
Journal of Artificial Intelligence Research 28 (2007) 1-48 Submitted 4/06; published 1/07

Cutset Sampling for Bayesian Networks

Bozhena Bidyuk bbidyuk@ics.uci.edu

Rina Dechter dechter@ics.uci.edu

School of Information and Computer Science

University Of California Irvine

Irvine, CA 92697-3425

Abstract

The paper presents a new sampling methodology for Bayesian networks that samples
only a subset of variables and applies exact inference to the rest. Cutset sampling is a
network structure-exploiting application of the Rao-Blackwellisation principle to sampling
in Bayesian networks. It improves convergence by exploiting memory-based inference algo-
rithms. It can also be viewed as an anytime approximation of the exact cutset-conditioning
algorithm developed by Pearl. Cutset sampling can be implemented efficiently when the
sampled variables constitute a loop-cutset of the Bayesian network and, more generally,
when the induced width of the network’s graph conditioned on the observed sampled vari-
ables is bounded by a constant w. We demonstrate empirically the benefit of this scheme
on a range of benchmarks.

1. Introduction

Sampling is a common method for approximate inference in Bayesian networks. When
exact algorithms are impractical due to prohibitive time and memory demands, it is often
the only feasible approach that offers performance guarantees. Given a Bayesian network
over the variables X = {X1, ..., Xn}, evidence e, and a set of samples {x(t)} from P (X|e), an
estimate f̂(X) of the expected value of function f(X) can be obtained from the generated
samples via the ergodic average:

E[f(X)|e] ≈ f̂(X) =
1

T

∑

t

f(x(t)) , (1)

where T is the number of samples. f̂(X) can be shown to converge to the exact value as T
increases. The central query of interest over Bayesian networks is computing the posterior
marginals P (xi|e) for each value xi of variable Xi, also called belief updating. For this
query, f(X) equals a δ-function, and the above equation reduces to counting the fraction
of occurrences of Xi = xi in the samples,

P̂ (xi|e) =
1

T

T
∑

t=1

δ(xi|x(t)) , (2)

where δ(xi|x(t))=1 iff xi = x
(t)
i and δ(xi|x(t))=0 otherwise. Alternatively, a mixture estima-

tor can be used,

P̂ (xi|e)] =
1

T

T
∑

t=1

P (xi|x(t)
−i) , (3)

c©2007 AI Access Foundation. All rights reserved.

Bidyuk & Dechter

where x
(t)
−i = x(t)\xi.

A significant limitation of sampling, however, is that the statistical variance increases
when the number of variables in the network grows and therefore the number of samples
necessary for accurate estimation increases. In this paper, we present a sampling scheme for
Bayesian networks with discrete variables that reduces the sampling variance by sampling
from a subset of the variables, a technique also known as collapsing or Rao-Blackwellisation.
The fundamentals of Rao-Blackwellised sampling were developed by Casella and Robert
(1996) and Liu, Wong, and Kong (1994) for Gibbs sampling and MacEachern, Clyde,
and Liu (1998) and Doucet, Gordon, and Krishnamurthy (1999) for importance sampling.
Doucet, de Freitas, Murphy, and Russell (2000) extended Rao-Blackwellisation to Particle
Filtering in Dynamic Bayesian networks.

The basic Rao-Blackwellisation scheme can be described as follows. Suppose we parti-
tion the space of variables X into two subsets C and Z. Subsequently, we can re-write any
function f(X) as f(C, Z). If we can generate samples from distribution P (C|e) and com-
pute E[f(C, Z)|c, e], then we can perform sampling on subset C only, generating samples
c(1), c(2), ..., c(T) and approximating the quantity of interest by

E[f(C, Z)|e] = EC [EZ [f(C, Z)|c, e]] ≈ f̂(X) =
1

T

T
∑

t=1

EZ [f(C, Z)|c(t), e] . (4)

The posterior marginals’ estimates for the cutset variables can be obtained using an expres-
sion similar to Eq.(2),

P̂ (ci|e) =
1

T

∑

t

δ(ci|c(t)) , (5)

or using a mixture estimator similar to Eq.(3),

P̂ (ci|e) =
1

T

∑

t

P (ci|c(t)
−i, e) . (6)

For Xi ∈ X\C, E, E[P (Xi|e)] = EC [P (Xi|c, e)] and Eq.(4) becomes

P̂ (Xi|e) =
1

T

∑

t

P (Xi|c(t), e) . (7)

Since the convergence rate of Gibbs sampler is tied to the maximum correlation between
two samples (Liu, 2001), we can expect an improvement in the convergence rate when
sampling in a lower dimensional space since 1) some of the highly-correlated variables may be
marginalized out and 2) the dependencies between the variables inside a smaller set are likely
to be weaker because the variables will be farther apart and their sampling distributions will
be smoothed out. Additionally, the estimates obtained from sampling in a lower dimensional
space can be expected to have lower sampling variance and therefore require fewer samples
to achieve the same accuracy of the estimates. On the other hand, the cost of generating
each sample may increase. Indeed, the principles of Rao-Blackwellised sampling have been
applied only in a few classes of probabilistic models with specialized structure (Kong, Liu,
& Wong, 1994; Escobar, 1994; MacEachern, 1994; Liu, 1996; Doucet & Andrieu, 2001;
Andrieu, de Freitas, & Doucet, 2002; Rosti & Gales, 2004).

2

Cutset Sampling for Bayesian Networks

The contribution of this paper is in presenting a general, structure-based scheme which
applies the Rao-Blackwellisation principle to Bayesian networks. The idea is to exploit the
property that conditioning on a subset of variables simplifies the network’s structure, allow-
ing efficient query processing by exact algorithms. In general, exact inference by variable
elimination (Dechter, 1999a, 2003) or join-tree algorithms (Lauritzen & Spiegelhalter, 1988;
Jensen, Lauritzen, & Olesen, 1990) is time and space exponential in the induced-width w
of the network. However, when a subset of the variables is assigned (i.e., conditioned upon)
the induced-width of the conditioned network may be reduced.

The idea of cutset sampling is to choose a subset of variables C such that conditioning
on C yields a sparse enough Bayesian network having a small induced width to allow exact
inference. Since a sample is an assignment to all cutset variables, we can efficiently generate
a new sample over the cutset variables in the conditioned network where the computation of
P (c|e) and P (Xi|c, e) can be bounded. In particular, if the sampling set C cuts all the cycles
in the network (i.e., it is a loop-cutset), inference over the conditioned network becomes
linear. In general, if C is a w-cutset, namely a subset of nodes such that when assigned, the
induced-width of the conditioned network is w, the time and space complexity of computing
the next sample is O(|C| ·N · dw+2) where d is the maximum domain size and N = |X|.

The idea of exploiting properties of conditioning on a subset of variables was first pro-
posed for exact belief updating in the context of cutset-conditioning (Pearl, 1988). This
scheme requires enumerating all instantiations of the cutset variables. Since the number of
instances is exponential in the size of the cutset |C|, sampling over the cutset space may
be the right compromise when the size of the cutset is too big. Thus, sampling on a cutset
can also be viewed as an anytime approximation of the cutset-conditioning approach.

Although Rao-Blackwellisation in general and cutset sampling in particular can be ap-
plied in the context of any sampling algorithm, we will introduce the principle in the con-
text of Gibbs sampling (Geman & Geman, 1984; Gilks, Richardson, & Spiegelhalter, 1996;
MacKay, 1996), a Markov Chain Monte Carlo sampling method for Bayesian networks.
Extension to any other sampling approach or any other graphical models, such as Markov
networks, should be straight forward. We recently demonstrated how the idea can be in-
corporated into importance sampling (Bidyuk & Dechter, 2006).

The paper defines and analyzes the cutset sampling scheme and investigates empirically
the trade-offs between sampling and exact computation over a variety of randomly generated
networks and grid structure networks as well as known real-life benchmarks such as CPCS
networks and coding networks. We show that cutset sampling converges faster than pure
sampling in terms of the number of samples, as dictated by theory, and is also almost always
time-wise cost effective on all the benchmarks tried. We also demonstrate the applicability of
this scheme to some deterministic networks, such as Hailfinder network and coding networks,
where the Markov Chain is non-ergodic and Gibbs sampling does not converge.

Section 2 provides background information. Specifically, section 2.1 introduces Bayesian
networks, section 2.2 reviews exact inference algorithms for Bayesian networks, and sec-
tion 2.3 provides background on Gibbs sampling. The contribution of the paper presenting
the cutset sampling starts in section 3. Section 4 presents the empirical evaluation of cutset
sampling. We also present an empirical evaluation of the sampling variance and the result-
ing standard error based on the method of batch means (for more details, see Geyer, 1992).

3

Bidyuk & Dechter

In section 5, we review previous application of Rao-Blackwellisation and section 6 provides
summary and conclusions.

2. Background

In this section, we define essential terminology and provide background information on
Bayesian networks.

2.1 Preliminaries

We use upper case letters without subscripts, such as X, to denote sets of variables and
lower case letters without subscripts to denote an instantiation of a group of variables (e.g.,
x indicates that each variable in set X is assigned a value). We use an upper case letter
with a subscript, such as Xi, to denote a single variable and a lower case letter with a
subscript, such as xi, to denote an instantiated variable (e.g., xi denotes an arbitrary value
in the domain of Xi and means Xi = xi). D(Xi) denotes the domain of the variable Xi. A
superscript in a subscripted lower case letter would be used to distinguish different specific
values for a variable, i.e., D(Xi) = {x1

i , x
2
i , ...}. We will use x to denote an instantiation of

a set of variables x = {x1, ..., xi−1, xi, xi+1, ..., xn} and x−i = x\xi to denote x with element
xi removed. Namely, x−i = {x1, x2, ..., xi−1, xi+1, ..., xn}.

Definition 2.1 (graph concepts) A directed graph is a pair D=<V ,E>, where V =
{X1, ..., Xn} is a set of nodes and E = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges. Given
(Xi, Xj) ∈ E, Xi is called a parent of Xj, and Xj is called a child of Xi. The set of
Xi’s parents is denoted pa(Xi), or pai, while the set of Xi’s children is denoted ch(Xi), or
chi. The family of Xi includes Xi and its parents. The moral graph of a directed graph
D is the undirected graph obtained by connecting the parents of all the nodes in D and
removing the arrows. A cycle-cutset of an undirected graph a subset of nodes that, when
removed, yields a graph without cycles. A loop in a directed graph D is a subgraph of D
whose underlying graph is a cycle. A directed graph is acyclic if it has no directed loops. A
directed graph is singly-connected (also called a poly-tree), if its underlying undirected
graph has no cycles. Otherwise, it is called multiply-connected.

Definition 2.2 (loop-cutset) A vertex v is a sink with respect to a loop L if the two
edges adjacent to v in L are directed into v. A vertex that is not a sink with respect to a
loop L is called an allowed vertex with respect to L. A loop-cutset of a directed graph D
is a set of vertices that contains at least one allowed vertex with respect to each loop in D.

Definition 2.3 (Belief Networks) Let X = {X1, ..., Xn} be a set of random variables
over multi-valued domains D(X1), ...,D(Xn). A belief network (BN) (Pearl, 1988) is
a pair <G, P> where G is a directed acyclic graph whose nodes are the variables X and
P = {P (Xi|pai)|i = 1, ..., n} is the set of conditional probability tables (CPTs) associated
with each Xi. The BN represents a joint probability distribution having the product form:

P (x1,, xn) =
n

∏

i=1

P (xi|pa(Xi))

An evidence e is an instantiated subset of variables E ⊂ X.

4

Cutset Sampling for Bayesian Networks

The structure of the directed acyclic graph G reflects the dependencies between the
variables using d-separation criterion. The parents of a variable Xi together with its children
and parents of its children form a Markov blanket, denoted markovi, of node Xi. We
will use xmarkovi

to denote x restricted to variables in markovi. We know that the node
Xi is independent of the rest of the variables conditioned on its Markov blanket. Namely,
P (xi|x−i) = P (xi|xmarkovi

).
The most common query over belief networks is belief updating which is the task of

computing the posterior distribution P (Xi|e) given evidence e and a query variable Xi ∈
X. Reasoning in Bayesian networks is NP-hard (Cooper, 1990). Finding approximate
posterior marginals with a fixed accuracy is also NP-hard (Dagum & Luby, 1993; Abdelbar
& Hedetniemi, 1998). When the network is a poly-tree, belief updating and other inference
tasks can be accomplished in time linear in size of the input. In general, exact inference is
exponential in the induced width of the network’s moral graph.

Definition 2.4 (induced-width) The width of a node in an ordered undirected graph
is the number of the node’s neighbors that precede it in the ordering. The width of an
ordering d, denoted w(d), is the maximum width over all nodes. The induced width
of an ordered graph, w∗(d), is the width of the ordered graph obtained by processing the
nodes from last to first as follows: when node X is processed, all its preceding neighbors are
connected. The resulting graph is called induced graph or triangulated graph.

The task of finding the minimal induced width of a graph (over all possible orderings) is
NP-complete (Arnborg, 1985).

2.2 Reasoning in Bayesian Networks

Belief propagation algorithm, which we introduce in Section 2.2.2 below, performs belief
updating in singly-connected Bayesian networks in time linear in the size of the input
(Pearl, 1988). In loopy networks, the two main approaches for belief updating are cutset
conditioning and tree clustering. These algorithms are often referred to as “inference”
algorithms. We will briefly describe the idea of clustering algorithms in Section 2.2.1 and
the conditioning method in Section 2.2.3.

2.2.1 Variable Elimination and Join-Tree Clustering (JTC)

The join-tree clustering approach (JTC) refers to a family of algorithms including join-
tree propagation (Lauritzen & Spiegelhalter, 1988; Jensen et al., 1990) and bucket-tree
elimination (Dechter, 2003, 1999a). The idea is to first obtain a tree-decomposition of
the network into clusters of functions connected as a tree and then propagate messages
between the clusters in the tree. The tree-decomposition is a singly-connected undirected
graph whose nodes, also called clusters, contain subsets of variables and input functions
defined over those variables. The tree-decomposition must contain each function once and
satisfy running intersection property (Maier, 1983). For a unifying perspective of tree-
decomposition schemes see (Zhang & Poole, 1994; Dechter, 1999b; Kask, Dechter, Larrosa,
& Dechter, 2005).

Given a tree-decomposition of the network, the message propagation over this tree can
be synchronized. We select any one cluster as the root of the tree and propagate messages

5

Bidyuk & Dechter

up and down the tree. A message from cluster Vi to neighbor Vj is a function over the
separator set Vi ∩ Vj that is a marginalization of the product of all functions in Vi and
all messages that Vi received from its neighbors besides Vj . Assuming that the maximum
number of variables in a cluster is w + 1 and maximum domain size is d, the time and
space required to process one cluster is O(d(w+1)). Since the maximum number of clusters
is bounded by |X| = N , the complexity of variable-elimination algorithms and cluster-tree
propagation schemes is O(N · d(w+1)). The parameter w, the maximum cluster size minus
1, is called the tree-width of the tree decomposition. The minimal tree-width is identical to
the minimal induced width of a graph.

2.2.2 Iterative Belief Propagation (IBP)

Belief propagation (BP) is an iterative message-passing algorithm that performs exact infer-
ence for singly-connected Bayesian networks (Pearl, 1988). In each iteration, every node Xi

sends a πj(Xi) message to each child j and receives a λj(Xi) message from each child. The
message-passing order can be organized so that it converges in two iterations. In essence the
algorithm is the same as the join-tree clustering approach applied directly to the poly-tree.
Applied to Bayesian networks with loops, the algorithm usually iterates longer (until it may
converge) and hence, is known as Iterative Belief Propagation (IBP) or loopy belief prop-
agation. IBP provides no guarantees on convergence or quality of approximate posterior
marginals but was shown to perform well in practice (Rish, Kask, & Dechter, 1998; Murphy,
Weiss, & Jordan, 1999). It is considered the best algorithm for inference in coding networks
(Frey & MacKay, 1997; Kschischang & Frey, 1998) where finding the most probable variable
values equals the decoding process (McEliece, MacKay, & Cheng, 1997). Algorithm IBP
requires linear space and usually converges fast if it converges. In our benchmarks, IBP
converged within 25 iterations or less (see Section 4).

2.2.3 Cutset Conditioning

When the tree-width w of the Bayesian network is too large and the requirements of inference
schemes such as bucket elimination and join-tree clustering (JTC) exceed available memory,
we can switch to the alternative cutset conditioning schemes (Pearl, 1988; Peot & Shachter,
1992; Shachter, Andersen, & Solovitz, 1994). The idea of cutset conditioning is to select
a subset of variables C ⊂ X\E, the cutset, and obtain posterior marginals for any node
Xi ∈ X\C, E using:

P (xi|e) =
∑

c∈D(C)

P (xi|c, e)P (c|e) (8)

Eq.(8) above implies that we can enumerate all instantiations over C, perform exact infer-
ence for each cutset instantiation c to obtain P (xi|c, e) and P (c|e) and then sum up the
results. The total computation time is exponential in the size of the cutset because we have
to enumerate all instantiations of the cutset variables.

If C is a loop-cutset, then, when the nodes in C are assigned, the Bayesian network can
be transformed into an equivalent poly-tree and P (xi|c, e) and P (c|e) can be computed via
BP in time and space linear in the size of the network. For example, the subset {A, D} is a
loop-cutset of the belief network shown in Figure 1, left, with evidence E = e. On the right,

6

Cutset Sampling for Bayesian Networks

CB

E

A

G

FD

CB

E

A

G

FD

A

D D

Figure 1: When nodes A and D in the loopy Bayesian network (left) are instantiated, the
network can be transformed into an equivalent singly-connected network (right).
In the transformation process, a replica of an observed node is created for each
child node.

Figure 1 shows an equivalent singly-connected network resulting from assigning values to A
and D.

It is well-known that the minimum induced width w∗ of the network is always less than
the size of the smallest loop-cutset (Bertele & Brioschi, 1972; Dechter, 2003). Namely,
w∗ + 1 ≤ |C| for any C. Thus, inference approaches (e.g., bucket elimination) are never
worse and often are better than cutset conditioning time-wise. However, when w∗ is too
large we must resort to cutset conditioning search in order to trade space for time. Those
considerations yield a hybrid search and inference approach. Since observed variables can
break down the dependencies in the network, a network with an observed subset of variables
C often can be transformed into an equivalent network with a smaller induced width, wC ,
which we will term the adjusted induced width. Hence, when any subset of variables C ⊂ X
is observed, complexity is bounded exponentially by the adjusted induced width of the
graph wC .

Definition 2.5 (adjusted induced width) Given a graph G=<X,E>, the adjusted
induced width of G relative to C, denoted wC , is its induced width once C is removed
from its moral graph.

Definition 2.6 (w-cutset) Given a graph G=<X,E>, a subset of nodes C ⊂ X is a
w-cutset of G if its adjusted induced width equals w.

If C is a w-cutset, the quantities P (xi|c, e) and P (c|e) can be computed in time and
space exponential in w, which can be much smaller than the tree-width of the unconditioned
network. The resulting scheme requires memory exponential in w and time O(d|C|·N ·d(w+1))
where N is the size of the network and d is the maximum domain size. Thus, the performance
can be tuned to the available system memory resource via the bounding parameter w.

Given a constant w, finding a minimal w-cutset (to minimize the cutset conditioning
time) is also a hard problem. Several greedy heuristic approaches have been proposed by
Geiger and Fishelson (2003) and by Bidyuk and Dechter (2003, 2004). We elaborate more
in Section 3.5.

7

Bidyuk & Dechter

2.3 Gibbs Sampling

Since the complexity of inference algorithms is memory exponential in the network’s induced
width (or tree-width) and since resorting to the cutset-conditioning scheme may take too
much time when the w-cutset size is too large, we must often resort to approximation
methods. Sampling methods for Bayesian networks are commonly used approximation
techniques. This section provides background on Gibbs sampling, a Markov Chain Monte
Carlo method, which is one of the most popular sampling schemes and is the focus of this
paper. Although the method may be applied to the networks with continuous distributions,
we limit our attention in this paper to discrete random variables with finite domains.

2.3.1 Gibbs Sampling for Bayesian Networks

Ordered Gibbs Sampler
Input: A belief network B over X={X1, ..., Xn} and evidence e={(Xi = ei)|Xi ∈ E ⊆ X}.
Output: A set of samples {x(t)}, t = 1...T .

1. Initialize: Assign random value x
(0)
i to each variable Xi ∈ X\E from D(Xi). Assign

evidence variables their observed values.
2. Generate samples:
For t = 1 to T, generate a new sample x(t):

For i = 1 to N, compute a new value x
(t)
i for variable Xi:

Compute distribution P (Xi|x(t)
markovi

) and sample x
(t)
i ← P (Xi|x(t)

markovi
).

Set Xi = x
(t)
i .

End For i
End For t

Figure 2: A Gibbs sampling Algorithm

Given a Bayesian network over the variables X = {X1, ..., Xn}, and evidence e, Gibbs
sampling (Geman & Geman, 1984; Gilks et al., 1996; MacKay, 1996) generates a set of

samples {x(t)} where each sample x(t) = {x(t)
1 , ..., x

(t)
n } is an instantiation of all the variables.

The superscript t denotes a sample index and x
(t)
i is the value of Xi in sample t. The first

sample can be initialized at random. When generating a new sample from sample x
(t)
i , a

new value for variable Xi is sampled from probability distribution P (Xi|x(t)
−i) (recall that

P (Xi|x(t)
−i) = P (Xi|x(t+1)

1 , ..., x
(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n)) which we will denote as xi ← P (Xi|x(t)

−i).

The next sample x
(t+1)
i is generated from the previous sample x

(t)
i following one of two

schemes.

Random Scan Gibbs Sampling. Given a sample x(t) at iteration t, pick a variable

Xi at random and sample a new value xi from the conditional distribution xi ← P (Xi|x(t)
−i)

leaving other variables unchanged.

Systematic Scan (Ordered) Gibbs Sampling. Given a sample x(t), sample a new
value for each variable in some order:

x1 ← P (X1|x(t)
2 , x

(t)
3 , ..., x(t)

n)

8

Cutset Sampling for Bayesian Networks

x2 ← P (X2|x(t+1)
1 , x

(t)
3 , ..., x(t)

n)

...

xi ← P (Xi|x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n)

...

xn ← P (Xn|x(t+1)
1 , x

(t+1)
2 , ..., x

(t+1)
n−1)

In Bayesian networks, the conditional distribution P (Xi|x(t)
−i) is dependent only on the

assignment to the Markov blanket of variable Xi. Thus, P (Xi|x(t)
−i)=P (Xi|x(t)

markovi
) where

x
(t)
markovi

is the restriction of x(t) to markovi. Given a Markov blanket of Xi, the sampling
probability distribution is given explicitly by Pearl (1988):

P (xi|x(t)
markovi

) = αP (xi|x(t)
pai

)
∏

{j|Xj∈chj}

P (x
(t)
j |x(t)

paj
) (9)

Thus, generating a complete new sample can be done in O(n · r) multiplication steps
where r is the maximum family size and n is the number of variables.

The sequence of samples x(1), x(2), ... can be viewed as a sequence of states in a Markov

chain. The transition probability from state {x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t)
i , x

(t)
i+1, ..., x

(t)
n } to state

{x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t+1)
i , x

(t)
i+1, ..., x

(t)
n } is defined by the sampling distribution P (Xi|x(t)

−i).
By construction, a Markov chain induced by Gibbs sampling has an invariant distribution
P (X|e). However, since the values assigned by the Gibbs sampler to variables in a sample
x(t+1) depend on the assignment of values in the previous sample x(t), it follows that the
sample x(n) depends on the initial state x(0). The convergence of the Markov chain is
defined by the rate at which the distance between the distribution P (x(n)|x(0), e) and the
stationary distribution P (X|e) (i.e., variational distance, L1-distance, or χ2) converges to 0
as a function of n. Intuitively, it reflects how quickly the inital state x(0) can be “forgotten.”
The convergence is guaranteed as T →∞ if Markov chain is ergodic (Pearl, 1988; Gelfand
& Smith, 1990; MacKay, 1996). A Markov chain with a finite number of states is ergodic if
it is aperiodic and irreducible (Liu, 2001). A Markov chain is aperiodic if it does not have
regular loops. A Markov chain is irreducible if we can get from any state Si to any state
Sj (including Si) with non-zero probability in a finite number of steps. The irreducibility
guarantees that we will be able to visit (as number of samples increases) all statistically
important regions of the state space. In Bayesian networks, the conditions are almost always
satisfied as long as all conditional probabilities are positive (Tierney, 1994).

To ensure that the collected samples are drawn from distribution close to P (X|e), a
“burn-in” time may be allocated. Namely, assuming that it takes ≈ K samples for the
Markov chain to get close to the stationary distribution, the first K samples may not be in-
cluded into the computation of posterior marginals. However, determining K is hard (Jones
& Hobert, 2001). In general, the “burn-in” is optional in the sense that the convergence of
the estimates to the correct posterior marginals does not depend on it. For completeness
sake, the algorithm is given in Figure 2.

When convergence conditions are satisfied, an ergodic average fT (X) = 1
T

∑

t f(xt) for
any function f(X) is guaranteed to converge to the expected value E[f(X)] as T increases.

9

Bidyuk & Dechter

In other words, |fT (X)− E[f(X)]| → 0 as T →∞. For a finite-state Markov chain that is
irreducible and aperiodic, the following result applies (see Liu, 2001, Theorem 12.7.2):

√
T |fT (X)− E[f(X)]| → N(0, σ(f)2) (10)

for any initial assignment to x(0). The variance term σ(f)2 is defined as follows:

σ(f)2 = 2τ(f)σ2

where σ2 = var[f(X)] and τ(h) is the integrated autocorrelation time.
Our focus is on computing the posterior marginals P (Xi|e) for each Xi∈X\E. The

posterior marginals can be estimated using either a histogram estimator:

P̂ (Xi = xi|e) =
1

T

T
∑

t=1

δ(xi|x(t)) (11)

or a mixture estimator:

P̂ (Xi = xi|e) =
1

T

T
∑

t=1

P (xi|x(t)
−i) (12)

The histogram estimator corresponds to counting samples where Xi = xi, namely δ(xi|x(t)) =

1 if x
(t)
i = xi and equals 0 otherwise. Gelfand and Smith (1990) have pointed out that since

mixture estimator is based on estimating conditional expectation, its sampling variance
is smaller due to Rao-Blackwell theorem. Thus, mixture estimator should be preferred.

Since P (xi|x(t)
−i) = P (xi|x(t)

markovi
), the mixture estimator is simply an average of conditional

probabilities:

P̂ (xi|e) =
1

T

T
∑

t=1

P (xi|x(t)
markovi

) (13)

As mentioned above, when the Markov chain is ergodic, P̂ (Xi|e) will converge to the exact
posterior marginal P (Xi|e) as the number of samples increases. It was shown by Roberts and
Sahu (1997) that random scan Gibbs sampler can be expected to converge faster than the
systematic scan Gibbs sampler. Ultimately, the convergence rate of Gibbs sampler depends
on the correlation between two consecutive samples (Liu, 1991; Schervish & Carlin, 1992;
Liu et al., 1994). We review this subject in the next section.

2.4 Variance Reduction Schemes

The convergence rate of the Gibbs sampler depends on the strength of the correlations
between the samples (which are also the states of the Markov chain). The term correlation
is used here to mean that the samples are dependent, as mentioned earlier. In the case of a
finite-state irreducible and aperiodic Markov chain, the convergence rate can be expressed
through maximal correlation between states x(0) and x(n) (see Liu, 2001, ch. 12). In practice,
the convergence rate can be analyzed through covariance cov[f(x(t)), f(x(t+1))], where f is
some function, also called auto-covariance.

The convergence of the estimates to the exact values depends on both the convergence
rate of the Markov chain to the stationary distribution and the variance of the estimator.

10

Cutset Sampling for Bayesian Networks

Both of these factors contribute to the value of the term σ(f)2 in Eq.(10). The two main
approaches that allow to reduce correlation between samples and reduce sampling variance
of the estimates are blocking (grouping variables together and sampling simultaneously)
and collapsing (integrating out some of the random variables and sampling a subset), also
known as Rao-Blackwellisation.

Given a joint probability distribution over three random variables X, Y , and Z, we can
depict the essence of those three sampling schemes as follows:

1. Standard Gibbs:

x(t+1) ← P (X|y(t), z(t)) (14)

y(t+1) ← P (Y |x(t+1), z(t)) (15)

z(t+1) ← P (Z|x(t+1), y(t+1)) (16)

2. Collapsed (variable Z is integrated out):

x(t+1) ← P (X|y(t)) (17)

y(t+1) ← P (Y |x(t+1)) (18)

3. Blocking by grouping X and Y together:

(x(t+1), y(t+1)) ← P (X, Y |z(t)) (19)

z(t+1) ← P (Z|x(t+1), y(t+1)) (20)

The blocking reduces the correlation between samples by grouping highly correlated
variables into “blocks.” In collapsing, the highly correlated variables are marginalized out,
which also results in the smoothing of the sampling distributions of the remaining variables
(P (Y |x) is smoother than P (Y |x, z)). Both approaches lead to reduction of the sampling
variance of the estimates, speeding up their convergence to the exact values.

Generally, blocking Gibbs sampling is expected to converge faster than standard Gibbs
sampler (Liu et al., 1994; Roberts & Sahu, 1997). Variations on this scheme have been
investigated by Jensen et al. (1995) and Kjaerulff (1995). Given the same number of samples,
the estimate resulting from collapsed Gibbs sampler is expected to have lower variance
(converge faster) than the estimate obtained from blocking Gibbs sampler (Liu et al., 1994).
Thus, collapsing is preferred to blocking. The analysis of the collapsed Gibbs sampler can
be found in Escobar (1994), MacEachern (1994), and Liu (1994, 1996).

The caveat in the utilization of the collapsed Gibbs sampler is that computation of the
probabilities P (X|y) and P (Y |x) must be efficient time-wise. In case of Bayesian networks,
the task of integrating out some variables is equivalent to posterior belief updating where
evidence variables and sampling variables are observed. Its time complexity is therefore
exponential in the adjusted induced width, namely, in the effective width of the network
after some dependencies are broken by instantiated variables (evidence and sampled).

11

Bidyuk & Dechter

2.5 Importance Sampling

Since sampling from the target distribution is hard, different sampling methods explore
different trade-offs in generating samples and obtaining estimates. As we already discussed,
Gibbs sampling generates dependent samples but guarantees convergence of the sampling
distribution to the target distribution. Alternative approach, called importance sampling,
is to generate samples from a sampling distribution Q(X) that is different from P (X|e) and
include the weight w(t) = P (x(t)|e)/Q(x(t)) of each sample x(t) in the computation of the
estimates as follows:

f̂T (X) =
1

T

T
∑

t=1

f(xt)w(t) (21)

The convergence of f̂T (X) to E[f(X)] is guaranteed as long as the condition P (x|e) 6=
0 ⇒ Q(x) 6= 0 holds. The convergence speed depends on the distance between Q(X) and
P (X|e).

One of the simplest forms of importance sampling for Bayesian networks is likelihood
weighting (Fung & Chang, 1989; Shachter & Peot, 1989) which processes variables in topo-
logical order, sampling root variables from their priors and the remaining variables from
conditional distribution P (Xi|pai) defined by their conditional probability table (the evi-
dence variables are assigned their observed values). Its sampling distribution is close to the
prior and, as a result, it usually converges slowly when the evidence is concentrated around
the leaf nodes (nodes without children) and when the probability of evidence is small. Adap-
tive (also called dynamic) importance sampling is a method that attempts to speed up the
convergence by updating the sampling distribution based on the weight of previously gen-
erated samples. Adaptive importance sampling methods include self-importance sampling,
heuristic importance sampling (Shachter & Peot, 1989), and, more recently, AIS-BN (Cheng
& Druzdzel, 2000) and EPIS-BN (Yuan & Druzdzel, 2003). In the empirical section, we
compare the performance of the proposed cutset sampling algorithm with AIS-BN which
is considered a state-of-the-art importance sampling algorithm to date (although EPIS-BN
was shown to perform better in some networks) and, hence, describe AIS-BN here in more
detail.

AIS-BN algorithm is based on the observation that if we could sample each node in
topological order from distribution P (Xi|pai, e), then the resulting sample would be drawn
from the target distribution P (X|e). Since this distribution is unknown for any variable
that has observed descendants, AIS-BN initializes the sampling distributions P 0(Xi|pai, e)
equal to either P (Xi|pai) or a uniform distribution and then updates each distribution
P k(Xi|pai, e) every l samples so that the next sampling distribution P k+1(Xi|pai, e) will be
closer to P (Xi|pai, e) than P k(Xi|pai, e) as follows:

P k+1(xi|pai, e) = P k(xi|pai, e) + η(k) · (P ′(xi|pai, e)− P k(xi|pai, e))

where η(k) is a positive function that determines the learning rate and P ′(xi|pai, e) is an
estimate of P (xi|pai, e) based on the last l samples.

12

Cutset Sampling for Bayesian Networks

3. Cutset Sampling

This section presents the cutset sampling scheme. As we discussed above, sampling on a
cutset is guaranteed to be more statistically efficient. Cutset sampling scheme is a compu-
tationally efficient way of sampling from a “collapsed” variable subset C ⊂ X, tying the
complexity of sample generation to the structure of the Bayesian network.

3.1 Cutset Sampling Algorithm

The cutset sampling scheme partitions the variable set X into two subsets C and X\C.
The objective is to generate samples from space C={C1, C2, ..., Cm} where each sample c(t)

is an instantiation of all the variables in C. Following the Gibbs sampling principles, we

wish to generate a new sample c(t) by sampling a value c
(t)
i from the probability distribution

P (Ci|c(t)
−i) = P (Ci|c(t+1)

1 , c
(t+1)
2 , ..., c

(t+1)
i−1 , c

(t)
i+1, ..., c

(t)
m). We will use left arrow to denote that

value ci is drawn from distribution P (Ci|c(t)
−i):

ci ← P (Ci|c(t)
−i, e) (22)

If we can compute the probability distribution P (Ci|c(t)
−i, e) efficiently for each sampling

variable Ci ∈ C, then we can generate samples efficiently. The relevant conditional distri-
butions can be computed by exact inference whose complexity is tied to the network struc-
ture. We denote by JTC(B, Xi, e) a generic algorithm in the class of variable-elimination
or join-tree clustering algorithms which, given a belief network B and evidence e, outputs
the posterior probabilities P (Xi|e) for variable Xi ∈ X (Lauritzen & Spiegelhalter, 1988;
Jensen et al., 1990; Dechter, 1999a). When the network’s identity is clear, we will use the
notation JTC(Xi, e).

Cutset Sampling
Input: A belief network B, a cutset C = {C1, ..., Cm}, evidence e.
Output: A set of samples ct, t = 1...T .
1. Initialize: Assign random value c0

i to each Ci ∈ C and assign e.
2. Generate samples:

For t = 0 to T-1, generate a new sample c(t+1) as follows:

For i = 1 to m, compute new value c
(t)
i for variable Ci as follows:

a. Compute JTC(Ci, c
(t)
−i, e).

b. Compute P (Ci|c(t)
−i, e) = αP (Ci, c

(t)
−i, e).

c. Sample:
c
(t+1)
i ← P (Ci|c(t)

−i, e) (23)

End For i
End For t

Figure 3: w-Cutset sampling Algorithm

Therefore, for each sampling variable Ci and for each value ci ∈ D(Ci), we can compute

P (Ci, c
(t)
−i, e) via JTC(Ci, c

(t)
−i, e) and obtain P (Ci|c(t)

−i, e) via normalization: P (Ci|c(t)
−i, e) =

αP (Ci, c
(t)
−i, e).

13

Bidyuk & Dechter

Cutset sampling algorithm that uses systematic scan Gibbs sampler is given in Figure 3.
Clearly, it can be adapted to be used with the random scan Gibbs sampler as well. Steps
(a)-(c) generate sample (t + 1) from sample (t). For every variable Ci ∈ C in sequence, the

main computation is in step (a), where the distribution P (Ci, c
(t)
−i, e) over Ci is generated.

This requires executing JTC for every value ci ∈ D(Ci), separately. In step (b), the
conditional distribution is derived by normalization. Finally, step (c) samples a new value

from the obtained distribution. Note that we only use P (Ci|c(t)
−i, e) as a short-hand notation

for P (Ci|c(t+1)
1 , ..., c

(t+1)
i−1 , c

(t)
i+1, ..., c

(t)
k , e). Namely, when we sample a new value for variable

Ci, the values of variables C1 through Ci−1 have already been updated.
We will next demonstrate the process using the special case of loop-cutset (see Defini-

tion 2.1).

Example 3.1 Consider the belief network previously shown in Figure 1 with the observed node
E = e and loop-cutset {A,D}. We begin the sampling process by initializing sampling variables to
a(0) and d(0). Next, we compute new sample values a(1), d(1) as follows:

P (A|d(0), e) = αPJTC(A, c(0), e) (24)

a(1) ← P (A|d(0), e) (25)

P (D|a(1), e) = αPJTC(D, a(1), e) (26)

d(1) ← P (D|a(1), e) (27)

The process above corresponds to two iterations of the inner loop in Figure 3. Eq. (24)-(25), where

we sample a new value for variable A, correspond to steps (a)-(c) of the first iteration. In the second

iteration, Eq.(26)-(27), we sample a new value for variable D. Since the conditioned network is a

poly-tree (Figure 1, right), computing probabilities PJTC(A|d(t), e) and PJTC(D|a(t+1), e) via JTC

reduces to Pearl’s belief propagation algorithm and the distributions can be computed in linear time.

3.2 Estimating Posterior Marginals

Once a set of samples over a subset of variables C is generated, we can estimate the posterior
marginals of any variable in the network using mixture estimator. For sampling variables,
the estimator takes the form similar to Eq.(12):

P̂ (Ci|e) =
1

T

T
∑

t=1

P (Ci|c(t)
−i, e) (28)

For variables in X\C, E, the posterior marginal estimator is:

P̂ (Xi|e) =
1

T

T
∑

t=1

P (Xi|c(t), e) (29)

We can use JTC(Xi, c
(t), e) to obtain the distribution P (Xi|c(t), e) over the input Bayesian

network conditioned on c(t) and e as shown before.
If we maintain a running sum of the computed distributions P (Ci|c(t)

−i, e) and P (Xi|c(t), e)
during sample generation, the sums in the right hand side of Eq.(28)-(29) will be readily
available. As we noted before, the estimators P̂ (Ci|e) and P̂ (Xi|e) are guaranteed to con-
verge to their corresponding exact posterior marginals as T increases as long as the Markov

14

Cutset Sampling for Bayesian Networks

chain over the cutset C is ergodic. While for the cutset variables the estimator is a simple
ergodic average, for Xi ∈ X\C, E the convergence can also be derived directly from first
principles:

Theorem 3.2 Given a Bayesian network B over X, evidence variables E ⊂ X, and cutset
C ⊂ X\E, and given a set of T samples c(1), c(2), ..., c(T) obtained via Gibbs sampling from
P (C|e), and assuming the Markov chain corresponding to sampling from C is ergodic, then
for any Xi ∈ X\C, E assuming P̂ (Xi|E) is defined by Eq.(29), P̂ (Xi|e) → P (Xi|e) as
T →∞ .

Proof. By definition:

P̂ (Xi|e) =
1

T

T
∑

t=1

P (Xi|c(t), e) (30)

Instead of summing over samples, we can rewrite the expression above to sum over all
possible tuples c ∈ D(C) and group together the samples corresponding to the same tuple
instance c. Let q(c) denote the number of times a tuple C = c occurs in the set of samples
so that

∑

c∈D(C) q(c) = T . It is easy to see that:

P̂ (Xi|e) =
∑

c∈D(C)

P (Xi|c, e)
q(c)

T
(31)

The fraction q(c)
T

is a histogram estimator for the posterior marginal P̂ (c|e). Thus, we get:

P̂ (Xi|e) =
∑

c∈D(C)

P (Xi|c, e)P̂ (c|e) (32)

Since the Markov chain formed by samples from C is ergodic, P̂ (c|e) → P (c|e) as T → ∞
and therefore:

P̂ (Xi|e)→
∑

c∈D(C)

P (Xi|c, e)P (c|e) = P (Xi|e)

�

3.3 Complexity

The time and space complexity of generating samples and estimating the posterior marginals
via cutset sampling is dominated by the complexity of JTC in line (a) of the algorithm
(Figure 3). Only linear amount of additional memory is required to maintain the running

sums of P (Ci|c(t)
−i, e) and P (Xi|c(t), e) used in the posterior marginal estimators.

3.3.1 Sample Generation Complexity

Clearly, when JTC is applied to the network B conditioned on all the cutset variables C
and evidence variables E, its complexity is time and space exponential in the induced width
w of the conditioned network. It is O(N · d(w+1)) when C is a w-cutset (see Definition 2.6).

15

Bidyuk & Dechter

Using the notion of a w-cutset, we can balance sampling and exact inference. At one end
of the spectrum we have plain Gibbs sampling where sample generation is fast, requiring
linear space, but may have high variance. At the other end, we have exact algorithm
requiring time and space exponential in the induced width of the moral graph. In between
these two extremes, we can control the time and space complexity using w as follows.

Theorem 3.3 (Complexity of sample generation) Given a network B over X, evi-
dence E, and a w-cutset C, the complexity of generating a new sample is time and space
O(|C| ·N · d(w+2)) where d bounds the variable’s domain size and N = |X|.

Proof. If C is a w-cutset and d is the maximum domain size, then the complexity of

computing joint probability P (ci, c
(t)
−i, e) over the conditioned network is O(N · d(w+1)).

Since this operation must be repeated for each ci ∈ D(Ci), the complexity of processing one

variable (computing distribution P (Ci|c(t)
−i, e)) is O(N · d · d(w+1)) = O(N · d(w+2)). Finally,

since ordered Gibbs sampling requires sampling each variable in the cutset, generating one
sample is O(|C| ·N · d(w+2)). �

3.3.2 Complexity of Estimator Computation

The posterior marginals for any cutset variable Ci ∈ C are easily obtained at the end of
sampling process without incurring additional computation overhead. As mentioned earlier,

we only need to maintain a running sum of probabilities P (ci|c(t)
−i, e) for each ci ∈ D(Ci).

Estimating P (Xi|e), Xi ∈ X\C, E, using Eq.(29) requires computing P (Xi|c(t), e) once a
sample c(t) is generated. In summary:

Theorem 3.4 (Computing Marginals) Given a w-cutset C, the complexity of comput-
ing posteriors for all variables Xi ∈ X\E using T samples over the cutset variables is
O(T · [|C|+ d] ·N · d(w+1)).

Proof. As we showed in Theorem 3.3, the complexity of generating one sample is O(|C| ·
N · d(w+2)). Once a sample c(t) is generated, the computation of the posterior marginals
for the remaining variables requires computing P (Xi|c(t), e) via JTC(Xi, c

(t), e) which is
O(N · d(w+1)). The combined computation time for one sample is O(|C| · N · d(w+2) +
N · d(w+1)) = O([|C| + d] · N · d(w+1)). Repeating the computation for T samples, yields
O(T · [|C|+ d] ·N · d(w+1)). �

Note that the space complexity of w-cutset sampling is bounded by O(N · d(w+1)).

3.3.3 Complexity of Loop-Cutset

When the cutset C is a loop-cutset, algorithm JTC reduces to belief propagation (Pearl,

1988) that computes the joint distribution P (Ci, c
(t)
−i, e) in linear time. We will refer to the

special case as loop-cutset sampling and to the general as w-cutset sampling.
A loop-cutset is also a w-cutset where w equals the maximum number of unobserved

parents (upper bounded by the maximum indegree of a node). However, since processing
poly-trees is linear even for large w, the induced width does not capture its complexity

16

Cutset Sampling for Bayesian Networks

properly. The notion of loop-cutset could be better captured via the hyperwidth of the
network (Gottlob, Leone, & Scarello, 1999; Kask et al., 2005). The hyperwidth of a poly-
tree is 1 and therefore, a loop-cutset can be defined as a 1-hypercutset. Alternatively, we
can express the complexity via the network’s input size M which captures the total size of
conditional probability tables to be processed as follows:

Theorem 3.5 (Complexity of loop-cutset sample generation) If C is a loop-cutset,
the complexity of generating each sample is O(|C| · d ·M) where M is the size of the input
network.

Proof. When a loop-cutset of a network is instantiated, belief propagation (BP) can

compute the joint probability P (ci, c
(t)
−i, e) in linear time O(M) (Pearl, 1988) yielding total

time and space of O(|C| · d ·M) for each sample. �

3.4 Optimizing Cutset Sampling Performance

Our analysis of the complexity of generating samples (Theorem 3.3) is overly pessimistic in
assuming that the computation of the sampling distribution for each variable in the cutset
is independent. While all variables may change a value when moving from one sample to
the next, the change occurs one variable at a time in some sequence so that much of the
computation can be retained when moving from one variable to the next .

We will now show that sampling all the cutset variables can be done more efficiently
reducing the factor of N · |C| in Theorem 3.3 to (N + |C| · δ) where δ bounds the number of
clusters in the tree decomposition used by JTC that contains any node Ci ∈ C. We assume
that we can control the order by which cutset variables are sampled.

X1

Y1

X2 X3

Y2 Yn-2

Xn-1

Yn-1

Xn

X1X2Y1 X2X3Y2 X3X4Y3 Xn-1XnYn-1

Figure 4: A Bayesian network (top) and corresponding cluster-tree (bottom).

Consider a simple network with variables X={X1,Xn}, Y ={Y1, ..., Yn−1} and CPTs
P (Xi+1|Xi, Yi) and P (Yi+1|Xi) defined for every i as shown in Figure 4, top. The join-tree
of this network is a chain of cliques of size 3 given in Figure 4, bottom. Since Y is a loop-
cutset, we will sample variables in Y . Let’s assume that we use the ordering Y1, Y2, ...Yn−1 to
generate a sample. Given the current sample, we are ready to generate the next sample by
applying JTC (or bucket-elimination) to the network whose cutset variables are assigned.

17

Bidyuk & Dechter

This makes the network effectively singly-connected and leaves only 2 actual variables in
each cluster. The algorithm sends a message from the cluster containing Xn towards the
cluster containing X1. When cluster (X1, X2, Y1) gets the relevant message from cluster
(X2, X3, Y2) we can sample Y1. This can be accomplished by d linear computations in clique
(X1, X2, Y1) for each yi ∈ D(Yi) yielding the desired distribution P (Y1|.) (we can multiply
all functions and incoming messages in this cluster, sum out X1 and X2 and normalize). If
the cutset is a w-cutset, each computation in a single clique is O(d(w+1)).

Once we have P (Y1|·), Y1 is sampled and assigned a new value, y1. Cluster (X1, X2, Y1 =
y1) then sends a message to cluster (X2, X3, Y2) which now has all the information necessary
to compute P (Y2|.) in O(d(w+2)). Once P (Y2|.) is available, a new value Y2 = y2 is sampled.
The cluster than computes and sends a message to cluster (X3, X4, Y3), and so on. At the
end, we obtain a full sample via two message passes over the conditioned network having
computation complexity of O(N · d(w+2)). This example can be generalized as follows.

Theorem 3.6 Given a Bayesian network having N variables, a w-cutset C, a tree-decomposition
Tr, and given a sample c1, ..., c|C|, a new sample can be generated in O((N + |C| · δ) ·d(w+2))
where δ is the maximum number of clusters containing any variable Ci ∈ C.

Proof. Given w-cutset C, by definition, there exists a tree-decomposition Tr of the network
(that includes the cutset variables) such that when the cutset variables C are removed, the
number of variables remaining in each cluster of Tr is bounded by w + 1. Let’s impose
directionality on Tr starting at an arbitrary cluster that we call R as shown in Figure 5. Let
TCi

denote the connected subtree of Tr whose clusters include Ci. In Figure 5, for clarity,
we collapse the subtree over Ci into a single node. We will assume that cutset nodes are
sampled in depth-first traversal order dictated by the cluster tree rooted in R.

TC6

TCk

TC4

TC5

TC3

TC2

TC1 R

Figure 5: A cluster-tree rooted in cluster R where a subtree over each cutset node Ci is
collapsed into a single node marked TCi

.

18

Cutset Sampling for Bayesian Networks

Given a sample c(t), JTC will send messages from leaves of Tr towards the root cluster.
We can assume without loss of generality that R contains cutset node C1 which is the first to
be sampled in c(t+1). JTC will now pass messages from root down only to clusters restricted

to TC1
(note that R ∈ TC1

). Based on these messages P (C1 = c1, c
(t)
−1) can be computed

in O(d(w+1)). We will repeat this computation for each other value of C1 involving only
clusters in TC1

and obtain the distribution P (C1|·) in O(d(w+2)) and sample a new value
for C1. Thus, if C1 appears in δ clusters, the number of message passing computations
(after the initial O(N) pass) is O(δ) and we can generate the first distribution P (C1|·) in
O(δ · d(w+2)).

The next node in the depth-first traversal order is TC2
and thus, the second variable to

be sampled is C2. The distance between variables C1 and C2, denoted dist1,2, is the shortest
path along Tr from a cluster that contains C1 to a cluster that contains C2. We apply JTC’s
mesage-passing along that path only which will take at most O(dist1,2 · d(w+1)). Then, to
obtain the conditional distribution P (C2|·), we will recompute messages in the subtree of
TC2

for each value c2 ∈ D(C2) in O(δ · d(w+2)). We continue the computation in a similar
manner for other cutset nodes.

If JTC traverses the tree in the depth-first order, it only needs to pass messages along

each edge twice (see Figure 5). Thus, the sum of all distances traveled is
∑|C|

i=2 disti,i−1 =
O(N). What may be repeated is the computation for each value of the sampled variable.
This, however, can be accomplished via message-passing restricted to individual variables’
subtrees and is bounded by its δ. We can conclude that a new full sample can be generated
in O((N + |C| · δ) · d(w+2)). �

It is worthwhile noting that the complexity of generating a sample can be further reduced
by a factor of d/(d−1) (which amounts to a factor of 2 when d = 2) by noticing that whenever

we move from variable Ci to Ci+1, the joint probability P (c
(t+1)
1 , ..., c

(t+1)
i , c

(t)
i+1, ..., c

(t)
k) is

already available from the previous round and should not be recomputed. We only need

to compute P (c
(t+1)
1 , ..., c

(t+1)
i , ci+1, ..., c

(t)
k) for ci+1 6= c

(t)
i+1. Buffering the last computed

joint probability, we only need to apply JTC algorithm d − 1 times. Therefore, the total
complexity of generating a new sample is O((N + |C| · δ) · (d− 1) · d(w+1)).

Example 3.7 Figure 6 demonstrates the application of the enhancements discussed. It
depicts the moral graph (a), already triangulated, and the corresponding join-tree (b) for the
Bayesian network in Figure 1. With evidence variable E removed, variables B and D form
a 1-cutset. The join-tree of the network with cutset and evidence variables removed is shown
in Figure 6 (c). Since removing D and E from cluster DFE leaves only one variable, F ,
we combine clusters BDF and DFE into one cluster, FG. Assuming that cutset variables
have domains of size 2, we can initialize B = b0 and D = d0.

Selecting cluster AC as the root of the tree, JTC first propagates messages from leaves
to the root as shown in Figure 6 (c) and then computes P (b0, d0, e) in cluster AC. Next, we
set B = b1; updating all functions containing variable B, and propagating messages through
the subtree of B consisting of clusters AC and CF (Figure 6 (d)), we obtain P (b1, d0, e).
Normalizing the two joint probabilities, we obtain distribution P (B|d0, e) and sample a new
value of B. Assume we sampled value b1.

19

Bidyuk & Dechter

DFE
P(E|D,F)

ABC
P(B|A),P(C|A),

P(A)

BCF
P(F|B,C)

A

B
C

F

D

G

E

DFG
P(D|B), P(G|D,F)

AC
P(b0|A),P(C|A),

P(A)

CF
P(F|b0,C),P(d0|b0)

FG
P(e|d0,F),P(G|d0,F)

AC
P(b1|A),P(C|A),

P(A)

CF
P(F|b1,C),P(d0|b1)

FG
P(e|d0,F),P(G|d0,F)

AC
P(b1|A),P(C|A),

P(A)

CF
P(F|b1,C),P(d1|b1)

FG
P(e|d1,F),P(G|d1,F)

AC
P(b1|A),P(C|A),

P(A)

CF
P(F|b1,C),P(d0|b1)

FG
P(e|d0,F),P(G|d0,F)

(a) (b) (c) (d) (e) (f)

B=b0, D=d0, E=e B=b1 D=d1 D=d0

Figure 6: A join-tree of width 2 (b) for a moral graph (a) is transformed into a join-tree of
width 1 (c) when evidence variable E and cutset variables B and D are instanti-
ated (in the process, clusters BDF and BCF are merged into cluster CF). The
clusters contain variables and functions from the original network. The cutset
nodes have domains of size 2, D(B) = {b0, b1}, D(D) = {d0, d1}. Starting with a
sample {b0, d0}, messages are propagated in (c)-(e) to first, sample a new value
of variable B (d) and then variable D (e). Then messages are propagated up the
tree to compute posterior marginals P (·|b1, d0, e) for the rest of the variables (f).

Next, we need to compute P (D|b1, e) to sample a new value for variable D. The joint
probability P (d0, b1, e) is readily available since it was computed for sampling a new value of
B. Thus, we set D = d1 and compute the second probability P (d1, b1, e) updating functions
in clusters CF and FG and sending an updated message from CF to FG (Figure 6 (e)).
We obtain distribution P (D|b1, e) by normalizing the joint probabilities and sample a new
value d0 for D. Since the value has changed from latest computation, we update again
functions in the clusters CF and FG and propagate updated messages in the subtree CD

(send message from CF to FG).

In order to obtain the distributions P (·|b1, d0, e) for the remaining variables A, C, F ,
and G, we only need to send updated messages up the join-tree, from FG to CF and then
from CF to AC as shown in Figure 6 (f). The last step also serves as the initialization
step for the next sample generation.

In this example the performance of cutset sampling is significantly better than its worst
case. We have sent a total of 5 messages to generate a new sample while the worst case
suggests at least N · |C| · d = 3 · 2 · 2 = 12 messages (here, N equals the number of clusters).

20

Cutset Sampling for Bayesian Networks

3.5 On finding A w-Cutset

Clearly, w-cutset sampling will be effective only when the w-cutset is small. This calls for
the task of finding a minimum size w-cutset. The problem is NP-hard; yet, several heuristic
algorithms have been proposed. We next briefly survey some of those proposals.

Larossa and Dechter (2003) obtain w-cutset when processing variables in the elimination
order. The next node to be eliminated (selected using some triangulation heuristics) is added
to the cutset if its current induced width (or degree) is greater than w. Geiger and Fishelson
(2003) agument this idea with various heuristics.

Bidyuk and Dechter (2003) select the variables to be included in the cutset using greedy
heuristics based on the node’s basic graph properties (such as the degree of a node). One
scheme starts from an empty w-cutset and then heuristically adds nodes to the cutset until
a tree-decomposition of width ≤ w can be obtained. The other scheme starts from a set
C = X\E containing all nodes in the network as a cutset and then removes nodes from the
set in some order. The algorithm stops when removing the next node would result in a tree
decomposition of width > w.

Alternatively, Bidyuk and Dechter (2004) proposed to first obtain a tree-decomposition
of the network and then find the minimal w-cutset of the tree-decomposition (also an NP-
hard problem) via a well-known greedy algorithm used for set cover problem. This approach
is shown to yield a smaller cutset than previously proposed heuristics and is used for finding
w-cutset in our experiments (section 4.4) with a modification that a tree-decomposition is
re-computed each time a node is removed from the tree and added to the w-cutset.

4. Experiments

In this section, we present empirical studies of cutset sampling algorithms for several classes
of problems. We use the mean square error of the posterior marginals’ estimates as a
measure of accuracy. We compare with traditional Gibbs sampling, likelihood weighting
(Fung & Chang, 1989; Shachter & Peot, 1989), and the state of the art AIS-BN adaptive
importance sampling algorithm (Cheng & Druzdzel, 2000). We implemented AIS-BN using
the parameters specified by Cheng and Druzdzel (2000). By using our own implementation,
we made sure that all sampling algorithms used the same data access routines and the
same error measures providing a uniform framework for comparing their performance. For
reference we also report the performance of Iterative Belief Propagation (IBP) algorithm.

4.1 Methodology

In this section we detail describe methodology used and the implementation decisions made
that apply to the collection of the empirical results.

4.1.1 Sampling Methodology

In all sampling algorithms we restarted the Markov chain every T samples. The samples
from each chain (batch) m are averaged separately:

P̂m(xi|e) =
1

T

T
∑

t=1

P (xi|c(t), e)

21

Bidyuk & Dechter

The final estimate is obtained as a sample average over M chains:

P̂ (xi|e) =
1

M

M
∑

m=1

P̂m(xi|e)

Restarting a Markov chain is known to improve the sampling convergence rate. A single
chain can become “stuck” generating samples from a single high-probability region without
ever exploring large number of other high-probability tuples. By restarting a Markov chain
at a different random point, a sampling algorithm can achieve a better coverage of the
sampling space. In our experiments, we did not observe any significant difference in the
estimates obtained from a single chain of size M · T or M chains of size T and therefore,
we only choose to report the results for multiple Markov chains. However, we rely on the
independence of random values P̂m(xi|e) to estimate 90% confidence interval for P̂ (xi|e).

In our implementation of Gibbs sampling schemes, we use zero “burn-in” time (see
section 2.3.1). As we mentioned earlier, the idea of burn-in time is to throw away the
first K samples to ensure that the remaining samples are drawn from distribution close
to target distribution P (X|e). While conservative methods for estimating K through drift
and minorization conditions were proposed by Rosenthal (1995) and Roberts and Tweedie
(1999, 2001), the required analysis is beyond the scope of this paper. We consider our
comparison between Gibbs sampling and cutset sampling, which is the objective, fair in the
sense that both schemes use K=0. Further, our experimental results showed no positive
indication that burn-in time would be beneficial. In practice, burn-in is the “pre-processing”
time used by the algorithm to find the high-probability regions in the distribution P (C|e)
in case it initially spends disproportionally large period of time in low probability regions.
Discarding a large number of low-probability tuples obtained initially, the frequency of the
remaining high-probability tuples is automatically adjusted to better reflect their weight.

cpcs360b, N=360, |E|=32, w*=21

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

0 2000 4000 6000 8000 10000

samples

M
S

E

LCS
cpcs360b, N=360, |E|=32, |LC|=26, w*=21

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

samples

u

n
iq

u
e

sa
m

p
le

s

LCS

Figure 7: Comparing loop-cutset sampling MSE vs. number of samples (left) and and num-
ber of unique samples vs. number of samples (right) in cpcs360b. Results are
averaged over 10 instances with different observations.

In our benchmarks, we observed that both full Gibbs sampling and cutset sampling
were able to find high probability tuples fast relative to the number of samples generated.
For example, in one of the benchmarks, cpcs360b, the rate of generating unique samples,

22

Cutset Sampling for Bayesian Networks

namely, the ratio of cutset instances that have not been seen to the number of samples,
decreases over time. Specifically, loop-cutset sampling generates 200 unique tuples after the
first 1000 samples, an additional 100 unique tuples while generating the next 1000 samples,
and then the rate of generating unique tuples slows to 50 per 1000 samples in the range
from 2000 to 10000 samples as shown in Figure 7, right. That means that after the first
few hundred samples, the algorithm spends most of the time revisiting high-probability
tuples. In other benchmarks, the number of unique tuple instances generated increases
linearly (as in cpcs54) and, thus, the tuples appear to be distributed nearly uniformly. In
this case, there is no need for burn-in because there are no strongly-expressed heavy-weight
tuples. Instead of using burn-in times, we sample initial variable values from the posterior
marginal estimates generated by IBP in all of our experiments. Our sampling time includes
the pre-processing time of IBP.

All experiments were performed on 1.8 GHz CPU.

4.1.2 Measures of Performance

For each problem instance defined by a Bayesian network B having variables X = {X1, ..., Xn}
and evidence E ⊂ X, we derived the exact posterior marginals P (Xi|e) using bucket-tree
elimination (Dechter, 2003, 1999a) and computed the mean square error (MSE) of the
approximate posterior marginals P̂ (Xi|e) for each algorithm where MSE is defined by:

MSE =
1

∑

Xi∈X\E |D(Xi)|
∑

Xi∈X\E

∑

D(Xi)

[P (xi|e)− P̂ (xi|e)]2

While the mean square error is our primary accuracy measure, the results are consistent
across other well-known measures such as average absolute error, KL-distance, and squared
Hellinger’s distance which we show only for loop-cutset sampling. The absolute error ∆ is
averaged over all values of all unobserved variables:

∆ =
1

∑

Xi∈X\E |D(Xi)|
∑

Xi∈X\E

∑

D(Xi)

|P (xi|e)− P̂ (xi|e)|

KL-distance DK between the distribution P (Xi|e) and the estimator P̂ (Xi|e) is defined as
follows:

DK(P (Xi|e), P̂ (Xi|e)) =
∑

D(Xi)

P (xi|e) lg
P (xi|e)
P̂ (xi|e)

For each benchmark instance, we compute the KL-distance for each variable Xi ∈ X\E and
then average the results:

DK(P, P̂) =
1

|X\E|
∑

Xi∈X\E

DK(P (Xi|e), P̂ (Xi|e))

The squared Hellinger’s distance DH between the distribution P (Xi|e) and the estimator
P̂ (Xi|e) is obtained as:

DH(P (Xi|e), P̂ (Xi|e)) =
∑

D(Xi)

[
√

P (xi|e)−
√

P̂ (xi|e)]2

23

Bidyuk & Dechter

The average squared Hellinger’s distance for a benchmark instance is the average of the
distances between posterior distributions of one variable:

DH(P, P̂) =
1

|X\E|
∑

Xi∈X\E

DH(P (Xi|e), P̂ (Xi|e))

The average errors for different network instances are then averaged over all instances of
the given network (typically, 20 instances).

We also report the confidence interval for the estimate P̂ (xi|e) using an approach similar
to the well-known batch means method (Billingsley, 1968; Geyer, 1992; Steiger & Wilson,
2001). Since chains are restarted independently, the estimates P̂m(xi|e) are independent.
Thus, the confidence interval can be obtained by measuring the variance in the estimators
P̂ (Xi|e). We report results in Section 4.5.

4.2 Benchmarks

We experimented with four classes of networks:

CPCS. We considered four CPCS networks derived from the Computer-based Patient
Case Simulation system (Parker & Miller, 1987; Pradhan, Provan, Middleton, & Henrion,
1994). CPCS network representation is based on INTERNIST 1 (Miller, Pople, & Myers,
1982) and Quick Medical Reference (QMR) (Miller, Masarie, & Myers, 1986) expert sys-
tems. The nodes in CPCS networks correspond to diseases and findings and conditional
probabilities describe their correlations. The cpcs54 network consists of N=54 nodes and
has a relatively large loop-cutset of size |LC|=16 (> 25% of the nodes). Its induced width
is 15. cpcs179 network consists of N=179 nodes. Its induced width is w∗=8. It has a
small loop-cutset of size |LC|=8 but with a relatively large corresponding adjusted induced
width wLC=7. The cpcs360b is a larger CPCS network with 360 nodes, adjusted induced
width of 21, and loop-cutset |LC|=26. Exact inference on cpcs360b averaged ∼ 30 minutes.
The largest network, cpcs422b, consisted of 422 nodes with induced width w∗=22 and
loop-cutset of size 47. The exact inference time for cpcs422b is about 50 minutes.

Hailfinder network. It is a small network with only 56 nodes. The exact inference in
Hailfinder network is easy since its loop-cutset size is only 5. Yet, this network has some
zero probabilities and, therefore, is a good benchmark for demonstrating the convergence
of cutset sampling in contrast to Gibbs sampling.

Random networks. We experimented with several classes of random networks: ran-
dom networks, 2-layer networks, and grid networks. The random networks were generated
with N=200 binary nodes (domains of size 2). The first 100 nodes, {X1, ..., X100}, were
designated as root nodes. Each non-root node Xi , i > 100, was assigned 3 parents selected
randomly from the list of predecessors {X1, ..., Xi−1}. We will refer to this class of random
networks as multi-partite random networks to distinguish from bi-partite (2-layer) random
networks. The random 2-layer networks were generated with 50 root nodes (first layer)
and 150 leaf nodes (second layer), yielding a total of 200 nodes. A sample 2-layer random
network is shown in Figure 8, left. Each non-root node (second layer) was assigned 1-3
parents selected at random among the root nodes. All nodes were assigned a domain of size
2, D(Xi) = {x0

i , x
1
i }.

24

Cutset Sampling for Bayesian Networks

Figure 8: Sample random networks: 2-layer (left), grid (center), coding (right).

For both 2-layer and multi-partite random networks, the root nodes were assigned uni-
form priors while conditional probabilities were chosen randomly. Namely, each value
P (x0

i |pai) was drawn from uniform distribution over interval (0, 1) and used to compute
the complementary probability value P (x1

i |pai) = 1− P (x0
i |pai).

The directed grid networks (as opposed to grid-shaped undirected Markov Random
Fields) of size 15x30 with 450 nodes were also constructed with uniform priors (on the single
root node) and random conditional probability tables (as described above). A sample grid
network is shown in Figure 8, center. Those networks had an average induced width of
size 20 (exact inference using bucket elimination required about 30 minutes). They had the
most regular structure of all and the largest loop-cutset containing nearly a half of all the
unobserved nodes.

Coding networks. We experimented with coding networks with 50 code bits and 50
parity check bits. The parity check matrix was randomized; each parity check bit had three
parents. A sample coding network with 4 code bits, 4 parity checking bits, and total of 8
transmitted bits is shown in Figure 8, center. The total number of variables in each network
in our experiments was 200 (50 code bits, 50 parity check bits, and 1 transmitted bit for
each code or parity check bit). An average loop-cutset size was 26 and induced width was
21. The Markov chain produced by Gibbs sampling over the whole coding network is not
ergodic due to the deterministic parity check function. As a result, Gibbs sampling does
not converge. However, the Markov chain corresponding to sampling the subspace of coding
bits only is ergodic and, thus, all of the cutset sampling schemes have converged as we will
show in the next two sections.

In all networks, except coding and grid networks, evidence nodes were selected at random
among the leaf nodes (nodes without children). Since a grid network has only one leaf
node, the evidence in the grid networks was selected at random among all nodes. For each
benchmark, we report on the chart title the number of nodes in the network N , average
number of evidence nodes |E|, size of loop-cutset |LC|, and average induced width of the
input instance denoted w∗ to distinguish from the induced width w of the network adjusted
for its w-cutset.

25

Bidyuk & Dechter

4.3 Results for Loop-Cutset Sampling

In this section we compare loop-cutset sampling with pure Gibbs sampling, likelihood
weighting, AIS-BN, and IBP. In all benchmarks, the cutset was selected so that the evidence
and sampling nodes together constitute a loop-cutset of the network using the algorithm
proposed by Becker et al. (2000). We show the accuracy of Gibbs and loop-cutset sampling
as a function of the number of samples and time.

CPCS networks. The results are summarized in Figures 9-12. The loop-cutset curve
in each chart is denoted LCS (for Loop Cutset Sampling). The induced width of the network
wLC when loop-cutset nodes are observed is specified in the caption. It is identical to the
largest family size in the poly-tree generated when cutset variables are removed. We plot
the time on the x-axis and the accuracy (MSE) on the y-axis. In the CPCS networks, IBP
always converged and converged fast (within seconds). Consequently, IBP curve is always
a straight horizontal line as the results do not change after the convergence is achieved.
The curves corresponding to Gibbs sampling, loop-cutset sampling, likelihood weighting,
and AIS-BN demonstrate the convergence of the sampling schemes with time. In the three
CPCS networks loop-cutset sampling converges much faster than Gibbs sampling. The only
exception is cpcs422b (Figure 12, right) where the induced width of the conditioned singly-
connected network remains high (wLC = 14) due to large family sizes and thus, loop-cutset
sampling generates samples very slowly (4 samples/second) compared to Gibbs sampling
(300 samples/second). Since computing sampling distribution is exponential in w, sampling
a single variable is O(214) (all variables have domains of size 2). As a result, although loop-
cutset sampling shows a significant reduction in MSE as a function of the number of samples
(Figure 12, left), it is not enough to compensate for the two orders of magnitude difference
in the loop-cutset rate of sample generation. For cpcs54 (Figure 9), cpcs179 (Figure 10),
and cpcs360b (Figure 11) loop-cutset sampling achieves greater accuracy than IBP within
10 seconds or less.

In comparison with importance sampling schemes, we observe that the AIS-BN algo-
rithm consistently outperforms likelihood weighting and AIS-BN is slightly better than loop-
cutset sampling in cpcs54, where the probability of evidence P (e)=0.0928 is relatively high.
In cpcs179, where probability of evidence P (e)=4E-05 is smaller, LCS outperforms AIS-BN
while Gibbs sampling curves falls in between AIS-BN and likelihood weighting. Both Gibbs
sampling and loop-cutset sampling outperform AIS-BN in cpcs360b and cpcs422b where
probability of evidence is small. In cpcs360b average P (e)=5E-8 and in cpcs422b the prob-
ability of evidence varies from 4E-17 to 8E-47. Note that likelihood weighting and AIS-BN
performed considerably worse than either Gibbs sampling or loop-cutset sampling in all of
those benchmarks as a function of the number of samples. Consequently, we left them off
the charts showing the convergence of Gibbs and loop-cutset sampling as a function of the
number of samples in order to zoom in on the two algorithms which are the focus of the
empirical studies.

Coding Networks. The results for coding networks are shown in Figure 13. We
computed error measures over all coding bits and averaged over 100 instances (10 instances,
with different observed values, of each of the 10 networks with different coding matrices). As
we noted earlier, the Markov chains corresponding to Gibbs sampling over coding networks
are not ergodic and, as a result, Gibbs sampling does not converge. However, the Markov

26

Cutset Sampling for Bayesian Networks

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

0 5000 10000 15000 20000 25000 30000

samples

M
S

E

Gibbs

LCS

IBP

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 2 4 6 8 10 12 14

Time (sec)

M
S

E

LW

AIS-BN

Gibbs

LCS

IBP

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

0 2 4 6 8 10 12 14

Time (sec)

K
L

-d
is

ta
n

c
e

LW

AIS-BN

Gibbs

LCS

IBP

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

5.0E-06

6.0E-06

7.0E-06

0 2 4 6 8 10 12 14

Time (sec)

H
el

lin
g

er
-d

is
ta

n
c
e

LW

AIS-BN

Gibbs

LCS

IBP

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

3.0E-04

6.0E-04

9.0E-04

1.2E-03

1.5E-03

1.8E-03

2.1E-03

0 2 4 6 8 10 12 14

Time (sec)

A
b

s
o

lu
te

 E
rr

o
r

LW

AIS-BN

Gibbs

LCS

IBP

Figure 9: Comparing loop-cutset sampling (LCS), wLC=5, Gibbs sampling (hereby referred
to as Gibbs), likelihood weighting (LW), AIS-BN, and IBP on cpcs54 network,
averaged over 20 instances, showing MSE as a function of the number of samples
(top left) and time (top right) and KL-distance (middle left), squared Hellinger’s
distance (middle right), and an average error (bottom) as a function of time.

27

Bidyuk & Dechter

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10 12 14

Time (sec)

A
b

s
o

lu
te

 E
rr

o
r

LW

AIS-BN

Gibbs

LCS

IBP

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 2 4 6 8 10 12 14

Time (sec)

M
S

E

LW

AIS-BN

Gibbs

LCS

IBP

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10 12 14

Time (sec)

K
L

-d
is

ta
n

c
e

LW

AIS-BN

Gibbs

LCS

IBP

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10 12 14

Time (sec)

H
el

lin
g

e
r-

d
is

ta
n

ce

LW

AIS-BN

Gibbs

LCS

IBP

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10 12 14

Time (sec)

A
b

s
o

lu
te

 E
rr

o
r

LW

AIS-BN

Gibbs

LCS

IBP

Figure 10: Comparing loop-cutset sampling (LCS), wLC=7, Gibbs sampling, likelihood
weighting (LW), AIS-BN, and IBP on cpcs179 network, averaged over 20 in-
stances, showing MSE as a function of the number of samples (top left) and time
(top right) and KL-distance (middle left), squared Hellinger’s distance (middle
right), and an average error (bottom) as a function of time.

28

Cutset Sampling for Bayesian Networks

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 5000 10000 15000 20000 25000

samples

M
S

E

Gibbs

LCS

IBP

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

1.E-05

1.E-04

1.E-03

1.E-02

0 2 4 6 8 10 12 14

Time (sec)

M
S

E

LW

AIS-BN

Gibbs

LCS

IBP

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 2 4 6 8 10 12 14

Time (sec)

K
L

-d
is

ta
n

ce

LW

AIS-BN

Gibbs

LCS

IBP

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 2 4 6 8 10 12 14

Time (sec)

H
el

lin
g

e
r-

d
is

ta
n

ce

LW

AIS-BN

Gibbs

LCS

IBP

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

1.E-04

1.E-03

1.E-02

1.E-01

0 5 10 15 20 25 30

Time (sec)

A
b

s
o

lu
te

 E
rr

o
r

LW

AIS-BN

Gibbs

LCS

IBP

Figure 11: Comparing loop-cutset sampling (LCS), wLC=3, Gibbs sampling, likelihood
weighting (LW), AIS-BN, and IBP on cpcs360b network, averaged over 20 in-
stances, showing MSE as a function of the number of samples (top left) and time
(top right) and KL-distance (middle left), squared Hellinger’s distance (middle
right), and an average error (bottom) as a function of time.

29

Bidyuk & Dechter

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

0 1000 2000 3000 4000 5000 6000

samples

M
S

E

Gibbs

LCS

IBP

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 10 20 30 40 50 60

Time (sec)

M
S

E

LW

AIS-BN

Gibbs

LCS

IBP

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 10 20 30 40 50 60

Time (sec)

K
L

-d
is

ta
n

c
e

LW

AIS-BN

Gibbs

LCS

IBP

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 10 20 30 40 50 60

Time (sec)

H
el

li
n

g
er

-d
is

ta
n

ce

LW

AIS-BN

Gibbs

LCS

IBP

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 10 20 30 40 50 60

Time (sec)

A
b

s
o

lu
te

 E
rr

o
r

LW

AIS-BN

Gibbs

LCS

IBP

Figure 12: Comparing loop-cutset sampling (LCS), wLC=14, Gibbs sampling, likelihood
weighting (LW), AIS-BN sampling, and IBP on cpcs422b network, averaged
over 10 instances, showing MSE as a function of the number of samples (top
left) and time (top right) and KL-distance (middle left), squared Hellinger’s
distance (middle right), and an average error (bottom) as a function of time.

30

Cutset Sampling for Bayesian Networks

coding, N=200, P=3, |LC|=26, w*=21

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10

Time (sec)

A
b

s
o

lu
te

 E
rr

o
r

LW
AIS-BN
Gibbs
LCS
IBP

coding, N=200, P=3, |LC|=26, w*=21

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10

Time (sec)

M
S

E

LW
AIS-BN
Gibbs
LCS
IBP

coding, N=200, P=3, |LC|=26, w*=21

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

1.0E+01

0 2 4 6 8 10

Time (sec)

K
L

-d
is

ta
n

c
e

LW
AIS-BN
Gibbs
LCS
IBP

coding, N=200, P=3, |LC|=26, w*=21

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 2 4 6 8 10

Time (sec)

H
e

ll
in

g
e

r-
d

is
ta

n
c

e

LW
AIS-BN
Gibbs
LCS
IBP

Figure 13: Comparing loop-cutset sampling (LCS), wLC=3, Gibbs sampling, likelihood
weighting (LW), AIS-BN, and IBP on coding networks, σ=0.4, averaged over
10 instances of 10 coding networks (100 instances total). The graphs show aver-
age absolute error (top left), MSE (top right), KL-distance (bottom left), and
squared Hellinger’s distance (bottom right) as a function of time.

chain corresponding to sampling the subspace of code bits only is ergodic and therefore,
loop-cutset sampling, which samples a subset of coding bits, converges and even achieves
higher accuracy than IBP with time. In reality, IBP is certainly preferable for coding
networks since the size of the loop-cutset grows linearly with the number of code bits.

Random networks. In random multi-part networks (Figure 14, top) and random
2-layer networks (Figure 14, middle), loop-cutset sampling always converged faster than
Gibbs sampling. The results are averaged over 10 instances of each network type. In
both cases, loop-cutset sampling achieved accuracy of IBP in 2 seconds or less. In 2-layer
networks, Iterative Belief Propagation performed particularly poorly. Both Gibbs sampling
and loop-cutset sampling obtained more accurate results in less than a second.

Hailfinder network. We used this network (in addition to coding networks) to com-
pare the behavior of cutset sampling and Gibbs sampling in deterministic networks. Since
Hailfinder network contains many deterministic probabilities, the Markov chain correspond-
ing to Gibbs sampling over all variables is non-ergodic. As expected, Gibbs sampling fails
while loop-cutset sampling computes more accurate marginals (Figure 15).

31

Bidyuk & Dechter

random, N=200, |E|=20, |C|=30, w*=22

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

1.8E-04

0 5 10 15 20 25 30

Time (sec)

M
S

E
Gibbs

LCS

IBP

2-layer, R=50, P=3, N=200, |E|=16, |LC|=17, w*=16

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10 12

Time (sec)

M
S

E

Gibbs

LCS

IBP

Figure 14: Comparing loop-cutset sampling (LCS), Gibbs sampling, and IBP on random
networks (left) and 2-layer random networks (right), wLC=3 in both classes of
networks, averaged over 10 instances each. MSE as a function of time.

Hailfinder, N=56, |LC|=5, w*=5, |E|=4

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 1 2 3 4 5 6 7

Time (sec)

M
S

E

Gibbs

LCS

IBP

Figure 15: Comparing loop-cutset sampling (LCS), wLC=7, Gibbs sampling, and IBP on
Hailfinder network, 10 instances. MSE as a function of time.

In summary, the empirical results demonstrate that loop-cutset sampling is cost-effective
time-wise and superior to Gibbs sampling. We measured the ratio R =

Mg

Mc
of the number

of samples Mg generated by Gibbs to the number of samples Mc generated by loop-cutset
sampling in the same time period (it is relatively constant for any given network and only
changes slightly between problem instances that differ with observations). For cpcs54,
cpcs179, cpcs360b, and cpcs422b the ratios were correspondingly 2.5, 3.75, 0.7, and 75
(see Table 2 in section 4.4). We also obtained R=2.0 for random networks and R=0.3 for
random 2-layer networks. The ratio values > 1 indicate that the Gibbs sampler generates

32

Cutset Sampling for Bayesian Networks

samples faster than loop-cutset sampling which is usually the case. In those instances,
variance reduction compensated for the increased computation time because fewer samples
are needed to converge resulting in the overall better performance of loop-cutset sampling
compared to Gibbs sampling. In some cases, however, the reduction in the sample size
also compensates for the overhead computation in the sampling of one variable value. In
such cases, loop-cutset sampling generated samples faster than Gibbs yielding ratio R < 1.
Then, the improvement in the accuracy is due both to larger number of samples and to
faster convergence.

4.4 w-Cutset Sampling

In this section, we compare the general w-cutset scheme for different values of w against
Gibbs sampling. The main goal is to study how the performance of w-cutset sampling
varies with w. For completeness sake, we include results of loop-cutset sampling shown in
section 4.3.

In this empirical study, we used the greedy algorithm for set cover problem, mentioned
in section 3.5, for finding minimal w-cutset. We apply the algorithm in such a manner that
each (w + 1)-cutset is a proper subset of a w-cutset and, thus, can be expected to have a
lower variance and converge faster than sampling on w-cutset in terms of number of samples
required (following the Rao-Blackwellisation theory). We focus the empirical study on the
trade-offs between cutset size reduction and the associated increase in sample generation
time as we gradually increase the bound w.

We used the same benchmarks as before and included also grid networks. All sampling
algorithms were given a fixed time bound. When sampling small networks, such as cpcs54
(w∗=15) and cpcs179 (w∗=8), where exact inference is easy, sampling algorithms were
allocated 10 seconds and 20 seconds respectively. For larger networks we allocated 100-200
seconds depending on the complexity of the network which was only a fraction of exact
computation time.

Table 1 reports the size of the sampling set used by each algorithm where each column
reports the size of the corresponding w-cutset. For example, for cpcs360b, the average
size of Gibbs sample (all nodes except evidence) is 345, the loop-cutset size is 26, the size
of 2-cutset is 22, and so on. Table 2 shows the rate of sample generation by different
algorithms per second. As we observed previously in the case of loop-cutset sampling,
in some special cases cutset sampling generated samples faster than Gibbs sampler. For
example, for cpcs360b, loop-cutset sampling and 2-cutset sampling generated 600 samples
per second while the Gibbs sampler was able to generate only 400 samples. We attribute
this to the size of cutset sample (26 nodes or less as reported in Table 1) compared to the
size of the Gibbs sample (over 300 nodes).

CPCS networks. We present two charts. One chart demonstrates the convergence
over time for several values of w. The second chart depicts the change in the quality
of approximation (MSE) as a function of w for two time points, at the half of the total
sampling time and at the end of total sampling time. The performance of Gibbs sampling
and cutset sampling for cpcs54 is shown in Figure 16. The results are averaged over 20
instances with 5-10 evidence variables. The graph on the left in Figure 16 shows the mean
square error of the estimated posterior marginals as a function of time for Gibbs sampling,

33

Bidyuk & Dechter

Sampling Set Size

Gibbs LC w=2 w=3 w=4 w=5 w=6 w=7 w=8

cpcs54 51 16 17 15 11 9 8 - -
cpcs179 162 8 11 9 7 5 - - -
cpcs360b 345 26 22 19 16 15 14 13 -
cpcs422b 392 47 65 57 50 45 40 35 -
grid15x30 410 169 163 119 95 75 60 50 13
random 190 30 61 26 25 24 18 17 -
2layer 185 17 22 15 13 13 11 - -
coding 100 26 38 23 18 18 - - -

Table 1: Markov chain sampling set size as a function of w.

No. of Samples

Gibbs LC w=2 w=3 w=4 w=5 w=6 w=7 w=8

cpcs54 5000 2000, w= 5 3000 2400 800 500 300 - -
cpcs179 1500 400, w= 7 400 150 40 10 - - -
cpcs360b 400 600, w= 3 600 400 160 100 40 20 -
cpcs422b 300 4, w=14 200 150 90 50 30 15 -
grid15x30 2000 500, w= 2 300 260 150 105 60 35 20
random 2000 1000, w= 3 1400 700 450 300 140 75 -
2layer 200 700, w= 3 900 320 150 75 40 - -
coding 2400 1000, w= 3 1000 400 200 120 100 - -

Table 2: Average number of samples generated per second as a function of w.

loop-cutset sampling, and w-cutset sampling for w=2, 3, 4, and 5. The second chart shows
accuracy as a function of w. The first point corresponds to Gibbs sampling; other points
correspond to loop-cutset sampling and w-cutset sampling with w ranging from 2 to 6. The
loop-cutset result is embedded with the w-cutset values at w=5. As explained in section 3.3,
the loop-cutset corresponds to the w-cutset where w is the maximum number of parents in
the network. Initially, the best results were obtained by 2- and 3-cutset sampling followed
by the loop-cutset sampling. With time, 2- and 5-cutset sampling become the best.

The results for cpcs179 are reported in Figure 17. Both charts show that loop-cutset
sampling and w-cutset sampling for w in range from 2 to 5 are superior to Gibbs sampling.
The chart on the left shows that the best of the cutset sampling schemes, having the lowest
MSE curves, are 2- and 3-cutset sampling. The loop-cutset curve falls in between 2- and
3-cutset at first and is outperformed by both 2- and 3-cutset after 12 seconds. Loop-cutset
sampling and 2- and 3-cutset sampling outperform Gibbs sampling by nearly two orders of
magnitude as their MSE falls below 1E-04 while Gibbs MSE remains on the order of 1E-
02. The 4- and 5-cutset sampling results fall in between, achieving the MSE ≈1E-03. The
curves corresponding to loop-cutset sampling and 2-, 3- and 4-cutset sampling fall below
the IBP line which means that all four algorithms outperform IBP in the first seconds of
execution (IBP converges in less than a second). The 5-cutset outperforms IBP after 8
seconds. In Figure 17 on the right, we see the accuracy results for all sampling algorithms

34

Cutset Sampling for Bayesian Networks

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 2 4 6 8 10 12 14

Time (sec)

M
S

E
Gibbs

IBP
LCS,w=5

|C|=16,w=2
|C|=15,w=3

|C|=11,w=4
|C|=9,w=5

cpcs54, N=54, |LC|=16, w*=15, |E|=8

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

Gibbs w=2 w=3 w=4 LCS,
w=5

w=5 w=6

M
S

E

IBP

Cutset, 5 sec

Cutset, 10 sec

Figure 16: MSE as a function of time (left) and w (right) in cpcs54, 20 instances, time
bound=12 seconds.

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 2 4 6 8 10 12 14

Time (sec)

M
S

E

Gibbs
IBP
LCS,w=7
|C|=11,w=2
|C|=9,w=3
|C|=7,w=4
|C|=5,w=5

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

G
ib
bs w=2 w=3 w=4 w=5

LC
S,

w=7

M
S

E

IBP

Cutset, 10 sec

Cutset, 20 sec

Figure 17: MSE as a function of time (left) and w (right) in cpcs179, 20 instances, time
bound=12 seconds. Y-scale is exponential due to large variation in performance
of Gibbs and cutset sampling.

after 10 seconds and 20 seconds. They are in agreement with the convergence curves on the
left.

In cpcs360b (Figure 18), loop-cutset sampling and 2- and 3-cutset sampling have similar
performance. The accuracy of the estimates slowly degrades as w increases. Loop-cutset
sampling and w-cutset sampling substantially outperform Gibbs sampling for all values w
and exceed the accuracy of IBP within 1 minute.

On the example of cpcs422b, we demonstrate the significance of the adjusted induced
width of the conditioned network in the performance of cutset sampling. As we reported
in section 4.3, its loop-cutset is relatively small |LC|=47 but wLC=14 and thus, sampling
just one new loop-cutset variable value is exponential in the big adjusted induced width.
As a result, loop-cutset sampling computes only 4 samples per second while the 2-, 3-
and 4-cutset, which are only slightly larger having 65, 57, and 50 nodes respectively (see
Table 1), compute samples at rates of 200, 150, and 90 samples per second (see Table 2).

35

Bidyuk & Dechter

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

1.E-06

1.E-05

1.E-04

1.E-03

0 10 20 30 40 50 60 70

Time (sec)

M
S

E
Gibbs

IBP
LCS,w=3

|C|=23,w=2
|C|=19,w=3

|C|=16,w=4
|C|=15,w=5

cpcs360b, N=360, |E|=18, |LC|=26, w*=15

0.E+00

2.E-05

4.E-05

6.E-05

8.E-05

1.E-04

Gibbs w=2

LC
,w

=3 w=3 w=4 w=5 w=6
w=7

M
S

E

IBP

cutset,t=30sec

cutset,t=60sec

Figure 18: MSE as a function of time (left) and w (right) in cpcs360b, 20 instances, time
bound=60 seconds. Y-scale is exponential due to large variation in performance
of Gibbs and cutset sampling.

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

1.8E-04

2.1E-04

0 20 40 60 80 100 120 140

Time (sec)

M
S

E

Gibbs
IBP
LCS,w=2
|C|=65,w=2
|C|=57,w=3
|C|=50,w=4
|C|=45,w=5

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

Gibbs w=2 w=3 w=4 w=5 w=6 w=7

M
S

E
IBP

Cutset, 100 sec

Cutset, 200 sec

Figure 19: MSE as a function of time (left) and w (right) in cpcs422b, 10 instances, time
bound=200 seconds. Y-scale is exponential due to large variation in performance
of Gibbs and cutset sampling.

The 5-cutset that is closest to loop-cutset in size, |C5| = 45, computes 50 samples per
second which is an order of magnitude more than loop-cutset sampling. The results for
cpcs422b are shown in Figure 19. The loop-cutset sampling results are excluded due to its
poor performance. The chart on the right in Figure 19 shows that w-cutset performed well
in range of w = 2 − 7 and is far superior to Gibbs sampling. When allowed enough time,
w-cutset sampling outperformed IBP as well. The IBP converged in 5 seconds. The 2-, 3-,
and 4-cutset improved over IBP within 30 seconds, and 5-cutset after 50 seconds.

Random networks. Results from 10 instances of random multi-partite and 10 in-
stances of 2-layer networks are shown in Figure 20. As we can see, w-cutset sampling
substantially improves over Gibbs sampling and IBP reaching optimal performance for
w = 2− 3 for both classes of networks. In this range, its performance is similar to that of
loop-cutset sampling. In case of 2-layer networks, the accuracy of both Gibbs sampling and

36

Cutset Sampling for Bayesian Networks

random, R=50, N=200, P=3, |LC|=30, w*=22

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 10 20 30 40 50

Time (sec)

M
S

E

Gibbs
IBP
|LC|=30,w*=3
|C|=61,w*=2
|C|=26,w*=3
|C|=25,w*=4
|C|=24,w*=5

random, R=50, N=200, P=3, |LC|=30, w*=22

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

Gibb
s

w=2
w=3

LC
,w

=3 w=4
w=5

w=6
w=7

M
S

E

IBP

cutset,t=30sec

cutset,t=60sec

2layer, R=50, N=200, P=3, |LC|=17, w*=16

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 5 10 15 20 25

Time (sec)

M
S

E

Gibbs
IBP
|LC|=17,w*=3
|C|=22,w*=2
|C|=15,w*=3
|C|=13,w*=4
|C|=12,w*=5

2layer, R=50, N=200, P=3, |LC|=17, w*=16

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

Gibbs w =2 LC,w =3 w =3 w =4 w =5 w =6

M
S

E

IBP

cutset,t=10sec

cutset,t=20sec

Figure 20: Random multi-partite networks (top) and 2-layer networks (bottom), 200 nodes,
10 instances. MSE as a function of the number of samples (left) and w (right).

37

Bidyuk & Dechter

IBP is an order-of-magnitude less compared to cutset sampling (Figure 20, bottom right).
The poor convergence and accuracy of IBP on 2-layer networks was observed previously
(Murphy et al., 1999).

grid, 15x30, |E|=60, |LC|=169, w*=15, MSE

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 20 40 60 80 100 120

Time (sec)

M
S

E

Gibbs

IBP

|LC|=169,w*=2

|C|=163,w*=2

|C|=119,w*=3

|C|=95,w*=4

|C|=75,w*=5

grid, 15x30, |E|=40, |LC|=169, w*=20

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

G
ibb

s

w*=
2

LC
,w

*=
2

w*=
3

w*=
4

w*=
5

w*=
6

w*=
7

w*=
8

M
S

E

IBP

cutset,t=50sec

cutset,t=100sec

Figure 21: Random networks, 450 nodes, 10 instances. MSE as a function of the number
of samples (left) and w (right).

Grid networks. Grid networks having 450 nodes (15x30) were the only class of bench-
marks where full Gibbs sampling was able to produce estimates comparable to cutset-
sampling (Figure 21). With respect to accuracy, the Gibbs sampler, loop-cutset sampling,
and 3-cutset sampling were the best performers and achieved similar results. Loop-cutset
sampling was the fastest and most accurate among cutset sampling schemes. Still, it gen-
erated samples about 4 times more slowly compared to Gibbs sampling (Table 2) since
loop-cutset is relatively large. The accuracy of loop-cutset sampling was closely followed
by 2-, 3- and 4-cutset sampling slowly degrading as w increased. Grid networks are an
example of benchmarks with regular graph structure (that cutset sampling cannot exploit
to its advantage) and small CPTs (in a two-dimensional grid network each node has at most
2 parents) where Gibbs sampling is strong.

coding 50x50, N=200, P=3, |LC|=26, w*=19

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 2 4 6 8 10

Time (sec)

M
S

E

IBP

|LC|=26,w*=3

|C|=38,w*=2

|C|=21,w*=3

|C|=18,w*=4

coding, 50x50, N=200, P=3, |LC|=26, w*=19

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

w=2 w=3 LC,w=3 w=4

M
S

E

IBP

cutset,t=5sec

cutset,t=10sec

Figure 22: Coding networks, 50 code bits, 50 parity check bits, σ=0.4, 100 instances, time
bound=6 minutes.

38

Cutset Sampling for Bayesian Networks

Markov Chain Length T

Time Gibbs LC w=2 w=3 w=4 w=5 w=6

cpcs54 20 sec 4500 2200 4000 2400 800 500 -
cpcs179 40 sec 1500 400 400 150 40 10 -
cpcs360b 100 sec 2000 3000 3000 2000 800 500 200
cpcs422b 200 sec 3000 20 2000 1500 900 500 250
grid15x30 100 sec 2000 500 300 260 150 105 60
random 50 sec 2000 1000 1400 700 450 300 140
2layer 20 sec 200 700 900 320 150 75 40
coding 20 sec 650 450 800 600 250 150 100

Table 3: Individual Markov chain length as a function of w. The length of each chain M was
adjusted for each sampling scheme for each benchmark so that the total processing
time across all sampling algorithms was the same.

Coding Networks. The cutset sampling results for coding networks are shown in
Figure 22. Here, the induced width varied from 18 to 22 allowing for exact inference.
However, we additionally tested and observed that the complexity of the network grows
exponentially with the number of coding bits (even after a small increase in the number of
coding bits to 60 yielding a total of 240 nodes after corresponding adjustments to the number
of parity-checking bits and transmitted code size, the induced width exceeds 24) while the
time for each sample generation scales up linearly. We collected results for 10 networks
(10 different parity check matrices) with 10 different evidence instantiations (total of 100
instances). In decoding, the Bit Error Rate (BER) is a standard error measure. However,
we computed MSE over all unobserved nodes to evaluate the quality of approximate results
more precisely. As expected, Gibbs sampling did not converge (because the Markov chain
was non-ergodic) and was left off the charts. The charts in Figure 22 show that loop-cutset
is an optimal choice for coding networks whose performance is closely followed by 2-cutset
sampling. As we saw earlier, cutset sampling outperforms IBP.

4.5 Computing an Error Bound

Second to the issue of convergence of sampling scheme is always the problem of predicting
the quality of the estimates and deciding when to stop sampling. In this section, we compare
empirically the error intervals for Gibbs and cutset sampling estimates.

Gibbs sampling and cutset sampling are guaranteed to converge to the correct posterior
distribution in ergodic networks. However, it is hard to estimate how many samples are
needed to achieve a certain degree of convergence. It is possible to derive bounds on the
absolute error based on sample variance for any sampling method if the samples are inde-
pendent. In Gibbs and other MCMC methods, samples are dependent and we cannot apply
the confidence interval estimate directly. In case of Gibbs sampling, we can apply the batch
means method that is a special case of standardized time series method and is used by the
BUGS software package (Billingsley, 1968; Geyer, 1992; Steiger & Wilson, 2001).

39

Bidyuk & Dechter

The main idea is to “split” a Markov chain of length M · T into M chains of length
T . Let P̂m(xi|e) be an estimate derived from a single chain m ∈ [1, ..., M] of length T
(meaning, containing T samples) as defined in equations (28)-(29). The estimates P̂m(x|e)
are assumed approximately independent for large enough M . Assuming that convergence
conditions are satisfied and the central limit theorem holds, the P̂m(x|e) is distributed
according to N(E[P (xi|e)], σ2) so that the posterior marginal P̂ (Xi|e) is obtained as an
average of the M results obtained from each chain, namely:

P̂ (x|e) =
1

M

M
∑

m=1

P̂m(x|e) (33)

and the sampling variance is computed as usually:

σ2 =
1

M − 1

M
∑

m=1

(P̂m(x|e)− P̂ (x|e))2

An equivalent expression for the sampling variance is:

σ2 =

∑M
m=1 P̂ 2

m(x|e)−MP̂ 2(x|e)
M − 1

(34)

where σ2 is easy to compute incrementally storing only the running sums of P̂m(x|e) and
P̂ 2

m(x|e). Therefore, we can compute the confidence interval in the 100(1 − α) percentile
used for random variables with normal distribution for small sampling set sizes. Namely:

P

[

P (x|e) ∈ [P̂ (x|e)± tα
2

,(M−1)

√

σ2

M

]

= 1− α (35)

where tα
2

,(M−1) is a table value from t distribution with (M − 1) degrees of freedom.
We used the batch means approach to estimate the confidence interval in the posterior

marginals with one modification. Since we were working with relatively small sample sets
(a few thousand samples) and the notion of “large enough” M is not well defined, we
restarted the chain after every T samples to guarantee that the estimates P̂m(x|e) were
truly independent. The method of batch means only provides meaningful error estimates
assuming that the samples are drawn from the stationary distribution. We assume that in
our problems the chains mix fast enough so that the samples are drawn from the target
distribution.

We applied this approach to estimate the error bound in the Gibbs sampler and the
cutset sampler. We have computed a 90% confidence interval for the estimated posterior
marginal P (xi|e) based on the sampling variance of Pm(xi|e) over 20 Markov chains as
described above. We computed sampling variance σ2 from Eq.(34) and the 90% confidence
interval ∆0.9(xi) from Eq.(35) and averaged over all nodes:

∆0.9 =
1

N
∑

i |D(Xi)|
∑

i

∑

xi∈D(Xi)

∆0.9(xi)

The estimated confidence interval can be too large to be practical. Thus, we compared ∆0.9

with the empirical average absolute error ∆:

40

Cutset Sampling for Bayesian Networks

Average Error and Confidence Interval

Gibbs LC w=2 w=3 w=4 w=5 w=6

cpcs54 ∆ 0.00056 0.00036 0.00030 0.00030 0.00040 0.00036 0.00067
∆0.9 0.00119 0.00076 0.00064 0.00063 0.00098 0.00112 0.00116

cpcs179 ∆ 0.01577 0.00086 0.00074 0.00066 0.00113 0.00178 -
∆0.9 0.02138 0.00148 0.00111 0.00164 0.00235 0.00392 -

cpcs360b ∆ 0.00051 0.00011 0.00010 0.00008 0.00014 0.00012 0.00022
∆0.9 0.00113 0.00022 0.00023 0.00021 0.00030 0.00028 0.00046

cpcs422b ∆ 0.00055 - 0.00018 0.00020 0.00018 0.00027 0.00037
∆0.9 0.00119 - 0.00033 0.00035 0.00043 0.00060 0.00074

random ∆ 0.00091 0.00039 0.00119 0.00091 0.00099 0.00109 0.00113
∆0.9 0.00199 0.00080 0.00247 0.00205 0.00225 0.00222 0.00239

2layer ∆ 0.00436 0.00066 0.00063 0.00082 0.00117 0.00134 0.00197
∆0.9 0.00944 0.00145 0.00144 0.00185 0.00235 0.00302 0.00341

coding ∆ - 0.00014 0.00019 0.00019 0.000174 - -
∆0.9 - 0.00030 0.00035 0.00034 0.000356 - -

grid15x30 ∆ 0.00108 0.00099 0.00119 0.00091 0.00099 0.00109 0.00113
∆0.9 0.00248 0.00214 0.00247 0.00205 0.00225 0.00222 0.00239

Table 4: Average absolute error ∆ (measured) and estimated confidence interval ∆0.9 as a
function of w over 20 Markov Chains.

∆ =
1

N
∑

i |D(Xi)|
∑

i

∑

xi∈D(Xi)

|P̂ (xi|e)− P (xi|e))

The objective of this study was to observe whether the computed confidence interval ∆0.9

(estimated absolute error) accurately reflects the true absolute error ∆, namely, to verify
that ∆ < ∆0.9, and if so, then investigate empirically whether confidence interval for cutset-
sampling estimates will be smaller compared to Gibbs sampling as we would expect due to
variance reduction.

Table 4 presents the average confidence interval and average absolute error for our
benchmarks. For each benchmark, the first row of results (row ∆) reports the average
absolute error and the second row of results (row ∆0.9) reports the 90% confidence interval.
Each column in Table 4 corresponds to a sampling scheme. The first column reports results
for Gibbs sampling. The second column reports results for loop-cutset sampling. The
remaining columns report results for w-cutset sampling for w in range 2−6. The loop-cutset
sampling results for cpcs422b are not included due to statistically insignificant number of
samples generated by loop-cutset sampling. The Gibbs sampling results for coding networks
are left out because the network is not ergodic (as mentioned earlier) and Gibbs sampling
does not converge.

We can see that for all the networks ∆ < ∆0.9 which validates our method for measuring
confidence interval. In most cases the estimated confidence interval ∆0.9 is no more than
2-3 times the size of average error ∆ and is relatively small. In case of cutset sampling, the
largest confidence interval max ∆0.9 = 0.00247 is reported in grid networks for loop-cutset

41

Bidyuk & Dechter

sampling. Thus, the confidence interval estimate could be used as a criteria reflecting the
quality of the posterior marginal estimate by the sampling algorithm in practice. Subse-
quently, comparing the results for Gibbs sampling and cutset sampling, we observe not
only a significant reduction in the average absolute error, but also a similar reduction in the
estimated confidence interval. Across all benchmarks, the estimated confidence interval of
the Gibbs sampler remains ∆0.9 > 1E-3. At the same time, for cutset sampling we obtain
∆0.9 < 1E-3 in 5 out of 8 classes of networks (excluded are the cpcs179, grid, and 2-layer
networks).

4.6 Discussion

Our empirical evaluation of the performance of cutset sampling demonstrates that, except
for grid networks, sampling on a cutset usually outperforms Gibbs sampling. We show that
convergence of cutset sampling in terms of number of samples dramatically improves as
predicted theoretically.

The experiments clearly show that there exists a range of w-values where w-cutset
sampling outperforms Gibbs sampler. The performance of w-cutset sampling deteriorates
when increase in w yields only a small reduction in the cutset size. An example is cpcs360b
network where starting with w=4, increasing w by 1 results in the reducing the sampling
set by only 1 node (shown in Table 1).

We observe that the loop-cutset is a good choice of cutset sampling as long as the
induced width of network wLC conditioned on loop-cutset is reasonably small. When wLC

is large (as in cpcs422b), loop-cutset sampling is computationally less efficient then w-cutset
sampling for w < wLC .

We also showed in Section 4.3 that both Gibbs sampling and loop-cutset sampling
outperform the state-of-the-art AIS-BN adaptive importance sampling method when the
probability of evidence is small. Consequently, all the w-cutset sampling schemes in Sec-
tion 4.4 that outperformed Gibbs sampler in cpcs360b and cpcs422b would also outperfrom
AIS-BN.

5. Related Work

We mention here some related work. The idea of marginalising out some variables to improve
efficiency of Gibbs sampling was first proposed by Liu et al. (1994). It was successfully
applied in several special classes of Bayesian models. Kong et al. (1994) applied collapsing
to the bivariate Gaussian problem with missing data. Liu (1994) defined a collapsed Gibbs
sampling algorithm for finding repetitive motifs in biological sequences applies by integrating
out two parameters from the model. Similarly, Gibbs sampling set is collapsed in Escobar
(1994), MacEachern (1994), and Liu (1996) for learning the nonparametric Bayes problem.
In all of the instances above, special relationships between problem variables have been
exploited to integrate several variables out resulting in a collapsed Gibbs sampling approach.
Compared to this previous research work, our contribution is in defining a generic scheme
for collapsing Gibbs sampling in Bayesian networks which takes advantage of the network’s
graph properties and does not depend on the specific form of the relationships between
variables.

42

Cutset Sampling for Bayesian Networks

Jensen et al. (1995) combined sampling and exact inference in a blocking Gibbs sampling
scheme. Groups of variables were sampled simultaneously using exact inference to compute
the needed conditional distributions. Their empirical results demonstrate a significant im-
provement in the convergence of the Gibbs sampler over time. Yet, in proposed blocking
Gibbs sampling, the sample contains all variables in the network. In contrast, cutset sam-
pling reduces the set of variables that are sampled. As noted previously, collapsing produces
lower variance estimates than blocking and, therefore, cutset sampling should require fewer
samples to converge.

A different combination of sampling and exact inference for join-trees was described
by Koller et al. (1998) and Kjaerulff (1995). oller et al. and Kjaerulff proposed to sample
the probability distribution in each cluster for computing the outgoing messages. Kjaerulff
used Gibbs sampling only for large clusters to estimate the joint probability distribution
P (Vi), Vi ⊂ X in cluster i. The estimated P̂ (Vi) is recorded instead of the true joint
distribution to conserve memory. The motivation is that only high-probability tuples will
be recorded while the remaining low-probability tuples are assumed to have probability 0.
In small clusters, the exact joint distribution P (Vi) is computed and recorded. However, the
paper does not analyze the introduced errors or compare the performance of this scheme
with standard Gibbs sampler or the exact algorithm. No analysis of error is given nor
comparison with other approaches.

Koller et al. (1998) used sampling used to compute messages sent from cluster i to
cluster j and the posterior joint distributions in a cluster-tree that contains both discrete
and continuous variables. This approach subsumes the cluster-based sampling proposed
by Kjaerulff (1995) and includes rigorous analysis of the error in the estimated posterior
distributions. The method has difficulties with propagation of evidence. The empirical
evaluation is limited to two hybrid network instances and compares the quality of the
estimates to those of likelihood weighting, an instance of importance sampling that does
not perform well in presence of low-probability evidence.

The effectiveness of collapsing of sampling set has been demonstrated previously in the
context of Particle Filtering method for Dynamic Bayesian networks (Doucet, Andrieu, &
Godsill, 2000a; Doucet, deFreitas, & Gordon, 2001; Doucet, de Freitas, Murphy, & Russell,
2000b). It was shown that sampling from a subspace combined with exact inference (Rao-
Blackwellised Particle Filtering) yields a better approximation than Particle Filtering on
the full set of variables. However, the objective of the study has been limited to observation
of the effect in special cases where some of the variables can be integrated out easily. Our
cutset sampling scheme offers a generic approach to collapsing a Gibbs sampler in any
Bayesian network.

6. Conclusion

The paper presents the w-cutset sampling scheme, a general scheme for collapsing Gibbs
sampler in Bayesian networks. We showed theoretically and empirically that cutset sam-
pling improves the convergence rate and allows sampling from non-ergodic network that
has ergodic subspace. By collapsing the sampling set, we reduce the dependence between
samples by marginalising out some of the highly correlated variables and smoothing the
sampling distributions of the remaining variables. The estimators obtained by sampling

43

Bidyuk & Dechter

from a lower-dimensional space also have a lower sampling variance. Using the induced
width w as a controlling parameter, w-cutset sampling provides a mechanism for balancing
sampling and exact inference.

We studied the power of cutset sampling when the sampling set is a loop-cutset and,
more generally, when the sampling set is a w-cutset of the network (defined as a subset of
variables such that, when instantiated, the induced width of the network is ≤ w). Based
on Rao-Blackwell theorem, cutset sampling requires fewer samples than regular sampling
for convergence. Our experiments showed that this reduction in number of samples was
time-wise cost-effective. We confirmed this over a range of randomly generated and real
benchmarks. We also demonstrated that cutset sampling is superior to the state of the art
AIS-BN importance sampling algorithm when the probability of evidence is small.

Since the size of the cutset and the correlations between the variables are two main
factors contributing to the speed of convergence, w-cutset sampling may be optimized fur-
ther with the advancement of methods for finding minimal w-cutset. Another promising
direction for future research is to incorporate the heuristics for avoiding selecting strongly-
correlated variables into a cutset since those correlations are driving factors in the speed
of convergence of Gibbs sampling. Alternatively, we could combine sample collapsing with
blocking.

In summary, w-cutset sampling scheme is a simple yet powerful extension of sampling
in Bayesian networks that is likely to dominate regular sampling for any sampling method.
While we focused on Gibbs sampling with better convergence characteristics, other sampling
schemes can be implemented with the cutset sampling principle. In particular, it was
adapted for use with likelihood weighting (Bidyuk & Dechter, 2006).

References

Abdelbar, A. M., & Hedetniemi, S. M. (1998). Approximating maps for belief networks is
NP-hard and other theorems. Artificial Intelligence, 102, 21–38.

Andrieu, C., de Freitas, N., & Doucet, A. (2002). Rao-Blackwellised particle filtering via
data augmentation. In Advances in Neural Information Processing Systems. MIT
Press.

Arnborg, S. A. (1985). Efficient algorithms for combinatorial problems on graphs with
bounded decomposability - a survey. BIT, 25, 2–23.

Becker, A., Bar-Yehuda, R., & Geiger, D. (2000). Random algorithms for the loop cutset
problem. Journal of Artificial Intelligence Research, 12, 219–234.

Bertele, U., & Brioschi, F. (1972). Nonserial Dynamic Programming. Academic Press.

Bidyuk, B., & Dechter, R. (2003). Empirical study of w-cutset sampling for Bayesian net-
works. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 37–46. Morgan Kaufmann.

Bidyuk, B., & Dechter, R. (2004). On finding minimal w-cutset problem. In Proceedings
of the 20th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 43–50.
Morgan Kaufmann.

44

Cutset Sampling for Bayesian Networks

Bidyuk, B., & Dechter, R. (2006). Cutset Sampling with Likelihood Weighting. In Pro-
ceedings of the 22nd Conference on Uncertainty in Artificial Intelligence (UAI), pp.
39–46. Morgan Kaufmann.

Billingsley, P. (1968). Convergence of Probability Measures. John Wiley & Sons, New York.

Casella, G., & Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika,
83 (1), 81–94.

Cheng, J., & Druzdzel, M. J. (2000). AIS-BN: An adaptive importance sampling algorithm
for evidenctial reasoning in large baysian networks. Journal of Aritificial Intelligence
Research, 13, 155–188.

Cooper, G. (1990). The computational complexity of probabilistic inferences. Artificial
Intelligence, 42, 393–405.

Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief
networks is NP-hard. Artificial Intelligence, 60 (1), 141–153.

Dechter, R. (1999a). Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113, 41–85.

Dechter, R. (1999b). Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113 (1–2), 41–85.

Dechter, R. (2003). Constraint Processing. Morgan Kaufmann.

Doucet, A., & Andrieu, C. (2001). Iterative algorithms for state estimation of jump Markov
linear systems. IEEE Trans. on Signal Processing, 49 (6), 1216–1227.

Doucet, A., Andrieu, C., & Godsill, S. (2000a). On sequential Monte Carlo sampling meth-
ods for Bayesian filtering. Statistics and Computing, 10 (3), 197–208.

Doucet, A., de Freitas, N., Murphy, K., & Russell, S. (2000b). Rao-Blackwellised particle
filtering for dynamic Bayesian networks. In Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 176–183.

Doucet, A., deFreitas, N., & Gordon, N. (2001). Sequential Monte Carlo Methods in Practice.
Springer-Verlag, New York, Inc.

Doucet, A., Gordon, N., & Krishnamurthy, V. (1999). Particle filters for state estima-
tion of jump markov linear systems. Tech. rep., Cambridge University Engineering
Department.

Escobar, M. D. (1994). Estimating normal means iwth a dirichlet process prior. Journal of
the American Statistical Aasociation, 89, 268–277.

Frey, B. J., & MacKay, D. J. C. (1997). A revolution: Belief propagation in graphs with
cycles. In Neural Information Processing Systems, Vol. 10.

Fung, R., & Chang, K.-C. (1989). Weighing and integrating evidence for stochastic simu-
lation in Bayesian networks. In Proceedings of the 5th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 209–219. Morgan Kaufmann.

Geiger, D., & Fishelson, M. (2003). Optimizing exact genetic linkage computations. In Pro-
ceedings of the 7th Annual International Conf. on Computational Molecular Biology,
pp. 114–121. Morgan Kaufmann.

45

Bidyuk & Dechter

Gelfand, A., & Smith, A. (1990). Sampling-based approaches to calculating marginal den-
sities. Journal of the American Statistical Association, 85, 398–409.

Geman, S., & Geman, D. (1984). Stochastic relaxations, Gibbs distributions and the
Bayesian restoration of images. IEEE Transaction on Pattern analysis and Machine
Intelligence, 6, 721–742.

Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7, 473–483.

Gilks, W., Richardson, S., & Spiegelhalter, D. (1996). Markov chain Monte Carlo in practice.
Chapman and Hall.

Gottlob, G., Leone, N., & Scarello, F. (1999). A comparison of structural CSP decomposition
methods. In Proceedings of the 16th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 394–399. Morgan Kaufmann.

Jensen, C., Kong, A., & Kjærulff, U. (1995). Blocking Gibbs sampling in very large prob-
abilistic expert systems. Int. J. of Human Computer Studies. Special Issue on Real-
World Applications of Uncertain Reasoning, 42 (6), 647–666.

Jensen, F. V., Lauritzen, S. L., & Olesen, K. G. (1990). Bayesian updating in causal
probabilistic networks by local computation. Computational Statistics Quarterly, 4,
269–282.

Jones, G., & Hobert, J. P. (2001). Honest exploration of intractable probability distributions
via Markov Chain Monte Carlo. Statist. Sci., 16 (4), 312–334.

Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). Unifying cluster-tree decomposi-
tions for reasoning in graphical models. Artificial Intelligence, 166, 165–193.

Kjærulff, U. (1995). HUGS: Combining exact inference and Gibbs sampling in junction
trees. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 368–375. Morgan Kaufmann.

Koller, D., Lerner, U., & Angelov, D. (1998). A general algorithm for approximate inference
and its application to hybrid Bayes nets. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence (UAI), pp. 324–333.

Kong, A., Liu, J. S., & Wong, W. (1994). Sequential imputations and Bayesian missing
data problems. J. of the American Statistical Association, 89 (425), 278–288.

Kschischang, F. R., & Frey, B. J. (1998). Iterative decoding of compound codes by proba-
bility propagation in graphical models. IEEE Journal on Selected Areas in Commu-
nications, 16, 219–230.

Larrosa, J., & Dechter, R. (2003). Boosting search with variable elimination in constraint
optimization and constraint satisfaction problems. Constraints, 8 (3), 303–326.

Lauritzen, S., & Spiegelhalter, D. (1988). Local computation with probabilities on graphical
structures and their application to expert systems. Journal of the Royal Statistical
Society, Series B, 50(2), 157–224.

Liu, J. (1991). Correlation Structure and Convergence Rate of the Gibbs Sampler, Ph.D.
Thesis. University of Chicago.

46

Cutset Sampling for Bayesian Networks

Liu, J. (1994). The collapsed Gibbs sampler in Bayesian computations with applications to
a gene regulation problem. Journal of the American Statistical Association, 89 (427),
958–966.

Liu, J., Wong, W., & Kong, A. (1994). Covariance structure of the Gibbs sampler with
applications to the comparison of estimators and augmentation schemes. Biometrika,
81 (1), 27–40.

Liu, J. S. (1996). Nonparametric hierarchical bayes via sequential imputations. Annals of
Statistics, 24 (3), 911–930.

Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New
York, Inc.

MacEachern, S., Clyde, M., & Liu, J. (1998). Sequential importance sampling for nonpara-
metric bayes models: The next generation. The Canadian Journal of Statistics, 27,
251–267.

MacEachern, S. N. (1994). Estimating normal means with a conjugate style dirichlet process
prior. Communications in Statistics-Simulation and Computation, 23 (3), 727–741.

MacKay, D. (1996). Introduction to Monte Carlo methods. In Proceedings of NATO Ad-
vanced Study Institute on Learning in Graphical Models. Sept 27-Oct 7, pp. 175–204.

Maier, D. (1983). The theory of relational databases. In Computer Science Press, Rockville,
MD.

McEliece, R., MacKay, D., & Cheng, J.-F. (1997). Turbo decoding as an instance of Pearl’s
belief propagation algorithm. IEEE J. Selected Areas in Communication, 16, 140–152.

Miller, R., Masarie, F., & Myers, J. (1986). Quick medical reference (QMR) for diagnostic
assistance. Medical Computing, 3 (5), 34–38.

Miller, R., Pople, H., & Myers, J. (1982). Internist-1: An experimental computerbased
diagnostic consultant for general internal medicine. New English Journal of Medicine,
307 (8), 468–476.

Murphy, K. P., Weiss, Y., & Jordan, M. I. (1999). Loopy belief propagation for approximate
inference: An empirical study. In Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence (UAI), pp. 467–475. Morgan Kaufmann.

Parker, R., & Miller, R. (1987). Using causal knowledge to create simulated patient cases:
the CPCS project as an extension of INTERNIST-1. In Proceedings of the 11th Symp.
Comp. Appl. in Medical Care, pp. 473–480.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann.

Peot, M. A., & Shachter, R. D. (1992). Fusion and propagation with multiple observations
in belief networks. Artificial Intelligence, 48, 299–318.

Pradhan, M., Provan, G., Middleton, B., & Henrion, M. (1994). Knowledge engineering for
large belief networks. In Proceedings of 10th Conference on Uncertainty in Artificial
Intelligence, Seattle, WA, pp. 484–490.

Rish, I., Kask, K., & Dechter, R. (1998). Empirical evaluation of approximation algorithms
for probabilistic decoding. In Proceedings of the 14th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 455–463. Morgan Kaufmann.

47

Bidyuk & Dechter

Roberts, G. O., & Sahu, S. K. (1997). Updating schemes; correlation structure; blocking
and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society,
Series B, 59 (2), 291–317.

Roberts, G. O., & Tweedie, R. L. (1999). Bounds on regeneration times and convergence
rates for Markov chains. Stochastic Processes and Their Applications, 80, 211–229.

Roberts, G. O., & Tweedie, R. L. (2001). Corregendum to bounds on regeneration times and
convergence rates for Markov chains. Stochastic Processes and Their Applications, 91,
337–338.

Rosenthal, J. S. (1995). Convergence rates for Markov Chains. SIAM Review, 37 (3), 387–
405.

Rosti, A.-V., & Gales, M. (2004). Rao-Blackwellised Gibbs sampling for switching linear
dynamical systems. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2004), pp. 809–812.

Schervish, M., & Carlin, B. (1992). On the convergence of successive substitution sampling.
Journal of Computational and Graphical Statistics, 1, 111–127.

Shachter, R. D., Andersen, S. K., & Solovitz, P. (1994). Global conditioning for probabilistic
inference in belief networks. In Proceedings of the 10th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 514–522.

Shachter, R. D., & Peot, M. A. (1989). Simulation approaches to general probabilistic
inference on belief networks. In Proceedings of the 5th Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 221—231.

Steiger, N. M., & Wilson, J. R. (2001). Convergence properties of the batch means method
for simulation output analysis. INFORMS Journal on Computing, 13 (4), 277–293.

Tierney, L. (1994). Markov chains for exploring posterior distributions. Annals of Statistics,
22 (4), 1701–1728.

Yuan, C., & Druzdzel, M. (2003). An importance sampling algorithm based on evidence
pre-propagation. In Proceedings of the 19th Conference on Uncertainty in Artificial
Intelligence (UAI), pp. 624–631.

Zhang, N., & Poole, D. (1994). A simple algorithm for Bayesian network computations. In
Proceedings of the 10th Canadian Conference on Artificial Intelligence, pp. 171–178.

48

