Ri(g1(0}, 5-i(R—))) — g2(07, 5-i(R—;))

©)
In an EPNE, no agenti; can benefit by deviating from protocol;, whatever the particular
instance of DCOP (i.e. for all private relatiofs= (R, ..., R,)), so long as the other agents also

choose to follow the protocolt is this latter requirement that makes EPNE weaker than dominant-
strategy equilibrium, in whichs; would be the best protocol for ageneven ifthe other agents
followed an arbitrary protocol.

Definition 9 (Faithfulness) Distributed implementation],; = < ¢,3,§ >, is ex post faithful if
suggested protocalis an ex post Nash equilibrium.

Thatis, when a suggested protodglis said to beex posfaithful (or simply “faithful”) thenitis
in the best interest of every age#i to follow all aspects of the algorithm — information revelation,
computation and message-passing — whatever the private inputs of thageinés, as long as every
other agent follows the algorithm.

9. The idea that each agent only has a limited set of possible messageariliee sent in a local state — as implied by
the notion of a (restricted) strategy space is justified in the following sense. Agents in the model are autonomous
and self-interested and, of course, free to send any message itatnyBut on the other hand, and if the suggested
protocol is followed by every other agent, then only some messagesenskimantically meaningful to the recipient
agent(s) and trigger a meaningful change in local state in the recipient(ayy i.e. a change in local state that will
changes the future (external) behavior of the recipient agent. In tlyigheastrategy space characterizes the complete
set of “interesting” behaviors available to an aggiven that the other agents follow the suggested protoBuis is
sufficient, from a technical perspecitve, to definesarpostNash equilibrium.

10. The outcome rule must be well-defined for any unilateral deviatam f i.e. where any one agent deviates and does
not follow the suggested protocol. Either the protocol still reaches a tatsiate so that decisions and payments
are defined, or the protocol reaches some “bad” state with suitablyiveegdlity to all participants, such as livelock
or deadlock. We neglect this latter possibility for the rest of our analysist ban be easily treated by introducing
special notation for this bad outcome.
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4.3 The Partition Principle Applied to Efficient Social Choice

One cannot achieve a faithful DI for efficient SCP by simply running PPO+ 1 times on the
same problem graph, once for the main problem and then with each adgéettsnellified in turn
by asking it to simply propagate messages. Agénivould seek to do the following: (a) interfere
with the computational process foICP(—A;), to make the solution as close as possible to that
to SCP(.A), so that its marginal impact appears small; and (b) otherwise decreasgritemafor
example by increasing the apparent utility of other agents for the solutiS&'#(.4), and in turn
increases the value of the second term in its VCG payment (Eq. 8).

This opportunity for manipulation was recognized by Parkes and Shneidtf@d)(in a more
general setting, who proposed tbartition principleas a method for achieving faithfulness in dis-
tributed VCG mechanisms, instantiated here in the context of efficient SCPs:

Definition 10 (partition principle) A distributed algorithm, corresponding to suggested protocol
3, satisfies the partition principle in application to efficient social choice, if:

1. (Correctness)An optimal solution is obtained f&#fCP(.A) and SCP(— A;) when every agent
follows s, and the bank receives messages that instruct it to collect the cor@Btpayment
from every agent.

2. (Robustness)Agent A; cannot influence the solution t8CP(—A;), or the report(s) that
the bank receives about the negative externality thatmposes on the rest of the system
conditioned on solutions t8CP(.A) and SCP(—A4;).

3. (Enforcement) The decision that corresponds $&'P(.A) is enforced, and the bank collects
the payments as instructed.

Theorem 2 (Parkes & Shneidman, 2004) A distributed algorithm for efficient sodiaiae that
satisfies the partition principle is an ex post faithful distributed implementation.

For some intuition behind this result, note that the opportunity for manipulatiombggant
A; is now restricted to: (a) influencing the solution computed € (.A); and (b) influencing the
payments made by other agents. Agdntcannot prevent the other agents from correctly solving
SCP(—A;) or from correctly reporting the negative externality thatimposes on the other agents
by its presence. As long as the other agents follow the algorithm,eh@ostfaithfulness follows
from the strategyproofness of the VCG mechanism because the addampa@atunity for manipu-
lation, over and above that available from misreporting preferences icetitealized context, is to
change (either increase or reduce) the amount of suiter agent's payment. This is opportunity
(b). Opportunity (a) is not new. An agent can always influence thetisalin the context of a
centralized VCG mechanism by misreporting its preferences.

Remark: As has been suggested in previous work, the weakening from domitmategy equilib-
rium in the centralized VCG mechanism,dr postNash equilibrium in a distributed implementa-
tion, can be viewed as the “cost of decentralization”. The incentivegptigs necessarily rely on
the payments that are collected which rely in turn on the computation perforynethér agents
and in turn on the strategy followed by other agéts.

11. An exception is provided by Izmalkov et al. (2005), who are ablevtidathis through the use of cryptographic
primitives, in their case best thought of as physical devices suchlas laxes.
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4.4 Simple M-DPOP

Algorithm 3 describes simple-M-DPOP. In this variation the main probl§fiP(.A) is solved,
followed by the social choice problerSCP(—A;) with each agent removed in tuth.Once these
n + 1 problems are solved, every agefif knows thelocal part of the solution toX* and X*,
for all A; # A;, which is the part of the solution that affects its own utility. This provides ghou
information to allow the system of agents without some aggntor any A;, to each send a message
to the bank about eomponenbf the payment that agent; should make.

Algorithm 3: Simple-M-DPOP.
1 Run DPOP forDCOP(A) on DFS(A); find X*
2 forall A; € Ado
3 Build DFS(—A;); run DPOP forDCOP(—A;) on DFS(—A4;); find X*,
4 All agentsA; # A; computeTaz;(A;) = Rj(X*;) — R;(X*) and report to bank.
5 Bank deductij# Taz j(A;) from A;’s account

6 EachA; assigns values iX* as the solution to its local'O P;

The computation of payments is disaggregated across the agents. Then@enpaollected
from agentd; is Taz(A;) = 3, ,; Taz;(A;), where

is the component of the payment that occurs because of the negativetbt agentl; has on the
utility of agentA;. This information is communicated to the bank by agéntn the equilibrium.

The important observation, in being able to satisfy the partition principle, ighkat compo-
nents ofA;’s payment satisfy éocality property, so thateach agentd; can compute this compo-
nent of A;'s payment with just its private information about its relations and its local infdiom
about the parts of solution¥* and X *, that affect its own utility All of this information is avail-
able upon termination of simple-M-DPOP. Correctly determining this paymeng, waacondition
on solutionsX* and.X*,, does not rely on any aspect of any other agent’s algorithm, including tha
of Ai.l3

Figure 5 provides an illustration of Simple M-DPOP on the earlier meeting sthgaxample,
and shows how the marginal problems (and the DFS arrangements foseeltiproblem) are
related to the main problem.

Theorem 3 The simple-M-DPOP algorithm is a faithful distributed implementation of efficent
cial choice and terminates with the outcome of the VCG mechanism.

PROOF To prove this we establish that simple-M-DPOP satisfies the partition prinaiplehen
by appeal to Theorem 2. First, DPOP computes optimal solutioS§'#(.4) and SCP(—A;) for

12. Simple M-DPOP is presented for a setting in which the main problem arsdiipeoblems are connected but extends
immediately to disconnected problems. Indeed, it may be that the maiteprdb connected but one or more
subproblems are disconnected. To see that there are no additionahieagncerns notice that it is sufficient to
recognize that the correctness and robustness properties of the pautiticiple would be retained in this case.

13. A similar disaggregation was identified by Feigenbaum et al. (2002p¥eest-cost interdomain routing on the
Internet. Shneidman and Parkes (2004) subsequently modified tioeqrby those authors so that agents other than
A; had enough information to report the payments to be made by agent
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DCOP(n)

Figure 5: Simple M-DPOP: Each agert; is excluded in turn from the optimizatiaDnCOP(—A;). This is
illustrated on the meeting scheduling example.

all A, € A when every agent follows the protocol. This is immediate because of thectoess
of the DCOP model of SCP and the correctness of DPOP. The corrégstpagments are collected
when every agent follows the algorithm by the correctness of the disgatijon of VCG payments
in Eq. 10. Second, agent; cannot influence the solution CP(—A;) because it is not involved
in that computation in any way. The DFS arrangement is constructed, apdaiblem solved, by
the other agents, who completely ignoteand any messages that agdntmight send. (Any hard
constraints thatl; may have handled iISCP(.A) are reassigned automatically to some other agent
in SCP(—A;) as a consequence of the fact that the DFS arrangement is recorthtrubfeOP
still solvesSCP(—A;) correctly in the case that the problem graph correspondirgtB(—A;)
becomes disconnected (in this case the DFS arrangement is a forestpblikmess of the value of
the reports from agents A; about the negative externality imposedby conditioned on solutions
to SCP(A) andSCP(—A4;), follows from the locality property of payment termisz ;(A;) for all
A; # A;. For enforcement, the bank is trusted and empowered to collect paymetsl] agents
will finally set local copies of variables as iK* to prevent catastrophic failure. Agedt will
not deviate as long as other agents do not deviate. Moreover, if agesthe only agent that is
interested in a variable then its value is already optimal for ageanyway.O

The partition principle, and faithfulness, has sweeping implications. Notwitlyach agent
follow the subtantive aspects of simple-M-DP®B} each agent will also choose to faithfully par-
ticipate in the community discovery phase, in any algorithm for choosingtecmomunity, and in
selecting a leader agent in Phase one of DPOP.

14. One can also observe that is not useful for an agent to misteddcal utility ofanother agentd; while sending
UTIL messages around the system. On one hand, such a deviation coultsd# change the selection & or
X, forsomek # {i, j} and thus the payments by other agents or the solution ultimately selectedy Betjiating
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Remark on Antisocial Behavior: Note that reporting exaggerated taxes hurts other agents but
does not increase one’s own utility so this is excluded by our assumptioththagents are self-
interested but helpful.

5. M-DPOP: Reusing Computation While Retaining Faithfulnes

In this section, we present our main result, which is the M-DPOP algorithgimple-M-DPORthe
computation to solve the main problem is completely isolated from the computation toesuit

of the marginal problems. In comparison NeiDPOP we re-use computation already performed in
solving the main problem in solving the marginal problems. This enables thathigdo scale well

to problems where each agent’s influence is limited to a small part of the erioéepr because
little additional computation is required beyond that of DPOP. These problemisiain an agent’s
influence is limited are precisely those of interest because they are alsdéhegich the induced
tree width is small and for which DPOP scales.

The challenge that we face, in facilitating this re-use of computation, is to risiimcentive
properties that are provided by the partition principke possible new manipulation is for agent
A; to deviate in the computation IPCOP(.A), with the intended effect to change the solution
to DCOP(—A;) via the indirect impact of the computation performedix@’OP(.A) when it is
reused in solvingDCOP(—A4;). To prevent this, we have to determine which UTIL messages in
DCOP(A) could not have been influenced by agdnt

Example 7 Refer to Figure 6. Here agemt; controls onlyXs; and X;o. Then it has no way of
influencing the messages sent in the subtrees rooté& at, X5, X2, X7, X5, X11}. We want to

be able to reuse as many of these UTIL messages as possible. In shipgblem with agent

A; removed we will strive to constructAFS " arrangement for problenCOP(— A;) that is as
similar as possible to the DFS for the main problem. This is done with the goahxifiiizing the
re-use of computation across problems. See Figure 6(b). Notice tilsasthow a DFS forest, with
three distinct connected components. The UTIL messages that webg/ske shaded nodes can be
re-used in solvingg COP(—A;). These are all the UTIL messages sent by nodes in the subtrees that
were not influenced by agedt except fo{ X4, X15, X5} and alsoXy, which now has a different
local DFS arrangement.

M-DPOP uses the “safe reusability” idea suggested by this example. Sestiig 4. In its first
stage, M-DPOP solves the main problem just as in Simple-M-DPOP. Once tlism@eate, each
marginal problemDCOP(—4;) is solved in parallel. To solv®COP(—A;), a DFS~ forest (it
will be a forest in the case tha&tCOP (—A;) becomes disconnected) is constructed as a modification
to DFS(A), retaining as much of the structure 6fF'S(A) as possible. A newDPOP(—A;)
execution is performed on theFS—¢ and UTI L messages are determined to be eiteasableor
not reusableoy the sender of the message based on the differences befweerf and DFS(A).

We will explain below howDFS " is constructed.

in this way the agent cannot change the utility information that is finally usedteriehining its own payments. This
is because it is agemt; itself that computes the marginal effect of agetiton its local solution, and component
Tazj(A;) of agentA;’s payment.

736



M-DPOP: FAITHFUL DISTRIBUTED IMPLEMENTATION OF EFFICIENT SOCIAL CHOICE PROBLEMS

(a) Main DFS (b) DFS" forest

Ai owns X and X _ : to exclude it: sremoving Ai disconnects DFS™ in 3 parts
3 o -they are solved as independent subproblems
-notice the re-arrangement of nodes X, X_ , X,

*UTILs sent by green nodes can be reused
*the other nodes have to recompute

*the root, and children of Ai re-initiate DFS
construction

*DFS" tokens from higher nodes override
the ones from lower nodes (X, wins over X))

Figure 6: Reconstructing£S(—A;) from DFS(A) in M-DPOP. The resultis in general a DFS forest. The
bold nodes from main DFS initiat®F'S~* propagation. The one initiated bys is redundant
and eventually stopped h¥y. The ones fromX, and X5 are useful, as their subtrees become
really disconnected after removing;. X, does not initiate any propagation since it h¥g
as a pseudopareni’; is not controlled byA;, and will eventually connect t&,4. Notice that
X — X9 andX; — X4 are turned into tree edges.

5.1 Phase One of M-DPOP for a Marginal Problem: ConstructingDFS !

Given a grappDCOP(A) and a DFS arrangemeft/'S(A) of DCOP(A), if one removes a set of
nodesX (4;) € DCOP(A) (the ones that belong td;), then we need an algorithm that constructs
a DFS arrangemenFS~*, for DCOP(A)\ X (A;). We want to achieve the following properties:

1. DFS~* must represent a correct DFS arrangement for the gl P (—A;) (a DFS forest
in the caseDCOP(—A;) becomes disconnected).

2. DFS~" must be constructed in a way that is non-manipulableihyi.e. without allowing
agentA; to interfere with its construction.

3. DFS~* should be as similar as possible&#S(A). This allows for reusing TIL messages
from DPOP(.A), and saves on computation and communication.

The main difficulty stems from the fact that removing the nodes that represgables of inter-
est to agentd; from DFS(.A) can create disconnected subtre®g need to reconnect and possibly
rearrange the (now disconnected) subtreeB Bf (.4) whenever this is possible. Return to the ex-
ample in Figure 6. Removing ageAt and nodesXs and X disrupts the tree in two ways: some
subtrees become completely disconnected from the rest of the problemX(g.g- X5 — X19);
some other ones remain connected only via back-edges, thus forminga#id DFS arrangement
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Algorithm 4: M-DPOP: faithfully reuses computation from the main prable
1 Run DPOP forDCOP(A) on DFS(A); find X*
2 forall A; € Ado
in parallel
3 Create DFS~* with Algorithm 5 by adjustingDFS (A)

Run DPOP for DCOP(—A;) on DFS™*:
4 if leaves inDFS—* observe no changes in thefir'S~ then
‘ they senchull UTIL™" messages

elsethey compute theil/TIL~* messages anew, as in DPOP
subsequently, all nodes;,, ¢ DFS~ do:
5 if X, receives onlywull UTIL™ msgsh (Py = P, ' A PP, = PP_" A C), = C, ") then
‘ X, sends awull UTIL™" message
else
6 nodeX, computes it/ TIL " messagereusing:
forall X; € Neighbors(Xy) s.t. X; sentUTIL™* = null do
‘ X, reusesthe UTIL messageX; had sent inDCOP(A)

7 Compute and levy taxes as in simple-M-DPOP;
8 EachA; assigns values ik * as the solution to its local' O P;;

(e.g. X5 — Xs — Xy). The basic principle we use is to reconnect disconnected parts viegbiges
from DFS(.A) whenever possible. This is intended to preserve as much of the strutag@assi-
ble. For example, in Figure 6, the back edge — Xy is turned into a tree edge, atidy, becomes
Xg's child. NodeXg remainsX5’s child.

The DFS~* reconstruction algorithm is presented in Algorithm 5. The high-level dseris
as follows (in bold we state the purpose of each step):

1. (Similarity to DFS(A) :) All nodes retain the DFS data structures from constructing
DFS(A); i.e., the lists of their children, pseudo parents/children, and their panents f
DFS(A). They will use this data as a starting point for building the DFS arrangements,
DFS(—A4;), for marginal problems.

2. (At least one traversal of each connected component on a DFS &st) The root of
DFS(A) and the childref® of removed nodesach initiate aDFS~* token passing as in
DFS(A), except for these changes:

e Each nodeX; sends the token only to neighbors not owned4y

e The order in whichX}, sends the token to its neighbors is baseddts (A): First X's
children from DFS(.A), then its pseudochildren, then its pseudoparents, and then its
parent. This order helps preserve structure filofS (.A) into DFS(—A;).

15. Children which have pseudoparents above the excluded nodestimmceX 4 in Figure 6, do not initiate DFS token
passing because it would be redundant: they would eventually recBiF& aoken from their pseudoparent.
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Algorithm 5: Reconstruction oDFS~" from DFS(A).
All data structures for theDFS " are denoted with superscript.

Procedure Tokenpassing for DFS~* (executed by all nodeX, ¢ X (A;)) :

forall X; € Neighbors(X}) s.t. X; belongs toA; do
1 ‘ RemoveX; from Neighbors(Xy) and fromCy, PCy, PPy, Ili.e. send nothing tal;
2 Sort Neighbors(X},) in this order:Cy, PCy,, PPy, Py IImimic DFS(A)
if Xy isroot, or P, € X(A4;) (i.e. executed by the root and children4f) then
3 ‘ Initiate DF'S~* as in normal DFS (Algorithm 2)
4 else doProcessncomingtokens()
5 SendDFS~¢(X},) back toPk‘i Il X}.’s subtree completely explored

Procedure Processncoming_tokens()

6 Wait for any incomingDFS ~* token; LetX; be its sender
7 if X; € A; thenignore message

8 else

9 if this is first token receivethen

10
11

12
13
14
15
16
17

P" = X, PP;" = {X; # P,'|X; € Neighbors(X;) N DFS™"}
root, '= first node in the toke® 'S~

else

let X, be the first node iDFS~*
if X, # root]j /li.e. this is anothelDFS~ traversalthen
if depth ofX, in DFS(A) < depth ofroot,” in DFS(A) then
ResetP, ', PP,",C, ", PC," lloverride redundant DFS from lower root
P.'=X;; PP,' = {X, # P, "|X; € Neighbors(X;) N DFS~"}
root,;i =X,

18 | Continue as in Algorithm 2

3. (Unique traversal of each connected component on a DFS foreytEach nodeX, retains

its

“root path” in DF'S(.A) and knows its depth in the DFS arrangement. When a new token

DFS™ arrives:

e Ifitis the first DFS— token that arrives, then the sender (let thisXg is marked as
the parent ofX}, in DFS—*: Pk_i = X;. Notice thatX; could be different from the
parent of X}, from DFS(A). X}, stores the first node from the received tokeRS ",
as mot,j: the (provisional) root of the connected component to whighbelongs in
DCOP(—A4;).

e If this is not the firstDFS~* token that arrives, then there are two possibilities:

— the token received is part of the samdS—* traversal processX; recognizes
this by the fact that the first node in the newly received token is the same as th
previously stored*oot,j In this case X}, proceeds as normal, as in Algorithm 2:
marks the sender as pseudochild, etc.
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— the token received is part ahother DFS~* traversal process, initiated by another
node tharroot,j (see below in text for when this could happen). Kgtbe the first
node in the newly received tokelX, recognizes this situation by the fact thét
is not the same as the previously stormbt,;". In this case, théDF'S~ traversal
initiated by the higher node iDFS(.A) prevails, and the other one is dropped. To
determine which traversal to pursue and which one to dkgzompares the depths
of root;,* and X, in DFS(A). If X, is higher, then it becomes the newnt, *. X},
overrides all the previou®FS~—* information with the one from the new token. It
then continues the token passing with the new token as in Algorithm 2.

To see why it is necessary to also start propagations from the childmemaoived nodes (step
2), consider again the example from Figure 6. Removing and X3 completely disconnects the
subtree{ X4, X, X11, X7, X12, X13}. Had X, not started a propagation, this subtree would not
have been visited at all since there are no connections between thd testgoblem and any
nodes in the subtre®é. 1’

Lemma 1 (DFS correctness)Algorithm 5 constructs a correct DFS arrangement (or forest),
DFS~" for DCOP(—A;) given a correct DFS arrangememFS(.A) for DCOP(A).

PROOF First, since @)FS " is started from each child of a node that was controlledihyand also
from the root, it is ensured that each connected component is DFSsedvat least once (follows
from Step 2). Second, each DFS process is similar to a normal DFS adiwtrun that each node
sends the token to all its neighbors (except for the ones controlled jyt is just that they do so in

a pre-specified order (the one givenby'S(.A)). It follows that all nodes in a connected component
will eventually be visited (follows from Step 3). Third, higher-priority DF8viersals override the
lower priority ones (i.e. DFS traversals initiated by nodes higher in the tneegréority), again by
Step 3. Eventually one single DFS-traversal is performed in a single ctatheomponenta

Lemma 2 (DFS robustness)The DFS arrangemeni)FS~*, constructed by Algorithm 5 is non-
manipulable by agen#;, for any input DFS arrangement from the solution phasétGOP(A).

PrRoOF This follows directly from Step 3, sincd; does not participate in the process at all: its
neighbors do not send it any messages (see Algorithm 5, line 1), andessages it may send are
simply ignored (see Algorithm 5, line T

In fact, no additional links are created while constructibg’S —*. The only possible changes
are that some edges can reverse their direction (parents/childrenusiopseents-pseudochildren

16. Some of the DFS traversals initiated in Step 2 are redundant and tkeepsanof the problem graph can be visited
more than once. The simple overriding rule in Step 3 ensures that onlgle 'S¢ tree is eventually adopted
in each connected component, namely the one that is initiated byighest noden the original DFS(A). For
example, in Figure 6X;5 starts an unnecessafyF'S —* propagation, which is eventually stopped Ky, which
receives a higher priority) 'S " token fromXjy. SinceXy knows thatXy is higher inDFS (A) than X, it drops
the propagation initiated bys, and relays only the one initiated b¥,. It does so by sending’s the token for
DFS~" received fromX, to which it adds itself. Upon receiving the new token frdfig, node X5 realizes that
Xy is its new parent inDFS ¢, Thus, the redundant propagation initiated ¥y is eliminated and the result is a
consistent DFS subtree for the single connected compdhent

17. A simple time-out mechanism can be used to ensure that each agerstwhen its provisional DFS ordering is final
(i.e. no higher priority DFS traversals will arrive in the future).
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can switch places), and existing back-edges can turn into tree edge#, Age can see this in
Figure 618

5.2 Phase Two of M-DPOP for a Marginal Problem: UTIL~* propagations

OnceDFS " is built, the marginal problem withowt; is then solved orDFS—*. Utility propaga-
tion proceeds as in normal DPOP except that nodes determine whethéfithenessage that was
sent inDPOP(A) can be reused. This is signaled to their parent by sending a spedi& TIL
message. More specifically, the process is as follows:

e The leaves iMDFS~* initiate UTIL ™" propagations:

1. If the leaves inDFS~* observe no changes in their lodaFS—* arrangement as com-
pared toDFS(A) then theUTIL message they sent RCOP(A) remains valid and
they announce this to their parents by sending instead&UTIL ™" message.

2. Otherwise, a leaf node computes 3IL message anew and sends it to their (new)
parent inDFS™".

e All other nodes wait for incoming/T1L~* messages and:

1. If everyincoming messages a nodg, receives from its children isull andthere are
no changes in the parent/pseudoparents then it can propagaté &7IL~" message
to its parent.

2. Otherwise X}, has to recompute it§ TIL~* message. It does so by reusing all tHEL
messages that it received iCOP(.A) from children that have sentitull messages in
DCOP(—A4;) and joining these with any neWTIL messages received.

For example, considddCOP(—A;) in Figure 6, whereX;s and X7 are children ofX4. X4
has to recompute BTIL message and send it to its new par&it To do this, it can reuse the
messages sent by, and X7 in DCOP(.A), because neither of these sending subtrees coAtain
By doing s0,X14 reuses the effort spent BCOP(A) to compute the messagé&lILLS, UTILLE,
UTIL} and UTILAL.

Theorem 4 The M-DPOP algorithm is a faithful distributed implementation of efficient social
choice and terminates with the outcome of the VCG mechanism.

PrRoOOF From the partition principle and appeal to Theorem 3 (and in turn to The@je First,
agentA; cannot prevent the construction of a vali's — for DCOP(—A;) (Lemmas 1 and 2).
Second, agentl; cannot influence the execution of DPOP BG'OP(—A;) because all messages
that A; influenced in the main probled@COP(.A) are recomputed by the system without The
rest of the proof follows as for simple-M-DPOP, leveraging the locality eftéix payment messages
and the enforcement provided by the bank and via the catastrophic fadsuenption™

18. A simple alternative is to have children of all nodés that belong tad;, create a bypass link to the first ancestor of
X that does not belong td,. For example, in Figure 6¥4 and X5 could each create a link with'; to bypassXs
completely inDFS(—A;). However, additional communication links may be required in this approac
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6. Experimental Evaluation: Understanding the Effectivenes®f M-DPOP

We present the results of our experimental evaluation of DPOP, Simple ®PCd#hd M-DPOP in

two different domains: distributed meeting scheduling problems (MS), ambic@torial auctions
(CAs). In the first set of experiments we investigate the performance-DP@P on a structured
constraint optimization problem (MS) which has received a lot of attentioooperative distributed
constraint optimization. In the second set of experiments (CAs), we inagstimstructured do-
mains, and observe the performance — specifically the ability to re-use tatiopun computing

payments — of M-DPOP with respect to problem density. CAs provide a@naabsnodel of many
real world allocation problems and are much studied in mechanism desigmt(@raShoham, &

Steinberg, 2006).

6.1 Distributed Meeting Scheduling

In distributed meeting scheduling, we consider a set of agents workiragléwge organization and
representing individuals, or groups of individuals, and engagedhadiding meetings for some
upcoming period of time. Although the agents themselves are self interestemgtrézation as
a whole requires an optimal overall schedule, that minimizes cost (altexlyatmaximizes the
utility of the agents). This makes it necessary to use a faithful distributed imptaetien such as
M-DPOP. In enabling this, we suppose that the organization distributesualMiurrency to each
agent (perhaps using this currency allocation to prioritize particular pgatits.) All relations held
by agents and defining an agent’s utility for a solution to the scheduling pnodate thus stated in
units of this currency.

Each agent4; has a set of local replicate variabléfs;i for each meetingl/; in which it is
involved. The domain of each variabl¢; (and thus local replicaé(j») represents the feasible
time slots for the meeting. An equality constraint is included between repliceblesito ensure
that meeting times are aligned across agents. Since an agent cannotgtartitimore than one
meeting at once there is afi-differentconstraint on all variabIeXf belonging to the same agent.
This is modeled as a clique constraint between these meeting variables.geatlssigns a utility
to each possible time for each meeting by imposing a unary relation on eadbie/asf;a Each such
relation is private ta4;, and denotes how much utilitd; associates with starting meetid; at
each time’ € d;, whered; is the domain for meeting/;. The social objective is to find a schedule
in which the total utility is maximized while satisfying the all-different constraintssiach agent.

Following Maheswaran et al. (2004), we model the organization by prayid hierarchical
structure In a realistic organization, the majority of interactions are within departmerdspriy
a small number are across departments and even then these interactionpigallytytake place
between two departments adjacent in the hierarchy. This hierarchiealipegion provides structure
to our test instances: with high probability (around 70%) we generate msetitign departments,
and with a lower probability (around 30%) we generate meetings betweetsagelonging to
parent-child departments. We generated random problems having thisisgrweth an increasing
number of agents: from 10 to 100 agents. Each agent participates in 1 tetkigse and has a
uniform random utility between 0 and 10 for each possible schedule &r me&eting in which it
participates. The problems are generated such that they have feasitilensd®

19. The test instances can be found at http:/liawww.epfl.ch/People/&pstarch/mdpop/MSexperiments.tgz

742



M-DPOP: FAITHFUL DISTRIBUTED IMPLEMENTATION OF EFFICIENT SOCIAL CHOICE PROBLEMS

For each problem size, we averaged the results over 100 differésm@es. We solved the main
problems using DPOP and the marginal ones using simple-M-DPOP, and®RB#3pectively. All
experiments were performed in the FRODO multiagent simulation environmeicu(R©06), on
a 1.6Ghz/1GB RAM laptop. FRODO is a simulated multiagent system, where eache@cutes
asynchronously in its own thread, and communicates with its peers only viageesschange.

The experiments were geared towards showing how much effort M-D&&l#e to reuse from
the main to the marginal problems. Figure 6.1 shows the absolute computatifmmaireterms
of number of messages (Figure 6.1(a)), and in terms of the total size of #&ages exchanged,
in bytes (Figure 6.1(b)). The curves for DPOP represent just the eaunftimessages (total size
of messages, respectively) required for solving the cooperatiddggmo The curves for simple-
M-DPOP and M-DPOP represent the total number (size, respectivielyT k. messages, for both
main and marginal economies.

We notice several interesting facts. First, the number of messages teluiBPOP increases
linearly with the number of agents because DPOP’s complexity in terms of nuwshberssages is
always linear in the size of the problem. On the other hand, the number ohgasssf simple-M-
DPOP increases roughly quadratically with the number of agents, sincleéssm linear number
of marginal economies from scratch using DPOP, each requiring a lineaber of messages.
The performance of M-DPOP lies somewhere between the DPOP and simpRO®P with more
advantage achieved over simple-M-DPOP as the size of the problemsasrealminating with
almost an order of magnitude improvement over Simple M-DPOP for the |gygagem sizes (i.e.
with 100 agents in the problem). Similar observations can be made about th&zetaf theUTIL
messages, also a good measure of computation, traffic and memory requgrebeinspecting
Figure 6.1(b). For both metrics we find that the performance of M-DPORlisslightly super-
linear in the size of the problem.

Figure 8 shows the percentage of the additional effort required feingdhe marginal problems
that can be reused from the main problem, i.e. the probability tb&ilh message required in solv-
ing a marginal problem can be taken directly from the message alreadyrnutbesdmain problem.
We clearly see that as the problem size increases we can actually reusenshonere computation
from the main problem. The intuition behind this is that in large problems, eachidodi agent
is localized in a particular area of the problem. This translates into the agentlbealized in a
specific branch of the tree, thus rendering all computation performedén btanches reusable for
the marginal problem that corresponds to that respective agent. lgpaldo at the percentage of
reuse when defined in terms of message size rather than the number ofj@sessssee that this is
also trending upwards as the size of the problem increases.

6.2 Combinatorial Auctions

Combinatorial Auctions (CAs) are a popular means to allocate resourcedtiplenagents. In CAs,
bidders can bid obundlesof goods (as opposed to bidding on single goods). Combinatorial bids
can model both complementarity and substitutability among the goods, i.e. whealtlagion for

the bundle is more, respectively less than the sum of the valuations forduadivitems. In our
setting the agents are distributed (geographically or logically), and forrakdgm graph in which
neighbors are agents with whom their bids overlap. The objective is to erfeéésible solution (i.e.
declare bids as winning or losing such that no two winning bids share g ¢juaidmaximizes the
total utility of the agents.
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CAs are adopted here as a stylized model of distributed allocation problemasairport slot
allocation and wireless spectrum allocation as discussed in the IntroduthierCA instances also
provide a counterpoint to the meeting scheduling problems because thiegaepproblems with
less structure. In our DCOP model, each agent holds a variable foroeactf its bids, with two
possible values: 0 when the bid is rejected, and 1 when the bid is acceptg@atk of overlapping
bids (bids that share at least one good) is connected by a “at mostconstraint that specifies
that they cannot be both accepted. When multiple bids are submitted by arttzyethey can be
connected by additional constraints to capture the bid logic, for instarbes@se-or constraints if
only one bid can be accepted.

We generated random problems using CATS (Leyton-Brown, Pea8sBhpham, 2000), using
the L3 distribution from Sandholm (2002). L3 is ti@onstantdistribution in which each agent
demands a bundle of 3 goods, selected uniformly at random, and with adisitibuted uniformly
on [0,1]. In our simulations we consider a market with 50 goods and vary the nunfilagreats
between 5 and 40. We recorded the performance of DPOP, simple-MBROM-DPOP in the
graphs from Figures 9 and 10. Figure 9 shows that as the density ofdblems increase, all three
algorithms require more effort in solving them (both in terms of number of ngessand in terms
of total information exchange).

Figure 10 shows how reusability varies with problem density: one can aeéothloose prob-
lems the reusability is very good, close to 100% for problems with 5 agents.eAdetisity of the
problems increases with the number of agents, reusability decreasel, amd/és around 20% for
the most dense problems, with 40 agents. We explain this phenomenon asfdibowery loose
problems (many goods and few bidders), the bids are mostly non-overggpyhich in turn ensures
that removing individual agents for solving the marginal problems doeaffesit the computation
performed while solving the main problem. At the other end of the spectruiy degrse problems
tend to be highly connected, which produces DFS trees which are veryrsiomdhains. In such a
case, removing agents which are close to the bottom of the chain invalidatesofithe computa-
tion performed while solving the main problem. Therefore, only a limited amouocomiputation
can be reused.

While noting that L3 is recognized as one of the hardest problem distrilsuiiothe CATS
suite (Leyton-Brown et al., 2000), we remark that we need to limit our éxgets to this distri-
bution because other problems have a large induced tree width (and Imgitydeoblem graphs).
Consider for example a problem in which every agent bids for a bundieotlelaps with every
other agent. The problem graph is a clique and DPOP does not scale. Wehigave a detailed
examination for future work, a recent extension of DPOP — H-DPOP (KuRetcu, & Faltings,
2007) — can immediately address this issue. In H-DPOP, consistency teebrage used in order
to compactly represent UTIL messages, and on tightly constrained prqlibedess of magnitude
improvements over DPOP are reported (see Section 7.1).

7. Discussion

In this section we discuss alternatives for improving the computational rpestftce of M-DPOP,
the possibility of faithful variations of other DCOP algorithms (ADOPT (Motliaé, 2005) and
OptAPO (Maliller & Lesser, 2004)), and the loss in utility for the agents thatazur due to the
transfer of payments to the bank, mentioning an approach to addressathiismr
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7.1 Algorithmic Alternatives for Improved Performance

M-DPOP scales very well with problem size as long as the induced width girti#em remains
low. This is a characteristic M-DPOP inherits from DPOP, on which it is bageat problems
with high induced width, DPOP/M-DPOP require producing, sending arthgttarge messages,
which may be unfeasible or undesirable. To mitigate this problem, severahegly to the basic
DPOP algorithm have been recently proposed. Some of these new algasihriiice optimality in
return for computational tractability, which makes them difficult to combine withC&\payment
mechanism in such a way that faithfulness be guaranteed. Neverthét&F30OP (Kumar et al.,
2007) and MB-DPOP (Petcu & Faltings, 2007) employ two different tearegdghat preserve the
optimality guarantees, and can be fitted to M-DPOP.

H-DPOP leverages the observation that many real problems contain drastiaints that sig-
nificantly reduce the space of feasible assignments. For example, in &Jdtinnot possible to
allocate an item to more than one bidder. In meeting scheduling, it is not polsiddé two dif-
ferent start times for a given meeting. Unfortunately, DPOP does notathkentage of the pruning
power of these hard constraints, and sends messages that explicidgemspall value combina-
tions, including many infeasible ones. H-DPOP addresses this issue lgyGCminstraint Decision
Diagrams (CDD) introduced by Cheng and Yap (2005) to compactly repré$TIL messages by
excluding unfeasible combinations. Performance improvements of sevdeais of magnitude can
be achieved, especially on highly constrained problems (Kumar et al.).2007

MB-DPOP (Petcu & Faltings, 2007) uses the idexytle cutset¢Dechter, 2003) to explore
parts of the search space sequentially. Dense parts of the problexpblmeed by iterating through
assignments of a subset of nodes designated as “cycle cuts”, anacfoassignment performing
a limited UTIL propagation similar to the one from DPOP. Easy parts of the proale explored
with one-shot UTIL messages, exactly as in DPOP. MB-DPOP offersaluasfigurable tradeoff
between the number of the messages exchanged, and the size of themgesassl the memory
requirements.

7.2 Achieving Faithfulness with other DCOP Algorithms

The partition principle, described in Section 4.3, is algorithm independengé qlilestion as to
whether another, optimal DCOP algorithm can be made faithful therefeobses, critically, around
whether the algorithm will satisfy the robustness requirement of the partiticiple. \WWe make the
following observations:

e Robustness in the first sense, i.e. that no aggntan influence the solution to the effi-
cient SCP without agem;, is always achievable at the cost of restarting computation on the
marginal problem with each agent removed in turn, just as we propossifrfple-M-DPOP.

e Robustness in the second sense, i.e. that no afyerdn influence the report(s) that the bank
receives about the negative externality tHatmposes on the rest of the system, conditioning
on the solutions to the main problem and the problem withbutrequires that the DCOP
algorithm terminates with every agent knowing the part of the solution thaldsam in
defining its own utility; the robustness property then follows by disaggregafipayments.

Thus, if one is content to restart the DCOP algorithm multiple times, then the sauie din
results that we provide for simple-M-DPOP are generally available. Thigssiple because of
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the already mentioned locality property of payments, which follows from thagdiggation of
the VCG payment across agents in Eq. (10) and because of the informaatiocommunication
structure of DCOP.

The other useful property of DCOP in the context of self-interestedtagand worth reem-
phasizing, is that it is possible to retain faithfulness even when one atgsst gpivotal role in
connecting the problem graph. Suppose that problRaiQ P(—A;), becomes disconnected with-
out A;. But, if this is the case then its optimal solution is represented by the union opthmeabd
solutions in each connected subcomponent of the problem, and no infanmatals to flow be-
tween disconnected components either for the purpose of solving thieprobfor the purpose of
reporting the components of agefif's tax.

We discuss in the following two sections the adaptation of the two other most potdaom-
plete DCOP algorithms: ADOPT (Madi et al., 2005) and OptAPO (Mailler & lees2004).

We discuss in the following two sections the adaptation of the two other most motdam-
plete DCOP algorithms: ADOPT (Modi et al., 2005) and OptAPO (Mailler & lees2004). We
consider the computational aspects of making these algorithms faithful, splgithe issues re-
lated to the efficient handling of replica variables and to providing foraieilisy from the main to
the marginal problems.

7.2.1 UsSING ADOPT FOR FAITHFUL, EFFICIENT SOCIAL CHOICE

ADOPT is a polynomial-space search algorithm for DCOP that is guaratefgnt the globally
optimal solution while allowing agents to execute asynchronously and in darale agents in
ADOPT make local decisions based on conservative cost estimates. RBI®®works on a DFS
arrangement, constructed as detailed in Section 3.1.1. Roughly speakimgaith process that is
executed in ADOPT is a backtrack search on the DFS tree.

Adaptation of ADOPT to the DCOP Model with Replicated Variables. ADOPT's complexity
is given by the number of messages, which is exponential in the height DiRBdree. Similar to
DPOP, using the DCOP model with replicated variables could artificially inertraes complexity
of the solving process. Specifically, the height of the DFS tree is inalasken using replicated
variables compared to the centralized problem graph. ADOPT can be mddiéggloit the special
structure of these replicated local variables in a similar way as DPOP. $pégifADOPT should
explore sequentially only the values of the original variable, and ignsigrasents where replicas
of the same variable take different values. This works by allowing just geatathat owns the
highest replica of each variable to freely choose values for the vari@ble agent then announces
the new value of the variable to all other agents owning replicas of the laribese other agents
would then consider just the announced value for their replicas, addathieicorresponding util-
ities, and continue the search process. Using this special handling oéphearvariables, the
resulting complexity is no longer exponential in the height of the distributed &S but in the
height of the DFS tree obtained by traversing the original problem gr&oin.example, in Fig-
ure 2, it is sufficient to explore the values bfZ, and directly assign these valuesitt and M
via VALUE messages, without trying all the combinations of their values. This redud&A’s
complexity from exponential in 6, to exponential in 3.

Reusability of Computation in ADOPT. Turning to the re-use of computation from the main to
the marginal problems, we note that because ADOPT uses a DFS arranighereit is easy to
identify which parts of the DFS arrangement for the main problem are impedsiban agent to
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manipulate, and therefore can be “reused” while computing the solution to tiggnalaproblem
with that agent removed. However, a major difference between DPORREOMPT is that in DPOP,
each agent stores its outgoibiJ IL message, and thus has available all the utilities contingent to
all assignments of the variables in the agent’'s separator. This makes iblpdses the agent to
simply reuse that information in all marginal economies where the structure @ffl$ proves that
this is safe. In contrast, ADOPT does not store all this information beaafue linear memory
policy. This in turn makes it impossible to reuse computation from the main probltra toarginal
problems. All marginal problems have to be solved from scratch, and teysetfiormance would
scale poorly as problem size increases and even in structured prohblelmassmeeting scheduling.

We see two alternatives for addressing this problem: (a) renounce limaory guarantees,
and use a caching scheme like for example in NCBB (Chechetka & Sy&#®&):2his would allow
for a similar reusability as in M-DPOP, where previously computated utilities eaxtvacted from
the cache instead of having to be recomputed. Alternatively, (b) oneaaseda scheme where
the previously computed best solution can be saved as a referenceulaseiuently used as an
approximation while solving the marginal problems. This could possibly prdwdker bounds and
thus allow for better pruning, such that some computation could be saved.tigxse alternatives
are outside the scope of this paper, and considered for future work.

7.2.2 USING OPTAPO FOR FAITHFUL, EFFICIENT SOCIAL CHOICE

OptAPO (Mailler & Lesser, 2004) is the other most popular algorithm for PC8milar to the
adaptations of DPOP and ADOPT to social choice, OptAPO can also be mtake advantage of
the special features of the DCOP model with replicated variables. Its coitypllen would not

be artificially increased by the use of this DCOP model. OptAPO has the paritizuleat it uses
“mediator agents” t@entralize subproblemand solve them in dynamic and asynchronous media-
tion sessions, i.e. partial centralization. The mediator agents then anrtbeiragesults to the other
agents, who have previously sent their subproblems to the mediators. rbbissp alone would
introduce additional possibility for manipulation in a setting with self interestedtagéiowever,
using the VCG mechanism addresses this concern and agents will chdueseaie correctly ac-
cording to the protocol.

As with ADOPT, the main issue with using OptAPO for faithful social choice isréusability
of computation from the main to the marginal problems. Specifically, considawtti@ solving the
main problem, a mediator agedt has centralized and aggregated the preferences of a number of
other agents, while solving mediation problems as dictated by the OptAPO prdsatsequently,
when trying to compute the solution to the marginal problem without aggrdll this computation
has to go to waste, as it could have been manipulated;byhile solving the main problem. Fur-
thermore, since OptAPQO'’s centralization process is asynchronousoaflicedriven as opposed
to structure-driven as in M-DPOP, it is unclear whethay computation from the main problem
could be safely reused in any of the marginal problems. To make matters,\egperimental stud-
ies (Davin & Modi, 2005; Petcu & Faltings, 2006) show that in many situatiopsARO ends up
relying on a single agent in the system to centralize and solve the whole profleis implies
that while solving the marginal problem without that agent, one can reuseffert from the main
problem.
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7.3 Loss in Utility due to Wasting the VCG Taxes

In the VCG mechanism, each agemntist utility is the difference between the utility it derives from
the optimal solution and the VCG tax it has to pay. The net utility of the whole godbagents is
the sum of individual net utilities of the agents, i.e. the total utility from the assayt of values
to variables but net of the total payment made by agents to the bahis. loss in utility while
using M-DPOP can be as great as 35% of the total utility of the optimal solutidhermeeting
scheduling domainAs the problem size increases, more and more money has to be burnt in the
form of VCG taxes. Similar waste has been observed by others; e.g., Ba#064), also in the
context of efficient social choice.

One cannot naively redistribute the payment back to the agents, foraessaiaring the pay-
ments equally across all agents would break faithfulness. For exampla, 4gwould prefer for
the other agents to make greater payments, in order to receive a larggmiapt from the bank.
The faithfulness properties of M-DPOP would unravel. On the other hahdn the problem has
inherent structure then it is possible to redistribute some fraction of the pagrback to agents.
This idea of careful redistribution was suggested in Bailey (1997), ahdegjuently extended by
Cavallo (2006), Guo and Conitzer (2007) and Moulin (2007). Anotper@ach, advocated for ex-
ample by Faltings (2004), is to simply preclude an agent from the problermamgier the payments
to this agent. All this work is in a centralized context.

An important issue for future work, then, is to study the budget surplusititaues to the bank
in M-DPOP and seek to mitigate this welfare loss in a setting of distributed implementatien
defer any further discussion of this topic to future work, in which we willeistigate methods to
leverage structure in the problem in redistributing the majority of these payrbaoksto agents
without compromising either efficiency or faithfulness.

8. Conclusions

We have developed M-DPOP, which is a faithful, distributed algorithm with intocsolve efficient
social choice problems in multi-agent systems with private information andrngefest. No agent
can improve its utility either by misreporting its local information or deviating from aspect of
the algorithm (e.g., computation, message-passing, information revelatioa.pnly centralized
component is that of a bank that is able to receive messages about paymércollect payments.
In addition to promoting efficient decisions, we minimize the amount of additicoralpcitational
effort required for computing the VCG payments by reusing effort ftbenmain problem. A first
set of experimental results shows that a significant amount of the computatjoined in all the
marginal problems can be reused from the main problem, sometimes aboveT8ir¢qrovides
near-linear scalability in massive, distributed social choice problems thvatlbeal structure so
that the maximal induced tree width is small. A second set of experiments pedarn problems
without local structure shows that as the problem density increasesnthendof effort required in-
creases, and the reusability of computation decreases. These regg#stshat M-DPOP is a very
good candidate for solving loose problems that exhibit local structutte that the induced width
remains small. In addition to addressing the need to reduce the total paymemptbyragents to the
bank, one issue for future work relates to the need to provide robssirtes faced witladversarial
or faulty agents: the current solution is fragile in this sense, with its equilibrium ptiegaelying
on other agents following the protocol. Some papers (Lysyanskaya &diojEoulos, 2006; Aiyer,
Alvisi, Clement, Dahlin, Martin, & Porth, 2005; Shneidman & Parkes, 2008Yide robustness to
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mixture models (e.g. some rational, some adversarial) but we are not aiearg work with these
mixture models in the context of efficient social choice. Another interesinegtibn is to find ways
to allow for approximate social choice, for example with memory-limited DPOP ti@mis (Petcu
& Faltings, 2005a) while retaining incentive properties, perhaps in appede equilibria. Future
research should also consider the design of distributed protocols ¢hatkarst against false-name
manipulations in which agents can participate under multiple pseudonyms (Mikalg 2004),
and seek to mitigate the opportunities for collusive behavior and the possililibylkiple equi-
libria that can exist in incentive mechanisms (Ausubel & Milgrom, 2006; Ande|rRaldman, &
Mansour, 2007; Katz & Gordon, 2006).
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