
Journal of Artificial Intelligence Research 32 (2008) 203-288 Submitted 11/07; published 05/08

New Islands of Tractability of Cost-Optimal Planning

Michael Katz, dugi@tx.technion.ac.il,

Carmel Domshlak, dcarmel@ie.technion.ac.il

Faculty of Industrial Engineering and Management,

Technion - Israel Institute of Technology, Haifa, Israel

Abstract

We study the complexity of cost-optimal classical planning over propositional state
variables and unary-effect actions. We discover novel problem fragments for which such op-
timization is tractable, and identify certain conditions that differentiate between tractable
and intractable problems. These results are based on exploiting both structural and syn-
tactic characteristics of planning problems. Specifically, following Brafman and Domshlak
(2003), we relate the complexity of planning and the topology of the causal graph. The
main results correspond to tractability of cost-optimal planning for propositional problems
with polytree causal graphs that either have O(1)-bounded in-degree, or are induced by
actions having at most one prevail condition each. Almost all our tractability results are
based on a constructive proof technique that connects between certain tools from planning
and tractable constraint optimization, and we believe this technique is of interest on its
own due to a clear evidence for its robustness.

1. Précis

AI problem solving is inherently facing a computational paradox. On the one hand, most
general tasks of AI reasoning are known to be very hard, and this to a degree that mem-
bership in NP by itself is sometimes perceived as “good news”. On the other hand, if the
intelligence is somehow modeled by a computation, and the computation is delegated to
computers, then artificial intelligence has to escape the traps of intractability as much as
possible. Planning is one of such reasoning tasks, corresponding to finding a sequence of
state-transforming actions that achieve a goal from a given initial state. It is well known that
planning is intractable in general (Chapman, 1987), and that even the “simple” classical
planning with propositional state variables is PSPACE-complete (Bylander, 1994).

While there were ups and downs in the interest of the planning community in the formal
complexity analysis of planning problems, it is of a growing understanding these days that
computational tractability is a fundamental issue in all problem solving. The pragmatic
reasons for that are twofold.

1. Many planning problems in the manufacturing and other process controlling systems
are believed to be highly structured, thus have a potential to allow for efficient plan-
ning if exploiting this structure (Klein, Jonsson, & Bäckström, 1998). In fact, if
this structure is not accounted for explicitly, a general-purpose planner is likely to
go on tour in an exponential search space even for tractable problems. Moreover,
since intractable theories provide no guarantees about the performance of engineer-
ing systems, in cases where such guarantees are required it is unavoidable to design

c©2008 AI Access Foundation. All rights reserved.

Katz & Domshlak

the controlled system in a complexity-aware manner so that planning for it will be
provably tractable (Williams & Nayak, 1996, 1997).

2. Computational tractability can be an invaluable tool even for dealing with problems
that fall outside all the known tractable fragments of planning. For instance, tractable
fragments of planning provide the foundations for most (if not all) rigorous heuristic
estimates employed in planning as heuristic search (Bonet & Geffner, 2001; Hoffmann,
2003; Helmert, 2006; Hoffmann & Nebel, 2001; Edelkamp, 2001). This is in particular
true for admissible heuristic functions for planning that are typically defined as the
optimal cost of achieving the goals in an over-approximating abstraction of the plan-
ning problem in hand. Such an abstraction is obtained by relaxing certain constraints
in the specification of the original problem, and the purpose of the abstraction is
to provide us with a provably tractable abstract problem (Haslum, 2006; Haslum &
Geffner, 2000; Haslum, Bonet, & Geffner, 2005).

Unfortunately, the palette of known tractable fragments of planning is still very limited,
and the situation is even more severe for tractable optimal planning. To our knowledge,
just less than a handful of non-trivial fragments of optimal planning are known to be
tractable. While there is no difference in theoretical complexity of regular and optimal
planning in the general case (Bylander, 1994), many of the classical planning domains are
provably easy to solve, but hard to solve optimally (Helmert, 2003). Practice also provides
a clear evidence for strikingly different scalability of satisficing and optimal general-purpose
planners (Hoffmann & Edelkamp, 2005).

In this work we show that the search for new islands of tractability of optimal classical
planning is far from being exhausted. Specifically, we study the complexity of optimal
planning for problems specified in terms of propositional state variables, and actions that
each changes the value of a single variable. In some sense, we continue the line of complexity
analysis suggested by Brafman and Domshlak (2003), and extend it from satisficing to
optimal planning. Our results for the first time provide a dividing line between tractable
and intractable such problems.

1.1 The UB (Optimal) Planning Problems

Problems of classical planning correspond to reachability analysis in state models with
deterministic actions and complete information. In this work we focus on state models
describable in a certain fragment of the SAS+ formalism (Bäckström & Nebel, 1995) that
allows only for propositional state variables and unary-effect actions. Following Bäckström
and Nebel (1995), in what follows we refer to this subclass of SAS+ as UB (short for
“unary-effect, binary-valued”). Somewhat surprisingly, even non-optimal planning for UB

is PSPACE-complete, that is, as hard as general propositional planning (Bylander, 1994).

Definition 1 A SAS+ problem instance is given by a quadruple Π = 〈V,A, I,G〉, where:

• V = {v1, . . . , vn} is a set of state variables, each associated with a finite domain
Dom(vi); the initial state I is a complete assignment, and the goal G is a partial
assignment to V , respectively.

204

Tractable Cost-Optimal Planning

• A = {a1, . . . , aN} is a finite set of actions, where each action a is a pair 〈pre(a), eff(a)〉
of partial assignments to V called preconditions and effects, respectively. Each action
a ∈ A is associated with a non-negative real-valued cost C(a). An action a is applicable
in a state s ∈ Dom(V) iff s[v] = pre(a)[v] whenever pre(a)[v] is specified. Applying
an applicable action a changes the value of each variable v to eff(a)[v] if eff(a)[v] is
specified.

A SAS+ problem instance belongs to the fragment UB of SAS+ iff all the state
variables in V are binary-valued, and each action changes the value of exactly one variable,
that is, for all a ∈ A, we have |eff(a)| = 1.

Different sub-fragments of UB can be defined by placing syntactic and structural re-
strictions on the actions sets of the problems. For instance, Bylander (1994) shows that
planning in UB domains where each action is restricted to have only positive preconditions
is tractable, yet optimal planning for this UB fragment is hard. In general, the seminal
works by Bylander (1994) and Erol, Nau, and Subrahmanian (1995) indicate that extremely
severe syntactic restrictions on single actions are required to guarantee tractability, or even
membership in NP. Bäckström and Klein (1991) consider syntactic restrictions of a more
global nature, and show that UB planning is tractable if no two actions have the same effect,
and the preconditions of no two actions require different values for the variables that are
not affected by these actions. Interestingly, this fragment of UB, known as PUBS, remains
tractable for optimal planning as well. While the characterizing properties of PUBS are
very restrictive, this result of Bäckström and Klein has provided an important milestone in
the research on planning tractability.

Given the limitations of syntactic restrictions observed by Bylander (1994), Erol et al.
(1995), and Bäckström and Klein (1991), more recent works have studied the impact of
posing structural and mixed structural/syntactic restrictions on the action sets. In the
scope of UB, most of these works relate the complexity of planning and the topological
properties of the problem’s causal graph structure.

Definition 2 The causal graph CG(Π) of a SAS+ problem Π = 〈V,A, I,G〉 is a digraph
over the nodes V . An arc (v, v′) belongs to CG(Π) iff v 6= v′ and there exists an action
a ∈ A changing the value of v′ while being preconditioned by some value of v, that is, both
eff(a)[v′] and pre(a)[v] are specified.

Informally, the immediate predecessors of v in CG(Π) are all those variables that directly
affect our ability to change the value of v, and it is evident that constructing the causal
graph CG(Π) of any given UB planning problem Π is straightforward. For instance, consider
the action set depicted in Figure 1a. It is easy to verify that all the actions in this set are
unary effect. The causal graph induced by this action set is depicted in Figure 1b. The
actions a1 and a2 are the only actions that change the values of v1 and v2, respectively, and
these actions have no preconditions outside the affected variables. Hence, the causal graph
contains no arcs incoming to the nodes v1 and v2. On the other hand, the actions changing
v3 and v4 are preconditioned (in both cases) by the values of v1 and v2, and thus both v3

and v4 have incoming arcs from v1 and v2.
Way before being used for the complexity analysis, causal graphs have been (sometimes

indirectly) considered in the scope of hierarchically decomposing planning tasks (Newell &

205

Katz & Domshlak

A pre(a) eff(a)

v1 v2 v3 v4 v1 v2 v3 v4

a1 0 1

a2 1

a3 0 0 1

a4 0 0 0 1

a5 1 1 0

v1

�� B
BB

BB
BB

B
v2

��~~||
||

||
||

v3 v4

v1

��

v2

��~~||
||

||
||

v3 v4

(a) (b) (c)

Figure 1: Example of two simple action sets that fit the characteristics of the UB fragment.
(a) Unary-effect action set A over propositional variables V = {v1, . . . , v4}, (b)
Causal graph induced by A, (c) Causal graph induced by A \ {a4}.

Simon, 1963; Sacerdoti, 1974; Knoblock, 1994; Tenenberg, 1991; Bacchus & Yang, 1994).
The first result relating between the complexity of UB planning and the structure of the
causal graph is due to Bäckström and Jonsson (1995, 1998b) that identify a fragment
of UB, called 3S, which has an interesting property of inducing tractable plan existence
yet intractable plan generation. One of the key characteristics of 3S is the acyclicity of
the causal graphs. A special case of 3S is also independently studied by Williams and
Nayak (1997) in the scope of incremental planning for more general SAS+ problems.

More recently, Brafman and Domshlak (2003) provide a detailed account of the com-
plexity of finding plans for UB problems with acyclic causal graphs. These results are most
closely related to the problems examined in our paper, and thus we survey them in more
details. For ease of presentation, we now introduce certain notation that is heavily used
throughout the paper.

– For each node v ∈ CG(Π), by In(v) and Out(v) we denote the in- and out-degrees of v,
respectively, and In(CG(Π))/Out(CG(Π)) stand for the maximal in-degree/out-degree
of the CG(Π) nodes.

– Assuming CG(Π) is connected1, we provide a special notation to the following topolo-
gies of acyclic causal graphs, also depicted in Figure 2. A causal CG(Π) is a

T tree if In(CG(Π)) ≤ 1, and there exists v ∈ V such that In(v) = 0.

I inverted tree if Out(CG(Π)) ≤ 1, and there exists v ∈ V such that Out(v) = 0.

P polytree if CG(Π) contains no undirected cycles. (For an example of a polytree that
is neither tree nor inverted tree see Figure 1c or Figure 2.)

S directed-path singly connected if there is at most one directed path from each node
v ∈ CG(Π) to any other node v′ ∈ CG(Π). (For an example of a directed-path
singly connected DAG see Figure 1b or Figure 2.)

1. If CG(Π) consists of a few connected components, then these components identify independent sub-
problems of Π that can be easily identified and treated separately.

206

Tractable Cost-Optimal Planning

Figure 2: Examples of the causal graphs topologies considered in the paper, along with the
inclusion relations between the induced fragments of UB.

In what follows, we use T, I, P, and S to refer to the corresponding fragments of UB, and
we use subscript/superscript b to refer to a fragment induced by the additional constraint
of in-degree/out-degree being bounded by a constant. It is not hard to verify that we
have T, I ⊂ P ⊂ S, with T ⊂ Pb and I ⊂ Pb; the complete inclusion hierarchy of these
sub-fragments of UB is shown in Figure 3a.

The key tractability result by Brafman and Domshlak (2003) corresponds to a polyno-
mial time plan generation procedure for Pb, that is, for UB problems inducing polytree
causal graphs with all nodes having O(1)-bounded indegree. In addition, Brafman and
Domshlak show that plan generation is NP-complete for the fragment S, and we note that
their proof of this claim can be easily modified to hold for Sb

b. These results of tractability
and hardness (as well as their immediate implications) are depicted in Figure 3b by the
shaded bottom-most and the transparent top-most free-shaped regions. The empty free-
shaped region in between corresponds to the gap left by Brafman and Domshlak (2003). This
gap has been recently closed by Gimenez and Jonsson (2008) that prove NP-completeness
of plan generation for P. We note that the proof of Gimenez and Jonsson actually carries
out to the I fragment as well, and so the gap left by Brafman and Domshlak (2003) is now
entirely closed.

1.2 Summary of Results

The complexity results by both Brafman and Domshlak (2003) and Gimenez and Jonsson
(2008) correspond to satisficing planning, and do not distinguish between the plans on the

207

Katz & Domshlak

(a) (b)

Figure 3: Inclusion-based hierarchy and complexity of plan generation for some UB prob-
lems with acyclic causal graphs. (a) The hierarchy of STRIPS fragments cor-
responding to tree, inverted tree, polytree, and directed-path singly connected
topologies of the causal graph, and (possibly) O(1) bounds on the causal graph
in-degree and/or out-degree. (b) Plan generation is tractable for the fragments
in the (bottom-most) shaded region, and NP-complete for all other depicted frag-
ments. The top-most and intermediate (transparent) regions correspond to the
results by Brafman and Domshlak (2003) and Gimenez and Jonsson (2008), re-
spectively.

basis of their quality. In contrast, we study the complexity of optimal plan generation for
UB, focusing on (probably the most canonical) cost-optimal (also known as sequentially-
optimal) planning. Cost-optimal planning corresponds to the task of finding a plan ρ ∈ A∗

that minimizes C(ρ) =
∑

a∈ρ C(a). We provide novel tractability results for cost-optimal
planning for UB, and draw a dividing line between the tractable and intractable such
problems. Almost all our tractability results are based on a proof technique that connects
between certain tools from planning and tractable constraint optimization. We strongly
believe that this “proof-technical” contribution of the paper is of interest on its own due
to a clear evidence for its robustness—our different algorithms exploit this proof technique,
but in very much different manners.

In the rest of this section we aim at providing an adequate description of our results for
readers who do not want to delve into formal details, or just prefer not to do it in the first
reading of the paper.2 Hence, most formal definitions, constructions, and proofs underlying
these results are given later, starting in Section 2.

2. We adopted this format from the seminal paper by Bylander (1994) as we feel the format has contributed
something to making that paper an extremely enjoyable read.

208

Tractable Cost-Optimal Planning

1.2.1 Cost-Optimal Planning for Pb

Following Brafman and Domshlak (2003), we relate the complexity of (cost-optimal) UB

planning and the topology of the causal graph. For that we consider the structural hier-
archy depicted in Figure 3a. We begin with considering cost-optimal planning for Pb—it
is apparent from Figure 3b that this is the most expressive fragment of the hierarchy that
is still a candidate for tractable cost-optimal planning. Our first positive result affirms
this possibility, showing that the complexity map of the cost-optimal planning for the UB

fragments in Figure 3a is identical to this for satisficing planning (that is, Figure 3b).

Our algorithm for Pb is based on compiling a given Pb problem Π into a constraint
optimization problem COPΠ = (X ,F) over variables X , functional components F , and the
global objective min

∑

ϕ∈F ϕ(X) such that

(I) COPΠ can be constructed in time polynomial in the description size of Π,

(II) the tree-width of the cost network of COPΠ is bounded by a constant, and the optimal
tree-decomposition of the network is given by the compilation process,

(III) if Π is unsolvable then all the assignments to X evaluate the objective function to
∞, and otherwise, the optimum of the global objective is obtained on and only on
the assignments to X that correspond to cost-optimal plans for Π,

(IV) given an optimal solution to COPΠ, the corresponding cost-optimal plan for Π can
be reconstructed from the former in polynomial time.

Having such a compilation scheme, we then solve COPΠ using the standard, poly-time algo-
rithm for constraint optimization over trees (Dechter, 2003), and find an optimal solution
for Π. The compilation is based on a certain property of the cost-optimal plans for Pb that
allows for conveniently bounding the number of times each state variable changes its value
along such an optimal plan. Given this property of Pb, each state variable v is compiled
into a single COP variable xv, and the domain of that COP variable corresponds to all
possible sequences of value changes that v may undergo along a cost-optimal plan. The
functional components F are then defined one for each COP variable xv, and the scope of
such a function captures the “family” of the original state variable v in the causal graph,
that is, v itself and its immediate predecessors in CG(Π). For an illustration, Figure 4a
depicts a causal graph of a P problem Π, with the family of the state variable v4 being
depicted by the shaded region, and Figure 4b shows the cost network induced by compiling
Π as a Pb problem, with the dashed line surrounding the scope of the functional component
induced by the family of v4. It is not hard to verify that such a cost network induces a tree
over variable-families cliques, and for a Pb problem, the size of each such clique is bounded
by a constant. Hence, the tree-width of the cost-network is bounded by a constant as well.

1.2.2 Causal Graphs and k-Dependence

While causal graphs provide important information about the structure of the planning
problems, a closer look at their definition reveals that some information used for defining
causal graphs actually gets hidden by this structure. To start with an example, let us
consider the multi-valued encoding of the Logistics-style problems (Helmert, 2006). In

209

Katz & Domshlak

these problems, each variable representing the location of a package has as its parents
in the causal graph all the variables representing alternative transportation means (i.e.,
tracks, planes, etc.), and yet, each individual action affecting the location of a package is
preconditioned by at most one such parent variable. (You cannot load/unload a package
into/from more than one vehicle.) This exemplifies the fact that, even if the in-degree of the
causal graph is proportional to some problem domain’s parameters, the number of variables
that determine applicability of each action may still be bounded by a constant.

In other words, while the causal graph provides an aggregate view on the independence
relationships between the problem variables, the individual dependencies of the problem
actions on the unaffected variables are suppressed by this view. Targeting these actual
individual dependencies of the actions, here we define a (tangential to the causal graph’s
topology) classification of the UB problems, and study the connection between this classifi-
cation and the computational tractability of both general and cost-optimal plan generation
for UB.

Definition 3 For any k ∈ Z
∗, and any SAS+ problem instance Π = (V,A, I,G), we say

that Π is k-dependent if it satisfies

max
a∈A

|{v ∈ V | pre(a)[v] 6= u ∧ eff(a)[v] = u}| ≤ k,

with “= u” standing for “unspecified”.

In other words, a SAS+ problem is k-dependent if no action in its action set depends
on more than k unaffected variables. Combining our two classifications of the problems,
for any structural fragment F of UB (such as, e.g., these in Figure 3), and any k ∈ Z

∗, by
F(k) we denote the set of all k-dependent problems within F.

Recall that the fragment P of UB is NP-hard even for satisficing planning (Gimenez
& Jonsson, 2008). Our main result is positive—at least for the most extreme (yet, says
the Logistics example above, not unrealistic) setting of k = 1, satisfying k-dependence does
bring us to an island of tractability P(1).

Similarly to our treatment of Pb, our algorithm for P(1) exploits the idea of compiling a
planning problem Π into a tractable constraint optimization problem COPΠ. However, the
planning-to-COP compilation scheme for P(1) is very much different from that devised for
Pb. In fact, this difference is unavoidable since our construction for Pb heavily relies on the
assumption that In(CG(Π)) = O(1), and we do not have this luxury in P(1). Instead, we
identify certain properties of the cost-optimal plan sets of the P(1) problems, and exploit
these properties in devising suitable planning-to-COP compilation schemes.

We begin with considering only P(1) problems with uniform-cost actions; the cost of a
plan for such a problem is proportional to the length of the plan3. We show that any such
solvable problem has a cost-optimal plan that makes all the changes of each variable to a
certain value using exactly the same (type of) action. And while devising a correct and
tractable planning-to-COP compilation scheme is more than a step away from identifying
this property of P(1), the latter provides a critical brick that everything else relies upon.
Relying on this property of P(1), each state variable v and each edge (v, v′) are uniquely

3. This is probably the origin for the term “sequential optimality”.

210

Tractable Cost-Optimal Planning

(a) (b) (c)

Figure 4: Cost networks induced by the planning-to-COP compilation schemes for P. (a)
Causal graph of a P problem Π, with the family of the state variable v4 being
depicted by the shaded region. (b) Cost network induced by compiling Π as a Pb

problem, with the dashed line surrounding the scope of the functional component
induced by the family of v4. (c) Cost network induced by compiling Π as a P(1)
problem, with the dashed lines surrounding the scopes of the four functional
components induced by the family of v4.

compiled into COP variables xv and xv
v′ (see Figure 4c). A certain set of functional compo-

nents are then defined for each COP variable xv. Both the domains of the COP variables
and the specification of the functional components are technically involved, and thus rel-
egated to later in the paper. It is important, however, to note already here that the cost
networks of such COPs are guaranteed to induce trees over cliques of size ≤ 3, and thus
having tree-width bounded by a constant. The reader can get an intuition of where these
“cliques of size ≤ 3” are coming from by looking on the example depicted in Figure 4c.

Unfortunately, the aforementioned helpful property of the P(1) problems with uniform-
cost actions does not hold for more general action-cost schemes for P(1). Turns out, how-
ever, that all problems in P(1) satisfy another property that still allows for devising a
general, correct, and tractable planning-to-COP scheme for P(1). Specifically, we show
that any solvable problem in P(1) has a cost-optimal plan that makes all the changes of
each variable using at most three types of action. The algorithm resulting from exploiting
this property is more complex and more costly than that devised for the P(1) problems with
uniform-cost actions, yet it is still poly-time. Interestingly, the cost networks of such COPs
are topologically identical to these for problems with uniform-cost actions, with the differ-
ence being in the domains of the COP variables, and in the specification of the functional
components.

Having read this far, the reader may rightfully wonder whether O(1)-dependence is not
a strong enough property to make the cost-optimal planning tractable even for some more
complex than polytree forms of the causal graph. Turns out that the dividing line between

211

Katz & Domshlak

k = 1 k = 2 k = 3 k = Θ(n)

Pb — — — P

P(k) P NPC

Sb
b NPC — — NPC

k = 1 k = 2 k = 3 k = Θ(n)

Pb — — — P

P(k) P NPC

Sb
b NPC — NPC

(a) (b)

Figure 5: Complexity of (a) cost-optimal and (b) satisficing plan generation for fragments
of UB. The “—” mark indicates that the complexity is implied by other results in
the row. All other shaded and regular cells correspond to the results obtained in
this work and in the past, respectively. Empty cells correspond to open questions.
Note that the only difference in our understanding of cost-optimal and satisficing
planning for the fragments in question is the complexity of planning for S(1).

tractable and intractable problems is much more delicate. Figure 5 summarizes our current
understanding of time complexity of both cost-optimal and satisficing plan generation for
the P and S fragments of UB. First, in this paper we show that even the satisficing planning
with directed-path singly connected, bounded in- and out-degree causal graphs is hard under
2-dependence, and that cost-optimal planning for this structural fragment of UB is hard
even for 1-dependent such problems. Note that the complexity of (both cost-optimal and
satisficing) plan generation for P(k) for k = O(1) remains an interesting open problem. An
additional question that remains open is the complexity of satisficing plan generation for
S(1).

1.3 Remarks

Our goal in this work has been identifying new islands of tractability for cost-optimal plan-
ning, and improving by that our understanding of what makes the planning problems hard
or easy to solve. Of our lesser interest was to make the poly-time algorithms practically
efficient by reducing their (quite prohibitive) polynomial time complexity. In fact, in some
places we intentionally sacrificed some possible optimizations to keep the already involved
constructions as apprehensible as possible. Therefore, it is more than likely that the time
complexity of our planning-to-COP algorithms can be further improved, or some conceptu-
ally different algorithmic ideas will be found more appropriate for the problems in question.
In addition, much more efficient algorithms may work for some special cases of the general
tractable families. For instance, in the paper we illustrate such possibility by presenting a
low poly-time algorithm for UB problems with tree causal graphs (that is, the T fragment)
and uniform-cost actions.

Of course, the reader may ask whether striving for practical efficiency in solving various
special fragments of planning is at all motivated. As our discussion at the beginning of the
paper suggests, we believe that the answer to this question is “yes”. While most of the
research on AI planning is rightfully devoted to solving general planning problems, many
tools developed and employed in that research rely on tractable fragments of planning. For

212

Tractable Cost-Optimal Planning

instance, if one works on devising an effective heuristic estimator for a planning problem
by projecting it to (or embedding it in) this or another “relaxed” problem, then she will be
happy to know that the latter can be solved in low poly-time. On the other hand, making
a tractable fragment also efficiently solvable in practical terms is probably worth the effort
only in face of some concrete “customer” of that fragment in practice.

2. Definitions and Notation

Starting with Definitions 1-3 from the previous section, in this section we introduce some
additional definitions and notation that are used throughout the paper.

In contrast to the well-known STRIPS formalism for propositional planning, we assume
that all our actions are “value changing”, and this in contrast to “value setting”. That
is, we have eff(a)[v] being specified only if pre(a)[v] is also specified, in which case we
have eff(a)[v] 6= pre(a)[v]. While in general this assumption requires an exponential time
translation, in case of unary-effect actions the translation takes only linear time. Given a
UB problem Π = 〈V,A, I,G〉, by Av ⊆ A we denote the actions that change the value of
v. Note that the unary-effectness of Π implies that Av1

, . . . , Avn is a partition of the problem
actions A. Considering the applicability of actions, in SAS+ it also helps to give a special
attention and notation to the action preconditions that are left unaffected by the action.
The customary name for such preconditions is prevail conditions (Bäckström & Klein,
1991). For example, having truck T and package P at location L are both preconditions of
loading P into T in L, but only the former is a prevail condition of this action because the
truck is still in L after loading P , while P is no longer there (but inside T).

Given a UB problem Π = 〈V,A, I,G〉, a variable subset V ′ ⊆ V , and an arbitrary
sequence of actions ρ ∈ A∗, by ρ↓V ′ we denote the order-preserving restriction of ρ to
the actions

⋃

v∈V ′ Av . If the restriction is with respect to a singleton set V ′ = {v}, then we
allow writing ρ↓{v} simply as ρ↓v. One of the key properties of cost-optimal plans for the
UB problems with directed-path singly connected causal graphs is immediately derivable
from Lemma 1 by Brafman and Domshlak (2003), and it is given by Corollary 1 below.
Henceforth, a valid plan ρ for a given problem Π is called irreducible if any subplan ρ′

of ρ is not a plan for Π, in the following sense4: Removal of any subset of (not necessarily
subsequent) actions from ρ makes the resulting plan either illegal, or its initial state is not
I, or its end state is not one of the states specified by G.

Lemma 1 (Brafman and Domshlak, 2003) For any solvable problem Π ∈ S over n
state variables, any irreducible plan ρ for Π, and any state variable v in Π, the number of
value changes of v along ρ is ≤ n, that is, |ρ↓v| ≤ n.

Corollary 1 For any solvable problem Π ∈ S over n state variables, any cost-optimal plan
ρ for Π, and any state variable v in Π, we have |ρ↓v| ≤ n.

4. The notion of irreducible plans was introduced by Kambhampati (1995), where it was called minimal

plans, and exploited for admissible pruning of partial plans during search. We adopt the terminology
suggested by Brafman and Domshlak (2003) to prevent ambiguity between minimal as irreducible and
minimal as optimal.

213

Katz & Domshlak

Given an S problem Π = 〈V,A, I,G〉, we denote the initial value I[v] of for each variable
v ∈ V by bv, and the opposite value by wv (short for, black/white). Using this notation
and exploiting Corollary 1, by σ(v) we denote the longest possible sequence of values
obtainable by v along a cost-optimal plan ρ, with |σ(v)| = n + 1, bv occupying all the
odd positions of σ(v), and wv occupying all the even positions of σ(v). In addition, by τ(v)
we denote a per-value time-stamping of σ(v)

τ(v) =

{

b1
v · w

1
v · b

2
v · w

2
v · · · b

j+1
v , n = 2j,

b1
v · w

1
v · b

2
v · w

2
v · · ·w

j
v, n = 2j − 1,

, j ∈ N.

The sequences σ(v) and τ(v) play an important role in our constructions both by them-
selves and via their prefixes and suffixes. In general, for any sequence seq, by �[seq] and
�[seq] we denote the set of all non-empty prefixes and suffixes of seq, respectively. In our
context, a prefix σ′ ∈ �[σ(v)] is called goal-valid if either the goal value G[v] is unspecified,
or the last element of σ′ equals G[v]. The set of all goal-valid prefixes of σ(v) is denoted by
�∗[σ(v)] ⊆ �[σ(v)]. The notion of goal-valid prefixes is also similarly specified for τ(v).

Finally, given a SAS+ problem Π = 〈V,A, I,G〉, a subset of state variables V ′ ⊆ V , and
an action sequence ρ ∈ A∗, we say that ρ is applicable with respect to V ′ if restricting
the preconditions and effects of the actions in ρ to the variables V ′ makes ρ applicable in I.

3. Cost-Optimal Planning for Pb

This section is devoted to the proof of tractability of cost-optimal planning for the problem
fragment Pb. We begin with describing our planning-to-COP scheme for Pb, and then prove
its correctness and complexity. Finally, we present a interesting subset of Pb for which cost-
optimal planning is not only tractable, but also provably solvable in low polynomial time.

3.1 Construction

Before we proceed with the details of the construction, we make an assumption that our
actions are fully specified in terms of the variables’ parents in the causal graph. If pred(v) ⊂
V denotes the set of all the immediate predecessors of v in the causal graph CG(Π), then
we assume that, for each action a ∈ Av, pre(a)[w] is specified for each w ∈ pred(v). While
in general such an assumption requires an exponential translation, this is not the case with
Pb. Let A⊲⊳ be such a translation of the original problem actions A. To obtain A⊲⊳, for
every variable v ∈ V , every action in Av is represented in A⊲⊳ by a set of actions that are
preconditioned by complete assignments to pred(v). If |pred(v)| = k, and the precondition
of a is specified only in terms of some 0 ≤ k′ ≤ k parents of v, then a is represented in
A⊲⊳ by a set of actions, each extending the precondition pre(a) by a certain instantiation
of the previously unspecified k − k′ parents of v, and having the cost C(a′) = C(a). Note
that the expansions of two or more original actions may overlap, and thus A⊲⊳ may contain
syntactically identical yet differently priced actions. Without loss of generality, we assume
that only a minimally-priced such clone is kept in A⊲⊳. The key point is that compiling A
into A⊲⊳ for the Pb problems is poly-time, as the procedure is linear in |A⊲⊳| = O(n2In(Π)+1).
Finally, the (straightforward to prove) Proposition 1 summarizes the correctness of our
assumption with respect to the cost-optimal planning for UB.

214

Tractable Cost-Optimal Planning

Proposition 1 For any UB problem Π = 〈V,A, I,G〉, the cost of the optimal plans for Π
is equal to this for Π⊲⊳ = 〈V,A⊲⊳, I,G〉, with optimal plans for Π being reconstructible in
linear time from the optimal plans for Π⊲⊳ and vice versa.

We now specify our compilation of a given Pb problem Π into a constraint optimization
problem COPΠ. The COP variable set X contains a variable xv for each planning variable
v ∈ V , and the domain Dom(xv) consists of all valid prefixes of τ(v). That is,

X = {xv | v ∈ V }

Dom(xv) = �
∗[τ(v)]

(1)

Informally, the domain of each variable xv contains all possible sequences of values that
the planning variable v may undergo along a cost-optimal plan. Now, for each planning
variable v with parents pred(v) = {w1, . . . , wk}, the set of COP functions F contains a
single non-negative, real-valued function ϕv with the scope

Qv = {xv, xw1
, . . . , xwk

} (2)

The purpose of these functions is to connect the value-changing sequences of v and these
of its parents pred(v). The specification of these functions is the more involved part of the
compilation.

First, for each planning variable v with pred(v) = ∅, and each of its goal-valid (time-
stamped) value-changing sequences τ ′ ∈ �∗[τ(v)], we set

ϕv(τ
′) =















0, |τ ′| = 1

C(awv), |τ ′| = 2
⌊

|τ ′|
2

⌋

· C(awv) +
⌊

|τ ′|−1
2

⌋

· C(abv
), otherwise

(3)

where eff(awv)[v] = {wv}, eff(abv
)[v] = {bv}, and C(a) = C(a) if a ∈ A, and ∞, otherwise.

It is not hard to verify that ϕv(τ
′) corresponds to the optimal cost of performing |σ′| − 1

value changes of v in Π.
Now, for each non-root variable v with pred(v) = {w1, . . . , wk}, k ≥ 1, we specify the

function ϕv as follows. For each goal-valid value-changing sequence τ ′ ∈ �∗[τ(v)] of v, and
each set of such goal-valid value-changing sequences {τ ′

1 ∈ �∗[τ(w1)], . . . , τ
′
k ∈ �∗[τ(wk)]}

of v’s parents, we want to set ϕv(τ
′, τ ′

1, . . . , τ
′
k) to the optimal cost of performing |τ ′| − 1

value changes of v, given that w1, . . . , wk change their values |τ ′
1| − 1, . . . , |τ ′

k| − 1 times,
respectively. In what follows, we reduce setting the value ϕv(τ

′, τ ′
1, . . . , τ

′
k) to solving a

single-source shortest path problem on an edge-weighted digraph G′
e(v) that slightly en-

hances a similarly-named graphical structure suggested by Brafman and Domshlak (2003).
Despite the substantial similarity, we provide our construction of G′

e(v) in full details to
save the reader patching the essential differences.

Given the value-changing sequences τ ′
1, . . . , τ

′
k as above, the digraph G′

e(v) is created in
three steps. First, we construct a labeled directed graph G(v) capturing information about
all sequences of assignments on pred(v) that can enable n or less value flips of v. The graph
G(v) is defined as follows:

1. G(v) consist of η = maxτ ′∈�∗[τ(v)] |τ
′| nodes.

215

Katz & Domshlak

2. G(v) forms a 2-colored multichain, i.e., (i) the nodes of the graph are colored with
black (b) and white (w), starting with black; (ii) there are no two subsequent nodes
with the same color; (iii) for 1 ≤ i ≤ η−1, edges from the node i are only to the node
i + 1.

Observe that such a construction of G(v) promises that the color of the last node will
be consistent with the goal value G[v] if such is specified.

3. The nodes of G(v) are denoted precisely by the elements of the longest goal-valid
value-changing sequence τ ′ ∈ �∗[τ(v)], that is, bi

v stands for the ith black node in
G(v).

4. Suppose that there are m operators in Av that, under different preconditions, change
the value of v from bv to wv. In this case, for each i, there are m edges from bi

v to
wi

v, and |Av | −m edges from wi
v to bi+1

v . Each such edge e is labeled with the cost of
the corresponding action, as well as with the prevail conditions of that action, which
is a k-tuple of the values of w1, . . . , wk. This compound label of e is denoted by l(e),
and the prevail condition and cost parts of l(e) are henceforth denoted by prv(e) and
C(e), respectively.

As the formal definition of G(v) is somewhat complicated, we provide an illustrating
example. Suppose that we are given a Pb problem over 5 variables, and we consider a
variable v with pred(v) = {u,w}, I[v] = bv, and G[v] = wv. Let

Av =







a1 : pre(a1) = {bv, bu,ww}, eff(a1) = {wv}, C(a1) = α1

a2 : pre(a2) = {wv , bu, bw}, eff(a2) = {bv}, C(a2) = α2

a3 : pre(a3) = {wv ,wu,ww}, eff(a3) = {bv}, C(a3) = α3

The corresponding graph G(v) is depicted in Figure 6a. Informally, the graph G(v)
captures information about all potential executions of the actions in Av along a cost-optimal
plan for Π. Each path from the source node of G(v) uniquely corresponds to one such
execution. Although the number of these alternative executions may be exponential in
n, their graphical representation via G(v) is compact—the number of edges in G(v) is
O(n · |Av|). Note that the information about the number of times each action in Av can be
executed is not captured by G(v). The following two steps add this essential information
into the graphical structure.

At the second step, the digraph G(v) = (V,E) is expanded into a digraph G′(v) =
(V ′, E′) by substituting each edge e ∈ E with a set of edges (between the same nodes),
but with the labels corresponding to all possible assignments of the elements of τ ′

1, . . . , τ
′
k

to prv(e). For example, an edge e ∈ E labeled with ‖bw1
bw2

, 10‖ might be substituted in
E′ with edges labeled with {‖b1

w1
b1

w2
, 10‖, ‖b1

w1
b2

w2
, 10‖, ‖b2

w1
b1

w2
, 10‖, . . . }. Finally, we set

V ′ = V ∪ {sv, tv}, and add a single edge labeled with the first elements of τ ′
1, . . . , τ

′
k and

zero cost (that is, ‖b1
w1

· · · b1
wk

, 0‖) from sv to the original source node b1
v, plus a single edge

labeled with the last elements of τ ′
1, . . . , τ

′
k and zero cost from the original sink node of G(v)

to tv. Informally, the digraph G′(v) can be viewed as a projection of the value-changing
sequences τ ′

1, . . . , τ
′
k on the base digraph G(v). Figure 6b illustrates G′(v) for the example

above, assuming τ ′
u = b1

u · w1
u · b2

u · w2
u · b3

u and τw = b1
w · w1

w · b2
w · w2

w.
At the third step, a digraph G′

e(v) = (V ′
e , E′

e) is constructed from G′(v) as follows.

216

Tractable Cost-Optimal Planning

b1
v

buww,α1// w1
v

bubw ,α2

$$

wuww,α3

:: b
2
v

buww,α1// w2
v

bubw,α2

$$

wuww,α3

:: b
3
v

buww,α1// w3
v

(a)

sv
b1

ub1
w,0 // b1

v

b1
uw1

w ,α1

&&

b1
uw2

w ,α1

88

b2
uw1

w ,α1

��

b2
uw2

w ,α1

HH

b3
uw1

w ,α1

��

b3
uw2

w ,α1

KK
w1

v

b1
ub1

w ,α2

��
b1

ub2
w ,α2

%%

b2
ub1

w ,α2

��

b2
ub2

w ,α2

��

b3
ub1

w ,α2

��

b3
ub2

w ,α2

��

w1
uw1

w,α3

99

w1
uw2

w,α3

HH

w2
uw1

w,α3

KK

w2
uw2

w,α3

LL
b2

v

b1
uw1

w,α1

&&

b1
uw2

w,α1

88

b2
uw1

w,α1

��

b2
uw2

w,α1

HH

b3
uw1

w,α1

��

b3
uw2

w,α1

KK
w2

v

b1
ub1

w,α2

��
b1

ub2
w,α2

%%

b2
ub1

w,α2

��

b2
ub2

w,α2

��

b3
ub1

w,α2

��

b3
ub2

w,α2

��

w1
uw1

w,α3

99

w1
uw2

w,α3

HH

w2
uw1

w,α3

KK

w2
uw2

w,α3

LL
b3

v

b1
uw1

w,α1

&&

b1
uw2

w,α1

88

b2
uw1

w,α1

��

b2
uw2

w,α1

HH

b3
uw1

w,α1

��

b3
uw2

w,α1

KK
w3

v

b3
uw2

w ,0 // tv

(b)

Figure 6: Example of the graphs (a) G(v), and (b) G′(v).

(i) The nodes V ′
e correspond to the edges of G′(v).

(ii) The edges (ve, ve′) ∈ E′
e correspond to all pairs of immediately consecutive edges

e, e′ ∈ E′ such that, for 1 ≤ i ≤ k, either prv(e)[wi] = prv(e′)[wi], or prv(e′)[wi]
appears after prv(e)[wi] along τ ′

i .

(iii) Each edge (ve, ve′) ∈ E′
e is weighted with C(e′).

Figure 7 depicts the graph G′
e(v) for our example.

Assuming α3 ≤ α2, the dashed edges correspond to the minimal-cost path of length 5
from the dummy source node b1

ub1
w. Note that, if the costs of actions Av is all we care

about, this path corresponds to the cost-optimal sequence of 5 value changes of v starting
from its initial value bv in Π. In fact, not only this path corresponds to such a cost-optimal
sequence, but it also explicitly describes the underlying sequence of actions from Av, as
well as the total cost of these actions. Finally, for all 0 ≤ i ≤ n, such minimal-cost paths
of length i can be determined by running on G′

e(v) a low-polynomial single-source shortest

217

Katz & Domshlak

b3
ub2

w, α2

��9
99

99
99

99
99

99
99

99
b3

ub2
w, α2

��9
99

99
99

99
99

99
99

99

b3
ub1

w, α2

%%LLLLLLLLLL

��9
99

99
99

99
99

99
99

99
b3

ub1
w, α2

%%LLLLLLLLLL

��9
99

99
99

99
99

99
99

99

b3
uw2

w, α1 w2
uw2

w, α3
// b3

uw2
w, α1 w2

uw2
w, α3

//__ b3
uw2

w, α1

��8
88

88
88

88
88

88
88

88

b3
uw1

w, α1

FF

w2

uw1
w, α3

99rrrrrrrrrr
// b3

uw1
w, α1

FF

w2

uw1
w, α3

99rrrrrrrrrr
// b3

uw1
w, α1

%%J
JJJJJJJJ

b1
ub1

w, 0

CC�����������������

99ttttttttt
//

%%J
JJJJJJJJ

��7
7

7
7

7
7

7
7

7

��/
//

//
//

//
//

//
//

//
//

//
//

//
b2

uw2
w, α1

BB�����������������
b2

ub2
w, α2

BB�����������������
// b2

uw2
w, α1

BB�
�

�
�

�
�

�
�

�
b2

ub2
w, α2

BB�����������������
// b2

uw2
w, α1

// b3
uw2

w, 0

b2
uw1

w, α1

99rrrrrrrrrr

BB�����������������

FF

JJ���
b2

ub1
w, α2

FF

BB�����������������

99rrrrrrrrrr
// b2

uw1
w, α1

99rrrrrrrrrr

BB�����������������

FF

JJ���
b2

ub1
w, α2

FF

BB�����������������

99rrrrrrrrrr
// b2

uw1
w, α1

99ttttttttt

b1
uw2

w, α1
//__

HH���������������������������������
w1

uw2
w, α3

HH���������������������������������

BB�
�

�
�

�
�

�
�

�

b1
uw2

w, α1
//

HH���������������������������������
w1

uw2
w, α3

HH���������������������������������

BB�����������������
b1

uw2
w, α1

CC�����������������

b1
uw1

w, α1

%%LLLLLLLLLL
//

99rrrrrrrrrr

FF

HH���������������������������������

JJ���

KK
�������������������

�������������������
������������������

�
w1

uw1
w, α3

JJ���

HH���������������������������������

FF

BB�����������������
b1

uw1
w, α1

%%LLLLLLLLLL
//

99rrrrrrrrrr

FF

HH���������������������������������

JJ���

KK
�������������������

�������������������
������������������

�
w1

uw1
w, α3

JJ���

HH���������������������������������

FF

BB�����������������
b1

uw1
w, α1

GG�������������������������

b1
ub2

w, α2

KK���

HH���������������������������������

BB�����������������
b1

ub2
w, α2

KK���

HH���������������������������������

BB�����������������

b1
ub1

w, α2

KK������
�������������������

�������������������
�������������

KK���

JJ���

HH���������������������������������

FF

BB�����������������
b1

ub1
w, α2

KK������
�������������������

�������������������
�������������

KK���

JJ���

HH���������������������������������

FF

BB�����������������

Figure 7: The graph G′
e(v) constructed from the graph G′(v) in Fugure 6b.

paths algorithm by Dijkstra (Cormen, Leiserson, & Rivest, 1990). This property of the
graph G′

e(v) provides us with the last building block for our algorithm for cost-optimal
planning for Pb.

The overall algorithm for cost-optimal planning for Pb that is based on the above con-
struction is depicted in Figure 8. Given a problem Π ∈ Pb, the algorithm compiles it into
the constraint optimization problem COPΠ, and solves it using a standard algorithm for
constraint optimization over tree constraint networks (Dechter, 2003). The specification of
COPΠ has already been explained inline. We believe it is already intuitive that this com-
pilation takes time polynomial in the description size of Π, but in the next section we also
prove it formally. Solving COPΠ using the algorithm for tree-structured constraint networks
can be done in time polynomial in the description size of COPΠ because

218

Tractable Cost-Optimal Planning

procedure polytree-k-indegree(Π = (V,A, I,G))

takes a problem Π ∈ Pb

returns an optimal plan for Π if solvable, and fails otherwise
create a set of variables X and set their domains as in Eq. 1
create a set of functions F = {ϕv | v ∈ V } with scopes as in Eq. 2
for each v ∈ V do

if pred(v) = ∅ then
specify ϕv according to Eq. 3

elseif pred(v) = {w1, . . . , wk} then
construct graph G(v)
for each k-tuple τ ′

1 ∈ �∗[τ(w1)], . . . , τ
′
k ∈ �∗[τ(wk)] do

construct graph G′(v) from graph G(v) and sequences τ ′
1, . . . , τ

′
k

construct graph G′
e(v) from graph G′(v)

for each goal-valid sequence τ ′ ∈ �∗[τ(v)] do
π := minimal-cost path of |τ ′| − 1 edges

from the source node 〈bw1
· · · bwk

〉 of G′
e(v)

if returned π then
ϕv(τ

′, τ ′
1, . . . , τ

′
k) := C(π)

else
ϕv(τ

′, τ ′
1, . . . , τ

′
k) := ∞

endif
endfor

endfor
endif

endfor
set COPΠ := (X ,F) with global objective min

∑

ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if

∑

ϕ∈F ϕ(x) = ∞ then return failure

extract plan ρ from x with C(ρ) =
∑

ϕ∈F ϕ(x)

return ρ

Figure 8: Algorithm for cost-optimal planning for Pb.

(i) the tree-width of the cost network of COPΠ is bounded by the same constant that
bounds the in-degree of the causal graph, and

(ii) optimal tree-decomposition of the COPΠ’s cost network is given by any topological
ordering of the causal graph.

3.2 Correctness and Complexity

We now proceed with proving both the correctness and the polynomial time complexity of
our algorithm for Pb. We begin with proving in Theorem 1 below a rather general property
of polytrees that helps us analyzing both the Pb fragment in question, as well as the P(1)
fragment considered later in the paper. We note that a special case of this property has

219

Katz & Domshlak

been already exploited in the past in the proof of Lemma 2 by Brafman and Domshlak
(2003), but, to our knowledge, this property has never been formulated as a generic claim
of Theorem 1. Throughout the paper we then demonstrate that this generic claim can be
helpful in numerous situations; the proof of Theorem 1 is in Appendix A, p. 245.

Theorem 1 Let G be a polytree over vertices V = {1, . . . , n}, and pred(i) ⊂ V denote the
immediate predecessors of i in G. For each i ∈ V , let Oi be a finite set of objects associated
with the vertex i, with the sets O1, . . . , On being pairwise disjoint. For each i ∈ V , let >i

be a strict partial order over Oi, and, for each j ∈ pred(i), let >i,j be a strict partial order
over Oi ∪ Oj .

If, for each i ∈ V, j ∈ pred(i), the transitively closed >i ∪ >i,j and >j ∪ >i,j induce
(strict) partial orders over Oi ∪ Oj , then so does the transitively closed

> =
⋃

i∈V



>i ∪
⋃

j∈pred(i)

>i,j





over O =
⋃

i∈V Oi.

Using Theorem 1 we now proceed with proving the correctness and complexity of the
polytree-k-indegree algorithm.

Theorem 2 Let Π be a planning problem in Pb, COPΠ = (X ,F) be the corresponding
constraint optimization problem, and x ∈ Dom(X) be an optimal solution for COPΠ with
∑

ϕ∈F ϕ(x) = α.

(I) If α < ∞, then a plan of cost α for Π can be reconstructed from x in time polynomial
in the description size of Π.

(II) If Π has a plan, then α < ∞.

Proof Sketch: The proof of Theorem 2 is in Appendix A. p. 247. To prove (I), given
a COP solution x = {τv1

, . . . , τvn} with
∑

ϕ∈F ϕ(x) = α < ∞, we construct a plan ρ for
Π with C(ρ) = α. This is done by constructing action sequences ρv for each v ∈ V , as
well as constructing partial orders over the elements of these sequences of each variable
and its parents. These orders are then combined and linearized (using Theorem 1) into
an action sequence ρ that is a valid plan for Π with C(ρ) =

∑

v∈V C(ρv) =
∑

v∈V ϕv(x) =
∑

ϕ∈F ϕ(x) = α. To prove (II), given a solvable problem Π and some irreducible plan ρ, we
construct a COP assignment xρ such that

∑

ϕ∈F ϕ(xρ) = C(ρ). Then, from α ≤
∑

ϕ∈F ϕ(xρ)
and C(ρ) < ∞, we obtain the claimed α < ∞. �

Theorem 3 Cost-optimal planning for Pb is tractable.

Proof: Given a planning problem Π ∈ Pb, we show that the corresponding constraint opti-
mization problem COPΠ can be constructed and solved in time polynomial in the description
size of Π.

Let n be the number of state variables in Π, and κ be the maximal node in-degree
in the causal graph CG(Π). In polytree-k-indegree, for each planning variable v ∈ V with
pred(v) = {w1, . . . , wk}, and each k-tuple τ ′

1 ∈ �∗[τ(w1)], . . . , τ
′
k ∈ �∗[τ(wk)], we

220

Tractable Cost-Optimal Planning

(i) construct the graph G′
e(v), and

(ii) use the Dijkstra algorithm to compute shortest paths from the source node of G′
e(v)

to all other nodes in that graph.

For each wi, we have τ(wi) = n, and thus the number of k-tuples as above for each v ∈ V
is O(nk). For each such k-tuple, the corresponding graph G′

e(v) can be constructed in
time linear in the number of its edges = O(n2k+2 · |Av|

2) = O(n2k+2 · 22k+2) (Brafman &
Domshlak, 2003). The time complexity of the Dijkstra algorithm on a digraph G = (N,E) is
O(E log (N)), and on G′

e(v) it gives us O
(

n2k+2 · 22k+2 · log
(

nk+1 · 2k+1
))

. Putting things
together, the complexity of constructing COPΠ is

O
(

n3κ+3 · 22κ+2 · log
(

nκ+1 · 2κ+1
))

. (4)

Applying a tree-decomposition of COPΠ along the scopes of its functional components we
arrive into an equivalent, tree-structured constraint optimization problem over n variables
with domains of size O(nκ+1). This COP is defined by the hard binary “compatibility”
constraints between the variables, and costs associated with the variables’ values. Such a
tree-structured COP can be solved in time O(xy2) where x is the number of variables and y
is an upper bound on the size of a variable’s domain (Dechter, 2003). Therefore, solving our
COPΠ can be done in time O(n2κ+3). As the expression in Eq. 4 dominates both O(n2κ+3),
and the time complexity of extracting a plan from the optimal solution to COPΠ (see the
proof of (I) in Theorem 2), the overall complexity of the algorithm polytree-k-indegree is
given by Eq. 4. And since in Pb we have κ = O(1), we conclude that the complexity of
polytree-k-indegree is polynomial in the description size of Π.

�

3.3 Towards Practically Efficient Special Cases

The polytree-k-indegree algorithm for Pb is polynomial, but is rather involved and its com-
plexity is exponential in In(CG(Π)). It is quite possible that more efficient algorithms for
Pb, or some of its fragments can be devised. Indeed, below we show that a simple algo-
rithm for T ⊂ Pb problems has already appeared in the literature in a different context,
but it was never checked to when (if at all) it provides cost-optimal solutions. This is
the TreeDT algorithm for preferential reasoning with tree-structured CP-nets (Boutilier,
Brafman, Domshlak, Hoos, & Poole, 2004), and it turns out that its straightforward adap-
tation for T planning problems always provides cost-optimal solutions for T problems with
uniform-cost actions. The algorithm is depicted in Figure 9, and it is not hard to verify that
its time complexity is linear in the length of the generated plan ρ—all it does is iteratively
“removing” the parts of the problem that can be safely ignored in the later steps, and then
applying a value-changing action on a lowest (in the causal graph) variable for which such
an action exists.

Theorem 4 Given a T problem Π with uniform-cost actions over n state variables,

(I) the algorithm tree-uniform-cost finds a plan if and only if Π is solvable,

(II) if the algorithm tree-uniform-cost finds a plan for Π, then this plan is cost-optimal,
and

221

Katz & Domshlak

procedure tree-uniform-cost(Π = (V,A, I,G))
takes a problem Π ∈ T with uniform-cost actions A
returns a cost-optimal plan for Π if Π is solvable, and fails otherwise

ρ = 〈〉, s := I, V ′ := V
loop

V ′ := remove-solved-leafs(s, V ′)
if V ′ = ∅ return ρ
else

find v ∈ V ′, a ∈ Av such that a ∈ A(s) and
∀u ∈ Desc(v, V ′) : Au ∩ A(s) = ∅

if not found return failure
ρ := ρ · 〈a〉, s := (s \ pre(a)) ∪ eff(a)

Figure 9: A simple algorithm for cost-optimal planning for T problems with uniform-cost
actions. The notation Desc(v, V ′) stands for the subset of V ′ containing the
descendants of v in CG(Π), and A(s) stands for the set of all actions applicable
in the state s.

(III) the time complexity of tree-uniform-cost is Θ(n2).

Proof: Without loss of generality, in what follows we assume that the actions of Π are all
unit-cost, that is, for each plan ρ for Π, C(ρ) = |ρ|.

(I) Straightforward by reusing as is the proof of Theorem 11 by Boutilier et al. (2004).

(II) Assume to the contrary that the plan ρ provided by tree-uniform-cost is not optimal,
that is, there exists a plan ρ′ such that |ρ′| < |ρ|. In particular, this implies existence of a
variable v such that |ρ′↓v | < |ρ↓v |. The semantics of planning implies that

|ρ′↓v | ≤ |ρ↓v | − (ǫv + 1) (5)

where ǫv = 1 if G[v] is specified, and 0 otherwise. Likewise, since the causal graph CG(Π)
forms a directed tree, there exists a variable v satisfying Eq. 5 such that, for all the descen-
dants u of v in CG(Π) holds:

|ρ′↓u| ≥ |ρ↓u| (6)

Let Ch(v) be the set of all the immediate descendants of v in CG(Π). By the construction
of tree-uniform-cost, we have that:

1. If Ch(v) = ∅, then |ρ↓v | ≤ ǫv, and this contradicts Eq. 5 as |ρ′↓v| is a non-negative
quantity by definition.

2. Otherwise, if Ch(v) 6= ∅, then, by the construction of tree-uniform-cost, there exists
u ∈ Ch(v) such that changing its value |ρ↓u| times requires changing the value of v
at least |ρ↓v| − ǫv times. In other words, there is no action sequence ̺ applicable

222

Tractable Cost-Optimal Planning

in I such that |̺↓u| ≥ |ρ↓u| while |̺↓v | < |ρ↓v| − ǫv. However, from Eq. 6 we have
|ρ′↓u| ≥ |ρ↓u|, and thus |ρ′↓v| has to be at least |ρ↓v| − ǫv. This, however, contradicts
Eq. 5.

Hence, we have proved that |ρ′↓v| ≥ |ρ↓v |, contradicting our assumption that |ρ′| < |ρ|.

(III) Implied by Theorems 12 and 13 by Boutilier et al. (2004). �

The requirement in Theorem 4 for all actions to have the same cost is essential. The
example below shows that in more general case the algorithm tree-uniform-cost is no longer
cost-optimal. Consider Π = (V,A, I,G) ∈ T with V = {v, u}, I = {bv, bu}, G = {bv ,wu},
and A = {a1, a2, a3, a4} with

eff(a1) = {wv}, pre(a1) = {bv}

eff(a2) = {bv}, pre(a2) = {wv}

eff(a3) = {wu}, pre(a3) = {bu,wv}

eff(a4) = {wu}, pre(a4) = {bu, bv}

C(a1) = C(a2) = C(a3) = 1

C(a4) = 4

On this problem, the tree-uniform-cost algorithm returns ρ = 〈a4〉 with C(ρ) = 4, while the
optimal plan is ρ′ = 〈a1, a3, a2〉 with C(ρ′) = 3.

4. Cost-Optimal Planning for P(1) with Uniform-Cost Actions

In this section we provide a polynomial time algorithm for cost-optimal planning for P(1)
problems with uniform-cost actions. We begin with showing that such problems exhibit an
interesting property, then we exploit this property for devising a planning-to-COP scheme
for these problems, and then prove the correctness and complexity of the algorithm.

We begin with providing some useful notation. Given a P(1) problem Π = (V,A, I,G),
for each v ∈ V , each w ∈ pred(v), and each α ∈ {bv ,wv}, β ∈ {bw,ww}, by aα|β we denote
the action a with eff(a)[v] = α and pre(a)[w] = β. Since Π is 1-dependent, the applicability
of aα|β is prevailed only by the value of w. It is important to keep in mind that aα|β is just
a notation; the action aα|β may not belong to the action set A of Π.

4.1 Post-Unique Plans and P(1) Problems

We now proceed with introducing the notion of post-unique action sequences that plays a
key role in our planning-to-COP compilation here.

Definition 4 Let Π = (V,A, I,G) be a UB problem instance. An action sequence ̺ ∈ A∗

is called post-unique if, for each pair of actions a, a′ ∈ ̺, we have eff(a) = eff(a′) only if
a = a′. That is, all the changes of each variable to a certain value along ̺ are performed
by the same (type of) action. The (possibly empty) set of all post-unique plans for Π is
denoted by Ppu(Π) (or simply Ppu, if the identity of Π is clear from the context).

223

Katz & Domshlak

The notion of post-unique action sequences is closely related to the notion of post-
unique planning problems (Bäckström & Klein, 1991; Bäckström & Nebel, 1995), but is
considerably weaker than the latter. While action sets of post-unique planning problems
are not allowed to contain two actions with the same effect, Definition 4 poses a similar
restriction only on action sequences, and not on the underlying planning problems. Still,
the property of post-uniqueness for plans is strong. In general, solvable problems in UB

may not exhibit post-unique plans at all. Turns out, however, that for the problems in P(1)
this is very much not the case.

Theorem 5 For any solvable P(1) problem Π = (V,A, I,G), we have Ppu(Π) 6= ∅. More-
over, if the actions A are uniform-cost, then Ppu(Π) contains at least one cost-optimal
plan.

Proof: As the correctness of the second claim immediately implies the correctness of the
first one, we focus on the proof the second claim. Given a P(1) problem Π = (V,A, I,G)
with uniform-cost actions, and plan ρ = 〈a1, . . . , am〉 for Π, we construct a sequence of
actions ρ∗ such that:

• ρ∗ is a post-unique plan for Π,

• C(ρ∗) = C(ρ).

This construction is two-step. First, for each v ∈ V , we map the subsequence ρ↓v =
〈ai1 , . . . , aik〉 into a post-unique sequence of actions ρ∗v = 〈a∗i1 , . . . , a

∗
ik
〉. Note that the

indexes i1, . . . , ik of the action elements of each ρ↓v are the global indexes of these actions
along ρ, and exactly the same indexes are used for marking the elements of the constructed
sequences ρ∗v. Having constructed the sequences ρ∗v1

, . . . , ρ∗vn
, we then merge them into a

single actions sequence ρ∗, and show that ρ∗ is a valid plan for Π. The two properties of ρ∗

as required above will then hold immediately because |ρ∗| = |ρ|, and post-uniqueness of ρ∗

is implied by the individual post-uniqueness of all its per-variable components ρ∗v.
The mapping of subsequences ρ↓v of ρ to the desired sequences ρ∗v for all variables v is

performed top-down, consistently with a topological ordering of the causal graph CG(Π).
This top-down processing allows us to assume that, when constructing ρ∗v, the subsequences
ρ∗w for all w ∈ pred(v) are already constructed. Given that, while mapping each ρ↓v =
〈ai1 , . . . , aik〉 to the corresponding ρ∗v, we distinguish between the following three cases.

(1) The subsequence ρ↓v is already post-unique.

In this case, we simply set ρ∗v to ρ↓v . In addition, we construct the following sets of
ordering constraints. First, we set a binary relation >v over the action elements of
ρ∗v = 〈a∗i1 , . . . , a

∗
ik
〉 to

>v= {a∗i < a∗j | a∗i , a
∗
j ∈ ρ∗v, i < j}. (7)

It is immediate from Eq. 7 that >v is a strict total order over the elements of ρ∗v as >v

simply follows the action indexing inherited by ρ∗v from plan ρ via ρ↓v .

Now, for each w ∈ pred(v), we set a binary relation >v,w over the elements of ρ∗v and
ρ∗w to

>v,w=

(

S

a∗
i
∈ρ∗v,a∗

j
∈ρ∗w

{a∗
i < a∗

j | i < j} ∪ {a∗
j < a∗

i | j < i}, pre(a)[w] is specified for some a ∈ ρ∗
v

∅, otherwise
.

(8)

224

Tractable Cost-Optimal Planning

For each w ∈ pred(v), the relation >v,w defined by Eq. 8 is a strict total order over its
domain because the ordering constraints between the elements of ρ∗v and ρ∗w are a subset
of the constraints induced by the total-order plan ρ over the (corresponding) actions
from ρ↓v and ρ↓w. For the same reason, from Eqs. 7 and 8, we have that, for each
w ∈ pred(v), >v ∪ >v,w is a strict total order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 7-8 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w defines
a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addition,
|ρ∗v| = |ρ↓v | implies that this action sequence provides to v the value G[v] if the latter
is specified.

(2) The subsequence ρ↓v is not post-unique, but the actions in ρ↓v are all prevailed by the
value of a single parent w ∈ pred(v).

Since ρ↓v is not post-unique, ρ↓v in this case has to contain instances of at least three
action types from {abv |bw

, abv |ww
, awv|bw

, awv|ww
}. Thus, in particular, it must be that

(a) |ρ↓w| ≥ 1, and

(b) for some β ∈ {bw,ww}, we have awv|β, abv |β ∈ ρ↓v.

Given that, we set ρ∗v = 〈a∗i1 , . . . , a
∗
ik
〉 to

∀1 ≤ j ≤ k : a∗ij =

{

awv |β, j is odd

abv |β, j is even
.

Both post-uniqueness of such ρ∗v, as well as its applicability with respect to v are straight-
forward. The ordering constraints >v are then set according to Eq. 7. Likewise, if
ρ∗w = 〈aj1 , . . . , ajl

〉, we set

>v,w=















⋃

a∗
i ∈ρ∗v

{a∗i < aj1}, β = bw
⋃

a∗
i ∈ρ∗v

{a∗i > aj1}, β = ww, l = 1
⋃

a∗
i ∈ρ∗v

{a∗i > aj1} ∪ {a∗i < aj2}, β = ww, l > 1

(9)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {w} are
set to empty sets.

The relation >v here is identical to this in case (1), and thus it is a strict total order
over the elements of ρ∗v. From Eq. 9, it is easy to verify that >v,w is also a strict partial
order over the union of the elements of ρ∗v and ρ∗w. Finally, as all the elements of ρ∗v
are all identically constrained with respect to the elements of ρ∗w, we have >v ∪ >v,w

forming a strict partial order over the union of the elements of ρ∗v and ρ∗w. (For all other
parents w′ ∈ pred(v), we simply have >v ∪ >v,w = >v.)

From Eqs. 7 and 9 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ↓v | implies that this action sequence provides to v the value G[v] if the latter
is specified.

225

Katz & Domshlak

(3) The subsequence ρ↓v is not post-unique, and the actions of ρ↓v are prevailed by more
than one parent of v.

The setting of this case in particular implies that there is a pair of v’s parents {u,w} ⊆
pred(v) such that awv|α, abv |β ∈ ρ↓v for some α ∈ {bu,wu}, β ∈ {bw,ww}. Given that,
we set ρ∗v to

∀1 ≤ j ≤ k : a∗ij =

{

awv |α, j is odd

abv |β, j is even
,

and, similarly to case (2), both post-uniqueness of ρ∗v, and its applicability with respect
to v are straightforward.

Here as well, the ordering constraints >v are set according to Eq. 7. Likewise, if
ρ∗w = 〈aj1, . . . , ajl

〉, and ρ∗u = 〈aj′
1
, . . . , aj′

l′
〉, we set >v,w according to Eq. 9 above, and

>v,u according to Eq. 10 below.

>v,u =















⋃

a∗
i
∈ρ∗v

{a∗i < aj′
1
}, α = bu

⋃

a∗
i ∈ρ∗v

{a∗i > aj′
1
}, α = wu, l′ = 1

⋃

a∗
i ∈ρ∗v

{a∗i > aj′
1
} ∪ {a∗i < aj′

2
}, α = wu, l′ > 1

(10)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w}
are set to empty sets.

The relation >v here is identical to this in cases (1-2), and relations >v,u and >v,w

are effectively identical to the relation >v,w in case (2). Thus, we have >v ∪ >v,u and
>v ∪ >v,w forming strict partial orders over the unions of the elements of ρ∗v and ρ∗u,
and ρ∗v and ρ∗w, respectively.

From Eqs. 7, 9, and 10 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v}∪pred(v). In addition,
|ρ∗v| = |ρ↓v | implies that this action sequence provides to v the value G[v] if the latter
is specified.

As the last step, we now prove that, for each v ∈ V and each w ∈ pred(v), we have
>w ∪ >v,w being a strict partial order over the union of the elements of ρ∗w and ρ∗v.

- If >v,w is constructed according to Eq. 8, then >w ∪ >v,w is a subset of the constraints
induced by plan ρ over the (corresponding to ρ∗v and ρ∗w) actions from ρ↓v and ρw.

- Otherwise, if >v,w is constructed according to Eq. 9 or (in this case, equivalent)
Eq. 10, then >v,w (i) addresses at most two elements of ρw, (ii) orders these elements
consistently with >w.

In both cases, the argued properties of >w ∪ >v,w implies that it forms a strict partial order
over the union of the elements of ρ∗v and ρ∗w.

Until now, we have specified the sequences ρ∗v, the orders >v induced by these sequences,
the orders >v,w, and proved that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders

226

Tractable Cost-Optimal Planning

over their domains. This construction allows us to apply now Theorem 1 to the (considered
as sets) sequences ρ∗v and orders >v and >v,w, proving that

>=
⋃

v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρ∗v1
, . . . , ρ∗vn

. Putting thing together, the
above implies that any linearization ρ∗ of > is a plan for Π, and post-uniqueness of all its
subsequences ρ∗v1

, . . . , ρ∗vn
then implies ρ∗ ∈ Ppu(Π). Moreover, if ρ is an optimal plan for

Π, then |ρ∗| = |ρ| implies the optimality of ρ∗. �

4.2 Construction, Correctness, and Complexity

The main impact of Theorem 5 on our planning-to-COP scheme for uniform-cost P(1) is
that we can now restrict our attention to post-unique plans only. Given that, the constraint
optimization problem COPΠ = (X ,F) for a uniform-cost problem Π = (V,A, I,G) ∈ P(1)
is specified as follows.

The variable set X contains a variable xv for each planning variable v ∈ V , and a
variable xw

v for each edge (w, v) ∈ CG(Π). That is,

X = X V ∪ X E ,

X V = {xv | v ∈ V }

X E = {xw
v | (w, v) ∈ CG(Π)}

(11)

For each variable xv ∈ X V , the domain Dom(xv) consists of all goal-valid prefixes of
σ(v). For each variable xw

v ∈ X E , the domain Dom(xw
v) consists of all triples of integers

[[δw, δb, η]] satisfying Eq. 12.

Dom(xv) = �
∗[σ(v)]

Dom(xw
v) = {[[δw, δb, η]] | δw, δb ∈ {0, 1}, 0 ≤ η ≤ n}

(12)

The semantics of Eq. 12 is as follows. Let {w1, . . . , wk} be an arbitrary fixed ordering
of pred(v). If xv takes the value σv ∈ Dom(xv), then v is forced to provide the sequence
of values σv. In turn, if xwi

v takes the value [[δw, δb, η]], then η corresponds to the number
of value changes of v, δw = 1 (δb = 1) forces the subset of parents {w1, . . . , wi} ⊆ pred(v)
to support (that is, prevail) all the changes of v to wv (respectively, to bv), and δw = 0
(δb = 0) relieves this subset of parents {w1, . . . , wi} from that responsibility.

For each variable x ∈ X , the set F contains a non-negative, real-valued function ϕx with
the scope

Qx =























{xv}, x = xv, k = 0

{xv, x
wk
v }, x = xv, k > 0

{xw1
v , xw1

}, x = xw1
v , k > 0

{x
wj
v , x

wj−1

v , xwj
}, x = x

wj
v , 1 < j ≤ k

(13)

where pred(v) = {w1, . . . , wk} (and k = 0 means pred(v) = ∅). Proceeding now with
specifying these functional components F of COPΠ, first, for each xv with pred(v) = ∅, and

227

Katz & Domshlak

for each σv ∈ �∗[σ(v)], we set ϕxv(σv) to

ϕxv (σv) =























0, |σv| = 1,

1, (|σv| = 2) ∧ (awv ∈ Av),

|σv| − 1, (|σv| > 2) ∧ (awv , abv
∈ Av),

∞, otherwise

(14)

In turn, for each planning variable v ∈ V with pred(v) = {w1, . . . , wk}, k > 0, the
function ϕxv is set to

ϕxv (σv, [[δw, δb, η]]) =























0, (|σv | = 1) ∧ ([[δw, δb, η]] = [[0, 0, 0]]),

1, (|σv | = 2) ∧ ([[δw, δb, η]] = [[1, 0, 1]]),

|σv| − 1, (|σv | > 2) ∧ ([[δw, δb, η]] = [[1, 1, |σv | − 1]]),

∞, otherwise

(15)

The functions ϕxv capture the, marginal over the actions Av, cost of providing a sequence
σv of value changes of v in Π, given that (in case of Eq. 15) the parents of v are “ready to
support these value changes”. In specifying the remaining functional components we use
an “indicator” function ϕ specified in Eq. 16.

ϕ ([[δw, δb, η]] , σw) =

8

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

:

0, δw = 0, δb = 0,

0, δw = 1, δb = 0, (awv|bw
∈ Av) ∨ ((|σw| > 1) ∧ (awv|ww

∈ Av)),

0, δw = 0, δb = 1, (abv |bw
∈ Av) ∨ ((|σw| > 1) ∧ (abv |ww

∈ Av)),

0, δw = 1, δb = 1, (awv|bw
, abv |bw

∈ Av) ∨ ((|σw| > 1) ∧ (awv |ww
, abv |ww

∈ Av)),

0, δw = 1, δb = 1, |σw| ≥ η, awv |bw
, abv |ww

∈ Av,

0, δw = 1, δb = 1, |σw| > η, awv |ww
, abv |bw

∈ Av,

∞, otherwise

(16)

The semantics of ϕ is that, for each planning variable v ∈ V , each w ∈ pred(v), and each
([[δw, δb, η]] , σw) ∈ Dom(xw

v)×Dom(xw), we have ϕ([[δw, δb, η]] , σw) = 0 if the value sequence
σw of w can support all the changes of v to wv (if δw = 1) and all the changes of v to bv (if
δb = 1), out of η value changes of v in Π. Given this indicator function ϕ, for each v ∈ V ,
the functional component ϕx

w1
v

is specified as

ϕx
w1
v

([[δw, δb, η]] , σw1
) = ϕ ([[δw, δb, η]] , σw1

) , (17)

and the rest of the functions ϕx
w2
v

, . . . , ϕx
wk
v

are specified as follows. For each 2 ≤ i ≤ k,

the value of the function ϕ
x

wj
v

at the combination of [[δw, δb, η]] ∈ Dom(xwi
v), [[δ′w, δ′b, η

′]] ∈

Dom(x
wi−1

v), and σwi
∈ Dom(xwi

) = �∗[σ(wi)] is specified as

ϕx
wi
v

`

[[δw, δb, η]] ,
ˆ̂

δ
′
w, δ

′
b, η

′˜̃
, σwj

´

=

(

ϕ
`

[[δw − δ′w, δb − δ′b, η]] , σwj

´

, η = η′ ∧ δw ≥ δ′w ∧ δb ≥ δ′b

∞ otherwise
(18)

228

Tractable Cost-Optimal Planning

procedure polytree-1-dep-uniform(Π = (V,A, I,G))

takes a problem Π ∈ P(1) with uniform-cost actions A
returns a cost-optimal plan for Π if Π is solvable, and fails otherwise

create a set of variables X as in Eqs. 11-12
create a set of functions F = {ϕx | x ∈ X} with scopes as in Eq. 13
for each x ∈ X do

specify ϕx according to Eqs. 14-18
endfor
set COPΠ := (X ,F) with global objective min

∑

ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if

∑

ϕ∈F ϕ(x) = ∞ then return failure

extract plan ρ from x with C(ρ) =
∑

ϕ∈F ϕ(x)

return ρ

Figure 10: Algorithm for cost-optimal planning for P(1) problems with uniform-cost ac-
tions.

This finalizes the construction of COPΠ, and this construction constitutes the first three
steps of the algorithm polytree-1-dep-uniform in Figure 10(a). The subsequent steps of this
algorithm are conceptually similar to these of the polytree-k-indegree algorithm in Section 3,
with the major difference being in the plan reconstruction routines. It is not hard to verify
from Eqs. 11-13, and the fact that the causal graph of Π ∈ P(1) forms a polytree that

(i) for each variable x ∈ X , |Dom(x)| = poly(n),

(ii) the tree-width of the cost network of F is ≤ 3, and

(iii) the optimal tree-decomposition of the COPΠ’s cost network is given by any topological
ordering of the causal graph that is consistent with the (arbitrary yet fixed at the time
of the COPΠ’s construction) orderings of each planning variable’s parents in the causal
graph.

For an illustration, we refer the reader to Figure 4 (p. 211) where Figure 4(a) depicts
the causal graph of a problem Π ∈ P(1), and Figure 4(c) depicts the cost network of the
corresponding COPΠ. The top-most variables and the cliques in the cost network correspond
to the functional components of COPΠ.

We now proceed with proving the correctness and complexity of the polytree-1-dep-

uniform algorithm.

Theorem 6 Let Π be a P(1) problem with uniform-costs actions, COPΠ = (X ,F) be the
corresponding constraint optimization problem, and x be an optimal assignment to X with
∑

ϕ∈F ϕ(x) = α.

(I) If α < ∞, then a plan of cost α for Π can be reconstructed from x in time polynomial
in the description size of Π.

(II) If Π has a plan, then α < ∞.

229

Katz & Domshlak

Proof Sketch: The proof of Theorem 6 is in Appendix A. p. 249. The overall flow of the
proof is similar to this of the proof of Theorem 2, yet the details are very much different.
The main source of the proof’s complexity is that, in proving (I), we must distinguish
between several cases based on the roles taken by the (up to) two parents supporting the
value changes of each variable in question. �

Theorem 7 Cost-optimal planning for P(1) with uniform cost actions is tractable.

Proof: Given a planning problem Π ∈ P(1) with uniform cost actions, we show that the
corresponding constraint optimization problem COPΠ can be constructed and solved in time
polynomial in the description size of Π.

Let n be the number of state variables in Π. In polytree-1-dep-uniform, we first con-
struct the constraint optimization problem COPΠ over Θ(n2) variables X with domain sizes
bounded by O(n), and Θ(n2) functional components F , each defined over at most three
COP variables. The construction is linear in the size of the resulting COP, and thus is
accomplished in time O(n5).

Applying then to COPΠ a tree-decomposition along the scopes of the functional com-
ponents F , we arrive into an equivalent, tree-structured constraint optimization problem
over Θ(n2) variables with domains of size O(n3). Such a tree-structured COP can be solved
in time O(xy2) where x is the number of variables and y is an upper bound on the size
of a variable’s domain (Dechter, 2003). Therefore, solving COPΠ can be done in time
O(n8). As this dominates both the time complexity of constructing COPΠ, and the time
complexity of extracting a plan from the optimal solution to COPΠ (see the proof of (I) in
Theorem 6), the overall complexity of the algorithm polytree-1-dep-uniform is O(n8), and
therefore polynomial in the description size of Π. �

5. Cost-Optimal Planning for P(1) with General Action Costs

We now consider cost-optimal planning for P(1) problems without the constraints on actions
to be all of the same cost. While Theorem 5 in Section 4 shows that any solvable P(1)
problem Π has at least one post-unique plan, it is possible that no such plan is cost-optimal
for Π, and Example 1 below affirms this possibility.

Example 1 Let Π = 〈V,A, I,G〉 be the P(1) problem instance over variables V = {v1, . . . , v5},
I = {0, 0, 0, 0, 0}, G = {v1 = 0, v2 = 1, v3 = 1}, and actions A as depicted in Figure 11a.
The polytree causal graph of Π is shown in Figure 11b, and it is easy verify from the table
in Figure 11a that Π ∈ P(1).

Ignoring the non-uniformity of the action costs, this problem has a post-unique cost-
optimal plan ρ = 〈a4 ·a2 ·a1 ·a5 ·a3 ·a4〉. However, considering the action costs as in the last
column in Figure 11a, then the cost of each optimal plan, such as ρ′ = 〈a4 ·a2 ·a1 ·a5 ·a3 ·a7 ·a6〉
will be C(ρ′) = 16 < 24 = C(ρ). Note that the plan ρ′ is not post-unique because it changes
the value of v3 to 1 using both actions a4 and a6. In fact, any plan for this problem will
have at least two action instances that change the value of v3 to 1. However, the cheap such
action a6 cannot be applied twice because it requires v4 = 1, and the only action a5 that
sets v3 = 0 cannot be applied after a6—a5 requires v4 = 0, and there is no action that has

230

Tractable Cost-Optimal Planning

A pre(a) eff(a)
C(a)

v1 v2 v3 v4 v5 v1 v2 v3 v4 v5

a1 1 0 1 1.0

a2 0 1 1 1.0

a3 1 0 0 1.0

a4 0 0 1 10.0

a5 1 0 0 1.0

a6 0 1 1 1.0

a7 0 1 1.0

v4

��>
>>

>>
>

v5

����
��

��

v3

��
v1

��
v2

(a) (b)

Figure 11: Action set and the causal graph for the problem in Example 1.

this effect. Therefore, any post-unique plan for this problem will have to invoke twice the
action a4, and thus will have cost of at least 2 · C(a4) = 20.

Fortunately, we show that any solvable P(1) problem is guaranteed to have a cost-
optimal plan satisfying a certain “relaxation” of action sequence post-uniqueness that still
allows us to devise a (more costly than polytree-1-dep-uniform) planning-to-COP scheme for
general P(1) problems.

5.1 Post-3/2 Plans and P(1) Problems

We now proceed with introducing the notion of post-3/2 property for action sequences that
relaxes the post-uniqueness property exploited in the previous section.

Definition 5 Let Π = (V,A, I,G) be a UB problem instance. An action sequence ̺ ∈ A∗

is called post-3/2 if, for each v ∈ V , a ∈ ̺↓v, there exist α 6= β ∈ {bv,wv}, a parent
w ∈ pred(v), γ, δ ∈ {bw,ww}, and ξ ∈ {bu,wu | u ∈ pred(v)}, such that a ∈ {aα|γ , aβ|δ, aα|ξ}.
That is, all the changes of each variable are done using at most three types of actions which
are prevailed by at most two parents, and if u is different from w, then different actions
prevailed by w perform different value changes of v.

The (possibly empty) set of all post-3/2 plans for Π is denoted by P3/2(Π) (or simply
P3/2, if the identity of Π is clear from the context).

To illustrate the rather involved definition of post-3/2 plans, consider the following four
action sequences of four actions each. The only value changes made by these sequences are
changes of variable v with pred(v) = {x, y, z}.

• 〈awv |bx
· abv|wx

· awv|bx
· abv |by

〉 is post-3/2 because it uses three types of actions, each
prevailed by one of the two parents x, y.

• 〈awv |bx
· abv |by

· awv|bx
· abv |by

〉 is post-3/2 because it uses two types of actions, each
prevailed by one of the two parents x, y.

231

Katz & Domshlak

• 〈awv |bx
· abv |by

· awv|bx
· abv |bz

〉 is not post-3/2 because it uses three types of actions,
each prevailed by one of the three parents x, y, z.

• 〈awv |bx
· abv |wx

· awv |by
· abv|by

〉 is not post-3/2 because it uses four types of actions,
each prevailed by one of the two parents x, y.

It is not hard to verify that post-3/2 is a relaxation of post-uniqueness—if a plan is
post-unique, then it is post-3/2, but not necessarily the other way around. Turns out that,
for any P(1) problem Π, this relaxed property is guaranteed to be satisfied by at least one
cost-optimal plan for Π.

Theorem 8 For every solvable P(1) problem Π = (V,A, I,G), the plan set P3/2(Π) con-
tains at least one cost-optimal plan.

Proof Sketch: The proof of Theorem 8 is in Appendix A, pp. 255-278. This proof is
flow-wise similar to the proof of Theorem 5, but is technically much more involved. Here
we provide only a sketch of the proof. We note, however, that many building blocks of this
proof are then used in the correctness proof for our planning-to-COP algorithm (notably,
in Theorem 9).

Given a P(1) problem Π = (V,A, I,G), and cost-optimal plan ρ for Π, we construct a
post-3/2 plan ρ∗ for Π, such that C(ρ∗) = C(ρ). In nutshell, first, for each v ∈ V , we map
the subsequence ρ↓v = 〈a1, . . . , ak〉 of ρ into a sequence of actions ρ∗v = 〈a∗1, . . . , a

∗
k〉 that

(i) satisfy the post-3/2 property, and (ii) C(ρ∗v) ≤ C(ρ↓v). Then, we merge the constructed
sequences {ρ∗v}v∈V into ρ∗, and show that ρ∗ is a valid plan for Π. The two properties of ρ∗

as required above will then hold immediately because C(ρ∗) = C(ρ), and ρ∗ being post-3/2
is implied by all its per-variable components ρ∗v being post-3/2.

For each variable v ∈ V , with pred(v) = ∅, we set ρ∗v = ρ↓v. In turn, for each variable
v ∈ V with pred(v) 6= ∅, given {σw}w∈pred(v), such that |σw| = |ρ↓w| + 1, let aα

i be the i’th
cheapest action that changes variable v to α ∈ {bv,wv} and prevailed by some value from
{σw}w∈pred(v) (that is, applicable given the sequences of values {σw}w∈pred(v) respectively
obtained by the parents of v). The proof considers (in groups) all possible settings for
aw

1 = awv |γ , aw
2 = awv |µ, ab

1 = abv|δ, ab
2 = abv |ν (that is, all possible combinations of

{γ, µ, δ, ν} ⊆
⋃

w∈pred(v){bw,ww}) on a case-by-case basis. Specifically, the cases correspond
to

(I) γ = δ ∈ {bw,ww}.

(II) γ ∈ {bw,ww}, δ ∈ {bu,wu}, such that w 6= u.

(III) γ = bw, δ = ww; here we distinguish between a few cases based on σw and σv.

(1) |ρ↓v | = 2y + 1, |σw| = 2x, |σw| ≤ |ρ↓v |.

(2) |ρ↓v | = 2y + 1, |σw| = 2x, |σw| > |ρ↓v |.

(3) |ρ↓v | = 2y, |σw| = 2x, |σw| < |ρ↓v|.

(4) |ρ↓v | = 2y, |σw| = 2x, |σw| ≥ |ρ↓v|.

(5) |ρ↓v | = 2y + 1, |σw| = 2x + 1, |σw| < |ρ↓v|.

(6) |ρ↓v | = 2y + 1, |σw| = 2x + 1, |σw| ≥ |ρ↓v|.

232

Tractable Cost-Optimal Planning

(7) |ρ↓v | = 2y, |σw| = 2x + 1, |σw| ≤ |ρ↓v |.

(8) |ρ↓v | = 2y, |σw| = 2x + 1, |σw| > |ρ↓v |.

(IV) γ = ww, δ = bw; here as well we distinguish between eight cases that specification-wise
almost identical to these of (III), but lead to different settings of ρ∗v.

�

5.2 Construction, Correctness, and Complexity

Given a post-3/2 action sequence ̺ from A and a variable v ∈ V , we can distinguish between
the following exhaustive roles of each parent w ∈ pred(v) with respect to v along ̺.

R1 All the actions in ̺ that change the value of v are supported by the same value of w.
That is, for some γ ∈ {bw,ww}, if a ∈ ̺v, then a ∈ {abv |γ , awv |γ}.

R2 All the actions in ̺ that change the value of v to wv are supported by the same value
of w, and all the actions in ̺ that change the value of v to bv are supported by another
value of w.
That is, for some γ 6= δ ∈ {bw,ww}, if a ∈ ̺v, then a ∈ {abv |γ , awv |δ}.

R3 All the actions in ̺ that change the value of v to wv are supported by the same value
of w, and none of the actions in ̺ that change the value of v to bv are supported by w.
That is, for some γ ∈ {bw,ww} and δ 6∈ {bw,ww}, if a ∈ ̺v, then a ∈ {abv |δ, awv |γ}.

R4 All the actions in ̺ that change the value of v to bv are supported by the same value
of w, and none of the actions in ̺ that change the value of v to wv are supported by w.
That is, for some γ ∈ {bw,ww} and δ 6∈ {bw,ww}, if a ∈ ̺v, then a ∈ {abv |γ , awv |δ}.

R5 All the actions in ̺ that change the value of v to wv are supported by the same value of
w, and all the actions in ̺ that change the value of v to bv are supported by two values
of w.
That is, for some γ 6= δ ∈ {bw,ww}, if a ∈ ̺v, then a ∈ {awv |γ , abv |δ, abv|γ}.

R6 All the actions in ̺ that change the value of v to bv are supported by the same value
of w, and all the actions in ̺ that change the value of v to wv are supported by two
values of w.
That is, for some γ 6= δ ∈ {bw,ww}, if a ∈ ̺v, then a ∈ {abv |γ , awv |δ, awv|γ}.

R7 All the actions in ̺ that change the value of v to wv are supported by the same value
of w, and some of the actions in ̺ that change the value of v to bv are supported by
another value of w and others are supported by another parent.
That is, for some γ 6= δ ∈ {bw,ww} and µ 6∈ {bw,ww}, if a ∈ ̺v, then a ∈ {awv |γ , abv |δ, abv |µ}.

R8 All the actions in ̺ that change the value of v to bv are supported by the same value
of w, and some of the actions in ̺ that change the value of v to wv are supported by
another value of w and others are supported by another parent.
That is, for some γ 6= δ ∈ {bw,ww} and µ 6∈ {bw,ww}, if a ∈ ̺v, then a ∈ {abv |γ , awv |δ, awv |µ}.

233

Katz & Domshlak

R9 Part of the actions in ̺ that change the value of v to bv are supported by the same
value of w, and none of the actions in ̺ that change the value of v to wv are supported
by the same value of w.

R10 Part of the actions in ̺ that change the value of v to wv are supported by the same
value of w, and none of the actions in ̺ that change the value of v to bv are supported
by the same value of w.

R11 None of the actions in ̺ are supported by w.
That is, if aα|γ ∈ ̺, then γ 6∈ {bw,ww}.

For a given post-3/2 action sequence ̺ from A and a variable v ∈ V , each parent of v
performs one of the roles R1-R11 with respect to v along ̺, and each of the roles R1-R10
is performed by at most one of the parents of v. In addition, there are sets of roles that
cannot be simultaneously performed by the parents of v with respect to v and the same
action sequence ̺, and there are roles that have to be performed in pairs. Specifically,

• If one of the roles {R1,R2,R5,R6} is played by some parent w′ ∈ pred(v), then R11
must be played by all other parents w ∈ pred(v) \ {w′}.

• If R3/R7/R8 is played by some parent w1 ∈ pred(v), then R4/R9/R10, respectively,
must be played by some parent w2 ∈ pred(v) \ {w1}, and R11 must be played by all
other parents w ∈ pred(v) \ {w1, w2}.

Considering a variable v and its parents pred(v) through the lens of these eleven roles,
suppose we now aim at assigning these roles to pred(v) by considering them one after another
in some arbitrary order. Given the aforementioned constraints on the role assignment, at
each step of this sequential process we can be in one of the following eight states, with the
whole process being described by a state machine depicted in Fig. 12.

S1 All the roles R1-R11 are still available (to be assigned to the parents of v).

S2 Only roles {R3,R11} are still available.

S3 Only roles {R4,R11} are available.

S4 Only roles {R7,R11} are available.

S5 Only roles {R8,R11} are available.

S6 Only roles {R9,R11} are available.

S7 Only roles {R10,R11} are available.

S8 Only role R11 is available.

Given this language of “roles” and “states”, we now proceed with specifying our con-
straint optimization problem COPΠ = (X ,F) for a problem Π = (V,A, I,G) ∈ P(1). In
what follows, for each variable v ∈ V , we assume a fixed (arbitrarily chosen) numbering
{w1, . . . , wk} of pred(v) with respect to v.

234

Tractable Cost-Optimal Planning

GFED@ABCS2

R3

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

R11

GFED@ABCS3

R4

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

R11

GFED@ABCS4
R7

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

R11

start // GFED@ABCS1
R1,R2,R5,R6 //

R9

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

R3

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

R4

77ppppppppppppppppppppppppppppppppppppp

R10

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

R7

))TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

R8

''NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

R11

GFED@ABC?>=<89:;S8

R11

GFED@ABCS5

R8

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

R11

GFED@ABCS6

R9

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

R11

GFED@ABCS7

R10

77ppppppppppppppppppppppppppppppppppppp
R11

Figure 12: State machine describing the process of “sequential” role assignment to the par-
ents of v (with respect to v). Each transition is labeled with a set of roles, one
of which is getting assigned to a parent of v at the corresponding step.

1. Similarly to the uniform-cost case, the variable set X contains a variable xv for each
planning variable v ∈ V , and a variable xw

v for each edge (w, v) ∈ CG(Π). That is,

X = X V ∪ X E

X V = {xv | v ∈ V }

X E = {xw
v | (w, v) ∈ CG(Π)}

(19)

2. For each variable xv ∈ X V , the domain Dom(xv) consists of all possible valid prefixes
of σ(v). For each variable xwi

v ∈ X E , the domain Dom(xwi
v) consists of all possible

quadruples satisfying Eq. 20.

Dom(xv) = {σv ∈ �
∗[σ(v)]}

Dom(xwi
v) =

{

[[S,#w,#b, η]]

∣

∣

∣

∣

0 ≤ η ≤ n, 0 ≤ #w,#b ≤ ⌈η
2⌉

S ∈ {S1, . . . ,S8}

}

(20)

The semantics of Eq. 20 is as follows. Let {w1, . . . , wk} be an arbitrary fixed ordering of
pred(v). If xv takes the value σv ∈ Dom(xv), then v is forced to provide the sequence of
values σv. In turn, if xwi

v takes the value [[S,#w,#b, η]], then η corresponds to the number
of value changes of v, #w and #b correspond to the number of value changes of v to wv

and bv, respectively, that should be performed by the actions prevailed by the values of

235

Katz & Domshlak

{w1, . . . , wi}, and the state-component S captures the roles that can be assigned to the
parents {w1, . . . , wi}.

3. Similarly to the uniform-cost case, for each variable x ∈ X , the set F contains a non-
negative, real-valued function ϕx with the scope

Qx =























{xv}, x = xv, k = 0

{xv, x
wk
v }, x = xv, k > 0

{xw1
v , xw1

}, x = xw1
v , k > 0

{x
wj
v , x

wj−1

v , xwj
}, x = x

wj
v , 1 < j ≤ k

(21)

where pred(v) = {w1, . . . , wk} (with k = 0 meaning pred(v) = ∅).

Proceeding now with specifying the functional components F of COPΠ, first, for each
xv with pred(v) = ∅, and for each σv ∈ �∗[v], we set ϕxv(σv) according to Eq. 22.

ϕxv(σv) =























0, |σv| = 1,

C(awv), |σv| = 2, awv ∈ Av,

⌈ |σv|−1
2 ⌉ · C(awv) + ⌊ |σv|−1

2 ⌋ · C(abv
), |σv| > 2, awv , abv

∈ Av,

∞, otherwise

(22)

In turn, for each planning variable v ∈ V with pred(v) = {w1, . . . , wk}, k > 0, the function
ϕxv is set as in Eq. 23.

ϕxv(σv, [[S,#w,#b, η]]) =















0, |σv| = 1, [[S,#w,#b, η]] = [[S8, 0, 0, 0]] ,

0, |σv| > 1, [[S,#w,#b, η]] =
[[

S1, ⌈ |σv |−1
2 ⌉, ⌊ |σv |−1

2 ⌋, |σv | − 1
]]

,

∞, otherwise

(23)
The semantics of Eq. 23 is simple—if no value changes of v are required, then trivially
no support of pred(v) to v is needed; otherwise, all possible roles for pred(v) should be
considered.

Now, we proceed with specifying a generic function ϕ that, for each v ∈ V , each
w ∈ pred(v), and each (R, [[S,#w,#b, η]] , σw) ∈ {R1, . . . ,R10} × Dom(xw

v) × Dom(xw),
provides the marginal over the actions Av cost of w taking the role R, and under this role,
supporting #w changes of v to wv and #b changes of v to bv, out of total η changes of v
needed. For ease of presentation, let ξ(x1, x2, y1, y2) denote the cost of an action sequence
consisting of x1 actions of type awv |bw

, x2 actions of type awv|ww
, y1 actions of type abv |ww

,
y2 actions of type abv |bw

, that is

ξ(x1, x2, y1, y2) = x1 · C(awv |bw
) + x2 · C(awv|ww

) + y1 · C(abv |ww
) + y2 · C(abv |bw

) (24)

While the notation ξv,w is probably more appropriate for the semantics of ξ, we adopt the
latter for its shortness because the identity of v and w will always be clear from the context.

The Eqs. 25-34 below specify ϕ (R, [[S,#w,#b, η]] , σw) for R ∈ {R1, . . . ,R10}. The se-
mantics of ϕ (R, [[S,#w,#b, η]] , σw) is to capture the minimal cumulative cost over the ac-
tions from Av to achieve #w and #b (out of η) value changes of v under the support of the

236

Tractable Cost-Optimal Planning

parent w playing the role R with respect to v. For example, role R3 means supporting all
the actions that change the value of v to wv, and Eq. 27 gives us the minimal cost of this
support in terms of the cumulative cost of the supported actions from Av. These minimal
costs are taken from the relevant cases in the proof of Theorem 8, notably

(Eq. 25) Case (I).

(Eq. 26) Cases {(III), (IV)}.{2, 4, 6, 8}.

(Eq. 27) Case (II), the cost of all actions that change the value of v to wv.

(Eq. 28) Case (II), the cost of all actions that change the value of v to bv.

(Eq. 29) Cases {(III), (IV)}.{1, 3, 5, 7}.a, the minimal cost.

(Eq. 30) Cases {(III), (IV)}.{1, 3, 5, 7}.b, the minimal cost.

(Eq. 31) Cases {(III), (IV)}.{1, 3, 5, 7}.a, the cost of all actions prevailed by one parent.

(Eq. 32) Cases {(III), (IV)}.{1, 3, 5, 7}.b, the cost of all actions prevailed by one parent.

(Eq. 33) The residue of cases {(III), (IV)}.{1, 3, 5, 7}.a. (Together with Eq. 31 this gives
us the full cost of changing v as required.)

(Eq. 34) The residue of cases {(III), (IV)}.{1, 3, 5, 7}.b. (Together with Eq. 31 this gives
us the full cost of changing v as required.)

ϕ (R1, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

<

>

>

>

>

:

ξ(#w, 0, 0, #b), |σw| = 1, #w = ⌈ η

2
⌉, #b = ⌊ η

2
⌋

min

(

ξ(#w, 0, 0, #b),

ξ(0, #w, #b, 0)

)

, |σw| > 1, #w = ⌈ η

2
⌉, #b = ⌊ η

2
⌋

∞, otherwise

(25)

ϕ(R2, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

<

>

>

>

>

:

ξ(#w, 0, #b, 0), |σw| = η ≥ 2, #w = ⌈ η

2
⌉, #b = ⌊ η

2
⌋

min

(

ξ(#w, 0, #b, 0),

ξ(0, #w, 0, #b)

)

, |σw| > η ≥ 2, #w = ⌈ η

2
⌉, #b = ⌊ η

2
⌋

∞, otherwise

(26)

ϕ(R3, [[S, #w, #b, η]] , σw) =

8

>

>

>

<

>

>

>

:

#w · C(awv|bw
), |σw| = 1, #w = ⌈ η

2
⌉, #b = 0

min

(

#w · C(awv|bw
),

#w · C(awv|ww
)

)

, |σw| > 1, #w = ⌈ η

2
⌉, #b = 0

∞, otherwise

(27)

ϕ(R4, [[S, #w, #b, η]] , σw) =

8

>

>

>

<

>

>

>

:

#b · C(abv |bw
), |σw| = 1, #w = 0, #b = ⌊ η

2
⌋

min

(

#b · C(abv|bw
),

#b · C(abv |ww
)

)

, |σw| > 1, #w = 0, #b = ⌊ η

2
⌋

∞, otherwise

(28)

237

Katz & Domshlak

ϕ(R5, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

min

(

ξ(y + 1, 0, x − 1, y − x + 1),

ξ(0, y + 1, y − x + 1, x − 1)

)

,
η = 2y + 1, |σw | = 2x, 1 < x ≤ y,

#w = y + 1, #b = y

min

(

ξ(y, 0, x, y − x),

ξ(0, y, y − x + 1, x − 1)

)

,
η = 2y, |σw| = 2x, 1 < x < y,

#w = #b = y

ξ(y, 0, 1, y − 1),
η = 2y, |σw| = 2, 1 < y,

#w = #b = y

ξ(0, y, 1, y − 1),
η = |σw| = 2y, 1 < y,

#w = #b = y

min

(

ξ(y + 1, 0, x, y − x),

ξ(0, y + 1, y − x + 1, x − 1)

)

,
η = 2y + 1, |σw | = 2x + 1, 1 < x < y,

#w = y + 1, #b = y

ξ(y + 1, 0, 1, y − 1),
η = 2y + 1, |σw | = 3, 1 < y,

#w = y + 1, #b = y

ξ(0, y + 1, 1, y − 1),
η = |σw| = 2y + 1, 1 < y,

#w = y + 1, #b = y

min

(

ξ(y, 0, x, y − x),

ξ(0, y, y − x, x)

)

,
η = 2y, |σw| = 2x + 1, 1 ≤ x < y,

#w = #b = y

∞, otherwise

(29)

ϕ(R6, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

min

(

ξ(x, y + 1 − x, y, 0),

ξ(y + 1 − x, x, 0, y)

)

,
η = 2y + 1, |σw| = 2x, 1 ≤ x ≤ y,

#w = y + 1, #b = y

min

(

ξ(x, y − x, y, 0),

ξ(y − x + 1, x − 1, 0, y)

)

,
η = 2y, |σw| = 2x, 1 < x < y,

#w = #b = y

ξ(1, y − 1, y, 0),
η = 2y, |σw| = 2, 1 < y,

#w = #b = y

ξ(1, y − 1, 0, y),
η = |σw| = 2y, 1 < y,

#w = #b = y

min

(

ξ(x + 1, y − x, y, 0),

ξ(y − x + 1, x, 0, y)

)

,
η = 2y + 1, |σw| = 2x + 1, 1 ≤ x < y,

#w = y + 1, #b = y

ξ(1, y, 0, y),
η = |σw| = 2y + 1, 1 ≤ y,

#w = y + 1, #b = y

min

(

ξ(x, y − x, y, 0),

ξ(y − x, x, 0, y)

)

,
η = 2y, |σw| = 2x + 1, 1 ≤ x < y,

#w = #b = y

∞, otherwise

(30)

238

Tractable Cost-Optimal Planning

ϕ(R7, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

min

(

ξ(y + 1, 0, x − 1, 0),

ξ(0, y + 1, 0, x − 1)

)

,
η = 2y + 1, |σw| = 2x, 1 < x ≤ y,

#w = y + 1, #b = x − 1

ξ(y, 0, x, 0),

C(awv|bw
) < C(awv|ww

),

η = 2y, |σw | = 2x, 1 ≤ x < y,

#w = y, #b = x

ξ(0, y, 0, x − 1),

C(awv|bw
) ≥ C(awv|ww

),

η = 2y, |σw | = 2x, 1 < x ≤ y,

#w = y, #b = x − 1

ξ(y + 1, 0, x, 0),

C(awv|bw
) < C(awv|ww

),

η = 2y + 1, |σw| = 2x + 1, 1 ≤ x < y,

#w = y + 1, #b = x

ξ(0, y + 1, 0, x − 1),

C(awv|bw
) ≥ C(awv|ww

),

η = 2y + 1, |σw| = 2x + 1, 1 < x ≤ y,

#w = y + 1, #b = x − 1

min

(

ξ(y, 0, x, 0),

ξ(0, y, 0, x)

)

,
η = 2y, |σw | = 2x + 1, 1 ≤ x < y,

#w = y, #b = x

∞, otherwise

(31)

ϕ(R8, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

min

(

ξ(x, 0, y, 0),

ξ(0, x, 0, y)

)

,
η = 2y + 1, |σw| = 2x, 1 ≤ x ≤ y,

#w = x, #b = y

ξ(x, 0, y, 0),

C(awv |bw
) < C(awv|ww

),

η = 2y, |σw| = 2x, 1 ≤ x < y,

#w = x, #b = y

ξ(0, x − 1, 0, y),

C(awv |bw
) ≥ C(awv|ww

),

η = 2y, |σw| = 2x, 1 < x ≤ y,

#w = x − 1, #b = y

ξ(x + 1, 0, y, 0),
η = 2y + 1, |σw| = 2x + 1, 1 ≤ x < y,

#w = x + 1, #b = y

ξ(0, x, 0, y),
η = 2y + 1, |σw| = 2x + 1, 1 ≤ x ≤ y,

#w = x, #b = y

min

(

ξ(x, 0, y, 0),

ξ(0, x, 0, y)

)

,
η = 2y, |σw| = 2x + 1, 1 ≤ x < y,

#w = x, #b = y

∞, otherwise

(32)

239

Katz & Domshlak

ϕ(R9, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

<

>

>

>

>

:

#b · C(abv |ww
), |σw| = 1, #w = 0, #b < ⌊ η

2
⌋

min

(

#b · C(abv|ww
),

#b · C(abv|bw
)

)

, |σw| > 1, #w = 0, #b < ⌊ η

2
⌋

∞, otherwise

(33)

ϕ(R10, [[S, #w, #b, η]] , σw) =

8

>

>

>

>

<

>

>

>

>

:

#w · C(awv|bw
), |σw| = 1, #w < ⌈ η

2
⌉, #b = 0

min

(

#w · C(awv|bw
),

#w · C(awv|ww
)

)

, |σw| > 1, #w < ⌈ η

2
⌉, #b = 0

∞, otherwise

(34)

Having specified the function ϕ, we now use it, in particular, for specifying the functional
component ϕx

w1
v

as in Eq. 35. This equation actually emulates movements in the state
machine for v as in Figure 12 to the terminal state S8.

ϕx
w1
v

([[S,#w,#b, η]] , σw1
) =







































































































































































































min























ϕ(R1, [[S,#w,#b, η]] , σw1
),

ϕ(R2, [[S,#w,#b, η]] , σw1
),

ϕ(R5, [[S,#w,#b, η]] , σw1
),

ϕ(R6, [[S,#w,#b, η]] , σw1
)























, S = S1,

ϕ(R3, [[S,#w,#b, η]] , σw1
), S = S2,

ϕ(R4, [[S,#w,#b, η]] , σw1
), S = S3,

ϕ(R7, [[S,#w,#b, η]] , σw1
), S = S4,

ϕ(R8, [[S,#w,#b, η]] , σw1
), S = S5,

ϕ(R9, [[S,#w,#b, η]] , σw1
), S = S6,

ϕ(R10, [[S,#w,#b, η]] , σw1
), S = S7,

0,

S = S8,

#w = 0,

#b = 0

∞, otherwise

(35)

We now proceed with the rest of the functional components ϕx
w2
v

, . . . , ϕx
wk
v

. For each

2 ≤ j ≤ k, each [[S,#w,#b, η]] ∈ Dom(x
wj
v), each [[S′,#′

w,#′
b, η

′]] ∈ Dom(x
wj−1

v), and each
σw ∈ Dom(xwj

) = �∗[wj], the value of ϕ
x

wj
v

is set according to Eq. 36. This equation also

240

Tractable Cost-Optimal Planning

emulates movements in the state machine for v as in Figure 12—each sub-case of Eq. 36
deals with a certain transition in that state machine.

ϕ
x

wj
v

([[S, #w, #b, η]] ,
ˆ̂

S
′
, #′

w, #′
b, η

′˜̃
, σwj

) =
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

min

8

>

>

>

<

>

>

>

:

ϕ(R1, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

ϕ(R2, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

ϕ(R5, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

ϕ(R6, [[S, #w − #′
w, #b − #′

b, η]] , σwj
)

9

>

>

>

=

>

>

>

;

,
S = S1, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R4, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S1, S′ = S2, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R3, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S1, S′ = S3, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R9, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S1, S′ = S4, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R10, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S1, S′ = S5, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R7, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S1, S′ = S6, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R8, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S1, S′ = S7, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R3, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S2, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R4, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S3, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R7, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S4, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R8, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S5, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R9, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S6, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

ϕ(R10, [[S, #w − #′
w, #b − #′

b, η]] , σwj
),

S = S7, S′ = S8, η = η′,

#w ≥ #′
w, #b ≥ #′

b

0,
S = S

′, η = η′,

#w = #′
w, #b = #′

b

∞, otherwise

(36)

This finalizes the construction of COPΠ, and this construction constitutes the first three
steps of the algorithm polytree-1-dep in Figure 13(a). The subsequent steps of this algorithm
are conceptually similar to these of the polytree-1-dep-uniform algorithm in Section 4. It is

241

Katz & Domshlak

procedure polytree-1-dep(Π = (V,A, I,G))

takes a problem Π ∈ P(1)
returns a cost-optimal plan for Π if Π is solvable, and fails otherwise

create a set of variables X as in Eqs. 19-20
create a set of functions F = {ϕx | x ∈ X} with scopes as in Eq. 21
for each x ∈ X do

specify ϕx according to Eqs. 22-36
endfor
set COPΠ := (X ,F) with global objective min

∑

ϕ∈F ϕ(X)

x := solve-tree-cop(COPΠ)
if

∑

ϕ∈F ϕ(x) = ∞ then return failure

extract plan ρ from x with C(ρ) =
∑

ϕ∈F ϕ(x)

return ρ

Figure 13: Algorithm for cost-optimal planning for P(1) problems.

not hard to verify from Eqs. 19-21, and the fact that the causal graph of Π ∈ P(1) forms a
polytree that

(i) for each variable x ∈ X , |Dom(x)| = poly(n),

(ii) the tree-width of the cost network of F is ≤ 3, and

(iii) the optimal tree-decomposition of the COPΠ’s cost network is given by any topological
ordering of the causal graph that is consistent with the (arbitrary yet fixed at the time
of the COPΠ’s construction) orderings of each planning variable’s parents in the causal
graph.

Theorem 9 Let Π be a P(1) problem, COPΠ = (X ,F) be the corresponding constraint
optimization problem, and x be an optimal assignment to X with

∑

ϕ∈F ϕ(x) = α.

(I) If α < ∞, then a plan of cost α for Π can be reconstructed from x in time polynomial
in the description size of Π.

(II) If Π has a plan, then α < ∞.

Proof Sketch: The proof of Theorem 9 is in Appendix A, pp. 278-286; here we provide
only a sketch of the proof’s skeleton. To prove (I), given a COP solution x = {σv1

, . . . , σvn}
with

∑

ϕ∈F ϕ(x) = α < ∞, we construct a plan ρ for Π with C(ρ) = α. This is done by
constructing action sequences ρv for each v ∈ V , as well as constructing partial orders over
the elements of these sequences of each variable and its parents. This construction distin-
guishes between numerous possibilities of the (joint) role that can be taken by the parents
of the variable in question. The constructed orders over the “local” actions sequences are
then combined and linearized (using Theorem 1) into an action sequence ρ that is a valid
plan for Π with C(ρ) =

∑

v∈V C(ρv) =
∑

v∈V ϕv(x) =
∑

ϕ∈F ϕ(x) = α. To prove (II),
given solvable problem Π and some irreducible post-3/2 plan ρ for Π, we construct a COP
assignment xρ such that

∑

ϕ∈F ϕ(xρ) = C(ρ). Then, from α ≤
∑

ϕ∈F ϕ(xρ) and C(ρ) < ∞,
we obtain the claimed α < ∞. �

242

Tractable Cost-Optimal Planning

Theorem 10 Cost-optimal planning for P(1) is tractable.

Proof: Given a planning problem Π ∈ P(1), we show that the corresponding constraint
optimization problem COPΠ can be constructed and solved in time polynomial in the de-
scription size of Π. Let n be the number of state variables in Π. In polytree-1-dep, we first
construct the constraint optimization problem COPΠ over Θ(n2) variables X with domain
sizes being bounded either by O(n) or by O(n3) (for COP variables representing state vari-
ables and causal graph edges, respectively). The number of functional components in COPΠ

is Θ(n2), each defined over one variable with domain size of O(n) and either one or two
variables with domain sizes of O(n3). The construction is linear in the size of the resulting
COP, and thus is accomplished in time O(n9).

Applying then to COPΠ a tree-decomposition that clusters the scopes of the functional
components F , we arrive into an equivalent, tree-structured constraint optimization problem
over Θ(n2) variables with domains of size O(n7). Such a tree-structured COP can be solved
in time O(xy2) where x is the number of variables and y is an upper bound on the size of
a variable’s domain (Dechter, 2003). Therefore, solving COPΠ can be done in time O(n16).
As this dominates both the time complexity of constructing COPΠ, and the time complexity
of extracting a plan from the optimal solution to COPΠ (see the proof of (I) in Theorem 9),
the overall complexity of the algorithm polytree-1-dep is O(n16), and therefore polynomial
in the description size of Π. �

6. Drawing the Limits of k-Dependence

Having read this far, the reader may wonder whether 1-dependence is not a strong enough
property to make the cost-planning tractable even for some more complex than polytree
forms of the causal graph. In this last technical section we discuss the limits of the power
of k-dependence (and, in particular, of 1-dependence), and present some negative results
that draw a boundary between the tractable and intractable k-dependent UB problems.

• In Theorem 11 we show that cost-optimal planning is already hard for the Sb
b(1)

problem class, that is, the class of 1-dependent UB problems inducing directed-path
singly connected causal graphs with both in- and out-degrees being bounded by a
constant. This result further stresses the connection between the undirected cycles in
the causal graph and the complexity of various planning tasks, which has been first
discussed by Brafman and Domshlak (2003).

• In Theorem 12 we show that even non-optimal planning is hard for the Sb
b(2) problem

class. This results suggests that 1-dependence is a rather special case of k-dependence
in terms of the connection to computational tractability. However, given the (still)
empty entries in Figures 5a and 5b, further analysis of the “criticality” of 1-dependence
is needed.

Theorem 11 Cost-optimal planning for Sb
b(1) is NP-complete.

Proof: The membership in NP is implied by Theorem 2 by Brafman and Domshlak (2003).
The proof of NP-hardness is by a polynomial reduction from the well-known Vertex Cover
problem (Garey & Johnson, 1978). The problem of Vertex Cover is: given an undirected

243

Katz & Domshlak

graph G = (V,E), find a minimal-size subset V′ of V such that each edge in E has at least
one of its two end-nodes in V′. Given an undirected graph G = (V,E), let the planning
problem ΠG = 〈VG, AG, IG, GG〉 be defined as follows.

• VG = {v1, . . . , v|V|, u1, . . . , u|E|}, and, for all vi, uj, Dom(vi) = Dom(uj) = {T, F},

• IG = {vi = F | vi ∈ VG}
⋃

{ui = F | ui ∈ VG},

• GG = {ui = T | ui ∈ VG},

• Actions AG = AV ∪ AE, where AV = {av1
, . . . , av|V|

} with

pre(avi
) = {vi = F}, eff(avi

) = {vi = T}, C(avi
) = 1 (37)

and AE = {au1
, a′u1

, . . . , au|E|
, a′u|E|

} with

pre(aui
) = {ui = F, vi1 = T},

pre(a′ui
) = {ui = F, vi2 = T},

eff(aui
) = eff(a′ui

) = {ui = T},

C(aui
) = C(a′ui

) = 0

(38)

where the variables vi1 , vi2 correspond to the endpoints of the edge corresponding to
the variable ui.

Given this construction of ΠG, it is easy to see that (i) any plan ρ for ΠG provides
us with a vertex cover Vρ for G such that |Vρ| = C(ρ) and vice versa, and thus (ii) cost-
optimal plans for ΠG (and only such plans for ΠG) provide us with minimal vertex covers
for G. The topology of the causal graph of ΠG is as required, and 1-dependence of ΠG

is immediate from Eqs. 37-38. This finalizes the proof of NP-completeness of cost-optimal
planning for Sb

b(1). �

Theorem 12 Planning for Sb
b(2) is NP-complete.

Proof: The proof is basically given by the construction in the proof by Brafman and
Domshlak (2003) for their Theorem 2. The polynomial reduction there is from 3-SAT to
planning for S. Observing that 3-SAT remains hard even if no variable participates in
more than five clauses of the formula (Garey & Johnson, 1978), and that the reduction
of Brafman and Domshlak from such 3-SAT formulas is effectively to planning for Sb

b(2),
accomplishes the proof of our claim. �

7. Conclusion and Future Work

One of the key conclusions by Bylander (1994) in his seminal article on planning complexity
was that “. . . the analysis strongly suggests that there is no such thing as a set of generally-
applicable domain independent properties that lead to efficient planning.” The later works
by, e.g., Bäckström and Nebel (1995), Jonsson and Bäckström (1998a), and Brafman and
Domshlak (2003, 2006) have shown that this conclusion was too pessimistic. By considering
not only local restrictions on actions, but also global restrictions on the action sets, as well

244

Tractable Cost-Optimal Planning

as some structural properties of the problems, these works managed to identify numerous
domain-independent tractable fragments of classical planning. Having said that, the palette
of known tractable fragments of planning remains limited, and even less is known about
tractable optimal planning. While there is no difference in theoretical complexity of regular
and optimal planning in the general case (Bylander, 1994), many of the classical planning
domains are provably easy to solve, but hard to solve optimally (Helmert, 2003).

In this work we have studied the complexity of cost-optimal classical planning over
propositional state variables and unary-effect actions. We discovered novel problem frag-
ments for which such optimization is tractable, and identified certain conditions that dif-
ferentiate between tractable and intractable problems. The results are based on exploit-
ing certain structural and syntactic characteristics of planning problems. Almost all our
tractability results are based on a proof technique that connects between certain tools from
planning and tractable constraint optimization, and we believe that this technique is in
itself interesting due to a clear evidence for its robustness—our different algorithms exploit
this proof technique, but in very much different manners.

Our results suggest that discovering new islands of tractability of optimal planning is
not hopeless, and we strongly believe that this is indeed the case. In particular, our ongoing
work is devoted both to the questions that have been left open in this paper (see Figure 5), as
well as to planning problems with simple causal graphs but with multi-valued (in contrast to
propositional) state variables. In fact, recently we have reported some preliminary positive
results in the latter direction (Katz & Domshlak, 2007). Interestingly, these recent results
have been presented in a context of a potential “customer” for such tractability results,
namely, in the context of homomorphism abstractions for admissible heuristics for general
planning as heuristic search.

Acknowledgments

This research is supported in part by the Israel Science Foundations grants 2008100 and
2009589, as well as by the C. Wellner Research Fund. We thank Adele Howe and the anony-
mous reviewers whose attentive comments and helpful suggestions have greatly improved
this paper.

Appendix A. Proofs

Theorem 1 Let G be a polytree over vertices V = {1, . . . , n}, and pred(i) ⊂ V denote the
immediate predecessors of i in G. For each i ∈ V , let Oi be a finite set of objects associated
with the vertex i, with the sets O1, . . . , On being pairwise disjoint. For each i ∈ V , let >i

be a strict partial order over Oi, and, for each j ∈ pred(i), let >i,j be a strict partial order
over Oi ∪ Oj .

If, for each i ∈ V, j ∈ pred(i), the transitively closed >i ∪ >i,j and >j ∪ >i,j induce
(strict) partial orders over Oi ∪ Oj , then so does the transitively closed

> =
⋃

i∈V



>i ∪
⋃

j∈pred(i)

>i,j





245

Katz & Domshlak

over O =
⋃

i∈V Oi.

Proof: In what follows, by oi we denote an arbitrary object from Oi. Assume to the
contrary that all >i ∪ >i,j and >j ∪ >i,j are (strict) partial orders, and yet > is not so.
That is, there exists a pair of objects oi, oj ∈ O for which hold both oi > oj and oj > oi. By
the construction of >, we have that there is a, possibly empty, path between the vertices i
and j in the undirected graph induced by G. Since G is a polytree, we know that such an
undirected path

i = i0 · i1 · . . . · im−1 · im = j (39)

between i and j is unique. Thus, we must have a cycle αβ in > such that

α : oi = o1
i0 < . . . < ox0

i0
< o1

i1 < . . . < ox1

i1
< < o1

im < . . . < oxm

im
= oj

β : oi = ō1
i0 > . . . > ōy0

i0
> ō1

i1 > . . . > ōy1

i1
> > ō1

im > . . . > ōym

im
= oj

(40)

where, for 0 ≤ k ≤ m, both xk ≥ 1 and yk ≥ 1, and each step in both chains α and β is
directly implied by some “local” relation >l or >l,l′ constructing >.

Without loss of generality, we assume that the cycle in > induced by α and β is length-
wise minimal among all such cycles in >. In particular, this implies that

(i) for 0 ≤ k ≤ m, we have 1 ≤ xk, yk ≤ 2 (one object from Oik is required to connect the
local relations >ik−1

and >ik+1
, and no more than two elements from Oik are required

because >ik is transitively closed),

(ii) for each pair of objects o ∈ α, o′ ∈ β, we have o 6= o′, unless o = o′ = oi or o = o′ = oj ,
(or otherwise there would be a shorter cycle than αβ) and

(iii) for each pair of objects o ∈ α, o′ ∈ β, no >l (and no >l,l′) implies o′ >l o (respectively,
o′ >l,l′ o), or otherwise, again, there would be a shorter cycle than αβ.

First, let us show that at least one of the chains α and β contains at least one internal
element. Assume, to the contrary, that both α and β contain no internal elements. If i = j,
then we have oi >i o′i (where o′i = oj) and o′i >i oi, contradicting our assumption that >i is
a partial order. (If >i is not a partial order, then neither all >i ∪ >i,j.) Otherwise, if i 6= j,
then either i ∈ pred(j) or j ∈ pred(i). Assuming the latter, (oi > oj) ∧ (oi > oj) implies
(oi >i,j oj) ∧ (oi >i,j oj), contradicting our assumption that >i,j is a partial order.

Given that, let us now prove that oxm

im
6= ōym

im
, contradicting the assumption that the

chains α and β as in Eq. 40 exist. We do it on a case-by-case basis of possible combinations
of xm, ym, and length-minimality of the cycle αβ implies that there are only four such cases
to consider.

[xm = 2, ym = 2] In this case, Eq. 40 implies ō1
im >im ō2

im = o2
im >im o1

im . The transitivity
of >im then implies ō1

im > o1
im , contradicting our assumption of minimality of the

cycle αβ.

[xm = 1, ym = 1] From Eq. 39 we have either im−1 ∈ pred(im) or im ∈ pred(im−1). If
im−1 ∈ pred(im), then Eq. 40 implies ō

ym−1

im−1
>im,im−1

ō1
im = o1

im >im,im−1
o
xm−1

im−1
. The

transitivity of >im,im−1
then implies ō

ym−1

im−1
> o

xm−1

im−1
, contradicting our assumption

246

Tractable Cost-Optimal Planning

of minimality of the cycle αβ. Otherwise, if im ∈ pred(im−1), then Eq. 40 implies
ō
ym−1

im−1
>im−1,im ō1

im
= o1

im
>im−1,im o

xm−1

im−1
. Again, the transitivity of >im−1,im then

implies ō
ym−1

im−1
> o

xm−1

im−1
, contradicting our assumption of minimality of the cycle αβ.

[xm = 2, ym = 1] In this case as well, Eq. 39 implies that we have either im−1 ∈ pred(im)
or im ∈ pred(im−1). If im−1 ∈ pred(im), then Eq. 40 implies ō

ym−1

im−1
>im,im−1

ō1
im

=

o2
im

>im o1
im

. Then, the transitivity of >im ∪ >im,im−1
implies ō

ym−1

im−1
> o1

im
, contra-

dicting our assumption of minimality of the cycle αβ. Otherwise, if im ∈ pred(im−1),
then Eq. 40 implies ō

ym−1

im−1
>im−1,im ō1

im = o2
im >im o1

im . Then, the transitivity of

>im ∪ >im−1,im implies ō
ym−1

im−1
> o1

im , contradicting our assumption of minimality of
the cycle αβ.

[xm = 1, ym = 2] This case is similar to the previous case of xm = 2, ym = 1, mutatis
mutandis.

�

Theorem 2 Let Π be a planning problem in Pb, COPΠ = (X ,F) be the corresponding
constraint optimization problem, and x ∈ Dom(X) be an optimal solution for COPΠ with
∑

ϕ∈F ϕ(x) = α.

(I) If α < ∞, then a plan of cost α for Π can be reconstructed from x in time polynomial
in the description size of Π.

(II) If Π has a plan, then α < ∞.

Proof:
(I) Given a COP solution x = {τv1

, . . . , τvn} with
∑

ϕ∈F ϕ(x) = α < ∞, we construct a
plan ρ for Π with C(ρ) = α.

First, for each variable v ∈ V with pred(v) = ∅, let a sequence ρv of actions from Av be
defined as

ρv =

{

∅ |τv| = 1

a1
v · . . . · a

|τv |−1
v otherwise

, (41)

where, for 1 ≤ j ≤ |τv| − 1,

aj
v =

{

abv
, j is even

awv , j is odd
, (42)

with eff(abv
) = {bv}, and eff(awv) = {wv}. From Eq. 3 and ϕv(τv) < ∞, we immediately

have (i) {awv} ⊆ Av if |τv| ≥ 2, and {abv
, awv} ⊆ Av if |τv| > 2, and (ii) C(ρv) = ϕv(τv).

Now, for a purpose that gets clear below, let a binary relation >v over the action elements
of ρv be defined as the transitive closure of {aj−1

v < aj
v | 1 < j ≤ |τv| − 1}. Clearly, >v

constitutes a strict total ordering over the elements of ρv.
Next, for each non-root variable v ∈ V with pred(v) = {w1, . . . , wk}, we construct the

graph G′
e(v) with respect to τw1

, . . . , τwk
, and determine in G′

e(v) a minimal-cost path of

247

Katz & Domshlak

|τv| − 1 edges from the source node 〈b1
w1
· · · b1

wk
〉. The existence of such a path is implied by

ϕv(τv, τw1
, . . . , τwk

) < ∞. By the construction of G′
e(v) we also know that, for 1 ≤ j ≤ |τv|−

1, the j-th edge on this path is from a node labeled with 〈τw1
[lj−1

1]· · · τwk
[lj−1

k]〉 to a node

labeled with 〈τw1
[lj1]· · · τwk

[ljk]〉, where for 1 ≤ l ≤ k, we have l0i = 1 and lj−1
i ≤ lji . Having

that, let a sequence ρv of actions from Av be defined as in Eq. 41, with, for 1 ≤ j ≤ |τv|−1,

eff(aj
v) = {τv[j + 1]}

pre(aj
v) =

{

τv[j], τw1
[lj1], τw2

[lj2], . . . , τwk
[ljk]

} (43)

Note that {a1
v, . . . , a

|τv|−1
v } ⊆ Av is implied by the construction of G′

e(v) and the presence
of the considered minimal-cost path in it.

Now, similarly to the case of the root variables, let a binary relation >v over the action
elements of ρv be defined as the transitive closure of {aj−1

v < aj
v | 1 < j ≤ |τv| − 1}. Here

as well, >v constitutes a strict total ordering over the elements of ρv. In addition, for each
parent wi of v, let a binary relation >v,wi

over the union of the action elements of ρv and
ρwi

be defined as the transitive closure of >−
v,wi

∪ >+
v,wi

, which in turn are defined as

>−
v,wi

=

{

a
lji−1
wi < aj

v | 1 ≤ j ≤ |τv| − 1, lji > 1

}

>+
v,wi

=

{

aj
v < a

lji
wi | 1 ≤ j ≤ |τv| − 1, lji < |τwi

|

}

.

(44)

It is not hard to verify from Eq. 44 that, for each v ∈ V and each w ∈ pred(v), not only
>v,w constitutes a strict partial ordering, but so are the transitively closed >v ∪ >v,w and
>w ∪ >v,w. Given that,

• By the definition of ρw = 〈a1
w · . . . · al

w〉, and the polytree structure of the causal
graph CG(Π), restricting the preconditions and effects of each ai

w to the variables
{v}∪pred(v), we have pre(ai

w) = {bw}, eff(ai
w) = {ww} for i being odd, and pre(ai

w) =
{ww}, eff(ai

w) = {bw} for i being even. For each 1 ≤ i ≤ k, from Eq. 43 we have

eff(a
lji−1
wi) ∈ pre(aj

v). From Eq. 44 we can now derive that any linearization of >v

∪
⋃

w∈pred(v) >v,w defines a sequence of actions that is applicable with respect to {v}∪

pred(v). In addition, the construction of the graph G′
e(v) implies that this action

sequence provides to v the value G[v] if the latter is specified.

• The polytree structure of the causal graph CG(Π) and Theorem 1 together imply that
the transitively closed relation

> =
⋃

v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

is a strict partial order over the union of the action elements of ρv1
, . . . , ρvn .

Putting thing together, the above implies that any linearization of > constitutes a valid
plan ρ for Π with cost

C(ρ) =
∑

v∈V

C(ρv) =
∑

v∈V

ϕv(x),

248

Tractable Cost-Optimal Planning

which is exactly what we had to prove. We also note that the plan extraction step of the
algorithm polytree-k-indegree corresponds exactly to the above construction along Eqs. 41-
44, providing us in polynomial time with a concrete cost-optimal plan corresponding to the
optimal solution for COPΠ.

(II) We now prove that if Π is solvable, then we must have α < ∞. Assume to the
contrary that this is not the case. Let Π be a solvable planning problem, and let ρ be
an irreducible plan for Π. Given such ρ, let xρ = {τv1

, . . . , τvn} be an COP assignment
with each |τvi

| = |ρ↓vi
| − 1. Note that xρ is well-defined (that is, for 1 ≤ i ≤ n, we

have τvi
∈ �∗[τ(vi)]) by the definition of τ(vi), Corollary 1, and ρ being irreducible. Let

us now show that
∑

ϕ∈F ϕ(xρ) ≤ C(ρ), contradicting our assumption that α = ∞ due to
α ≤

∑

ϕ∈F ϕ(xρ) and C(ρ) < ∞.

First, for each variable v with pred(v) = ∅, Eq. 3 immediately implies ϕv(xρ) ≤ C(ρ↓v).
Next, for each non-root variable v ∈ V with pred(v) = {w1, . . . , wk}, consider the graph
G′

e(v) constructed with respect to τw1
, . . . , τwk

. Let {a1, . . . , a|ρ↓v |} be the actions of ρ↓v

numbered in the order of their appearance along ρ↓v. Let {yw1
(1), . . . , ywk

(1)} denote the
prevail condition of a1 with each ywi

(1) being time-stamped with its earliest appearance
along τwi

, that is, ywi
(1) ∈ {b1

wi
,w1

wi
}. Now, for 2 ≤ j ≤ |ρ↓v |, we set {yw1

(j), . . . , ywk
(j)}

to the prevail condition of ai with each ywi
(j) being time-stamped with the lowest possible

time index along τwi
satisfying “ywi

(j − 1) does not come after ywi
(j) along τwi

”. Given
that

(i) ρ↓v is a complete order-preserving restriction of ρ to the v-changing actions Av ,

(ii) the sequence of time-stamped prevail conditions {{yw1
(j), . . . , ywk

(j)}}
|ρ↓v|
j=1 is con-

structed as above, and

(iii) |ρ↓v| = |τv| − 1 by the construction of xρ,

we have that G′
e(v) contains a path

〈b1
w1
· · · b1

wk
〉 → 〈yw1

(1)· · · ywk
(1)〉 → . . . → 〈yw1

(|ρ↓v |)· · ·ywk
(|ρ↓v |)〉

and the cost of this path is C(ρ↓v) < ∞. However, from the constructive definition of ϕv in
the algorithm polytree-k-indegree, we have ϕv(xρ) being the cost of the minimal-cost path
of |τv| − 1 edges in G′

e(v) originated in 〈b1
w1
· · · b1

wk
〉, and thus ϕv(xρ) ≤ C(ρ↓v). The latter

argument is valid for all planning variables v ∈ V , and thus we have

∑

ϕ∈F

ϕ(xρ) ≤
∑

v∈V

C(ρ↓v) = C(ρ),

which is what we had to prove. �

Theorem 6 Let Π be a P(1) problem with uniform-costs actions, COPΠ = (X ,F) be the
corresponding constraint optimization problem, and x be an optimal assignment to X with
∑

ϕ∈F ϕ(x) = α.

249

Katz & Domshlak

(I) If α < ∞, then a plan of cost α for Π can be reconstructed from x in time polynomial
in the description size of Π.

(II) If Π has a plan, then α < ∞.

Proof:
(I) Given a COP solution x with

∑

ϕ∈F ϕ(x) = α < ∞, we construct a plan ρ for Π with
C(ρ) = α. We construct this plan by

1. Traversing the planning variables in a topological ordering of the causal graph CG(Π),
and associating each variable v with a sequence ρv ∈ A∗

v.

2. Merging the constructed sequences ρv1
, . . . , ρvn into the desired plan ρ.

For each variable xv ∈ X , let σv denote the value provided by x to xv. First, for each
variable v ∈ V with pred(v) = ∅, let a sequence ρv of actions from Av be defined as

ρv =

{

∅ |σv| = 1

a1
v · . . . · a

|σv|−1
v otherwise

, (45)

where, for 1 ≤ j ≤ |σv| − 1,

aj
v =

{

abv
, j is even

awv , j is odd
, (46)

with eff(abv
) = {bv}, and eff(awv) = {wv}. From Eq. 14 and ϕv(σv) ≤ α < ∞, we

immediately have (i) {awv} ⊆ Av if |σv| ≥ 2, and {abv
, awv} ⊆ Av if |σv| > 2, and (ii)

C(ρv) = ϕv(σv). Let a binary relation >v over the action elements of ρv be defined as the
transitive closure of {aj−1

v < aj
v | 1 < j ≤ |σv| − 1}, that is

>v= {aj′

v < aj
v | 1 ≤ j′ < j ≤ |σv| − 1} (47)

Clearly, >v constitutes a strict total ordering over the elements of ρv, making ρv an appli-
cable sequence of actions that provides to v the value G[v] if the latter is specified.

Next, for each variable v ∈ V with pred(v) 6= ∅, let pred(v) = {w1, . . . , wk} be numbered
according to their ordering used for constructing COPΠ. Likewise, for each wi ∈ pred(v),
let [[δw(i), δb(i), η(i)]] be the value provided by x to xwi

v . Given that, let a pair of indexes
0 ≤ 〈w〉, 〈b〉 ≤ k be defined as

〈w〉 =











0, δw(k) = 0,

1, δw(1) = 1,

j, δw(j − 1) < δw(j), 2 ≤ j ≤ k

(48)

〈b〉 =











0, δb(k) = 0,

1, δb(1) = 1,

j, δb(j − 1) < δb(j), 2 ≤ j ≤ k

(49)

250

Tractable Cost-Optimal Planning

In other words, 〈w〉 captures the smallest 1 ≤ j ≤ k such that δw(j) = 1, and 0, if there is
no such j at all; the semantics of 〈b〉 is similar, mutatis mutandis.

Informally, in our next-coming construction of the action sequence ρv for the state
variable v, 〈w〉 and 〈b〉 will indicate the parents prevailing the value changes of v to wv and
to bv, respectively, along ρv. Note that Eqs. 48-49 are well-defined because, for 2 ≤ j ≤ k,
Eq. 18 implies

δw(j − 1) ≤ δw(j) ∧ δb(j − 1) ≤ δb(j) ∧ η(j − 1) = η(j).

Given this notation, the action sequence ρv and the partial orders >v,w1
, . . . , >v,wk

are
constructed as follows.

[〈w〉 = 0, 〈b〉 = 0] In this case, the constructed plan ρ should perform no value changes of
v, and thus ρv is set to an empty action sequence, and, consequently, both >v and all
>v,w are set to empty sets.

[〈w〉 > 0, 〈b〉 = 0] In this case, the constructed plan ρ should perform exactly one value
change of v (from bv to wv), and thus ρv is set to contain exactly one action a1

v with
eff(a) = {wv}, and

pre(a1
v) =

{

{bv, bw〈w〉
}, awv|bw〈w〉

∈ Av

{bv,ww〈w〉
}, otherwise

(50)

Note that a1
v is well-defined, as α < ∞ and Eq. 16 together imply that {awv |bw〈w〉

, awv |bw〈w〉
}∩

Av 6= ∅ (see case (2) in Eq. 16). In both outcomes of Eq. 50, we set >v= ∅. If
a1

v = awv |bw〈w〉
, we set

>v,w〈w〉
= {a1

v < a1
w〈w〉

| a1
w〈w〉

∈ ρw〈w〉
} (51)

Otherwise, if a1
v = awv|ww〈w〉

, then from case (2) in Eq. 16, awv|bw〈w〉
6∈ Av, and α < ∞,

we have |σw〈w〉
| > 1, and thus |ρw〈w〉

| ≥ 1. Given that, we set

>v,w〈w〉
= {a1

w〈w〉
< a1

v} ∪ {a1
v < a2

w〈w〉
| a2

w〈w〉
∈ ρw〈w〉

} (52)

In both cases, it is easy to verify that >v ∪ >v,w〈w〉
∪ >w〈w〉

constitutes a strict total
order over the action elements of ρv and ρw〈w〉

. (In particular, this trivially implies
that >v ∪ >v,w and >v,w ∪ >w are strict partial orderings over their domains.)

From Eqs. 47, 51, and 52 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In addi-
tion, Eq. 12 implies that this action sequence provides to v the value G[v] if the latter
is specified.

[〈w〉 > 0, 〈b〉 > 0, 〈w〉 = 〈b〉] In this case, the constructed plan ρ should perform more
than one value change of v, and all these value changes should be performed by (a
pair of types of) actions prevailed by the value of w〈w〉. From α < ∞, we have
ϕ([[δw(〈w〉), δb(〈w〉), η]] , σw〈w〉

) = 0. The specification of the case in question (that is,
〈w〉 = 〈b〉 > 0) thus implies that one of the conditions of the cases (4-6) of Eq. 16
should hold. Given that, we distinguish between the following four settings.

251

Katz & Domshlak

(1) If {awv |bw〈w〉
, abv |bw〈w〉

} ⊆ Av, then ρv is specified according to Eq. 45, and its

action elements are specified as

ai
v =







awv|bw〈w〉
, i is odd

abv |bw〈w〉
, i is even

. (53)

The relation >v is set according to Eq. 47, and >v,w〈w〉
is set to

>v,w〈w〉
= {ai

v < a1
w〈w〉

| ai
v ∈ ρv, a

1
w〈w〉

∈ ρw〈w〉
} (54)

Finally, for all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

(2) Otherwise, if {awv |ww〈w〉
, abv |ww〈w〉

} ⊆ Av and |σw〈w〉
| > 1, then we have |ρw〈w〉

| ≥ 1.

Given that, we again set ρv according to Eq. 45, but now with its action elements
being set as

ai
v =







awv|ww〈w〉
, i is odd

abv |ww〈w〉
, i is even

. (55)

The relation >v is set according to Eq. 47, and >v,w〈w〉
is set to

>v,w〈w〉
= {a1

w〈w〉
< ai

v | ai
v ∈ ρv} ∪ {ai

v < a2
w〈w〉

| ai
v ∈ ρv, a

2
w〈w〉

∈ ρw〈w〉
} (56)

Finally, for all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

(3) Otherwise, if {awv |bw〈w〉
, abv |ww〈w〉

} ⊆ Av , and |σw〈w〉
| ≥ |σv|−1, then ρv is specified

according to Eq. 45, and its action elements are specified as

ai
v =







awv|bw〈w〉
, i is odd

abv |ww〈w〉
, i is even

. (57)

The relation >v is set according to Eq. 47, and >v,w〈w〉
is set to

>v,w〈w〉
=

⋃

ai
v∈ρv,aj

w〈w〉
∈ρw〈w〉

{ai
v < aj

w〈w〉
| i ≤ j} ∪ {aj

w〈w〉
< ai

v | i > j} (58)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

(4) Otherwise, if {awv |ww1
, abv |bw1

} ⊆ Av, and |σw〈w〉
| ≥ |σv|, then ρv is specified

according to Eq. 45, and its action elements are specified as

ai
v =







awv|ww〈w〉
, i is odd

abv |bw〈w〉
, i is even

. (59)

The relation >v is set according to Eq. 47, and >v,w〈w〉
is set to

>v,w〈w〉
=

⋃

ai
v∈ρv,aj

w〈w〉
∈ρw〈w〉

{ai
v < aj

w〈w〉
| i < j} ∪ {aj

w〈w〉
< ai

v | i ≥ j} (60)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

252

Tractable Cost-Optimal Planning

In all the four cases above, >v ∪ >v,w〈w〉
∪ >w〈w〉

constitutes a strict total order over
the elements of ρv and ρw〈w〉

.

From Eqs. 47, 54, 56, and 58, 60 we can now derive that any linearization of >v

∪
⋃

w∈pred(v) >v,w defines a sequence of actions that is applicable with respect to {v}∪
pred(v). In addition, Eq. 12 implies that this action sequence provides to v the value
G[v] if the latter is specified.

[〈w〉 > 0, 〈b〉 > 0, 〈w〉 6= 〈b〉] In this case, the constructed plan ρ should perform more than
one value change of v, with changes of v to wv and bv being performed by (a pair of
types of) actions prevailed by the value of w〈w〉 and w〈b〉, respectively. From α < ∞,
we have ϕ([[δw(〈w〉), δb(〈w〉), η]] , σw〈w〉

) = ϕ([[δw(〈b〉), δb(〈b〉), η]] , σw〈b〉
) = 0, and this is

due to the respective satisfaction of the conditions of cases (2) and (3) in Eq. 16.
Given that, we distinguish between the following four settings5.

(1) If {awv |bw〈w〉
, abv |bw〈b〉

} ⊆ Av, then ρv is specified according to Eq. 45, and its

action elements are specified as

ai
v =







awv|bw〈w〉
, i is odd

abv |bw〈b〉
, i is even

. (61)

The relation >v over the action elements of ρv is set according to Eq. 47, the
relation >v,w〈w〉

over the action elements of ρv and ρw〈w〉
is set to

>v,w〈w〉
= {ai

v < a1
w〈w〉

| i is odd, ai
v ∈ ρv, a

1
w〈w〉

∈ ρw〈w〉
} (62)

and the relation >v,w〈b〉
over the action elements of ρv and ρw〈b〉

is set to

>v,w〈b〉
= {ai

v < a1
w〈b〉

| i is even, ai
v ∈ ρv, a

1
w〈b〉

∈ ρw〈b〉
} (63)

For all w ∈ pred(v) \ {w〈w〉, w〈b〉}, we set >v,w= ∅.

(2) Otherwise, if {awv |ww〈w〉
, abv |bw〈b〉

} ⊆ Av and |σw〈w〉
| > 1, then we have |ρw〈w〉

| ≥ 1.

Given that, we again set ρv according to Eq. 45, but now with its action elements
being set as

ai
v =







awv|ww〈w〉
, i is odd

abv |bw〈b〉
, i is even

. (64)

The relation >v is set according to Eq. 47, >v,w〈w〉
is set to

>v,w〈w〉
=

⋃

ai
v∈ρv, i is odd

{a1
w〈w〉

< ai
v} ∪ {ai

v < a2
w〈w〉

| a2
w〈w〉

∈ ρw〈w〉
} (65)

and >v,w〈b〉
is set to

>v,w〈b〉
= {ai

v < a1
w〈b〉

| i is even, ai
v ∈ ρv, a

1
w〈b〉

∈ ρw〈b〉
} (66)

For all w ∈ pred(v) \ {w〈w〉, w〈b〉}, we set >v,w= ∅.

5. While the details are slightly different, the four settings in this case are conceptually similar to these in
the previously considered case of 〈w〉 > 0, 〈b〉 > 0, 〈w〉 = 〈b〉.

253

Katz & Domshlak

(3) Otherwise, if {abv |ww〈b〉
, awv |bw〈w〉

} ⊆ Av, and |σw〈b〉
| > 1, then we have |ρw〈b〉

| ≥ 1.

Given that, we ρv is specified according to Eq. 45, and its action elements are
specified as

ai
v =







awv|bw〈w〉
, i is odd

abv |ww〈b〉
, i is even

. (67)

The relation >v is set according to Eq. 47, >v,w〈w〉
is set to

>v,w〈w〉
= {ai

v < a1
w〈w〉

| i is odd, ai
v ∈ ρv, a

1
w〈w〉

∈ ρw〈w〉
} (68)

and >v,w〈b〉
is set to

>v,w〈b〉
=

⋃

ai
v∈ρv, i is even

{a1
w〈b〉

< ai
v} ∪ {ai

v < a2
w〈b〉

| a2
w〈b〉

∈ ρw〈b〉
} (69)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

(4) Otherwise, if {awv |ww〈w〉
, abv |ww〈b〉

} ⊆ Av, |σw〈w〉
| > 1, and |σw〈b〉

| > 1, then we

have both |ρw〈w〉
| ≥ 1 and |ρw〈b〉

| ≥ 1. Given that, we again set ρv according to
Eq. 45, and its action elements are specified as

ai
v =







awv|ww〈w〉
, i is odd

abv |ww〈b〉
, i is even

. (70)

The relation >v is set according to Eq. 47, >v,w〈w〉
is set to

>v,w〈w〉
=

⋃

ai
v∈ρv, i is odd

{a1
w〈w〉

< ai
v} ∪ {ai

v < a2
w〈w〉

| a2
w〈w〉

∈ ρw〈w〉
} (71)

and >v,w〈b〉
is set to

>v,w〈b〉
=

⋃

ai
v∈ρv, i is even

{a1
w〈b〉

< ai
v} ∪ {ai

v < a2
w〈b〉

| a2
w〈b〉

∈ ρw〈b〉
} (72)

For all w ∈ pred(v) \ {w〈w〉}, we set >v,w= ∅.

In all the four cases above, both >v ∪ >v,w〈w〉
∪ >w〈w〉

and >v ∪ >v,w〈b〉
∪ >w〈b〉

constitute strict total orders over their respective domains.

From Eqs. 47, 62, 63, 65, 66, 68, 69, 71, and 72 we can now derive that any linearization
of >v ∪

⋃

w∈pred(v) >v,w defines a sequence of actions that is applicable with respect
to {v} ∪ pred(v). In addition, Eq. 12 implies that this action sequence provides to v
the value G[v] if the latter is specified.

Until now, for each variable v ∈ V , we have specified an action sequence ρv and the
order >v over the elements of ρv. For each w ∈ pred(v), we have specified the order >v,w,
and proved that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders over their domains,

254

Tractable Cost-Optimal Planning

and any linearization of >v ∪
⋃

w∈pred(v) >v,w defines a sequence of actions that is applicable
with respect to {v}∪ pred(v) and provides to v the value G[v] if the latter is specified. This
construction allows us to apply now Theorem 1 on the (considered as sets) sequences ρv

and orders >v and >v,w, proving that

>=
⋃

v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρv1
, . . . , ρvn .

Here we also note that the plan extraction step of the algorithm polytree-1-dep-uniform

corresponds exactly to the above construction along Eqs. 45-72, providing us in polynomial
time with a concrete cost-optimal plan corresponding to the optimal solution for COPΠ.

(II) We now prove that if Π is solvable, then we must have α < ∞. Assume to the contrary
that this is not the case. Let Π be a solvable P(1) problem, and let (using Theorem 5) ρ be
an irreducible, post-unique plan for Π. Given such ρ, let a COP assignment xρ be defined
as follows.

1. For each COP variable xv, the assignment xρ provides the value σv ∈ �∗[σ(v)] such
that |σv| = |ρ↓v| + 1.

2. For each COP variable xwi
v , the assignment xρ provides the value

[[

δw
wv

, δw
bv

, |σv| − 1
]]

,
where δw

wv
= 1 just if some action in ρ↓v changes the value of v to wv while (considering

the pre-fixed ordering of the v’s parents) being preconditioned by the value of some
wj , j ≤ i, and δw

wv
= 0, otherwise. δw

bv
is defined similarly to δw

wv
, mutatis mutandis.

From Eq. 14-18 we then directly have that, for all v ∈ V , ϕxv (xρ) = |ρ↓v |, and for all
w ∈ pred(v), ϕxw

v
(xρ) = 0. Therefore, we have

∑

ϕ∈F

ϕ(xρ) =
∑

v∈V

C(ρ↓v) = C(ρ),

which is what we had to prove. �

Theorem 8 For every solvable P(1) problem Π = (V,A, I,G), the plan set P3/2(Π) con-
tains at least one cost-optimal plan.

Proof: Given a P(1) problem Π = (V,A, I,G), and cost-optimal plan ρ for Π, we construct
a sequence of actions ρ∗ such that:

• ρ∗ is a post-3/2 plan for Π,

• C(ρ∗) = C(ρ).

In nutshell, first, for each v ∈ V , we map the subsequence ρ↓v = 〈a1, . . . , ak〉 of ρ
into a sequence of actions ρ∗v = 〈a∗1, . . . , a

∗
k〉 that (i) satisfy the post-3/2 property, and (ii)

C(ρ∗v) ≤ C(ρ↓v). Then, we merge the constructed sequences {ρ∗v}v∈V into ρ∗, and show
that ρ∗ is a valid plan for Π. The two properties of ρ∗ as required above will then hold

255

Katz & Domshlak

immediately because C(ρ∗) = C(ρ), and ρ∗ being post-3/2 is implied by all its per-variable
components ρ∗v being post-3/2.

For each variable v ∈ V , with pred(v) = ∅, we set ρ∗v = ρ↓v and

>v= {ai < aj | ai, aj ∈ ρ↓v, i < j}. (73)

It is immediate from Eq. 73 that >v is a strict total order over the elements of ρ∗v.
In turn, for each variable v ∈ V with pred(v) 6= ∅, given {σw}w∈pred(v), such that

|σw| = |ρ↓w| + 1, let aα
i be the i’th cheapest action that changes variable v to α ∈ {bv,wv}

and prevailed by some value from {σw}w∈pred(v) (that is, applicable given the sequences
of values {σw}w∈pred(v) respectively obtained by the parents of v). Let us now focus on

aw
1 = awv|γ , aw

2 = awv|µ, ab
1 = abv |δ, ab

2 = abv |ν (that is, {γ, µ, δ, ν} ⊆
⋃

w∈pred(v){bw,ww}).
6

(I) If γ = δ ∈ {bw,ww}, we set

a∗i =

{

awv|γ i = 2j − 1, j ∈ N

abv|γ otherwise
(74)

In addition, we construct the following sets of ordering constraints. First, we set a
binary relation >v over the action elements of ρ∗v = 〈a∗1, . . . , a

∗
k〉 to

>v= {a∗i < a∗j | a∗i , a
∗
j ∈ ρ∗v, i < j}. (75)

It is immediate from Eq. 75 that >v is a strict total order over the elements of ρ∗v.
Likewise, if ρ∗w = 〈aj1 , . . . , ajl

〉, we set

>v,w=















⋃

a∗
i ∈ρ∗v

{a∗i < aj1}, γ = bw
⋃

a∗
i ∈ρ∗v

{a∗i > aj1}, γ = ww, l = 1
⋃

a∗
i ∈ρ∗v

{a∗i > aj1} ∪ {a∗i < aj2}, γ = ww, l > 1

(76)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {w}
are set to empty sets.

For each w ∈ pred(v), it is easy to verify that the relation >v,w defined by Eq. 76 is a
strict total order over its domain. Also, from Eqs. 75 and 76, we have that, for each
w ∈ pred(v), >v ∪ >v,w is a strict total order over the union of the elements of ρ∗v
and ρ∗w.

From Eqs. 75-76 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v | together with Eq. 74 implies that this action sequence provides
to v the value G[v] if the latter is specified.

6. It is possible that some of these actions do not exist, and our case by case analysis in the proof trans-
parently takes this possibility into account. Specifically, if aw

1 does not exist, then variable v simply
unchangeable, meaning ρ↓v = ∅. Next, if ab

1 does not exist, then v can be changed at most once (from b

to w), and this is covered by a subcase of (I). If aw
2 does not exist, and ab

2 does exist, then only sub-cases
(a) of the cases {(III), (IV)}.{1, 3, 5, 7} are possible. Similarly, if ab

2 does not exist, and aw
2 does exist,

then only sub-cases (b) of the cases {(III), (IV)}.{1, 3, 5, 7} are possible. Finally, if both aw
2 and ab

2 do
not exist, then cases {(III), (IV)}.{1, 3, 5, 7} are not possible at all.

256

Tractable Cost-Optimal Planning

(II) If γ ∈ {bw,ww} and δ ∈ {bu,wu}, such that w 6= u, we set

a∗i =

{

awv|γ i = 2j − 1, j ∈ N

abv|δ otherwise
(77)

In this case as well, the ordering constraints >v are set according to Eq. 75. Likewise,
if ρ∗w = 〈a1, . . . , al〉, and ρ∗u = 〈a′1, . . . , a

′
l′〉, we set >v,w according to Eq. 76 above,

and >v,u according to Eq. 78 below.

>v,u =















⋃

a∗
i ∈ρ∗v

{a∗i < a′1}, ν = bu
⋃

a∗
i ∈ρ∗v

{a∗i > a′1}, ν = wu, l′ = 1
⋃

a∗
i
∈ρ∗v

{a∗i > a′1} ∪ {a∗i < a′2}, ν = wu, l′ > 1

(78)

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v)\{u,w}
are set to empty sets.

The relations >v in this case are identical to these in the previous case, and relations
>v,u and >v,w are effectively identical to the relation >v,w in previous case. Thus,
we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions of the
elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.

From Eqs. 75, 76, 78 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v | together with Eq. 77 implies that this action sequence provides
to v the value G[v] if the latter is specified.

(III) If γ = bw, δ = ww, we distinguish between a few cases based on σw and σv.

(1) If |ρ↓v | = 2y + 1, |σw| = 2x, |σw| ≤ |ρ↓v |, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
1 i = 2j, j ∈ N, j < x

ab
2 i = 2j, j ∈ N, x ≤ j ≤ y

aw
1 otherwise

(79)

And the cost in this case is

(y + 1) · C(aw
1) + (x − 1) · C(ab

1) + (y − x + 1) · C(ab
2) (80)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, and ρ∗u = 〈a′1, . . . , a

′
l′〉, we set >v,w according to Eq. 81, and

>v,u according to Eq. 82.

>v,w=
[

a∗
i
∈ρ∗v,aj∈ρ∗w

{a∗
i < aj | i ≤ j < 2x − 1} ∪ {a∗

i < a2x−1} ∪ {aj < a
∗
i | j < i, j < 2x − 1}

(81)

257

Katz & Domshlak

For each u ∈ pred(v) \ {w} we set,

>v,u=























⋃

a∗
i ∈ρ∗v

{a∗i < a′1}, ν = bu
⋃

a∗
i
∈ρ∗v

{a∗i > a′1}, ν = wu, l′ = 1
⋃

a∗
i ∈ρ∗v

{a∗i > a′1} ∪ {a∗i < a′2}, ν = wu, l′ > 1

∅, otherwise

. (82)

It is not hard to verify that the relation >v,w defined by Eq. 81 is a strict
total order over its domain. Suppose to the contrary that for some i, j, both
aj < a∗i and a∗i < aj. Then from first inequality we have either i ≤ j < 2x−1
or j = 2x − 1, and from second we have j < i, j < 2x − 1.
The relations >v and >v,u are effectively identical to these in case (II). Thus,
we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the
unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 81, 82 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 79 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
1 i = 2j − 1, j ∈ N, j ≤ x

aw
2 i = 2j − 1, j ∈ N, x < j ≤ y + 1

ab
1 otherwise

(83)

And the cost in this case is

x · C(aw
1) + (y + 1 − x) · C(aw

2) + y · C(ab
1) (84)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, and ρ∗u = 〈a′1, . . . , a

′
l′〉, we set >v,w according to Eq. 85, and

>v,u according to Eq. 86.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i ≤ j} ∪ {aj < a∗i | j < i} (85)

For each u ∈ pred(v) \ {w} we set,

>v,u=























⋃

a∗
i ∈ρ∗v

{a∗i < a′1}, µ = bu
⋃

a∗
i ∈ρ∗v

{a∗i > a′1}, µ = wu, l′ = 1
⋃

a∗
i ∈ρ∗v

{a∗i > a′1} ∪ {a∗i < a′2}, µ = wu, l′ > 1

∅, otherwise

. (86)

The relation >v,w defined by Eq. 85 is a strict total order over its domain.
The relations >v and >v,u are effectively identical to these in case (II). Thus,

258

Tractable Cost-Optimal Planning

we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the
unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 85, 86 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 83 implies that this action sequence
provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y + x actions
of both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at

least y + x + 1 actions of types aw
1 and ab

1. Then it contains no more than y − x
actions of other types. Let bw · ww · . . . · bw sequence of 2y + 1 values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y − x actions of other type will
decrease the length by at most 2y − 2x, and we are left with the sequence of
length ≥ 2y + 1 − (2y − 2x) = 2x + 1. Therefore σw cannot support more than
y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ↓v for v there are α actions of type aw
1 and β actions of type ab

1. Then

α + β ≤ y + x (87)

and

C(ρ↓v) ≥ α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (88)

For (80) ≤ (84), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (89)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 88 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

(y + 1) · C(aw
1) + (x − 1) · C(ab

1) + (y − x + 1) · C(ab
2)

and from it

(y + 1 − α) · (C(aw
2) − C(aw

1)) < (β − x + 1) · (C(ab
2) − C(ab

1)) (90)

From Eq. 87 we have y + 1 − α ≥ β − x + 1, together with Eq. 89 contradicting
Eq. 90.

For (84) ≤ (80), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (91)

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 88 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

x · C(aw
1) + (y − x + 1) · C(aw

2) + y · C(ab
1)

259

Katz & Domshlak

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x) · (C(aw
2) − C(aw

1)) (92)

From Eq. 87 we have y − β ≥ α − x, together with Eq. 91 contradicting Eq. 92.

(2) If |ρ↓v | = 2y + 1, |σw| = 2x, |σw| > |ρ↓v |, then the actions of ρ∗v are set to

a∗i =

{

awv |bw
i = 2j − 1, j ∈ N

abv |ww
otherwise

(93)

In this case as well, the ordering constraints >v are set according to Eq. 75.
Likewise, if ρ∗w = 〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 85 above. Finally,
the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v)\{u,w} are
set to empty sets.

The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 85 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v | together with Eq. 93 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(3) If |ρ↓v| = 2y, |σw| = 2x, |σw| < |ρ↓v |, then we construct two post-3/2 candidates
for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving that its cost
has to be lower than C(ρ↓v).

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
2 i = 2j, j ∈ N, j ≤ y − x

ab
1 i = 2j, j ∈ N, y − x < j ≤ y

aw
1 otherwise

(94)

And the cost in this case is

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2) (95)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 96.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i ≤ 2y − 2x + j} ∪ {aj < a∗i | i > 2y − 2x + j}

(96)
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 82. It is easy to
verify that the relation >v,w defined by Eq. 96 is a strict total order over its
domain. The relations >v and >v,u are effectively identical to the previous

260

Tractable Cost-Optimal Planning

case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders
over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 82, 96 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 94 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
1 i = 2j − 1, j ∈ N, j ≤ x

aw
2 i = 2j − 1, j ∈ N, x < j ≤ y

ab
1 otherwise

(97)

And the cost in this case is

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1) (98)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 85 above.
For each u ∈ pred(v)\{w} we set >v,u according to Eq. 86. The relations >v,
>v,w and >v,u are effectively identical to the previous case. Thus, again, we
have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over the unions
of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 85, 86 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 97 implies that this action sequence
provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y +x actions of
both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at least

y + x + 1 actions of types aw
1 and ab

1. Then it contains no more than y − x − 1
actions of other types. Let bw · ww · . . . · ww sequence of 2y values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y−x−1 actions of other type will
decrease the length by at most 2y − 2x − 2, and we are left with the sequence of
length ≥ 2y − (2y − 2x − 2) = 2x + 2. Therefore σw cannot support more than
y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ↓v for v there are α actions of type aw
1 and β actions of type ab

1. Then

α + β ≤ y + x (99)

and

C(ρ↓v) ≥ α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (100)

261

Katz & Domshlak

For (95) ≤ (98), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (101)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 100 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2)

and from it

(y − α) · (C(aw
2) − C(aw

1)) < (β − x) · (C(ab
2) − C(ab

1)) (102)

From Eq. 99 we have y−α ≥ β−x, together with Eq. 101 contradicting Eq. 102.

For (98) ≤ (95), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (103)

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 100 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1)

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x) · (C(aw
2) − C(aw

1)) (104)

From Eq. 99 we have y−β ≥ α−x, together with Eq. 103 contradicting Eq. 104.

(4) If |ρ↓v | = 2y, |σw| = 2x, |σw| ≥ |ρ↓v |, then the actions of ρ∗v are set to

a∗i =

{

awv |bw
i = 2j − 1, j ∈ N

abv |ww
otherwise

(105)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 85 above. Finally, the ordering
constraints >v,w′ for the rest of the parents w′ ∈ pred(v)\{u,w} are set to empty
sets. The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 85 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v| together with Eq. 105 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(5) If |ρ↓v | = 2y + 1, |σw| = 2x + 1, |σw| < |ρ↓v|, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

262

Tractable Cost-Optimal Planning

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
2 i = 2j, j ∈ N, j ≤ y − x

ab
1 i = 2j, j ∈ N, y − x < j ≤ y

aw
1 otherwise

(106)

And the cost in this case is

(y + 1) · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2) (107)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 96 above. For each u ∈ pred(v) \
{w} we set >v,u according to Eq. 82 above. The relations >v, >v,w and >v,u

are effectively identical to the previous case. Thus, we have >v ∪ >v,u and
>v ∪ >v,w forming strict partial orders over the unions of the elements of ρ∗v
and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 82, 96 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 106 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
1 i = 2j − 1, j ∈ N, j ≤ x or j = y + 1

aw
2 i = 2j − 1, j ∈ N, x < j ≤ y

ab
1 otherwise

(108)

And the cost in this case is

(x + 1) · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1) (109)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 110.

>v,w=
⋃

a∗
i ∈ρ∗v ,aj∈ρ∗w

{a∗i < aj | i ≤ j < 2x} ∪ {a∗i < a2x | i ≤ 2y}

∪{aj < a∗i | j < i, j < 2x} ∪ {a2x < a∗2y+1}
(110)

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 86 above.
It is easy to verify that the relation >v,w defined by Eq. 110 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.

263

Katz & Domshlak

From Eqs. 75, 86, 110 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 108 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y+x+1 actions
of both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at least

y + x + 2 actions of types aw
1 and ab

1. Then it contains no more than y − x − 1
actions of other types. Let bw · ww · . . . · bw sequence of 2y + 1 values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y−x−1 actions of other type will
decrease the length by at most 2y − 2x − 2, and we are left with the sequence of
length ≥ 2y + 1 − (2y − 2x − 2) = 2x + 3. Therefore σw cannot support more
than y + x + 1 actions of types aw

1 and ab
1. Now, suppose that in some given

cost-optimal plan ρ↓v for v there are α actions of type aw
1 and β actions of type

ab
1. Then

α + β ≤ y + x + 1 (111)

and

C(ρ↓v) ≥ α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (112)

For (107) ≤ (109), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (113)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 112 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

(y + 1) · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2)

and from it

(y + 1 − α) · (C(aw
2) − C(aw

1)) < (β − x) · (C(ab
2) − C(ab

1)) (114)

From Eq. 111 we have y + 1 − α ≥ β − x, together with Eq. 113 contradicting
Eq. 114.

For (109) ≤ (107), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (115)

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 112 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

(x + 1 · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1)

264

Tractable Cost-Optimal Planning

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x − 1) · (C(aw
2) − C(aw

1)) (116)

From Eq. 111 we have y − β ≥ α − x − 1, together with Eq. 115 contradicting
Eq. 116.

(6) If |ρ↓v | = 2y + 1, |σw| = 2x + 1, |σw| ≥ |ρ↓v|, the actions of ρ∗v are set to

a∗i =

{

awv |bw
i = 2j − 1, j ∈ N

abv |ww
otherwise

(117)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 85 above. Finally, the ordering con-
straints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w} are set to empty
sets. The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 85 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v| together with Eq. 117 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(7) If |ρ↓v | = 2y, |σw| = 2x + 1, |σw| ≤ |ρ↓v |, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
2 i = 2j, j ∈ N, j ≤ y − x

ab
1 i = 2j, j ∈ N, y − x < j ≤ y

aw
1 otherwise

(118)

And the cost in this case is

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2) (119)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 96 above. For each u ∈ pred(v) \
{w} we set >v,u according to Eq. 82 above. The relations >v, >v,w and >v,u

are effectively identical to the previous case. Thus, we have >v ∪ >v,u and
>v ∪ >v,w forming strict partial orders over the unions of the elements of ρ∗v
and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 82, 96 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 118 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

265

Katz & Domshlak

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
1 i = 2j − 1, j ∈ N, j ≤ x

aw
2 i = 2j − 1, j ∈ N, x < j ≤ y

ab
1 otherwise

(120)

And the cost in this case is

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1) (121)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 122.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i ≤ j < 2x} ∪ {aj < a∗i | j < i, j < 2x} ∪ {a∗i < a2x}

(122)
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 86 above.
It is easy to verify that the relation >v,w defined by Eq. 122 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.
From Eqs. 75, 86, 122 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 120 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y +x actions of
both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at least

y + x + 1 actions of types aw
1 and ab

1. Then it contains no more than y − x − 1
actions of other types. Let bw · ww · . . . · ww sequence of 2y values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y−x−1 actions of other type will
decrease the length by at most 2y − 2x − 2, and we are left with the sequence of
length ≥ 2y − (2y − 2x − 2) = 2x + 2. Therefore σw cannot support more than
y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ↓v for v there are α actions of type aw
1 and β actions of type ab

1. Then

α + β ≤ y + x (123)

and

C(ρ↓v) ≥ α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (124)

266

Tractable Cost-Optimal Planning

For (119) ≤ (121), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (125)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 124 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2)

and from it

(y − α) · (C(aw
2) − C(aw

1)) < (β − x) · (C(ab
2) − C(ab

1)) (126)

From Eq. 123 we have y−α ≥ β−x, together with Eq. 125 contradicting Eq. 126.

For (121) ≤ (119), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (127)

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 124 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1)

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x) · (C(aw
2) − C(aw

1)) (128)

From Eq. 123 we have y−β ≥ α−x, together with Eq. 127 contradicting Eq. 128.

(8) If |ρ↓v | = 2y, |σw| = 2x + 1, |σw| > |ρ↓v |, then the actions of ρ∗v are set to

a∗i =

{

awv |bw
i = 2j − 1, j ∈ N

abv |ww
otherwise

(129)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 85 above. Finally, the ordering con-
straints >v,w′ for the rest of the parents w′ ∈ pred(v) \ {u,w} are set to empty
sets. The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 85 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v| together with Eq. 129 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(IV) If γ = ww, δ = bw, we distinguish between a few cases based on σw and σv.

267

Katz & Domshlak

(1) If |ρ↓v | = 2y + 1, |σw| = 2x, |σw| ≤ |ρ↓v |, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
2 i = 2j, j ∈ N, j ≤ y − x + 1

ab
1 i = 2j, j ∈ N, y − x + 1 < j ≤ y

aw
1 otherwise

(130)

And the cost in this case is

(y + 1) · C(aw
1) + (x − 1) · C(ab

1) + (y − x + 1) · C(ab
2) (131)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 132.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i < j} ∪ {aj < a∗i | j ≤ i} (132)

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 82.
It is easy to verify that the relation >v,w defined by Eq. 132 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.
From Eqs. 75, 82, 132 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 130 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
2 i = 2j − 1, j ∈ N, j ≤ y − x + 1

aw
1 i = 2j − 1, j ∈ N, y − x + 1 < j ≤ y + 1

ab
1 otherwise

(133)

And the cost in this case is

x · C(aw
1) + (y + 1 − x) · C(aw

2) + y · C(ab
1) (134)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 135.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i ≤ 2y − 2x + 1 + j} ∪ {aj < a∗i | i > 2y − 2x + 1 + j}

(135)

268

Tractable Cost-Optimal Planning

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 86.
It is easy to verify that the relation >v,w defined by Eq. 135 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.
From Eqs. 75, 86, 135 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 133 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y + x actions
of both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at

least y + x + 1 actions of types aw
1 and ab

1. Then it contains no more than y − x
actions of other types. Let ww · wb · . . . · ww sequence of 2y + 1 values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y − x actions of other type will
decrease the length by at most 2y − 2x, and we are left with the sequence of
length ≥ 2y + 1 − (2y − 2x) = 2x + 1. Therefore σw cannot support more than
y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ↓v for v there are α actions of type aw
1 and β actions of type ab

1. Then

α + β ≤ y + x (136)

and

C(ρ↓v) ≥ α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (137)

For (131) ≤ (134), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (138)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 137 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

(y + 1) · C(aw
1) + (x − 1) · C(ab

1) + (y − x + 1) · C(ab
2)

and from it

(y + 1 − α) · (C(aw
2) − C(aw

1)) < (β − x + 1) · (C(ab
2) − C(ab

1)) (139)

From Eq. 136 we have y +1−α ≥ β −x+1, together with Eq. 138 contradicting
Eq. 139.

For (134) ≤ (131), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (140)

269

Katz & Domshlak

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 137 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

x · C(aw
1) + (y − x + 1) · C(aw

2) + y · C(ab
1)

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x) · (C(aw
2) − C(aw

1)) (141)

From Eq. 136 we have y−β ≥ α−x, together with Eq. 140 contradicting Eq. 141.

(2) If |ρ↓v | = 2y + 1, |σw| = 2x, |σw| > |ρ↓v |, then the actions of ρ∗v are set to

a∗i =

{

awv |ww
i = 2j − 1, j ∈ N

abv |bw
otherwise

(142)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 132 above. Finally, the ordering
constraints >v,w′ for the rest of the parents w′ ∈ pred(v)\{u,w} are set to empty
sets. The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 132 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v| together with Eq. 142 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(3) If |ρ↓v | = 2y, |σw| = 2x, |σw| ≤ |ρ↓v| + 1, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
1 i = 2j, j ∈ N, j < x

ab
2 i = 2j, j ∈ N, x ≤ j ≤ y

aw
1 otherwise

(143)

And the cost in this case is

y · C(aw
1) + (x − 1) · C(ab

1) + (y − x + 1) · C(ab
2) (144)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 132 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 82.
The relations >v, >v,w and >v,u are effectively identical to the previous case.
Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over
the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.

270

Tractable Cost-Optimal Planning

From Eqs. 75, 82, 132 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 143 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
2 i = 2j − 1, j ∈ N, j ≤ y − x + 1

aw
1 i = 2j − 1, j ∈ N, y − x + 1 < j ≤ y

ab
1 otherwise

(145)

And the cost in this case is

(x − 1) · C(aw
1) + (y − x + 1) · C(aw

2) + y · C(ab
1) (146)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 135 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 86.
The relations >v, >v,w and >v,u are effectively identical to the previous case.
Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over
the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 86, 135 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 145 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y + x − 1
actions of both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain

at least y + x actions of types aw
1 and ab

1. Then it contains no more than y − x
actions of other types. Let ww · bw · . . . · bw sequence of 2y values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length
of this sequence by at most 2. Therefore at most y − x actions of other type
will decrease the length by at most 2y − 2x, and we are left with the sequence of
length ≥ 2y−(2y−2x) = 2x, which have to be a subsequence of σw, contradicting
with the fact that σw is of the same or smaller size and starts with a different
character. Therefore σw cannot support more than y + x actions of types aw

1 and
ab

1. Now, suppose that in some given cost-optimal plan ρ↓v for v there are α
actions of type aw

1 and β actions of type ab
1. Then

α + β ≤ y + x (147)

and

C(ρ↓v) ≥ α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (148)

271

Katz & Domshlak

For (144) ≤ (146), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (149)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 148 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2)

and from it

(y − α) · (C(aw
2) − C(aw

1)) < (β − x) · (C(ab
2) − C(ab

1)) (150)

From Eq. 147 we have y−α ≥ β−x, together with Eq. 149 contradicting Eq. 150.

For (146) ≤ (144), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (151)

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 148 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1)

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x) · (C(aw
2) − C(aw

1)) (152)

From Eq. 147 we have y−β ≥ α−x, together with Eq. 151 contradicting Eq. 152.

(4) If |ρ↓v | = 2y, |σw| = 2x, |σw| > |ρ↓v | + 1, then the actions of ρ∗v are set to

a∗i =

{

awv |ww
i = 2j − 1, j ∈ N

abv |bw
otherwise

(153)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 132 above. Finally, the ordering
constraints >v,w′ for the rest of the parents w′ ∈ pred(v)\{u,w} are set to empty
sets. The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 132 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v| together with Eq. 153 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(5) If |ρ↓v | = 2y + 1, |σw| = 2x + 1, |σw| ≤ |ρ↓v |+ 1, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

272

Tractable Cost-Optimal Planning

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
1 i = 2j, j ∈ N, j < x

ab
2 i = 2j, j ∈ N, x ≤ j ≤ y

aw
1 otherwise

(154)

And the cost in this case is

(y + 1) · C(aw
1) + (x − 1) · C(ab

1) + (y − x + 1) · C(ab
2) (155)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 156.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i < j < 2x} ∪ {aj < a∗i | j ≤ i, j < 2x} ∪ {a∗i < a2x}

(156)
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 82.
It is easy to verify that the relation >v,w defined by Eq. 156 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.
From Eqs. 75, 82, 156 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 154 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
2 i = 2j − 1, j ∈ N, j ≤ y − x or j = y + 1

aw
1 i = 2j − 1, j ∈ N, y − x < j ≤ y

ab
1 otherwise

(157)

And the cost in this case is

x · C(aw
1) + (y + 1 − x) · C(aw

2) + y · C(ab
1) (158)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 159.

>v,w=
⋃

a∗
i ∈ρ∗v,aj∈ρ∗w

{a∗i < aj | i < 2y − 2x + j} ∪ {aj < a∗i | i ≥ 2y − 2x + j}

(159)

273

Katz & Domshlak

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 86.
It is easy to verify that the relation >v,w defined by Eq. 159 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.
From Eqs. 75, 86, 159 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 157 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y+x+1 actions
of both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at least

y + x + 2 actions of types aw
1 and ab

1. Then it contains no more than y − x − 1
actions of other types. Let ww · bw · . . . · ww sequence of 2y + 1 values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y−x−1 actions of other type will
decrease the length by at most 2y − 2x − 2, and we are left with the sequence of
length ≥ 2y + 1 − (2y − 2x − 2) = 2x + 3. Therefore σw cannot support more
than y + x + 1 actions of types aw

1 and ab
1. Now, suppose that in some given

cost-optimal plan ρ↓v for v there are α actions of type aw
1 and β actions of type

ab
1. Then

α + β ≤ y + x + 1 (160)

and

C(ρ↓v) ≥ α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (161)

For (155) ≤ (158), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (162)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 161 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

(y + 1) · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2)

and from it

(y + 1 − α) · (C(aw
2) − C(aw

1)) < (β − x) · (C(ab
2) − C(ab

1)) (163)

From Eq. 160 we have y + 1 − α ≥ β − x, together with Eq. 162 contradicting
Eq. 163.

For (158) ≤ (155), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (164)

274

Tractable Cost-Optimal Planning

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 161 we have

α · C(aw
1) + (y + 1 − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

(x + 1 · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1)

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x − 1) · (C(aw
2) − C(aw

1)) (165)

From Eq. 160 we have y − β ≥ α − x − 1, together with Eq. 164 contradicting
Eq. 165.

(6) If |ρ↓v| = 2y + 1, |σw| = 2x + 1, |σw| > |ρ↓v|+ 1, then the actions of ρ∗v are set to

a∗i =

{

awv |ww
i = 2j − 1, j ∈ N

abv |bw
otherwise

(166)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 132 above.

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \
{u,w} are set to empty sets.

The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

From Eqs. 75, 132 we can now derive that any linearization of >v ∪
⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v). In
addition, |ρ∗v| = |ρ↓v| together with Eq. 166 implies that this action sequence
provides to v the value G[v] if the latter is specified.

(7) If |ρ↓v | = 2y, |σw| = 2x + 1, |σw| ≤ |ρ↓v |, then we construct two post-3/2
candidates for ρ∗v, and then assign ρ∗v to the cheapest among the two, proving
that its cost has to be lower than C(ρ↓v).

(a) All the changes of v to wv are done using action aw
1 , and then the largest

possible number of changes to bv are done using action ab
1, with the remaining

changes to bv being done using action ab
2. For this candidate for ρ∗v, we set

a∗i =











ab
2 i = 2j, j ∈ N, j ≤ y − x

ab
1 i = 2j, j ∈ N, y − x < j ≤ y

aw
1 otherwise

(167)

And the cost in this case is

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2) (168)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x〉, we set >v,w according to Eq. 169.

>v,w=
[

a∗
i
∈ρ∗v,aj∈ρ∗w

{a∗
i < aj | i < 2y − 2x + j, j > 1} ∪ {aj < a

∗
i | i ≥ 2y − 2x + j} ∪ {a1 < a

∗
i }

(169)

275

Katz & Domshlak

For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 82.
It is easy to verify that the relation >v,w defined by Eq. 169 is a strict total
order over its domain. The relations >v and >v,u are effectively identical to
the previous case. Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict
partial orders over the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w,
respectively.
From Eqs. 75, 82, 169 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 167 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

(b) All the changes of v to bv are done using action ab
1, and then the largest

possible number of changes to wv are done using action aw
1 , with the remaining

changes to wv being done using action aw
2 . For this candidate for ρ∗v, we set

a∗i =











aw
2 i = 2j − 1, j ∈ N, j ≤ y − x

aw
1 i = 2j − 1, j ∈ N, y − x < j ≤ y

ab
1 otherwise

(170)

And the cost in this case is

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1) (171)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 159 above.
For each u ∈ pred(v) \ {w} we set >v,u according to Eq. 86 above.
The relations >v, >v,w and >v,u are effectively identical to the previous case.
Thus, we have >v ∪ >v,u and >v ∪ >v,w forming strict partial orders over
the unions of the elements of ρ∗v and ρ∗u, and ρ∗v and ρ∗w, respectively.
From Eqs. 75, 86, 159 we can now derive that any linearization of >v ∪

⋃

w∈pred(v) >v,w

defines a sequence of actions that is applicable with respect to {v} ∪ pred(v).
In addition, |ρ∗v| = |ρ↓v | together with Eq. 170 implies that this action se-
quence provides to v the value G[v] if the latter is specified.

Now, for each cost-optimal plan ρ, ρ↓v cannot contain more than y +x actions of
both types aw

1 and ab
1 totally. Suppose to the contrary that ρ↓v contain at least

y + x + 1 actions of types aw
1 and ab

1. Then it contains no more than y − x − 1
actions of other types. Let ww · bw · . . . · bw sequence of 2y values of w that
support a cost-optimal plan for v given that w can change its value any number
of times. Then each action of any other type will decrease the needed length of
this sequence by at most 2. Therefore at most y−x−1 actions of other type will
decrease the length by at most 2y − 2x − 2, and we are left with the sequence of
length ≥ 2y − (2y − 2x − 2) = 2x + 2. Therefore σw cannot support more than
y + x actions of types aw

1 and ab
1. Now, suppose that in some given cost-optimal

plan ρ↓v for v there are α actions of type aw
1 and β actions of type ab

1. Then

α + β ≤ y + x (172)

276

Tractable Cost-Optimal Planning

and

C(ρ↓v) ≥ α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) (173)

For (168) ≤ (171), we have

C(ab
2) − C(ab

1) ≤ C(aw
2) − C(aw

1) (174)

Now suppose to the contrary that the plan in first case is not cost-optimal. Then
from Eq. 173 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

y · C(aw
1) + x · C(ab

1) + (y − x) · C(ab
2)

and from it

(y − α) · (C(aw
2) − C(aw

1)) < (β − x) · (C(ab
2) − C(ab

1)) (175)

From Eq. 172 we have y−α ≥ β−x, together with Eq. 174 contradicting Eq. 175.

For (171) ≤ (168), we have

C(aw
2) − C(aw

1) ≤ C(ab
2) − C(ab

1) (176)

Now suppose to the contrary that the plan in second case is not cost-optimal.
Then from Eq. 173 we have

α · C(aw
1) + (y − α) · C(aw

2) + β · C(ab
1) + (y − β) · C(ab

2) <

x · C(aw
1) + (y − x) · C(aw

2) + y · C(ab
1)

and from it

(y − β) · (C(ab
2) − C(ab

1)) < (α − x) · (C(aw
2) − C(aw

1)) (177)

From Eq. 172 we have y−β ≥ α−x, together with Eq. 176 contradicting Eq. 177.

(8) If |ρ↓v | = 2y, |σw| = 2x + 1, |σw| > |ρ↓v |, then the actions of ρ∗v are set to

a∗i =

{

awv |ww
i = 2j − 1, j ∈ N

abv |bw
otherwise

(178)

The ordering constraints >v are set according to Eq. 75. Likewise, if ρ∗w =
〈a1, . . . , a2x−1〉, we set >v,w according to Eq. 132 above.

Finally, the ordering constraints >v,w′ for the rest of the parents w′ ∈ pred(v) \
{u,w} are set to empty sets.

The relations >v and >v,w are identical to the previous case. Thus, we have
>v ∪ >v,w forming strict partial order over the union of the elements of ρ∗v and
ρ∗w.

277

Katz & Domshlak

Until now, we have specified the sequences ρ∗v, the orders >v induced by these sequences,
the orders >v,w, and proved that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders
over their domains. This construction allows us to apply now Theorem 1 to the (considered
as sets) sequences ρ∗v and orders >v and >v,w, proving that

>=
⋃

v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρ∗v1
, . . . , ρ∗vn

. Putting thing together, the
above implies that any linearization ρ∗ of > is a plan for Π, and post-3/2ness of all its
subsequences ρ∗v1

, . . . , ρ∗vn
then implies ρ∗ ∈ P3/2(Π). Moreover, if ρ is an optimal plan for

Π, then C(ρ∗) = C(ρ) implies the optimality of ρ∗. �

Theorem 9 Let Π be a P(1) problem, COPΠ = (X ,F) be the corresponding constraint
optimization problem, and x be an optimal assignment to X with

∑

ϕ∈F ϕ(x) = α.

(I) If α < ∞, then a plan of cost α for Π can be reconstructed from x in time polynomial
in the description size of Π.

(II) If Π has a plan, then α < ∞.

Proof:
(I) Given a COP solution x with

∑

ϕ∈F ϕ(x) = α < ∞, we construct a plan ρ for Π with
C(ρ) = α. We construct this plan by

1. Traversing the planning variables in a topological ordering of the causal graph CG(Π),
and associating each variable v with a sequence ρv ∈ A∗

v.

2. Merging the constructed sequences ρv1
, . . . , ρvn into the desired plan ρ.

For each v ∈ V with pred(v) = ∅ we set ρv = 〈a1 · . . . · al〉, where l = |xv| − 1, and ai is
defined as in Eq 179 below.

ai =

{

awv , i is odd,

abv
, i is even,

(179)

Note that Eq. 179 is well-defined—the existence of the essential for Eq. 179 actions awv/abv

is implied by Eq. 22 and α < ∞.
In turn, for each v ∈ V with pred(v) = {w1, . . . , wk}, given xw1

v , . . . , xwk
v , we distinguish

between the following cases.

[R1 is played] R1 is played by one of the parents, while all other parents play role R11.

[R1 is played by w1] Eq. 35 then implies

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R1, xw1

v , xw1
)

and xw1
v ∋ S = S1. From Eq. 36 we then have x

wj
v ∋ S′ = S1 for each 1 < j ≤ k,

giving us
ϕ

x
wj
v

(x
wj
v , x

wj−1

v , xwj
) = 0

278

Tractable Cost-Optimal Planning

[R1 is played by wj, j > 1] Eq. 36 then implies

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R1,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0.

From Eq. 35 we also have

ϕx
w1
v

(xw1

v , xw1
) = 0

In both these sub-cases, ρv, >v and >v,w are specified as in the proof of Theorem 8,
case I.

[R2 is played] R2 is played by one of the parents, while all other parents play role R11.

[R2 is played by w1] Eq. 35 then implies

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R2, xw1

v , xw1
)

and, for each 1 < j ≤ k, Eq. 36 implies

ϕ
x

wj
v

(x
wj
v , x

wj−1

v , xwj
) = 0

If ϕ(R2, [[S,#w,#b, η]] , σw1
) = ξ(#w, 0,#b, 0), then ρv, >v and >v,w are specified

as in the proof of Theorem 8, case III.2, otherwise, as in the case IV.2.

[R2 is played by wj, j > 1] Eq. 36 then implies

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R2,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0.

From Eq. 35 we also have

ϕx
w1
v

(xw1

v , xw1
) = 0

If ϕ(R2, [[S,#w − #′
w,#b − #′

b, η]] , σwj
) = ξ(#w−#′

w, 0,#b−#′
b, 0), then ρv, >v

and >v,w are specified as in the proof of Theorem 8, case III.2, otherwise, as in
the case IV.2.

[R3 and R4 are played] Those roles are played by two of the parents, while all other
parents play role R11.

279

Katz & Domshlak

[R3 is played by w1, R4 is played by wj, j > 1] From Eqs. 35 and 36 we then
have

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R3, xw1

v , xw1
)

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R4,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i ≤ k, such that i 6= j:

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

[R4 is played by w1, R3 is played by wj, j > 1] From Eqs. 35 and 36 we then
have

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R4, xw1

v , xw1
)

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R3,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

[R3 is played by wj, R4 is played by wt, j 6= t, j, t > 1] From Eqs. 35 and 36
we have

ϕx
w1
v

(xw1

v , xw1
) = 0

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R3,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and

ϕx
wt
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwt) =

ϕ(R4,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwt)

and, for all 1 < i ≤ k such that i 6∈ {j, t},

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

In all these three sub-cases, ρv, >v and >v,w are specified as in the proof of Theorem 8,
case II.

[R5 is played] R5 is played by one of the parents, while all other parents play role R11.

280

Tractable Cost-Optimal Planning

[R5 is played by w1] Eqs. 35 and 36 imply

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R5, xw1

v , xw1
)

and, for each 1 < j ≤ k,

ϕ
x

wj
v

(x
wj
v , x

wj−1

v , xwj
) = 0

Considering now the specification of the function ϕ in Eq. 29,

• If the first case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.1.a.

• If the first case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.1.a.

• If the second case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.3.a.

• If the second case holds, and the minimum is obtained at the second expres-
sion, then ρv, >v and >v,w are defined as in the proof of Theorem 8, case
IV.3.a.

• If the third case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.3.a.

• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case IV.3.a.

• If the fifth case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.5.a.

• If the fifth case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.5.a.

• If the sixth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.5.a.

• If the seventh case holds, then ρv, >v and >v,w are defined as in the proof
of Theorem 8, case IV.5.a.

• If the eighth case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.7.a.

• If the eighth case holds, and the minimum is obtained at the second expres-
sion, then ρv, >v and >v,w are defined as in the proof of Theorem 8, case
IV.7.a.

[R5 is played by wj, j > 1] Eq. 36 then implies

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R5,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0.

From Eq. 35 we also have
ϕx

w1
v

(xw1

v , xw1
) = 0

Here ρv, >v and >v,w are specified exactly as in the previous case.

281

Katz & Domshlak

[R6 is played] R6 is played by one of the parents, while all other parents play role R11.

[R6 is played by w1] Eqs. 35 and 36 imply

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R6, xw1

v , xw1
)

and, for each 1 < j ≤ k,

ϕ
x

wj
v

(x
wj
v , x

wj−1

v , xwj
) = 0

Considering now the specification of the function ϕ in Eq. 30,

• If the first case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.1.b.

• If the first case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.1.b.

• If the second case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.3.b.

• If the second case holds, and the minimum is obtained at the second expres-
sion, then ρv, >v and >v,w are defined as in the proof of Theorem 8, case
IV.3.b.

• If the third case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.3.b.

• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case IV.3.b.

• If the fifth case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.5.b.

• If the fifth case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.5.b.

• If the sixth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.5.b.

• If the seventh case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.7.b.

• If the seventh case holds, and the minimum is obtained at the second ex-
pression, then ρv, >v and >v,w are defined as in the proof of Theorem 8,
case IV.7.b.

[R6 is played by wj, j > 1] Eq. 36 then implies

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R6,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1

v , xwi
) = 0.

From Eq. 35 we also have
ϕx

w1
v

(xw1

v , xw1
) = 0

Here ρv, >v and >v,w are specified exactly as in the previous case.

282

Tractable Cost-Optimal Planning

[R7 and R9 are played] Those roles are played by two of the parents, while all other
parents play role R11.

[R7 is played by w1, R9 is played by wj, j > 1] From Eqs. 35 and 36 we then
have

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R7, xw1

v , xw1
)

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R9,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and ,for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1

v , xwi
) = 0

Considering now the specification of the function ϕ in Eq. 31,

• If the first case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.1.a.

• If the first case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.1.a.

• If the second case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.3.a.

• If the third case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case IV.3.a.

• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.5.a.

• If the fifth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case IV.5.a.

• If the sixth case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.7.a.

• If the sixth case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.7.a.

[R9 is played by w1, R7 is played by wj, j > 1] From Eqs. 35 and 36 we then
have

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R9, xw1

v , xw1
)

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R7,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

Here ρv, >v and >v,w are specified exactly as in the previous case.

283

Katz & Domshlak

[R7 is played by wj, R9 is played by wt, j 6= t, j, t > 1] From Eqs. 35 and 36
we have

ϕx
w1
v

(xw1

v , xw1
) = 0

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R7,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and

ϕx
wt
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwt) =

ϕ(R9,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwt)

and, for all 1 < i ≤ k, such that i 6∈ {j, t},

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

Then, ρv, >v and >v,w are specified exactly as in the two previous cases.

[R8 and R10 are played] Those roles are played by two of the parents, while all other
parents play role R11.

[R8 is played by w1, R10 is played by wj, j > 1] From Eqs. 35 and 36 we then
have

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R8, xw1

v , xw1
)

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R10,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

Considering now the specification of the function ϕ in Eq. 32,

• If the first case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.1.b.

• If the first case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.1.b.

• If the second case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.3.b.

• If the third case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case IV.3.b.

• If the forth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case III.5.b.

• If the fifth case holds, then ρv, >v and >v,w are defined as in the proof of
Theorem 8, case IV.5.b.

284

Tractable Cost-Optimal Planning

• If the sixth case holds, and the minimum is obtained at the first expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case III.7.b.

• If the sixth case holds, and the minimum is obtained at the second expression,
then ρv, >v and >v,w are defined as in the proof of Theorem 8, case IV.7.b.

[R10 is played by w1, R8 is played by wj, j > 1] From Eqs. 35 and 36 we then
have

ϕx
w1
v

(xw1

v , xw1
) = ϕ(R10, xw1

v , xw1
)

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R8,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and, for all 1 < i 6= j ≤ k,

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

Here ρv, >v and >v,w are specified exactly as in the previous case.

[R8 is played by wj, R10 is played by wt, j 6= t, j, t > 1] From Eqs. 35 and 36
we have

ϕx
w1
v

(xw1

v , xw1
) = 0

and

ϕ
x

wj
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwj
) =

ϕ(R8,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwj
)

and

ϕx
wt
v

([[S,#w,#b, η]] ,
[[

S′,#′
w,#′

b, η
′
]]

, σwt) =

ϕ(R10,
[[

S,#w − #′
w,#b − #′

b, η
]]

, σwt)

and, for all 1 < i ≤ k, such that i 6∈ {j, t},

ϕx
wi
v

(xwi
v , x

wi−1
v , xwi

) = 0

Then, ρv, >v and >v,w are specified exactly as in the two previous cases.

Until now, for each variable v ∈ V , we have specified the action sequence ρv and the
order >v over the elements of ρv. For each w ∈ pred(v), we have specified the order >v,w,
and proved that all >v ∪ >v,w and >w ∪ >v,w form strict partial orders over their domains.
Similarly to the uniform cost case, this construction allows us to apply now Theorem 1 on
the (considered as sets) sequences ρv and orders >v and >v,w, proving that

>=
⋃

v∈V

(>v ∪
⋃

w∈pred(v)

>v,w)

forms a strict partial order over the union of ρv1
, . . . , ρvn .

285

Katz & Domshlak

Finally, we note that the plan extraction step of the algorithm polytree-1-dep cor-
responds exactly to the above construction along Eqs. 74-79, 81-83, 85-86, 93-94, 96-
97, 105-106, 108, 110, 117-118, 120, 122, 129-130, 132-133, 135, 142-143, 145, 153-154, 156-
157, 159, 166-167, 169-170, 178, providing us in poly-time with concrete cost-optimal plan
corresponding to the optimal solution for COPΠ.

(II) We now prove that if Π is solvable, then we must have α < ∞. Assume to the contrary
that this is not the case. Let Π be a solvable P(1) problem, and let (using Theorem 8) ρ
be an irreducible, post-3/2 plan for Π. Given such ρ, let a COP assignment xρ be defined
as follows.

1. For each COP variable xv, the assignment xρ provides the value σv ∈ �∗[σ(v)] such
that |σv| = |ρ↓v| + 1.

2. For each variable v ∈ V , such that pred(v) 6= ∅, find the (at most two) parents
that prevail the actions in ρ↓v. Let w be such a parent that performs a role R ∈
{R1,R2,R3,R5,R6,R7,R8}, and w′ be the other such parent that performs one of
the roles R′ ∈ {R4,R9,R10,R11}. (By definition of post-3/2 action sequences, the
rest of the parents all perform role R11.) Given that, if |pred(v)| = k > 0, we adopt an
ordering of pred(v) such that w1 = w and wk = w′. First, the assignment xwk

v to COP

variable xwk
v provides the value

[[

S1, ⌈ |σv |−1
2 ⌉, ⌊ |σv |−1

2 ⌋, |σv | − 1
]]

. Then, for 1 ≤ i < k,

the assignment xwi
v to COP variable xwi

v provides the value [[S,#w,#b, |σv | − 1]], where

S =























S2, R′ = R4

S4, R′ = R9

S5, R′ = R10

S1, R′ = R11

and #w and #b are the numbers of actions in ρ↓v that change the value of v to wv

and bv, respectively, while being prevailed by the value of w1.

From Eq. 22-36 we then have that, for each v ∈ V , if pred(v) = ∅, then ϕxv (xv) = C(ρ↓v).
Otherwise, if pred(v) = {w1, . . . , wk}, then ϕxv(xv, x

wk
v) = 0, and

∑

w∈pred(v) ϕxw
v
(xρ) =

C(ρ↓v). Therefore, we have

∑

ϕ∈F

ϕ(xρ) =
∑

v∈V

C(ρ↓v) = C(ρ),

which is what we had to prove. �

References

Bacchus, F., & Yang, Q. (1994). Downward refinement and the efficiency of hierarchical
problem solving. Artificial Intelligence, 71 (1), 43–100.

Bäckström, C., & Klein, I. (1991). Planning in polynomial time: The SAS-PUBS class.
Computational Intelligence, 7 (3), 181–197.

286

Tractable Cost-Optimal Planning

Bäckström, C., & Nebel, B. (1995). Complexity results for SAS+ planning. Computational
Intelligence, 11 (4), 625–655.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1–
2), 5–33.

Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., & Poole, D. (2004). CP-nets: A tool
for representing and reasoning about conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research, 21, 135–191.

Brafman, R. I., & Domshlak, C. (2003). Structure and complexity of planning with unary
operators. Journal of Artificial Intelligence Research, 18, 315–349.

Brafman, R. I., & Domshlak, C. (2006). Factored planning: How, when, and when not.
In Proceedings of the 18th National Conference on Artificial Intelligence (AAAI), pp.
809–814, Boston, MA.

Bylander, T. (1994). The computational complexity of propositional STRIPS planning.
Artificial Intelligence, 69 (1-2), 165–204.

Chapman, D. (1987). Planning for conjunctive goals. Artificial Intelligence, 32 (3), 333–377.

Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to Algorithms. MIT
Press.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Edelkamp, S. (2001). Planning with pattern databases. In Proceedings of the European
Conference on Planning (ECP), pp. 13–34.

Erol, K., Nau, D. S., & Subrahmanian, V. S. (1995). Complexity, decidability and undecid-
ability results for domain-independent planning. Artificial Intelligence, Special Issue
on Planning, 76 (1–2), 75–88.

Garey, M. R., & Johnson, D. S. (1978). Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New-York.

Gimenez, O., & Jonsson, A. (2008). The complexity of planning problems with simple
causal graphs. Journal of Artificial Intelligence Research, 31, 319–351.

Haslum, P. (2006). Admissible Heuristics for Automated Planning. Ph.D. thesis, Linköping
University, Department of Computer and Information Science.

Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-
independent planning. In Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI), pp. 1163–1168, Pittsburgh, PA.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In Proceed-
ings of the 15th International Conference on Artificial Intelligence Planning Systems
(AIPS), pp. 140–149, Breckenridge, CO.

Helmert, M. (2003). Complexity results for standard benchmark domains in planning.
Artificial Intelligence, 146 (2), 219–262.

Helmert, M. (2006). The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26, 191–246.

287

Katz & Domshlak

Hoffmann, J. (2003). Utilizing Problem Structure in Planning: A Local Search Approach.
No. 2854 in LNAI. Springer-Verlag.

Hoffmann, J., & Edelkamp, S. (2005). The deterministic part of IPC-4: An overview. Journal
of Artificial Intelligence Research, 24, 519–579.

Hoffmann, J., & Nebel, B. (2001). The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14, 253–302.

Jonsson, P., & Bäckström, C. (1995). Incremental planning. In New Directions in AI
Planning: EWSP’95-3rd European Workshop on Planning, pp. 79–90, Assisi, Italy.

Jonsson, P., & Bäckström, C. (1998a). State-variable planning under structural restrictions:
Algorithms and complexity. Artificial Intelligence, 100 (1–2), 125–176.

Jonsson, P., & Bäckström, C. (1998b). Tractable plan existence does not imply tractable
plan generation. Annals of Mathematics and Artificial Intelligence, 22 (3-4), 281–296.

Kambhampati, S. (1995). Admissible pruning strategies based on plan minimality for plan-
space planning. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence, pp. 1627–1635, Montreal, Canada.

Katz, M., & Domshlak, C. (2007). Structural patterns heuristics. In ICAPS-07 Work-
shop on Heuristics for Domain-independent Planning: Progress, Ideas, Limitations,
Challenges, Providence, RI.

Klein, I., Jonsson, P., & Bäckström, C. (1998). Efficient planning for a miniature assembly
line. Artificial Intelligence in Engineering, 13 (1), 69–81.

Knoblock, C. (1994). Automatically generating abstractions for planning. Artificial Intel-
ligence, 68 (2), 243–302.

Newell, A., & Simon, H. A. (1963). GPS: A program that simulates human thought. In
Feigenbaum, E. A., & Feldman, J. (Eds.), Computers and Thought, pp. 279–293.
Oldenbourg.

Sacerdoti, E. (1974). Planning in a hierarchy of abstraction spaces. Artificial Intelligence,
5, 115–135.

Tenenberg, J. D. (1991). Abstraction in planning. In Allen, J. F., Kautz, H. A., Pelavin,
R. N., & Tenenberg, J. D. (Eds.), Reasoning About Plans, chap. 4, pp. 213–283. Mor-
gan Kaufmann.

Williams, B., & Nayak, P. (1996). A model-based approach to reactive self-configuring
systems. In Proceedings of the 13th National Conference on Artificial Intelligence
(AAAI), pp. 971–977, Portland, OR.

Williams, B., & Nayak, P. (1997). A reactive planner for a model-based executive. In Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI),
pp. 1178–1185, Nagoya, Japan.

288

