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Abstract

In this paper, we present two alternative approaches to defining answer sets for logic
programs with arbitrary types of abstract constraint atoms (c-atoms). These approaches
generalize the fixpoint-based and the level mapping based answer set semantics of normal
logic programs to the case of logic programs with arbitrary types of c-atoms. The results
are four different answer set definitions which are equivalent when applied to normal logic
programs.

The standard fixpoint-based semantics of logic programs is generalized in two direc-
tions, called answer set by reduct and answer set by complement. These definitions, which
differ from each other in the treatment of negation-as-failure (naf ) atoms, make use of an
immediate consequence operator to perform answer set checking, whose definition relies on
the notion of conditional satisfaction of c-atoms w.r.t. a pair of interpretations.

The other two definitions, called strongly and weakly well-supported models, are gen-
eralizations of the notion of well-supported models of normal logic programs to the case of
programs with c-atoms. As for the case of fixpoint-based semantics, the difference between
these two definitions is rooted in the treatment of naf atoms.

We prove that answer sets by reduct (resp. by complement) are equivalent to weakly
(resp. strongly) well-supported models of a program, thus generalizing the theorem on
the correspondence between stable models and well-supported models of a normal logic
program to the class of programs with c-atoms.

We show that the newly defined semantics coincide with previously introduced seman-
tics for logic programs with monotone c-atoms, and they extend the original answer set
semantics of normal logic programs. We also study some properties of answer sets of pro-
grams with c-atoms, and relate our definitions to several semantics for logic programs with
aggregates presented in the literature.

1. Introduction and Motivation

Logic programming under the answer set semantics has been introduced as an attractive
and suitable knowledge representation language for AI research (Baral, 2005), as it offers
several desirable properties for this type of applications. Among other things, the language
is declarative and it has a simple syntax; it naturally supports non-monotonic reasoning,
and it is sufficiently expressive for representing several classes of problems (e.g., normal logic
programs capture the class of NP-complete problems); it has solid theoretical foundations
with a large body of building block results (e.g., equivalence between programs, systematic
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program development, relationships to other non-monotonic formalisms), which is extremely
useful in the development and validation of large knowledge bases; it also has a large number
of efficient computational tools. For further discussion of these issues, the interested reader
is referred to the book of Baral (2003), the overview paper of Gelfond and Leone (2002),
the paper of Marek and Truszczyński (1999), and the paper of Niemelä (1999).

A large number of extensions of logic programming, aimed at improving its usability in
the context of knowledge representation and reasoning, have been proposed. The Smodels
system introduces weight and cardinality constraint atoms to facilitate the encoding of
constraints on atom definitions (Simons, Niemelä, & Soininen, 2002). These constructs
can be generalized to aggregates; aggregates have been extensively studied in the general
context of logic programming by the work of (see, e.g., Kemp & Stuckey, 1991; Mumick,
Pirahesh, & Ramakrishnan, 1990; Gelder, 1992), and further developed in recent years (see,
e.g., Dell’Armi, Faber, Ielpa, Leone, & Pfeifer, 2003; Denecker, Pelov, & Bruynooghe, 2001;
Elkabani, Pontelli, & Son, 2004; Faber, Leone, & Pfeifer, 2004; Gelfond, 2002; Pelov, 2004;
Son & Pontelli, 2007). Both dlv (Eiter, Leone, Mateis, Pfeifer, & Scarcello, 1998) and
Smodels have been extended to deal with various classes of aggregates (Dell’Armi et al.,
2003; Elkabani, Pontelli, & Son, 2005). The semantics of these extensions have been defined
either indirectly, by translating programs with these extensions to normal logic programs,
or directly, by providing new characterizations of the concept of answer sets for programs
with such extensions.

Each of the above mentioned extensions to logic programming has been introduced to
facilitate the representation of a desirable type of knowledge in logic programming. As
such, it is not a surprise that the focus has been on the definition of the semantics and
little has been done to investigate the basic building block results for the new classes of
logic programs. In this context, the study of a uniform framework covering various classes of
extensions will provide us with several benefits. For example, to prove (or disprove) whether
a basic building block result (e.g., splitting theorem) can be extended to the new classes of
logic programs, we will need to prove (or disprove) this result only once; new results in the
study of the generic framework are applicable to the study of one of the aforementioned
extensions; etc. Naturally, for these studies to be possible, a uniform framework whose
semantical definition exhibits the behavior of various extensions of logic programming, needs
to be developed. The main goal in this paper is to address this issue.

The concept of logic programs with abstract constraint atoms (or c-atoms) has been
introduced by Marek, Remmel, and Truszczyński as an elegant theoretical framework for
investigating, in a uniform fashion, various extensions of logic programming, including car-
dinality constraint atoms, weight constraint atoms, and more general forms of aggregates
(Marek & Remmel, 2004; Marek & Truszczyński, 2004). Intuitively, a c-atom A represents
a constraint on models of the program containing A—and the description of A includes an
explicit description of what conditions each interpretation has to meet in order to satisfy
A. This view is very general, and it can be shown to subsume the description of tradi-
tional classes of aggregates (e.g., Sum, Count, Min, etc.).1 Thus, programs with weight
constraint atoms or other aggregates can be represented as logic programs with c-atoms.

1. One could also argue that c-atoms and general aggregates capture analogous notions.

354



Logic Programs with Arbitrary Abstract Constraint Atoms

The first explicit definition of answer sets for positive programs with arbitrary c-atoms
(i.e., programs without the negation-as-failure operator)—called programs with set con-
straints or SC-programs—has been introduced in the work of Marek and Remmel (2004).
In this work answer sets for programs with c-atoms are defined by extending the notion of
answer sets for programs with weight constraint atoms proposed in the work of Niemelä,
Simons, and Soininen (1999). Nevertheless, this approach provides, in certain cases, unin-
tuitive answer sets (see, e.g., Examples 7 and 20). In particular, the approach of Marek
and Remmel does not naturally capture some of the well-agreed semantics for aggregates.
One of our main goals in this paper is to investigate alternative solutions to the problem of
characterizing answer sets for programs with arbitrary c-atoms. Our aim is to match the
semantics provided in the more recent literature for monotone c-atoms, and to avoid the
pitfalls of the approach developed in the work of Marek and Remmel (2004).

The concept of answer sets for programs with c-atoms has been later revisited by Marek
and Truszczyński (2004), focusing on answer sets for programs with monotone constraint
atoms, where a c-atom A is monotone if, for each pair of interpretations I and I ′ with
I ⊆ I ′, we have that I satisfies A implies that I ′ satisfies A. This proposal has been
further extended to the case of disjunctive logic programs with monotone c-atoms (Pelov &
Truszczyński, 2004). In another paper (Liu & Truszczyński, 2005b), it is extended to deal
with convex c-atoms where a c-atom A is convex if, for every pair of interpretations I and J
with I ⊆ J , we have that I and J satisfy A implies that I ′ satisfies A for every I ⊆ I ′ ⊆ J .
This paper also proves several properties of programs with monotone and convex c-atoms.
It is shown that many well-known properties of standard logic programming under answer
set semantics are preserved in the case of programs with monotone c-atoms.

The main advantage of focusing on monotone c-atoms lies in that monotonicity provides
a relatively simpler way for defining answer sets of logic programs with c-atoms. On the
other hand, this restriction does not allow several important classes of problems to be
directly expressed. For example2, the aggregate atom Min({X | p(X)}) > 2 cannot be
viewed as a monotone aggregate atom—since monotonic extensions of the definition of p
might make the aggregate false; e.g., the aggregate is true if {p(3)} is the definition of p, but
it becomes false if we consider a definition containing {p(3), p(1)}. Similarly, the cardinality
constraint atom 1 {a, b} 1 is not a monotone constraint. Neither of these two examples can
be directly encoded using monotone c-atoms.

The studies in Marek and Remmel (2004), Marek and Truszczyński (2004) and in Liu
and Truszczyński (2005b) lead to the following question: “what are the alternatives to the
approach to defining answer sets of programs with arbitrary c-atoms developed by Marek and
Remmel (2004)?” Furthermore, will these alternatives—if any— capture the semantics of
programs with monotone c-atoms proposed by Marek and Truszczyński (2004) and avoid
the pitfalls of the notion of answer sets for arbitrary c-atoms in Marek and Remmel (2004)?

We present two equivalent approaches for defining answer sets for logic programs with
arbitrary c-atoms.

• The first approach is inspired by the notion of conditional satisfaction—originally
developed in Son and Pontelli (2007)—to characterize the semantics of logic programs

2. Although variables appear in the definition of aggregates, they are locally quantified. As such, an
aggregate literal is nothing but a shorthand of a collection of ground terms.
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with aggregates. We generalize this notion to the case of programs with c-atoms. The
generalization turns out to be significantly more intuitive and easier to understand
than the original definition in Son and Pontelli (2007). Using this notion, we define
an immediate consequence operator TP for answer set checking.

• The second approach is inspired by the notion of well-supportedness, proposed by
Fages (1994) for normal logic programs.

The approaches are very intuitive, and, we believe, they improve over the only other se-
mantics proposed for logic programs with arbitrary c-atoms in Marek and Remmel (2004).

We show that the newly defined semantics coincide with the previously introduced
semantics in Marek and Truszczyński (2004) in the case of programs with monotone c-atoms,
and they extend the original stable model semantics for normal logic programs. We discuss
different approaches for treating negation-as-failure c-atoms. We also relate our definitions
to several semantics for logic programs with aggregates, since the notion of c-atom can
be used to encode arbitrary aggregates. These results show that the proposed framework
naturally subsumes many existing treatments of aggregates in logic programming.

In summary, the main contributions of the paper are:

• A new notion of fixpoint answer set for programs with arbitrary c-atoms, which is
inspired by the fixpoint construction proposed in Son and Pontelli (2007) (but simpler)
and which differs significantly from the only proposal for programs with arbitrary c-
atoms in Marek and Remmel (2004); this will lead to two different definitions of answer
sets (answer set by reduct and answer set by complement);
• A generalization of the notion of well-supported models in Fages (1994) to programs

with arbitrary c-atoms, which—to the best of our knowledge—has not been inves-
tigated by any other researchers, which leads to the notions of weakly and strongly
well-supported models;
• A result showing that the set of answer sets by reduct (resp. by complement) is

equivalent to the set of weakly (resp. strongly) well-supported models; and
• A number of results showing that the newly defined notions of answer sets capture

the answer set semantics of various extensions to logic programming, in those cases
all the previously proposed semantics agree.

The rest of this paper is organized as follows. Section 2 presents preliminary definitions,
including the syntax of the language of logic programming with c-atoms, the basic notion of
satisfaction, and the notion of answer set for programs with monotone c-atoms in Marek and
Truszczyński (2004) and for positive programs with arbitrary c-atoms in Marek and Remmel
(2004). Section 3 presents our first approach to defining answer sets for logic programs with
arbitrary c-atoms based on a fixpoint operator, while Section 4 introduces an alternative
definition based on well-supportedness. Section 5 extends the semantics to programs with
arbitrary c-atoms in the head of rules. Section 6 relates the semantics presented in this paper
with early work on abstract constraint atoms and aggregates. Section 7 provides conclusions
and future work. Proofs of theorems and propositions are deferred to the appendix.
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2. Preliminaries—Logic Programs with Abstract Constraint Atoms

We follow the syntax used in Liu and Truszczyński (2005b) to define programs with abstract
constraint atoms. Throughout the paper, we assume a fixed propositional language L with
a countable set A of propositional atoms.

2.1 Syntax

An abstract constraint atom (or c-atom) is an expression of the form (D, C), where D ⊆ A is
a set of atoms (the domain of the c-atom), and C is a collection of sets of atoms belonging to
D, i.e., C ⊆ 2D (the solutions of the c-atom). Intuitively, a c-atom (D, C) is a constraint on
the set of atoms D, and C represents its admissible solutions. Given a c-atom A = (D, C),
we use Ad and Ac to denote D and C, respectively.

A c-atom of the form ({p}, {{p}}) is called an elementary c-atom and will be simply
written as p. A c-atom of the form (A, ∅), representing a constraint which does not admit
any solutions, will be denoted by ⊥. A c-atom A is said to be monotone if for every
X ⊆ Y ⊆ Ad, X ∈ Ac implies that Y ∈ Ac.

A rule is of the form

A← A1, . . . , Ak, not Ak+1, . . . , not An (1)

where A, Aj ’s are c-atoms. The literals not Aj (k < j ≤ n) are called negation-as-failure
c-atoms (or naf-atoms). For a rule r of the form (1), we define:

• head(r) = A,

• pos(r) = {A1, . . . , Ak},

• neg(r) = {Ak+1, . . . , An},

• body(r) = {A1, . . . , Ak, not Ak+1, . . . , not An}.

For a program P , hset(P ) denotes the set ∪r∈P head(r)d.
We recognize special types of rules:

1. A rule r is positive if neg(r) = ∅;

2. A rule r is basic if head(r) is an elementary c-atom;

3. A rule r is a constraint rule if head(r) = ⊥.

A logic program with c-atoms (or logic program, for simplicity)3 is a set of rules. A program
P is called a basic program if each rule r ∈ P is a basic or a constraint rule. P is said to be
positive if every rule in P is positive. P is monotone (resp. naf-monotone) if each c-atom
occurring in P (resp. in a naf-atom in P ) is monotone. Clearly, a monotone program is
also naf-monotone.

3. Whenever we want to refer to traditional logic programs (without c-atoms), we will explicitly talk about
normal logic programs.
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2.2 Models and Satisfaction

In this subsection, we introduce the basic definitions for the study of logic programs with
constraints. We will begin with the definition of the satisfaction of c-atoms. We then
introduce the notion of a model of programs with c-atoms.

2.2.1 Satisfaction of C-Atoms

A set of atoms S ⊆ A satisfies a c-atom A, denoted by S |= A, if Ad ∩ S ∈ Ac. S satisfies
not A, denoted by S |= not A, if Ad ∩ S 6∈ Ac.

It has been shown in Marek and Remmel (2004) and in Marek and Truszczyński (2004)
that the notion of c-atom is more general than extended atoms such as cardinality con-
straint atoms and aggregate atoms; thus, c-atoms can be used to conveniently represent
weight constraints, cardinality constraints (Simons et al., 2002), and various other classes
of aggregates, such as maximal cardinality constraints. For example,

• Let us consider an arbitrary choice atom of the form L{p1, . . . , pk, notq1, . . . , notqh}U ;
this can be represented by the c-atom (A, S) where:

– A = {p1, . . . , pk, q1, . . . , qh}
– S = { T ⊆ A | L ≤ |(T ∩ {p1, . . . , pk}) ∪ ({q1, . . . , qh} \ T )| ≤ U }

• Let us consider an arbitrary aggregate of the form F{v | p(v)} ⊕ V where F is a set
function (e.g., Sum, Avg), V is a number, and ⊕ is a comparison operation (e.g.,
≥, >, 6=). This can be represented by the c-atom (A,S), where:

– A = {p(a) | p(a) ∈ A}
– S = {T | T ⊆ A,F (T )⊕ V }

Example 1 Let us consider the aggregate sum({X | p(X)})≥ − 1, defined in a language
where A = {p(1), p(−2)}. From the considerations above, we have that this aggregate can
be represented by the c-atom ({p1), p(−2)}, S) where

S = {T | T ⊆ {p(1), p(−2)}, sum(T ) ≥ −1} = {∅, {p(1)}, {p(−2), p(1)}}
2

Example 2 Let us consider the cardinality constraint atom 1 {p(1), p(−1)} 1. This can be
represented by the c-atom ({p(1), p(−1)}, S) where

S = { T | T ⊆ {p(1), p(−1)}, 1 ≤ |(T ∩ {p(1), p(−1)}| ≤ 1 } = {{p(1)}, {p(−1)}}
2

C-atoms allow us to compactly represent properties that would require complex proposi-
tional combinations of traditional aggregates. E.g., a condition like “either all elements
or no elements of the set {a, b, c, d} are true” can be simply written as the single c-atom
({a, b, c, d}, {∅, {a, b, c, d}}). Further motivations behind the use of c-atoms can be found in
Marek and Remmel (2004) and Marek and Truszczyński (2004).

In the rest of the paper, we will often use in our examples the notation of cardinality
constraint atoms, weight constraint atoms, or general aggregate atoms instead of c-atoms,
whenever no confusion is possible.
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2.2.2 Models

A set of atoms S satisfies the body of a rule r of the form (1), denoted by S |= body(r),
if S |= Ai for i = 1, . . . , k and S |= not Aj for j = k + 1, . . . , n. S satisfies a rule r if it
satisfies head(r) or if it does not satisfy body(r).

A set of atoms S is a model of a program P if S satisfies every rule of P . M is a minimal
model of P if it is a model of P and there is no proper subset of M which is also a model
of P . In particular, programs may have more than one minimal model (see, for example,
Example 5).

Given a program P , a set of atoms S is said to support an atom a ∈ A if there exists
some rule r in P and X ∈ head(r)c such that the following conditions are met:

• S |= body(r),

• X ⊆ S, and

• a ∈ X.

Example 3 Let P1
4 be the program

p(a) ←
p(b) ←
p(c) ← q
q ← Count({X | p(X)}) > 2

The aggregate notation Count({X|p(X)}) > 2 represents the c-atom (D, {D}) where
D = {p(a), p(b), p(c)}. P1 has two models:

M1 = {p(a), p(b), p(c), q} M2 = {p(a), p(b)}
M2 is a minimal model of P1, while M1 is not. 2

Example 4 Let P2 be the program

p(1) ←
p(−1) ← p(2)
p(2) ← Sum({X | p(X)}) ≥ 1

The aggregate notation Sum({X|p(X)})≥1 represents the c-atom (D, C) where

D = {p(1), p(2), p(−1)} and
C = {{p(1)}, {p(2)}, {p(1), p(2)}, {p(2), p(−1)}, {p(1), p(2), p(−1)}}

Because of the first rule, any model of P2 will need to contain {p(1)}. It is easy to see that
{p(1), p(−1)} and {p(1), p(2), p(−1)} are models of P2 but {p(1), p(2)} is not a model of P2.
2

Example 5 Let P3 be the program

p ← ({q}, {∅})
q ← ({p}, {∅})

P3 has three models {p}, {q}, and {p, q}, of which {p} and {q} are minimal. 2

4. Remember that the notation p is a short form for the c-atom ({p}, {{p}}).
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2.3 Previously Proposed Semantics

In this section, we will overview the semantical characterizations for programs with c-atoms
proposed in the existing literature. In particular, we will review the notion of answer sets
for monotone programs (i.e., program that contain only monotone c-atoms), as defined in
Marek and Truszczyński (2004). A formal comparison between these semantics and the
novel approach we propose in this paper is described in Section 6.

Given a set of atoms S, a rule r is applicable in S if S |= body(r). The set of applicable
rules in S is denoted by P (S). A set S′ is nondeterministically one-step provable from S by
means of P if S′ ⊆ hset(P (S)) and S′ |= head(r) for every r ∈ P (S). The nondeterministic
one-step provability operator Tnd

P is a function from 2A to 22A such that for every S ⊆ A,
Tnd

P (S) consists of all sets S′ that are nondeterministically one-step provable from S by
means of P .

A P -computation is a sequence t = (Xn)n=0,1,2,... where X0 = ∅ and for every non-
negative integer n,

(i) Xn ⊆ Xn+1, and

(ii) Xn+1 ∈ Tnd
P (Xn)

St = ∪∞n=0Xi is called the result of the computation t. A set of atoms S is a derivable model
of P if there exists a P -computation t such that S = St. The Gelfond-Lifschitz reduct for
normal logic programs is generalized to monotone programs as follows.

Definition 1 Let P be a monotone program. For a set of atoms M , the reduct of P with
respect to M , denoted by PM , is obtained from P by

1. removing from P every rule containing in the body a literal not A such that M |= A;
and

2. removing all literals of the form not A from the remaining rules.

Answer sets for monotone programs are defined next.

Definition 2 A set of atoms M is an answer set of a monotone program P if M is a
derivable model of the reduct PM .

The next example shows that, for programs with non-monotone c-atoms, Definition 2 is, in
general, not applicable.

Example 6 Consider the program P3 from Example 5. We can check that this program
does not allow the construction of any P3-computation. In fact, Tnd

P3
(∅) = {{p, q}} and

Tnd
P3

({p, q}) = {∅}. Hence, {p} would not be an answer set of P3 (according to Definition 2)
since it is not a derivable model of the reduct of P3 with respect to {p} (which is P3).

On the other hand, it is easy to see that P3 is intuitively equivalent to the normal logic
program {p← not q, q ← not p}. As such, P3 should accept {p} as one of its answer sets.
2

The main reason for the inapplicability of Definition 2 lies in that the nondeterministic one-
step provability operator Tnd

P might become non-monotone in the presence of non-monotone
c-atoms.
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2.4 Answer Sets for Positive Programs

Positive programs are characterized by the lack of negation-as-failure atoms. Positive pro-
grams with arbitrary c-atoms have been investigated in Marek and Remmel (2004), under
the name of SC-programs. Let us briefly review the notion of answer sets for SC-programs—
which, in turn, is a generalization of the notion of answer sets for logic programs with weight
constraints, as presented in Niemelä et al. (1999). A detailed comparison between the ap-
proach in Marek and Remmel (2004) and our work is given in Section 6.

For a c-atom A, the closure of A, denoted by Â, is the c-atom

( Ad, {Y | Y ⊆ Ad, ∃Z. (Z ∈ Ac, Z ⊆ Y )} )

Intuitively, the closure is constructed by including all the supersets of the existing solutions.
A c-atom A is said to be closed if A = Â. A rule of the form (1) is a Horn-rule if

(i) its head is an elementary c-atom; and (ii) each c-atom in the body is a closed c-atom.
A SC-program P is said to be a Horn SC-program if each rule in P is a Horn-rule. The
one-step provability operator, defined by TP (X) = {a | ∃r ∈ P, head(r) = a, X |= body(r)},
associated to a Horn SC-program P is monotone. Hence, every Horn SC-program P has
a least fixpoint MP which is the only minimal model of P (w.r.t. set inclusion). Given a
set of atoms M and a SC-program P , the NSS-reduct of P with respect to M , denoted by
NSS(P, M), is obtained from P by

(i) removing all rules whose body is not satisfied by M ; and
(ii) replacing each rule

A← e1, . . . , en, A1, . . . , Am

where ei’s are elementary c-atoms and Aj ’s are non-elementary c-atoms by the set of
rules

{a← e1, . . . , en, Â1, . . . , Âm | a ∈ Ad ∩M}
A model S of a program P is an answer set of P if it is the least fixpoint of the one-step
provability operator of the program NSS(P, S), i.e., S = MNSS(P,S). It sometimes yields
answer sets that are not accepted by other extensions to logic programming. The next
example illustrates this point.

Example 7 Consider the program P4:

c ←
a ← ({a, c}, {∅, {a, c}})

We have that M1 = {c} and M2 = {a, c} are models of P4. Furthermore, NSS(P4, M1) is
the program

c ←
and NSS(P4,M2) consists of the rules

c ←
a ← ({a, c}, {∅, {a}, {c}, {a, c})}
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It is easy to see that M1 = MNSS(P,M1) and M2 = MNSS(P,M2). Thus, observe that P4 has
a non-minimal answer set {a, c} according to Marek and Remmel (2004). Note that the
program P4 can be viewed as the following program with aggregates

c ←
a ← Count({a, c}) 6= 1

which does not have {a, c} as an answer set under most of the proposed semantics for
aggregates (Denecker et al., 2001; Faber et al., 2004; Ferraris, 2005; Pelov, 2004; Son &
Pontelli, 2007). Furthermore, all these approaches accept {c} as the only answer set of this
program. 2

3. Answer Sets for Basic Programs: A Fixpoint Based Approach

In this section, we define the notion of answer sets of basic programs. In this approach, we
follow the traditional way for defining answer sets of logic programs, i.e., by:

1. first characterizing the semantics of positive programs (Definition 4), and then

2. extending it to deal with naf-atoms (Definitions 7 and 8).

3.1 Answer Sets for Basic Positive Programs

Example 5 shows that a basic positive program might have more than one minimal model.
This leads us to define a TP -like operator for answer set checking, whose construction is
based on the following observation.

Observation 1 Let P be a propositional normal logic program (i.e., without
c-atoms)5 and let R, S be two sets of atoms. Given a set of atoms M , we define
the operator TP (R, S) and the monotone sequence of interpretations 〈IM

i 〉ωi=0 as
follows.

TP (R,S) =

{
a

∃r ∈ P : head(r) = a,
pos(r) ⊆ R,neg(r) ∩ S = ∅

}

IM
0 = ∅ IM

i+1 = TP (IM
i ,M) (i ≥ 0)

Let us denote with IM
ω the limit of this sequence of interpretations. It is possible

to prove that M is an answer set of P w.r.t. Gelfond and Lifschitz (1988) iff
M = IM

ω .

As we can see from the above observation, the (modified) consequence operator TP takes
two sets of atoms, R and S, as its arguments, and generates one set of atoms which could
be viewed as the consequences of P given that R is true and S is assumed to be an answer
set of P . It is easy to see that TP is monotone w.r.t. its first argument, i.e., if R ⊆ V , then
TP (R, S) ⊆ TP (V, S). Thus, the sequence 〈IM

j 〉ωj=0 is monotone and converges to IM
ω for a

given S. We will next show how TP can be generalized to programs with c-atoms.

5. For a rule r from a normal logic program P ,
a← a1, . . . , an, not b1, . . . , not bm

head(r), pos(r), and neg(r) denote a, {a1, . . . , an}, and {b1, . . . , bm}, respectively.
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Observe that the definition of TP requires that pos(r) ⊆ R or, equivalently, R |= pos(r).
For normal logic programs, this is sufficient to guarantee the monotonicity of TP (·, S). If
this definition is naively generalized to the case of programs with c-atoms, the monotonicity
of TP (., S) is guaranteed only under certain circumstances, e.g., when c-atoms in pos(r) are
monotone. To deal with arbitrary c-atoms, we need to introduce the notion of conditional
satisfaction of a c-atom.

Definition 3 (Conditional Satisfaction) Let M and S be sets of atoms. The set S
conditionally satisfies a c-atom A w.r.t. M , denoted by S |=M A, if

1. S |= A and,

2. for every I ⊆ Ad such that S ∩Ad ⊆ I and I ⊆M ∩Ad, we have that I ∈ Ac.

Observe that this notion of conditional satisfaction has been inspired by the conditional
satisfaction used to characterize aggregates in Son and Pontelli (2007), but it is significantly
simpler.

We say that S conditionally satisfies a set of c-atoms V w.r.t. M , denoted by S |=M V ,
if S |=M A for every A ∈ V . Intuitively, S |=M V implies that S′ |= V for every S′ such that
S ⊆ S′ ⊆M . Thus, conditional satisfaction ensures that if the body of a rule is satisfied in
S then it is also satisfied in S′, provided that S ⊆ S′ ⊆M . This allows us to generalize the
operator TP defined in Observation 1 as follows. For a set of atoms S and a positive basic
program P , let

TP (S,M) =
{
a ∃r ∈ P : S |=M pos(r), head(r) = ({a}, {{a}})

}

The following proposition holds.

Proposition 1 Let M be a model of P , and let S ⊆ U ⊆ M . Then TP (S, M) ⊆
TP (U,M) ⊆M.

Let T 0
P (∅, M) = ∅ and, for i ≥ 0, let

T i+1
P (∅,M) = TP (T i

P (∅,M),M)

Then, the following corollary is a natural consequence of Proposition 1.

Corollary 1 Let P be a positive, basic program and M be a model of P . Then, we have

T 0
P (∅,M) ⊆ T 1

P (∅,M) ⊆ . . . ⊆M

The above corollary implies that the sequence 〈T i
P (∅,M)〉∞i=0 is monotone and limited (w.r.t.

set inclusion) by M . Therefore, it converges to a fixpoint. We denote this fixpoint by
T∞P (∅,M).

Definition 4 Let M be a model of a basic positive program P . M is an answer set of P
iff M = T∞P (∅,M).
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Observe that the constraint rules present in P (i.e., rules whose head is ⊥) do not contribute
to the construction performed by TP ; nevertheless, the requirement that M should be a
model of P implies that all the constraint rules will have to be satisfied by each answer set.
We illustrate Definition 4 in the next examples.

Example 8 Consider the program P1 from Example 3.

• M1 = {p(a), p(b)} is an answer set of P1 since:

T 0
P1

(∅,M1) = ∅
T 1

P1
(∅,M1) = {p(a), p(b)} = M1

T 2
P1

(∅,M1) = TP1({p(a), p(b)},M1) = M1

• M2 = {p(a), p(b), p(c), q} is not an answer set of P1, since:

T 0
P1

(∅,M2) = ∅
T 1

P1
(∅,M2) = {p(a), p(b)} = M1

T 2
P1

(∅,M2) = TP1({p(a), p(b)},M2) = M1

2

Example 9 Consider again the program P3 (Example 5). Let M1 = {p} and M2 = {q}.
We have that

T 0
P3

(∅,M1) = ∅ T 0
P3

(∅,M2) = ∅
T 1

P3
(∅,M1) = {p} = M1 T 1

P3
(∅,M2) = {q} = M2

Thus, both {p} and {q} are answer sets of P3. On the other hand, for M = {p, q}, we have
that T 1

P3
(∅, {p, q}) = ∅ because ∅ 6|=M ({q}, {∅}) and ∅ 6|=M ({p}, {∅}). Hence, {p, q} is not

an answer set of P3. 2

We conclude this section by observing that the answer sets obtained from the above con-
struction are minimal models.

Corollary 2 Let P be a positive basic program and M be an answer set of P . Then, M is
a minimal model of P .

The next example shows that not every positive program has an answer set.

Example 10 Consider P2 (Example 4). Since answer sets of positive programs are minimal
models (Corollary 2) and M = {p(1), p(−1)} is the only minimal model of P2, we have that
M is the only possible answer set of P2. Since

T 0
P2

(∅,M) = ∅
T 1

P2
(∅,M) = {p(1)}

T 2
P2

(∅,M) = TP2({p(1)},M) = {p(1)}
we can conclude that M is not an answer set of P2. Thus, P2 does not have answer sets. 2

The example highlights that supportedness, in our approach, is not a sufficient condition for
being an answer set—M ′ = {p(1), p(−1), p(2)} is a supported model, but it is not accepted
as an answer set. The reason for rejecting M ′ is the fact that the element p(2) is essentially
self-supporting itself (cyclically) in M ′. Note that M ′ is rejected, as an answer set, in most
approaches to aggregates in logic programming—e.g., the approach in Faber et al. (2004)
rejects M ′ for not being a minimal model of the FLP-reduct of the program.
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3.2 Answer Sets for Basic Programs

We will now define answer sets for basic programs, i.e., programs with elementary c-atoms
in the head of the rules, and rule bodies composed of c-atoms and naf-atoms.

In the literature, two main approaches have been considered to deal with negation of ag-
gregates and of other complex atoms. Various extensions of logic programming (e.g., weight
constraints in Simons et al. (2002) and aggregates in Faber et al. (2004)) support negation-
as-failure atoms by replacing each naf-atom not A with a c-atom A′, where A′ is obtained
from A by replacing the predicate relation of A with its “negation”. For example, following
this approach, the negated cardinality constraint atom not 1 {a, b} 1 can be replaced by
({a, b}, {∅, {a, b}}). Similarly, the negated aggregate atom not Sum({X | p(X)}) 6= 5 can
be replaced by Sum({X | p(X)}) = 5.

On the other hand, other researchers (see, e.g., Marek & Truszczyński, 2004; Ferraris,
2005) have suggested to handle naf-atoms by using a form of program reduct—in the same
spirit as in Gelfond and Lifschitz (1988).

Following these perspectives, we study two different approaches for dealing with naf-
atoms, described in the next two subsections. It is worth mentioning that both approaches
coincide in the case of monotone programs (Proposition 2).

3.2.1 Negation-as-Failure by Complement

In this approach, we treat a naf-atom not A by replacing it with its complement. We define
the notion of complement of a c-atom as follows.

Definition 5 The complement Ā of a c-atom A is the c-atom (Ad, 2Ad \Ac).

We next define the complement of a program P .

Definition 6 Given a basic program P , we define C(P ) (the complement of P ) to be the
program obtained from P by replacing each occurrence of not A in P with the complement
of A.

The program C(P ) is a basic positive program, whose answer sets have been defined in
Definition 4. This allows us to define the notion of answer sets of basic programs as follows.

Definition 7 A set of atoms M is an answer set by complement of a basic program P iff
it is an answer set of C(P ).

It is easy to see that each answer set of a program P is indeed a minimal model of P .

Example 11 Let us consider the program P5, which consists of the following rules:

a ←
c ← not ({a, b}, {{a, b}})

The complement of P5 is
a ←
c ← ({a, b}, {∅, {a}, {b}})

which has {a, c} as its only answer set. Thus, {a, c} is an answer set by complement of P5.
2
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Example 12 Let P6 be the program

c ← not 1{a, b}1
a ← c
b ← a

We have that C(P6) is the program

c ← ({a, b}, {∅, {a, b}})
a ← c
b ← a

This program does not have an answer set (w.r.t. Definition 4); thus P6 does not have an
answer set by complement. 2

3.2.2 Negation-as-Failure by Reduction

Another approach for dealing with naf-atoms is to adapt the Gelfond-Lifschitz reduction
of normal logic programs (Gelfond & Lifschitz, 1988) to programs with c-atoms—this ap-
proach has been considered in Marek and Truszczyński (2004) and Ferraris (2005). We can
generalize this approach to programs with arbitrary c-atoms as follows. For a basic program
P and a set of atoms M , the reduct of P w.r.t. M (PM ) is the set of rules obtained by

1. removing all rules containing not A s.t. M |= A; and

2. removing all not A from the remaining rules.

The program PM is a positive basic program. Thus, we can define answer sets for P as
follows:

Definition 8 A set of atoms M is an answer set by reduct of P iff M is an answer set of
PM (w.r.t. Definition 4).

Example 13 Let us reconsider the program P5 from Example 11 and let us consider M =
{a, c}. If we perform a reduct, we are left with the rules

a ←
c ←

whose minimal model is M itself. Thus, M is an answer set by reduct of the program P5.
2

The next example shows that this approach can lead to different answer sets than the case
of negation by complement (for non-monotone programs).

Example 14 Consider the program P6 from Example 12. Let M = {a, b, c}. The reduct
of P6 w.r.t. M is the program

c ←
a ← c
b ← a

which has M as its answer set, i.e., M is an answer set by reduct of P6. 2
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One consequence of the negation by reduct approach is the fact that it might lead to non-
minimal answer sets—in the presence of non-monotone atoms. For instance, if we replace
the atom Count({X | p(X)}) > 2 in P1 with not Count({X | p(X)}) ≤ 2, the new
program is (by replacing the aggregate with a c-atom):

p(a) ←
p(b) ←
p(c) ← q

q ← not

(
{p(a), p(b), p(c)},

{
∅, {p(a)}, {p(b)}, {p(c)},
{p(a), p(b)}, {p(b), p(c)}, {p(a), p(c)}

})

This program admits the following two interpretations as answer sets by reduct: M1 =
{p(a), p(b), p(c), q} and M2 = {p(a), p(b)}. Since M2 ⊆ M1, we have that a non-minimal
answer set exists.

This result indicates that, for certain programs with c-atoms, there might be different
ways to treat naf-atoms, leading to different semantical characterizations. This problem
has been mentioned in Ferraris (2005). Investigating other methodologies for dealing with
naf-atoms is an interesting topic of research, that we plan to pursue in the future.

3.3 Properties of Answer Sets of Basic Programs

We will now show that the notion of answer sets for basic programs with c-atoms is a natural
generalization of the notions of answer sets for normal logic programs. We prove that
answer sets of basic positive programs are minimal and supported models and characterize
situations in which these properties hold for basic programs. We begin with a result stating
that, for the class of naf-monotone programs, the two approaches for dealing with naf-atoms
coincide.

Proposition 2 Let P be a basic program. Each answer set by complement of P is an
answer set by reduct of P . Furthermore, if P is naf-monotone, then each answer set by
reduct of P is also an answer set by complement of P .

The above proposition implies that, in general, the negation-as-failure by complement ap-
proach is more ‘skeptical’ than the negation-as-failure by reduct approach, in that it may
accept fewer answer sets.6 Furthermore, Examples 12 and 14 show that a minimal (w.r.t.
set inclusion) answer set by reduct is not necessarily an answer set by complement of a
program.

Let P be a normal logic program (without c-atoms) and let c-atom(P ) be the pro-
gram obtained by replacing each occurrence of an atom a in P with ({a}, {{a}}). Since
({a}, {{a}}) is a monotone c-atom, c-atom(P ) is a monotone program. Proposition 2 im-
plies that, for c-atom(P ), answer sets by reduct and answer sets by complement coincide.
In the next proposition, we prove that the notion of answer sets for programs with c-atoms
preserves the notion of answer set for normal logic programs, in the following sense.

6. Note that we use the term “skeptical” to indicate acceptance of fewer models, which is somewhat different
than the use of the term in model theory.

367



Son, Pontelli, & Tu

Proposition 3 (Preserving Answer Sets) For a normal logic program P , M is an an-
swer set (by complement or by reduct) of c-atom(P ) iff M is an answer set of P (w.r.t. the
definition in Gelfond and Lifschitz (1988)).

The above proposition, together with Proposition 2, implies that normal logic programs can
be represented by positive basic programs. This is stated in the following corollary.

Corollary 3 Every answer set of a normal logic program P is an answer set of
C(c-atom(P )) and vice versa.

In the next proposition, we study the minimality and supportedness properties of answer
sets of basic programs.

Proposition 4 (Minimality of Answer Sets) The following properties hold:

1. Every answer set by complement of a basic program P is a minimal model of P .

2. Every answer set by reduct of a basic, naf-monotone program P is a minimal model
of P .

3. Every answer set (by complement/reduct) of a basic program P supports each of its
members.

4. Answer Sets for Basic Programs: A Level Mapping Based Approach

The definition of answer sets provided in the previous section can be viewed as a general-
ization of the answer set semantics for normal logic programs—in the sense that it relies
on a fixpoint operator, defined for positive programs. In this section, we discuss another
approach for defining answer sets for programs with c-atoms, which is based on the notion
of well-supported models.

The notion of well-supported models for normal logic programs was introduced in Fages
(1994), and it provides an interesting alternative characterization of answer sets. Intuitively,
a model M of a program P is a well-supported model iff there exists a level mapping, from
atoms in M to the set of positive integers, such that each atom a ∈ M is supported by a
rule r, whose body is satisfied by M and the level of each positive atom in body(r) is strictly
smaller than the level of a.7 Fages proved that answer sets are well-supported models and
vice versa (Fages, 1994). The notion of well-supportedness has been extended to deal with
dynamic logic programs in Banti, Alferes, Brogi, and Hitzler (2005). Level mapping has
also been used as an effective tool to analyze different semantics of logic programs in a
uniform way (Hitzler & Wendt, 2005).

In what follows, we will show that the notion of well-supported models can be effectively
applied to programs with c-atoms. A key to the formulation of this notion is the answer to
the following question:
“what is the level of a c-atom A given a set of atoms M and a level mapping L of M?”

On one hand, one might argue that the level mapping of A should be defined independently
from the mapping of the other atoms, being A an atom itself. On the other hand, it is

7. This implicitly means that pos(r) ⊆M and neg(r) ∩M = ∅, i.e., naf-atoms are dealt with by reduct.
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reasonable to assume that the level of A depends on the levels of the atoms in Ad, since the
satisfaction of A (w.r.t. a given interpretation) depends on the satisfaction of the elements
in Ad. The fact that every existing semantics of programs with c-atoms evaluates the truth
value of a c-atom A based on the truth value assigned to elements of Ad stipulates us to
adopt the second view.

It is worth to mention that this view also allows us to avoid undesirable circular justifi-
cations of elements of a well-supported model: if we follow the first view, the program P7

consisting of the following rules

a ← b
b ← a
a ← ({a, b}, {∅, {a, b}})

would have {a, b} as a well-supported model in which a, b, and ({a, b}, {∅, {a, b}}) are
supported by ({a, b}, {∅, {a, b}}), a, and {a, b} respectively. This means that a is true
because both a and b are true, i.e., there is a circular justification for a w.r.t. the model
{a, b}.

Let M be a set of atoms, ` be a mapping from M to positive integers, and let A be a
c-atom. We define H(X) = max({`(a) | a ∈ X}), and

L(A, M) = min({H(X) | X ∈ Ac, X ⊆M, X |=M A}).
Intuitively, the “level” of each atom is given by the smallest of the levels of the solutions of
the atom compatible with M—where the level of a solution is given by the maximum level of
atoms in the solution. We assume that max(∅) = 0, while min(∅) is undefined. We will now
introduce two different notions of well-supported models. The first notion, called weakly
well-supported models, is a straightforward generalization of the definition given in Fages
(1994)—in that it ignores the naf-atoms. The second notion,, called strongly well-supported
models, does take into consideration the naf-atoms in its definition.

Definition 9 (Weakly Well-Supported Model) Let P be a basic program. A model M
of P is said to be weakly well-supported iff there exists a level mapping ` such that, for
each b ∈ M , P contains a rule r with head(r) = ({b}, {{b}}), M |= body(r), and for each
A ∈ pos(r), L(A,M) is defined and l(b) > L(A,M).

We illustrate this definition in the next example.

Example 15 Let us consider again the program P5 and the set of atoms M = {a, b}. Let
A = ({a, b}, {∅, {a, b}}). Obviously, M is a model of P5. Assume that M is a weakly well-
supported model of P5. This means that there exists a mapping ` from M to the set of
positive integers satisfying the condition of Definition 9. Since b ∈M and there is only one
rule in P5 with b as head, we can conclude that `(b) > `(a). Observe that ∅ 6|=M A and
{a, b} |=M A. Thus, by the definition of L(A, M), we have that

L(A,M) = max({`(a), `(b)}) = `(b).

This implies that there exists no rule in P5, which satisfies the condition of Definition 9 and
has a as its head. In other words, M is not a weakly well-supported model of P5. 2
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The next proposition generalizes Fages’ result to answer sets by reduct for programs with
c-atoms.

Proposition 5 A set of atoms M is an answer set by reduct of a basic program P iff it is
a weakly well-supported model of P .

As we have seen in the previous section, different ways to deal with naf-atoms lead to
different semantics for basic programs with c-atoms. To take into consideration the fact
that naf-atoms can be dealt with by complement, we develop an alternative generalization
of Fages’s definition of a well-supported model to programs with abstract c-atoms as follows.

Definition 10 (Strongly Well-Supported Model) Let P be a basic program. A model
M of P is said to be strongly well-supported iff there exists a level mapping ` such that,
for each b ∈ M , P contains a rule r with head(r) = ({b}, {{b}}), M |= body(r), for each
A ∈ pos(r), L(A, M) is defined and `(b) > L(A,M), and for each A ∈ neg(r), L(Ā,M) is
defined and `(b) > L(Ā,M),

Using Proposition 5 and Proposition 2, we can easily show that the following result holds.

Proposition 6 A set of atoms M is an answer set by complement of a basic program P
iff it is a strongly well-supported model of C(P ).

The above two propositions, together with Proposition 2, lead to the following corollary.

Corollary 4 For every naf-monotone basic program P , each weakly well-supported model
of P is also a strongly well-supported model of P and vice versa.

As we have discussed in the previous section, each normal logic program P can be easily
translated into a monotone basic program with c-atoms of the form ({a}, {{a}}), c-atom(P ).
Thus, Corollary 4 indicates that the notion of weakly/strongly well-supported model is
indeed a generalization of Fages’s definition of well-supported model to programs with c-
atoms.

5. Answer Sets for General Programs

General programs are programs with non-elementary c-atoms in the head. The usefulness
of rules with non-elementary c-atoms in the head, in the form of a weight constraint or an
aggregate, has been discussed in Ferraris (2005), Simons et al. (2002) and in Son, Pontelli,
and Elkabani (2006). For example, a simple atom8

Count({X | taken(X, ai)}) ≤ 10

can be used to represent the constraint that no more than 10 students can take the AI class.
The next example shows how the 3-coloring problem of a graph G can be represented using
c-atoms.

8. Recall that aggregates are special form of c-atoms.
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Example 16 Let the three colors be red (r), blue (b), and green (g). The program contains
the following rules:

• the set of atoms edge(u, v) for every edge (u, v) of G,

• for each vertex u of G, the following rule:

({color(u, b), color(u, r), color(u, g)}, {{color(u, b)}, {color(u, r)}, {color(u, g)}})←
which states that u must be assigned one and only one of the colors red, blue, or
green.

• for each edge (u, v) of G, three rules representing the constraint that u and v must
have different color:

⊥ ← color(u, r), color(v, r), edge(u, v)
⊥ ← color(u, b), color(v, b), edge(u, v)
⊥ ← color(u, g), color(v, g), edge(u, v)

2

We note that, with the exception of the proposals in Ferraris (2005), Son, Pontelli, and
Elkabani (2006), other approaches to defining answer sets of logic programs with aggregates
do not deal with programs with aggregates in the head. On the other hand, weight constraint
and choice atoms are allowed in the head (Simons et al., 2002). Similarly, c-atoms are
considered as head of rules in the framework of logic programs with c-atoms by Marek and
Remmel (2004) and by Marek and Truszczyński (2004).

In this section, we define answer sets for general programs—i.e., programs where the
rule heads can be arbitrary c-atoms. Our approach is to convert a program P with c-atoms
in the head into a collection of basic programs, whose answer sets are defined as answer sets
of P . To simplify the presentation, we will talk about “an answer set of a basic program” to
refer to either an answer set by complement, an answer set by reduct, or a well-supported
model of the program. The distinction will be stated clearly whenever it is needed.

Let P be a program, r ∈ P , and let M be a model of P . The instance of r w.r.t. M ,
denoted by inst(r,M) is defined as follows

inst(r,M) =

{
{b← body(r) | b ∈M ∩ head(r)d} M ∩ head(r)d ∈ head(r)c

∅ otherwise

The instance of P w.r.t. M , denoted by inst(P,M), is the program

inst(P, M) =
⋃

r∈P

inst(r,M)

It is easy to see that the instance of P w.r.t. M is a basic program. This allows us to define
answer sets of general programs as follows.

Definition 11 Let P be a general program. M is an answer set of P iff M is a model of
P and M is an answer set of inst(P, M).
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This definition is illustrated in the next examples.

Example 17 Let P8 be the program consisting of a single fact:

({a, b}, {{a}, {b}})←
Intuitively, P8 is the choice atom 1 {a, b} 1 in the notation of Smodels.

This program has two models, {a} and {b}. The instance inst(P8, {a}) contains the
single fact

a←
whose only answer set is {a}. Similarly, the instance inst(P8, {b}) is the single fact

b←
whose only answer set is {b}. Thus, P8 has the two answer sets {a} and {b}. 2

The next example shows that in the presence of non-elementary c-atoms in the head, answer
sets might not be minimal.

Example 18 Let P9 be the program consisting of the following rules:

({a, b}, {{a}, {b}, {a, b}}) ←
c ← b

Intuitively, the first rule of P9 is the cardinality constraint 1 {a, b} 2 in the notation of
Smodels. This program has four models: M1 = {a}, M2 = {b, c}, M3 = {a, b, c}, and
M4 = {a, c}. The instance inst(P9,M1) contains the single fact

a←
whose only answer set is M1. Thus, M1 is an answer set of P9.

If we consider M3, the corresponding instance inst(P9, M3) contains the rules

a ←
b ←
c ← b

whose only answer set is M3. This shows that M3 is another answer set of P9.
Similarly, one can show that M2 is also an answer set of P9.
The instance inst(P9,M4) is the program

a ←
c ← b

which has {a} as its only answer set. Hence, M4 is not an answer set of P9. Thus, P9 has
three answer sets, M1, M2, and M3. In particular, observe that M1 ⊂M3. 2

Observe that if P is a basic program then P is its unique instance. As such, the notion
of answer sets for general programs is a generalization of the notion of answer sets for
basic programs. It can be shown that Proposition 2 also holds for general programs. The
relationship between the notion of answer set for general programs and the definition given
in Marek and Remmel (2004) and other extensions to logic programming is discussed in the
next section.
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6. Related Work and Discussion

In this section, we relate our work to some recently proposed extensions of logic program-
ming, and discuss a possible method for computing answer sets of programs with c-atoms
using available answer set solvers.

6.1 Related Work

The concept of logic programs with c-atoms, as used in this paper, has been originally intro-
duced in Marek and Remmel (2004) and in Marek and Truszczyński (2004)—in particular,
programs with c-atoms have been named SC-programs in Marek and Remmel (2004).9 The
Example 7 shows that our semantical characterization differs from the approach adopted
in Marek and Remmel (2004). In particular, our approach guarantees that answer sets for
basic programs are minimal, while that is not the case for the approach described in Marek
and Remmel (2004). Consider another example:

Example 19 Consider the program P10

a ←
c ←
d ← ({a, c, d}, {{a}, {a, c, d}})

According to our characterization, this program has only one answer set, M1 = {a, c}. If
we consider the approach described in Marek and Remmel (2004), then we can verify that
M2 = {a, c, d} is an answer set since the NSS-reduct of P10 with respect to M2 is

a ←
c ←
d ← ({a, c, d}, {{a}, {a, c}, {a, d}, {a, c, d}})

and the least fixpoint of the one-step provability operator is {a, c, d}. 2

In this type of examples, it seems hard to justify the presence of d in the answer set of the
original program. We suspect that the replacement of a c-atom by its closure, used in the
NSS-reduct, might be the reason for the acceptance of unintuitive answer sets in Marek and
Remmel (2004). The following proposition states that our approach is more skeptical than
the approach of Marek and Remmel (2004).

Proposition 7 Let P be a positive program. If a set of atoms M is an answer set of P
w.r.t. Definition 11 then it is an answer set of P w.r.t. Marek and Remmel (2004).

The syntax of logic programs with c-atoms, as used in this paper, is also used in Liu
and Truszczyński (2005b) and in Liu and Truszczyński (2005a). One of the main differences
between our work and the work of Marek and Truszczyński (2004) is that we consider
arbitrary c-atoms, while the proposal of Marek and Truszczyński (2004) focuses on monotone

9. Although naf-atoms are not allowed in the definition of SC-programs, the authors suggest that naf-atoms
can be replaced by their complement.
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(and convex) c-atoms. The framework introduced in this paper can be easily extended to
disjunctive logic programs considered in Pelov and Truszczyński (2004).

The immediate consequence operator TP proposed in this paper is different from the
nondeterministic one-step provability operator, Tnd

P , adopted in Marek and Truszczyński
(2004), in that TP is deterministic and it is applied only to basic positive programs. In Marek
and Truszczyński (2004) and in Liu and Truszczyński (2005b), the researchers investigate
how several properties of normal logic programs (e.g., strong equivalence) hold in the se-
mantics of programs with monotone c-atoms of Marek and Truszczyński (2004). We have
not directly studied such properties in the context of our semantical characterization; nev-
ertheless, as we will see later, Proposition 8 implies that the results proved in Liu and
Truszczyński (2005b) are immediately applicable to our semantic characterization for the
class of monotone programs. We do, however, focus on the use of well-supported models
and level mapping in studying answer sets for programs with c-atoms, an approach that
has not been used before for programs with c-atoms.

We will next present a result that shows that our approach to define answer sets for
monotone programs coincides with that of Marek and Truszczyński (2004).

Proposition 8 Let P be a monotone program. A set of atoms M is an answer set of P
w.r.t. Definition 11 iff M is a stable model of P w.r.t. Marek and Truszczyński (2004).

As discussed earlier, c-atoms can be used to represent several extensions of logic programs,
among them weight constraints and aggregates. Intuitively, an aggregate atom α (see, e.g.,
Elkabani et al., 2004; Faber et al., 2004) can be encoded as a c-atom (D, C), where D
consists of all atoms occurring in the set expression of α and C ⊆ 2D is such that every
X ∈ C satisfies α (see Examples 3-4). As indicated in Marek and Truszczyński (2004),
many of the previous proposals dealing with aggregates do not allow aggregates to occur in
the head of rules. Here, instead, we consider programs with c-atoms in the head.

With regards to naf-atoms, some proposals (see, e.g., Elkabani et al., 2004) do not allow
aggregates to occur in naf-atoms. The proposal in Faber et al. (2004) treats naf-atoms by
complement, although a reduction is used in defining the semantics, while Ferraris (2005)
argues that, under different logics, naf-atoms might require different treatments.

We will now present some propositions which relate our work to the recent works on
aggregates. We can prove10:

Proposition 9 For a program with monotone aggregates P , M is an answer set of P iff it
is an answer set of P w.r.t. Faber et al. (2004) and Ferraris (2005).

The proposal presented in Pelov (2004) and in Denecker et al. (2001) deals with aggregates
by using approximation theory and three-valued logic, building the semantics on the three-
valued immediate consequence operator Φaggr

P , which maps three-valued interpretations into
three-valued interpretations of the program. This operator can be viewed as an operator
which maps pairs of set of atoms (R, S) where R ⊆ S into pairs of set of atoms (R′, S′) with
R′ ⊆ S′. The authors show that the ultimate approximate aggregates provide the most
precise semantics for logic programs with aggregates. Let us denote with Φ1(R,S) and
Φ2(R,S)) the two components of Φaggr

P (R, S), i.e., Φaggr
P (R,M) = (Φ1(R, M),Φ2(R, M)).

The next proposition relates TP to Φaggr
P .

10. Abusing the notation, we use a single symbol to denote a program in different notations.
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Proposition 10 Let P be a positive program with aggregates and R and M be two set of
atoms such that R ⊆M . Then, TP (R,M) = Φ1(R, M).

The above proposition, together with the fact that the evaluation of the truth value of
aggregate formulas in Denecker et al. (2001) treats naf-atoms by complement, allows us to
conclude that, for a program with aggregates P , answer sets by complement of P (w.r.t.
Definition 4) are ultimate stable models of P (Denecker et al., 2001) and vice versa. This
result, together with the results in Son and Pontelli (2007), allows us to conclude that TP

is a generalization of the immediate consequence operator for aggregates programs in Son
and Pontelli (2007).

Before we conclude the discussion on related work, we would like to point out that
Propositions 7-10 show that the different approaches to dealing with aggregates differ only
for non-monotone programs. The main difference between our approach and others lies in
the skepticism of the TP operator, caused by the notion of conditional satisfaction. We will
illustrate this issue in the next two examples.

Example 20 Consider the program P2 of Example 4. This program does not have an
answer set w.r.t. Definition 4 but has M = {p(1), p(−1), p(2)} as an answer set according
to Marek and Remmel (2004). The reason for the unacceptability of M as an answer set
in our approach lies in that the truth value of the aggregate atom Sum({X | p(X)}) could
be either true or false even when p(1) is known to be true. This prevents the third rule to
be applicable and hence the second rule as well. This makes p(1) the fixpoint of the TP2

operator, given that M is considered as an answer set. In other words, we cannot regenerate
M given the program—and the skepticism of TP2 is the main reason. We observe that other
approaches (see, e.g., Faber et al., 2004; Ferraris, 2005) do not accept M as an answer set
of P2 as well. 2

The following example shows the difference between our approach and those in Faber et al.
(2004) as well as in Ferraris (2005).

Example 21 Consider the program P

p(1) ← ({p(1), p(−1)}, {∅, {p(1), p(−1)}})
p(1) ← p(−1)
p(−1) ← p(1)

Intuitively, the abstract atom A = ({p(1), p(−1)}, {∅, {p(1), p(−1)}}) represents the aggre-
gate atom Sum({X | p(X)}) ≥ 0. This program has two models M1 = {p(1), p(−1)} and
M2 = ∅. The approaches in Marek and Remmel (2004), Faber et al. (2004), and Ferraris
(2005) accept M1 as an answer set, while our approach and that of Pelov (2004), Denecker
et al. (2001) do not admit any answer sets. In our approach, TP (∅,M1) = ∅ because ∅
does not conditionally satisfy A w.r.t M1 since it is not true in every possible extension
of ∅ that leads to M1, namely it is not true in {p(−1)}. In other words, the skepticism
of our approach is again the main reason for the difference between our approach and the
approaches in Faber et al. (2004) and in Ferraris (2005). 2
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6.2 Discussion

In this section, we briefly discuss a possible method for computing answer sets of programs
with c-atoms, using off-the-shelf answer set solvers. The method makes use of a transforma-
tion similar to the unfolding transformation proposed in Elkabani et al. (2004) for dealing
with aggregates, which has been further studied and implemented in Elkabani et al. (2005).

We begin our discussion with basic positive programs. Given a basic positive program
P and a c-atom A, if Ac 6= ∅, an unfolding of A is an expression of the form

p1, . . . , pn, not q1, . . . , not qm

where {p1, . . . , pn} ∈ Ac and {q1, . . . , qm} = Ad \ {p1, . . . , pn}. If Ac = ∅, then ⊥, denoting
false, is the unique unfolding of A. Observe that if A = ({a}, {{a}}) then the only unfolding
of A is a. An unfolding of a rule

A0 ← A1, . . . , Ak

is a rule obtained by replacing each Ai with one of its unfoldings. unfolding(r) denotes
the set of all the unfoldings of a rule r. Let unfolding(P ) =

⋃
r∈P unfolding(r). Clearly,

unfolding(P ) is a normal logic program if P is a basic positive program. We can show that
M is an answer set of P iff M is an answer set of unfolding(P ). This indicates that we can
compute answer sets of basic positive programs with c-atoms by (i) computing its unfolding;
and (ii) using available answer set solvers to compute the answer sets of the unfolded
program. Following this approach, the main additional cost for computing answer sets of a
basic positive program is the cost incurred during the unfolding process. Theoretically, this
can be very costly as for each rule r, we have that |unfolding(r)| = ΠA∈body(r)|Ac|, where
|.| denotes the cardinality of a set. This means that the size of the program unfolding(P )
might be exponential in the size of the original program P . Thus, the additional cost
might be significant. In practice, we can expect that this number is more manageable,
as a rule might contain only a few c-atoms whose set of solutions is reasonably small.
Furthermore, certain techniques can be employed to reduce the size of the unfolding program
(Son, Pontelli, & Elkabani, 2006).

The above method can be easily extended to deal with naf-atoms and general programs.
If answer sets by complement need to be computed, we need to (i) compute the complement
of the program; and (ii) use the above procedure to compute answer sets of the complement.
On the other hand, if answer sets by reduct need to be computed, we will have at hand a
tentative answer set M . The reduction of the program with respect to M can be computed,
and the unfolding can then be applied to verify whether M is an answer set of the reduct.
Observe that the complement or a reduct of a program can be easily computed, and it does
not increase the size of the program. As such, the main cost for computing answer sets
of general programs following this approach is still the cost of the unfolding. So far, in
our study on programs with aggregates (a special type of c-atoms), we did not encounter
unmanageable situations (Son, Pontelli, & Elkabani, 2006).

Observe that the specification of a c-atom requires the enumeration of its domain and
solutions, whose size can be exponential in the size of the set of atoms of the program.
This does not mean that an explicit representation of c-atoms needs to be used. In most
cases, c-atoms can be replaced by aggregate literals. Because of this, several complexity
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results for programs with aggregates (see, e.g., Pelov, 2004; Son & Pontelli, 2007) can be
extended to logic programs with c-atoms. For example, we can easily show that the problem
of determining whether a logic program has an answer set or not is at least NPco-NP.
However, for programs with c-atoms representable by standard aggregate functions, except
those of the form Sum(.) 6= value and Avg(.) 6= value, the problem of determining whether
or not a program has an answer set remains NP-complete.

7. Conclusions and Future Work

In this paper, we explored a general logic programming framework based on the use of arbi-
trary constraint atoms. The proposed approach provides a characterization which is more
in line with existing semantics of logic programming with aggregates than the characteriza-
tion proposed in Marek and Remmel (2004). We provided two alternative characterizations
of answer set semantics for programs with arbitrary constraint atoms, the first based on
a fixpoint operator, which generalizes the immediate consequence operator for traditional
logic programs, and the second built on a generalization of the notion of well-supported
models of Fages (1994).

Within each characterization of answer set, we investigated two methodologies for treat-
ing naf-atoms and we identified the class of naf-monotone programs, on which the two
approaches for dealing with naf-atoms coincide. We also proved that the newly proposed
semantics coincides with the semantics proposed in Marek and Truszczyński (2004) for
monotone programs. Finally, we related our work to other proposals on logic programs
with aggregates and discussed a possible method for computing answer sets of programs
with abstract constraint atoms using available answer set solvers.

The proposal has some unexplored aspects. The proposed approach is rather “skeptical”
in the identification of answer sets—while the approach in Marek and Remmel (2004) is
overly “credulous”. We believe that these two approaches represent the two extremes of
a continuum that needs to be explored. In particular, we believe it is possible to identify
“intermediate” approaches simply by modifying the notion of conditional satisfaction. Work
is in progress to explore these alternatives.
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Appendix A

First, we will show some lemmas that will be used for the proofs of propositions.

Lemma 1 Let S ⊆ U ⊆ M ′ ⊆ M be sets of atoms and A be an abstract constraint atom.
Then, S |=M A implies U |=M ′ A.
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Proof. S |=M A implies that

{I | I ⊆ Ad, S ∩Ad ⊆ I ⊆M ∩Ad} ⊆ Ac.

Together with the fact S ⊆ U ⊆M ′ ⊆M , we have that

{I | I ⊆ Ad, U ∩Ad ⊆ I ⊆M ′ ∩Ad} ⊆ Ac.

This implies that U |=M ′ A. 2

Lemma 2 For two sets of atoms M ′ ⊆ M and a monotone c-atom A, if M ′ |= A (resp.
M ′ |= Ā) and M |= A (resp. M |= Ā) then M ′ |=M A (resp. M ′ |=M Ā). (Recall that Ā
denotes the complement of A.)

Proof.

1. Let us assume that M ′ |= A and M |= A. From the monotonicity of A, we can
conclude that, for every S, if M ′ ⊆ S ⊆M , we have that S |= A. As a result, we have
M ′ |=M A.

2. Let us assume that M ′ |= Ā and M |= Ā. Let us assume, by contradiction, that
M ′ 6|=M Ā. Since we already know that M ′ |= Ā, this implies that there exists
S ⊆ Ad, M ′ ∩ Ad ⊆ S ⊆ M ∩ Ad, such that S 6∈ 2Ad \ Ac, i.e., S ∈ Ac. Since A
is monotone and S ⊆ M , we have that M |= A. This is a contradiction, since we
initially assumed that M |= Ā.

2

Proposition 1. Let M be a model of P , and let S ⊆ U ⊆M . Then

TP (S,M) ⊆ TP (U,M) ⊆M.

Proof.

1. From Lemma 1, the assumption that S ⊆ U ⊆ M , and the definition of TP , we have
that TP (S, M) ⊆ TP (U,M).

2. Let us now show that TP (U,M) ⊆ M . Consider an atom a ∈ TP (U,M). We need to
show that a ∈M . From the definition of the TP operator, there is a rule r such that
head(r) = ({a}, {{a}}) and U |=M pos(r). But observe that, for each A ∈ pos(r), if
U |=M A then we will have that M |= A (Definition 3). Thus, we can conclude that
M |= pos(r). Since the program is positive and M is known to be a model of P , we
must have that M |= head(r), thus a ∈M .

2

Corollary 2 Let P be a positive basic program and M be an answer set of P . Then, M is
a minimal model of P .
Proof. M is a model of P since it is an answer set of P (Definition 4). Thus, we need to
prove that M is indeed a minimal model of P . Suppose that there exists M ′ ⊂M such that
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M ′ is a model of P . Proposition 1 and Lemma 1 imply that T k(∅,M) ⊆ T k(∅,M ′) ⊆M ′ for
every k. Since M is an answer set, we have that M ⊆M ′. This contradicts the assumption
that M ′ ⊂M . 2

Proposition 2. Let P be a basic program. Each answer set by complement of P is an
answer set by reduct of P . Furthermore, if P is naf-monotone, then each an answer set by
reduct of P is also an answer set by complement of P .
Proof. Let us start by showing that answer sets by complement are also answer sets by
reduct. Let M be a model and let us denote with P1 = C(P ) and let P2 = PM . Using the
fact that if S |=M Ā then M 6|= A we can easily prove by induction that the following result
holds:

T∞P1
(∅,M) ⊆ T∞P2

(∅,M) (2)

and if P is a naf-monotone program then

T i
P1

(∅,M) = T i
P2

(∅,M) (3)

If M is an answer set by complement then we have M = T∞P1
(∅, M). Furthermore,

T∞P2
(∅,M) ⊆ M (Proposition 1). This implies that M is an answer set of P by reduct

as well.
If P is naf-monotone, using Equation (3) and the fact that M is an answer set of P2 we

can conclude that M is an answer set by complement of P . 2

Proposition 3. For a normal logic program P , M is an answer set (by complement or by
reduct) of c-atom(P ) iff M is an answer set of P (w.r.t. Definition in Gelfond and Lifschitz
(1988)).
Proof. For convenience, in this proof, we will refer to answer sets defined in Gelfond
and Lifschitz (1988) as GL-answer sets. Because of the monotonicity of c-atom(P ) and
Proposition 2, it suffices to show that M is an answer set of P iff M is an answer set by
reduct of c-atom(P ).

Let us consider the case where P is a positive program. It follows from Observation 1
and the fact that S |=M ({a}, {{a}}) iff a ∈ S that the operator TP (., .) for P (defined in
Observation 1) coincides with the operator TP (., .) for c-atom(P ). Hence, M is an answer
set of c-atom(P ) iff M is a GL-answer set of P .

Now suppose that P is an arbitrary normal logic program. Let GL(P,M) be the
Gelfond-Lifschitz’s reduct of P w.r.t. M . Since M |= ({a}, {{a}}) iff a ∈ M , we have
that c-atom(P )M = c-atom(GL(P,M)). Using the result for positive program, we have
that M is a GL-answer set of P iff M is an answer set by reduct of c-atom(P ). 2

Proposition 4.

1. Every answer set by complement of a basic program P is a minimal model of P .

2. Every an answer set by reduct of a basic, naf-monotone program P is a minimal model
of P .

3. Every answer set (by complement/reduct) of a basic program P supports each of its
members.
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Proof.

1. Notice that for a set of atoms M and an abstract constraint atom A, M |= not A iff
M |= Ā. This implies that M is a model of P iff M is a model of C(P ). From this
and from Corollary 2, we can conclude that if M is an answer set by complement of
P , then it is a minimal model of P .

2. Let us assume that P is a naf-monotone basic program, and let M be an answer set
by reduct of P . From Proposition 2, M is also an answer set of P by complement.
The previous result implies that M is a minimal model of P .

3. It follows from Proposition 2 that it is enough to prove the conclusion for answer sets
by reduct of P . Let M be an answer set by reduct of P . From the definition, we
have that M = T∞

P M (∅,M). This implies that, if a ∈M , then there exists i such that
a ∈ T i

P M (∅,M). In turn, this allows us to identify a rule

({a}, {{a}})← A1, . . . , Ak, not Ak+1, . . . , not An

such that M 6|= Aj for k + 1 ≤ j ≤ n and T i
P M (∅,M) |=M Ai for 1 ≤ i ≤ k. In

particular, M |= Ai for 1 ≤ i ≤ k. We can easily conclude that the given rule
supports a.

2

Proof of Proposition 5

Let us start by proving the following lemma:

Lemma 3 Let P be a positive, basic program, and let M be a weakly well-supported model
of P . Let l be a mapping that satisfies the desired properties of weakly well-supportedness
of M . For every atom a, a ∈M implies a ∈ T

l(a)+1
P (∅,M).

Proof. First, observe that, for an atom a ∈M , we have

L(({a}, {{a}}),M) = l(a).

Let us prove the lemma by induction on l(a).

1. Base Case: Consider a ∈M such that l(a) = 0. Clearly, we have that P must contain
the rule

({a}, {{a}})←
hence, a ∈ T 1

P (∅,M).

2. Inductive Step: Assume that the result holds for every atom b such that 0 ≤ l(b) < k.

Consider an atom a ∈ M such that l(a) = k. We will show that a ∈ T k+1
P (∅,M).

Since M is a weakly well-supported model of P , there exists a rule

({a}, {{a}})← A1, . . . , An
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in P such that L(Ai,M) is defined and l(a) > L(Ai,M) for every 1 ≤ i ≤ n.

Let S = T k
P (∅,M). For each i ∈ {1, . . . , n}, since L(Ai, M) is defined, there is X ⊆M ,

X ∈ (Ai)c such that X |=M Ai and L(Ai,M) = H(X). Hence, we have k = l(a) >
L(Ai,M) = H(X). From the inductive hypothesis, since X ⊆ M , we can conclude
that X ⊆ S. On the other hand, we already proved (Corollary 1) that

T 0
P (∅,M) ⊆ . . . ⊆ T k

P (∅,M) = S ⊆ . . . ⊆M.

As a result, we have that X ⊆ S ⊆M .

From Lemma 1, since X |=M Ai, this implies that S |=M Ai. Accordingly, we have
a ∈ T k+1

P (∅,M).

2

We can now proceed with the proof of the proposition.

Proposition 5. A set M of atoms is an answer set by reduct of a basic program P iff it is
a weakly well-supported model of P .

Proof. We will prove the proposition in two steps. We first prove that the result holds for
positive programs and then extend it to the case of arbitrary basic programs.

• P is a positive program.

1. “⇒”: Suppose M is an answer set of P . Corollary 2 implies that M is a model of
P . Thus, it suffices to find a level mapping satisfies l the condition of Definition
9. For each atom a, let

l(a) =

{
min{k | a ∈ T k

P (∅,M)} if a ∈M
0 otherwise

Clearly, l is well defined. We will show that l is indeed the mapping satisfying
the properties of Definition 9.
Let us consider an atom a ∈M and let k = l(a). Clearly, k > 0 since T 0

P (∅,M) =
∅. So, we have that a ∈ T k

P (∅,M) but a 6∈ S = T k−1
P (∅,M) ⊆M . There are two

cases:

(a) P contains a rule
({a}, {{a}})←

In this case, the condition on l for the atom a is trivially satisfied.
(b) P contains a rule r of the form

({a}, {{a}})← A1, . . . , An

such that S |=M Ai for 1 ≤ i ≤ n.
Consider an integer 1 ≤ i ≤ n. Let X = S ∩ (Ai)d. By the definition of
conditional satisfaction, we have that X ∈ (Ai)c. It is easy to check that
X |=M Ai. In addition, we have X ⊆ M . As a result, L(Ai, M) is defined.
Furthermore, we have L(Ai,M) ≤ H(X) ≤ H(S) < k = l(a). This shows
that the condition on l for a is also satisfied in this case.
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The above two cases allow us to conclude that l satisfies the condition of Defini-
tion 9, i.e., M is a weakly well-supported model of P .

2. “⇐”: Suppose M is a weakly well-supported model of P . Due to Lemma 3,
we have that M ⊆ T∞P (∅,M). On the other hand, from Corollary 1, we have
T∞P (∅,M) ⊆ M . Consequently, we have M = T∞P (∅,M), which implies that M
is an answer set of P .

• P is an arbitrary basic program. It is easy to see that a set of atoms M is a
weakly well-supported model of P iff M is a weakly well-supported model of PM .
From the previous result, this means that M is an answer set by reduct of P iff M is
a weakly well-supported model of P .

2

Proposition 7. Let P be a positive program. If a set of atoms M is an answer set of P
w.r.t. Definition 11 then it is an answer set of P w.r.t. Marek and Remmel (2004).
Proof.

• Consider the case that P is a basic program. Since NSS(P, M) is a monotone pos-
itive programs, the least fixpoint of the one-step provability operator TNSS(P,M)(.)
coincides with the least fixpoint of our extended immediate consequence operator
TNSS(P,M)(., .) (see also Proposition 8). Furthermore, we can easily verify that
T∞P (∅,M) = T∞NSS(P,M)(∅,M) holds if M is an answer set w.r.t. Definition 11. These
two observations imply the conclusion of the proposition.

• We now consider the case that P is general positive program. Without loss of gener-
ality, we can assume that P does not contain any constraints. Let Q = inst(P,M).
We have that for a rule r′ ∈ Q if and only if there exists some rule r ∈ P such
that M |= head(r), r′ = a ← body(r), and a ∈ head(r)d ∩ M . This implies that
NSS(P, M) = NSS(Q,M). Since M is an answer set of Q (w.r.t. Definition 11),
we conclude that it is also an answer set of Q w.r.t. Marek and Remmel (2004) (the
basic case) which implies that M is also an answer set of P w.r.t. Marek and Remmel
(2004)

2

Proposition 8. Let P be a monotone program. A set of atoms M is an answer set of P
w.r.t. Definition 11 iff M is a stable model of P w.r.t. Marek and Truszczyński (2004).
Proof. Let us start by showing the validity of the result for positive programs. Let us
assume that P is a positive program. Without loss of generality, we assume that P does
not contain any constraints.

1. “⇒”: Let M be an answer set of P . From Definition 11, we have that M is a model
of P and M is an answer set of Q = inst(P,M).

For every non-negative integer i, let

Mi = T i
Q(∅,M)
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Because M is an answer set of Q, by definition, we have

M = T∞Q (∅,M)

To show that M is a stable model of P w.r.t. Marek and Truszczyński (2004), all we
need to do is to prove that the sequence 〈Mi〉∞i=0 is a P−computation. We do so by
proving that (i) Mi ⊆ Mi+1 and (ii) for every r ∈ P (Mi) 11, Mi+1 |= head(r), and
(iii) Mi+1 ⊆ hset(P (Mi)).

(i) Follows from Corollary 1.

(ii) Consider a rule r ∈ P (Mi). By the definition of P (Mi), we have that Mi |=
body(r). Because P is monotone and Mi ⊆M , it follows that M |= body(r) and
Mi |=M body(r).
Let X = M ∩ head(r)d. By the definition of inst(r,M), we have that

inst(r,M) = {b← body(r) | b ∈ X} ⊆ Q

As Mi |=M body(r), for every r′ ∈ inst(r,M), Mi |=M body(r′). By the definition
of Mi+1, it follows that head(r′) ∈Mi+1. Hence, X ⊆Mi+1. Since X ⊆ head(r)d,
this implies that

X ⊆Mi+1 ∩ head(r)d

On the other hand, because Mi+1 ⊆M , we have

Mi+1 ∩ head(r)d ⊆ X

Accordingly, we have

M ∩ head(r)d = X = Mi+1 ∩ head(r)d (4)

On the other hand, because M is a model of P and M |= body(r), we have
M |= head(r). Therefore,

M ∩ head(r)d ∈ head(r)c (5)

From (4) and (5), we have Mi+1 ∩ head(r)d ∈ head(r)c, i.e., Mi+1 |= head(r).

(iii) Let a be an atom in Mi+1. From the definition of Mi+1 it is easy to see that Q
must contain a rule r′ whose head is a and whose body is satisfied by Mi. This
implies that P (Mi) must contain a rule r such that a ∈M ∩head(r)d. It follows
that a ∈ head(r)d ⊆ hset(P (Mi)). Accordingly, we have Mi+1 ⊆ hset(P (Mi)).

2. “⇐”: Let M be a stable model of P according to Marek and Truszczyński (2004) and
let 〈Xi〉∞i=0 be the canonical computation for M , i.e.,

X0 = ∅
11. Recall that P (Mi) is the set of rules in P whose body is satisfied by Mi.
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Xi+1 =
⋃

r∈P (Xi)

head(r)d ∩M

According to Theorem 5 of Marek and Truszczyński (2004), we have

M =
⋃

i

Xi

Let Q = inst(P,M). Because M is a stable model of P , it is also a model of P . So,
to prove that M is an answer set of P , we only need to show that it is an answer set
of Q.

Let us construct a sequence of sets of atoms 〈Mi〉∞i as follows

M0 = ∅

Mi+1 = TQ(∅,Mi)

Clearly, to prove M is an answer set of Q, it suffices to show that

Xi = Mi (6)

Let us prove this by induction.

(a) i = 0: trivial because X0 = M0 = ∅.
(b) Suppose (6) is true for i = k, we will show that it is true for i = k + 1.

Consider an atom a ∈ Xk+1. By the definition of Xk+1, there exists a rule r ∈ P
such that a ∈ head(r)d and Xk |= body(r). Since Xk ⊆ M and P is monotone,
it follows that M |= body(r). Because a stable model of P is also a model of P ,
we have M |= head(r). As a result, Q contains the following set of rules:

inst(r,M) = {b← body(r) | b ∈M ∩ head(r)d}

Because a ∈ head(r)d and a ∈ Xk+1 ⊆ M , we have a ∈ M ∩ head(r)d. As a
result, the following rule belongs to inst(r,M)

a← body(r)

Because Mk = Xk (inductive hypothesis), we have Mk |= body(r) and thus
Mk |=M body(r) (recall that Mk = Xk ⊆ M and body(r) consists of monotone
abstract constraint atoms only). By the definition of Mk+1, we have a ∈Mk+1.
We have shown that for every atom a ∈ Xk+1, a belongs to Mk+1. Hence,

Xk+1 ⊆Mk+1 (7)

Now, we will show that Mk+1 ⊆ Xk+1. Consider an atom b in Mk+1. By
definition of Mk+1, there exists a rule r′ ∈ Q such that head(r)d = b and Mk |=M

body(r′). By the definition of Q this means that there exists a rule r in P such
that M |= head(r)d, body(r) = body(r′) and b ∈M∩head(r)d. Because Xk = Mk
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(inductive hypothesis), from Mk |=M body(r′) = body(r), we have Xk |= body(r).
This implies that r ∈ P (Xk). Hence,

b ∈M ∩ head(r)d ⊆ Xk+1

Therefore we have
Mk+1 ⊆ Xk+1 (8)

From (7) and (8), we have Xk+1 = Mk+1.

The above result can be easily extended for programs with negation-as-failure c-atoms. We
omit the proof here. 2

Proof of Proposition 9.

To prove this proposition, a brief review of the approach in Faber et al. (2004) is needed.
The notion of answer set proposed in Faber et al. (2004) is based on a new notion of reduct,
defined as follows. Given a program P and a set of atoms S, the reduct of P with respect to
S, denoted by SP , is obtained by removing from P those rules whose body is not satisfied
by S. In other words,

FLP (P, M) = {r | r ∈ ground(P ), S |= body(r)}.

The novelty of this reduct is that it does not remove aggregate atoms and negation-as-failure
literals satisfied by S. For a program P , S is a FLP-answer set of P iff it is a minimal
model of FLP (P, S). We will now continue with the proof of the proposition. It is easy to
see that it is enough to consider programs without negation-as-failure c-atoms.

Proposition 9. For a program with monotone aggregates P , M is an answer set of P iff
it is an answer set of P w.r.t. Faber et al. (2004) and Ferraris (2005).

Proof. Due to the equivalent result in Ferraris (2005), it suffices to prove the equivalence
between our approach and that of Faber et al. (2004). Notice that in this paper we are
dealing with ground programs and therefore

1. “⇒”: Let M be a FLP-answer set of P . We will show that M is an answer set of P
(w.r.t. Definition 4).

Let Q = FLP (P, M). From the definition of FLP-answer set, M is a minimal model
of Q. Let M ′ = T∞P (∅,M). As M is a model of Q, it is also a model of P . Corollary
1 implies that M ′ ⊆M .

Consider r ∈ Q such that M ′ |= body(r) and head(r) = ({a}, {{a}}). From the
definition of Q and the monotonicity of P , we have M |= body(r). It follows from
Lemma 2 that M ′ |=M body(r). Hence, a ∈M ′ (by the definition of the operator TP ).
This implies that M ′ is a model of Q.

Because of the minimality of M and M ′ ⊆ M , we have M ′ = M . Hence, M is an
answer set of P .
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2. “⇐”: Let M be an answer set of P . We will prove that M is a FLP-answer set of P
by showing that M is a minimal model of Q = FLP (P, M).

Let M ′ ⊆ M be a model of Q. First, we will demonstrate that M ′ is a model of P .
Suppose otherwise, i.e., M ′ is not a model of P . This implies that P contains a rule
r such that head(r) = ({a}, {{a}}) for some atom a, M ′ |= A for A ∈ pos(r), and
a 6∈ M ′. Due to the monotonicity of P we have that M |= A for A ∈ pos(r). Hence,
Q contains the rule r. As a result, we have M ′ |= body(r). Thus, a ∈M ′ because M ′

is a model of Q. This is a contradiction.

We have shown that M ′ is a model of P . On the other hand, by Corollary 2, M is a
minimal model of P . Therefore, we have M ⊆ M ′. Accordingly, we have M ′ = M .
Thus, M is a minimal model of Q, i.e., an FLP-answer set of P .

2

Proof of Proposition 10. Let P be a positive program with aggregates and R and M
be two set of atoms such that R ⊆M . Then, TP (R, M) = Φ1(R, M) where Φaggr(R, M) =
(Φ1(R,M), Φ2(R,M)).

Proof. In order to prove this result, we will make use of an intermediate step. In Son and
Pontelli (2007), the following concepts for program with aggregates are introduced:
◦ Given an aggregate A, a solution of A is a pair 〈S+, S−〉, satisfying the following

properties:
∗ S+ ⊆ A and S− ⊆ A,
∗ S+ ∩ S− = ∅, and
∗ for each I ⊆ A where S+ ⊆ I and I ∩ S− = ∅, we have that I |= A.

◦ Given two interpretations I,M , an aggregate A is conditionally satisfied w.r.t. I, M
(denoted (I,M) |= A) if 〈I ∩M ∩ Ad, Ad \M〉 is a solution of A. For simplicity, we
define also conditional satisfaction for atoms, by saying that a is conditionally satisfied
w.r.t. I,M if a ∈ I.
◦ Given a positive program with aggregates P and an interpretation M , the aggre-

gate consequence operator KP
M : 2A → 2A is defined as:12 KP

M (I) = {head(r)|r ∈
P, (I, M) |= body(r)}.

We wish to show here that, for a positive program with aggregates P and for interpretations
I, M , KP

M (I) = TP (I,M). This will allow us to conclude the result of proposition 10, since
it has been proved that KP

M (I) = Φ1(I,M) (Son & Pontelli, 2007).
Observe that, under the condition I ⊆M :

• If a is a standard atom, then I |=M a iff a ∈ I iff (I, M) |= a.

• Let A be an aggregate.

– Let us assume I |=M A. This means that I |= A and, for each J ≤ Ad s.t.
I ∩Ad ⊆ J ⊆M ∩Ad, we have that J |= A.

12. The original definition in Son and Pontelli (2007) allows for the use of negative atoms in the body of the
rules, but we omit this for the sake of simplicity.
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If we consider J ⊆ Ad s.t. I ∩ M ∩ Ad ⊆ J and J ∩ (Ad \ M) = ∅, then
I ∩M ∩Ad = I ∩Ad ⊆ J , and J ⊆M ∩Ad (otherwise, if a ∈ J and a 6∈M ∩Ad,
then a ∈ Ad \M , which would violate the condition J ∩ (Ad \M) = ∅). From
the initial assumption that I |=M A, we can conclude that J ∈ Ac. This allows
us to conclude that I |=M A implies (I, M) |= A.

– Let us assume (I, M) |= A. This means that, for each J ⊆ Ad s.t. I∩M∩Ad ⊆ J
and J ∩ (Ad \M) = ∅, we have that J ∈ Ac.
First of all, note that I ∩Ad = I ∩M ∩Ad, thus I ∩Ad ∈ Ac—i.e., I |= A. Let us
now take some arbitrary J ⊆ Ad, where I ∩Ad ⊆ J ⊆M ∩Ad. Since I ∩Ad ⊆ J ,
in particular I ∩M ∩Ad ⊆ J . Furthermore, J ∩ (Ad \M) = ∅, since J ⊆M ∩Ad.
Thus, from the initial assumption, we have J |= Ac. This allows us to conclude
that (I, M) |= A implies I |=M A.

These results allows us to conclude that for any element α in the body of a rule of P (either
atom or aggregate), (I, M) |= α iff I |=M α. This allows us to immediately conclude that
KP

M (I) = TP (I, M). 2
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