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Abstract

This paper develops an inductive theory of predictive common sense reasoning. The
theory provides the basis for an integrated solution to the three traditional problems of
reasoning about change; the frame, qualification, and ramification problems. The theory is
also capable of representing non-deterministic events, and it provides a means for stating
defeasible preferences over the outcomes of conflicting simultaneous events.

1. Introduction

A great deal has been written on the logical representation of common sense reasoning
about change since the publication of McCarthy and Hayes’s (1969) seminal paper, and
many theories have been proposed; see, for example, the monographs by Sandewall (1994),
Shanahan (1997), and Reiter (2001).

Most theories treat events1 deductively, along the lines of the representation of actions
used in the planner strips (Fikes & Nilsson, 1971). Each event type is defined by its
preconditions and effects. For example, in the blocks world, the preconditions for unstacking
block x from block y are that x is on y, x is clear (no block is on top of it), and the robot hand
is empty. The effects are that the hand is holding x, y is clear, and each of the preconditions
is false. Change is then a matter of deduction. If a particular event (a token of an event
type) occurs and its particular preconditions hold, then its particular effects are deduced,
and so necessarily follow, from it. Events of this kind will be called deductive events and
the view that natural events can be represented deductively will be called Deductionism.

Deductive event types can be thought of as invariable regularities (or uniformities) of se-
quence. Viewed in this way the strips representation of events can be seen to be descended
from those considered by Hume and Mill in their discussions of causation. Hume (1739, Bk
I, Pt III) suggests that we inductively acquire knowledge of regularities of succession of the
form: A-type events are followed by B-type events. We then consider that A-type events
cause B-type events, because whenever we see an A-type event we expect that it will be
followed by a B-type event. Mill (1898, Bk III,Ch 5) complicates this picture by considering
assemblages of conditions. A single assemblage might consist of an A-type event together
with certain conditions which must be present (positive conditions) and certain conditions
which must be absent (negative conditions). For example, an assemblage concerning the
lighting of matches might include the striking of the match, the presence of oxygen, and
the absence of dampness in the match head.

1. Events are assumed to include the physical actions of agents; whether intentional or unintentional.
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Mill (1898) thought that it was possible, at least in principle, to define assemblages which
are detailed enough to ensure their effects: “For every event there is some combination of
objects or events, some given concurrence of circumstances, positive and negative, the
occurrence of which is always followed by that phenomenon” (p. 214).

However, Hume (1777, pp. 36-38) had already argued against this possibility. It is always
possible that a regularity, no matter how long it has continued in the past, will not continue
in the future. Consequently no set of sentences which report what has been observed ever
logically implies anything about what has not been observed. As Goodman (1954, p. 59)
puts it, what has happened imposes no logical restrictions on what will happen. So, if
Deductionism is to be plausible, it is necessary to assume that Nature is uniform; that the
future will resemble the past, that past regularities will continue. Now, clearly, Uniformity
cannot be justified by appealing to experience, and it is difficult to see how else it can be
justified; see, Goodman’s discussion (pp. 61-62). Without such a justification, Deductionism
should be regarded as being suspect in theory.

Deductionism is also suspect in practice, as it is impossible in practice to define pre-
conditions which, together with the occurrence of the event, are sufficient to ensure that
its effects will follow. For example, Russell (1913, p. 7) considers the problem of conflicting
events: “I put my penny in the slot, but before I can draw out my ticket there is an earth-
quake which upsets the machine and my calculations. In order to be sure of the expected
effect, we must know that there is nothing in the environment to interfere with it. But this
means that the supposed cause is not, by itself, adequate to insure the effect”. Russell also
observes that we cannot usefully solve the problem by complicating preconditions because:
“as soon as we include the environment, the probability of repetition is diminished, until, at
last, when the whole environment is included, the probability of repetition becomes almost
nil” (pp. 7-8).

The problem of specifying preconditions which are always sufficient also arises in Mackie’s
account of causal regularities (invariable regularities of sequence). For example, “at least
part of the answer [to the question of what caused a particular fire] is that there is a set
of conditions (of which some are positive and some are negative), including the presence
of inflammable material, the absence of a suitably placed sprinkler, and no doubt quite a
number of others” (Mackie, 1975, p. 16). The list of conditions is incomplete because, even
if causal regularities hold “in the objects”, they are seldom, if ever, known in full: “Causal
knowledge progresses gradually towards the formulation of such regularities, but it hardly
ever gets there. Causal regularities as known are typically incomplete . . . What we know
are certain elliptical or gappy universal propositions” (Mackie, 1974, p. 66).

The sufficient-preconditions problem becomes more acute when we consider formal rep-
resentations which are intended to be of practical use, because the preconditions have to
be computationally tractable. McCarthy (1977, p. 1040) gives the example of using a boat
to cross a river. Given that the boat is a rowing boat, that it is equipped with oars, and is
manned by an oarsman, it can be used to convey two passengers across the river; provided
that the boat does not leak, and provided that it does not hit a rock, and provided that
it is not hit by another boat, and provided that it is not overturned by a hippopotamus,
or sunk by a meteorite, or vapourized by a thermonuclear blast, etc. It seems that the list
of qualifications which need to be added is limited only by the limits of our imagination.
Accordingly, McCarthy calls the sufficient-preconditions problem the qualification problem.
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In response, Deductionists might argue that representations are abstractions and that
their approach works well for simple domains, in which it can be assumed that qualifi-
cations do not arise. In such domains, they might argue, the uniformity assumption is
reasonable, and so deductive theories do provide a useful representation. This may well be
true, but, theories of this kind cannot readily be extended to more complex (less uniform)
domains because the additional complexity of the required preconditions quickly becomes
overwhelming. Thus the Deductionist approach may be appropriate for certain applications,
such as the mathematical analysis of high-level programming languages in which elemen-
tary commands are viewed as abstract operations on data. But it is inappropriate for
the representation of predictive reasoning about natural events, the events of our everyday
experience, because these are too irregular to be treated deductively. Moreover, the Deduc-
tionist abstraction is better thought of as an idealization, and a problematic one at that.
If the preconditions of a deductive event hold on occurrence, then its effects are logically
guaranteed to follow, and so no natural force can intervene to prevent them from doing so.
Deductive events are thus not natural, but supernatural. This idealization creates technical
difficulties when it comes to the representation of events with variable effects (including
non-deterministic and context-dependent effects) as these effects should not always be de-
duced, and to the representation of conflicting events (events whose effects are individually
consistent but jointly inconsistent) as their joint effects cannot consistently be deduced.
Consequently Deductionist theories of these phenomena (some of which are discussed in the
sequel) face unnecessary, self-imposed, difficulties. It is difficult to escape the conclusion
that, in representing natural events deductively, Deductionism starts off on the wrong foot.

But this conclusion is hardly surprising when we consider that our predictive reasoning
about natural events is inductive, rather than deductive, in nature.2 The major purpose of
predictive reasoning is to support practical reasoning; that is, reasoning about what to do.
Predictive reasoning is normally based on partial knowledge (or incomplete belief), both of
causal regularities, as Mackie observes, and of the contexts in which the events concerned
occur. It also tends to be conjectural in that it seeks to produce reasonable conclusions on
the basis of what is known. As a result it tends to produce conclusions which are both supra-
deductive (which may not be deducible from the known) and defeasible (which may turn
out to be wrong).3 Accordingly, definitions of (practical, non-omniscient) rationality are
typically couched in terms of the utility of the expected (rather than the actual) outcomes
of actions. Russell and Norvig (2003, p. 36) illustrate this point as follows: “I am walking
along the Champs Elysées one day and I see an old friend across the street. There is no
traffic nearby and I am not otherwise engaged, so being rational, I start to cross the street.
Meanwhile at 33,000 feet, a cargo door falls off a passing airliner, and before I make it to

2. In philosophy, the term ‘inductive reasoning’ is applied to any form of qualitative non-deductive reason-
ing. It thus includes enumerative induction, in which a general rule is inferred from a non-exhaustive
set of inferences (for example, all of the emeralds which have been observed have been green, therefore
all emeralds are green). This is the form of reasoning which underlies our knowledge of regularities.
When it comes to inductive events the idea (as explained in the text below) is to produce reasonable
conclusions about their outcomes on the basis of partial information. In AI, inductive reasoning of this
kind is formalized in non-monotonic logics.

3. J.K. Galbraith once remarked that there are two kinds of forecasters. Those who don’t know, and those
who know that they don’t know.
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the other side of the street I am flattened. Was I irrational to cross the street? It is unlikely
that my obituary would read ‘Idiot attempts to cross street’”.

This change in perspective results in a substantial simplification of the problem of spec-
ifying preconditions. We are no longer concerned with invariable regularities of sequence,
with necessary connections between events and their effects, but rather with regularities
of sequence which normally hold; with “fairly dependable regularities of sequence” (Rus-
sell, 1913, p. 8), with expected connections between events and their effects. Consequently
we can define preconditions which, together with their associated events, form conditions
which are normally sufficient for the associated effects, and which are otherwise minimal
in the sense that no part of them is redundant. Preconditions of this kind tend to be both
tractable (simple) and useful (to occur frequently in practice).

We can now give a Humeian account of predictions involving natural events in terms of
(fairly) dependable regularities and the expectations that they engender. If an event occurs,
its preconditions obtain, and we are not aware of anything which will prevent the effects
from following, then we form a clear expectation (we “know”) that the effects will follow,
and so it is rational (reasonable) to predict them. For example, if block A is unstacked
from block B, the preconditions obtain, and we are not aware of a preventer, then we
clearly expect, and so predict, that A will no longer be on B. More complex cases involve
conflicting events. If, in such a case, we have a clear expectation of the outcome, then it is
rational to predict it. For example, we clearly expect, and so predict, that the airliner door
will crush, rather than bounce off, the intrepid pedestrian. In this example we consider that
two conflicting outcomes are possible, but that only one of them is probable. However, in
other cases our expectations are unclear; we are torn between conflicting expectations and
so do not “know” what to expect. In such cases it seems reasonable to adopt a cautious
approach, and restrict our predictions to those effects that we clearly expect. For example,
if a fair coin is tossed, then we do not have a clear expectation as to which side it will
land. We “half” expect that it will land on heads and we “half” expect that it will land on
tails. We consider that two conflicting outcomes are equally probable. So caution dictates
that we should predict that the coin lands on one side or the other, but that we should
not predict which of the two sides it will land on. Note that, as expectations are based on
incomplete knowledge, the predictions which are based on them are defeasible. For example,
if, unbeknown to us, block A is glued to block B when A is unstacked from B, then the
event does not have the effects that we predict it will have.

We can thus begin by thinking of natural events as defeasible strips events, as strips-
like events whose effects do not always follow them (when they occur and their preconditions
are true), and inferring their effects inductively. Accordingly, events of this kind will be
called inductive events, and the view that natural events should be represented inductively
will be called Inductionism. So if ‘logic’ is understood to include both deductive and induc-
tive inference, then the Inductionist objection to Deductionism can be stated succinctly:
Deductionism is a logical mistake.

This paper can be seen as an argument for Inductionism. It begins by presenting a basic
theory of inductive events and then uses this as the basis for a more comprehensive theory
of natural events.

The formal language in which the theory is expressed is defined in the next section, and
the basic theory of inductive events is then given in Section 3. The theory builds on the
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ideas of McCarthy (1986, §9), Lifschitz (1987), and Shoham (1988), and is logico-pragmatic
in nature; that is, it consists of a set of axioms together with a formal pragmatics, which,
given a formal theory containing the axioms, interprets it in a particular way, and in doing
so, generates the predictions of the theory. The basic theory of inductive events provides
the basis of a solution to the qualification problem and integrates this with the basis of
a solution to the complementary frame problem (McCarthy & Hayes, 1969, p. 487); that
is, the problem of inferring what is unchanged by the occurrence of an event (or, more
generally, by the occurrence of several simultaneously occurring events).

In Section 4, the basic theory of inductive events is extended by introducing a distinction
between inductive events which are primary and those which are secondary . Whereas
primary events occur independently, secondary events are invoked by other (primary or
secondary) events in appropriate contexts, and are causally dependent on them. In the
simplest case, a primary event invokes a secondary event and is the only event to do so.
In which case, the secondary event succeeds (is followed by its effects) only if the primary
event which invoked it succeeds. This extension to the basic theory makes it possible for
inductive events to have additional context-dependent effects, thereby providing the basis
for a solution to the ramification problem (Ginsberg & Smith, 1988); that is, the problem
of representing the indirect, context-dependent, effects of events. For example, if an agent
is holding a block and the agent moves, then the move-agent event invokes a causally
dependent move-block event, with the effect that the block moves only if the agent does.
This extension also makes it possible to represent events with non-deterministic effects. For
example, the non-deterministic event of tossing a fair coin can be represented by having the
event invoke two conflicting deterministic events, one of which has the effect that the coin
lands on heads, the other that it lands on tails.

The theory of natural events is completed in Section 5, which deals with the problem
of representing defeasible preferences over the outcomes of conflicting simultaneous events.
When two events conflict we often have a clear expectation about the outcome. For example,
if two agents attempt to go through a door simultaneously and only one of them can succeed,
then it is reasonable to expect that the stronger one will do so. However this expectation
is defeasible. The stronger agent may fail for some independent reason (the agent may slip,
say), in which case the preference is reversed and we expect that the weaker agent will
succeed (although the weaker agent may also slip, etc.). In order to represent defeasible
asymmetric expectations of this kind event preferences are introduced, and the formal
pragmatics of the basic theory is refined in order to interpret them correctly.

A philosophical justification of the theory of natural events is given in Section 6, and
related work is discussed in Section 7.

Although causal notions underlie much of the development of the theory of natural
events, there is no explicit reference to causation in the theory. This is because it is intended
to provide the basis for a definition of sufficient causation which forms part of a larger theory
of causation (Bell, 2004, 2006, 2008).4

4. According to the theory, the occurrence of event e in context c is a sufficient cause of effect φ if the occur-
rence of e in c is sufficient to ensure φ; for instance, if e succeeds at time t and φ is a logical consequence of
e’s effects at t+1, then e is a sufficient cause of φ. The definition of causation is then obtained by requir-
ing that sufficient causes also satisfy a refinement of Lewis’s (1986, Ch. 21) counterfactual-dependence
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2. The Event Language EL

The theory of events is expressed in the event language EL, which has been developed
in order to represent and reason about events and their effects, on the basis of partial
information, at successive points in time. This section begins with an informal introduction
and then gives a formal account.

In order to represent epistemic partiality in a natural and economical way EL is based
on Kleene’s (1952, §64) strong three-valued logic.5 Kleene introduced the truth value ‘un-
defined’ in order to accommodate undecidable mathematical sentences. However he also
suggested that ‘undefined’ could be interpreted as ‘unknown’, where: “‘unknown’ is a cat-
egory into which we can regard any proposition as falling, whose value we either do not
know or choose for the moment to disregard; and it does not the exclude the other two
possibilities ‘true’ and ‘false’” (p. 335). Thus understood, ‘undefined’ is not a truth value
on a par with ‘true’ and ‘false’, and its introduction is intended as a practical, logically
conservative, way of reasoning with partial information; rather than a revolutionary attack
on classical logic.6

In keeping with this interpretation, the truth value of a sentence should be classical
(either ‘true’ or ‘false’) if enough is known to determine it. The formal semantics for
the propositional case can thus be given as follows. A model, M , consists of a possibly
partial evaluation function, V , which assigns at most one classical truth value to each
atomic proposition. The truth (|=) and falsity (=|) of sentences in M is then defined by the
following truth and falsity conditions:

M |= p iff V (p) = true

M =| p iff V (p) = false

M |=¬φ iff M =| φ

M =| ¬φ iff M |=φ

condition: the occurrence of event e is a cause of effect φ in context c iff (i) e is a sufficient cause of φ
in c, and (ii) φ depends on e in the closest context to c in which e is the only sufficient cause of φ.

5. Kleene’s logic will be familiar to readers with a background in philosophical logic (it is, for example, used
by Kripke, 1975, as a basis for his theory of truth), and the choice to use it here is likely to appear a
natural one to them. However, Kleene’s logic may be unfamiliar to readers in the ‘reasoning about actions
and change’ community, and they may well wonder why I have not used a more established classical
language such as the Situation Calculus (McCarthy & Hayes, 1969). A full justification of my choice
would involve a lengthy comparison of languages. In short, it is simpler to acknowledge that epistemic
partiality is a ubiquitous feature of predictive reasoning and to deal with it directly, as in Kleene’s
logic, rather than indirectly in a classical logic; by means of syntactic encoding and circumscription (as
in the Situation Calculus), or by using modal logic (as in TK, Shoham, 1988). The representation of
partiality in Kleene’s logic is also optimal; because there is no cost associated with the representation
of what is unknown. By contrast, partiality in classical reasoning requires the consideration of a class
of models (or possible worlds) which is large enough to ensure that unwanted “noise” (arbitrary, but
compulsory, assignments of classical truth values to sentences whose truth values are not determined by
the theory in question) is eliminated. This profligacy is significant when considering the contemplated
model-building implementation of event theories (Bell, 1996, §1); see the remarks on implementation in
Section 8. Finally, as indicated in the introduction and Footnote 4, the theory of events is intended to
form part of a larger theory of causation, in which EL is embedded in a partial modal language.

6. Confirmed classicists can thus rest assured that they are not being threatened with anything radical,
such as “the Bolshevik menace of Brouwer and Weyl” (remark on Intuitionism attributed to F.P. Ramsey
by Blackburne, 1994).
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M |=φ ∧ ψ iff M |=φ and M |=ψ

M =| φ ∧ ψ iff M =| φ or M =| ψ

So a sentence ¬φ is true if φ is false, is false if φ is true, and is undefined otherwise; and
the sentence φ ∧ ψ is true if φ and ψ are both true, false if either is false, and is undefined
otherwise. Note that when the evaluation function is total this semantics is equivalent to
the semantics for classical propositional calculus. So the essential difference between the two
semantics is the classical assumption that the evaluation function is total; the additional
requirement that V assigns at least one classical truth value to each atomic proposition.

Further operators can be defined as in classical logic. In particular, inclusive disjunction
is defined as: φ ∨ ψ =Df ¬(¬φ ∧ ¬ψ); so φ ∨ ψ is true if either disjunct is true, is false if
both disjuncts are false, and is undefined otherwise. And exclusive disjunction is defined
as: φ⊕ ψ =Df (φ ∧ ¬ψ) ∨ (¬φ∧ ψ); so φ⊕ ψ is true if the truth values of φ and ψ are both
defined and are different, false if the truth values of φ and ψ are both defined and are the
same, and is undefined otherwise.7

Kleene’s logic can perhaps be called “demi-classical”, as it becomes classical when the
truth values of all of the constituent atomic sentences are classical. Unsurprisingly then,
the use of Kleene’s logic does not, of itself, solve any of the problems of predictive reasoning
beyond that of representing partiality. There is, for example, no reliance on a special
“causal” notion of consequence, such as that of Linear Logic (Girard, 1987).

The expressiveness of Kleene’s language is greatly enhanced by adding a classically-
valued “definedness” operator to it. The sentence Dφ is true if φ is defined (is either true
or false), and is false otherwise:

M |= Dφ iff either M |=φ or M =| φ

M =| Dφ iff neither M |=φ nor M =| φ

Further classically-valued operators can now be defined as follows:

Tφ =Df Dφ ∧ φ Fφ =Df Dφ ∧ ¬φ Uφ =Df ¬Dφ
φ→ ψ =Df ¬Tφ ∨ Tψ φ ≡ ψ =Df (Tφ ∧ Tψ) ∨ (Fφ ∧ Fψ) ∨ (Uφ ∧ Uψ)

Thus, for sentences φ and ψ: Tφ is true if φ is true, and is false otherwise; Fφ is true if φ
is false, and is false otherwise; Uφ is true if φ is undefined, and is false otherwise; φ→ ψ is

7. Readers who are unfamiliar with Kleene’s logic may wish to check the definitions against the semantics.
For example, M |=φ ∨ ψ iff M |=¬(¬φ ∧ ¬ψ) iff M =| ¬φ ∧ ¬ψ iff [M =| ¬φ or M =| ¬ψ] iff [M |=φ or
M |=ψ].
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true if ψ is true or φ is not, and is false otherwise;8 and φ ≡ ψ is true if φ and ψ have the
same truth value, and is false otherwise.9

The first-order extension, given by Kleene, is straightforward. The universal sentence
∀xφ is true if φ is true for all assignments to x, false if φ is false for some such assignment, and
is undefined otherwise. The existential quantifier is defined as in classical logic: ∃xφ =Df

¬∀x¬φ; thus ∃xφ is true if φ is true for some assignment to x, is false if φ is false for all
such assignments, and is undefined otherwise.

In order to represent change, events and time points are added as an additional sort.
For simplicity, the order of time is assumed to be discrete and linear.

An object atom is an atom of the form r(u1, . . . , un)(t), where r is an object relation
symbol, the ui are object terms, and t is a time-point term. For example, the object atoms
At(O,L)(1) and ¬At(O,L)(2) state respectively that object O is at location L at time 1,
and that O is not at L at time 2.

An event atom is an atom of the form r(u1, . . . , un)(t), where r is an event relation
symbol, the ui are event terms, and t is a time-point term. For example, the event atom
Occ(Move(O,L1, L2))(3) states that the event consisting of object O moving from location
L1 to location L2 occurs at time 3.

The intuition behind the fact-event distinction is that events are active “agents” (causes)
of change, while facts are passive “patients” of change which persist through time until
affected by some event (until some event causes them to change).10

In order to represent the persistence of facts, second-order quantification over object
relations and second-order relations are added to EL. An object-relation atom is an atom
of the form r(u1, . . . , un)(t), where r is a second-order relation symbol, the ui are object
relation symbols or object terms, and t is a time-point term. For example, the object-
relation atom Inert(At, 〈O,L〉)(4) states that the At relation is inert for objects O and L at
time 4.

8. The conditional φ → ψ captures much of the flavour of classical material implication. This can be
emphasized by defining the weaker conditional of Kleene’s logic: φ ⊃ ψ =Df ¬φ ∨ ψ. This conditional is
inadequate, at least for present purposes, because it is undefined, rather than false, when φ is true and ψ
is undefined. This is not the case for the stronger conditional, →, which could equally have been defined
as: Tφ ⊃ Tψ. This definition makes it clear that a conditional φ → ψ states a constraint which must
be satisfied if φ is true, but which can otherwise be ignored. The conditional does not quite capture
all of the meaning of classical material implication, as it does not satisfy the (implicitly understood)
condition that if ψ is false, then so is φ. If desired, it is possible to define a stronger conditional, which
better represents classical material implication, as follows: φ −→ ψ =Df (φ → ψ) ∧ (¬ψ → ¬φ); or,
equivalently, φ −→ ψ =Df (Tφ ⊃ Tψ) ∧ (Fψ ⊃ Fφ). The equivalence operator can then be defined as
follows: φ ≡ ψ =Df (φ −→ ψ) ∧ (ψ −→ φ).

9. The addition of a truth-value designation operator is not new. Bochvar (1939) added a truth operator to
a different system of connectives, and the undefined operator U is a special case of Rosser and Turquette’s
(1952) Jk operator. Barringer, Cheng, and Jones (1984) give a natural deduction system for Kleene’s logic
and the defined operator D. Their system is readily extended to include the operators defined above; the
additional introduction and elimination rules for connectives such as → and ≡ simply fold and unfold the
definitions. Similar languages have been used as a basis for the formalization of non-monotonic reasoning
(Doherty, 1996).

10. The fact-event distinction is similar to McCarthy’s (1986, §9) fluent-event distinction. The case for
adding events to the ontology of facts is argued by Davidson (1980). Lewis (1986, Ch. 23) goes further
and treats facts as events.
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A temporally-indexed relation is any relation whose atoms are temporally indexed; whose
atoms are of the form r(u1, . . . , un)(t). The primitive atemporal relations of EL are temporal
precedence, ‘<’, and identity, ‘=’. Further atemporal relations can be defined in terms of
temporally-indexed relations as follows:

r(u1, . . . , un) =Df ∀t r(u1, . . . , un)(t) .

For example, ∀tPhys(At)(t) can be abbreviated to Phys(At), which states that At is (eter-
nally) a physical relation.

The formal semantics of EL can be sketched as follows. Models contain a set of objects,
a set of event types, a time frame consisting of a set of time points ordered by a (discrete
and linear) precedence relation, and functions for interpreting terms and relations. The
twin notions of satisfaction and violation of a formula, by a variable assignment in a model,
are defined by means of a parallel recursion. The truth (falsity) of a sentence in a model
is then defined in terms of satisfaction (violation) by all assignments for that model. As in
classical logic, a model M is said to be a model of a sentence φ (a set of sentences Θ) if φ
is true in M (if every sentence in Θ is true in M), and a set of sentences Θ semantically
entails a sentence φ iff all models of Θ are also models of φ.

In the remainder of this section the formal syntax and semantics of EL are defined.
Readers may wish to skip to the next section and return to consult the details as necessary.

Definition 1 The four sorts of EL are identified by the following letters: O (objects), T
(time points), E (events), and R (object relations). The vocabulary of EL consists of the
symbols ‘<’, ‘=’, ‘¬’, ‘D’, ‘∧’, ‘∀’, ‘(’, and ‘ )’, and the following countable sets of symbols:

• CS (constants of each sort S),

• VS (variables of each sort S),

• FS (function symbols of each arity n ≥ 1 of each sort S),

• RO, RE, RR (relation symbols of each arity n ≥ 0 of sorts O, E,and R).

The sets RO and CR are required to be the same set. Otherwise the above sets are required to
be mutually disjoint. Furthermore, VR is assumed to contain variables of each arity n ≥ 0.

Definition 2 The terms of EL are defined as follows.

• termS = CS ∪ VS ∪ {f(u1, . . . , un) : n-ary f ∈ FS , ui ∈ termS} for S ∈ {O,T,R}.

• termE = CE ∪ VE ∪ {f(u1, . . . , un) : n-ary f ∈ FE , ui ∈ termO}.

Definition 3 EL is the minimal set which satisfies the following conditions.

• If t, t′ ∈ termT then t < t′ ∈ EL.

• If S is any sort and u, u′ ∈ termS, then u = u′ ∈ EL.

• If u1, . . . , un ∈ termO, rO is an n-ary relation symbol in RO, and t ∈ termT , then
rO(u1, . . . , un)(t) ∈ EL.
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• If S is of sort E or R, u1, . . . , un ∈ termS and w1, . . . , wm ∈ termO (where m = 0 if
n = 0), rS is an n+m-ary relation symbol in RS, and t ∈ termT , then rS(u1, . . . , un,
w1, . . . , wm)(t) ∈ EL.

• If u1, . . . , un ∈ termO, vR is an n-ary variable in VR, and t ∈ termT , then
vR(u1, . . . , un)(t) ∈ EL.

• If φ,ψ ∈ EL, then ¬φ ∈ EL, Dφ ∈ EL, and (φ ∧ ψ) ∈ EL.

• If S is any sort, v ∈ VS and φ ∈ EL, then ∀vφ ∈ EL.

The members of EL are called formulas (of EL). Those formulas in which no variable occurs
free are called sentences (of EL).

Models for EL consist of a set O of objects, a set E of event types, a temporal frame
〈T ,≺T 〉 (where T is a set of time points and ≺T is the before-after relation on T ), and
interpretation functions for terms and relations. For simplicity, time is assumed to be
isomorphic to the integers. The denotations of terms are always defined and do not vary
over time. By contrast, temporally-indexed relations may be partial and may vary over
time. Consequently each temporally-indexed relation is interpreted by a function from time
points to partial characteristic functions. Where defined, the partial characteristic function
associated with a time point maps instances of the relation to {true, false}.

Definition 4 A model for EL is a structure 〈O, E , 〈T ,≺T 〉,F ,R,V〉, where:

• O, E and T are mutually disjoint, non-empty, countable sets,

• ≺T is a binary relation on T which is isomorphic to the integers,

• R = 〈RO,RE ,RR〉. RO is a set of partial functions of each arity n ≥ 0 of type On →
{true, false}. For 〈S,S〉 ∈ {〈E, E〉, 〈R,T → RO〉}, RS is a set of partial functions of
each arity n+m ≥ 0 of type Sn ×Om → {true, false}.

• F = 〈FO,FT ,FE ,FR〉. For each 〈S,S〉 ∈ {〈O,O〉, 〈T,T 〉, 〈R,T → RO〉}, FS is a set
of functions of each arity n ≥ 1 of type Sn → S. FE is a set of functions of each
arity n ≥ 1 of type On → E.

• V = 〈〈VC
O ,V

C
T ,V

C
E ,V

C
R 〉, 〈VF

O ,V
F
T ,V

F
E ,V

F
R 〉, 〈VR

O ,V
R
E ,V

R
R 〉〉 is an interpretation function

such that: VC
S : CS → S for each 〈S,S〉 ∈ {〈O,O〉, 〈T,T 〉, 〈E, E〉, 〈R,T → RO〉},

VF
S : FS → FS, VR

S : RS → (T → RS), and VR
O = VC

R .

Definition 5 A variable assignment for an EL model is a function g = 〈gO, gT , gE , gR〉,
where for 〈S,S〉 ∈ {〈O,O〉, 〈T,T 〉, 〈E, E〉}, gS : VS → S, and gR : VR → (T → RO). For
EL-model M , with interpretation function V and variable assignment g for M , the term
evaluation function Vg is defined, on the terms and relation symbols of EL, as follows:

Vg(u) =



















gS(u) if u ∈ VS ,
VC

S (u) if u ∈ CS ,
VF

S (f)(Vg(u1), . . . ,Vg(un)) if u = f(u1, . . . , un) ∈ termS,
VR

S (u) if u ∈ RS .
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Table 1: Satisfaction and violation conditions for EL (see Definition 6)

M,g |= t < t′ iff 〈Vg(t),Vg(t
′)〉 ∈≺T

M,g =| t < t′ iff 〈Vg(t),Vg(t
′)〉 /∈≺T

M,g |=u = u′ iff Vg(u) is Vg(u
′)

M,g =| u = u′ iff Vg(u) is not Vg(u
′)

M,g |=u(u1, . . . , un)(t) iff (Vg(u)(Vg(t)))(Vg(u1), . . . ,Vg(un)) = true

M,g =| u(u1, . . . , un)(t) iff (Vg(u)(Vg(t)))(Vg(u1), . . . ,Vg(un)) = false

M,g |=¬ψ iff M,g =| ψ

M, g =| ¬ψ iff M,g |=ψ

M, g |= Dψ iff either M,g |=ψ or M,g =| ψ

M, g =| Dψ iff neither M,g |=ψ nor M,g =| ψ

M, g |=ψ ∧ χ iff M,g |=ψ and M,g |=χ

M, g =| ψ ∧ χ iff M,g =| ψ or M,g =| χ

M, g |= ∀vψ iff M,g′ |=ψ for every g′ such that g ≈v g
′

M,g =| ∀vψ iff M,g′ =| ψ for some g′ such that g ≈v g
′

Definition 6 Let M be an EL model, g be a variable assignment for M , and let g ≈v g
′

indicate that variable assignment g′ differs from g at most on the assignment to variable v.
Then g satisfies an EL-formula φ in M (written M,g |= φ) or violates φ in M (written
M,g =| φ) according to the clauses given in Table 1.

Let M be an EL model. Then a formula φ is true in M (written M |= φ) if M,g |= φ
for all variable assignments g; a formula φ is false in M (written M =| φ) if M,g =| φ
for all variable assignments g; M is a model of a sentence φ iff φ is true in M ; and M is
a model of a set of sentences Θ iff M is a model of every sentence in Θ.

A set of sentences Θ (semantically) entails a sentence φ (written Θ |= φ) iff every model
of Θ is also a model of φ.

3. Inductive Events

The formal theory of natural events is introduced in stages, beginning, in this section, with
the basic theory of inductive events.

Definition 7 The theory of inductive events, ΘInd , consists of the axioms given in Table 2;
thus ΘInd = {(1), (2), (3)}. An event theory is any set of EL sentences which contains ΘInd .

Axiom (1) defines the notion of success, and states that event e succeeds at time t iff it
is true that e occurs at t, the preconditions of e are true at t, and the effects of e are true
at t+1.11 The presence of the truth operator in this axiom ensures that the relation Succ

11. Thus defined, the success or failure of an event is a simple, objective, matter of whether its occurrence is
accompanied by its preconditions and is followed by its effects. So when speaking of the success or failure
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Table 2: The theory of inductive events, ΘInd

∀e, t(Succ(e)(t) ≡ T(Occ(e)(t) ∧ Pre(e)(t) ∧ Eff(e)(t+1))) (1)

∀RT(Phys(R) ⊕ Theo(R)) (2)

∀R,x, t(Inert(R, 〈x〉)(t) ≡ (Phys(R) ∧ (R(x)(t) ≡ R(x)(t+1)))) (3)

is classical in the sense that every instance of it is either true or false. It is thus possible to
reason classically about success and failure on the basis of partial information.

In view of the fact-event distinction, it is also necessary to represent inertia; that is,
the temporal persistence of facts which are not changed by events. The definition of inertia
begins with a distinction between physical facts (represented by physical relations) and
theoretical facts (represented by theoretical relations). Intuitively, physical facts are facts
about the world as we directly observe it, whereas theoretical facts are the product of
our more complex reflection on (theorizing about) the physical facts.12 For example, in
a representation of the blocks world the locations of blocks might be represented by the
object relation At. This can then be used to define the relation Clear, which is true of a
location at a point in time if there are no blocks at that location at that point in time. In
this theory, the relation At is naturally classified as a physical relation (as it represents the
physical locations of blocks) while the relation Clear is naturally classified as a theoretical
relation (as it represents a, comparatively complex, property of locations which is defined in
terms of the locations of blocks). Note that, as theoretical facts are (ultimately) defined in
terms of physical facts, the theoretical facts supervene on the physical facts; that is, fixing
the physical facts at any point in time also fixes the theoretical facts at that point in time.

In event theories, physical and theoretical relations are identified by means of the second-
order predicates Phys and Theo respectively. Thus Axiom (2) states that every object
relation is either a physical relation or a theoretical relation. As a matter of notational
convenience the convention is adopted that any object relation which is not declared to be
a theoretical relation is a physical one. This convention is enforced by the formal pragmatics
discussed below.

The inertia of physical facts is defined by Axiom schema (3); which, for simplicity, will
henceforth be called an axiom. In the axiom, R is an n-ary object relation symbol, x is
a vector x1, . . . , xn of object variables, and 〈x〉 is the list 〈x1, . . . , xn〉. The axiom states
that R is inert for the objects referred to by x at time t iff R is a physical relation and

of an event no end or purpose (no teleology) is implied; we could equally talk of an event occurrence
being complete or incomplete. It is natural to talk informally of intentional actions succeeding or failing,
for example of an agent succeeding or failing in their intention to move to a particular location. But no
attempt is made to represent this intentionality formally.

12. Physical facts can be thought of as Quine’s (1995, Chs. 2-3) observational predications. These are
compounds of more primitive observation sentences, which are “the human equivalent of bird-calls and
apes’ cries” (p. 22). For example, the observational sentences ‘Black’ (or ‘That’s black’) and ‘Dog’
(or ‘That’s a dog’) might be combined in the observational predication ‘Black dog’ (or ‘The dog is
black’). Theoretical facts are the result of more complex compounding, involving logical connectives
and, especially, reification.

372



Natural Events

the truth values of the object atoms R(x)(t) and R(x)(t+1) are equivalent. Note that the
relation Inert is classical in event theories; because Phys is classical (by Axiom (2)) and the
right-hand equivalence is classically valued. Note also that, for event theories which do not
contain occurrences of the Theo relation, Axiom (2) is unnecessary and Axiom (3) can be
simplified accordingly.

We turn now to the intended interpretation of event theories.

On the intended interpretation, Axiom (1) is used to generate the expected outcomes
of events. If Pre(e)(t) and Occ(e)(t) are both true, and it is consistent to assume that
the success atom Succ(e)(t) is true, then this success assumption is made, and the axiom
is used to conclude that the expected effects, Eff(e)(t+1), are true. Thus interpreted the
axiom states that, when accompanied by their preconditions, occurring events are normally
sufficient for (are normally followed by) their effects. When interpreted in this way, the
axiom amounts to a common sense law of change.

Similarly, on the intended interpretation, Axiom (3) is used to generate the expected
persistence of physical facts. If R is a physical relation, the object atom R(x)(t) is defined,
and it is consistent to assume that the inertia atom Inert(R, 〈x〉)(t) is true, then this inertia
assumption is made, and the axiom is used to conclude that the truth value of R(x) persists
from t to t+1.13 Thus interpreted, the axiom states that physical facts normally persist,
and so it amounts to a common sense law of inertia.

The intended interpretations of axioms (1) and (3) often conflict. For example, if an
unstack-A-from-B event occurs, its preconditions are true, and no other relevant facts or
events are involved, then it is consistent to assume that the unstack event succeeds, and it
is consistent to assume that the fact that A is on B is inert, but the assumptions cannot
both be made because the success of the unstack event implies that A is no longer on B.
In such cases I suggest that change should always have priority over inertia, that success
assumptions should always have priority over inertia assumptions. This conflict resolution
principle can be defended by appealing to our regularity-based (Humeian) expectation of
change. Thus, in the case at hand, experience has taught us that unstack events of the
sort described normally succeed, and so we form a clear expectation that the effects will
follow. By contrast, giving priority to inertia would, contrary to expectation, result in
nothing changing, and adopting a neutral stance would, contrary to expectation, produce
an unclear outcome.

The intended interpretation of event theories is enforced by their formal pragmatics,
which defines the class of preferred models of any given event theory. In this section the
notion of preference1 is defined. This is later refined to preference2 in Section 5.

In order to enforce the convention that object-relations are physical unless stated other-
wise, the preferred1 models of an event theory should all be models of the theory in which
the (positive) domain of the Phys relation is as large as it can be. Let us say that a model
M is a Phys-maximal model of an event theory Θ if M is a model of Θ and, for any model
M ′ of Θ, if {R : M |=Phys(R)} ⊆ {R : M ′ |=Phys(R)} then M = M ′. Then the preferred1

models of Θ should all be Phys-maximal models of Θ.

13. If R(x)(t) is not defined, then, as will become clear, this atom can safely be ignored. For if Inert(R, 〈x〉)(t)
can consistently be assumed, then the formal pragmatics (in particular, the minimization of evidential
atoms at t+1) ensures that R(x)(t+1) is undefined, thereby satisfying the axiom.
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Beyond this requirement, we can get a clearer idea of what a preferred1 model of an
event theory should look like by considering an inductive version of the “canonical” example,
known as the “Yale Shooting Problem” (Hanks & McDermott, 1987). At time 1 a gun is
loaded and pointed at Fred. Nothing relevant happens at time 2. At time 3 the gun is fired.
If the gun is still loaded at time 3, then, in the absence of further information, we expect
that the shot will prove fatal and that Fred will no longer be alive at time 4. This example
can be represented formally by the theory Θ1 = ΘInd ∪ {(4), (5), (6)}, where:

∀t(Pre(Shoot )(t) ≡ (Alive(t) ∧ Loaded (t))) (4)

∀t(Eff(Shoot)(t) ≡ ¬Alive(t)) (5)

Alive(1) ∧ Loaded (1) ∧ Occ(Shoot )(3) (6)

Thus the preconditions for a Shoot event are that the gun is loaded and the victim is alive
(Axiom (4)), and its effect (if successful) is that the victim is not alive (Axiom (5)).

For model M and time point t, let M/t denote the set of all object or occurs literals
with temporal index t′ ≤ t which are true in M , and let M(t) = M/t \M/t−1.14 So M/t
can be thought of as the history that is represented by M up to (and including) t. And,
at t, M(t) can be thought of as representing what is known at the present moment, as the
evidential context on which predictions about t+1 are based. We can also think of there
being a dynamic conjectural context at t, which consists of the set of success and inertia
assumptions which correspond to our expectations about t+1. Assumptions are added to
the conjectural context if they are consistent with the current context (the union of the
evidential context and the current conjectural context) and the background theory (the laws
of the given event theory).

The generation of a preferred1 model, M , of Θ1 should proceed as follows:

M/1 = {Alive(1),Loaded (1)} ,

M/2 = M/1 ∪ {Alive(2),Loaded (2)} ,

M/3 = M/2 ∪ {Alive(3),Loaded (3),Occ(Shoot )(3)} ,

M/4 = M/3 ∪ {¬Alive(4),Loaded (4)} ,

M/5 = M/4 ∪ {¬Alive(5),Loaded (5)} , . . . .

Thus the only atoms which should be in M/1, and so in the evidential context M(1), are
those required by the boundary conditions of Θ1, which are stated by Axiom (6). This
restriction of the evidential context (“Ockham’s razor”) is appropriate because prediction
should be based on all and only the available evidence. Now, Alive is not declared to be a
theoretical relation in Θ1, so by the notational convention, Phys(Alive) should be true in M .
And it is consistent in the current context M(1)∪∅ (given the background theory Θ1\{(6)})
to assume Inert(Alive)(1), so this assumption should be added to the conjectural context.
Consequently Alive(2) should be in M(2) by the inertia axiom (Axiom (3)). Similarly
Phys(Loaded ) should be true in M , and it is consistent in the current context M(1) ∪
{Inert(Alive)(1)} to assume Inert(Loaded )(1), so this assumption should be added to the
conjectural context. By inertia, Loaded (2) should be in M(2). And, in accordance with

14. As usual, a literal is either an atom, α, or its negation, ¬α.
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Ockham’s razor, no other atoms should be in M(2). By analogous reasoning beginning
with the current context M(2) ∪ ∅, Alive(3) and Loaded (3) should be in M(3), as should
the remaining boundary condition Occ(Shoot )(3). And, by Ockham’s razor, no other atoms
should be in M(3). Now, in the current context M(3) ∪ ∅ it is consistent to assume either
Succ(Shoot )(3) or Inert(Alive)(3). However both cannot be assumed; for if they were, then
it would follow by the axioms for change ((1) and (5)) and inertia that both Alive(4) and
¬Alive(4) would be inM(4). In keeping with the principle that change is preferred to inertia,
Succ(Shoot )(3) should be assumed and added to the conjectural context, and so ¬Alive(4)
should be inM(4). It is consistent in the current context M(3)∪{Succ(Shoot )(3)} to assume
Inert(Loaded )(4), so by inertia, Loaded (4) should be in M(4). And, by Ockham’s razor, no
further atoms should be in M(4). The remainder of M/∞ should then be generated by
repeated applications of the inertia axiom and Ockham’s razor.

The example suggests that event theories should be interpreted chronologically . This
fits naturally with our experience of “time’s arrow”; of the asymmetry between the past
(which is fixed) and the future (which is open, which is yet to exist). In particular, our
understanding of events in terms of dependable regularities of sequence is founded on this
asymmetry. The example also suggests that at each successive time point (at each new
present moment) we should first fix the evidential context and then generate the appropriate
conjectural context. The evolving context and the background theory then produce the
expected changes and persistences. Fixing the evidential context consists of minimizing it;
that is, restricting it to those object and event literals which are required by the boundary
conditions or the earlier interpretation of the theory. Generating the conjectural context
consists of maximizing success and inertia assumptions (that is, assuming them when they
are suggested by the evidential context and they are consistent with the current context
and the background theory) giving priority to the former in case of conflict. The definition
of a preferred1 model of an event theory should thus reflect the prioritized chronological
minimaximization involved in its intended interpretation.

We begin by defining the preference relation ≺1. In this definition (and in the subsequent
definition of ≺2) ‘fewer’ and ‘more’ should be understood in terms of set inclusion rather
than cardinality.15 In keeping with the above discussion, let an evidential atom be either
an object atom or an event atom other than a success atom, and let a conjectural atom be
either a success atom or an inertia atom.

Definition 8 (Preference1) Let M and M ′ be models which differ at most on the inter-
pretation of temporally-indexed relations. Then M is preferred1 to M ′ (written M≺1M

′)16

iff there is a time point t such that M and M ′ agree before t, and at t:

1. fewer evidential atoms are defined in M , and M and M ′ agree on the truth values of
all evidential atoms which are defined in M ; or

2. M and M ′ differ only on conjectural atoms, and more success atoms are true in M ;
or

15. Thus if At(T, v, t,M) = {α : α is an atom of type T with truth value v at time t in model M}, then
fewer atoms of type T have truth value v at time t in model M than do so in model M ′ if At(T, v, t,M) ⊂
At(T, v, t,M ′). Similarly, but with ⊃ replacing ⊂, in the case for ‘more’.

16. This way of writing preferences is based on the comparison of evidential contexts.
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3. M and M ′ differ only on inertia atoms, and more inertia atoms are true in M .

For example, suppose that M and M ′ are models which differ at most on temporally
indexed relations. (1) If M and M ′ agree before time 2 and disagree then only in that
Occ(Shoot )(2) is undefined in M and true in M ′, then M is preferred1 to M ′ by clause 1
of the definition. (2) If M and M ′ agree before time 3 and disagree then only in that
Succ(Shoot )(3) is true in M and false in M ′, then M is preferred1 to M ′ by clause 2 of the
definition. (3) IfM andM ′ agree before time 3 and disagree then only in that Succ(Shoot )(3)
and ¬Inert(Alive)(3) are true in M whereas ¬Succ(Shoot )(3) and Inert(Alive)(3) are true
in M ′, then M is preferred1 to M ′ by clause 2 of the definition. (4) If M and M ′ agree
before time 2 and disagree then only in that Inert(Alive)(2) is true in M and false in M ′,
then M is preferred1 to M ′ by clause 3 of the definition.

The preferred1 models of an event theory Θ should thus be obtained by focussing on the
class of all Phys-maximal models of Θ and then selecting the ≺1-minimal models of Θ from
it. Accordingly, the definition of the preferred1 models of an event theory and the definition
of the predictions based on them are instances of the following generic definitions.

Definition 9 (Preferred Models, Prediction) A model M is said to be a preferredi

model of an event theory Θ if M is a Phys-maximal model of Θ and there is no other model
M ′ of Θ which is preferred i to M (which is such that M ′≺iM). If Θ is an event theory and
φ is a sentence, then Θ predictsi φ (written Θ |≈i φ) iff all preferred i models of Θ are also
models of φ.

In keeping with the discussion in the introduction, the definition of prediction is cautious.
A clearer picture of this emerges if we consider the preferredi models of a given event theory
at a more abstract level.

Definition 10 (Equivalence, Determinism, Representative Preferred Model) Let
Θ be an event theory, and let M and M ′ be preferred i models of Θ. Then M and M ′ are
said to be preferencei equivalent (written M∼iM

′) if M and M ′ agree on the interpretation
of all evidential and conjectural atoms.17 An event theory Θ is deterministici if it has a
single ∼i-equivalence class, and is non-deterministici otherwise. The representative member
of each ∼i-equivalence class is called a representative preferredi model of Θ.

Each ∼i-equivalence class of preferredi models of an event theory represents a possible
history which is defined by the theory. So deterministici theories define a single possible
history, and predictions can safely be based on it. However, non-deterministici theories
define more than one possible history, and so caution dictates that their predictions should
be restricted to those sentences which are true in all of the possible histories that they
define.18 The representative preferredi models of an event theory provide a concrete way of
thinking about possible histories.

We can now return to the (inductive version of the) Yale Shooting Problem.

17. Any two such models may differ on the interpretation of terms, or on the truth values of atoms not
considered in the definition of preference

i
.

18. It is possible to define a risky notion of prediction based on a single ∼i-equivalence class c for event theory
Θ. Thus Θ |≈ c

iφ iff φ is true in all models in c. This relation can be used to obtain information about a
particular possible history, but it does not serve as a basis for reliable prediction in non-deterministici

theories because it does not take other, equally possible, histories into account.
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Example 1 As before, let Θ1 = ΘInd ∪ {(4), (5), (6)}. Then Θ1 is deterministic1. The
evidential literals which are true in its representative preferred 1 model agree with those in
the set M/∞ discussed earlier. Thus Θ1 predicts1 that the Shoot event succeeds at time 3,
with the effect that Fred is not alive at time 4.

Proposition Θ1 |≈1 Succ(Shoot )(3) ∧ ¬Alive(4).

Proof By Definition 9, it is sufficient to prove that the conclusion follows in all preferred 1

models of Θ1. So, let M be a preferred1 model of Θ1. Then, by Definition 9, Phys(Alive)
and Phys(Loaded ) are true in M .19 By Axiom (6), Alive(1) and Loaded (1) are both true
in M . By Definition 8.3, Inert(Alive)(1) is true in M .20 So it follows by Axiom (3) that
Alive(2) is true in M . By similar reasoning, Inert(Loaded )(1) and Loaded (2) are also
true in M (Axiom (3), Definition 8.3). As Alive(2) is true in M , it follows by inertia
(Axiom (3), Definition 8.3) that Alive(3) is true in M . Similarly, as Loaded (2) is true in
M , it follows by inertia that Loaded (3) is true in M . So, by Axiom (4), Pre(Shoot )(3) is
true in M . By Axiom (6), the occurs atom Occ(Shoot )(3) is true in M . By Definition 8.2,
Succ(Shoot )(3) is true in M . It follows, by Axiom (1), that Eff(Shoot )(4) is true in M , and
so, by Axiom (5), ¬Alive(4) is true in M .

The Yale Shooting Problem is of interest because, as Hanks and McDermott (1987)
show, it poses problems for theories which do not take account of time’s arrow. The example
suggests that reasoning about inertia should be chronological. A related example involving
reasoning about change was suggested by Lifschitz (1987, p. 37). The point of his example
can be illustrated by adding a second shot to the Yale Shooting Problem. Let Θ′

1 =
Θ1 ∪ {Occ(Shoot )(4)}. Then we expect that, as before, the first shot will succeed and that
the second shot will fail (because Fred is no longer alive when the second shot occurs).
And, indeed, this is what transpires in all preferred1 models of Θ′

1. However, if Θ′
1 were not

interpreted chronologically, then there would be preferred models of it in which the second
shot succeeds and the first shot fails; as the success of the second shot requires that Fred is
alive at time 4.

The inductive version of the Yale Shooting Problem considered here (in which the Shoot
event is treated inductively rather than deductively) also illustrates the need to give priority
to change (Succ assumptions) over inertia (Inert assumptions) in case of conflict. Without

19. As M is a preferred
1

model of Θ1 it follows by Definition 9 that M is a Phys-maximal model of Θ1. So,
if Phys(Alive) were not true in M , then there would be a model M ′ of Θ1 in which Phys(Alive) and all
of the Phys atoms which are true in M were true. But then M would not be a Phys-maximal model of
of Θ1, contradicting the assumption that it is. An analogous argument justifies all subsequent appeals
to Definition 9 regarding the relation Phys .

20. If Inert(Alive)(1) were not true in M , then there would be a model M ′ of Θ1 in which Inert(Alive)(1)
was true and which was therefore preferred

1
to M on this basis by clause 3 of Definition 8 at time 1.

(M and M ′ would disagree at most on the interpretation of temporally-indexed relations, M and M ′

would agree on the interpretation of all temporally-indexed relations at all time points before time 1, M
and M ′ would agree on the interpretation all evidential and success atoms at time 1, and in M ′ more
inertia atoms with temporal index 1 (all of those which are true in M together with Inert(Alive)(1))
would be true.) But then it would follow by Definition 9 that M would not be a preferred1 model of Θ1,
contradicting the assumption that it is. An analogous argument justifies all subsequent appeals to some
clause n of the definition of preference

i
regarding the truth value of some atom with temporal index t.
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this requirement there would be preferred models of Θ1 in which Inert(Alive)(3) is true and
Succ(Shoot )(3) is false, and so, contrary to expectation, Fred remains alive at time 4.

In subsequent examples it will often be assumed that different names (whether constants
or functional expressions) denote different individuals. In order to enforce this convention,
uniqueness of names axioms (Lifschitz, 1987, p. 50) are used. Let f1, . . . , fn be functions
returning values of the same sort, and let x1, . . . , y1, . . . be variables of the appropriate sorts.
Then U [f1, . . . , fn] is the conjunction of the axioms in the set:

{∀x1, . . . , xk, y1, . . . , yl ¬fi(x1, . . . , xk) = fj(y1, . . . , yl) : 1 ≤ i < j ≤ n} ∪

{∀x1, . . . , xk, y1, . . . , yk(fi(x1, . . . , xk) = fi(y1, . . . , yk) → (x1 = y1 ∧ . . . ∧ xk = yk)) :

1 ≤ i ≤ n} .

These axioms express the fact that the functions f1, . . . , fn are injections with different
ranges. This notation is extended to constants by treating them as 0-ary functions. Thus, for
example, given U [A,B,L1, L2] and U [Move], it follows that the constants A, B, etc., denote
different objects, and that the functional expressions Move(A,L1, L2) and Move(B,L1, L2)
denote different events.

The next example illustrates the need to restrict the inertia axiom to physical relations.

Example 2 Block B is moved from location L1 to location L2. We expect that L1 will be
clear as a result. This example can be represented as follows:

∀x, l, l′, t(Pre(Move(x, l, l′))(t) ≡ At(x, l)(t)) (7)

∀x, l, l′, t(Eff(Move(x, l, l′))(t) ≡ (At(x, l′)(t) ∧ ¬At(x, l)(t))) (8)

∀l, t(Clear(l)(t) ≡ ¬T∃xAt(x, l)(t)) (9)

Theo(Clear) (10)

U [B,L1, L2] ∧ At(B,L1)(1) ∧ Occ(Move(B,L1, L2))(1) (11)

Axioms (7) and (8) define the preconditions and effects of move events. Axiom (9) defines a
location to be clear if it is not true that there exists a block which is at that location. The use
of the truth operator in this definition allows for the fact that the At relation may be partial;
a location is considered to be clear if none of the blocks whose locations are defined are at
the location. Axiom (10) declares Clear to be a theoretical relation. Finally, Axiom (11)
states the boundary conditions.

Let Θ2 = ΘInd ∪{(7), . . . , (11)}. Then Θ2 has a single representative preferred1 model in
which Clear(L1)(2) is true; because, in the model, the move event succeeds, thereby vacating
L1, and no other object replaces B at L1. However, non-replacement at L1 depends on
the fact that Clear is a theoretical relation, and so is exempt from the law of inertia. If
Θ′

2 = Θ2 \ {(10)}, then in every preferred 1 model of Θ′
2 an object mysteriously replaces B

at L1.

Proposition Θ2 |≈1 Clear(L1)(2), but Θ′
2 |≈1 ¬Clear(L1)(2).

Proof For the first part, let M be a preferred1 model of Θ2. Then, by axioms (7) and (11),
At(B,L1)(1), Pre(Move(B,L1, L2))(1), and Occ(Move(B,L1, L2))(1) are all true in M .
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By Definition 8.2, Succ(Move(B,L1, L2))(1) is true in M . So it follows, by axioms (1) and
(8) that At(B,L2)(2) and ¬At(B,L1)(2) are both true in M . As At(B,L1)(1) is true in M ,
it follows by Axiom (9) that ¬Clear(L1)(1) is true in M . By Axiom (10) Theo(Clear) is
true in M and so, by Axiom (2), ¬Phys(Clear) is true in M . It follows by Axiom (3) that
¬Inert(Clear, 〈L1〉)(1) is true in M (consequently ¬Clear(L1)(2) is no longer true in M by
inertia). By Definition 8.1 it follows that, for any x other than B, At(x,L1)(2) is undefined
in M . So, as ¬At(B,L1)(2) is true in M , it follows that for any x, ¬T∃xAt(x,L1)(2) is
true in M . And so it follows by Axiom (9) that Clear(L1)(2) is true in M .

For the second part, let M be a preferred 1 model of Θ′
2. Then, as before, the atoms

At(B,L1)(1), ¬Clear(L1)(1), Succ(Move(B,L1, L2))(1), At(B,L2)(2) and ¬At(B,L1)(2)
are all true in M . However (in the absence of Axiom (10)) it follows by Definition 9 that
Phys(Clear) is true in M . By Definition 8.3, Inert(Clear, 〈L1〉)(1) is true in M . So it
follows by Axiom (3) that ¬Clear(L1)(2) is true in M .

The restriction of the inertia axiom can be justified in terms of the physical-theoretical
distinction as follows. The law of inertia is a law of physical inertia; its task is to represent
the persistence of those physical facts which are not changed by events. Applying it to
theoretical relations (as in Θ′

2) results in mysterious consequences; which arise because
maintaining the inertia of a theoretical fact (¬Clear(L1)) introduces an additional real
change in a physical fact (a change in the At relation). Moreover, as theoretical facts
supervene on physical facts, changes (persistences) in theoretical facts supervene on changes
(persistences) in physical facts. So it is sufficient to represent changes (persistences) in
physical facts, and to let changes (persistences) in theoretical facts “take care of themselves”.
This is done in the case of Θ2, where a change in the At relation results in a change in the
Clear relation. In more complex examples, several blocks may be moved to or from a
location simultaneously, and each move event may or may not succeed. In such cases, the
axioms for change and inertia represent changes and persistences in the At relation, and
changes (persistences) in the Clear relation take care of themselves once the new At facts
are fixed; once the real changes have occurred and the dust has settled.21

21. Another, more artificial, example involves the interaction between Goodman’s (1954, p. III.4) predicate
Grue and common sense inertia. Call an object “grue” if it is green at time t and t is before time 2 or it
is blue thereafter. Now suppose that object O is green at time 1 and that we don’t know of any events
which occur at time 1 which affect O. Then it seems natural to conclude by inertia that O is green at
time 2. However, as O is green at time 1, O is also grue at time 1, so it is equally reasonable to predict
that O will be grue (that is, blue) at time 2. The example can be represented formally by the theory
ΘG, which consists of ΘInd together with the following axioms:

∀x, t(Grue(x)(t) ≡ ((t < 2 ∧ Green(x)(t))∨ (t ≥ 2 ∧ Blue(x)(t)))) ,

∀x, t(Green(x)(t) ≡ ¬Blue(x)(t)) ,

Green(O)(1) .

Then there are intended preferred
1

models of ΘG in which Green(O)(2) is true, and unintended preferred
1

models of ΘG in which Blue(O)(2) is true. This problem can be solved by declaring that Grue is a
theoretical predicate (in keeping with Goodman’s doctrine of entrenchment and Quine’s advocation of
similarity), and so should not be projected by the law of inertia.
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4. Primary and Secondary Events

The theory of inductive events provides the basis of an integrated solution to the qualifica-
tion problem and the frame problem. On the intended interpretation of the success axiom,
events are, given their preconditions, normally sufficient for their effects. On the intended
interpretation of the inertia axiom, physical facts which are not affected by events persist.
However, whereas the effects of successful inductive events are certain and invariable, the
effects of natural events may be uncertain and they, or some of them at least, may vary
according to the context in which the events occur.

It may seem that context-dependent effects, or ramifications, can be represented by
domain axioms. However, the following example, which is based on Lifschitz’s (1990) lamp-
circuit example and Baker’s (1991) ice-cream example, shows that this approach is too
simplistic.

Example 3 Ollie is at location L1, he is holding block B, and he moves to location L2.
We expect that, as a result, Ollie will reach L2. Moreover, as Ollie is holding the block when
he moves, we expect that it will move with him to L2.

It may seem that this example can be represented by the event theory Θ3 = ΘInd ∪
{(12), . . . , (16)}; where:

∀x, l, l′, t(Pre(Move(x, l, l′))(t) ≡ At(x, l)(t)) (12)

∀x, l, l′, t(Eff(Move(x, l, l′))(t) ≡ At(x, l′)(t)) (13)

∀x, l, l′, t((At(x, l)(t) ∧ ¬l = l′) → ¬At(x, l′)(t)) (14)

∀x, y, l, t((At(x, l)(t) ∧ Holding(x, y)(t)) → At(y, l)(t)) (15)

U [O,B,L1, L2]

∧At(O,L1)(1) ∧Holding(O,B)(1) ∧ Occ(Move(O,L1, L2))(1) (16)

Thus the effects of Move have been simplified. The fact that the moved object is no longer
where it was is now to be inferred from Axiom (14), which states that no object can be at two
different locations simultaneously, together with the appropriate inequality. The intention is
to use Axiom (15) to infer that Ollie’s movement results in the movement of block B. For,
given that Ollie is holding B when he gets to L2, it follows from the axiom that B is at L2
also; and so, by axioms (14) and (16), B is not at L1.

However, there are two representative preferred 1 models of Θ3, which can be partially
described as follows:

M1 ⊇ {At(O,L2)(2),Holding (O,B)(2),At(B,L2)(2)} ,

M2 ⊇ {At(O,L2)(2),At(B,L1)(2)} .

As change is preferred to inertia, Ollie succeeds in moving to L2 in both models. In M1,
the fact that Ollie is holding B is inert, and so it follows that the block moves with him to
L2 as expected. In M2, the fact that B is at L1 is inert, and so, contrary to expectation, B
remains at L1.

One reaction to this failure is to seek to strengthen axioms such as Axiom (15) by making
them “causally” directed, so that they can be interpreted “causally” (positively, as in M1),
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rather than declaratively (positively as in M1, or contrapositively as in M2). However it
seems to me that this response (which is discussed further in Section 7) is mistaken because
it misdiagnoses the problem; taking it to be a logical problem rather than a representational
one.

Let us consider the problem posed by the example afresh. The theory Θ3 has two
representative preferred models only one of which corresponds to our expectation. What
accounts for the asymmetry in our expectation, and how is the formal symmetry to be
broken?

The intended positive interpretation of Axiom (15) depends on appropriate reasoning
about inertia, and in particular on the appropriate use of the inertia axiom; it is necessary
to conclude that Ollie keeps hold of the block, rather than concluding that it remains at L1.
But it seems odd to be using the inertia axiom when reasoning about change; to be using
the inertia axiom (together with Axiom (15)) to get a block to move without there being
an event which causes it to move. In doing so we are violating the fundamental intuition
which underlies the fact-event distinction; which has it that events are the only causes of
physical change.

This consideration provides the key to the correct understanding of the problem. We
expect that the block will move when Ollie does because we are told that he is holding the
block when he moves and are not told that he releases it. Consequently we discount the
possibility of the block remaining at L1 because an additional event would be required in
order to account for this. However the movement of the block is itself an additional event
which has the additional effect that the block is at L2. The missing, symmetry-breaking,
causal element in this example is thus an event, and the choice between a move event and
a release event seems clear. But note that the block’s moving differs from Ollie’s moving.
The block moves only because Ollie moves and only because he is holding it when he does
so.

In order to reflect this difference, a distinction is drawn between primary and secondary
events. Primary and secondary events are inductive events of the kind that we have been
considering so far. However while primary events occur independently, secondary events
are invoked (in the non-mystical Computer Science sense in which one program (procedure,
process, . . . ) is said to invoke another) by other events, and are causally dependent on
them in the sense that a secondary event can succeed only if it is invoked invoked by a
successful event.22 Given this distinction, ramifications can be represented by invoking
appropriate secondary events in appropriate contexts. Thus, in Example 3, Ollie’s moving
can be represented as a primary event which, because he is holding block B when he moves,
invokes the secondary move-B event. The move-B event occurs because it is invoked, and
it succeeds only if the move-Ollie event does. Note that secondary events may, in turn,
invoke other events which are causally dependent on them. For instance, if in the current
example block B′ is placed on top of block B, then the invoked move-B event should in turn
invoke a move-B′ event. There can thus be tertiary events, and events of ever higher order.

22. This condition should perhaps be called “success dependence” or “effect dependence” in order to distin-
guish it from counterfactual dependence (Lewis, 1986, Ch. 21).
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Table 3: The theory of invocation, ΘInv

∀e, e′, t(Inv1(e, e
′)(t) → (Occ(e)(t) ∧ Occ(e′)(t))) (17)

∀e, t((Succ(e)(t) ∧ ∃e′Inv1(e
′, e)(t)) → ∃e′(Inv1(e

′, e)(t) ∧ Succ(e′)(t))) (18)

∀e, e′, t(Inv(e, e′)(t) ≡ (Inv1(e, e
′)(t) ∨ ∃e′′(Inv1(e, e

′′)(t) ∧ Inv(e′′, e′)(t)))) (19)

∀e, t¬TInv(e, e)(t) (20)

However, for the sake of convenience, all invoked events will be referred to as ‘secondary
events’.23

Invocations are represented in EL by invocation atoms. An invocation atom is an event
atom of the form Inv1(e, e

′)(t), which states that event e directly invokes event e′ at time t.
Secondary events are typically invoked by invocation axioms of the form:

∀e, e′, t((Occ(e)(t) ∧ φ) → Inv1(e, e
′)(t)) ;

where φ is a formula which distinguishes those contexts in which e invokes e′. The properties
of secondary events are stated by axioms (17)-(20) given in Table 3. Axiom (17) requires that
both the invoking and the invoked events occur. Axiom (18) represents (causal) dependence,
and states that a secondary event succeeds only if one of the events which invoked it
succeeds. The axiom is stated in this way in order to allow for cases in which a secondary
event is invoked by more than one event. Axioms (19) and (20) ensure that invocation is
acyclic. This is achieved by defining the auxiliary (indirect invocation) relation Inv to be
the transitive closure of the (direct invocation) relation Inv1 (Axiom (19)) and requiring
that Inv is irreflexive (Axiom (20)).24

Events which invoke others can be thought of in two ways: as elementary inductive
events, or as complex events which have a causal structure. The invocation graph for an

23. Primary and secondary events are so called by loose analogy with the philosophical distinction between
primary and secondary qualities. Primary qualities (such as size, shape and motion) are the fundamental
qualities used in science. By contrast, secondary qualities are sensory qualities (such as colour, taste,
smell, felt warmth or texture, and sound) which exist only in certain contexts (to individual observers
under specific conditions) and which are causally dependent on primary qualities. Similarly, tertiary
qualities are qualities which an object has in virtue of its secondary qualities; for example a flower
may be attractive to a butterfly because of its colour, or a wine may be expensive because of its taste
(Blackburne, 1994).

24. The axiomatization of secondary events is intended to be minimal. For example, there is no prohibition
on an event occurring as both a primary event and as a secondary event. If this were to happen, then it
would follow from Axiom (18) that the event would have secondary status. In certain circumstances it
may be desirable to define the order of an event, and to require that each event has exactly one order.
This can be done by adding axioms such as the following:

∀e, t(Ord(e, n)(t) ≡ ((n = 1 ∧ Occ(e)(t) ∧ ¬T∃e′Inv1(e
′

, e)(t))

∨ (n > 1 ∧ ∃e′(Ord(e′, n−1)(t) ∧ Inv1(e
′

, e)(t))))) ,

∀e, n,m, t((Ord(e, n)(t) ∧ ¬n = m) → ¬TOrd(e,m)(t)) .
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event e (at some time point t) is a directed acyclic graph whose initial vertex is e, whose
remaining vertices are the events invoked by e (either directly or indirectly), and whose edges
represent the direct invocation relation. Event e’s success graph (at t) is the subgraph of
e’s invocation graph which consists of all those chains in the invocation graph which begin
with e and which consist entirely of successful events. The direct effects of e are its defined
(invariant) effects. The indirect effects of e are the effects of all other events in its success
subgraph. So, in particular, successful inductive events can be thought of as having all of
the effects of the successful secondary events that they invoke (either directly or indirectly).
Thus, in the working example, the move-Ollie event has the direct effect that he moves,
and can be thought of as having the indirect context-dependent effects that B and B′ move
with him. Note that the effects of an event may now be context-dependent in two ways. An
event may invoke different events in different contexts (recall that invocation axioms may
be context-dependent), and so its invocation graph may vary according to the context in
which it occurs. Moreover, the same invocation graph may result in different success graphs
if the context varies in other ways. For instance, in the working example, move-B′ may be
invoked in two different contexts (in both of which B′ is on B), and succeed in one (the
one we have been contemplating) but fail in another (say because B is also being held by
another agent).

Definition 11 The theory of invocation, ΘInv , consists of the axioms given in Table 3;
thus ΘInv = {(17), . . . , (20)}.

As invocation atoms are event atoms, the pragmatics given in the last section can be
used without change.

We can now give a formal version of an extension of the block-carrying example.

Example 4 Ollie is at location L1. He is holding block B1, block B2 is stacked on B1, and
block B3 is stacked on B2. Ollie moves to location L2. We expect that the move event will
succeed and that the stack of blocks will move with him. However if, for some independent
reason, B2 does not move, then we expect that B3 will also remain at L1.

The first part of this example can be represented by the event theory Θ4 = ΘInd ∪ΘInv ∪
{(12), . . . , (15)} ∪ {(21), . . . , (24)}, where:

∀x, y, l, t((On(x, y)(t) ∧ At(y, l)(t)) → At(x, l)(t)) (21)

∀x, y, l, l′, t((Occ(Move(x, l, l′))(t) ∧Holding(x, y)(t)) →

Inv1(Move(x, l, l′),Move(y, l, l′))(t)) (22)

∀x, y, l, l′, t((Occ(Move(x, l, l′))(t) ∧On(y, x)(t)) →

Inv1(Move(x, l, l′),Move(y, l, l′))(t)) (23)

U [O,B1, B2, L1, L2] ∧ U [Move] ∧At(O,L1)(1) ∧Holding(O,B1)(1)

∧ On(B2, B1)(1) ∧ On(B3, B2)(1) ∧ Occ(Move(O,L1, L2))(1) (24)

Axiom (21) states that if object x is on object y then x is at the same location as y is, while
axioms (22) and (23) are invocation axioms representing ramifications. Axiom (22) states
that a move-x event invokes a move-y event in contexts in which x is holding y. Similarly,
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Axiom (23) states that a move-x event invokes a move-y event in contexts in which y is on
x.

There is a single representative preferred 1 model of Θ4, in which Ollie’s movement
successfully invokes the movement of B1 (because Ollie is holding B1 when he moves), this
in turn successfully invokes the movement of B2 (because B2 is on B1 when B1 moves),
and this in turn successfully invokes the movement of B3 (because B3 is on B2 when B2
moves). Thus, in accordance with expectation, Θ4 predicts that Ollie succeeds in moving to
L2 with the entire stack of blocks. Note that the success of each invoked event depends on
the success of the event which invoked it. Thus, for example, if Θ4 is extended such that B2
remains at L1, then the extended theory predicts that B3 also remains at L1.

Proposition Θ4 |≈1 At(B3, L2)(2), and Θ4 ∪ {At(B2, L1)(2)} |≈1 At(B3, L1)(2).

Proof For the first part, let M be a preferred1 model of Θ4. Then Occ(Move(O,L1, L2))(1)
and Holding(O,B1)(1) are true in M (Axiom (24)). So it follows (axioms (17), (22))
that Inv1(Move(O,L1, L2),Move(B1, L1, L2))(1) and Occ(Move(B1, L1, L2))(1) are true
in M . So, as On(B2, B1)(1) is true in M (Axiom (24)), it follows (axioms (17), (23)),
that Inv1(Move(B1, L1, L2),Move(B2, L1, L2))(1) and Occ(Move(B2, L1, L2))(1) are true
in M . And so, as On(B3, B2)(1) is true in M (Axiom (24)), it follows (axioms (17),
(23)) that Inv1(Move(B2, L1, L2),Move(B3, L1, L2))(1) and Occ(Move(B3, L1, L2)(1) are
true in M . No further invocation atoms with temporal index 1 are defined in M (Def-
inition 8.1), so the four events Move(O,L1, L2), Move(B1, L1, L2), Move(B2, L1, L2),
Move(B3, L1, L2), which occur at time 1 in M , are linked by a chain of invocations at
time 1 in M .25 Moreover, the preconditions of each of the four events are true in M (ax-
ioms (12), (15), (21), (24)). As Move(O,L1, L2) is the only primary event at time 1 in
M , it follows (Definition 8.2) that Succ(Move(O,L1, L2))(1) is true in M . Moreover, as
Move(B1, L1, L2) is directly invoked by a successful event at time 1 in M , it follows (Defini-
tion 8.2) that Succ(Move(B1, L1, L2))(1) is true in M . Similar reasoning shows that success
is propagated down the rest of the invocation chain; that, in turn, Succ(Move(B2, L1, L2))(1)
and hence Succ(Move(B3, L1, L2))(1) are true in M . So, as Succ(Move(B3, L1, L2))(1) is
true in M , it follows (axioms (1), (13)) that At(B3, L2)(2) is true in M .

For the second part, let M be a preferred1 model of Θ′
4 = Θ4 ∪ {At(B2, L1)(2)}.

Then, as above, the events Move(O,L1, L2), Move(B1, L1, L2), Move(B2, L1, L2), and
Move(B3, L1, L2) all occur at time 1 in M , their preconditions are all true at time 1 in
M , and they are all linked by a unique invocation chain at time 1 in M . As above, the
first two events in the chain succeed. However, as M is a model of Θ′

4, At(B2, L1)(2) is
true in M . So it follows (axioms (14), (24)) that ¬At(B2, L2)(2) is true in M . It there-
fore follows (axioms (1) and (13)) that ¬Succ(Move(B2, L1, L2))(1) is true in M . So, as
Move(B2, L1, L2) is the only event which directly invokes Move(B3, L1, L2) at time 1 in
M , it follows that ¬T∃e(Inv1(e,Move(B3, L1, L2))(1) ∧ Succ(e)(1)) is true in M . And
so ¬T(Succ(Move(B3, L1, L2))(1) ∧ ∃e Inv1(e,Move(B3, L1, L2))(1)) is true in M (Ax-
iom (18)). As Inv1(Move(B2, L1, L2),Move(B3, L1, L2))(1) is true in M and the Succ

25. The unique-names axiom for Move in Axiom (24) ensures that the events are distinct. In view of
axioms (19) and (20) this appeal to the unique-names axiom is not strictly necessary. However, in
this and in subsequent examples involving multiple events it is simpler to add unique-names axioms for
events, and then assume in the proofs that distinct event terms denote distinct events.
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relation is classical (Axiom (1)), it follows that ¬Succ(Move(B3, L1, L2))(1) is true in M .
However, Phys(At) and At(B3, L1)(1) are true in M (axioms (15), (21), (24), Defini-
tion 9), so it follows by inertia (Axiom (3), Definition 8.3) that At(B3, L1)(2) is true in
M .

Note that with the introduction of secondary events as the missing causal elements in
this example, the inertia axiom and the domain axioms ((14), (15) and (21)) are confined to
their proper tasks; namely, representing inertia, and defining or constraining the At relation
respectively.

In philosophical terms, invocations provide a means for representing contemporaneous
sufficient causation between events. Thus if event e directly invokes event e′ at time t,
then e is a sufficient cause of e′ at t. The direct invocation relation, Inv1, thus represents
causal directedness (causal priority) between contemporaneous events. Axioms (17) and
(18) respectively ensure that contemporaneous causation occurs between actual events, and
that an invoked event is efficacious only if it is invoked by an efficacious event. This account
of contemporaneous sufficient causation can be thought of in terms of regularities, however
the reasoning is now more complex; for example, we might discover that event e directly
invokes event e′ by noting that whenever e occurs and condition φ is true e′ also occurs,
and that whenever this is the case e′ succeeds only if e does.

Contemporaneous (sufficient) causation between events is naturally required to be asym-
metric (axioms (19) and (20)). However, it has been suggested that there are also cases of
symmetric contemporaneous causation between events. Taylor (1975) gives the example of
a locomotive and a caboose which are coupled together in such a way that the locomotive
moves iff the caboose does. An analogous example, suggested by Denecker, Dupré, and
Belleghem (1998), involves a pair of gears which are interlocked, so that each gear rotates
iff the other does.

As will become clear, it is better to view these as cases involving symmetric constraints
on contemporaneous events, rather than symmetric causation between them. Now, clearly,
symmetric constraints cannot be represented as invocations.26 However, they can be rep-
resented on an individual basis by adding particular axioms. For example, the symmetric
constraint on the rotation of the gears can be represented by the following axiom:

∀g, g′, t(Intl (g, g′)(t) → ((Occ(Rot(g))(t) ≡ Occ(Rot (g′))(t))

∧ (Succ(Rot(g))(t) ≡ Succ(Rot(g′))(t)))) .

The first conjunct of the consequent of this axiom is required in order to ensure that the
rotations of pairs of interlocked gears co-occur; without it, it would be possible for one
of the rotate events to occur and fail without the other occurring. Note also that, when
introducing the problem, Denecker et al. (1998, p. 34) require that the representation of the
behaviour of the interlocked gears should not be such that they can rotate spontaneously.
This can present a problem for theories based on classical logic; because of the semantics of

26. An attempt to do so in the case of the gears would be to use the following axiom:

∀g, g′, t((Occ(Rot(g))(t)∧ Intl(g, g′)(t)) → Inv1(Rot(g),Rot(g′))(t)) .

But clearly if Intl(g, g′)(t), Intl(g′, g)(t) and Occ(e)(t) hold, then a contradiction results by the above
axiom and axioms (17), (19) and (20).
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Table 4: The theory of symmetrically constrained events, ΘSCon

∀e, t¬TSCon(e, e)(t) (25)

∀e, e′, t(SCon(e, e′)(t) → SCon(e′, e)(t)) (26)

∀e, e′, t(SCon(e, e′)(t) → ((Occ(e)(t)≡Occ(e′)(t))∧ (Succ(e)(t)≡ Succ(e′)(t))))(27)

∀e, e′, t(SCSet(e, e′)(t) ≡

(SCon(e, e′)(t) ∨ ∃e′′(SCon(e, e′′)(t) ∧ SCSet(e′′, e′)(t)))) (28)

∀e, e′, t(EInv(e, e′)(t) ≡

(Inv1(e, e
′)(t) ∧ ∃e′′(SCSet(e′, e′′)(t) ∧ ¬TSCSet(e, e′′)(t)))) (29)

∀e, e′, n, t(IPath(e, e′, n)(t) ≡

((n = 0 ∧ e = e′ ∧ ∃e′′EInv(e′′, e)(t))

∨ (n > 0 ∧ ∃e′′(IPath(e, e′′, n−1)(t) ∧ SCon(e′′, e′)(t))))) (30)

∀e, e′, t((SCon(e, e′)(t)

∧ ∃e′′, n(IPath(e′′, e, n)(t)

∧∀e′′′,m(IPath(e′′′, e′,m)(t) → m > n)) → Inv1(e, e
′)(t))) (31)

classical biconditionals. However this potential pitfall is effortlessly avoided in event theories
because of the accurate representation of partiality; for if only Intl(g, g′)(t) is given, then
Occ(Rot(g))(t) and Occ(Rot(g′))(t) are both undefined.

A more general treatment of symmetric constraints on events can be given by introducing
the symmetric constraint relation SCon. This relation represents the co-occurrence of and
co-dependence between pairs of events. Accordingly we expect SCon to be irreflexive,
symmetric, and to hold between pairs of co-occurring events which are also co-dependent.
These properties are stated by axioms (25)-(27) in Table 4.

When considered in isolation, the fact that two events are symmetrically constrained
provides no compelling evidence that either is the cause of the other. For example, in the
gears case, if all we know is that g and g′ are interlocked and that g is rotating, then it is
reasonable to conclude that g′ is also rotating, but it is not reasonable to conclude that the
rotation of g is the cause of the rotation of g′ or vice versa. Indeed, the two events may not
even be causally connected; each of the gears might be rotating because the shaft that it is
attached to is being driven.

However, if we have additional, external, information about the direction of causation,
then we can use it to infer the direction of causation between pairs of symmetrically con-
strained events.27 For example, if we know that gear g is being driven (say by rotating
the shaft that it is attached to), and we don’t know that gear g′ is being driven, then it
is reasonable to conclude that the driving of g is causally prior to the rotation of g, and
that the rotation of g is in turn causally prior to the rotation of g′. More formally, if we
have just Inv1(Drive(g),Rot (g))(t) and SCon(Rot(g),Rot (g′))(t), then it seems reasonable

27. Taylor makes a similar appeal to an external cause in his discussion of the locomotive-caboose example.
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to conclude that Inv1(Rot(g),Rot (g′))(t). The external invocation chain is thus extended
across the symmetric constraint link. The construction of invocation chains of this kind is
defined by axioms (28)-(31) given in Table 4.

Axiom (28) states that, at time t, events e and e′ are in the same symmetrically con-
strained set iff they are symmetrically constrained or they both occur in a chain of symmetric
constrained events.

Axiom (29) defines the conditions for an external invocation of a symmetrically con-
strained event. Thus, at time t, event e externally invokes event e′ iff e invokes e′ and e′ is
in a symmetric constraint set which does not include e.

An invocation path in a symmetrically constrained set begins with an externally invoked
event and consists of a chain of events each of which symmetrically constrains its neighbour.
The length of an invocation path is determined by the number of links that it contains; so
that an invocation path consisting only of an externally invoked event has length 0, one
consisting of such an event and its neighbour has length 1, etc. Accordingly, Axiom (30)
states the conditions under which there is an invocation path of length n between events e
and e′.

Finally, Axiom (31) defines invocation paths in symmetrically constrained sets. It does
so by requiring that an invocation link exist between symmetrically constrained events e
and e′ whenever the shortest invocation path to e in their symmetrically constrained set is
shorter than the shortest invocation path to e′ in that set.

Definition 12 The theory of symmetric constraints, ΘSCon , consists of the axioms given
in Table 4; thus ΘSCon = {(25), . . . , (31)}.

These ideas are illustrated by the following elaboration of the gears example.

Example 5 Five interlocking gears, G1, . . . , G5, are arranged in a row. If only G1 is
driven, then this invokes the rotation of G1, and, for each 〈Gi, Gi+1〉 pair, the rotation of
Gi invokes the rotation of Gi+1. However if both G1 and G5 are driven, then the rotation
of each invokes the rotation of its neighbour, and, in turn, each of these rotations invokes
the rotation of G3.

The first part of this example can be represented by the event theory Θ5 = ΘInd ∪ΘInv ∪
ΘSCon ∪ {(32), . . . , (39)}, where:

∀g, t(Pre(Drive(g))(t) ≡ Free(g)(t)) (32)

∀g, t(Eff(Drive(g))(t) ≡ Rotd (g)(t)) (33)

∀g, t(Pre(Rot (g))(t) ≡ Free(g)(t)) (34)

∀g, t(Eff(Rot(g))(t) ≡ Rotd (g)(t)) (35)

∀g, g′, t(Intl (g, g′)(t) ≡ Intl(g′, g)(t)) (36)

∀g, t(Occ(Drive(g))(t) → Inv1(Drive(g),Rot (g))(t)) (37)

∀g, g′, t(Intl (g, g′)(t) → SCon(Rot(g),Rot (g′))(t)) (38)

U [G1, . . . , G5] ∧U [Drive,Rot ]

∧
5

∧

i=1

Free(Gi)(1) ∧
4

∧

i=1

Intl(Gi, Gi+1)(1) ∧ Occ(Drive(G1))(1) (39)

387



Bell

For the sake of simplicity the preconditions and effects of drive events are the same as
those of rotate events and all objects are assumed to be gears. Thus a gear can be driven
(can rotate) if it is free to do so, and the effect of its being driven (rotating) is that it has
rotated (in a direction and by a degree which are, again for simplicity, not represented).
Axiom (36) states that the Intl relation (which represents pairs of interlocked gears) is
symmetric. Axiom (37) states that a drive-g event invokes a rotate-g event, and Axiom (38)
states that if gears g and g′ are interlocked, then their rotation is symmetrically constrained.

The theory Θ5 has a single representative preferred1 model in which all five gears ro-
tate and in which there is a single invocation chain 〈Drive(G1),Rot (G1),Rot (G2),Rot (G3),
Rot(G4),Rot (G5)〉.

Moreover, the extended theory Θ5 ∪ {Occ(Drive(G5))(1)}, has a single preferred 1 model
in which all five gears rotate, and in which there are two invocation chains; 〈Drive(G1),
Rot(G1),Rot (G2),Rot (G3)〉 and 〈Drive(G5),Rot (G5),Rot (G4),Rot (G3)〉.

Proposition Θ5 |≈1 Succ(Rot (Gi))(1) for 1 ≤ i ≤ 5, and Θ5 |≈1 Inv(Rot(G1),Rot (G5))(1).
Moreover, if Θ′

5 = Θ5∪{Occ(Drive(G5))(1)}, then Θ′
5 |≈1 Succ(Rot(Gi))(1) where 1 ≤ i ≤ 5,

but now both Θ′
5 |≈1 Inv(Rot (G1),Rot (G3))(1) and Θ′

5 |≈1 Inv(Rot (G5),Rot (G3))(1).

Proof Let M be a preferred 1 model of Θ5. Then it follows, by axioms (17), (37) and
(39), that Occ(Drive(G1))(1), Inv1(Drive(G1),Rot(G1))(1), and Occ(Rot(G1))(1) are true
in M . By Axiom (39), Intl(G1, G2)(1) is true in M , so it follows by Axiom (38) that
SCon(Rot(G1),Rot (G2))(1) is true in M . And so it follows, by axioms (26) and (27), that
SCon(Rot(G2),Rot (G1))(1) and Occ(Rot(G2))(1) are true in M . Similar reasoning shows
that for each i such that 1 ≤ i ≤ 4, both SCon(Rot(Gi),Rot (Gi+1))(1) and SCon(Rot(Gi+1),
Rot(Gi))(1) are true in M , and that, for each i such that 1 ≤ i ≤ 5, Occ(Gi)(1) is true in M .
By axioms (32), (34) and (39), Pre(Drive(G1))(1) is true in M , as is each Pre(Rot(Gi))(1)
where 1 ≤ i ≤ 5. So by Definition 8.2, Succ(Drive(G1))(1) is true in M , as is each
Succ(Rot(Gi))(1) where 1 ≤ i ≤ 5.

By Axiom (28), the set SI = {Rot(Gi) : 1 ≤ i ≤ 5} is a symmetric constraint set at
time 1 in M , and by Definition 8.1 it is the only such set. So it follows by Axiom (29)
that EInv(Drive(G1),Rot (G1))(1) is true in M . Moreover it follows, by Definition 8.1
and Axiom (29), that Rot(G1) is the only initially invoked event in SI. So it follows by
Axiom (30) that 〈Rot(G1),Rot(G1)〉 is an influence path of length 0 in SI, and that the
shortest influence path to G2 in SI is 〈Rot(G1),Rot(G2)〉 which is of length 1. So it follows
by Axiom (31) that Inv1(Rot(G1),Rot (G2))(1) is true in M . By analogous reasoning, the
shortest influence path to G3 in SI is the path 〈Rot(G1),Rot(G2),Rot(G3)〉 which is of
length 2, and so Inv1(Rot(G2),Rot(G3))(1) is true in M . Similar reasoning shows that
Inv1(Rot (G3),Rot (G4))(1) and Inv1(Rot(G4),Rot (G5))(1) are true in M . So it follows by
Axiom (19) that Inv(Rot(G1),Rot (G5))(1) is true in M .

Now let M be a preferred 1 model of Θ′
5. By reasoning analogous to that given above,

Succ(Drive(G1))(1) is true in M , as is each Succ(Rot(Gi))(1) where 1 ≤ i ≤ 5. We also
have that SI = {Rot(Gi) : 1 ≤ i ≤ 5} is the only symmetric constraint set at time 1
in M . However this time Rot(G1) and Rot(G5) are both initially invoked events in SI.
The shortest influence path to G2 in SI is the path 〈Rot(G1),Rot(G2)〉 of length 1, and
so, as before, Inv1(Rot (G1),Rot(G2))(1) is true in M . Analogous reasoning shows that
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〈Rot(G5),Rot(G5)〉 is an influence path in SI of length 0 and that the shortest influence path
to G4 in SI is the path 〈Rot (G5),Rot (G4)〉 of length 1, and so Inv1(Rot(G5),Rot (G4))(1)
is true in M . Moreover, the shortest influence paths to Rot(G3) in SI are the paths
〈Rot(G1),Rot(G2),Rot(G3)〉 and 〈Rot (G5),Rot (G4),Rot (G3)〉, each of length 2. So it fol-
lows by Axiom (31) that Inv1(Rot (G2),Rot (G3))(1) and Inv1(Rot (G4),Rot (G3))(1) are true
in M . Thus by Axiom (19), Inv(Rot (G1),Rot(G3))(1) and Inv(Rot (G5),Rot (G3))(1) are
both true in M .

Secondary events can also be used to represent non-deterministic effects.
Non-deterministic effects may arise because of uncertainty in the preconditions. Sup-

pose, for example, that the initial positions of blocks B and B′ are uncertain, either B is
on B′ or conversely, and that B is moved. Intuitively the resulting location of B′ should be
uncertain. If B′ was on B, then B′ should have moved to the same location as B, otherwise
B′ should have remained where it was. It is easy to see how Example 4 can be adapted
to represent this example faithfully. If B′ is on B initially, then the move-B event invokes
a secondary move-B′ event (Axiom (23)) which results in B′ moving with B, otherwise
the location of B′ remains unchanged. The resulting theory thus has two representative
preferred1 models; one in which B′ moves, and one in which B′ does not move.

non-deterministic effects may also arise because the outcome of the events in question
is uncertain. If successful, a non-deterministic event is not regularly followed by a definite
effect, but rather by any one of a set of mutually exclusive possible effects; as in the classic
example of tossing a fair coin. In the terms used in the introduction, our expectations
regarding the outcome of such events are unclear. In order to see why secondary events are
needed to represent these, consider the following attempt to represent coin-tossing.

Example 6 Suppose that a fair coin is showing heads initially and that the coin is tossed.
As the coin is fair, the result should be uncertain; the coin may show heads or it may show
tails. Let Θ6 = ΘInd ∪ {(40), (41), (42)} where:

∀t(Pre(Toss)(t) ≡ (Heads(t) ⊕ Tails(t))) (40)

∀t(Eff(Toss)(t) ≡ (Heads(t) ⊕ Tails(t))) (41)

Heads(1) ∧ ¬Tails(1) ∧Occ(Toss)(1) (42)

Then, contrary to intention, Θ6 is deterministic1. Θ6 has a single representative preferred 1

model in which the Toss event succeeds and its effect Heads(2)⊕Tails(2) is true. However,
as Heads(1) is true in the model, the normal application of the inertia axiom removes the
uncertainty by determining that Heads(2) is true.

If, as in this example, one of the alternative effects of an event preserves the status
quo, then inertia will favour that outcome and so determine the outcome of the event. The
fact that inertia intervenes in this way in the example suggests that something is missing
from the representation of the toss event. As defined, the event does not do what it is
intended to do. In succeeding it does not ensure that there are two distinct outcomes.
Metaphorically speaking, it does not introduce a fork at this point in history, resulting in
two alternative futures. There seems to be a hidden causal element which accounts for our
intuitive understanding of the example but which is missing from the formalization of it.
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I suggest that the missing component is the causal structure of the toss event, and that
this can be faithfully represented by two conflicting secondary events; that tossing the coin
invokes two conflicting deterministic events, one resulting in the coin showing heads, the
other resulting in the coin showing tails.

When formalizing this and subsequent examples involving nondeterministic events, the
following abbreviation is useful:

Inv1(e, {e1, . . . , en})(t) =Df Inv1(e, e1)(t) ∧ . . . ∧ Inv1(e, en)(t) .

Example 7 Let Θ7 = ΘInd ∪ ΘInv ∪ {(40), . . . , (46)} where:

∀t(Pre(TossH )(t) ≡ Pre(Toss)(t)) ∧ ∀t(Eff(TossH )(t) ≡ Heads(t)) (43)

∀t(Pre(TossT )(t) ≡ Pre(Toss)(t)) ∧ ∀t(Eff(TossT )(t) ≡ Tails(t)) (44)

∀t(Occ(Toss)(t) → Inv1(Toss , {TossH ,TossT })(t)) (45)

U [Toss ,TossH ,TossT ] (46)

Then there are two representative preferred1 models of Θ7. In both models, the primary
event Toss succeeds and invokes the conflicting secondary events TossH and TossT . In one
of the models, TossH succeeds and TossT fails. In the other model, TossT succeeds and
TossH fails.

Proposition Θ7 |≈1 Heads(2) ⊕ Tails(2), Θ7 6|≈1 Heads(2), and Θ7 6|≈1 Tails(2).

Proof For the first part, let M be a preferred1 model of Θ7. Then the Toss event occurs
at time 1 in M (Axiom (42)) and its occurrence invokes the secondary TossH and TossT
events (Axiom (45)), which also occur at time 1 in M (Axiom (17)). The preconditions of
all three events are true at time 1 in M (axioms (40), (42)-(44)). However, in view of their
effects (axioms (41), (43), (44)), all three events cannot succeed at time 1 in M . As Toss
invokes the other two events, and is the only event which does so (Definition 8.1), TossH
or TossT can only succeed if Toss does (Axiom (18)). Moreover, it is consistent to assume
that Toss does succeed at time 1 in M , so it follows (Definition 8.2) that Toss does succeed
at time 1 in M , with the effect that Heads(2) ⊕ Tails(2) is true in M (axioms (1), (41)).

For the second part it is sufficient to show that there is a preferred 1 model of Θ7 in which
Heads(2) is false. So, let M be an EL model in which ∀RPhys(R) is true, which satisfies
Axiom (46), and which satisfies the following conditions. The only evidential atoms which
are defined in M are those which satisfy the following set of literals:

{Heads(1),¬Tails(1),Occ(Toss)(1), Inv1(Toss ,TossH )(1),Occ(TossH )(1),

Inv1(Toss ,TossT )(1),Occ(TossT )(1)} ∪ {Tails(t) : t ≥ 2} ∪ {¬Heads(t) : t ≥ 2} ;

thus, for example, Heads(1) is true in M and Tails(1) is false in M . The success atoms in
the set:

{Succ(Toss)(1),Succ(TossT )(1)}

are both true in M , and every other success atom is false in M . Finally the inertia atoms
in the set:

{Inert(Heads)(0), Inert(Tails)(0), Inert(Heads)(1), Inert(Tails)(1)}
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are all false in M , and every other inertia atom is true in M . Clearly M exists. Moreover,
inspection shows that M is a preferred 1 model of Θ7. In particular, the success of Toss at
time 1 in M is required (on the grounds given in the proof of the first part) as is the success
of either TossH or TossT at time 1 in M (axioms (1), (41), (43), (44), Definition 8.2).
In the given model, TossT succeeds at time 1, and the combined effect of the two successful
events is that Heads(2) is false in M (axioms (1), (41), (44)).

The proof of the third part is similar; but with TossH (rather than TossT) succeeding
at time 1 in the given model.

A similar problem is posed by the Russian Shooting Problem (Sandewall, 1994). A
revolver is loaded with a single bullet and the cylinder is spun. The result should be
uncertain, as the cylinder could come to rest with the bullet in any one of six possible
positions. However in the naive representation, inertia will, once again, favour the outcome
in which the bullet returns to, and so effectively remains in, its original position. A faithful
representation of the expected outcome of the spin event can be obtained by having it invoke
six conflicting secondary spin events, with the result that the bullet is equally likely to come
to rest in any of the six possible positions.

More generally, a non-deterministic event can be seen as invoking a set of conflicting
deterministic events, each resulting in one of its possible outcomes.

When there are more than two possible outcomes, the following general form of exclusive
alternation is useful:

φ1 |φ2 | . . . |φn =Df

n
∨

m=1

(
m−1
∧

i=1

¬φi ∧ φm ∧
n
∧

j=m+1

¬φj) .

Thus φ1 |φ2 | . . . |φn is true if exactly one of the alternatives is true and the remainder are
all false, is false if all of the alternatives are false or if more than one of them is true, and
is undefined otherwise.28

The techniques for representing ramifications and non-deterministic events can readily
be combined to represent events with conditional effects, such as crossing the points on
a railway line. Suppose that point P has entry point PE , left exit point PL, and right
exit point PR. Suppose further that if P is set to ‘left’, then a train crossing P should
emerge at PL, otherwise if P is set to ‘right’, then the train should emerge at PR. Then
the preconditions for crossing P can simply be that the train is at PE and that P is set to
either ‘left’ or ‘right’, and the effect can be that the train is at either PL or PR. If P is set
to ‘left’ when the train crosses, then this event should invoke a cross-P -left event, which
has the precondition that the train is at PE and that P is set to ‘left’, and the effect that
the train is at PL. Similarly, if P is set to ‘right’ when the train crosses, then this event
should invoke a cross-P -right event with the effect that the train emerges at PR.

5. Event Preferences

Conflicts are the reductio ad absurdum of Deductionism. If two events conflict, then their
effects cannot, on pain of inconsistency, be deduced. Consequently, Deductionists wishing

28. So, if n = 2, then exclusive alternation is just exclusive disjunction. But if n > 2, then the two notions
differ; for example, the exclusive disjunction φ1 ⊕ (φ2 ⊕ φ3) is true if φ1 ∧ φ2 ∧ φ3 is.
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to represent simultaneous events are forced to police their events and to regulate their
effects. Gelfond, Lifschitz, and Rabinov (1991) suggest that this can be done by means of
cancellations. Suppose, for example, that we have a bowl full of soup. If only one side
of the bowl is lifted, then the soup is spilt. However, if both sides of the bowl are lifted
simultaneously, then the soup is not spilt. These interactions are represented by means
of two elementary lift events (lift-left-side, lift-right-side) and their composition (lift-both-
sides). If either of the elementary events occurs in isolation, then it has the effect that the
soup is spilt. But if the complex event occurs, then the spill-effects of its component actions
should be cancelled, with the result that the bowl is lifted and the soup is not spilt.

However cancellations are only appropriate if we ignore the possibility of failure. Suppose
that in reality one of the elementary lift events fails because a hand slips. Then the effects
of the other component event should not be cancelled and the soup should be spilt. But
how can a cancellation be cancelled?

Conflicts do not pose the same problem for inductive events. When faced with conflict-
ing events we do not expect that they will both succeed. Some, and possibly all, of our
expectations regarding these events are uncertain. This is reflected in the formal theory:
conflicting effects give rise to conflicting success atoms, resulting in failure rather than in-
consistency. However the possibility of failure raises the problem of “over-weak” predictions
(which amusingly complements the “over-strong” problem of Deductionism). If two induc-
tive events conflict (and there are no other interactions involving them), then each succeeds
in a preferred model in which the other fails, consequently nothing more definite than the
disjunction of their effects is predicted. This is appropriate when the events are of equal
status; indeed, it provides the basis for the representation of non-deterministic events given
in the previous section. But it is not appropriate when we expect that one of the events will
succeed. Suppose, for example, that Stan and Ollie attempt to move to the same location
simultaneously but that only one of them can succeed. Suppose further that Ollie’s success
is more likely than Stan’s, say because he is bigger. Then we normally expect that Ollie will
succeed and that Stan will fail. However, if there are abnormal independent circumstances
which lead us to expect that Ollie will fail, then these do not lead us to expect that Stan will
fail also. Indeed, under the circumstances, we expect that Stan will succeed. For example,
if Ollie trips, then we expect that Stan will succeed; although, of course, he may also trip,
etc.

Asymmetric expectations of this kind can be thought of as event preferences, as pref-
erences over the outcomes of events. Thus if events e and e′ conflict, and we expect that
e will succeed, then the success of e is preferred to that of e′. However, as the examples
show, preferences of this kind should be defeasible in order not to prejudice the success of
the non-preferred event should the preferred event fail for some independent reason.

Event preferences can be represented in EL by preference atoms, event atoms of the
form Pref(e, e′)(t). In keeping with the above discussion, these should be interpreted as
stating that the success of event e is normally preferred to that of event e′ should they
conflict at time t. The temporal index accommodates the possibility that event preferences
may vary over time; as in Example 10 below.

The only logical restriction on event preferences is that they are required to be asym-
metric (Axiom (47) in Table 2). Further conditions, such as transitivity, can, of course, be
added where appropriate.
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Table 5: The theory of event preferences, ΘPref

∀e, e′, t(Pref(e, e′)(t) → ¬TPref(e′, e)(t)) (47)

Definition 13 The theory of event preferences is given by the axioms in Table 5; thus
ΘPref = {(47)}. The theory of natural events, ΘNE , consists of the axioms given in tables 2,
3, 4, and 5; thus ΘNE = ΘInd ∪ ΘInv ∪ ΘSCon ∪ ΘPref .

The intended interpretation of event preferences cannot be enforced by adding the axiom:

∀e, e′, t((Pref(e, e′)(t) ∧ Pre(e)(t) ∧ Occ(e)(t) ∧ Succ(e′)(t)) → Succ(e)(t)) .

Adding this axiom would ensure that if e and e′ were to conflict, then e would succeed (and
so e′ would fail). However, if e were to fail for some independent reason, then the axiom
would have the undesirable effect of forcing the failure of e′.

Clearly, if event preferences are to be interpreted correctly, then a more flexible approach
is needed, and so it is necessary to extend the pragmatics of event theories which contain
them. In doing so the aim is to produce a consistent interpretation of the applicable event
preferences where possible, and to ignore them otherwise.

To begin with, a distinction is drawn between preferential events, the events to which
the preferences can consistently be applied, and non-preferential events, all of the remaining
events under consideration. An event e is said to be supported in model M at time t if e
occurs at t and e’s preconditions are true in M at t (if Pre(e)(t) and Occ(e)(t) are both true
in M). If e is supported at some time point in a model, and the time point and model are
clear from the context, then e will simply be said to be supported. Now, if the applicable
event preferences form an acyclic chain Pref(e, e′)(t), Pref(e′, e′′)(t), . . . , then the supported
events occurring in them can be ordered lexicographically; thus given that e, e′ and e′′ are
all supported, e has order 1, e′ order 2, and e′′ order 3. More generally, for model M and
time point t, a supported event e may (or may not) be assigned a preference rank as follows:

• e has preference rank 1 if there is some event e′ such that Pref(e, e′)(t) is true and
there is no supported event e′ such that Pref(e′, e)(t) is true, and

• e has preference rank n if e does not have a preference rank m < n and there is a
supported event e′ with preference rank n− 1 which is directly preferred to e (which
is such that Pref(e′, e)(t) is true and there is no supported event e′′ such that the
preferences Pref(e, e′′)(t) and Pref(e′′, e′)(t) are both true).

Let e be a supported event (at time t in model M). Then e is a preferential event (at t in
M) if e has a preference rank (at t in M), otherwise e is a non-preferential event (at time
t in model M).

Now suppose that at time t models M and M ′ agree on event preferences, preferential
events, and non-preferential events. Then, at t:
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• M is better than M ′ on preferential events if there is some preference rank n such
that M and M ′ agree on the success of all events with preference rank m < n, and
more events with preference rank n succeed in M ,

• M is as good as M ′ on preferential events if M is better than M ′ on preferential
events, or M and M ′ agree on the success of preferential events,

• M is better than M ′ on non-preferential events if more non-preferential events succeed
in M ,

• M is as good as M ′ on non-preferential events if M is better than M ′ on nonprefer-
ential events, or M and M ′ agree on the success of non-preferential events.

The definition of a preferred model can now be refined.

Definition 14 (Preference2) Let M and M ′ be models which differ at most on the inter-
pretation of temporally-indexed relations. Then M is preferred2 to M ′ (written M≺2M

′)
iff there is a time point t such that M and M ′ agree before t, and at t:

1. fewer evidential atoms are defined in M , and M and M ′ agree on the truth values of
all evidential atoms which are defined in M ; or

2. M and M ′ differ only on conjectural atoms, and either

(a) M is better than M ′ on preferential events, and M is as good as M ′ on non-
preferential events; or

(b) M is as good as M ′ on preferential events, and M is better than M ′ on non-
preferential events; or

3. M and M ′ differ only on inertia atoms, and more inertia atoms are true in M .

Note that preference2 reduces to preference1 when event theories do not include event
preferences.

Four examples are now given. The first illustrates the interpretation of event preferences.

Example 8 Suppose that three agents, Stan, Ollie, and Charlie, are at locations L1, L2 and
L3 respectively. It is assumed that at most one of the agents can be at a location at a point
in time, so if any two of them attempt to move to the same location simultaneously, then at
most one of them can succeed. If Ollie and Stan both attempt to move to location L4 then,
as Ollie is bigger, Ollie’s success is expected. Similarly, if Stan and Charlie both attempt
to move to L4 simultaneously, then, as Stan is bigger, Stan’s success is expected. However,
Charlie is much faster than Ollie, so if they both attempt to move to L4 simultaneously,
then Charlie’s success is expected. Now, suppose that in fact Stan and Ollie both attempt
to move to L4 simultaneously, then, as indicated, Ollie’s success is expected. However, if
Charlie also attempts to move to L4, then the result is uncertain because the preferences
among the move events can no longer be interpreted consistently.
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Let Θ8 = ΘInd ∪ ΘPref ∪ {(12), (13), (14)} ∪ {(48), . . . , (52)}; where:

∀x, y, l, t((At(x, l)(t) ∧ ¬x = y) → ¬At(y, l)(t)) (48)

Pref(Move(O,L1, L4),Move(S,L2, L4))(1) (49)

Pref(Move(S,L2, L4),Move(C,L3, L4))(1) (50)

Pref(Move(C,L3, L4),Move(O,L1, L4))(1) (51)

U [O,S,C,L1, L2, L3, L4] ∧U [Move]

∧ At(O,L1)(1) ∧At(S,L2)(1) ∧At(C,L3)(1)

∧ Occ(Move(O,L1, L4))(1) ∧ Occ(Move(S,L2, L4))(1) (52)

Then Θ8 has a single representative preferred 2 model in which Ollie succeeds in moving to
L4. However the extended theory Θ′

8 = Θ8∪{Occ(Move(C,L3, L4))(1)} has three represen-
tative preferred 2 models, and a different member of the trio succeeds in each of them.

Proposition Θ8 |≈2 At(O,L4)(2). However Θ′
8 6|≈2 At(O,L4)(2), Θ′

8 6|≈2 At(S,L4)(2), and
Θ′

8 6|≈2 At(C,L4)(2).

Proof For the first part, let M be a preferred 2 model of Θ8. Then (Definition 14.1) the only
events which occur at time 1 in M are Move(O,L1, L4) and Move(S,L2, L4). If follows
from axioms (12) and (52) that both of these events are both supported at time 1 in M . In
view of their effects, only one of these events can succeed (axioms (1), (13), (48), (52)).
By axioms (49)-(51) and Definition 14.1, the only preference atoms which are true in M
are Pref(Move(O,L1, L4),Move(S,L2, L4))(1), Pref(Move(S,L2, L4),Move(C,L3, L4))(1),
and Pref(Move(C,L3, L4),Move(O,L1, L4))(1). In view of the first of these, there is an
event e such that Pref(Move(O,L1, L4), e)(1) is true in M . And, as Move(C,L3, L4) is not
supported at time 1 inM , there is no supported event e such that Pref(e,Move(O,L1, L4))(1)
is true in M . So Move(O,L1, L4) has preference rank 1 at time 1 in M . Moreover,
Move(S,L2, L4) does not have preference rank 1 at time 1 in M , because Move(O,L1, L4)
is a supported event at time 1 in M and Pref(Move(O,L1, L4),Move(S,L2, L4))(1) is true
in M . So, as Move(O,L1, L4) is directly preferred to Move(S,L2, L4) at time 1 in M ,
it follows Move(S,L2, L4) has preference rank 2 at time 1 in M . It therefore follows by
Definition 14.2(a) that Succ(Move(O,L1, L4))(1) is true in M . Consequently the effect
At(O,L4)(2) is true in M (axioms (1), (13)).

For the second part, let M be an EL model in which ∀RPhys(R) is true, and which
satisfies U [O,S,C,L1, L2, L3, L4] and U [Move]. Suppose further that M satisfies the fol-
lowing conditions; where Loc = {O,S,C,L1, L2, L3, L4}. The only object or event atoms
which are defined in M are those which satisfy the following sets of literals:

{At(O,L1)(t) : t ≥ 1}, {¬At(O, l)(t) : t ≥ 1, l ∈ Loc, l 6= L1},

{At(S,L2)(1)}, {At(S,L4)(t) : t ≥ 2)},

{¬At(S, l)(1) : l ∈ Loc, l 6= L2}, {¬At(S, l)(t) : t ≥ 2, l ∈ Loc, l 6= L4},

{At(C,L3)(t) : t ≥ 1} ∪ {¬At(C, l)(t) : t ≥ 1, l ∈ Loc, l 6= L3},

{Occ(Move(O,L1, L4))(1),Occ(Move(S,L2, L4))(1),Occ(Move(C,L3, L4))(1)},
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{Pref(Move(O,L1, L4),Move(S,L2, L4))(1),

Pref(Move(S,L2, L4),Move(C,L3, L4))(1),

Pref(Move(C,L3, L4),Move(O,L1, L4))(1)}.

The success atom Succ(Move(S,L2, L4))(1) is true in M and all other success atoms are
false in M . Finally, the inertia atoms in the following sets are all false in M :

{Inert(At, 〈O, l〉)(0) : l ∈ Loc}, {Inert(At, 〈C, l〉)(0) : l ∈ Loc},

{Inert(At, 〈S, l〉)(0) : l ∈ Loc}, {Inert(At, 〈S, l〉)(1) : l ∈ {L2, L4}},

and all other inertia atoms are true in M . Clearly M exists. Moreover, inspection shows
that M is a preferred 2 model of Θ′

8. In particular, the success of Move(S,L2, L4) at time 1
can be justified as follows. The only three events which are supported at time 1 in M are
Move(O,L1, L4), Move(S,L2, L4), and Move(C,L3, L4) (axioms (12), (52), definition of
Θ′

8, Definition 14.1). And the only preference atoms which are true in M are those in the
set given above (axioms (49)-(51), Definition 14.1). So none of the three supported events
has preference rank 1 at time 1 in M ; Move(O,L1, L4) does not because Move(C,L3, L4)
is supported and is preferred to it, Move(S,L2, L4) does not because Move(O,L1, L4) is
supported and is preferred to it, and Move(C,L3, L4) does not because Move(S,L2, L4) is
supported and is preferred to it. It follows that all three events are non-preferential at time 1
in M . At most one of these events can succeed at time 1 in M (axioms (1), (13), (48), (52)).
And it follows by Definition 14.2(b) that one of them does succeed. In M , Move(S,L2, L4)
succeeds at time 1, with the effect that At(S,L4)(2) and consequently ¬At(O,L4)(2) are both
true in M ((1), (13), (48), (52)).

The given model also establishes the fourth part of the proposition. For the third part
a preferred2 model of Θ′

8 can be given in which either Move(O,L1, L4) or Move(C,L3, L4)
succeeds at time 1.

The next example shows how event preferences and secondary events can be combined
in order to represent implicit cancellation and the implicit cancellation thereof.

Example 9 The soup-bowl example can be represented as follows:

∀t(Pre(LiftL)(t) ≡ ¬HoldingL(t)) ∧ ∀t(Eff(LiftL)(t) ≡ HoldingL(t)) (53)

∀t(Pre(LiftR)(t) ≡ ¬HoldingR(t)) ∧ ∀t(Eff(LiftR)(t) ≡ HoldingR(t)) (54)

∀t(Pre(Spill)(t) ≡ ¬Spilt(t)) (55)

∀t(Eff(Spill )(t) ≡ (Spilt(t) ∧ (HoldingL(t) ⊕ HoldingR(t)))) (56)

∀e, t((Occ(e)(t) ∧ (e = LiftL ∨ e = LiftR) ∧ ¬Spilt(t)) → Inv1(e,Spill )(t)) (57)

∀t(Pre(Lift)(t) ≡ (Pre(LiftL)(t) ∧ Pre(LiftR)(t))) (58)

∀t(Eff(Lift)(t) ≡ (Eff(LiftL)(t) ∧ Eff(LiftR)(t))) (59)

∀t(Occ(Lift)(t) ≡ (Occ(LiftL)(t) ∧ Occ(LiftR)(t))) (60)

∀tPref(Lift ,Spill )(t) (61)

U [Lift ,LiftL,LiftR,Spill ]

∧¬HoldingL(1) ∧ ¬HoldingR(1) ∧ ¬Spilt(1) ∧Occ(Lift)(1) (62)
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Thus axioms (53)-(56) define elementary lift-left (LiftL), lift-right (LiftR) and spill events.
Axiom (57) states that if the soup is not spilt, then the occurrence of either elementary lift
event invokes a spill event. Axioms (58)-(60) define the complex lift-both event (Lift), and
Axiom (61) states that the success of a lift-both event is normally preferred to that of a spill
event.

Let Θ9 = ΘInd ∪ ΘInv ∪ ΘPref ∪ {(53), . . . , (62)}. Then Θ9 has a single representative
preferred 2 model in which the Lift event succeeds and the Spill event fails; with the result
that the soup is not spilt. Thus the success of the Lift event implicitly cancels the (secondary)
Spilt effect of its component LiftL and LiftR events. Moreover, the extended theory Θ9 ∪
{¬Succ(Lift)(1)} has two representative preferred2 models. In one LiftL succeeds (and LiftR
fails), in the other LiftR succeeds (and LiftL fails). So in both Spill succeeds with the effect
that the soup is spilt. The implicit cancellation of the Spilt effect is thus itself implicitly
cancelled.

Proposition Θ9 |≈2 ¬Spilt(2), and Θ9 ∪ {¬Succ(Lift)(1)} |≈2 Spilt(2).

Proof For the first part, let M be a preferred 2 model of Θ9. Then the events Lift, LiftL,
and LiftR are all supported at time 1 in M (axioms (53), (54), (58), (60), (62)). Moreover
the LiftL and LiftR events both invoke the Spill event at time 1 (axioms (57), (62)), and this
is also supported at time 1 in M (axioms (17), (55), (62)). Now the Lift and Spill events
conflict at time 1 in M ; if Lift succeeds, then Spill fails, and vice-versa (axioms (1), (53),
(54), (56), (59)). And the preference atom Pref(Lift ,Spill )(1) is the only preference atom
with temporal index 1 which is true in M (Axiom (61), Definition 14.1). Consequently, at
time 1 in M , Lift and Spill have preference ranks 1 and 2 respectively, and LiftL and LiftR
are non-preferential. The success of Lift implies the success of its component events (ax-
ioms (1), (53), (54), (59)). So (Definition 14.2(a)) Lift succeeds (and Spill fails) at time 1
in M . And so, as Phys(Spilt) and ¬Spilt(1) are true in M (Axiom (62), Definition 9), it
follows by inertia (Axiom (3), Definition 14.3) that ¬Spilt(2) is true in M .

For the second part, let M be a preferred 2 model of Θ9 ∪ {¬Succ(Lift)(1)}. Then, as
above, the events Lift, LiftL, LiftR, and Spill are all supported at time 1 in M . As Lift
fails (when supported) at time 1 in M , one of its component lift-events must also fail at
time 1 in M (axioms (1), (53), (54), (59)). However the other component event succeeds
at time 1 in M (Definition 14.2(b)), and consequently so does Spill (axioms (1), (53) (54),
(56), Definition 14.2(a)), with the effect that Spilt(2) is true in M (axioms (1), (56)).

The next example shows how event preferences and secondary events can be used to
represent changing expectations regarding the outcome of non-deterministic events.

Example 10 A race between a fast horse and a strong horse will be run the day after
tomorrow. The course is currently dry. Given that this remains the case, the fast horse
is expected to win. However if it were to rain tomorrow, then the strong horse would be
expected to win.

This example can be represented by the theory Θ10 = ΘInd ∪ ΘInv ∪ ΘPref ∪ {(63), . . . ,
(71)}; where:

∀t(Pre(RaceFS )(t) ≡ Occ(RaceFS )(t)) (63)
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∀t(Eff(RaceFS )(t) ≡ (WinnerF (t) ⊕ WinnerS (t))) (64)

∀t(Pre(WinF )(t) ≡ Pre(RaceFS )(t)) ∧ ∀t(Eff(WinF )(t) ≡ WinnerF (t)) (65)

∀t(Pre(WinS )(t) ≡ Pre(RaceFS )(t)) ∧ ∀t(Eff(WinS )(t) ≡ WinnerS (t)) (66)

∀t(Occ(RaceFS )(t) → Inv1(RaceFS , {WinF ,WinS})(t)) (67)

∀t(Pre(Rain)(t) ≡ Occ(Rain)(t)) ∧ ∀t(Eff(Rain)(t) ≡ ¬Dry(t))) (68)

∀t(Dry(t) → Pref(WinF ,WinS )(t)) (69)

∀t(¬Dry(t) → Pref(WinS ,WinF )(t)) (70)

U [RaceFS ,WinF ,WinS ,Rain ] ∧Dry(1) ∧ Occ(RaceFS )(3) (71)

Thus Axiom (64) states that the outcome of a successful race between the two horses
(RaceFS) results in either the fast horse winning (WinnerF) or the strong horse winning
(WinnerS). The causal structure of the RaceFS event (the fact that it involves the competi-
tion between two horses) is represented by its invocation of the conflicting WinF and WinS
events (axioms (64)-(67)). Rain results in the course being wet (not dry) (Axiom (68)). If
the course is dry, then the fast horse is expected to win (Axiom (69)), otherwise the slow
horse is expected to win (Axiom (70)).

Proposition Θ10 |≈2 WinnerF (4), and Θ10 ∪ {Occ(Rain)(2)} |≈2 WinnerS (4).

Proof For the first part, let M be a preferred 2 model of Θ10. Then Phys(Dry) and Dry(1)
are true in M (Axiom (71), Definition 9), and so it follows by inertia (Axiom (3), Def-
inition 14.3) that Dry(3) is true in M . Moreover, the event RaceFS occurs at time 3 in
M and invokes the WinF and WinS events (axioms (67), (71)). All three events are sup-
ported at time 3 in M (axioms (17), (63), (65), (66), (71)). As RaceFS invokes WinF
and WinS, they can succeed only if it does (Axiom (18), Definition 14.1). So it follows
(Definition 14.2(b)) that RaceFS succeeds at time 3 in M . The success of exactly one of the
two invoked events at time 3 is consistent with the success of RaceFS (axioms (64)-(66)).
As Dry(3) is true in M it follows (Axiom (69)) that Pref(WinF ,WinS )(3) is true in M .
Moreover this is the only preference atom with temporal index 3 which is true in M (Def-
inition 14.1). So, as WinF and WinS are both supported at time 3 in M , it follows that
WinF has preference rank 1 and WinS has preference rank 2 at time 3 in M . Consequently
(Definition 14.2(a)) WinF succeeds in M at time 3, with the effect that WinnerF (4) is true
in M (axioms (1) and (65)).

For the second part, let M be a preferred2 model of Θ10 ∪ {Occ(Rain)(2)}. Then the
Rain event succeeds at time 2 in M and so its effect ¬Dry(3) is true in M (Axiom (68),
Definition 14.2(b)). As in the proof of the first part, RaceFS and one of the two conflicting
secondary events, WinS and WinF, succeed at time 3 in M . As ¬Dry(3) is true in M , it
follows (Axiom (70)) that Pref(WinS ,WinF )(3) is true in M . Moreover, this is the only
preference atom with temporal index 3 which is true in M (Definition 14.1). So, as WinS
and WinF are both supported at time 3 in M , it follows that WinS has preference rank 1
and WinF has preference rank 2 at time 3 in M . So it follows (Definition 14.2(a)) that
WinS succeeds at time 3 in M , with the effect that WinnerS (4) is true in M (axioms (1)
and (66)).

398



Natural Events

More generally, event preferences can be combined with secondary events in order to
give a qualitative representation of conditional probabilities. A probability judgment of
the form P (Succ(e)(t)|Succ(e′)(t)) = n states that the probability of event e succeeding at
time t, given that event e′ does, is n. Judgments of this kind can be represented in EL by
event atoms of the form Prob(e, e′, n)(t). Conditional probabilities can then be translated
into event preferences by means of the following axiom:

∀e, e′, e′′, n,m, t((Prob(e, e′, n)(t) ∧ Prob(e′′, e′,m)(t) ∧ n > m) → Pref(e, e′′)(t)) (72)

together with the appropriate invocations. The use of this technique is illustrated by the
final example, which is a probabilistic extension of an example attributed to Reiter (Shana-
han, 1997, p. 290).

Example 11 A chessman is placed haphazardly on a chessboard. It may end up on (within)
a single square, but it is more likely that it will overlap four squares, and more likely still
that it will overlap just two squares. This situation can be represented by the theory Θ11 =
ΘInd ∪ ΘInv ∪ ΘPref ∪ {(72), (73), . . . , (80)}, where:

∀t(Pre(Place)(t) ≡ Occ(Place)(t)) (73)

∀t(Eff(Place)(t) ≡ (One(t) |Two(t) |Four(t))) (74)

∀t(Pre(Place1 )(t) ≡ Pre(Place)(t)) ∧ ∀t(Eff(Place1 )(t) ≡ One(t)) (75)

∀t(Pre(Place2 )(t) ≡ Pre(Place)(t)) ∧ ∀t(Eff(Place2 )(t) ≡ Two(t)) (76)

∀t(Pre(Place4 )(t) ≡ Pre(Place)(t)) ∧ ∀t(Eff(Place4 )(t) ≡ Four(t)) (77)

∀t(Occ(Place)(t) → Inv1(Place , {Place1 ,Place2 ,Place4})(t)) (78)

∀t(Prob(Place1 ,Place , 0.2)(t) ∧ Prob(Place2 ,Place, 0.5)(t)

∧Prob(Place4 ,Place , 0.3)(t)) (79)

U [Place,Place1 ,Place2 ,Place4 ] ∧ Occ(Place)(1) (80)

Thus Axiom (74) states the three mutually-exclusive outcomes of placing the chessman,
Axiom (78) states that an occurrence of the Place event invokes the three conflicting sec-
ondary events, Place1 , Place2 , and Place4 , Axiom (79) associates a conditional probability
judgment with each of them, and Axiom (72) translates these judgments into qualitative
event preferences.

Proposition Θ11 |≈2 Two(2).

Proof Let M be a preferred 2 model of Θ11. Then the Place event occurs and invokes
the three secondary events Place1 , Place2 , and Place4 at time 1 in M (axioms (78),
(80)). All four events are supported at time 1 in M (axioms (17), (73),(75)-(77),(80)).
But, in view of their effects they cannot all succeed at time 1 in M (axioms (1), (74),
(75)-(77)). Now the preference atoms Pref(Place2 ,Place4 )(1), Pref(Place4 ,Place1 )(1), and
Pref(Place2 ,Place1 )(1) are all true in M (axioms (72), (79)) and these are the only prefer-
ence atoms with temporal index 1 which are defined in M (Definition 14.1). Consequently,
at time 1 in M , the three events Place2 , Place4 , and Place1 have preference ranks 1, 2
and 3 respectively, and Place is non-preferential. However, as Place invokes the other three
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events and is the only event which does so ((78), Definition 14.1), they can succeed only if
it does (Axiom (18)). So it follows that Place succeeds at time 1 in M (Definition 14.2(b)).
The success of Place2 at time 1 is consistent with the success of Place (axioms (1), (74),
(76)). Consequently, given its preference rank, Place2 succeeds at time 1 in M (Defini-
tion 14.2(a)), with the effect that Two(2) is true in M (axioms (1), (76)).

6. Philosophical Justification

In this section the justification of formal theories of prediction is discussed and a justification
of the theory of events is given.

Goodman (1954, §III.2) discusses the related problem of the justification of formal the-
ories of enumerative induction, and suggests that we start by considering how we justify
a deductive inference. Clearly we can do so by showing that it conforms to a set of valid
general rules of deduction.29 But then the question arises as to how we justify the rules
themselves. To suggest that we do so by appealing to some more fundamental “underlying”
rules simply postpones the question and so invites a regress.30 But if we cannot give a
foundational justification of deduction, then how can we proceed? Goodman suggests that
we can do so by showing that the rules for deduction conform with particular deductive
inferences which we actually make and sanction. This is circular, but virtuously so: “The
point is that rules and particular inferences alike are justified by being brought into agree-
ment with one another. A rule is amended if it yields an inference we are unwilling to
accept; an inference is rejected if it violates a rule we are unwilling to amend. The pro-
cess of justification is the delicate one of making mutual adjustments between rules and
accepted inferences; and in the agreement achieved lies the only justification needed for ei-
ther” (p. 64). Note however that there is no general consensus as to what counts as a valid
deductive argument. Classical logicians accept the inference from ¬¬φ to φ as valid, Intu-
itionists do not. Similarly, Intuitionists accept the inference from φ to ψ ⊃ φ as valid, but
Relevantists do not. These differences can be explained by the fact that those concerned are
attempting to formalize different notions of validity; as there tends to be agreement among
those who agree on a given intuitive notion of deduction.31 This suggests that a justification
of a given form of deductive inference will be partly philosophical and partly empirical, as
it will consist of an analysis of the concept of deductive validity and the consideration of
examples of deductive inference.

Similarly then, in order to justify a formal theory of prediction, we should seek to
show, by means of a combination of conceptual analysis and empirical evidence, that its
predictions agree with those which we actually make and consider to be reasonable. In the
case of a logico-pragmatic theory this amounts to arguing that its pragmatics is appropriate.

29. Or, equally, that it conforms to a notion of entailment defined in terms of a given formal semantics, such
as the Tarski semantics for classical predicate logic.

30. Given a formal semantics and accompanying notion of entailment, we can justify a set of rules by proving
that they are both sound and complete relative to the semantics. But then again the question arises as
to how the semantics and notion of entailment are justified.

31. For example, a valid argument is one in which, if you accept the premises, then you must (on pain of
inconsistency) accept the conclusion; a valid argument is one which admits of a constructive proof of the
conclusion given the premises; a valid argument is one in which the premises are all required in order to
establish the conclusion.
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Let Θ be a logico-pragmatic theory of prediction. Then an extension of Θ is any theory
Θ′ which includes Θ and which satisfies certain stated restrictions. For instance, we might
require that Θ′ is a semantic extension of Θ, meaning that the additional axioms in Θ′ are
intended to be interpreted semantically (rather than pragmatically); thus, for example, Θ5

is a semantic extension of ΘInv . We can tentatively define the intended models of a given
extension Θ′ of Θ to be those models of Θ′ which accord with our expectations given Θ′.32

We can then say that a pragmatics is pragmatically sound for a class of extensions of Θ
if, for every extension Θ′ in the class, the pragmatics selects all of the intended models
of Θ′, and that the pragmatics is pragmatically complete for a class of extensions of Θ if,
for every extension Θ′ in the class, the pragmatics selects only the intended models of Θ′.
Thus pragmatic soundness ensures that the theory produces only those predictions which
we would consider to be reasonable, and pragmatic completeness ensures that the theory
produces all such predictions.

In the case of event theories it seems to be appropriate to concentrate on the prag-
matic soundness and completeness of preference1 for semantic extensions of ΘInd ; for, given
that preference1 does have these properties, the pragmatic soundness and completeness of
preference2 for extensions of ΘInd which include event preferences but are otherwise seman-
tic seems to be uncontentious.

In order to argue for the pragmatic soundness of preference1 we have to show that the
restrictions that it imposes are all necessary. Now the intuitive notion of prediction that
event theories endeavour to formalize is that of a context-dependent activity. Prediction
takes place at a point in time, “the present”, the past is considered to be fixed and the future
is considered to be open. Moreover prediction should be based on all and only the available
evidence. It then consists of making regularity-based speculations about change given the
context, and then (quietly) assuming that facts which are not affected by the changes
will persist. These properties are captured by the restrictions imposed by preference1.
Location in time and the idea of a closed past and open future are captured by preferring
models of an event theory in which it is interpreted chronologically. The restriction of
the evidential context and subsequent preference for change over inertia is captured by
prioritorized minimaximization at the present time point; first restricting the evidential
context to that required by the earlier interpretation of the theory, then assuming whenever
possible that events succeed, and finally assuming wherever possible that facts persist.
Finally, the physical-theoretical distinction is necessary when a theory contains both kinds
of relations, as inertia is a property of the physical world and so should be restricted to
physical relations. The need for doing so is illustrated by Example 2.

The need to maximize inertia assumptions chronologically when attempting to represent
inductive reasoning about inertia was already clear to Hanks and McDermott (1987) in their
discussion of the Yale Shooting Problem. Moreover, the inductive extension of this example
(in which the events are inductive rather than deductive), given as Example 1, illustrates the
need to prefer change to inertia at any given time point. However, it might be objected that
it is not clear that earlier events should succeed in favour of later ones; that is, that success

32. The question of what counts as an intended model of a theory can be a vexed one; see, for example, the
discussions by Sandewall (1994, pp. 68-69) and Collins, Hall, and Paul (2004, pp. 32-39). However, in
the following discussion, it is sufficient to focus on cases where there is general agreement on expected
outcomes.

401



Bell

assumptions should be made chronologically. But if we consider the extension of Example 1
in which a second, later, shot occurs (as in the discussion of Θ′

1 following the example),
then it seems clear that we expect that the first shot will prove fatal, with the consequence
that the second shot fails because Fred is already dead when it occurs; although, of course,
if the first shot were to fail for some independent reason, then we would expect the second
shot to succeed. When predicting that the first shot will succeed we do not consider that
its success may be jeopardized by a later shot. To allow later events to influence earlier
events in this way would be to allow a mysterious form of backwards causation.

A long-standing objection to the chronological assumption of inertia is that this does
not fit with the generation of explanations. The standard example of this is Kautz’s (1986)
Stolen Car Problem; where a car is parked, left unattended, and discovered to be stolen at
some later point in time. It has since become part of the folklore that the chronological
assumption of inertia is pragmatically unsound because it results in the conclusion that
the car was stolen just before this was discovered, when, intuitively, it seems reasonable to
conclude that the car could have been stolen at any earlier point at which it was unattended.
In consequence, proponents of the chronological maximization of inertia have been prompted
to qualify its application; for example, Sandewall (1994) suggests that certain occluded
relations should be exempt from the law of inertia, at least for certain intervals of time.33

However it seems to me that there is a better response, namely to argue that examples
involving explanation are irrelevant when considering the pragmatic soundness of a theory
of prediction because prediction and explanation are different forms of reasoning (Bell,
1998).34

Another long-standing objection to the chronological assumption of inertia involves non-
determinism. Thus it is claimed, as illustrated by Example 6, that the chronological mini-
mization of inertia can determine the outcome of non-deterministic events, thereby eliminat-
ing intended models. However, rather than seek to weaken the preference criterion, I suggest
that we should take care to represent the causal structure of non-deterministic events (the
fact that they introduce branching histories) correctly; as illustrated by Example 7.

On the basis of these considerations it seems reasonable to conjecture that preference1

is pragmatically sound.

33. This idea is different from the physical-theoretical distinction. To say that a fact is occluded at a point
in time is, indeed, to say that it is not subject to the law of inertia at that point in time. However, the
occluded fact could naturally be classified as a physical one, such as those represented by the At relation
in Example 2.

34. Prediction is a form of inductive reasoning; given an epistemic context, the task is to produce reason-
able conclusions on the basis of it. By contrast, explanation is a form of abductive reasoning; given a
conclusion and an epistemic context which does not imply it, the task is to generate appropriate expla-
nations of the conclusion. Doing so when reasoning about events and their effects involves extending the
epistemic context in appropriate ways, so that the conclusion can be induced (predicted) from each of
the extensions. In order to ensure that an explanation is appropriate it is reasonable to require that an
extension should be such that some event therein causes the conclusion. Consequently I suggest (Bell,
2001, ‘Causal counterfactuals’) that explanations are best dealt with counterfactually in the more com-
prehensive setting provided by the theory of causation sketched in Footnote 4. On this view, an event
occurrence ǫ together with conditions φ explain ψ at a world w iff ǫ causes ψ at all closest ǫ ∧ φ-worlds
to w. Thus, in the case of the Stolen Car Problem, the occurrence of an additional steal event at any
time point in the interval during which the car is unattended is a cause of, and so explains, the absence
of the car at the next time point.
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In order to argue for the pragmatic completeness of preference1 we have to show that
the restrictions that it imposes are sufficient. Examples involving ramifications, such as
Lifschitz’s (1990) lamp-circuit and Baker’s (1991) ice-cream eating pedestrian appear to
show otherwise. The point of these examples is illustrated by Example 3 where unintended
models are selected by the pragmatics. However, I suggest that the problem lies not with
the definition of preference1 but with the fact that we need to represent the causal nature
of ramifications (as arising from events which are contemporaneously caused (ultimately)
by primary events) correctly; as illustrated by Example 4.35

In the absence of counterexamples it seems reasonable to conjecture that preference1 is
pragmatically complete; although, of course, it is always possible that some new example
will show that preference1 is too liberal. If so, then this will not be disastrous for the
theory proposed here. On analysis, the example will reveal some further property of pre-
diction which is not captured by preference1, and preference1 can be refined accordingly. In
Goodman’s terms, this would simply be part of the delicate process of bringing theory and
practice into agreement.36

Rather than seeking for justifications of this kind, Sandewall (1994) proposes a radically
different methodology. He begins by suggesting a series of ontological characteristics of
instances of predictive reasoning. These include context-free inertia (I), alternative results
(A), ramification (D), concurrency (C), surprises (S), and normality (N). Examples of
reasoning which include several of these characteristics can be classified as belonging to
the corresponding family; for example, the inductive version of the Yale Shooting Problem
(Example 1 above) belongs to the family IN, as it involves reasoning about inertia and about
the normal outcome of the shoot event. Sandewall then proposes a formal pragmatics, the
trajectory semantics, which defines the class of intended models for any given example of the
family IAD, and uses this to prove the correctness of (to provide validations for) various
formal pragmatics for theories expressed in appropriate formal languages. For example, a
simple form of chronological minimization called PCM is proved to be valid for the family
IAD; by showing that, for any given example of the IAD family, PCM selects exactly the
same models as the trajectory semantics does. Thus the range of applicability of PCM is
established; that is, PCM is proved to be applicable for all instances of prediction which
have the characteristics of the IAD family.

35. The discussion of the gears example, culminating in Example 5, shows that the theory of events is not
restricted by the presence of symmetric constraints, but rather that it can be used to represent our
reasoning about the direction of causation among symmetrically constrained events.

36. A sceptical reader might object that all I have done is to show that the theory works for a few “toy”
examples. However, this is to overlook the care taken to represent prediction accurately, and to mis-
understand the motivation behind the choice of examples. The examples referred to in the justification
given above were not chosen because they are easily represented, but because they are well-know bench-
mark examples which are specifically designed to probe for weaknesses; in Goodman’s (1954, p. 18) terms,
they represent “clinically pure cases that . . . display to best advantage the symptoms of a widespread and
destructive malady”. So the fact that a theory represents them correctly provides significant empirical
evidence in its favour. If the representations are also intuitively convincing, then they provide significant
evidence in favour of the conceptual basis of the theory.

A related objection is that the theory has only been shown to work for small-scale examples, and
there is no guarantee that it will “scale up” easily to larger examples. But I know of no inherent
limitations of scale. In particular, the definitions of events (their preconditions and effects) can be
extended in a modular way, and the fact that events are inductive, rather than deductive, means that a
given theory can be extended such that additional events occur without fear of contradiction.
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However this methodology is limited in two ways.
Firstly, there is the question of how the trajectory semantics itself is justified. It provides

a formal definition of the intended models of any given example (of the IAD family), but
how can we be sure that the models that it selects for any given example correspond to the
ones that we would select? It is not sufficient to simply stipulate that this is the case. It
is possible to justify a formal pragmatics by proving it to be equivalent to another (as in
the case of PCM and trajectory semantics), however at some point a formal pragmatics has
to be squared with our intuitions by means of an argument of the kind employed above.
Thus the best that we can hope for is a thesis relating a formal theory of prediction and
our intuitive notion of it.37 As Kripke once remarked, there is no mathematical substitute
for philosophy.

Secondly, as the trajectory semantics is restricted to the IAD family (essentially to
strips events), it would need to be extended to the IADCSN family before it could be
applied to event theories.

Nevertheless, it would be worthwhile to attempt to undertake a mathematical assess-
ment of event theories relative to some other formal theory; such as the above extension of
trajectory semantics. If possible, mathematical investigations of this kind provide an addi-
tional means of justifying formal theories. If the attempt to prove an equivalence between
two theories fails, then this will typically highlight inadequacies in one or both of them,
and so will suggest that the intuitions behind them need to be refined. Alternatively, if
it is possible to prove that the theories are equivalent, then this would provide mutually-
supporting evidence for the robustness of the intuitions underlying each of them; as it would
suggest that, despite appearances to the contrary, the two formal theories capture the same
properties of our intuitive notion of predictive causal reasoning.38 There is no philosophical
substitute for mathematics.

7. Related Work

The theory of natural events presented in this paper has been developed over many years,
and earlier versions of parts of it have appeared elsewhere. These earlier fragments have
been revised and combined here into a unified whole.

An earlier version of the theory of inductive events (Section 3) was suggested in previ-
ous research (Bell, 1998), and its model-building implementation was discussed by White,
Bell, and Hodges (1998). The theory has its intellectual origins in the work of McCarthy
(1980, 1986), who suggested that circumscription could be used to approach the qualifi-
cation problem and the frame problem. This proposal was developed by Shoham (1988),
who introduced the notion of chronological minimization in a classical, temporal, modal
language. Shoham’s theory offers the promise of a simple and intuitive approach to the two
problems. However, his theory is limited in many ways. In particular, it is propositional
and has no fact-event distinction, so it is not possible to state general axioms for change and

37. Similarly, the Chuch-Turing thesis is a thesis, rather than a theorem, as it claims an equivalence between
an informal intuitive notion, effective computability, and a formal theory of computability (recursive
functions, Turing machines).

38. Just as the equivalence results between the rival formalizations of effective computability (recursive
functions, Turing Machines, etc.) provide mutually-supportive evidence of the soundness of the intuitions
which underlie each of them.
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inertia in it. Also, Shoham requires that his theories meet a number of syntactic restric-
tions, including the restriction that no two causal rules conflict (see his Definition 4.7(7)).
His reason for doing so is to ensure that his theories are deterministic, so that the process
of chronological minimization interprets them correctly. But this makes it impossible to
express problems involving both (inductive) change and inertia, such as the inductive ver-
sion of the Yale Shooting Problem (discussed in Section 3 above) in his theory. Lifting the
restriction would allow the problem to be expressed, but the chronological minimization
of the theory would have the counter-intuitive result that Fred remained alive after the
shooting in one class of models, and died in another. In short, chronological minimization
is too simple. The theory of inductive events can thus be thought of as a generalization and
refinement of Shoham’s theory which fulfills its promise.

The first general common sense theory of change and inertia was proposed by Lifschitz
(1987). The axioms that he defines (in the Situation Calculus) are substantially different
from those of the theory of inductive events. However an important similarity is his re-
striction of his inertia axiom, on the basis of a distinction between primitive and defined
fluents (the Situation Calculus counterparts of object relations). He later (Lifschitz, 1990,
p. 371) says that this distinction should be regarded as a technical trick, and suggests an
alternative, more principled, distinction based on frames (McCarthy & Hayes, 1969). How-
ever it seems that his primitive-defined distinction can be justified by identifying it with
the physical-theoretical distinction introduced in Section 3.39

Secondary events (Section 4) were suggested in previous research (Bell, 1999, 2000).
Their use in the representation of ramifications should be compared with Thielscher’s (1997)
treatment. Thielscher views the problem of ramifications as a logical one, which arises (as
discussed in Section 4) because of the lack of “causal directedness” in material conditionals.
His solution starts with a deductive strips-like representation of events. The ramifications
of an event are then brought about by applying a series of causal constraints until a stable
state is reached. Causal constraints can be thought of as directed conditionals between two
single effects, stating the circumstances under which the first causes the second. Thus, the
problem posed by Example 3 is solved by having Ollie at L2 as a direct effect of moving from
L1 to L2, and having the fact that he is at L2 and is holding the block cause the additional
effect of its being at L2 also. While this may have the same effect as the invocation of
secondary events in some cases, the two approaches are radically different. Thielscher’s
causal constraints are deductive in nature, so, once begun, their application runs to its
conclusion without possible interruption. There is thus no possibility of representing failure
at any stage of the indirect-effect-propagation process. So, as it stands, his solution is limited
to deterministic deductive events, which either occur in isolation or which do not (directly
or indirectly) conflict with each other. Sandewall’s (1996) Causal Propagation Semantics is
similar to Thielscher’s approach and suffers from the same limitations. By contrast, on my
approach, success is propagated along an invocation chain, producing the associated effects,
but at some point an event may fail, in which case the propagation terminates; as illustrated

39. Readers familiar with Goodman’s (1954, Ch. 3) paradox will know that the logical complexity of predi-
cates is relative to a choice of language. But here, like Quine (Footnote 12), we can appeal to ordinary
language and its scientific refinements, and refrain from venturing into the fly-bottle. (Wittgenstein,
1953, §309: “What is your aim in philosophy?—To shew the fly the way out of the fly-bottle”.)
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by Example 4 above. This representation of ramifications can thus be freely combined with
non-deterministic events and with conflicting events.

Several formal theories of events employ a primitive causation relation; notable examples
are the A-language family originating with Gelfond and Lifschitz (1993) and Lin’s (1995)
extension of (Toronto) Situation Calculus (Lin & Reiter, 1994). The appearance of an
unanalyzed causation relation in a formal theory of events seems to beg the question; as
an appeal is made to a more complex notion (causation) in order to give an analysis of a
simpler one (change). However, rather than view the causation relation as an appeal to
full-blown causation (see Footnote 4), it is better to view it as a means of encoding detailed
causal knowledge. In Lin’s theory the ternary relation Caused(p, v, s) “is true if the fluent p
is caused (by something unspecified) to have the truth value v in the situation s” (p. 1986).
In keeping with this interpretation, two axioms are given:

Caused(p, true, s) ⊃ Holds(p, s) ,

Caused(p, false, s) ⊃ ¬Holds(p, s) .

Thus if fluent p is caused to have the value true (false) in situation s, then p holds (does
not hold) in situation s. By way of illustration, Lin discusses the example of a spring
loaded suitcase. If both of its locks are up, the suitcase opens. Initially the suitcase is
closed, one lock is up, the other is down, and the down-lock is flipped. Naturally we expect
that the suitcase will open as a result. However, attempts to formalize this example using
an ordinary domain axiom and inertia fail; as in the lamp circuit example, the other lock
remains up in the intended models, but there are also unintended models in which the
suitcase remains closed and the other lock changes position as a result. Consequently Lin
proposes a causal domain axiom:

up(L1, s) ∧ up(L2, s) ⊃ Caused(open, true, s) ; (81)

which states that if locks L1 and L2 are both up in situation s, then the suitcase is Caused
to be open in s. The intention is that axioms such as this are interpreted “causally”
(positively), and this effect is achieved by circumscribing the Caused relation and by adding
an inertia axiom which states that fluents which are not Caused to change persist. Thus
according to Lin’s account, ramifications arise as a result of causally-directed domain axioms
such as (81), in which facts cause other facts to change. Indeed, Lin (p. 1986) says of (81)
that:

[T]he physical spring loaded mechanism behind the causal rule has been ab-
stracted away. For all we care, it may just as well be that the device is not
made of spring, but of bombs that will blow open the suitcase each time the two
locks are in the up position. It then seems natural to say that the fluent open
is caused to be true by the fact that the two locks are both in the up position.

However this seems odd from a common sense point of view, which has it that events
cause change and that facts are otherwise inert. Moreover, as the actual cause has been
abstracted away, it is difficult to see how Lin’s account could be extended in order to include
the treatment of qualifications; for example, the suitcase may fail to open when both locks
are up because the mechanism is rusty, someone is sitting on the suitcase, etc. By contrast,
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it is obvious how to represent the problem using primary and secondary events; in a context
in which one lock is up and the other is down, flipping the down-lock invokes a secondary
event which, if it succeeds, has the additional effect that the suitcase is open. Moreover,
as noted above, the introduction of secondary events makes it possible to represent more
complex examples of ramifications, such as those of Example 4.

Secondary events should also be compared with the natural actions proposed by Reiter
(1996), Lin (1998), and Pinto (1998). In addition to actions initiated by agents, they suggest
that there are also natural actions which arise due to the nature of the world (the Laws
of Nature, etc.), and which are guaranteed to succeed. Their use is illustrated by Pinto’s
treatment of Lifschitz’s (1990) lamp-circuit example. If the switches in a circuit are in the
same position (both up or both down) then the lamp is on, otherwise it is off. Initially the
switches are in opposite positions and one of them is flipped. Clearly we expect the lamp to
be on as a result. However attempts to formalize this example using domain axioms with an
inertia axiom fail. In the intended models the other switch retains its position by inertia and
so the lamp comes on as a result of the flip event. However there are also unintended models
in which the lamp remains off by inertia and consequently the other switch mysteriously
changes position as a result; this problem is essentially the same as that posed by Example 3.
In Pinto’s treatment of the problem, the agent flipping a switch results in the natural action
of current flowing in the circuit, and this in turn results in the lamp being on. The natural
action of the current flowing resolves the conflict between alternative uses of the inertia
axiom by bringing about an intermediary state in which both switches are up (as the flowing
current does not affect their position) and in which the inertia axiom can only be applied in
the intended way (as the flowing current is guaranteed to have the effect that the lamp is on).
As this proposal aims to solve the causal-directedness problem by introducing additional
events it can, perhaps, be seen as lying somewhere between Thielscher’s “logical” approach
and my “representational” approach. Unlike natural events, natural actions are deductive.
So it is difficult to see how natural actions could be used to represent qualifications. For
example, the natural action of the current flowing is guaranteed to succeed (turning the
lamp on), but in reality the current might not flow if the wire loses its conductivity, is cut,
etc. But clearly this complication can be represented using natural events. In a context
in which the switches are in opposite positions, flipping a switch invokes a secondary event
which, if it succeeds, results in the lamp being on; the lamp’s coming on is thus a defeasible
secondary effect of flipping the switch. Moreover, while natural actions are independent
of the actions of agents, secondary events are causally dependent on (at least one of) the
events which invoke them.

Event preferences (Section 5) were introduced in previous research (Bell, 2001, ‘Simul-
taneous events’). The presentation has been substantially improved, and, as the examples
show, the combination of event preferences and secondary events provides interesting new
possibilities.

Recently Vo and Foo (2005) have suggested an inductive theory of reasoning about action
which, they suggest, provides the basis for a unified solution to the frame, qualification, and
ramification problems. Their theory is based on the theory of argumentation developed by
Bondarenko, Dung, Kowalski, and Toni (1997), and so it differs radically from mine in terms
of its technical realization. At the conceptual level there are interesting similarities. Like
me, Vo and Foo suggest that event occurrences should be minimized and that the inertia of
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fluents (their counterpart of object-relations) should be maximized (p. 448). Furthermore,
in order to integrate their solution to the frame and qualification problems, they, in effect
(p. 493), adopt the principle that change is preferred to inertia (Bell, 1998). However, in
their theory there is no suggestion that the minimization and maximization should be done
chronologically. Indeed, they suggest that not doing so is a strength of their approach as
it enables them to provide explanations by “reasoning backwards” (or antichronologically)
in examples such as the Stolen Car Problem. However, as reasoning chronologically is an
essential feature of predictive reasoning, I suspect that this will prove to be a problem for
Vo and Foo’s theory. Instead I suggest (Footnote 34) that explanations should be treated
as counterfactual causes.

8. Conclusion

I began by arguing that Deductionism is a logical mistake, and have made a case for In-
ductionism. This began with the basic theory of inductive events, which provides the basis
for an integrated solution to the qualification and frame problems. I then introduced the
distinction between primary and secondary events in order to represent the causal structure
of natural events, thereby providing the basis for a solution to the ramification problem
and to the problem of representing non-determinism. Finally, I introduced event prefer-
ences, which can be used to express defeasible preferences over the outcomes of conflicting
simultaneous events. The development of the theory illustrates the benefit of starting off
on the right foot, with inductive, rather than deductive, events. The basic theory is simple
and intuitive, and its extensions require no more than the addition of a few axioms and the
refinement of one clause of the formal pragmatics.

In simple cases there may be little to choose between deductive and inductive theo-
ries of events; as both can produce predictions which are wrong. However the inductive
representation of natural events is more accurate because it reflects their defeasibility. The
representation of inductive events makes it possible to define primary and secondary events,
and defeasible event preferences. These in turn make it possible to give accurate represen-
tations of ramifications, non-determinism, and conflicting events. And this in turn makes it
possible to represent complex cases accurately. For instance, in Example 8, if any two of the
stooges attempt to move to a location, then one is expected to succeed, however if all three
do, then none succeeds. As always with inductive events, the example can be elaborated.
Thus if two stooges attempt the move and the preferred one fails for some independent
reason (he slips, say), then the other stooge normally succeeds (unless he also slips). Or in
the case where all three attempt the move, if Ollie slips, then Stan is expected to succeed.
But if he also slips, then Charlie is expected to succeed; but may also slip. Moreover, the
example can readily be combined with others. For example, each stooge could carry a stack
of blocks; where each block moves only if the block beneath it, or the stooge holding it,
moves. I know of no other theory of events which can represent reasoning of this subtlety
and complexity.

In future work, the model-building implementation of event theories will be investigated.
The general idea was outlined in previous research (Bell, 1995), and White et al. (1998)
describe the implementation of (an earlier version of) the theory of inductive events. Essen-
tially the idea is to build finite initial parts of the representative preferred models of a given
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event theory chronologically, as suggested by the informal discussion of the Yale Shooting
Problem in Section 3.

As suggested in the introduction (and in Footnote 4), the theory of natural events forms
part of a larger theory of causation (Bell, 2004, 2006, 2008). Event theories are used to
represent detailed, regularity-based, causal knowledge about events; expressed in the form
of preconditions and effects, invocations, and event preferences. This is used as the basis of
a general definition of sufficient causation, which is combined with a refinement of Lewis’s
(1986, Ch. 21) counterfactual-dependence condition to give the definition of causation.
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