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Abstract

A geometric framework for understanding multi-category classification is introduced, through
which many existing ‘all-together’ algorithms can be understood. The structure enables
parsimonious optimisation, through a direct extension of the binary methodology. The
focus is on Support Vector Classification, with parallels drawn to related methods.

The ability of the framework to compare algorithms is illustrated by a brief discussion
of Fisher consistency. Its utility in improving understanding of multi-category analysis is
demonstrated through a derivation of improved generalisation bounds.

It is also described how this architecture provides insights regarding how to further
improve on the speed of existing multi-category classification algorithms. An initial ex-
ample of how this might be achieved is developed in the formulation of a straightforward
multi-category Sequential Minimal Optimisation algorithm. Proof-of-concept experimental
results have shown that this, combined with the mapping of pairwise results, is comparable
with benchmark optimisation speeds.

1. Introduction

The problem of extending classification methods from the standard dichotomous framework
to a more general ‘polychotomous’ arrangement is one which has been considered by a
number of authors. Essentially, the task is to learn from some training data how best to
assign one of M possible classes to subsequent input data, where M is known beforehand.

The key contribution of this work is to introduce an overarching framework for under-
standing multi-category kernel-based classification methods. In particular this is a frame-
work which makes the assumptions and constructions used in individual approaches clear.
As a result it enables the operation of most existing multi-category methods to be transpar-
ently compared and contrasted in an intuitive and consistent manner. Further, the insight
afforded by the architecture suggests ways of developing more efficient algorithms and of
bringing together the best of existing techniques.

The central idea behind this approach is to introduce an (M − 1)-dimensional space
which is divided into M class-specific regions. The aim is to learn a (M − 1)-dimensional
function f(·) which lies in the class region corresponding to the class of its argument. As
will be shown this is a straightforward generalisation of the M = 2 case, in which the two
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class-specific regions are f(·) ≥ 0 and f(·) < 0. Indeed, in this framework, unlike many
other approaches, the binary case is not treated as a special case.

Discussion of this is done primarily in a Support Vector Classification (SVC) context
initially, and then extended to other methodologies. The geometric structure employed
is introduced in more detail in Section 2, together with a derivation of the optimisation
problem, which is shown to be a generalisation of the standard ‘all-together’ optimisation
problems overviewed by Hsu and Lin (2002). This is discussed along with a review of
existing Support Vector (SV) multi-category methods in Section 3.

Following this we consider overall algorithm performance with Section 4 discussing
Fisher consistency, and Section 5 looking at generalisation bounds. Section 6 then discusses
other methodologies, in particular ν-Support Vector Classification (ν-SVC), Least Squares
Support Vector Classification (LS-SVC), Lagrangian Support Vector Classification (LSVC),
Proximal Support Vector Classification (PSVC), and Bayes Point Machines (BPM). This
is followed by a return to the SVC problem and a Sequential Minimal Optimisation (SMO)
algorithm is derived in Section 7. Issues related to the details of how best to implement
the SMO algorithm (e.g. point selection) are discussed, as are options for improving the
speed of convergence. These are implemented for several examples in Section 8, in an initial
experimental exercise.

2. Setting up the Multi-Category Problem

In this Section the key geometric construction will be presented, as will mechanisms for
using this to formulate an optimisation problem. Finally, extensions to the generic structure
will be described. The basic construction is described in Subsection 2.1. Following this,
Subsection 2.2 describes example empirical SV loss cases, Subsection 2.3 discusses how
relative class knowledge can be incorporated and Subsection 2.4 details an overview of the
derivation of the SV optimisation problem.

2.1 The Geometric Construction

In the binary classification case, class determination of some input from the set X is often
performed by considering the sign of an underlying real-valued function f : X → R (Vapnik,
1998, for example). In progressing to the M -class case, the underlying vector-valued func-

tion f : X → R
M−1 will be found, where f =

[
f1 . . . fM−1

]T
. The basic idea behind

the use of an (M − 1)-dimensional space is to be able to introduce M equally separable
class-target vectors. The class of input x will be determined by identifying that class-target
vector to which f(x) is closest.

This can be seen to effectively be what takes place in binary SV classification, where
classes, denoted A and B, have class targets y(A) = −1 and y(B) = +1. Consider now that
a third class, C, is a possibility. A one-dimensional numerical label is insufficient for the
classes to be equidistant, and in the case that little is known about the relationship between
the classes then the logical arrangement would be to compare every class to every other in
an equivalent way. In order to do this then class targets must be equidistant in some sense.
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A two-dimensional arrangement as illustrated in Figure 1 allows this. Here the class-
target vectors are

y(A) =
[
−

√
3

2 −1
2

]T
, y(B) =

[ √
3

2 −1
2

]T
, y(C) =

[
0 1

]T
. (1)

where ‖y(ϑ)‖ = 11 for all classes ϑ ∈ Θ (with Θ = {A,B, . . . } denoting the set of possible
classes) as this improves tractability later. These are example class-target vectors, however,

Class Boundary

Class C

Class A Class B

Class Boundary Class Boundary

� 01 �

12 � p3�1 �12 � �p3�1 �

Figure 1: Possible class labels for classification into three. The class-target vectors corre-
sponding to classes A,B and C are shown. The class boundaries are given by
solid lines.

in general it is important to understand that the optimisation methods which will be de-
scribed are applicable regardless of their rotation. Indeed, although the apparent Cartesian
coordinate asymmetry may not appear intuitive, the important consideration is the relative
positioning of class-target vectors with respect to each other. The optimisation procedure
has no dependence on any particular orientation. This will be proven for SV methods as
part of the derivation of the optimisation process in Section 2.4.

The same approach to that described for M = 3 is taken when considering larger values
of M . While typically M = 3 will be used in this work as an example case, extensions to
higher values of M follow without further consideration. An example of how target vectors
might easily be found in higher dimensions is discussed by Hill and Doucet (2005).

1. Note that in this work ‖ · ‖ denotes the 2-norm of a vector, i.e. ‖y‖ =
√

y
2

1
+ · · · + y

2

M−1
and, further,

normalisation will imply y

‖y‖
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2.2 SV Empirical Multi-Category Loss

In setting up the classification process, each class is assigned a subset of the (M − 1)-
dimensional output space. In particular, in the most straightforward approach, these subsets
are the Voronoi regions associated with the class targets. As a result, class boundaries can be
found by forming hyperplanes between class regions which consist of all points equidistant
from the two relevant class targets. For an input x, the classifier output is given by the
function h which is found by observing in which of the regions f(x) lies i.e.

h(x) = The class associated with the region in which f(x) lies. (2)

In describing empirical loss the vectors perpendicular to the hyperplane dividing the
region between y(A) and y(B) will typically be used2. Define

vA(B) =
y(B) − y(A)

‖y(B) − y(A)‖
(3)

These vectors are illustrated for class C in Figure 2 in which a margin ε has been introduced
and defined as ε = yT (ϑ)vθ(ϑ) for all θ, ϑ ∈ {A,B,C} and θ 6= ϑ. Note that here the
dependency on θ, ϑ is not explicitly noted when referring to ε as it is constant. Discussions
of when this might not be the case are presented later. This definition of vectors v is used
as the aim will be to measure distance in a direction perpendicular to the class boundaries
and this can be done through an inner product with the relevant vector v.

This margin is used for all cases in finding the empirical loss. While there are several
different ways to combine individual loss components, the fundamental starting point is that
illustrated in Figure 2. Here a training point x with class C has f(x) which falls outside the
required region. This is penalised by

(
ε − vT

B(C)f(x)
)

in an analogous way to the binary
SV classification empirical loss of (1 − yf(x)). Indeed in the binary case vB(A) = y(A) and
vA(B) = y(B) and ε = 1. As a further parallel, just as there is a region of zero loss in the
binary case when y · f(x) > 1, so too is there a region of zero loss here, above the dotted
lines.

Consider now that training data {(xi, ϑi) : i ∈ {1, . . . , N}} is to be used to learn how
best to classify some new input x. Denote the indicator function by I(·); the empirical loss
for a polychotomous classification problem given by Allwein, Schapire, and Singer (2001),
Crammer and Singer (2001a), and Lee et al. (2001, 2004) is then,

ℓEMP =

N∑

i=1

I(h(xi) 6= ϑi), (4)

namely the number of misclassified training samples. As with dichotomous SV techniques,
some loss will be used which bounds ℓEMP , thus generating a straightforward optimisation
problem.

In setting up multi-category SV classification, this is an approach used by many different
authors, however their exact empirical loss functions have differed. The most prevalent can
be understood within the framework of Figures 1 and 2, four of these are illustrated in
Figure 3 for an object of class C. These four loss functions involve either adding together

2. An exception to this is the case presented by Lee, Lin, and Wahba (2001, 2004), as discussed by Hill and
Doucet (2005, App. C).
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y(C)
f(x)
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�vTB(C)f(x)vB(C) vA(C)

Figure 2: Elements involved in determining empirical loss associated with a training sample
of class C. Note that the unlabelled solid lines are the class boundaries, the region
above the dotted line is the region of zero loss for training samples of class C.
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Figure 3: Four possible loss functions for the three class problem (see Figure 1). The loss
functions are shown with respect to the target vector y = [0 1]T . Traditional
additive losses are shown at top, (see equations (6) and (5)), possible variants
following proposals by Crammer and Singer (2001a) at bottom (see equations (8)
and (7)). In all cases the class boundary is shown by a dot-dash line.

all margin infringements, or taking the largest such infringement. Both linear and quadratic
versions of these two options are illustrated. Algebraically, the summed loss for training
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point i can be expressed,

ℓSL,i =
∑

θ∈(Θ−ϑi)

max
((

ε − fT (xi)vθ(ϑi)
)
, 0
)

(5)

ℓSQ,i =
∑

θ∈(Θ−ϑi)

[
max

((
ε − fT (xi)vθ(ϑi)

)
, 0
)]2

(6)

where SL stands for summed linear loss and SQ for summed quadratic loss. These are the
top two Subfigures in Figure 3. Using the same notation, the maximal loss for training
point i can be expressed,

ℓML,i = max
θ∈(Θ−ϑi)

{
max

(
ε − fT (xi)vθ(ϑi), 0

)}
(7)

ℓMQ,i = max
θ∈(Θ−ϑi)

{[
max

(
ε − fT (xi)vθ(ϑi), 0

)]2}
(8)

where ML stands for maximal linear and MQ for maximal quadratic. These are the bottom
two Subfigures in Figure 3. From these expressions it is apparent that the ith summand of
the empirical loss (equation (4)) is bound by 1

ε2 × ℓSQ,i,
1
ε2 × ℓMQ,i,

1
ε
× ℓSL,i and 1

ε
× ℓML,i.

While all of these loss arrangements can be cast in a transparent way into a SV framework,
in this work only ℓSL,i will initially be focussed on, as it has been most commonly adopted,
albeit implicitly, in previous contributions. ℓSQ,i will be discussed with respect to LSVC in
Subsection 6.3.

In terms of the practioner’s preferred approach, however, clearly the choice must be in
line with the underlying probabilistic model of the data. It seems unlikely that there will
be one best choice for all implementations. In the case that the practioner has no particular
idea about a model and just wishes to use some methodology to ‘get a feel’ for the data,
then presumably it is optimal to use the most computationally efficient approach as often
these approaches will converge to very similar results. To this end the approach outlined in
this paper is of interest as it describes methods which can potentially be used to speed all
loss cases.

2.3 Relative Class Knowledge

While the framework developed has been based on the assumption that all classes are to
be treated equally, this may not be desirable in some cases. There may be some prior
knowledge suggesting that some classes are, in some sense, closer to each other, and thus
more likely to be mistaken for each other. There may also be some reason for preferring to
err on the side of choosing one class over the others or over another at the cost of overall
accuracy.

A classical example of deeming it more important to choose one class over another
comes from the binary case of detection by radar. In military combat it is clearly extremely
important to detect incoming missiles or planes. As a result it is understandable that
a classification algorithm may be set up to return many more false positives than false
negatives. Hence errors made when classing enemy weaponry as unimportant are far more
heavily penalised than errors made in classifying nonthreatening phenomena as weaponry.
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There are two ways to introduce relative class knowledge in the framework presented.
The first of these is the traditional method of error weighting, as introduced to the ‘all-
together’ SV framework by Lee et al. (2001). In this solution each different type of mis-
classification (e.g. classifying an input as θ instead of ϑ) has its error weighted by some
amount; Dθ(ϑ).

This approach of incorporating weights could equivalently be viewed as varying the
length of the vectors v, i.e. vθ(ϑ) → Dθ(ϑ)vθ(ϑ). An alternative, and possibly complemen-
tary, approach is to allocate to each class an unequal volume in the (M − 1)-dimensional
output space. This can be enabled by varying the angle between the class boundaries and
hence the orientation of the vectors v, i.e. vθ(ϑ) → Rθ(ϑ)vθ(ϑ) where Rθ(ϑ) is some ro-
tation matrix. In doing this it may also be useful to incorporate a set of variable ε values
which, for some class ϑ are denoted {εθ(ϑ) : θ ∈ (Θ − ϑ)}, that is εθ(ϑ) is the size of the
margin on the ϑ side of the (ϑ, θ) boundary. Clearly the greater the volume allocated to
the class the more diverse the input vectors can be which are mapped to it.
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Figure 4: A simple example illustrating a potential case for differently sized class areas. In
this arrangement the target area for class A could be increased.

Unfortunately it is not obvious how to construct a principled approach to determining
these different volumes. The key issue is the region of support that each class has in the
feature space. For instance in the case illustrated in Figure 4 it is not possible to find a linear
projection from the feature space which will separate the classes into the standard class
regions. However, by changing the class region sizes such a projection would be possible.
This may have the advantage of avoiding a more complicated feature space (possibly of
higher dimension).

2.4 Derivation of the SVC Optimisation Problem

Standard SV mappings of inputs to a higher dimensional feature space, Φ : X → F are used
in order to estimate the (M − 1)-dimensional function f(·). The mth element of f(·) is a
linear function in this feature space, characterised by weight vector wm and offset bm. To
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summarise,

f(x) =




〈Φ(x),w1〉F
〈Φ(x),w2〉F

...〈
Φ(x),w(M−1)

〉
F


+




b1

b2
...

b(M−1)


 = ψ(x) + b. (9)

It is important to realise that, although some class separation is achieved by each component,
fm(·), accurate classification can only really be accomplished through the use of all elements,
together.

The optimisation problem which follows from the discussion in the previous Subsections
can be written (in standard SV form) as,

Minimise


1

2

M−1∑

m=1

‖wm‖2
F + C

N∑

i=1

∑

θ∈(Θ−ϑi)

Dθ(ϑi)ξi,θ




Subject to

{ ∑M−1
m=1 (〈Φ(xi),wm〉F + bm) vθ,m(ϑi) ≥ εθ(ϑi) − ξi,θ, for i = 1, ..., N , θ ∈ (Θ − ϑi)

ξi,θ ≥ 0, for i = 1, ..., N , θ ∈ (Θ − ϑi)

(10)

where the slack variable ξi,θ quantifies the empirical loss involved in mistaking the class
of point xi (which is ϑi) for θ(6= ϑi). C quantifies the trade-off between regularisation
(introduced by ‖wm‖2

F ) and this empirical loss, and vθ,m(ϑ) is the mth element of vθ(ϑ).
Framing equation (10) in terms of a Lagrangian gives,

L =
1

2

M−1∑

m=1

‖wm‖2
F + C

N∑

i=1

∑

θ∈(Θ−ϑi)

Dθ(ϑi)ξi,θ −
N∑

i=1

∑

θ∈(Θ−ϑi)

ri,θξi,θ

−
N∑

i=1

∑

θ∈(Θ−ϑi)

αi,θ

(
M−1∑

m=1

(〈Φ(xi),wm〉F + bm) vθ,m(ϑi) − εθ(ϑi) + ξi,θ

) (11)

where {αi,θ, ri,θ : i ∈ (1, . . . , N), θ ∈ (Θ − ϑi)} are Lagrangian multipliers. It is standard
in SV methodology to find the optimal solution to this by first finding the Wolfe dual,
and then maximising with respect to the dual variables, namely the Lagrangian multipliers
(Cristianini & Shawe-Taylor, 2000; Vapnik, 1998, for example). First let V(ϑ) denote a
(M − 1) × (M − 1) matrix with columns given by the vectors vθ(ϑ),

V(ϑ) =
[

vA(ϑ) vB(ϑ) . . . vθ 6=ϑ(ϑ) . . .
]

(12)

and represent the mth row of V(ϑ) by v∗T
m (ϑ).

Lemma 1 The dual to the Lagrangian presented in equation (11) is,

LD = −
1

2

N∑

i=1

N∑

j=1

αT
i VT (ϑi)V(ϑj)αjK(xi,xj) +

N∑

i=1

αT
i ε(ϑi) (13)

532



A Framework for Kernel-Based Multi-Category Classification

where,

αi =
[

αi,A αi,B . . . αi,θ 6=ϑi
. . .

]T
(14)

ε(ϑi) =
[

εA(ϑi) εB(ϑi) . . . εθ 6=ϑi
(ϑi) . . .

]T
(15)

and the kernel function has been denoted K(xi,xj) = 〈Φ(xi),Φ(xj)〉F . The derivation of
equation (13) also introduces the constraints that,

CDθ(ϑi) ≥ αi,θ ≥ 0, ∀i, θ ∈ (Θ − ϑi) (16)

N∑

i=1

V(ϑi)αi = 0. (17)

The derivation of this is presented in a technical report by the authors Hill and Doucet
(2005, App. A).

It also remains to confirm that this optimisation problem has a unique maximum, that
is that the problem is unimodal. This will be the case if it can be shown that the quadratic
term in equation (13) is effectively equivalent to a quadratic expression involving a positive
definite matrix. This is the case, as shown by Hill and Doucet (2005, App. B).

A final issue to consider is that of rotational invariance to the structuring of the problem
— as initially raised in Subsection 2.1. Note that the only influence of rotational orientation
in equation (13) is through the summation term αT

i VT (ϑi)V(ϑj)αjK(xi,xj). Consider now
that the chosen orientation is rotated in some way as described by a rotation matrix R,
this quadratic term then becomes,

αT
i VT (ϑi)R

T RV(ϑj)αjK(xi,xj) = αT
i VT (ϑi)V(ϑj)αjK(xi,xj) (18)

due to the fact that rotation matrices are orthonormal. There is one further aspect that
should be considered, namely the constraints in equation (17), however it is clear that
these will not be affected by rotation either. Hence the optimisation problem is rotationally
invariant.

A related issue is that the geometric structure implicitly introduces ordinal regression
along the (M−1) axes. That is, when looking for example, at the three-class case illustrated
in Figure 1 there are essentially two real valued outputs i.e. f1(·) and f2(·). Now, along any
horizontal or vertical line for which one of these is held constant, the other is outputing a
value, and the region into which this value falls determines the class assignment. This gives
the impression of ordinal regression as using ranges of a single value output to determine
between more than two classes is the essence of that approach.

This raises two questions — is the methodology presented subject to the same problems
as ordinal regression? And, when looking at the structure in this way, does the fact that it
can potentially be arranged quite asymmetrically, and appears arbitrary cause concern?

The answer to both questions is ‘No’. The very aim of structuring the ouput space in
this way has been to avoid the situation encountered in ordinal regression in which classes
are not all equivalently compared against each other. Furthermore, it should be clear from
the rotational invariance of the structure, that the particular orientation chosen is not going
to affect the optimisation problem in any way whatsoever.
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Note that with the introduced terminology then the function f(·) can be expressed,

f(x) =
N∑

i=1

V(ϑi)αiK(x,xi) + b. (19)

This is clearly a very natural extension of the binary framework, a comparison with previous
similar contributions forms the next Section. The offset, b can be determined through
realising that the non-extremal Lagrangian coefficients αi,θ lie on the edge of the zero-loss
region — this is analogous to finding b in the two-class case.

3. Discussion of Previous SV Approaches

There are three main methods for applying binary classification techniques to the more
generic multi-category problem. These are the one-against-all method, the pairwise coupling
method and the method of Error Correcting Output Codes (ECOCs). As will be discussed
here, all have been applied in conjunction with SV methods. An extensive literature review
forms a large part of work by Rifkin and Klautau (2004); by contrast, in this Section the
various methods are discussed with respect to the approach described in Section 2.

Essentially, while the one-against-all and pairwise methods can be made to work well,
they invariably require a heuristic component to resolve issues associated with combining
results. Many authors have tried to overcome this by framing the problem as a single
optimisation, as is also done in Section 2, however these approaches are substantially slower
to converge. A key contribution of this work is to demonstrate that a consistent3 result can
be obtained by mapping pairwise results in an ad hoc way into the framework of Figure 1
and ‘fine-tuning’ the result, to a consistent final optimum. This provides a combination of
fast training and consistency.

Contributions such as that by Rifkin and Klautau (2004) argue that one-against-all and
pairwise methods can be made to perform practically as well as other methods. This may
well be the case, depending on the implicit model behind the heuristics involved and should
come as no surprise. Indeed, for many quick black-box implementations this approach may
well be optimal.

Often however it is desirable to have a clear understanding of the optimisation process
and a significant contribution of the framework presented is that within it many single opti-
misation SV methods can be understood and compared directly. Further, it is a framework
in which multi-category versions of other algorithms can be formulated and understood in
a consistent way, as will be discussed in Section 6. Finally, the very fact that so many
different efforts have been made to find a method involving a single optimisation which is
competitive in terms of speed is in itself evidence of a desire by the research community to
overcome heuristic solutions.

In this Section the one-against-all method is reviewed in Subsection 3.1, pairwise cou-
pling in Subsection 3.2 and ECOCs in Subsection 3.3. Efforts to develop single optimisation

3. Here, and in subsequent usage, we use ‘consistent’ and ‘consistency’ to refer to the fact that while some
approaches can be quite ambiguous in exactly which class to output, hence the need for a heuristic to
choose, an ‘all-together’ solution should not suffer from this i.e. the results are consistent with each
other. Fisher consistency is discussed in Section 4.
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approaches, known as ‘all-together’ methods are discussed in Subsection 3.4. How they re-
late to the framework presented is also clarified therein.

3.1 The One-Against-All Method

The one-against-all method has received the most attention from the SV community, and
was also the earliest approach considered. The idea is to generate M classifiers. Of these,
classifier i determines whether or not an input belongs to class i. An obvious stumbling-
block is the case that more than one classifier determines that a particular input should
belong to its class of interest. Hence it is important to have in place some technique for
either avoiding or resolving this problem.

Early implementations (Schölkopf, Burges, & Vapnik, 1995; Blanz, Schölkopf, Bülthoff,
Burges, Vapnik, & Vetter, 1996) used the underlying real-valued output, choosing the high-
est such output to indicate the strongest ‘likelihood’ of class membership. A variant on this
was introduced by Mayoraz and Alpaydın (1999) in an attempt to make these outputs more
reliably comparable; see also Wang, Vuurpijl, and Schomaker (2000).

As an aside, note that a function f(·) found in the framework proposed in Section
2 can be used to produce a one-against-all classifier. To see this consider the function
fθ(·) = yT (θ)f(·) where y(θ) is the class-target vector for class θ. A new input x would
then be classed θ if fθ(x) is the largest such scalar function.

3.2 The Pairwise Coupling Method

The pairwise coupling method involves finding M(M−1)
2 different classifiers, each of which

compares one class against another. Given an input, the output class is decided through a
vote or some similar method. One particular problem to be addressed is the circular one
in which, for example, the AB classifier chooses class A, the AC classifier class C and the
BC classifier class B.

A few authors (Hastie & Tibshirani, 1998; Platt, Cristianini, & Shawe-Taylor, 2000;
Fürnkranz, 2002) have proposed heuristics for resolving any such problems, however the
most substantive purely SV approach seems to be that by Kreßel (1999). This technique
considers a classifier vote and, in the case of a tie, the real-valued outputs are referred to.
This has the downside that the M(M−1)

2 classifiers are found independently, and so such a
comparison is not always meaningful. Nonetheless, as is shown by Kreßel and supported by
Allwein et al. (2001), Hsu and Lin (2002) and Rifkin and Klautau (2004), this appears to be
an effective methodology and faster than ‘all-together’ methods by a considerable margin.
An alternative approach is presented by Allwein et al. (2001) in their work unifying pairwise,
one-against-all and class codes — this is discussed in Subsection 3.3.

It is interesting to note that a function f(·) found in the framework proposed in Section
2 can be used to find a classifier between two classes A and B. To see this consider the
function fAB(·) = vT

A(B)f(·) where vA(B) is as defined in equation (3). A new input x
would then be classed A if fAB(x) ≤ 0 and B otherwise. Results such as these will be used
in Section 7 to construct the ‘best of both worlds’ approach.
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3.3 Class Codes

The underlying idea behind ECOCs is to assign to each class a particular binary code and
then to train individual classifiers to identify each bit in the code (Sejnowski & Rosenberg,
1987; Dietterich & Bakiri, 1995). Eight classes can, for example, be each assigned a 3-
bit code ([−1,−1,−1], [−1,−1,+1], etc.). In general at least ⌈log2 M⌉ bits are required.
Dietterich and Bakiri (1995) propose using more than M bits in order that small errors can
be corrected.

ECOC SV methods have been described by Kindermann, Leopold, and Paaß (2000) and
Rennie and Rifkin (2001). Minimum length code methods have been presented by Sebald
(2000), Sebald and Bucklew (2001) and by Suykens and Vandewalle (1999). However these
implementations often have the problem that classes are treated inconsistently. This is due
to the fact that such codes will have smaller Hamming distances between some classes than
others. Their approach becomes very much like that of utilising Ordinal Regression (see,
for example, Crammer and Singer (2001b) or Herbrich, Graepel, and Obermayer (2000b)
for more, in a SV context) to perform the classification and performance becomes depen-
dent on the ordering of the labels (Weston, 1999). Essentially ordinal regression performs
classification based on the region of R in which some scalar output lies. For instance, a
class of A may be assigned to some input x if f(x) ∈ [a, b), class B if f(x) ∈ [b, c), and so
on.

To see the parallel between this and coding approaches consider the four-class case with
minimum length codes, such that,

y(A) =
[
−1 −1

]
y(B) =

[
−1 +1

]

y(C) =
[

+1 −1
]

y(D) =
[

+1 +1
]
.

Two functions f1 and f2 need to be found which corresspond to the first and second elements
of the codes respectively. However class D is clearly further from class A than from classes
B and C. Hence the comparison between classes is again no longer consistent. Although
this is less extreme than ordinal regression the main problem that classes are not compared
in an equivalent way remains. For this reason, as well as the lack of a computational or
accuracy advantage, these methods have not been particularly popular.

Allwein et al. (2001) have shown that pairwise and one-against-all methods can be viewed
as special cases of ECOC approaches4. Indeed it is only when the code length equals (the
one-against-all case) or exceeds M that the inconsistency problem described above can be
made to disappear. Even when viewing pairwise and one-against-all approaches as special
cases of ECOC Allwein et al. (2001) still must employ a heuristic (in this case code-based)
to find the final answer.

3.4 ‘All-Together’ Methods

A consistent result can be obtained by arranging the multi-category problem such that
there is a single optimisation to perform. These are described by Hsu and Lin (2002) as
‘all-together’ methods and a number of authors (Bredensteiner & Bennett, 1999; Crammer

4. An exception to the binary nature of the code in this formulation being the case of pairwise comparison
when code word elements take values from {−1, 0, 1}.
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& Singer, 2001a; Guermeur, 2000, 2002; Weston & Watkins, 1999; Weston, 1999; Vapnik,
1998) present a variety of such methods. To see that many of these relate to that described
in Section 2, note that their aim is to find M functions {f ′

ϑ(·) : ϑ ∈ Θ} such that, class(x) =
arg maxϑ {f

′
ϑ(x) : ϑ ∈ Θ}. Weston and Watkins (1999) aim to find functions of the form

f ′
ϑ(·) = 〈Φ(·),w′

ϑ〉 + b′ϑ by

Minimising
1

2

∑

θ∈Θ

‖w′
θ‖

2
F + C

N∑

i=1

∑

θ∈(Θ−ϑi)

ξ′i,θ

Subject to

{ 〈
Φ(xi),w

′
ϑi

〉
F

+ bϑi
≥ 〈Φ(xi),w

′
θ〉F + bθ + 2 − ξ′i,θ, θ ∈ (Θ − ϑi)

ξ′i,θ ≥ 0

(20)

and it has been shown in detail by the authors (Hill & Doucet, 2005, App. C) that this
optimisation arrangement is identical to that in Section 2 when f ′

ϑ(·) = yT (ϑ)f(·) where f(·)
is as introduced in Section 2. Furthermore, the other ‘all-together’ approaches mentioned,
with the exception of Crammer and Singer (2001a), have been shown by Guermeur (2002)
to converge to the same solution. However a key problem with these algorithms is that their
resulting kernel expressions can be quite complicated in that the framing of the optimisation
process leads to convoluted expressions.

As an alternative Crammer and Singer (2001a) propose an ‘all-together’ one-against-all
method with the maximal loss ℓML,i in equation (7) (see also Figure 3) for which they give
a new optimisation algorithm. In their comparative work Hsu and Lin (2002) find it hard to
draw definitive conclusions about the Crammer and Singer (2001a) approach in comparison
to the others as they note variable performance with regard to optimisation times required.
They also suggest algorithmic improvements to the more traditional methods, but eventually
conclude that, of available techniques, pairwise coupling methods (see Section 3.2) are much
faster and appear more suitable for practical use.

While the standard form of the methodology introduced in Section 2 results in an optimal
solution equivalent to other ‘all-together’ approaches two key points differentiate it. The
first is that it has increased flexibility in that it can incorporate the approaches described in
Subsection 2.3 without any increased computational effort. The second is that it can easily
take advantage of the relatively much faster pairwise methods. This is discussed further in
Subsection 7.4.

3.4.1 Another ‘All-Together’ Approach

Lee et al. (2001, 2004) have presented a unique ‘all-together’ approach which uses M -length
target codes. For classes Θ = {A,B, . . . } these take the form

y′′(A) =
[

1 −1
M−1 . . . −1

M−1

]

y′′(B) =
[ −1

M−1 1 −1
M−1 . . . −1

M−1

]
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and so on. The resulting optimisation problem posed is to

Minimise
1

2

∑

θ∈Θ

‖w′′
θ‖

2
F + C

N∑

i=1

∑

θ∈(Θ−ϑi)

ξ′′i,θ

Subject to





〈Φ(xi),w
′′
θ 〉F + b′′θ − y′′i (θ) ≤ ξ′′i,θ∑

θ∈Θ

(
〈Φ(xi),w

′′
θ 〉F + b′′θ

)
= 0

ξ′′i,θ ≥ 0

(21)

where output is given by f ′′(·) =
[ (

〈Φ(·),w′′
A〉F + b′′A

) (
〈Φ(·),w′′

B〉F + b′′B
)

. . .
]T

=

W′′Φ(·) + b′′ with W′′ =
[

w′′
A w′′

B . . .
]T

, and the class membership determined by
observing which element of f ′′(·) is maximal. This approach can be understood in the
framework of Section 2 when, similarly to Subsection 3.4 f ′′

ϑ(·) = yT (ϑ)f(·) where f(·) is as
introduced in Section 2. This has been discussed further by Hill and Doucet (2005, App.
C), where it is shown that setting vA(B) = −y(A) and ε = 1

M−1 causes the optimisation
problem in equation (21) to be the same as the generic approach in equation (10).

4. A Brief Look at Fisher Consistency

The Lee et al. (2001, 2004) (Subsubsection 3.4.1) approach has the key feature that it
is Fisher consistent5. This has recently been discussed in the context of multicategory
classification by Tewari and Bartlett (2007), Zhang (2004a, 2004b). In this Section we
simply aim to show how some of the key results of these authors can be understood in the
framework presented in Section 2.

In considering Fisher consistency in the multicategory case we first define the vector

p(x) =
[

pA(x) pB(x) . . .
]T

=
[

P (ϑ = A|x) P (ϑ = B|x) . . .
]T

(22)

this is analogous to the vector p of Tewari and Bartlett (2007), or the vector P(·|X) of
Zhang (2004b, Eqn.(7)). We also express the empirical loss function, by ℓ (ϑ, f(x)) =∑

θ∈(Θ−ϑ) max
([

ε − vT
θ (ϑ)f(x)

]
, 0
)
, cf. equation (5), and define the vector ℓ by,

ℓ(f(x)) =
[

ℓ (A, f(x)) ℓ (B, f(x)) . . .
]T

. (23)

With this notation then the ‘ℓ-risk’, in the terminology of Tewari and Bartlett (2007) is
given by,

EX×Θ [ℓ (ϑ, f(x))] = EX
[
EΘ|X [ℓ (ϑ, f(x))]

]

= EX
[
pT (x)ℓ (f(x))

] (24)

and the optimal classification rule is to choose class ϑ∗ = arg maxθ [pθ (x)]. A Fisher
consistent multicategory classifier will have g(x) = YT f(x), cf. Subsection 3.4, such that,

ϑ∗ = arg max
θ

[pθ (x)] = arg max
θ

[gθ(x)] (25)

5. This is referred to as classification calibrated by Tewari and Bartlett (2007) and infinite-sample consistent

by Zhang (2004b).
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Tewari and Bartlett (2007) illustrate the two class case of this with reference to equation
(24), in that they plot ℓ (A, f(x)) against ℓ (B, f(x)) where y(A) = −1 and y(B) = +1.
Bartlett, Jordan, and McAuliffe (2004) have shown that provided that this plot is differen-
tiable at f(x) = 0 then consistency is attained. If this is not the case then there is more
than one tangent to the plot at f(x) = 0. This is noteworthy because for a particular x,
the value of f(x) which minimises the inner product of equation (24) is determined by the

point at which a line with slope − pA(x)
pB(x) is tangent. If the plot is not differentiable then

sample x with pA(x) > pB(x), and sample x′ with pA(x′) < pB(x′) may both have the same
value f(x) = f(x′) = 0 even though f minimises the ℓ-risk.

Whereas such a plot is a straightforward 2D plot, in considering a three class case we
must turn to 3D surfaces and consider tangent planes with normal given by p(x) e.g. Tewari
and Bartlett (2007, Figs.2&3). In these it is illustrated that most ‘all-together’ methods
are inconsistent including those by Weston and Watkins (1999), Weston (1999) and by
Crammer and Singer (2001a). However, it is also the case that the approach of Lee et al.
(2001, 2004) is consistent.

In order to better understand what is happening, consider the similarities between the
method introduced by Weston and Watkins (1999), Weston (1999), and that of Lee et al.
(2001, 2004) (§3.4). They both have the same additive approach to forming the loss function
(in contrast to the maximum approach of Crammer & Singer, 2001a). The key difference
is in their choice of vectors v. While Weston and Watkins (1999), Weston (1999) use, for
example vA(B) ∝ [y(B) − y(A)], Lee et al. (2001, 2004) use e.g. vA(B) = −y(A). In fact
we can also consider using other such vectors — either some combination of these, or more
extreme versions. Examples of resulting loss functions are shown in Figure 5, cf. Figure 3.

What becomes interesting in terms of Fisher consistency is what happens when these
plots of loss contours for all classes are overlaid. Before doing this consider the plots for
class C in Figure 5. In particular consider the Lee et al. (2001, 2004) (LLW) case. Here we
can clearly identify four regions — that with zero loss, that with loss due only to class A,
that with loss due only to class B and that with combined loss. In overlaying contour plots
we will similarly seek to identify regions.

This is presented in Figure 6, with the regions seperated by solid black lines. It can
be seen that the regions identified in the Weston and Watkins (1999), Weston (1999) and
Lee et al. (2001, 2004) plots correspond to planes (and edges) in Figures 2(b) and 3(b) of
Tewari and Bartlett (2007). Further, in keeping with their discussion it becomes clear that
potential inconsistency problems occur when such region boundaries intersect on the class
boundaries. The reason that the Lee et al. (2001, 2004) case manages to avoid this is that
region boundaries coincide in this particular setting. The scenarios illustrated in Figure 6
correspond to the following example vectors v, from left to right, top to bottom;

vA(B) ∝





−0.2y(B) − y(A) The ‘Excess LLW’ case.
−y(A) The ‘LLW’ case.
y(B) − 5y(A) The ‘LLW to WW A’ case.
y(B) − 2y(A) The ‘LLW to WW B’ case.
y(B) − y(A) The ‘WW’ case.
y(B) − 0.5y(A) The ‘Excess WW’ case.

(26)
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Excess LLW
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Figure 5: A further illustration of losses with respect to class C. These correspond to
changing vectors v. Recall that the Weston and Watkins (1999), Weston (1999)
(WW) case had loss contours parallel to class boundaries (Figure 3)

While it is clear that all cases from ‘LLW to WW A’ onwards in Figure 6 will be inconsistent,
a question remains over the ‘Excess LLW’ case. To further investigate this we have created
plots similar to those in Figures 2 and 3 of Tewari and Bartlett (2007), as shown in Figure
7. From this it is clear from the reverse view that the labelled ‘Point of Interest’ is again
going to pose a consistency problem.

These results give quick geometric insight into why it is that the Lee et al. (2001, 2004)
approach appears to be the only Fisher consistent approach involving summed linear losses.
We have not performed a similar investigation of the effect of changing v within the context
of the Crammer and Singer (2001a) framework as it seems clear that there will always be a
problem at the central point for all reasonable choice of vectors v, cf. Tewari and Bartlett
(2007, Fig. 2a).

5. Generalisation Bounds

An important aspect of many kernel based algorithms such as SVC, is that Structural Risk
Minimisation (SRM) ideas can be applied in order to obtain distribution-free bounds on
performance. Such an approach underlies the initial work on SVC in particular, and results
in ideas such as the Vapnik Chervonenkis (VC) dimension.

In this section we build on the body of work which is concerned with bounding the
performance of multicategory classifiers. This was originally published by Guermeur (2002),
but it is important to realise that this paper draws heavily from the work of Elisseeff,
Guermeur, and Paugam-Moisy (1999). Further insight is also to be found in work by
Paugam-Moisy, Elisseeff, and Guermeur (2000).
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Figure 6: Region Identification — These six different cases represent a rotation of the vec-
tors v, starting at the top left the progression passes through the Lee et al. (2001,
2004) case (middle top), then to the bottom left and through the Weston and
Watkins (1999), Weston (1999) case (middle bottom).

(a) Front View (b) Reverse View

Figure 7: Loss surfaces of the ‘Excess LLW’ case in Figure 6
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By using the geometric approach presented above, it becomes possible to reduce the
multidimensional bounding problem to a scalar problem, and thus to fully utilise the more
traditional approaches to bounding. These approaches are also drawn on by Elisseeff et al.
(1999), however by viewing the problem in the manner proposed here it becomes possible
to adopt them virtually unchanged. The key references for this work are by Bartlett (1998)
and Williamson, Smola, and Schölkopf (2001).

The final result of this working is to demonstrate that a the bound derived is dependent
on the term

∑M−1
i=1 ‖wi‖

2
F , cf. equation (10). This is in keeping with the results of Guermeur

(2002), and Elisseeff et al. (1999), as well as traditional two-class bound analyses (Schölkopf
& Smola, 2002). Note that some of the notation in this Section is inconsistent with that
used elsewhere in this paper, however the difference should be apparent.

5.1 Basic Definitions

We have as a starting reference the canonical function of Elisseeff et al. (1999), Paugam-
Moisy et al. (2000), and Guermeur (2002), rewritten in the present notation. In doing this
we introduce also the M−dimensional vector yc which has elements,

yc
θ =

{
−1 if the input has class other than θ
+1 if the input has class θ.

We further introduce the function g : X → R
M ,

g(·) = YT f(·) (27)

where Y is a matrix with columns of class target vectors y, cf. Section 3.

Definition 1 (The Original Canonical Function) Define R1(x) to be an index such
that gR1(x)(x) = maxθ gθ(x) and R2(x) to be an index such that gR2(x)(x) = maxθ 6=R1(x) gθ(x).

The canonical function ∆g : X → R
M , is then given by,

∆gθ(x) =

{
1
2

[
gθ − gR2(x)

]
= 1

2 [y(θ) − y(R2(x))]T f(x) = κvT
R2(x)(θ)f(x) if θ = R1(x)

1
2

[
gθ − gR1(x)

]
= 1

2 [y(θ) − y(R1(x))]T f(x) = κvT
R1(x)(θ)f(x) otherwise.

(28)
where κ is a constant of proportionality.

Clearly, if this example has been classified correctly, all the terms κvT
R1(x)(θ)f(x) should

be negative and κvT
R2(x)(R1(x))f(x) should be positive. Paugam-Moisy et al. (2000), Guer-

meur (2002) define the margin by ε = minθ yc
θ∆gθ(x), however, recall that vA(B) =

−vB(A), and so ∆gR1(x)(x) = −∆gR2(x)(x). Hence, if R1(x) or R2(x) is the actual class
of x then yc

R1(x)∆gR1(x)(x) = yc
R2(x)∆gR2(x)(x). In the case that neither of them are the

correct class then it can be demonstrated that the margin is not going to be determined by
∆gR1(x)(x) uniquely, and so this term does not need to be ever considered. This being the

case then the margin is simply given by minθ 6=R1(x) κvT
θ (R1(x))f(x).

This definition of Paugam-Moisy et al. (2000), Guermeur (2002) is somewhat non-
intuitive, as it does not make reference to the actual class of the point, merely to R1(x),
which may not be equal to the class ϑ. This is equivalent to defining the margin of the
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two-class classifier as the absolute value of the function f(x). This is not something which
appears in the mainstream texts of Vapnik (1998, p. 402), Schölkopf and Smola (2002, p.
142) or Hastie, Tibshirani, and Friedman (2001, p. 110), for instance. However the general
ideas in these and other texts, and the approach in Section 2 can be related to in Definition
2, which is from Paugam-Moisy et al. (2000, Defn. 6) and Guermeur (2002, Defn. 5). In
anticipation of this we introduce an alternative canonical function ∆f(x, ϑ),

∆f(x, ϑ) = κ · VT (ϑ)f(x) (29)

where V(ϑ) is as given in equation (12). If x is correctly classified then all elements of ∆f
should be positive.

Definition 2 (Empirical Margin Risk) Conceptually, the empirical margin risk is the
fraction of training samples whose positioning in the (M−1)− dimensional space lies outside
their region of zero-loss. Formally this is expressed for some fixed margin ε > 0 and some
training set S = {xi, ϑi}

N
i=1 as,

Rε
S (f) =

1

N
|{(xi, ϑi) : ∃θ ∈ (Θ − ϑi) , ∆fθ(xi, ϑi) < ε}| (30)

A further definition which will be used is that of a pseudo-metric. In this definition note

that ℓp denotes the norm ‖x‖ℓp
= (
∑

i |xi|
p)

1

p .

Definition 3 (Pseudo-Metric) Let F : X ×Θ → R
M−1 be a set of functions and (f , f ) ∈

F 2. For a set S of points in X × Θ, define the pseudo-metric dF ,S
ℓ∞,ℓ1

by,

dF ,S
ℓ∞,ℓ1

(f , f) = max
(x,ϑ)∈S

∑

θ∈(Θ−ϑ)

∣∣fθ(x, ϑ) − fθ(x, ϑ)
∣∣ . (31)

We now define the covering number (Vapnik, 1998; Schölkopf & Smola, 2002, for example).

Definition 4 (Covering Number) Let
(
F , dF ,S

)
be a pseudo-metric space, and B(f̂ , r)

the closed ball in F with radius r and centre f̂ . The covering number N
(
ε,F , dF ,S

)
of a

set F ∈ F is the smallest cardinality of set F such that,

F ⊂
⋃

f̂∈F

B(f̂ , ε). (32)

The sets F satisfying this property are called ε−covers of F : each element in F is at a
distance less than ε of an element in F . With |S| = 2N then define also,

Np,q

(ε

2
,F , 2N

)
= sup

S∈X 2N

N
(ε

2
,F , dF ,S

ℓp ,ℓq

)
.
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5.2 Presentation of Bounds

We will use this final definition in consideration of,

∆f ε(x, ϑ) =

{
ε · sign [minθ ∆fθ(x, ϑ)] , if |minθ ∆fθ(x, ϑ)| ≥ ε
minθ ∆fθ(x, ϑ), otherwise,

(33)

which is analogous to the definition of ∆gε used by Elisseeff et al. (1999, §4), Paugam-Moisy
et al. (2000, §6) and Guermeur (2002, §2). This can be used to define the set of scalar-valued
functions,

∆Fε = {∆f ε : f ∈ F} (34)

leading to the Theorem 1, below. The advantage of the approach presented here is that
the function ∆f ε is a scalar and, as such, it is a lot more straightforward to use the proof
structure outlined by Bartlett (1998, Lemma 4) cf. Elisseeff et al. (1999, Cor. 2), Paugam-
Moisy et al. (2000, Cor. 1), Guermeur (2002, Thm. 1). This is elaborated on, and the two
different approaches contrasted by Hill (2007, §4.2,§A.2)

Theorem 1 With probability at least (1− δ), for every value of ε in (0, 1], the risk R(f) of
a function f computed by a numerical M−class discriminant model F trained on a set of
size N (denoted SN), is bounded above by

R(f) ≤ Rε
SN

(f) +

√
1

2N

[
log
(
2N∞,1

(ε

2
,∆Fε, 2N

))
+ log

(
2

εδ

)]
+

1

N
(35)

Proof of Theorem 1
The starting point of the proof is equivalent to that in Elisseeff et al. (1999, Eqn. (5)),
namely, for any λ,

PSN

(
sup
f∈F

[
R(f) − Rε

SN
(f)
]
≥ λ

)
≤ 2×P

SN ,S̃N

(
sup
f∈F

(
Rε

S̃N
(f) − Rε

SN
(f)
)
≥ λ −

1

N

)
. (36)

Now the aim is to bound the right-hand side of this and the starting point is to consider all
permutations σ over (X × Θ)2N such that σ realises a transposition between two elements
of the same ranking in S̃N and SN . Let U be the uniform distribution over the set of all
such permutations σ and so,

P
SN ,S̃N

(
sup
f∈F

(
Rε

S̃N
(f) − Rε

SN
(f)
)
≥ λ −

1

N

)
≤ sup

SN ,S̃N

U

{
σ : sup

f∈F

(
Rε

S̃σ
N

(f) − Rε
Sσ

N
(f)
)
≥ λ −

1

N

}
.

Denote a ε
2−cover of the set ∆Fε by ∆F

ε
, with elements ∆f

ε
. Through identical reasoning

to that of Bartlett (1998, proof of Lemma 4) by defining,

A
(
∆f

ε
, Sσ

N

)
,

1

N

∣∣∣
{

i :
∣∣∣∆f

ε
(xσ

i , ϑσ
i ) − ε

∣∣∣ ≥
ε

2

}∣∣∣
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then the above inequality leads to,

P
SN ,S̃N

(
sup
f∈F

(
Rε

S̃N
(f) − Rε

SN
(f)
)
≥ λ −

1

N

)

≤ sup
SN ,S̃N

U

{
σ : sup

∆f
ε∈∆Fε

(
A
(
∆f

ε
, Sσ

N

)
− A

(
∆f

ε
, S̃σ

N

))
≥ λ −

1

N

}

≤
∣∣∆F

ε∣∣ sup
∆f

ε∈∆Fε
U

{
σ :
(
A
(
∆f

ε
, Sσ

N

)
− A

(
∆f

ε
, S̃σ

N

))
≥ λ −

1

N

}
.

Now by definition
∣∣∆F

ε∣∣ = N∞,1

(
ε
2 ,∆Fε, 2N

)
and so it can be seen that this leads to

P
SN ,S̃N

(
sup
f∈F

(
Rε

S̃N
(f) − Rε

SN
(f)
)
≥ λ −

1

N

)

≤ N∞,1

(ε

2
,∆Fε, 2N

)
× sup

(ai,bi)
P

(
1

N

∑

i

(ai − bi)βi ≥ λ −
1

N

) (37)

where βi ∈ {−1,+1}, P (βi = −1) = P (βi = +1) = 0.5 and they are Independent, and
Identically Distributed (IID). Meanwhile

ai =

{
1 if

∣∣∣∆f
ε
(
x̃σ

i , ϑ̃σ
i

)
− ε
∣∣∣ ≥ ε

2

0 otherwise

and

bi =

{
1 if

∣∣∣∆f
ε
(xσ

i , ϑσ
i ) − ε

∣∣∣ ≥ ε
2

0 otherwise.

Now the right-hand term in equation (37) can be bounded using Hoeffding’s inequality
(Elisseeff et al., 1999, Theorem 5) such that,

P
SN ,S̃N

(
sup
f∈F

(
Rε

S̃N
(f) − Rε

SN
(f)
)
≥ λ −

1

N

)
≤ N∞,1

(ε

2
,∆Fε, 2N

)
× exp

(
−2N

(
λ −

1

N

)2
)

.

(38)

This can be rearranged to demonstrate that,

λ ≤

√
1

2N

[
log
(
2N∞,1

(ε

2
,∆Fε, 2N

))
− log

(
2P

SN ,S̃N

(
sup
f∈F

(
Rε

S̃N

(f) − Rε
SN

(f)
)
≥ λ −

1

N

))]
+

1

N

and so, from equation (36)

λ ≤

√
1

2N

[
log
(
2N∞,1

(ε

2
,∆Fε, 2N

))
− log

(
PSN

(
sup
f∈F

(
R(f) − Rε

SN
(f)
)
≥ λ

))]
+

1

N
.

Now, with probability at least (1 − δ) where δ = PSN

(
supf∈F

(
R(f) − Rε

SN
(f)
)
≥ λ

)
, it is

the case that R(f) − Rε
SN

(f) ≤ λ. Hence, with probability at least (1 − δ)

R(f) ≤ Rε
SN

(f) +

√
1

2N

[
log
(
2N∞,1

(ε

2
,∆Fε, 2N

))
− log (δ)

]
+

1

N
. (39)
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which is analogous to the result of Theorem 4 of Elisseeff et al. (1999). Using this together
with Proposition 8 of Bartlett (1998) demonstrates that,

R(f) ≤ Rε
sN

(f) +

√
1

2N

[
log
(
2N∞,1

(ε

2
,∆Fε, 2N

))
+ log

(
2

εδ

)]
+

1

N
(35)

This concludes the proof of Theorem 1.

5.2.1 Bounding N∞,1

(
ε
2 ,∆Fε, 2N

)
using Entropy Numbers

While the generalised risk of Theorem 1 can be bounded by an expression involving the
covering number, N∞,1

(
ε
2 ,∆Fε, 2N

)
, it is not clear how to determine this number exactly,

and a standard approach is to bound it. This is done by following the ideas of Williamson
et al. (2001). The first step is to define entropy numbers Guermeur (2002, Defns. 7 & 8),
Williamson et al. (2001, eqns. 7-10).

Definition 5 (Entropy Numbers and Operator Norm) Given a pseudo-metric space

(F , dF ,S
ℓ∞ ,ℓ1

) then, the nth entropy number of a set F ⊂ F with respect to dF ,S
ℓ∞,ℓ1

, is

εn(F) , inf
{

ε > 0 : N
(
ε,F , dF ,S

ℓ∞ ,ℓ1

)
≤ n

}
(40)

The entropy number of an operator T : F → M follows from the introduction of a unit ball
in F , denoted UF . The nth entropy number of T is defined as,

εn(T ) , εn (T (UF )) (41)

and the operator norm is given by,

‖T‖ = sup
f∈UF

‖T (f)‖M . (42)

To understand the entropy number of T more explicitly, denote T (UF ) by a set M ∈ M ,
and assume some metric dM . With these then, in keeping with equation (40), the entropy
number is given by εn(T ) , inf

{
ε > 0 : N

(
ε,M, dM

)
≤ n

}
.

Note that from the first part of this definition it is clear to see that should εn(F) be bounded

by some ε, then N
(
ε,F , dF ,S

ℓ∞,ℓ1

)
≤ n; Guermeur (2002, Thm. 3), Williamson et al. (2001,

Prop. 12). Note also that from Definition 4, in order to bound N∞,1

(
ε
2 ,∆Fε, 2N

)
, it is

sufficient to bound N
(

ε
2 ,∆Fε, dF ,S

ℓ∞,ℓ1

)
, as discussed in the following Theorem.

Theorem 2 (Bound on log
(
N
(

ε
2 ,∆Fε, dF ,S

ℓ∞,ℓ1

))
) The log of the covering number

N
(

ε
2 ,∆Fε, dF ,S

ℓ∞,ℓ1

)
of a set F ∈ F can be bounded by a term proportional to

∑M−1
m=1 ‖wm‖2

F ,

i.e.

log
(
N
(ε

2
,∆Fε, dF ,S

ℓ∞,ℓ1

))
≤ r

M−1∑

m=1

‖wm‖2
F (43)

for some r > 0.
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Proof of Theorem 2
The proof begins with the fact, as highlighted by Williamson et al. (2001, Thm. 10) (see
also Guermeur, 2002, Thm. 4), that Maurey’s Theorem can be used to bound entropy
numbers. For this Theorem note that ℓq

p is a vector space containing vectors of dimension

q and norm ‖f‖ℓ
q
p

= (
∑q

i=1 |fi|
p)

1

p . Furthermore T (F ,M ) denotes the set of all bounded
operators between the normed spaces (F , ‖ · ‖F ) and (M , ‖ · ‖M ).

Maurey’s Theorem considers that T ∈ T (H , ℓq
∞) where H is a Hilbert space. It then

states that there exists a constant c > 0 such that, for all n, q ∈ N,

εn(T ) ≤ c‖T‖

√√√√ log
(
1 + q

log n+1

)

log n + 1
. (44)

While Guermeur (2002) must rely on a generalisation of Maurey’s Theorem to matrix
output spaces, it is only directly applicable to vector output spaces. This is mentioned by
Guermeur (2002), but it is claimed there that it is not a problem, as an extension can be
derived, although this is not done. In the current formulation of the problem however, this
theorem can be used directly to bound the entropy number, and, as stated, it can also be
used to bound the covering number of an operator. These steps are as follows,

εn(T ) ≤
ε

2
= c‖T‖

√√√√ log
(
1 + N

log n+1

)

log n + 1
(45)

N
(ε

2
, T (UF ) , dM ,S

ℓ∞,ℓ1

)
≤ n (46)

N
(ε

2
,∆Fε, dF ,S

ℓ∞,ℓ1

)
≤ N

(ε

2
, T (UF ) , dM ,S

ℓ∞,ℓ1

)
. (47)

It remains to demonstrate the third of these and, in particular, we aim to do this for

T (f) =
[

minθ ∆fθ (x1, ϑ1) minθ ∆fθ (x2, ϑ2) . . . minθ ∆fθ (xN , ϑN )
]
. (48)

This mapping T : F → M is to a vector space which has a norm

‖a‖M ,S = max
1≤i≤|S|

|ai|. (49)

For this case Maurey’s Theorem is clearly directly applicable, as are equations (45) and
(46). The expressions in equations (48) and (49) are far simpler than their counterparts in
Guermeur (2002, §2.3) due to the scalar form of ∆f ε in equation (33). For more on the
comparison between the two approaches, see Hill (2007, §4.2.1,§A.2.1). In proving equation
(47), consider first,

dM ,S
ℓ∞,ℓ1

(
T (f), T (f)

)
= max

(x,ϑ)∈S

∣∣∣∣min
θ

∆fθ(x, ϑ) − min
θ

∆fθ(x, ϑ)

∣∣∣∣

and, meanwhile,

dF ,S
ℓ∞,ℓ1

(
∆f ε,∆f

ε
)

= max
(x,ϑ)∈S

∣∣∣∆f ε(x, ϑ) − ∆f
ε
(x, ϑ)

∣∣∣
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and it is clear to see that,

max
(x,ϑ)∈S

∣∣∣∆f ε(x, ϑ) − ∆f
ε
(x, ϑ)

∣∣∣ ≤ max
(x,ϑ)∈S

∣∣∣∣min
θ

∆fθ(x, ϑ) − min
θ

∆fθ(x, ϑ)

∣∣∣∣

dF ,S
ℓ∞,ℓ1

(
∆f ε,∆f

ε
)
≤ dM ,S

ℓ∞,ℓ1

(
T (f), T (f)

) (50)

which means that, provided f , f ∈ UF , then equation (47) is correct. An extended version
of this derivation is presented by Hill (2007, §B.2).

All that remains is to bound ‖T‖. Now, from equation (49),

‖T (f)‖M ,S = max
i≤i≤|S|

(
min
θ 6=ϑi

∣∣vT
θ (ϑi)WΦ(xi)

∣∣
)

. (51)

Through the Cauchy-Schwarz inequality (Guermeur, 2002, §A.2) and with ΛX being the
radius of a ball including Φ(X ), then

‖T (f)‖M ,S ≤ ΛX max
ϑ

(
min
θ 6=ϑ

‖vT
θ (ϑ)W‖2

)
(52)

this means that,

‖T‖ ≤ΛX max
ϑ

(
min
θ 6=ϑ

‖vT
θ (ϑ)W‖2

)

≤ΛX

√√√√
M−1∑

m=1

‖wm‖2
F .

(53)

In this we have made the assumption that f ∈ UF , however if this is not the case it is
straightforward to arrive at an analogous solution. More on this can be found in Williamson
et al. (2001, §V.B), Elisseeff et al. (1999, Prop. 4) or Guermeur (2002, Prop. 1), for example.
Combining this result with equation (45)

εn(TF ) ≤
ε

2
≤ cΛX

√√√√
M−1∑

m=1

‖wm‖2
F

√√√√ log
(
1 + N

log n+1

)

log n + 1

which can be rearranged to give,

log n ≤
4c2Λ2

X log(1 + N)
∑M−1

m=1 ‖wm‖2
F

ε2
− 1

when n ≥ 1, which is always going to be the case as this is a bound on a covering number.
Equation (46) then gives,

log
(
N
(ε

2
, TF (UF ) , dMF ,S

ℓ∞,ℓ1

))
≤

4c2Λ2
X log(1 + N)

∑M−1
m=1 ‖wm‖2

F

ε2
− 1

and so, finally, from equation (47)

log
(
N
(ε

2
,∆Fε, dF ,S

ℓ∞,ℓ1

))
≤

4c2Λ2
X log(1 + N)

∑M−1
m=1 ‖wm‖2

F

ε2
− 1.
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This demonstrates the result in equation (43) of Theorem 2 and moreover shows that the
constant r is given by,

r =
4c2Λ2

X log(1 + N)

ε2
. (54)

This concludes the proof of Theorem 2

5.3 Summary of Generalisation Bounds

In Subsection 5.2, Theorem 1 showed that the risk R(f) of a function f is bounded with
probability at least (1 − δ) by,

R(f) ≤ Rε
SN

(f) +

√
1

2N

[
log
(
2N∞,1

(ε

2
,∆Fε, 2N

))
+ log

(
2

εδ

)]
+

1

N
. (35)

Where, from Definition 4; N∞,1

(
ε
2 ,∆Fε, 2N

)
= supS∈X 2N N

(
ε
2 ,∆Fε, dF ,S

ℓ∞,ℓ1

)
, and from

Theorem 2

log
(
N
(ε

2
,∆Fε, dF ,S

ℓ∞,ℓ1

))
≤ r

M−1∑

m=1

‖wm‖2
F (43)

where r is positive and given by equation (54). As a result

R(f) ≤ Rε
SN

(f) +

√√√√ 1

2N

[
r

M−1∑

m=1

‖wm‖2
F + log

(
4

εδ

)]
+

1

N
. (55)

As mentioned in the derivation of this result, the methodology employed has been more in
keeping with the two-class derivation than the bound derived by Guermeur (2002). This
is due to the use of the scalar function ∆f ε, as introduced in equation (33). The use of
this function is a logical consequence of viewing the problem in the geometric framework
of Section 2. It allows T to be a mapping to a vector space, as it is in the two-class case,
rather than to a matrix space, as it is in the work by Guermeur (2002).

Not only does the use of ∆f ε simplify the working, but the final result is that the
derived bound is tighter than that of Guermeur (2002). This has been rederived in the
present notation by Hill (2007, App. A) in which the assumption that Maurey’s Theorem
is applicable directly is maintained. In presenting it here we first define Θ to be the set of
M(M−1)

2 unique class combinations. If the class pair (φ,ϕ) ∈ Θ then (ϕ, φ) /∈ Θ and the
equivalent expression to equation (55) is,

R(f) ≤ Rε
SN

(f) +

√√√√√ 1

2N


r

∑

(φ,ϕ)∈Θ

‖vT
φ (ϕ)W‖2 + log

(
4

εδ

)
+

1

N
. (56)

where now

r =
8c2κ2Λ2

XM(M − 1) log(1 + N)

ε2
.
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6. Other Kernel-Based Methods

In this section the use of the framework presented in Section 2 is described with respect to
ν-SVC, LS-SVC, LSVC, PSVC, and BPM.

6.1 ν-Support Vector Classification

In this case the two-class optimisation problem (Schölkopf & Smola, 2002) is to

Minimise

(
1

2
‖w‖2

F +
N∑

i=1

ξi − νε

)
, Subject to

{
yi [〈Φ(xi),w〉F + b] ≥ ε − ξi

ξi ≥ 0, and, ε ≥ 0
(57)

and the extension to the polychotomous case is straightforward, namely to

Minimise


1

2

M−1∑

m=1

‖wm‖2
F +

N∑

i=1

∑

θ∈(Θ−ϑi)

ξi,θ −
∑

ϑ∈Θ

∑

θ∈(Θ−ϑ)

νεθ(ϑ)




Subject to

{ ∑M−1
m=1 vθ,m(ϑi) [〈Φ(xi),wm〉F + bm] ≥ ε − ξi,θ

ξi,θ ≥ 0, and, ε ≥ 0.

(58)

Following the usual Lagrangian dual approach results in the final aim being to maximise

LD = −
1

2

N∑

i=1

N∑

j=1

M−1∑

m=1

αT
i VT (ϑi)V(ϑj)αjK(xi,xj) (59)

subject to 0 ≤ αi,θ ≤ 1, ∀i, θ ∈ (Θ − ϑi),
∑N

i=1 V(ϑi)αi = 0, and
∑N

i=1

∑
θ∈(Θ−ϑi)

αi,θ > ν.
The output is as given in equation (19).

6.2 Least Squares Support Vector Classification

LS-SVC as developed at length by Van Gestel, Suykens, Baesens, Viaene, Vanthienen,
Dedene, De Moor, and Vandewalle (2001) is much the same as standard SVC, except that
the empirical loss is now taken to be quadratic; see the top-left corner of Figure 3, and
equation (6). Multiclass versions have been published (Van Gestel, Suykens, Lanckriet,
Lambrechts, De Moor, & Vandewalle, 2002) which rely on coding schemes as discussed in
Subsection 3.3. The two-class case aims to

Minimise

(
1

2
‖w‖2

F + C

N∑

i=1

ξ2
i

)
, Subject to yi [〈Φ(xi),w〉F + b] = 1 − ξi (60)

An alternative multi-category extension to the coding approach exists, i.e.

Minimise


1

2

M−1∑

m=1

‖wm‖2
F + C

N∑

i=1

∑

θ∈(Θ−ϑi)

ξ2
i,θ




Subject to

M−1∑

m=1

vθ,m(ϑi) [〈Φ(xi),wm〉F + bm] = εθ(ϑi) − ξi,θ.

(61)
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Now, define

α′ =
[
αT

1 . . . αT
N

]T
ε′ =

[
εT (ϑ1) . . . εT (ϑN )

]T

Zm =
[

Φ(x1)v
∗T
m (ϑ1) . . . Φ(xN )v∗T

m (ϑN )
]

V′ =
[

V(ϑ1) . . . V(ϑN )
]

Z′ =
[

ZT
1 . . . ZT

M−1

]T
.

With these definitions then it can be shown (Van Gestel et al., 2001) that the optimisation
problem becomes equivalent to finding α′ and b to satisfy,

[
0 V′

V′T Z′TZ′ + CI

] [
b
α′

]
=

[
0
ε′

]
. (62)

The classifier is found by solving these linear equations. Note that finding Z′TZ′ does not
require reference to the feature space, but only kernel evaluations. The final output is again
as in equation (19).

6.3 Lagrangian Support Vector Classification

As introduced by Mangasarian and Musicant (2001), the LSVC is an algorithm which has
its strength in that it is computationally efficient, and easy to implement. It again uses a
quadratic empirical loss, as illustrated in the top-left corner of Figure 3, and detailed in
equation (6). The method for two-class classification aims to

Minimise

(
1

2

[
‖w‖2

F + b2
]
+ C

N∑

i=1

ξ2
i

)
, Subject to yi [〈Φ(xi),w〉F + b] ≥ 1 − ξi. (63)

This can be reformulated to a multi-category problem resulting in,

Minimise


1

2

M−1∑

m=1

[
‖wm‖2

F + b2
m

]
+ C

N∑

i=1

∑

θ∈(Θ−ϑi)

ξ2
i,θ




Subject to

M−1∑

m=1

vθ,m(ϑi) [〈Φ(xi),wm〉F + bm] ≥ εθ(ϑi) − ξi,θ.

(64)

The dual to this is,

LD = −
1

2

N∑

i=1

N∑

j=1

αT
i VT (ϑi)V(ϑj)αj [K(xi,xj) + 1] +

N∑

i=1

αT
i

[
ε(ϑi) −

1

2C
αi

]
(65)

which needs to be maximised subject to αi,θ ≥ 0 for all i, and all θ ∈ (Θ − ϑi). Once that

has been done then b =
∑N

i=1 V(ϑi)αi. The final solution again takes the form of equation
(19).
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6.4 Proximal Support Vector Classification

Following on from the LSVC method, the PSVC approach was developed by Fung and
Mangasarian (2001b, 2001a). While they have presented a multi-category approach it is a
one-against-all algorithm, not an ‘all-together’ one. The two-class aim is to

Minimise

(
1

2

[
‖w‖2

F + b2
]
+ C

N∑

i=1

ξ2
i

)
, Subject to yi [〈Φ(xi),w〉F + b] = 1 − ξi. (66)

which is, once more, the same as that for LS-SVC in Subsection 6.2 except for the b2 term.
This can be reformulated to a multi-category problem resulting in,

Minimise


1

2

M−1∑

m=1

[
‖wm‖2

F + b2
m

]
+ C

N∑

i=1

∑

θ∈(Θ−ϑi)

ξ2
i,θ




Subject to

M−1∑

m=1

vθ,m(ϑi) [〈Φ(xi),wm〉F + bm] = εθ(ϑi) − ξi,θ.

(67)

Now, define v∗′ =
[

v∗T
1 (ϑ1) . . . v∗T

1 (ϑN ) v∗T
2 (ϑ1) . . . v∗T

N (ϑN )
]T

, and with this
then as for LS-SVC the optimisation problem has an exact solution,

α′ =
(
I + Z′TZ′ + v∗′v∗′T

)−1
ε′ (68)

where everything is as defined in Section 6.2 and b =
∑N

i=1 V(ϑi)αi. As before, the final
solution takes the form of equation (19).

6.5 Bayes Point Machines

BPMs were introduced by Herbrich, Graepel, and Campbell (2000a) and the ideas can be
extended to a multi-category problem. In short they consider what they term Version
Space, V. In the two-class case this is the region in which a weight vector w can lie without
inducing any classification errors on the training set.

Within version space a uniform distribution is assumed over all possible linear (in feature
space) classifiers, h, outside it is assumed zero. The Bayes point classifier is then given by

hbp = arg min
h∈H

EX

[
EH|{xi,yi}N

i=1

[ℓ (h(X),H(X))]
]

(69)

where ℓ(·, ·) is some loss function (typically the zero-one loss function is used) and the inner
expectation is over classifiers H ∈ H. One problem with this definition is that it is not usual
that there is any knowledge about PX and so evaluation of EX is impossible. With some
assumptions about the form of PX (see Herbrich et al., 2000a, for more) it can, however,
be shown that the centre of mass,

wcm =
E

w|{xi,yi}N
i=1

[w]

‖E
w|{xi,yi}N

i=1

[w]‖
(70)
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is a good approximation to wbp. Eventually the problem becomes to identify V, which is
some contiguous and convex space, and then to find wcm given that there is a uniform
distribution assumed over the weight vectors in this space.

Note that version space is defined by

V = {w : yi〈Φ(xi),w〉 > 0, ‖w‖ = 1, ∀i} , (71)

When considering multiple classes then the condition yi〈Φ(xi),w〉 > 0 becomes VT (ϑi)WΦ(xi) >[
0 0 . . . 0

]T
where the inequality indicates component-wise inequalities, and the ma-

trix W =
[

w1 . . . wM−1

]T
has been introduced. As a result the version space is given

by

V =
{
(w1,w2, . . . ,wM−1) : VT (ϑi)WΦ(xi) >

[
0 0 . . . 0

]T
, ‖wm‖ = 1 ∀m, i

}
,

(72)
which is identical in form to equation (71). Extensions of the kernel billiards algorithm
described by Herbrich et al. (2000a) can be used to find Wcm, which is analogous to wcm

in equation (70). Their method for including training errors can also be seamlessly incor-
porated.

7. Implementation through Sequential Minimal Optimisation

The geometric construction introduced in Section 2 allows insight into the multi-category
problem, which should motivate alternative approaches to efficiently solve the ‘all-together’
optimisation problem. One possibility for SVC is presented here, based on a vector-valued
version of SMO which was first introduced for binary classification by Platt (1999). This has
several advantages, including the fact that it is reasonably straightforward to understand,
relatively easy to implement, quite efficient and flexible, in addition to being well established
and known.

SMO optimises with respect to two points at a time, denote these c and d. With this
notation, and with Kij = K(xi,xj), then the dual Lagrangian in equation (13) becomes

L =
(
αT

c ε(ϑc) +αT
d ε(ϑd)

)
−

1

2
αT

c VT (ϑc)V(ϑc)αcKcc −
1

2
αT

d VT (ϑd)V(ϑd)αdKdd

−αT
c VT (ϑc)V(ϑd)αdKcd −α

T
c VT (ϑc)zc −α

T
d VT (ϑd)zd + constant.

(73)

where zc is a vector with elements zc,m =
∑N

i=1,i6=c,dα
T
i v∗

m(ϑi)Kic and similarly for zd,m.
As shown by Hill and Doucet (2005, §6); by expressing αc in terms of αd, through the
constraint in equation (17), and finding a minimum by setting ∇αd

L(αd) = 0, then an
SMO update takes the form,

αnew
d = αold

d +
V−1(ϑd)

Kdd + Kcc − 2Kdc

[
ψ(xc) −ψ(xd) + V−T (ϑd)ε(ϑd) − V−T (ϑc)ε(ϑc)

]
(74)

where, V−1(ϑd) exists provided that the vectors {vθ(ϑd) : θ ∈ (Θ − ϑd)} are linearly inde-
pendent, which is nearly always the case, although it is possible to conceive of pathological
cases. Recall that ψ was introduced in equation (9) cf. (19).
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7.1 Clipping

Recall that all elements of αc and αd are upper and lower bounded (equation (16)), and
hence clipping may be required. This is best understood through Figure 8, which relates

α d
old

∆α

α d
new

α d,1

α d,2

(a) A vector illustration of a proposed
update
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1.2
Illustration of Clipping Considerations

α
d,1

α d,
2 Start point 

End point 

(b) Constraints within which the update must be
made

Figure 8: The proposed update for a three-class problem. The new point is shown in Subfig-
ure 8(b) to be outside the allowed regions. These correspond to the overall limits
of 0 and CD1(ϑd) (upright box) and limits imposed by αc considerations (tilted
box).

to the three-class case, however the ideas are generically applicable. Given the update in
equation (74) of the form αnew

d = αold
d + α∆, if αnew

c or αnew
d lie outside their constraints

then the line between αold
d and αnew

d is traced back along until this is no longer the case.
Ultimately some κ ∈ [0, 1) is found such that

α
new,clipped
d = αold

d + κα∆.

As the optimisation surface is convex, improvements are still made with every update.

7.2 Updating Non-Extremal Components

Often, updates of the form of equation (74) involve vectors αold
c and αold

d which have
extremal components (i.e. components at their constraint-introduced limits). This can
lead to a computational bottleneck as any update which suggests that these components
should lie further outside the allowed region will result in the clipping procedure returning
the original vectors.

To avoid this consider again that the two points to update are labelled c and d, and
denote the number of non-extremal components of each as Pc and Pd respectively. An
update is likely possible6 if Pd > M − 1 − Pc and, this being the case, let Pd + Pc + 1 − M

6. Otherwise there is only one solution, the current one.
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non-extremal components of αd be grouped into a new vector αd. The remaining elements of
both αc and αd are dependent on these. Owing to the linearity of the relationship between
αc and αd, as introduced by the constraint in equation (17) then it becomes apparent that

αd = α̃d + Adαd and αc = α̃c + Acαd (75)

describe dependencies, for some α̃d, Ad, α̃c, and Ac. Of these α̃c and α̃d contain the
extremal components which will not be updated, together with zeros, and Ac and Ad are
matrices consisting of ones and zeros which map the variable components back to their
original positions in the vectors αc and αd. It can be shown (Hill & Doucet, 2005, App.
E), that the SMO update in this case is,

αnew
d = αold

d +
(AT

d VT (ϑd)V(ϑd)Ad)
−1AT

d VT (ϑd)

Kdd + Kcc − 2Kdc

×
[
ψ(xc) −ψ(xd) + V−T (ϑd)ε(ϑd) − V−T (ϑc)ε(ϑc)

]
.

(76)

Again, clipping can be performed as in Subsection 7.1. Note that in this expression only the
evaluations of ψ(·) actually change during the optimisation process. All others, especially
the matrix-valued numerator may be held in memory to speed the procedure, where possible.

7.3 Point Selection

It remains to select points c and d. Platt (1999), presents a number of heuristics, however the
improvements suggested by Keerthi, Shevade, Bhattacharyya, and Murthy (2001) appear
to be more efficient and will form the basis of that overviewed here. In the binary case
the essential approach is to identify points requiring the highest and lowest offsets b in
order that their underlying function f(·) is as might be expected, i.e. it has the sign of the
relevant point. When considering two classes, A and B in the multi-category arrangement
a directly analogous approach can be taken in that the problem is reduced to a two-class
problem across their mutual boundary, and a comparable scalar metric can be found.

The starting point in this methodology is to construct the Lagrangian which governs
the dual optimisation problem as given in equation (13);

L =
1

2

N∑

i=1

N∑

j=1

αT
i VT (ϑi)V(ϑj)α

T
j K(xi,xj) −

N∑

i=1

αT
i ε(ϑi) −

N∑

i=1

αT
i δi

+

N∑

i=1

∑

θ∈(Θ−ϑi)

µi,θ (αi,θ − CDθ(ϑi)) −
N∑

i=1

αT
i VT (ϑi)ηm

where {δi,θ, µi,θ : i ∈ {1, . . . , N}, θ ∈ (Θ − ϑi)} and {ηm : m ∈ {1, . . . , (M − 1)}} are
Lagrangian multipliers. Differentiating this with respect to αi and setting the result equal
to zero implies that,

VT (ϑi) (ψ(xi) + η) = ε(ϑi) + δi − µi (77)

and, hence,

η = V−T (ϑi) (ε(ϑi) + δi − µi) −ψ(xi). (78)
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while KKT conditions not satisfied.

for all combinations of two classes (denoted A and B).

Perform two-class SMO along the direction vB(A) with

updates given by equation (76) and iup, ilow found through (79)

Table 1: Algorithm Pseudo-Code

Consider the update of two points of classes A and B and let ϑi = A, in doing this recall
the equality, as discussed by Keerthi et al. (2001), of η and b. With this in mind it becomes
apparent that an equivalent metric for updating is the difference between the respective η
values across the boundary between the two classes. To find the perpendicular distance,
take the inner product with the perpendicular to the boundary, for instance vB(A)

vT
B(A)η = εB(A) + δi,B − µi,B − vT

B(A)ψ(xi). (79)

This expression is now directly comparable to the equivalent key starting point in the point
selection process as it is directly analogous to the scalar used by Keerthi et al. (2001). Indeed
the parameters bup and blow used there are equivalent to the extreme values of vT

B(A)η.

7.4 Multi-Category SMO Summary

Following from the above it becomes possible to put together a complete approach;

1. Select an initial two classes to consider denoted generically A and B.

2. From these two classes determine the two points with maximum and minimum values
of vT

B(A)η as in equation (79). These will be denoted iup and ilow respectively as they
correspond to those associated with bup and blow in the work by Keerthi et al. (2001).

3. Perform updates as outlined in equations (74) and (76) until convergence by some
criteria (e.g. updates are all below some threshold) is achieved. Point selection is
made following the standard two loop approach of a for loop attempting to update all
points and a while loop considering only non-extremal ones. Updates are attempted
with respect to either iup or ilow and these maximal and minimal points are updated
after each iteration.

4. Once convergence has been achieved for these two classes then select another two
classes and repeat steps 2 and 3. Do this until all possible combinations of classes
have been attempted.

5. Repeat the entire process until no updates are made. At this point the Karush-Kuhn-
Tucker (KKT) conditions should be very nearly satisfied, and should be checked to
ensure that they are at least within some acceptable limit of satisfaction.

This is summarised in the pseudocode of Table 1.
This approach is clearly closely related to the structure of a pairwise coupling algorithm

(Subsection 3.2) however now with a single optimisation problem as a focus. Clearly the
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algorithm may be more computationally intense than that of Kreßel (1999) for two reasons.
First, each stage updates involves matrix multiplications instead of scalar ones. Second, as
indicated by step 5, more than one pass may be required. On the other hand, there might
be some reduction in overall iterations required in a particular class-class combination as
each optimisation is not starting from ‘scratch’, rather updates from previous combinations
may have had a positive impact.

Experimentally however it has been observed that the traditional pairwise coupling ap-
proach is more computationally efficient, and this has also been noted in the literature (Hsu
& Lin, 2002; Rifkin & Klautau, 2004). As alluded to in Subsection 3.2, a combined ap-
proach is possible, which will be referred to as the combined pairwise, all-together algorithm.
Broadly, this is as follows;

1. Perform the pairwise optimisation described by Kreßel (1999). This optimisation

requires the implementation of M(M−1)
2 standard SV classifiers with the slight change

that instead of using the standard 2-class ε value of 1, use the ε values corresponding
to the particular pairwise optimisation.

2. Map the results into the classification spatial arrangement (Figures 1 or 2 for example).
This can be done easily by observing that in the product V(ϑi)αi of equation (19)
the element αi,θ multiplies vθ(ϑi) — recall that this is perpendicular to the boundary
between θ and ϑi. As such then the result of the binary classification optimisation
between classes ϑi and θ can be used to directly provide the value αi,θ. Note that the
constraint in equation (17) is still satisfied.

3. Finalise the ‘all-together’ single optimisation following the steps outlined earlier in
this Subsection.

In short the bulk of the optimisation is performed with the standard pairwise methodology.
The geometrical approach detailed in Section 2 is used to manipulate the output such
that a unified consistent result can be obtained with little additional computational effort.
This has the clear advantage that a practitioner can be sure of exactly on what basis the
classification is being made without having to resort to ad hoc heuristics.

8. Examples

Extensive investigations into comparative performance of multi-category SVM methods
have been detailed by Hsu and Lin (2002), and they present current benchmark training
times. As discussed, their work has found that pairwise coupling approaches are far more
computationally efficient than others. This has also been found to be the case for the first
SMO algorithm proposed in Subsection 7.4 and the main aim in this Section is to investigate
the performance of the combined pairwise, ‘all-together’ algorithm. Both standard binary
and the described multi-category SMO were coded in a straightforward way. No dynamic
caching or low-level code refinements were used in this initial proof-of-concept investigation
as it was felt that such detailed optimisations are best done together in a consistent way,
as in the dedicated comparative work of Hsu and Lin (2002).

The datasets used were obtained from the University of California repository (Blake &
Merz, 1998). For illustrative purposes the training and test output results on the DNA
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dataset are presented in Figure 9. Here it is clear to see how the pairwise result has been
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Figure 9: DNA data outputs for training and test data cases. The mapped pairwise and
optimised ‘all-together’ results are shown. Margins analogous to those in the two-
class case are clearly visible and are shown by dashed lines. Training data forms
the top row, test data the bottom. The more numerous, ‘N’ case is given by green
triangles, ‘EI’ by blue circles, and ‘IE’ by red squares. The stars are indicative of
the class target vectors.

mapped into the classification plane of Figure 1, and what changes are made in performing
the ‘all-together’ additional optimisation. In short the ‘N ’ class appears to have intermin-
gled a little more with the ‘EI’ class and less with the ‘IE’ class. As well the ‘all-together’
outputs fill the corners of the margin intersections more completely, while the pairwise
outputs tend to cut them off. This has been often observed in other implementations.

The training time is heavily dependent on the tolerance to within which convergence is
desired. This value, referred to as τ by Keerthi et al. (2001) indicates the variation allowed
between bup and blow as discussed in Subsections 7.3 and 7.4. The effect of this has been
additionally investigated for two values of τ , and the results are tabulated in Tables 2 and
3. In these experiments Gaussian kernels were used and appropriate values of σ and C were
chosen by trial and error such that output accuracies (where accuracy refers to percentage
classification error rate) of the ‘all-together’ implementation were comparable to those of
Hsu and Lin (2002).

The actual accuracies recorded are given in the Table, however recall that, as noted in
Section 3.1, the optimisation problem being solved is the generic ‘all-together’ one and, as
such, judicious choices of σ and C should mean that the same accuracy rates are achievable
by all such algorithms. Clearly as the implicit model behind the pairwise approach is slightly
different it may indeed be able to achieve slightly different accuracy results. With this in
mind the aim here has not been to incessantly tweak hyperparameters to achieve marginally
superior results, but simply to look at the big picture of performance.
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τ = 0.03C τ = 0.001C

Problem M N Pair All Alone Pair All Alone
DNA 3 2000 0.8 1.1 1.5 1.1 3.7 11.7
Vehicle 4 766 0.4 2.7 5.3 0.5 3.5 3.9
Satimage 6 4435 3.0 10.8 41.8 3.6 9.0 27.6
Segment 7 2079 2.4 13.2 47.9 3.2 16.2 42.0
Vowel 11 891 0.7 3.5 13.3 1.0 18.5 22.8
Letter 26 15000 129.0 129.9 2119.2 142.3 1373.7 5573.4

Table 2: Optimisation times (seconds) for various example problems. Columns present re-
sults obtained using the pairwise algorithm and the ‘all-together’ SMO algorithm
discussed. In all cases ‘Pair’ refers to pairwise optimisation time results, mean-
while ‘All’ denotes additional refinement time i.e. that required to progress from
the pairwise result to the ‘all-together’ result. Finally ‘Alone’ identifies time taken
by the ‘all-together’ algorithm without initial pairwise optimisation.

τ = 0.03C τ = 0.001C

Problem M N ER(Pair) ER(All) ER(Pair) ER(All)
DNA 3 2000 4.4 4.6 4.6 4.5
Vehicle 4 766 15.0 18.8 17.5 20.0
Satimage 6 4435 10.6 10.8 9.7 9.2
Segment 7 2079 3.0 2.6 3.0 3.0
Vowel 11 891 3.0 3.0 3.0 3.0
Letter 26 15000 8.8 8.8 8.9 8.8

Table 3: Optimisation error rates (percentages) for various example problems. Columns
present experimentally obtained results using the pairwise and ‘all-together’ multi-
category SMO algorithms discussed. ‘ER(Pair)’ refers to the test error rate of the
pairwise method and ‘ER(All)’ to that of the ‘all-together’ algorithm.

In continuing with this mindset, no class weightings were introduced, and target vec-
tors were set to be equidistant. Clearly it may well be the case that these could actually
be perturbed, and class weights introduced to improve performance, with no additional
computational effort, however in this initial investigation this has not been done.

The experiments were all run on a 2.8GHz P4 with 1GB RAM7. From Tables 2 and 3
the following points become apparent,

1. The optimisation times presented here are of magnitudes similar to those of Hsu and
Lin. Although it has not been the aim of this work to produce highly refined op-
timal code, and although such comparisons are always going to be problematic in
terms of implementation specifics, this result is, in itself, positive. Generally, the
most accurate implementation of the algorithm presented in the preceding sections
(when τ = 0.001C) convergence times are similar to those of Hsu and Lin for their
‘all-together’ implementation. Briefly, their optimisation times were; for DNA, 13.5s,
for vehicle 88.6s, for satimage 48.2s, for segment 66.4s, for vowel 14.1s, and for letter
8786.2s. As such we consider the advantage obtained here through extra computa-
tional power as roughly equivalent to the effect of their extra coding.

7. Hsu and Lin (2002) had a 500MHz P3 with 384MB RAM.
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It is worth noting that there is additional intrinsic value in the intuitiveness, flexibility
and its ease of implementation of the presented algorithm, something the standard
SMO algorithm is well known for. As highlighted, no additional computational effort
is required to alter class regions or introduce class weights (Subsection 2.3), neither
of which have been considered by Hsu and Lin (2002).

2. It is possible to approximately quantify the relative effect of combining the pairwise
and ‘all-together’ algorithms in context. In short it typically halves them, although
the variation on this is quite large. This result appears roughly consistent for both
values of τ .

3. As anticipated, error rate results do not strongly favour the pairwise or ‘all-together’
methods; this is always going to be a case-by-case issue.

9. Conclusion

A geometric framework for understanding multi-category classification has been introduced,
through which many existing ‘all-together’ algorithms can be understood. The structure
allows the derivation of a parsimonious optimisation function, which is a direct extension
of the binary SV classification optimisation function. This can be seen in that no special
case considerations need be made in order that the mathematics reduce to the standard
result when the number of classes, M = 2. Further, the framework enables considerable
generalisation of the problem and incorporation of relative class knowledge without any
additional computational complexity. As far as actual optimisation results are concerned,
the virtues of the proposed framework, in fact, apply to the other ‘all-together methods as
well.

It has been found by Hsu and Lin (2002) and Rifkin and Klautau (2004), among others,
that the pairwise SV method converges with a substantial speed advantage over existing
multi-category methods. However pairwise results require some heuristic to combine them.
This can be avoided by mapping them to the geometric framework described and ‘fine-
tuning’ to obtain the consistent ‘all-together’ solution. This refining can be performed by
any multi-category ‘all-together’ algorithm.

The ability of the framework to compare algorithms has been illustrated by a brief
discussion of Fisher consistency. This has shown graphically illustrated how different loss
structures compare and how most result in Fisher inconsistent optimisation problems.

Generalisation bounds have been derived with the aim of the framework presented which
are tighter than those previously presented in the literature. These have also benefited from
a simpler derivation than those previously presented due to the fact that well-known scalar
methods developed for the two class case have been directly applicable. Previously there
was a need to extend them to more cumbersome vector methods.

In addition to providing a more generic and flexible framework, this architecture may
well provide insights regarding how to further improve on the speed of existing multi-
category SV classification algorithms (whether coupled with a pairwise optimisation, or not).
An initial example of how this might be achieved has been developed in the formulation of a
straightforward multi-category SMO variant algorithm. The proof-of-concept experimental
results have shown that this, combined with the mapping of pairwise results, is already
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comparable with the optimisation speeds achieved by Hsu and Lin (2002) in their benchmark
work, despite the fact that their implementation code is highly refined and includes features
such as dynamic caching. Future efforts based on the geometric framework described should
be able to outperform existing standards.
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