
Journal of Artificial Intelligence Research 27 (2006) 577–615 Submitted 2/2006; published 12/2006

Understanding Algorithm Performance on an

Oversubscribed Scheduling Application

Laura Barbulescu laurabar@cs.cmu.edu

The Robotics Institute

Carnegie Mellon University

Pittsburgh, PA 15213 USA

Adele E. Howe howe@cs.colostate.edu

L. Darrell Whitley whitley@cs.colostate.edu

Mark Roberts mroberts@cs.colostate.edu

Computer Science Department

Colorado State University

Fort Collins, CO 80523 USA

Abstract

The best performing algorithms for a particular oversubscribed scheduling application,
Air Force Satellite Control Network (AFSCN) scheduling, appear to have little in com-
mon. Yet, through careful experimentation and modeling of performance in real problem
instances, we can relate characteristics of the best algorithms to characteristics of the
application. In particular, we find that plateaus dominate the search spaces (thus favor-
ing algorithms that make larger changes to solutions) and that some randomization in
exploration is critical to good performance (due to the lack of gradient information on
the plateaus). Based on our explanations of algorithm performance, we develop a new
algorithm that combines characteristics of the best performers; the new algorithm’s perfor-
mance is better than the previous best. We show how hypothesis driven experimentation
and search modeling can both explain algorithm performance and motivate the design of
a new algorithm.

1. Introduction

Effective solution of the Air Force Satellite Control Network (AFSCN) oversubscribed
scheduling problem runs counter to what works well for similar scheduling problems. Other
similar oversubscribed problems, e.g., United States Air Force (USAF) Air Mobility Com-
mand (AMC) airlift (Kramer & Smith, 2003) and scheduling telescope observations (Bresina,
1996), are well solved by heuristically guided constructive or repair based search. The best
performing solutions to AFSCN are a genetic algorithm (Genitor), Squeaky Wheel Op-
timization (SWO) and randomized next-descent local search. We have not yet found a
constructive or repair based solution that is competitive.

The three best performing solutions to AFSCN appear to have little in common, making
it difficult to explain their superior performance. Genitor combines two candidate solutions
preserving elements of each. SWO creates an initial greedy solution and then attempts to
improve the scheduling of all tasks known to contribute detrimentally to the current eval-
uation. Randomized local search makes incremental changes based on observed immediate
gradients in schedule evaluation. In this paper, we examine the performance of these differ-

c©2006 AI Access Foundation. All rights reserved.

Barbulescu, Howe, Whitley, & Roberts

ent algorithms, identify factors that do or do not help explain the performance and leverage
the explanations to design a new search algorithm that is well suited to the characteristics
of this application.

Our target application is an oversubscribed scheduling application with alternative re-
sources. AFSCN (Air Force Satellite Control Network) access scheduling requires assigning
access requests (communication relays to U.S.A. government satellites) to specific time slots
on an antenna at a ground station. It is oversubscribed in that not all tasks can be ac-
commodated given the available resources. To be considered to be oversubscribed, at least
some problem instances need to overtax the available resources; for our application though,
it appears that most problem instances specify more tasks than can be feasibly scheduled.
The application is challenging and shares characteristics with other applications such as
Earth Observing Satellites (EOS). It is important in that a team of human schedulers have
laboriously performed the task every day for at least 15 years with minimal automated
assistance.

All of the algorithms are designed to traverse essentially the same search space: solutions
are represented as permutations of tasks, which a greedy schedule builder converts into a
schedule by assigning start time and resources to the tasks in the order in which they
appear in the permutation. We find that this search space is dominated by large flat
regions (plateaus). Additionally, the size of the plateaus increases dramatically as the best
solution is approached. The presence of the plateaus indicates that each algorithm needs
to effectively manage them in order to find improving solutions.

We have explored a number of different hypotheses to explain the performance of each
algorithm. Some of these hypotheses include the following:

Genitor, a genetic algorithm, identifies patterns of relative task orderings, similar to back-
bones from SAT (Singer, Gent, & Smaill, 2000), which are preserved in the members of
the population. This is in effect a type of classic building block hypothesis (Goldberg,
1989).

SWO starts extremely close to the best solution and so need not enact much change. This
hypothesis also implies that it is relatively easy to modify good greedy solutions to
find the best known solutions.

Randomized Local Search performs essentially a random walk on the plateaus to find
exits leading to better solutions; given the distribution of solutions and lack of gradient
information, this may be as good a strategy as any.

We tested each of these hypotheses. There is limited evidence for the existence of building
blocks or backbone structure. And while Squeaky Wheel Optimization does quickly find
good solutions, it cannot reliably find best known solutions. Therefore, while the first
two hypotheses were somewhat supported by the data, the hypotheses were not enough to
explain the observed performance.

The third hypothesis appears to be the best explanation of why the particular local
search strategy we have used works so well. In light of this, we formulated another hypoth-
esis:

SWO and Genitor make long leaps in the search space, which allow them to relatively
quickly traverse the plateaus.

578

Understanding Algorithm Performance

This last hypothesis appears to well explain the performance of the two methods. For
the genetic algorithm the leaps are naturally longer during the early phases of search when
parent solutions are less similar.

Based on these studies, we constructed a new search algorithm that exploits what we
have learned about the search space and the behavior of successful algorithms. Attenuated
Leap Local Search makes multiple changes to the solution before evaluating a candidate
solution. In addition, the number of changes decreases proportionately with expected prox-
imity to the solution. The number of multiple changes, or the length of the leap, is larger
early in the search, and reduces (shortens) as better solutions are found. We find that this
algorithm performs quite well: it quickly finds best known solutions to all of the AFSCN
problems.

2. AFSCN Scheduling

The U.S.A. Air Force Satellite Control Network is currently responsible for coordinating
communications between civilian and military organizations and more than 100 USAF man-
aged satellites. Space-ground communications are performed using 16 antennas located at
nine tracking stations around the globe1. Figure 1 shows a map of the current configuration
of AFSCN; this map shows one fewer tracking station and antennae than are in our data,
due to those resources apparently having been taken off-line recently. Customer organiza-
tions submit task requests to reserve an antenna at a tracking station for a specified time
period based on the visibility windows between target satellites and tracking stations. Two
types of task requests can be distinguished: low altitude and high altitude orbits. The low
altitude tasks specify requests for access to low altitude satellites; such requests tend to
be short (e.g., 15 minutes) and have a tight visibility window. High altitude tasks specify
requests for high altitude satellites; the durations for these requests are more varied and
usually longer, with large visibility windows.

Approximately 500 requests are typically received for a single day. Separate schedules
are produced by a staff of human schedulers at Schriever Air Force Base for each day. Of the
500 requests, often about 120 conflicts remain after the first pass of scheduling. “Conflicts”
are defined as requests that cannot be scheduled, since they conflict with other scheduled
requests (this means that 120 requests remain unscheduled after an initial schedule is
produced).

From real problem data, we extract a description of the problem specification in terms of
task requests to be scheduled with their corresponding type (low or high altitude), duration,
time windows and alternative resources. The AFSCN data also include information about
satellite revolution numbers, optional site equipment, tracking station maintenance times
(downtimes), possible loss of data due to antenna problems, various comments, etc.; we do
not incorporate such information in our problem specification. The information about the
type of the task (low or high altitude) as well as the identifier for the satellite involved are
included in the task specification. However, we do not know how the satellite identifier

1. The U.S.A. government is planning to make the AFSCN the core of an Integrated Satellite Control
Network for managing satellite assets for other U.S.A. government agencies as well, e.g., NASA, NOAA,
other DoD affiliates. By 2011, when the system first becomes operational, the Remote Tracking Stations
will be increased and enhanced to accommodate the additional load.

579

Barbulescu, Howe, Whitley, & Roberts

Figure 1: Map of the current AFSCN network including tracking stations, control and relay.
The figure was produced for U.S.A. Space and Missile Systems Center (SMC).

corresponds to an actual satellite and so rely on precomputed visibility information which
is present in the requests.

A problem instance consists of n task requests. Each task request Ti, 1 ≤ i ≤ n, specifies
a required processing duration T Dur

i . Each task request also specifies a number of j ≥ 0
pairs of the form (Rj , T

Win
ij), each identifying a particular alternative resource (antenna

Rj) and time window T Win
ij for the task. The duration of the task is the same for all

possible alternative resources. The start and end of the visibility time window is specific
to each alternative resource; therefore while the duration is the same, the time windows
can be different for the alternative resources. Once a resource is assigned to the request,
the duration needs to be allocated within the corresponding time window. We denote the
lower and upper bounds of each time window j corresponding to request i by T Win

ij (LB)

and TWin
ij (UB), respectively. For each task, only one of the alternative antennas needs to be

chosen; also, the tasks cannot be preempted once processing is initiated.

While requests are made for a specific antenna, often a different antenna at the same
tracking station may serve as an alternate because it has the same capabilities. We assume
that all antennas at a tracking station can serve as alternate resources. While this is not
always the case in practice, the same assumption was made by previous research from the Air

580

Understanding Algorithm Performance

Force Institute of Technology (AFIT)2. A low altitude request specifies as possible resources
the antennas present at a single tracking station (for visibility reasons, only one tracking
station can accommodate such a request). Usually there are two or three antennas present
at a tracking station, and therefore, only two or three possible resources are associated with
each of these requests. High altitude requests specify all the antennas present at all the
tracking stations that satisfy the visibility constraints; as many as 14 possible alternatives
are specified in our data.

Previous research and development on AFSCN scheduling focused on minimizing the
number of request conflicts for AFSCN scheduling, or alternatively, maximizing the number
of requests that can be scheduled without conflict. Those requests that cannot be scheduled
without conflict are bumped out of the schedule. This is not what happens when humans
carry out AFSCN scheduling3. Satellites are valuable resources, and the AFSCN operators
work to fit in every request. What this means in practice is that after negotiation with the
customers, some requests are given less time than requested, or shifted to less desirable,
but still usable time slots. In effect, the requests are altered until all requests are at least
partially satisfied or deferred to another day. By using an evaluation function that minimizes
the number of request conflicts, an assumption is being made that we should fit in as many
requests as possible before requiring human schedulers to figure out how to place those
requests that have been bumped.

However, given that all requests need to be eventually scheduled, we designed a new
evaluation criterion that schedules all the requests by allowing them to overlap and minimiz-
ing the sum of overlaps between conflicting tasks. This appears to yield schedules that are
much closer to those that human schedulers construct. When conflicting tasks are bumped
out of the schedule, large and difficult to schedule tasks are most likely to be bumped;
placing these requests back into a negotiated schedule means deconstructing the minimal
conflict schedule and rebuilding a new schedule. Thus, a schedule that minimizes conflicts
may not help all that much when constructing the negotiated schedule, whereas a schedule
that minimizes overlaps can suggest ways of fitting tasks into the schedule, for example
by reducing a task’s duration by two or three minutes, or shifting a start outside of the
requested window by a short amount of time.

We obtained 12 days of data for the AFSCN application4. The first seven days are from
a week in 1992 and were given to us by Colonel James Moore at the Air Force Institute of
Technology. These data were used in the first research projects on AFSCN. We obtained an
additional five days of data from schedulers at Schriever Air Force Base. Table 2 summarizes
the characteristics of the data. The best known solutions were obtained by performing long
runs over hundreds of experiments. Using various algorithms and allowing for hundreds

2. In fact, large antennas are needed for high altitude requests, while smaller antennas can handle the low
altitude requests. Depending on the type of antennas present at a tracking station, not all antennas can
always serve as alternate resources for a request.

3. We met with the several of the schedulers at Schriever to discuss their procedure and have them cross-
check our solution. We appreciate the assistance of Brian Bayless and William Szary in setting up the
meeting and giving us data.

4. We have approval to make public some, but not all of the data.
See http://www.cs.colostate.edu/sched/data.html for details on obtaining the problems.

581

Barbulescu, Howe, Whitley, & Roberts

ID Date # Requests # High # Low Best Conflicts Best Overlaps

A1 10/12/92 322 169 153 8 104
A2 10/13/92 302 165 137 4 13
A3 10/14/92 311 165 146 3 28
A4 10/15/92 318 176 142 2 9
A5 10/16/92 305 163 142 4 30
A6 10/17/92 299 155 144 6 45
A7 10/18/92 297 155 142 6 46

R1 03/07/02 483 258 225 42 773
R2 03/20/02 457 263 194 29 486
R3 03/26/03 426 243 183 17 250
R4 04/02/03 431 246 185 28 725
R5 05/02/03 419 241 178 12 146

Table 1: Problem characteristics for the 12 days of AFSCN data used in our experiments.
ID is used in other tables. Best conflicts and best overlaps are the best known
values for each problem for these two objective functions.

of thousands of evaluations, we have not found better solutions than these5. We will refer
to the problems from 1992 as the A problems, and to the more recent problems, as the R
problems.

3. Related Scheduling Research

The AFSCN application is a multiple resource, oversubscribed problem. Examples of other
such applications are USAF Air Mobility Command (AMC) airlift scheduling (Kramer &
Smith, 2003), NASA’s shuttle ground processing (Deale et al., 1994), scheduling telescope
observations (Bresina, 1996) and satellite observation scheduling (Frank, Jonsson, Morris,
& Smith, 2001; Globus, Crawford, Lohn, & Pryor, 2003).

AMC scheduling assigns delivery missions to air wings (Kramer & Smith, 2003). Their
system adopts an iterative repair approach by greedily creating an initial schedule ordering
the tasks by priority and then attempting to insert unscheduled tasks by retracting and
re-arranging conflicting tasks.

The Gerry scheduler was designed to manage the large set of tasks needed to prepare
a space shuttle for its next mission (Zweben, Daun, & Deale, 1994). Tasks are described
in terms of resource requirements, temporal constraints and required time windows. The
original version used constructive search with dependency-directed backtracking, which was
not adequate to the task; a subsequent version employed constraint-directed iterative repair.

In satellite scheduling, customer requests for data collection need to be matched with
satellite and tracking station resources. The requests specify the instruments required,
the window of time when the request needs to be executed, and the location of the sens-
ing/communication event. These task constraints need to be coordinated with resource

5. All the best known values can be obtained by running Genitor with the population size increased to 400
and allowing 50,000 evaluations per run.

582

Understanding Algorithm Performance

constraints; these include the windows of visibility for the satellites, maintenance periods
and downtimes for the tracking stations, etc. Typically, more requests need to be scheduled
than can be accommodated by the available resources. A general description of the satellite
scheduling domain is provided by Jeremy Frank et al. (2001).

Pemberton (2000) solves a simple one-resource satellite scheduling problem in which
the requests have priorities, fixed start times and fixed durations. The objective function
maximizes the sum of the priorities of the scheduled requests. A priority segmentation algo-
rithm is proposed, which is a hybrid algorithm combining a greedy approach with branch-
and-bound. Wolfe and Sorensen (2000) define a more complex one-resource problem, the
window-constrained packing problem (WCP), which specifies for each request the earliest
start time, latest final time and the minimum and maximum duration. The objective func-
tion is complex, combining request priority with the position of the scheduled request in its
required window and the number of requests scheduled. Two greedy heuristic approaches
and a genetic algorithm are implemented; the genetic algorithm is found to perform best.

Globus et al. (2003) compare a genetic algorithm, simulated annealing, Squeaky Wheel
Optimization (Joslin & Clements, 1999) and hill climbing on a simplified, synthetic form
of the satellite scheduling problem (two satellites with a single instrument) and find that
simulated annealing excels and that the genetic algorithm performs relatively poorly. For
a general version of satellite scheduling (EOS observation scheduling), Frank et al. (2001)
propose a constraint-based planner with a stochastic greedy search algorithm based on
Bresina’s Heuristic-Biased Stochastic Sampling (HBSS) algorithm (Bresina, 1996). HBSS
was originally applied to scheduling astronomy observations for telescopes.

Lemâıtre et al. (2000) research the problem of scheduling the set of photographs for Agile
EOS (ROADEF Challenge, 2003). Task constraints include the minimal time between two
successive acquisitions, pairings of requests such that images are acquired twice in different
time windows, and hard requirements that certain images must always be acquired. They
find that a local search approach performs better than a hybrid algorithm combining branch-
and-bound with various domain-specific heuristics.

The AFSCN application was previously studied by researchers from the Air Force Insti-
tute of Technology (AFIT). Gooley (1993) and Schalck (1993) described algorithms based
on mixed-integer programming (MIP) and insertion heuristics, which achieved good over-
all performance: 91% – 95% of all requests scheduled. Parish (1994) used the Genitor
(Whitley, 1989) genetic algorithm, which scheduled roughly 96% of all task requests, out-
performing the MIP approaches. All three of these researchers used the AFIT benchmark
suite consisting of seven problem instances, representing actual AFSCN task request data
and visibilities for seven consecutive days from October 12 to 18, 1992. Later, Jang (1996)
introduced a problem generator employing a bootstrap mechanism to produce additional
test problems that are qualitatively similar to the AFIT benchmark problems. Jang then
used this generator to analyze the maximum capacity of the AFSCN, as measured by the
aggregate number of task requests that can be satisfied in a single-day.

While the general decision problem of AFSCN Scheduling with minimal conflicts is NP-
complete, special subclasses of AFSCN Scheduling are polynomial. Burrowbridge (1999)
considers a simplified version of AFSCN scheduling, where each task specifies only one re-
source (antenna) and only low-altitude satellites are present. The objective is to maximize
the number of scheduled tasks. Due to the orbital dynamics of low-altitude satellites, the

583

Barbulescu, Howe, Whitley, & Roberts

task requests in this problem have negligible slack ; i.e., the window size is equal to the
request duration. Assuming that only one task can be scheduled per time window, the well-
known greedy activity-selector algorithm (Cormen, Leiserson, & Rivest, 1990) is used to
schedule the requests since it yields a solution with the maximal number of scheduled tasks.
To schedule low altitude requests on one of the multiple antennas present at a particular
ground station, we extended the greedy activity-selector algorithm for multiple resource
problems. We proved that this extension of the greedy activity-selector optimally sched-
ules the low altitude requests for the general problem of AFSCN Scheduling (Barbulescu,
Watson, Whitley, & Howe, 2004b).

4. Algorithms

We implemented a variety of algorithms for AFSCN scheduling: iterative repair, heuristic
constructive search, local search, a genetic algorithm (GA), and Squeaky Wheel Optimiza-
tion (SWO). As will be shown in Section 5, we found that randomized next descent local
search, the GA and SWO work best for AFSCN scheduling.

We also considered constructive search algorithms based on texture (Beck, Davenport,
Davis, & Fox, 1998) and slack (Smith & Cheng, 1993) constraint-based scheduling heuristics.
We implemented straightforward extensions of such algorithms for our application. The
results were poor; the number of request tasks combined with the presence of multiple
alternative resources for each task make the application of such methods impractical. We
do not report the performance values for the constructive search methods because these
methods depend critically on the heuristics; we are uncomfortable concluding that the
methods are poor because we may not have found good enough heuristics for them. We
also tried using a commercial off-the-shelf satellite scheduling package and had similarly
poor results. We do not report performance values for the commercial system because it
had not been designed specifically for this application and we did not have access to the
source to determine the reason for the poor performance.

4.1 Solution Representation

Permutation based representations are frequently used when solving scheduling problems
(e.g., Whitley, Starkweather, Fuquay, 1989; Syswerda, 1991; Wolfe, Sorensen, 2000; Aick-
elin, Dowsland, 2003; Globus et al., 2003). All of our algorithms, except iterative-repair,
encode solutions using a permutation π of the n task request IDs (i.e., [1..n]). A schedule
builder is used to generate solutions from a permutation of request IDs. The schedule builder
considers task requests in the order that they appear in π. Each task request is assigned
to the first resource available from the sequence of resource and window pairs provided in
the task description (this is the first feasible resource in the sequence); the earliest possible
starting time is then chosen for this resource. When minimizing the number of conflicts,
if the request cannot be scheduled on any of the alternative resources, it is dropped from
the schedule (i.e., bumped). When minimizing the sum of overlaps, if a request cannot be
scheduled without conflict on any of the alternative resources, we assign it to the resource

584

Understanding Algorithm Performance

on which the overlap with requests scheduled so far is minimized.6 Note that our schedule
builder does favor the order in which the alternative resources are specified in the request,
even though no preference is specified for any of the alternatives.

4.2 Iterative Repair

Iterative repair methods have been successfully used to solve various oversubscribed schedul-
ing problems, e.g., Hubble Space Telescope observations (Johnston & Miller, 1994) and space
shuttle payloads (Zweben et al., 1994; Rabideau, Chien, Willis, & Mann, 1999). NASA’s
ASPEN (A Scheduling and Planning Environment) framework (Chien et al., 2000), em-
ploys both constructive and repair-based methods and has been used to model and solve
real-world space applications such as scheduling EOS. More recently, Kramer and Smith
(2003) used repair-based methods to solve the airlift scheduling problem for the USAF Air
Mobility Command.

In each case, a key component to the implementation was a domain appropriate or-
dering heuristic to guide the repairs. For AFSCN scheduling, Gooley’s algorithm (1993)
uses domain-specific knowledge to implement a repair-based approach. We implement an
improvement to Gooley’s algorithm that is guaranteed to yield results at least as good as
those produced by the original version.

Gooley’s algorithm has two phases. In the first phase, the low altitude requests are
scheduled, mainly using Mixed Integer Programming (MIP). Because there is a large number
of low altitude requests, the requests are divided into two blocks. MIP procedures are
first used to schedule the requests in the first block. Then MIP is used to schedule the
requests in the second block, which are inserted in the schedule around the requests from
the first block. Finally, an interchange procedure attempts to optimize the total number
of low altitude requests scheduled. This is needed because the low altitude requests are
scheduled in disjoint blocks. Once the low altitude requests are scheduled, their start time
and assigned resources remain fixed. In our implementation, we replaced this first phase
with a greedy algorithm (Barbulescu et al., 2004b) proven to schedule the optimal number
of low altitude requests7. Our greedy algorithm modifies the well-known activity-selector
algorithm (Cormen et al., 1990) for multiple resource problems: the algorithm still schedules
the requests in increasing order of their due date, however it specifies that each request is
scheduled on the resource for which the idle time before its start time is the minimum.
Our version accomplishes the same function as Gooley’s first phase, but does so with a
guarantee that the optimal number of low-altitude requests are scheduled. Thus, the result
is guaranteed to be equal to or better than Gooley’s original algorithm.

In the second phase, the high altitude requests are inserted in the schedule (without
rescheduling any of the low altitude requests). An order of insertion for the high altitude
requests is computed. The requests are sorted in decreasing order of the ratio of the duration
of the request to the average length of its time windows (this is similar to the flexibility
measure defined by Kramer and Smith, 2003 for AMC); ties are broken based on the number
of alternative resources specified (fewer alternatives scheduled first). After all the high

6. If two or more non-scheduled tasks overlap with each other, this mutual overlap is not part of the sum
of overlaps. Only the overlap with scheduled requests is considered.

7. Our algorithm optimally solves the problem of scheduling only the low altitude requests, in polynomial
time.

585

Barbulescu, Howe, Whitley, & Roberts

altitude requests have been considered for insertion, an interchange procedure attempts to
accommodate the unscheduled requests, by rescheduling some of the high altitude requests.
For each unscheduled high altitude request, a list of candidate requests for rescheduling
is computed (such that after a successful rescheduling operation, the unscheduled request
can be placed in the spot initially occupied by such a candidate). A heuristic measure is
used to determine which requests from the candidate list should be rescheduled. For the
chosen candidates, if no scheduling alternatives are available, the same procedure is applied
to identify requests that can be rescheduled. This interchange procedure is defined with
two levels of recursion and is called “three satellite interchange”.

4.3 Randomized Local Search (RLS)

We implemented a hill-climber we call “randomized local search”, which starts from a ran-
domly generated solution and iteratively moves toward a better or equally good neigh-
boring solution. Because it has been successfully applied to a number of well-known
scheduling problems, we selected a domain-independent move operator, the shift opera-
tor. From a current solution π, a neighborhood is defined by considering all (N − 1)2

pairs (x, y) of positions in π, subject to the restriction that y 6= x − 1. The neighbor
π

′

corresponding to the position pair (x, y) is produced by shifting the job at position
x into the position y, while leaving all other relative job orders unchanged. If x < y,
then π′ = (π(1), ..., π(x − 1), π(x + 1), ..., π(y), π(x), π(y + 1), ..., π(n)). If x > y, then
π′ = (π(1), ..., π(y − 1), π(x), π(y), ..., π(x − 1), π(x + 1), ..., π(n)).

Given the large neighborhood size, we use the shift operator in conjunction with next-
descent hill-climbing. Our implementation completely randomizes which neighbor to exam-
ine next, and does so with replacement: at each step, both x and y are chosen randomly.
This general approach has been termed “stochastic hill-climbing” by Ackley (1987). If the
value of the randomly chosen neighbor is equal or better than the value of the current
solution, it becomes the new current solution.

It should be emphasized that Randomized Local Search, or stochastic hill-climbing, can
sometimes be much more effective than steepest-descent local search or next-descent local
search where the neighbors are checked in a predefined order (as opposed to random order).
Forrest and Mitchell (1993) showed that a random mutation hill climber (much like our RLS
or Ackley’s stochastic hill climber) found solutions much faster than steepest-descent local
search on a problem they called “The Royal Road” function. The random mutation hill
climber also found solutions much faster than a hill climber that generated and examined
the neighbors systematically (in a predefined order). Random mutation hill climber was
also much more effective than a genetic algorithm for this problem – despite the existence
of what would appear to be natural “building blocks” in the function. It is notable that
“The Royal Road” function is a staircase like function, where each step in the staircase is
a plateau.

4.4 Genetic Algorithm

Genetic algorithms were found to perform well on the AFSCN scheduling problem in some
early studies (Parish, 1994). Genetic algorithms have also been found to be effective in other
oversubscribed scheduling applications, such as scheduling F-14 flight simulators (Syswerda,

586

Understanding Algorithm Performance

1991) or an abstraction of NASA’s EOS problem (Wolfe & Sorensen, 2000). For our studies,
we used the version of Genitor originally developed for a warehouse scheduling application
(Starkweather et al., 1991); this is also the version used by Parish for AFSCN scheduling.
Like all genetic algorithms, Genitor maintains a population of solutions; in our implementa-
tion, we fixed the population size to be 200. In each step of the algorithm, a pair of parent
solutions is selected, and a crossover operator is used to generate a single child solution,
which then replaces the worst solution in the population. Selection of parent solutions is
based on the rank of their fitness, relative to other solutions in the population. Following
Parish (1994) and Starkweather et al. (1991), we used Syswerda’s (1991) position-based
crossover operator.

Syswerda’s position-based crossover operator starts by selecting a number of random
positions in the second parent. The corresponding selected elements will appear in exactly
the same positions in the offspring. The remaining positions in the offspring are filled with
elements from the first parent in the order in which they appear in this parent:

Parent 1: A B C D E F G H I J
Parent 2: C F A J H D I G B E

Selected Elements: * * * *
Offspring: C F A E G D H I B J

For our implementation, we randomly choose the number of positions to be selected,
such that it is larger than one third of the total number of positions and smaller than two
thirds of the total number of positions.

4.5 Squeaky Wheel Optimization

Squeaky Wheel Optimization (SWO) (Joslin & Clements, 1999) repeatedly iterates through
a cycle composed of three phases. First, a greedy solution is built, based on priorities asso-
ciated with the elements in the problem. Then, the solution is analyzed, and the elements
causing “trouble” are identified based on their contribution to the objective function. Third,
the priorities of such “trouble makers” are modified, such that they will be considered ear-
lier during the next iteration. The cycle is then repeated, until a termination condition is
met.

We constructed the initial greedy permutation for SWO by sorting the requests in in-
creasing order of their flexibility. Our flexibility measure is similar to that defined for the
AMC application (Kramer & Smith, 2003): the duration of the request divided by the
average time window on the possible alternative resources. We break ties based on the
number of alternative resources available. For requests with equal flexibilities and numbers
of alternative resources, the earlier request is scheduled first. For multiple runs of SWO,
we restarted it from a modified permutation created by performing 20 random swaps in the
initial greedy permutation.

When minimizing the sum of overlaps, we identified the overlapping requests as the
“trouble spots” in the schedule. Note that for any overlap, we considered one request to
be scheduled; the other request (or requests, if more than two requests are involved) is
“the overlapping request”. We sorted the overlapping requests in increasing order of their
contribution to the sum of overlaps. We associated with each such request a distance to

587

Barbulescu, Howe, Whitley, & Roberts

move forward, based on its rank in the sorted order. We fixed the minimum distance of
moving forward to one and the maximum distance to five (this seems to work better than
other possible values we tried). The distance values are equally distributed among the ranks.
We moved the requests forward in the permutation in increasing order of their contribution
to the sum of overlaps: requests with smaller overlaps are moved first. We tried versions
of SWO where the distance to move forward is proportional with the contribution to the
sum of overlaps or is fixed. However, these versions performed worse than the rank based
distance implementation described above. When minimizing conflicts in the schedule all
conflicts have an equal contribution to the objective function; therefore we decided to move
them forward for a fixed distance of five (we tried values between two and seven but five
was best).

4.6 Heuristic Biased Stochastic Sampling (HBSS)

HBSS (Bresina, 1996) is an incremental construction algorithm in which multiple root-
to-leaf paths are stochastically generated. At each step, the HBSS algorithm needs to
heuristically choose the next request to schedule from the unscheduled requests. We used
the flexibility measure as described for SWO to rank the unscheduled requests. We compute
the flexibility for each request and order them in decreasing order of the flexibility; each
request is then given a rank according to this ordering (first request has rank 1, second
request rank 2, etc.). A bias function is applied to the ranks; as noted by Bresina (1996,
p.271), the choice of bias function “reflects the confidence one has in the heuristic’s accuracy
- the higher the confidence, the stronger the bias.” The flexibility heuristic is an effective
greedy heuristic for constructing solutions in AFSCN scheduling. Therefore we used a
relatively strong bias function, an exponential bias. For each rank r, the bias is computed:
bias(r) = e−r. The probability to select the unscheduled request with rank r is then
computed as:

P (r) =
bias(r)

∑
i∈Unscheduled bias(rank(i))

where Unscheduled represents the set of unscheduled requests.
Our implementation of HBSS does not re-compute the flexibility of the unscheduled tasks

every time we choose the next request to be scheduled. In other words, HBSS is building a
permutation of requests and then the schedule builder produces the corresponding schedule.
In terms of CPU time, this means that the time required by HBSS to build a solution is
similar to those of the other algorithms (dominated by the number of evaluations). A version
re-computing the flexibility of the unscheduled tasks as tasks are scheduled would be a lot
more expensive. In fact, for EOS which is a similar oversubscribed scheduling problem,
Globus et al. (2004) found that updating the heuristic values in HBSS while scheduling
was “hundreds of times slower than the permutation-based techniques, required far more
memory, and produced very poor schedules”.

588

Understanding Algorithm Performance

5. What Works Well?

A first step to understanding how best to solve a problem is to assess what methods perform
best. The results of running each of the algorithms are summarized in Tables 2 and 3
respectively. For Genitor, randomized local search (RLS) and Squeaky Wheel Optimization
(SWO), we report the best and mean value and the standard deviation observed over 30
runs, with 8000 evaluations per run. For HBSS, the statistics are taken over 240,000 samples.
Both Genitor and RLS were initialized from random permutations.

The best known values for the sum of overlaps (see Table 2) were obtained by running
Genitor with the population size increased to 400 and up to 50,000 evaluations; over hun-
dreds of experiments using numerous algorithms, we have not found better solutions than
these. When we report that an algorithm is better than Genitor it means that it was better
than Genitor when both algorithms were limited to 8000 evaluations.

With the exception of Gooley’s algorithm, the CPU times are dominated by the number
of evaluations and therefore are similar. On a Dell Precision 650 with 3.06 GHz Xeon
running Linux, 30 runs with 8000 evaluations per run take between 80 and 190 seconds (for
more precise values, see Barbulescu et al., 2004).

The increase in the number of requests received for a day in the more recent R problems
causes an increase in the number and percentage of unscheduled requests. For the A prob-
lems, at most eight task requests (or 2.5% of the tasks) are not scheduled; between 97.5%
and 99% of the task requests are scheduled. For the R problems, at most 42 (or 8.7% of
the tasks) are not scheduled; between 91.3% and 97.2% of the tasks requests are scheduled.

To compare algorithm performance, our statistical analyses include Genitor, SWO, and
RLS. We also include in our analyses the algorithms SWO1Move (a variant of SWO we
explore in Section 6.5.2), and ALLS (a variant of Local Search we present in Section 7). We
judge significant differences of the final evaluations using an ANOVA for the five algorithms
on each of the recent days of data. All ANOVAs came back significant, so we are justified
in performing pair-wise tests. We examined a single-tailed, two sample t-test as well as the
non-parametric Wilcoxon Rank Sum test. The Wilcoxon test significance results were the
same as the t-test except in two pairs, so we only present p-values from the t-test that are
close to our rejection threshold of p ≤ .005 per pair-wise test 8.

When minimizing conflicts, many of the algorithms find solutions with the best known
values. Pair-wise t-tests show that Genitor and RLS are not significantly different for R1,
R3, and R4. Genitor significantly outperforms RLS on R2 (p = .0023) and R5 (p = .0017).
SWO does not perform significantly different from RLS for all five days and significantly
outperforms Genitor on R5. Genitor significantly outperforms SWO on R2 and R4; however,
some adjusting of the parameters used to run SWO may fix this problem. It is in fact
surprising how well SWO performs when minimizing the conflicts, given that we chose a
very simple implementation, where all the tasks in conflict are moved forward with a fixed
distance. HBSS performs well for the A problems; however, it fails to find the best known
values for R1, R2 and R3. The original solution to the problem, Gooley’s, only computes a
single solution; its results can be improved by a sampling variant (see Section 6.2.1).

8. Five algorithms imply, at worst, 10 pair-wise comparisons per day of data. To control the experiment-
wise error, we use a (very conservative, but simple) Bonferroni adjustment; this adjustment is known to
increase the probability of a Type II error (favoring false acceptance that the distributions are similar).
At α = .05, we judge two algorithms as significantly different if p ≤ .005.

589

Barbulescu, Howe, Whitley, & Roberts

Genitor RLS SWO HBSS Gooley
Day Min Mean SD Min Mean SD Min Mean SD Min Mean SD

A1 8 8.6 0.49 8 8.7 0.46 8 8 0.0 8 9.76 0.46 11

A2 4 4 0 4 4.0 0 4 4 0.0 4 4.64 0.66 7

A3 3 3.03 0.18 3 3.1 0.3 3 3 0.0 3 3.37 0.54 5

A4 2 2.06 0.25 2 2.2 0.48 2 2.06 0.25 2 3.09 0.43 4

A5 4 4.1 0.3 4 4.7 0.46 4 4 0.0 4 4.27 0.45 5

A6 6 6.03 0.18 6 6.16 0.37 6 6 0.0 6 6.39 0.49 7

A7 6 6 0 6 6.06 0.25 6 6 0.0 6 7.35 0.54 6

R1 42 43.7 0.98 42 44.0 1.25 43 43.3 0.46 45 48.44 1.15 45

R2 29 29.3 0.46 29 29.8 0.71 29 29.96 0.18 32 35.16 1.27 36

R3 17 17.63 0.49 17 18.0 0.69 18 18 0.0 19 21.08 0.89 20

R4 28 28.03 0.18 28 28.36 0.66 28 28.3 0.46 28 31.22 1.10 29

R5 12 12.03 0.18 12 12.4 0.56 12 12 0 12 12.36 0.55 13

Table 2: Performance of Genitor, RLS, SWO, HBSS and Gooley’s algorithm in terms of
the best and mean number of conflicts. Statistics for Genitor, local search and
SWO are collected over 30 independent runs, with 8000 evaluations per run. For
HBSS, 240,000 samples are considered. Min numbers in boldface indicate best
known values.

When minimizing overlaps, RLS finds the best known solutions for all but two of the
problems. It significantly outperforms Genitor on R1 and R2, significantly under-performs
on R3, and does not significantly differ in performance on R4 and R5. RLS and SWO do not
perform significantly different except for R3 where RLS under-performs. SWO significantly
outperforms Genitor on all five days. However, if run beyond 8000 evaluations, Genitor
continues to improve the solution quality but SWO fails to find better solutions. HBSS
finds best known solutions to only a few problems. For comparison, we computed the
overlaps corresponding to the schedules built using Gooley’s algorithm and present them
in the last column of Table 3; however, Gooley’s algorithm was not designed to minimize
overlaps.

5.1 Progress Toward the Solution

SWO and Genitor apply different criteria to determine solution modifications. RLS ran-
domly chooses the first shift resulting in an equally good or improving solution. To assess
the effect of the differences, we tracked the best value obtained so far when running the
algorithms. For each problem, we collected the best value found by SWO, Genitor and RLS
in increments of 100 evaluations, for 8000 evaluations. We averaged these values over 30
runs of SWO, RLS, and Genitor, respectively.

A typical example for each objective function is presented in Figures 2 and 3. For
both objective functions, the curves are similar, as is relative performance. SWO quickly
finds a good solution, then its performance levels off. RLS progresses quickly during the
first half of the search, while Genitor exacts smaller improvements. In the second half of
the search though, RLS takes longer to find better solutions, while Genitor continues to
steadily progress toward the best solution. The best so far for Genitor does not improve

590

Understanding Algorithm Performance

Genitor RLS SWO HBSS Gooley
Day Min Mean SD Min Mean SD Min Mean SD Min Mean SD

A1 104 106.9 0.6 104 106.76 1.81 104 104 0.0 128 158.7 28.7 687

A2 13 13 0.0 13 13.66 2.59 13 13.4 2.0 43 70.1 31.1 535

A3 28 28.4 1.2 28 30.7 4.31 28 28.1 0.6 28 52.5 16.9 217

A4 9 9.2 0.7 9 10.16 2.39 9 13.3 7.8 9 45.7 13.0 216

A5 30 30.4 0.5 30 30.83 1.36 30 30 0.0 50 82.6 13.2 231

A6 45 45.1 0.4 45 45.13 0.5 45 45.1 0.3 45 65.5 16.8 152

A7 46 46.1 0.6 46 49.96 5.95 46 46 0.0 83 126.4 12.5 260

R1 913 987.8 40.8 798 848.66 38.42 798 841.4 14.0 1105 1242.6 42.1 1713

R2 519 540.7 13.3 494 521.9 20.28 491 503.8 6.5 598 681.8 27.0 1047

R3 275 292.3 10.9 250 327.53 55.34 265 270.1 2.8 416 571.0 46.0 899

R4 738 755.4 10.3 725 755.46 25.42 731 736.2 3.0 827 978.4 28.7 1288

R5 146 146.5 1.9 146 147.1 2.85 146 146.0 0.0 146 164.4 10.8 198

Table 3: Performance of Genitor, local search, SWO, HBSS and Gooley’s algorithm in
terms of the best and mean sum of overlaps. All statistics are collected over 30
independent runs, with 8000 evaluations per run. For HBSS, 240,000 samples are
considered. Min numbers in boldface indicate best known values.

as quickly as the best so far for RLS. This is not unexpected: the best solution in the
Genitor population isn’t likely to improve frequently in the beginning of the run. In a
sense, tracking the evolution of the median in the population when running Genitor would
be more indicative of its progress; we use the best so far to allow for a uniform comparison
of the three algorithms.

We observe two differences in the objective functions. First, when minimizing the num-
ber of conflicts, both Genitor and RLS eventually equal or outperform SWO. For minimizing
overlaps, Genitor and RLS take longer to find good solutions; after 8000 evaluations, SWO
found the best solutions. Second, when minimizing the number of conflicts, toward the
end of the run, Genitor outperforms RLS. When minimizing overlaps, RLS performs bet-
ter than Genitor. Best known solutions for the R problems when minimizing overlaps can
be obtained by running RLS for 50,000 evaluations in 30 runs. Running SWO for 50,000
evaluations in 30 runs results in small improvements, and on just two of the problems.

6. Hypotheses for Explaining Algorithm Performance

Genitor, SWO and RLS are the most successful algorithms we have tested on the AFSCN
problem. Although each operate in the same search space (permutations), they traverse the
space rather differently. The puzzle is how can all three be apparently well suited to this
problem. To solve the puzzle, first, we describe why plateaus are the dominant feature of the
search space. We show that the greedy schedule builder is the main reason for the presence
of the plateaus. Then, we test hypotheses that appear to follow from the dominance of the
plateaus and the characteristics of each algorithm.

In our study, the greedy schedule builder as well as the objective function are part of the
problem specification. Therefore, when formulating and testing our hypotheses, we consider
the search space features (such as the plateaus or the number of identical solutions) fixed.

591

Barbulescu, Howe, Whitley, & Roberts

 30

 40

 50

 60

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

Be
st

 S
o

Fa
r N

um
be

r o
f B

um
ps

Evaluations

Genitor
RLS

SWO

 29

 30

 31

 32

 33

 34

 35

 36

 4000 4500 5000 5500 6000 6500 7000 7500 8000

Av
er

ag
e

Be
st

 S
o

Fa
r N

um
be

r o
f B

um
ps

Evaluations

Genitor
RLS

SWO

Figure 2: Evolutions of the average best value for conflicts obtained by SWO, RLS and
Genitor during 8000 evaluations, over 30 runs. The left figure depicts the im-
provement in the average best value over the first 4000 evaluations. The last
4000 evaluations are depicted in the right figure; note that the scale is different
on the y-axis. The curves were obtained for R2.

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 500 1000 1500 2000 2500 3000

Av
er

ag
e

Be
st

 S
o

Fa
r S

um
 o

f O
ve

rla
ps

Evaluations

Genitor
RLS

SWO

 500

 550

 600

 650

 700

 750

 800

 850

 3000 4000 5000 6000 7000 8000

Av
er

ag
e

Be
st

 S
o

Fa
r S

um
 o

f O
ve

rla
ps

Evaluations

Genitor
RLS

SWO

Figure 3: Evolutions of the average best value for sum of overlaps obtained by SWO, RLS
and Genitor during 8000 evaluations, over 30 runs. The left figure depicts the
improvement in the average best value over the first 3000 evaluations. The last
5000 evaluations are depicted in the right figure; note that the scale is different
on the y-axis. The curves were obtained for R2.

6.1 Redundancy of the Search Space

More than a third of the neighbors in RLS result in exactly the same schedule for both the
overlaps and minimal conflicts evaluation functions (Barbulescu et al., 2004a; Barbulescu,
Whitley, & Howe, 2004c); more than 62% of neighbors in RLS result in the same evaluation
(see Section 6.4). The AFSCN search space is dominated by plateaus for three reasons.

592

Understanding Algorithm Performance

The main reason for the presence of plateaus is the greedy schedule builder: each request
is scheduled on the first available resource from its list of possible alternatives. For example,
consider a permutation of n−1 from the total of n requests. If the last request X is inserted
in the first position in the permutation and the schedule builder is applied, a schedule S is
obtained. We now scan the permutation of n − 1 requests from left to right, successively
inserting X in the second position, then the third and so on, building the corresponding
schedule. As long as none of the requests appearing before X in the permutation require
the particular spot occupied by X in S as their first feasible alternative to be scheduled, the
same schedule S will be obtained. This happens for two reasons: 1) the requests are inserted
in the schedule in the order in which they appear in the permutation and 2) the greedy
schedule builder considers the possible alternatives in the order in which they are specified
and accepts the first alternative for which the request can be scheduled. Let k + 1 be the
first position to insert X that will alter S; this means that the first feasible alternative to
schedule the request in position k overlaps with the spot occupied by X in S. When X
is inserted in position k + 1, a new schedule S1 is obtained; the same schedule S1 will be
built by inserting X in subsequent positions, until encountering a request for which its first
feasible alternative overlaps with the spot occupied by X in S1, etc. This example also
shows that shifting in a permutation might not change the corresponding schedule.

To address the presence of the plateaus in the search space as a result of the greedy
schedule builder, we could have used some randomization scheme to diversify the scheduler.
However, randomization when implementing a schedule builder can result in problems be-
cause of the unpredictability of the value assigned to a permutation. For example, Shaw and
Fleming (1997) argue that the use of randomization in a schedule builder can be detrimen-
tal to the performance of a genetic algorithm when an indirect representation is used (for
which the chromosomes are not schedules, as is the case of Genitor for AFSCN scheduling).
They support this idea by noting that in general, genetic algorithms rely on the preservation
of the good fitness values. Also, for SWO, randomization in the schedule builder changes
the significance of reprioritization from one iteration to the next one. If the scheduler is
randomized, the new order of requests is very likely to result in a schedule that is not
the “repaired version” of the previous one. If the same permutation of requests can be
transformed into multiple different schedules because of the nondeterministic nature of the
scheduler, the SWO mechanism will not operate as intended.

A second reason for the plateaus in the search space is the presence of time windows.
If a request X needs to be scheduled sometime at the end of the day, even if it appears
in the beginning of the permutation, it will still occupy a spot in the schedule towards the
end (assuming it can be scheduled) and therefore, after most of the other requests (which
appeared after X in the permutation).

A third reason is the discretization of the objective function. Clearly, the range of
conflicts is a small number of discrete values (with a weak upper bound of the number
of tasks). The range for overlaps is still discrete but is larger than for conflicts. Using
overlaps as the evaluation function, approximately 20 times more unique objective function
values are observed during search compared to searches where the objective is to minimize
conflicts. The effect of the discretization can be seen in the differing results using the two
objective functions. Thus, one reason for including both in our studies is to show some of
the effects of the discretization.

593

Barbulescu, Howe, Whitley, & Roberts

6.2 Does Genitor Learn Patterns of Request Ordering?

We hypothesize that Genitor performs well because it discovers which interactions between
the requests matter. We examine sets of permutations that correspond to schedules with the
best known values and identify chains of common request orderings in these permutations,
similar in spirit to the notion of backbone in SAT (e.g., Singer et al., 2000). The presence
of such chains would support the hypothesis that Genitor is discovering patterns of request
orderings. This is a classic building block hypothesis: some pattern that is present in
parent solutions contributes to their evaluation in some critical way; these patterns are
then recombined and inherited during genetic recombination (Goldberg, 1989).

6.2.1 Common Request Orderings

One of the particular characteristics of the AFSCN scheduling problem is the presence of
two categories of requests. The low altitude requests have fixed start times and specify only
one to three alternative resources. The high altitude requests implicitly specify multiple
possible start times (because their corresponding time windows are usually longer than the
duration that needs to be scheduled) and up to 14 possible alternative resources. Clearly
the low altitude requests are more constrained. This suggests a possible solution pattern,
where low altitude requests would be scheduled first.

To explore the viability of such a pattern, we implemented a heuristic that schedules
the low altitude requests before the high altitude ones; we call this heuristic the “split
heuristic”. We incorporated the split heuristic in the schedule builder: given a permutation
of requests, the new schedule builder first schedules only the low altitude requests, in the
order in which they appear in the permutation. Without modifying the position of the low
altitude requests in the schedule, the high altitude requests are then inserted in the schedule,
again in the order in which they appear in the permutation. The idea of scheduling low
altitude requests before high altitude requests was the basis of Gooley’s heuristic (1993).
Also, the split heuristic is similar to the contention measures defined by Frank et al. (2001).

Some of the results we obtained using the split heuristic are surprising: when minimizing
conflicts, best known valued schedules can be obtained quickly for the A problems by simply
sampling a small number of random permutations. The results obtained by sampling 100
random permutations are shown in Table 4.

While such performance of the split heuristic does not transfer to the R problems or when
minimizing the number of overlaps, the results in Table 4 offer some indication of a possible
request ordering pattern in good solutions. Is Genitor in fact performing well because it
discovers that scheduling low before high altitude requests produces good solutions?

As a more general explanation for Genitor’s performance, we hypothesize that Genitor
is discovering patterns of request ordering: certain requests that must come before other
requests. To test this, we identify common request orderings present in solutions obtained
from multiple runs of Genitor. We ran 1000 trials of Genitor and selected the solutions
corresponding to best known values. First, we checked for request orderings of the form
“requestA before requestB” which appear in all the permutations corresponding to best
known solutions for the A problems and corresponding to good solutions for the R problems.
The results are summarized in Table 5. The Sol. Value columns show the value of the
solutions chosen for the analysis (out of 1000 solutions). The number of solutions (out of

594

Understanding Algorithm Performance

Best Random Sampling-S
Day Known Min Mean Stdev

A1 8 8 8.2 0.41
A2 4 4 4 0
A3 3 3 3.3 0.46
A4 2 2 2.43 0.51
A5 4 4 4.66 0.48
A6 6 6 6.5 0.51
A7 6 6 6 0

Table 4: Results of running random sampling with the split heuristic (Random Sampling-
S) in 30 experiments, by generating 100 random permutations per experiment for
minimizing conflicts.

1000) corresponding to the chosen value is shown in the # of Solutions columns. When
analyzing the common pairs of request orderings for minimizing the number of conflicts, we
observed that most pairs specified a low altitude request appearing before a high altitude
one. Therefore, we separate the pairs into two categories: pairs specifying a low altitude
request before a high altitude requests (column: (Low,High) Pair Count) and the rest
(column: Other Pairs). For the A problems, the results clearly show that most common
pairs of ordering requests specify a low altitude request before a high altitude request. For
the R problems, more “Other pairs” can be observed. In part, this might be due to the
small number of solutions corresponding to the same value (only 25 out of 1000 for R1 when
minimizing conflicts). The small number of solutions corresponding to the same value is also
the reason for the big pair counts reported when minimizing overlaps for the R problems.

We know that for the A problems the split heuristic results in best-known solutions when
minimizing conflicts; therefore, the results in Table 5 are somewhat surprising. We expected
to see more low-before-high common pairs of requests for the A problems when minimizing
the number of conflicts; instead, the pair counts are similar for the two objective functions.
Genitor seems to discover patterns of request interaction, and most of them specify a low
altitude request before a high altitude request.

The results in Table 5 are heavily biased by the number of solutions considered9. Indeed,
let s denote the number of solutions of identical value (the number in column # of Solutions).
Also, let n denote the total number of requests. Suppose there are no preferences of orderings
between the tasks in good solutions. For a request ordering A before B there is a probability
of 1/2 that it will be present in one of the solutions, and therefore, a probability of 1/2s that
it will be present in all s solutions. Given that there exist n ∗ (n− 1) possible precedences,
the expected number of common orderings if no preferences of orderings between tasks
exist is n(n − 1)/2s. For the A problems and for R5, s >= 420. The expected number
of common orderings assuming no preferences of orderings between tasks exist is smaller
than n(n−1)/2420, which is negligible. Therefore, the number of actually detected common

9. We wish to thank the anonymous reviewer of an earlier version of this work for this insightful observation;
the rest of the paragraph is based on his/her comments.

595

Barbulescu, Howe, Whitley, & Roberts

Minimizing Conflicts Minimizing Overlaps
Sol. # of (Low,High) Other Sol. # of (Low,High) Other

Day Value Solutions Pair Count Pairs Value Solutions Pair Count Pairs
A1 8 420 77 1 107 922 78 7
A2 4 1000 29 1 13 959 50 3
A3 3 936 86 1 28 833 72 10
A4 2 937 132 3 9 912 117 5
A5 4 862 45 9 30 646 48 17
A6 6 967 101 10 45 817 124 10
A7 6 1000 43 3 46 891 57 11

R1 43 25 2166 149 947 15 2815 1222
R2 29 573 64 5 530 30 1597 308
R3 17 470 78 21 285 37 1185 400
R4 28 974 54 16 744 31 1240 347
R5 12 892 57 10 146 722 109 11

Table 5: Common pairs of request orderings found in permutations corresponding to best
known/good Genitor solutions for both objective functions.

precedences (approximately 30 to 125 for low before high pairs and anywhere from 1 to
17 for the others) seem to be actual request patterns. This is also the case for the other
R problems. Indeed, for example, for R1, when s = 15, the expected number of common
orderings if no preferences of orderings between tasks exist is 7.1, while the number of
actually detected precedences is 2815 for low before high and 1222 for the other pairs.

The experiment above found evidence to support the hypothesis that Genitor solutions
exhibit patterns of low before high altitude requests. Given this result, we next investigate
if the “split” heuristic (always scheduling low before high altitude requests) can enhance the
performance of Genitor. To answer this question, we run a second experiment using Genitor,
where the split heuristic schedule builder is used to evaluate every schedule generated during
the search.

Table 6 shows the results of using the split heuristic with Genitor on the R problems.
Genitor with the split heuristic fails to find the best-known solution for R2 and R3. This
is not surprising: in fact, we can show that scheduling all the low altitude requests before
high altitude requests may prevent finding the optimal solutions.

The results for minimizing sum of overlaps are shown in Table 7. With the exception
of A3, A4 and A6, Genitor using the split heuristic fails to find best known solutions for
the A problems. For the R problems, using the split heuristic actually improves the results
obtained by Genitor for R1 and R2; it should be noted that the R1 and R2 solutions are
not as good as those found by RLS using 8000 evaluation however. Thus a search that
hybridizes the genetic algorithm with a schedule builder using the split heuristic sometimes
helps and sometimes hurts in terms of finding good solutions.

We attempted to identify longer chains of common request ordering. We were not suc-
cessful: while Genitor does seem to discover patterns of request ordering, multiple different
patterns of request orderings can result in the same conflicts (or even the same schedule).

596

Understanding Algorithm Performance

Genitor with New
Best Schedule Builder

Day Known Min Mean Stdev

R1 42 42 42 0

R2 29 30 30 0

R3 17 18 18 0

R4 28 28 28 0

R5 12 12 12 0

Table 6: Minimizing conflicts: results of running Genitor with the split heuristic in 30 trials,
with 8000 evaluations per trial.

Genitor with New
Best Schedule Builder

Day Known Min Mean Stdev

A1 104 119 119 0.0

A2 13 43 43 0.0

A3 28 28 28 0.0

A4 9 9 9 0.0

A5 30 50 50 0.0

A6 45 45 45 0.0

A7 46 69 69 0.0

R1 774 907 924.33 6.01

R2 486 513 516.63 5.03

R3 250 276 276.03 0.18

R4 725 752 752.03 0.0

R5 146 146 146 0.0

Table 7: Minimizing sum of overlaps: results of running Genitor with the split heuristic
using the split heuristic schedule builder to evaluate each schedule. The results
are based on 30 experiments, with 8000 evaluations per experiment.

We could think of these patterns as building blocks. Genitor identifies good building blocks
(orderings of requests resulting in good partial solutions) and propagates them into the final
population (and the final solution). Such patterns are essential in building a good solution.
However, the patterns are not ubiquitous (not all of them are necessary) and, therefore,
attempts to identify them across different solutions produced by Genitor have failed.

597

Barbulescu, Howe, Whitley, & Roberts

Day Minimizing Conflicts Minimizing Overlaps
Best Known Min Mean Stdev Best Known Min Mean Stdev

A1 8 8 8.0 0.0 104 104 104.46 0.68
A2 4 4 4.0 0.0 13 13 13.83 1.89
A3 3 3 3.16 0.46 28 28 30.13 1.96
A4 2 2 2.13 0.34 9 9 11.66 1.39
A5 4 4 4.03 0.18 30 30 30.33 0.54
A6 6 6 6.23 0.63 45 45 48.3 6.63
A7 6 6 6.0 0.0 46 46 46.26 0.45

R1 42 42* 43.43 0.56 774 851 889.96 31.34
R2 29 30 30.1 0.3 486 503 522.2 9.8
R3 17 17* 17.73 0.44 250 268 276.4 4.19
R4 28 28 28.53 0.57 725 738 758.26 12.27
R5 12 12 13.1 0.4 146 147 151.03 2.19

Table 8: Statistics for the results obtained in 30 runs of SWO initialized with random
permutations (i.e., RandomStartSWO), with 8000 evaluations per run. The mean
and best value from 30 runs as well as the standard deviations are shown. The
entries with a ∗ indicate values that are better than the corresponding SWO values.
For each problem, the best known solution for each objective function is also
included.

6.3 Is SWO’s Performance Due to Initialization?

The graphs of search progress for SWO (Figures 2 and 3) show that it starts with much
better solutions than do the other algorithms. The initial greedy solution for SWO trans-
lated into best known values for five problems (A2, A3, A5, A6 and R5) when minimizing
the number of conflicts and for two problems (A6 and R5) when minimizing overlaps.

How important is the initial greedy permutation for SWO? To answer this question, we
replaced the initial greedy permutation (and its variations in subsequent iterations of SWO)
with random permutations and then used the SWO mechanism to iteratively move forward
the requests in conflict. We call this version of SWO RandomStartSWO. We compared the
results produced by RandomStartSWO with results from SWO to assess the effects of the
initial greedy solution. The results produced by RandomStartSWO are presented in Table 8.
The entries with a ∗ indicate that RandomStartSWO produced a better result than SWO.
With the exception of R2, when minimizing the number of conflicts, best known values are
obtained by RandomStartSWO for all the problems. In fact, for R1 and R3, the best results
obtained are slightly better than the best found by SWO. When minimizing the sum of
overlaps, best known values are obtained for the A problems; only for the R problems, the
performance of SWO worsens when it is initialized with a random permutation. However,
RandomStartSWO still performs better or as well as Genitor (with the exception of R2
when minimizing the number of conflicts and R5 for overlaps) for both objective functions.
These results suggest that the initial greedy permutation is not the main performance factor
for SWO: the performance of RandomStartSWO is competitive with that of Genitor.

598

Understanding Algorithm Performance

Minimizing Conflicts Minimizing Overlaps
Day Total Random Perms Optimal Perms Random Perms Optimal Perms

Neighbors Mean Avg % Mean Avg % Mean Avg % Mean Avg %
A1 103041 87581.1 84.9 91609.1 88.9 75877.4 73.6 88621.2 86.0
A2 90601 79189.3 87.4 83717.9 92.4 70440.9 77.7 81141.9 89.5
A3 96100 82937 86.8 84915.4 88.9 73073.3 76.5 82407.7 86.3
A4 100489 84759 84.3 87568.2 87.1 72767.7 72.4 85290 84.8
A5 92416 77952 84.3 82057.4 88.7 67649.3 73.2 79735.9 86.2
A6 88804 74671.5 84.0 78730.3 88.6 63667.4 71.6 75737.9 85.2
A7 87616 76489.6 87.3 79756.5 91.0 67839 77.4 77584.3 88.5
R1 232324 189566 81.5 190736 82.0 145514 62.6 160489 69.0
R2 207936 173434 83.4 177264 85.2 137568 66.1 160350 77.1
R3 180625 153207 84.8 156413 86.5 126511 70.0 139012 76.9
R4 184900 157459 85.1 162996 88.1 130684 70.6 145953 78.9
R5 174724 154347 88.3 159581 91.3 133672 76.5 152629 87.3

Table 9: Statistics for the number of neighbors resulting in schedules of the same value
as the original, over 30 random and optimal permutations, for both objective
functions

6.4 Is RLS Performing a Random Walk?

RLS spends most of the time traversing plateaus in the search space (by accepting non-
improving moves). In this section, we study the average length of random walks on the
plateaus encountered by local search. We show that as search progresses the random walks
become longer before finding an improvement, mirroring the progress of RLS. We note that
a similar phenomenon has been observed for SAT (Frank, Cheeseman, & Stutz, 1997).

More than a third of all shifting pairs of requests result in schedules identical with
the current solution (Barbulescu et al., 2004a, 2004c). However, an even larger number of
neighbors result in different schedules with the same value as the current solution. This
means that most of the accepted moves during search are non-improving moves; search ends
up randomly walking on a plateau until an exit is found. We collected results about the
number of schedules with the same value as the original schedule, when perturbing the so-
lutions in all possible pairwise changes. Note that these schedules include the ones identical
with the current solution. The results are summarized in Table 9. We report the average
percentage of neighbors identical in value with the original permutation. The results show
that: 1) More than 84% of the shifts result in schedules with the same value as the orig-
inal one, when minimizing conflicts. When minimizing overlaps, more than 62% (usually
around 70%) of the shifts result in same value schedules. 2) Best known solutions have
slightly more same-value neighbors than do random permutations; the difference is statisti-
cally significant when minimizing overlaps. This suggests that the plateaus corresponding
to good values in the search space might be larger in size than the plateaus corresponding
to random permutations.

To assess the size of the plateaus and their impact on RLS, we performed random walks
at fixed intervals during RLS. At every 500 evaluations of RLS, we identified the current

599

Barbulescu, Howe, Whitley, & Roberts

solution Crt. For each such Crt, we performed 100 iterations of local search starting from
Crt and stopping as soon as a better solution or a maximum number of equally good
solutions were encountered. For the A problems, best known solutions are often found early
in the search; most of the 100 iterations of local search started from such a Crt would reach
the maximum number of equally good solutions. Therefore, we chose a limit of 1000 steps
on the plateau for the A problems and 8000 steps for the R problems. We averaged the
number of equally good solutions encountered during the 100 trials of search performed for
each Crt; this represents the average number of steps needed to find an exit from a plateau.

Figure 4 displays the results obtained for R4; similar behavior was observed for the rest
of the problems. Note that we used a log scale on the y axis for the graph corresponding to
minimizing overlaps: most of the 100 walks performed from the current solution of value 729
end up taking the maximum number of steps allowed (8000) without finding an exit from the
plateau. Also, the random walk steps counts only equal moves; the number of evaluations
needed by RLS (x-axis) is considerably higher due to needing to check detrimental moves
before accepting equal ones. The results show that large plateaus are present in the search
space; improving moves lead to longer walks on lower plateaus, which when detrimental
moves are factored in, appears to mirror the performance of RLS.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1000 2000 3000 4000 5000 6000 7000 8000

Av
er

ag
e

nu
m

be
r s

te
ps

 p
la

te
au

Evals

63
45

33

32
31

30

30

30

30

30

30

29

29
29 29

29

LS

 1

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000 6000 7000 8000

Av
er

ag
e

nu
m

be
r s

te
ps

 p
la

te
au

Evals

1450

1068 944

864

814 794
786 786

782

777
751

740

729 729 729 729
LS

Figure 4: Average length of the random walk on plateaus when minimizing conflicts (left)
or overlaps (right) for a single local search run on R4. The labels on the graphs
represent the value of the current solution. Note the log scale on the y axis for
the graph corresponding to minimizing overlaps. The best known value for this
problem is 28 when minimizing conflicts and 725 when minimizing overlaps.

For the AFSCN scheduling problems, most of the states on a plateau have at least one
neighbor that has a better value (this neighbor represents an exit). However, the number of
such exits is a very small percentage of the total number of neighbors, and therefore, local
search has a very small probability of finding an exit. Using the terminology introduced
by Frank et al. (1997), most of the plateaus encountered by search in the AFSCN domain
would be classified as benches, meaning that exits to states at lower levels are present. If
there are no exits from a plateau, the plateau is a local minimum. Determining which of the
plateaus are local minima (by enumerating all the states on the plateau and their neighbors)

600

Understanding Algorithm Performance

is prohibitive because of the large size of the neighborhoods and the large number of equally
good neighbors present for each state in the search space. Instead, we focus on the average
length of the random walk on a plateau as a factor in local search performance. The length
of the random walk on the plateau depends on two features: the size of the plateau and
the number of exits from the plateau. Preliminary investigations show that the number of
improving neighbors for a solution decreases as the solution becomes better - therefore we
conjecture that there are more exits from higher level plateaus than from the lower level
ones. This would account for the trend of needing more steps to find an exit when moving
to lower plateaus (corresponding to better solutions). It is also possible that the plateaus
corresponding to better solutions are larger in size; however, enumerating all the states on
a plateau for the AFSCN domain is impractical (following a technique developed by Frank
et al., 1997, just the first iteration of breadth first search would result in approximately
0.8 ∗ (n − 1)2 states on the same plateau).

6.5 Are Long Leaps Instrumental?

As in other problems with large plateaus (e.g., research published by Gent and Walsh,
1995 on SAT), we hypothesize that long leaps in the search space are instrumental for an
algorithm to perform well on AFSCN scheduling. SWO is moving forward multiple requests
that are known to be problematic. The position crossover mechanism in Genitor can be
viewed as applying multiple consecutive shifts to the first parent, such that the requests in
the selected positions of the second parent are moved into those selected positions of the
first. In a sense, each time the crossover operator is applied, a multiple move is proposed for
the first parent. We hypothesize that this multiple move mechanism present in both SWO
and Genitor allows them to make long leaps in the space and thus reach solutions fast.

Note that if we knew exactly which requests to move, moving forward only a small
number of requests (or even only one) might be all that is needed to reach the solutions
quickly. Finding which requests to move is difficult; in fact we studied the performance of
a more informed move operator that only moves requests into positions which guarantee
schedule changes (Roberts et al., 2005). We found surprising results: the more informed
move operator performs worse than the random unrestricted shift employed by RLS. We
argue that the multiple moves are a desired algorithm feature as they make it more likely
that one of the moves will be the right one.

To investigate our hypothesis about the role of multiple moves when traversing the
search space, we perform experiments with a variable number of moves at each step for
both Genitor and SWO. For Genitor, we vary the number of crossover positions allowed.
For SWO, we vary the number of requests in conflict moved forward.

6.5.1 The Effect of Multiple Moves on Genitor

To test the effect of multiple moves on Genitor, we change Syswerda’s position crossover
by imposing a fixed number of selected positions in the second parent (see Section 4.4 for a
description of Syswerda’s position crossover). We call this implementation Genitor-k where
k is the number of selected positions. Recall that our implementation of Syswerda’s position
crossover randomly selects a number of positions that is larger than one third and smaller
than two thirds of the total number of positions. If multiple moves are indeed a factor in

601

Barbulescu, Howe, Whitley, & Roberts

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

Be
st

 S
o

Fa
r S

um
 o

f O
ve

rla
ps

Evaluations

Genitor
Genitor-10
Genitor-50

Genitor-100
Genitor-150
Genitor-300
Genitor-350

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 4000 4500 5000 5500 6000 6500 7000 7500 8000

Av
er

ag
e

Be
st

 S
o

Fa
r S

um
 o

f O
ve

rla
ps

Evaluations

Genitor
Genitor-10
Genitor-50

Genitor-100
Genitor-150
Genitor-300
Genitor-350

Figure 5: Evolutions of the average best value obtained by Genitor and its versions with a
fixed number of selected positions for crossover. during 8000 evaluations, over 30
runs. The graphs were obtained for R1; best solution value is 773.

performance then increasing the number of selected positions up to a point should result in
finding improvements faster. If only a few positions are selected, the offspring will be very
similar to the first parent. If the number of selected positions is large, close to the number
of total requests, the offspring will be very similar to the second parent. If the offspring is
very similar to one of its two parents, we expect a slower rate in finding improvements to the
current best solution. Therefore, both for small and for large k values, we expect Genitor-k

602

Understanding Algorithm Performance

Genitor-10 Genitor-50 Genitor-100 Genitor-150
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev Min Mean Stdev

A1 11 14.93 1.94 8 9.26 0.63 8 8.66 0.47 8 8.53 0.5

A2 5 7.13 1.77 4 4.03 0.18 4 4.0 0.0 4 4.0 0.0

A3 6 10.4 2.12 3 3.36 0.55 3 3.0 0.0 3 3.0 0.0

A4 5 10.66 2.7 2 3.13 0.81 2 2.23 0.50 2 2.06 0.25

A5 5 9.6 2.29 4 4.73 0.69 4 4.26 0.44 4 4.2 0.4

A6 9 12.63 1.8 6 6.83 0.94 6 6.03 0.18 6 6.06 0.25

A7 8 10.6 1.75 6 6.1 0.30 6 6.0 0.0 6 6.0 0.0

R1 57 66.5 4.38 47 52.0 2.82 42 45.83 1.68 42 44.36 1.24

R2 42 47.16 3.59 32 34.53 1.47 29 30.0 0.78 29 29.6 0.56

R3 27 31.1 2.41 19 21.6 1.67 17 18.03 0.61 17 17.63 0.61

R4 36 41.9 2.74 28 30.96 2.04 28 28.33 0.47 28 28.1 0.4

R5 13 20.73 2.53 12 13.23 0.81 12 12.46 0.62 12 12.2 0.4

Table 10: Performance of Genitor-k, where k represents the fixed number of selected posi-
tions for Syswerda’s position crossover, in terms of the best and mean number
of conflicts. Statistics are taken over 30 independent runs, with 8000 evaluations
per run. Min numbers in boldface indicate best known values.

to find improvements at a much slower rate than Genitor or Genitor-k with average k values
(values closer to half of the number of requests).

For our study, we run Genitor-k with k=10, 50, 100, 150, 200, 250, 300 and 350. We
allowed 8000 evaluations per run and performed 30 runs for each problem. The results are
summarized in Tables 10 and 11 for minimizing the number of conflicts and in Tables 12
and 13 for minimizing the sum of overlaps. Note that for A6 and A7 there are 299 and 297
requests to schedule respectively. Therefore Genitor-k with k = 300 and k = 350 cannot be
run for these two problems. Also note that for example, k = 200 does not mean that there
are 200 differences in the selected positions between the two parents. The offspring is likely
to be very similar to its parents, regardless of the value of k, when the parents are similar.

When minimizing the number of conflicts, the worst results are produced by k = 10. For
k = 50, the results improve, best knowns are found for all of the A problems; however, for R1,
R2, and R3, the best knowns are not found. Starting with k = 100 up to k = 250 Genitor-k
finds best known solutions for all the problems. The means and standard deviations are also
very similar for all these k values; the smallest means and standard deviations correspond
to k = 200 for the A problems and k = 250 for the R problems (with the exception of R3
for which k = 200 produces better results). For k = 300, the best knowns are not found
anymore for the A problems; 300 is very close to the size of the five A problems for which
it is feasible to run Genitor-300. The decay in performance is not as significant for the R
problems: there is an increase in the means and standard deviations for k = 300 and k = 350;
however, best knowns are still found for four out of the five problems. Note that k = 400
would have been a lot closer to the total number of requests for the R problems; we believe
the performance would have degraded more for the R problems for larger k values. When
minimizing overlaps, we observe trends that are very similar to the ones for minimizing the
number of conflicts. k = 10 produces poor results, followed by k = 50. Similar results are

603

Barbulescu, Howe, Whitley, & Roberts

Genitor-200 Genitor-250 Genitor-300 Genitor-350
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev Min Mean Stdev

A1 8 8.56 0.56 8 8.9 0.3 9 11.8 1.66 - - -

A2 4 4.0 0.0 4 4.03 0.18 9 13.66 1.76 - - -

A3 3 3.0 0.0 3 3.06 0.25 4 9.2 2.1 - - -

A4 2 2.0 0.0 2 3.13 0.81 4 8.56 1.94 - - -

A5 4 4.3 0.46 4 4.73 0.58 10 13.86 2.14 - - -

A6 6 6.06 0.25 6 6.5 0.57 - - - - - -

A7 6 6.0 0.0 6 6.06 0.25 - - - - - -

R1 42 44.03 1.15 42 44.03 0.85 43 44.26 1.01 43 45.46 1.22

R2 29 29.36 0.49 29 29.4 0.49 29 29.7 0.59 29 30.13 0.86

R3 17 17.33 0.4 17 17.7 0.65 17 17.73 0.58 17 18.63 0.8

R4 28 28.03 0.18 28 28 0.0 28 28.03 0.18 28 28.63 0.71

R5 12 12.1 0.3 12 12.06 0.25 12 12.16 0.37 12 12.6 0.81

Table 11: Performance of Genitor-k, where k represents the fixed number of selected posi-
tions for Syswerda’s position crossover, in terms of the best and mean number
of conflicts. Statistics are collected over 30 independent runs, with 8000 eval-
uations per run. Min numbers in boldface indicate best known values. The
dashes indicate that the permutation solutions for A6 and A7 are shorter than
300 (299 and 297, respectively), and therefore cannot select 300 positions in these
permutations.

Genitor-10 Genitor-50 Genitor-100 Genitor-150
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev Min Mean Stdev

A1 149 221.53 38.85 107 115.76 11.53 107 107.2 0.76 107 107.1 0.54

A2 30 69.66 29.22 13 15.73 3.86 13 13.43 1.54 13 13.03 0.18

A3 51 122.86 36.12 28 36.26 8.19 28 28.9 1.72 28 28.16 0.64

A4 59 124.5 42.25 9 19.36 9.3 9 9.23 0.72 9 9.06 0.36

A5 43 90.7 32.01 30 33.06 3.62 30 30.36 0.96 30 30.43 0.5

A6 94 145.06 33.12 45 49.6 5.54 45 45.36 0.8 45 45.16 0.46

A7 67 115.66 27.96 46 51.7 7.89 46 46.5 2.23 46 47.63 3.9

R1 1321 1531.13 107.35 987 1139.5 76.57 914 991.13 38.19 915 963.96 26.89

R2 743 961.13 81.62 557 643.86 50.0 515 549.1 18.8 516 540.86 15.82

R3 480 652.5 90.37 319 391.56 47.31 268 305.3 20.63 269 291.3 13.36

R4 866 1069.23 74.65 768 840.23 38.79 735 757.43 15.95 731 752.7 14.07

R5 208 309.03 46.3 146 172.13 18.18 146 151.53 7.63 146 148.23 5.26

Table 12: Performance of Genitor-k, where k represents the fixed number of selected po-
sitions for Syswerda’s position crossover, in terms of the best and mean sum of
overlaps. Statistics are collected over 30 independent runs, with 8000 evaluations
per run. Min numbers in boldface indicate best known values.

produced by k = 100, 150, 200, 250. k = 150 results in the smallest means and standard
deviations for the A problems, while k = 200 and k = 250 produce best results for the R
problems. For k = 300 and k = 350, similarly to minimizing the number of conflicts, the

604

Understanding Algorithm Performance

Genitor-200 Genitor-250 Genitor-300 Genitor-350
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev Min Mean Stdev

A1 107 107.1 0.74 107 108.03 2.22 113 157.66 26.21 - - -

A2 13 13.2 0.92 13 17.0 5.8 116 185.56 33.27 - - -

A3 28 28.9 1.6 28 31.63 4.47 63 106.23 26.21 - - -

A4 9 9.1 0.4 9 10.36 3.41 37 78.06 25.78 - - -

A5 30 30.6 1.3 30 31.56 2.22 76 160.0 36.59 - - -

A6 45 46.33 2.7 45 50.96 8.82 - - - - - -

A7 46 47.63 4.2 46 49.93 5.39 - - - - - -

R1 878 970.1 38.38 914 968.63 31.59 935 986.7 37.9 927 1008.8 42.17

R2 512 538.43 13.94 511 538.93 12.88 526 551.63 12.27 532 559.46 19.7

R3 268 287.96 11.05 270 292.23 12.85 272 299.43 16.3 299 332.46 20.14

R4 730 752.1 12.25 734 754.53 11.89 745 764 13.36 743 785.36 26.63

R5 146 147.633 2.95 146 147.96 3.7 146 148.6 3.84 146 157 10.6

Table 13: Performance of Genitor-k, where k represents the fixed number of selected po-
sitions for Syswerda’s position crossover, in terms of the best and mean sum of
overlaps. Statistics are taken over 30 independent runs, with 8000 evaluations
per run. Min numbers in boldface indicate best known values.

means and standard deviations increase and so do the best solutions found; best knowns
are only found for R5.

In terms of the evolution to the solution, we observe very similar trends for the two
objective functions. A typical examples is presented in Figure 5 (minimizing overlaps for
R1). Genitor-k with k = 10 is slower in finding improvements than k = 50 which is slower
than k = 100. k = 150 up to k = 250 are performing similarly and also similar to the
original Genitor implementation. k = 300 is still moving through the space at a rate that’s
similar to Genitor’s. Only for k = 350 does the performance start to decay.

The original implementation of the crossover operator (with a variable number of se-
lected position) was shown to work well not only for our domain but also for other scheduling
applications (Syswerda, 1991; Watson, Rana, Whitley, & Howe, 1999; Syswerda & Pal-
mucci, 1991). For our test problems, the results in this subsection show that the number of
crossover positions influences the performance of Genitor, both in terms of best solutions
found and in terms of the rate of finding improvements. For a small number of crossover
positions (10 or 50), the solutions found are not competitive, and the improvements are
found at a slower rate than in the original Genitor implementation. Similarity to Genitor’s
original performance is obtained for k values between 100 and 250. Higher k values result
in a decay in performance. These results also offer an empirical motivation for the choice
of the number of crossover positions in the original Genitor implementation. Indeed, in
the original implementation, the crossover uses a number of positions randomly selected
between one third and two thirds of the total number of requests. This translates for the
sizes of problems in our sets to a number of positions that is approximately between 100
and 300.

605

Barbulescu, Howe, Whitley, & Roberts

Minimizing Conflicts Minimizing Overlaps
Day Min Mean Stdev Min Mean Stdev

A1 8 8 0 104 104 0

A2 4 4 0 13 13 0

A3 3 3 0 28 28 0

A4 2 2 0 9 9 0

A5 4 4 0 30 30 0

A6 6 6 0 45 45 0

A7 6 6 0 46 46 0

R1 42* 43.4 0.7 872 926.7 22.1

R2 29 29.9 0.3 506 522.9 8.9

R3 18 18 0 271 283.0 6.1

R4 28 28.1 0.3 745 765.2 10.7

R5 12 12 0 146 146 0

Table 14: Performance of a modified version of SWO where only one request is moved
forward for a constant distance 5. For both minimizing conflicts and minimizing
the sum of overlaps, the request is randomly chosen. All statistics are collected
over 30 independent runs, with 8000 evaluations per run. A ∗ indicates that the
best value is better than the corresponding SWO result. Min numbers in boldface
indicate best known values.

6.5.2 The Effect of Multiple Moves on SWO

We hypothesize that the multiple moves present in SWO are necessary for its performance.
To test this hypothesis, we start by investigating the effect of moving forward only one
request. This is somewhat similar to the shifting operator present in RLS: a request is shifted
forward in the permutation. However, to implement the SWO reprioritization mechanism,
we restrict both the chosen request to be moved and the position where it gets moved. For
minimizing the conflicts, one of the bumped requests is randomly chosen; for minimizing
overlaps, one of the requests contributing to the sum of overlaps is randomly chosen. For
both minimizing the conflicts and minimizing the sum of overlaps the chosen request is
moved forward for a constant distance of five10. We call this new algorithm SWO1Move.
The results obtained by running SWO1Move for 30 runs with 8000 evaluations per run are
presented in Table 14. The entries with a ∗ indicate that the value produced by SWO1Move
is better than the corresponding SWO result. The initial solutions are identical to the
solutions produced using the flexibility heuristic for initializing SWO.

When minimizing conflicts, SWO1Move performs as well as SWO (in fact, it finds the
best known solution for R1 as well). When minimizing the sum of overlaps, the performance
of SWO for the R problems worsens significantly when only one task is moved forward. Pre-
viously, we implemented SWO1Move for minimizing overlaps by moving forward the request
that contributes most to the total overlap (Barbulescu et al., 2004c). Randomly choosing

10. We tried other values; on average, a value of five seems to work best.

606

Understanding Algorithm Performance

k=10 k=20 k=30 k=40
Day Min Mean Stdev Min Mean Stdev Min Mean Stdev Min Mean Stdev

R1 840 862.5 11.28 815 829.77 8.45 798 820.63 8.12 825 841.13 8.02

R2 512 530.2 9.18 498 506.53 5.25 493 508.97 5.26 508 526.26 6.25

R3 284 291.36 4.65 266 268.9 2.21 266 271.07 3.52 266 273.2 3.54

R4 764 778.57 8.45 749 757.3 6.16 740 744.47 2.6 737 747.2 5.06

Table 15: Performance of a modified version of SWO where k of the requests contributing
to the sum of overlaps are moved forward for a constant distance 5. All statistics
are collected over 30 independent runs, with 8000 evaluations per run.

the request to be moved forward improved the performance of SWO1Move. Randomization
is useful because SWO can become trapped in cycles (Joslin & Clements, 1999); however,
the improvement is not enough to equal the performance of SWO when minimizing overlaps
for the new days of data. In fact, longer runs of SWO1Move with a random choice of the
request to be moved (30 runs with 50,000 evaluations) produce solutions that are still worse
than those obtained by SWO. These results support the conjecture that the performance
of SWO is due to the simultaneous moves of requests.

We attribute the discrepancy in the SWO1Move performance for the two objective
functions to the difference in the discretization of the two search spaces. When minimizing
conflicts, SWO1Move only needs to identify the requests that cannot be scheduled. More
fine tuning is needed when minimizing the sum of overlaps; besides identifying the requests
that cannot be scheduled, SWO1Move also needs to find the positions for these requests in
the permutation such that the sum of overlaps is minimized. We conjecture that this fine
tuning is achieved by simultaneously moving forward multiple requests.

Next, we investigate the changes in performance when an increasing number of requests
(from the requests contributing to the objective function) are moved forward. We design
an experiment where a constant number of the requests involved in conflicts are moved
forward. To do this, we need to decide how many requests to move and which ones. Moving
two or three requests forward results in small improvements over the results in Table 14.
Therefore, we run multiple versions of SWO moving k requests forward, with k = 10, 20,
30, 40. We determined empirically that when moving multiple requests (more than five)
forward, choosing them at random as opposed to based on their contribution to the sum
of overlaps hurts algorithm performance. To determine which requests are moved forward,
at each step we sort the requests contributing to the sum of overlaps in decreasing order of
their contribution and only move forward the first k (or all of them, if k is greater than the
number of requests contributing to the sum of overlaps).

The results obtained for R1, R2, R3 and R4 are summarized in Table 15. For the A
problems, all these new SWO versions find best known solutions. We did not include R5
in this study because the SWO greedy initial permutation computed for R5 corresponds to
a best known value schedule. The results show a general performance improvement as k
grows from 10 to 20. k = 20 and k = 30 produce similar performance for R1, R2 and R3.
For R4, k = 30 results in better performance than k = 20. k = 40 results in worsening
performance for R1 and R2. Note that the algorithm performance for R3 does not change

607

Barbulescu, Howe, Whitley, & Roberts

when k >= 20. This is not surprising; since good solutions (in terms of overlaps) for this
problem correspond to schedules with a small number of overlapping tasks, moving forward
20 requests or more means moving most of the requests in conflict once good solutions are
found. The results indicate that for the problems in our set, when minimizing overlaps, if
SWO is allowed to only move forward a constant number k of requests, k = 30 seems to be
a good choice.

The results in this section support the hypothesis that moving multiple requests forward
is necessary to obtain good SWO performance. First, we showed that moving only one
request forward (or a small number of requests, smaller than 30 for the R problems) results
in inferior SWO performance. Second, as the number of requests moved forward is increased
(from 10 up), the performance of SWO improves.

7. New Algorithm: Attenuated Leap Local Search

The empirical data and analyses suggest that the key to competitive performance on this
application is moving as quickly as possible across the plateaus. Two of the competitive
algorithms, Genitor and SWO, perform multiple moves. A simpler algorithm, RLS, actually
finds more best known solutions in 8000 evaluations, even though it does not perform mul-
tiple moves. RLS does however, perform a significant number of “neutral moves” between
solutions with the same evaluation. Given this, we conjecture that a version of local search
that performs multiple moves before evaluating the result may be even better suited to this
application. The intuition behind this conjecture is that the search should sample at greater
distances (i.e., longer than a single move) to more quickly find exits from plateaus.

We modified the RLS move operator as follows: choose a number of pairs of positions
and apply shifting to these pairs, one after another, without building the schedule after
each shift; build the schedule only after shifting has been applied for the designated number
of pairs. In our first version, we tried a static number of shifts (10 turned out to be the
best value); however, it performed no better and sometimes worse than the original move
operator. We next conjectured that as search progresses to better solutions, the number
of shifts should also decrease because the probability of finding detrimental moves (rather
than improving) increases significantly as well. The better the solution, the fewer exits are
expected and the harder they are to find.

We implemented a multiple move hill-climber with a variable move count operator: given
a decay rate, we start by shifting ten requests, then nine, eight etc. We chose to decrement
the number of shifts for every 800 evaluations; we call this version of hill-climbing Attenuated
Leap Local Search (ALLS). This is similar to the idea behind the “temperature dependent”
hill-climbing move operator implemented by Globus et al. (2004), for which the number of
requests to move is chosen by random but biased such that a large number of requests are
moved early in the search while later only a few requests are moved11. Hill-climbing with
the temperature dependent operator produced better results for EOS than simply choosing
a random number of requests to move.

ALLS performs remarkably well. As shown in Table 16, it finds best known values
for all problems using conflicts and all but two of the problems using overlaps (as does

11. The operator is similar to the temperature dependent behavior in simulated annealing; this explains the
name of the operator.

608

Understanding Algorithm Performance

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 500 1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

Be
st

 S
o

Fa
r N

um
be

r o
f B

um
ps

Evaluations

Genitor
RLS

SWO
ALLS

 28

 28.5

 29

 29.5

 30

 30.5

 31

 31.5

 32

 4000 4500 5000 5500 6000 6500 7000 7500 8000

Av
er

ag
e

Be
st

 S
o

Fa
r N

um
be

r o
f B

um
ps

Evaluations

Genitor
RLS

SWO
ALLS

Figure 6: Evolutions of the average best value obtained by Genitor, RLS, SWO and ALLS
during 8000 evaluations, over 30 runs. The improvement over the first 4000
evaluations is shown in the top figure. The last 4000 evaluations are depicted in
the bottom figure; note that the scale is different on the y-axis. The graphs were
obtained for R4; best solution value is 28.

RLS). Additionally, it finds better best values than all the algorithms in our set for the
two problems with non-best solutions. In fact, a single tailed, two sample t-test comparing
ALLS to RLS shows that ALLS finds statistically significantly better solutions (p < 0.023)
on both conflicts and overlaps for the five more recent days.

609

Barbulescu, Howe, Whitley, & Roberts

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 0 500 1000 1500 2000 2500 3000 3500 4000

Av
er

ag
e

Be
st

 S
o

Fa
r N

um
be

r o
f O

ve
rla

ps

Evaluations

Genitor
RLS

SWO
ALLS

 720

 740

 760

 780

 800

 820

 840

 860

 880

 900

 4000 4500 5000 5500 6000 6500 7000 7500 8000

Av
er

ag
e

Be
st

 S
o

Fa
r N

um
be

r o
f O

ve
rla

ps

Evaluations

Genitor
RLS

SWO
ALLS

Figure 7: Evolutions of the average best value obtained by Genitor, RLS, SWO and ALLS
during 8000 evaluations, over 30 runs. The improvement over the first 4000
evaluations is shown in the top figure. The last 4000 evaluations are depicted in
the bottom figure; note that the scale is different on the y-axis.The graphs were
obtained for R4; best solution value is 725.

In Section 5, we discussed a comparison across all algorithms (again at p < 0.005).
Under this much more restrictive performance comparison, ALLS still outperforms RLS,
SWO and Genitor for most of the pair-wise tests. Both when minimizing conflicts and when
minimizing overlaps, ALLS significantly outperforms all other algorithms on R1. When

610

Understanding Algorithm Performance

Minimizing Conflicts Minimizing Overlaps
Day Min Mean Stdev Min Mean Stdev

A1 8 8.2 0.4 104 107.1 1.24

A2 4 4.0 0.0 13 13.0 0.0

A3 3 3.0 0.0 28 28.33 1.3

A4 2 2.03 0.18 9 9.13 0.73

A5 4 4.1 0.3 30 30.23 0.43

A6 6 6.0 0.0 45 45.0 0.0

A7 6 6.0 0.0 46 46.0 0.0

R1 42 42.63 0.72 785 817.83 27.07

R2 29 29.1 0.3 490 510.37 19.14

R3 17 17.5 0.57 250 273.33 43.68

R4 28 28.07 0.25 725 740.07 19.56

R5 12 12.0 0.0 146 146.03 0.19

Table 16: Statistics for the results obtained in 30 runs of ALLS, with 8,000 evaluations per
run. The best and mean values as well as the standard deviations are shown.
Bold indicates best known values.

minimizing conflicts, ALLS outperforms for all but five of the twelve pair-wise tests on the
other four days (for which the difference was not significant). The exceptions are: R2, R3,
R4, and R5 for Genitor and R4 for RLS. When minimizing overlaps, ALLS significantly
outperforms Genitor for R2, RLS for R3, Genitor for R4 and SWO for R5; the rest of the
pair-wise comparisons were not statistically significant at p < 0.005. It is clear that ALLS
is at least as good as the best algorithms and outperforms them on most days of data.

ALLS also finds improving solutions faster than both Genitor and RLS (see Figures 6
and 7 for R4 on both conflicts and overlaps). ALLS achieves such good performance by
combining the power of finding good solutions fast using multiple moves in the beginning
of the search with the accuracy of locating the best solutions using one-move shifting at the
end of the search.

In 6.4 we showed that as the solutions improve the random walks on plateaus become
longer. Two hypotheses support this observation: 1) The plateaus are bigger 2) The plateaus
are harder to escape because there are fewer exits. These two hypotheses are consistent if
the missing exits are replaced by moves of equal value. They are not consistent if the exits
are replaced by worse moves. Our ALLS design implicitly assumes the latter. If the exits
were replaced by equal moves then as the search progresses more moves would be needed
per each large step12. In fact, we ran some tests where we increased the number of moves
as search progresses and we found that this can significantly worsen the performance. For
example, for R1 when minimizing overlaps, shifting initially ten requests and then increasing
the number of shifted requests by 1 every 800 iterations (instead of decreasing it as in ALLS)

12. We wish to thank the anonymous reviewer for this insightful observation.

611

Barbulescu, Howe, Whitley, & Roberts

results in a minimum overlap of 885, with a mean of 957.97 and a standard deviation of
51.36, which is significantly worse than the corresponding ALLS result.

8. Conclusion

A key algorithm characteristic for AFSCN appears to be multiple moves. In fact, this
observation might hold for other oversubscribed scheduling problems as well. Globus et
al. (Globus et al., 2004) found that when solving the oversubscribed problem of scheduling
fleets of EOS using hill-climbing, moving only one request at a time was inefficient. Their
temperature dependent hill-climbing operator proved to work better than simply choosing
a random number of requests to move. As in our domain, a permutation representation and
a greedy deterministic schedule builder are used. We conjecture that their schedule builder
also results in multiple permutations being mapped to the same schedule, and therefore
that plateaus are present in the EOS search space as well. The fact that moving more
than one request improved the results suggests that our conjecture could also hold for EOS
scheduling: multiple moves might speed up plateau traversal for this domain as well.

We developed and tested four hypotheses explaining the performance of three competi-
tive algorithms for a real scheduling application. We found that all of the hypotheses held
to varying degrees. Based on the evidence, we designed a new algorithm that combined
what appeared to be critical elements of the best performing algorithms and produced an
algorithm that performed better than the original ones. Our results suggest that multi-
ple moves are a useful algorithm feature to obtain good performance results for AFSCN
scheduling. Alternatively, it is possible that in fact only one move during each iteration
would be enough to obtain good performance, but it is difficult to identify which request to
move. Future research in this direction will examine heuristics such as combining HBSS and
SWO to decide which request to move forward, as well as heuristics to find where to move
the request to guarantee a change in the schedule. Also as future research, we will be testing
other oversubscribed scheduling applications to determine to what extent our analyses and
results generalize: do they exhibit the same characteristics and are they amenable to the
same kind of solution?

Acknowledgments

This research was supported in part by a grant from the Air Force Office of Scientific Re-
search, Air Force Materiel Command, USAF under grant number F49620-03-1-0233. Adele
Howe was also supported by the National Science Foundation under Grant No. IIS-0138690.
Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the National Science
Foundation. The U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright notation thereon.

612

Understanding Algorithm Performance

References

Ackley, D. (1987). A Connectionist Machine for Genetic Hillclimbing. Kluwer Academic
Publishers.

Aickelin, U., & Dowsland, K. (2003). An indirect genetic algorithm for a nurse scheduling
problem. Computers & Operations Research, 31 (5), 761–778.

Barbulescu, L., Howe, A., Whitley, L., & Roberts, M. (2004a). Trading places: How to
schedule more in a multi-resource oversubscribed scheduling problem. In Proceedings
of the International Conference on Planning and Scheduling, Whistler, CA.

Barbulescu, L., Watson, J., Whitley, D., & Howe, A. (2004b). Scheduling Space-Ground
Communications for the Air Force Satellite Control Network. Journal of Scheduling,
7, 7–34.

Barbulescu, L., Whitley, L., & Howe, A. (2004c). Leap before you look: An effective strategy
in an oversubscribed problem. In Proceedings of the Nineteenth National Artificial
Intelligence Conference, San Jose, CA.

Beck, J., Davenport, A., Davis, E., & Fox, M. (1998). The ODO Project: Toward a Unified
Basis for Constraint-directed Scheduling. Journal of Scheduling, 1, 89–125.

Bresina, J. (1996). Heuristic-Biased Stochastic Sampling. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 271–278, Portland, OR.

Burrowbridge, S. E. (1999). Optimal Allocation of Satellite Network Resources. In Masters
Thesis. Virginia Polytechnic Institute and State University.

Chien, S., Rabideau, G., Knight, R., Sherwood, R., Engelhardt, B., Mutz, D., Estlin, T.,
Smith, B., Fisher, F., Barrett, T., Stebbins, G., & Tran, D. (2000). ASPEN - Au-
tomating space mission operations using automated planning and scheduling. In 6th
International SpaceOps Symposium (Space Operations), Toulouse (France).

Cormen, T., Leiserson, C., & Rivest, R. (1990). Introduction to Algorithms. MIT press,
Cambridge, MA.

Deale, M., Yvanovich, M., Schnitzuius, D., Kautz, D., Carpenter, M., Zweben, M., Davis,
G., & Daun, B. (1994). The Space Shuttle ground processing scheduling system. In
Zweben, M., & Fox, M. (Eds.), Intelligent Scheduling, pp. 423–449. Morgan Kaufmann.

Forrest, S., & Mitchell, M. (1993). Relative Building-Block Fitness and the Building Block
Hypothesis. In Whitley, L. D. (Ed.), Foundations of Genetic Algorithms 2, pp. 109–
126. Morgan Kaufmann.

Frank, J., Cheeseman, P., & Stutz, J. (1997). When gravity fails: Local search topology.
Journal of Artificial Intelligence Research, 7, 249–281.

Frank, J., Jonsson, A., Morris, R., & Smith, D. (2001). Planning and scheduling for fleets
of earth observing satellites. In Proceedings of the Sixth International Symposium on
Artificial Intelligence, Robotics, Automation and Space.

Gent, I., & Walsh, T. (1995). Unsatisfied variables in local search. In Hybrid Problems,
Hybrid Solutions, pp. 73–85. IOS Press Amsterdam.

613

Barbulescu, Howe, Whitley, & Roberts

Globus, A., Crawford, J., Lohn, J., & Pryor, A. (2003). Scheduling earth observing satellites
with evolutionary agorithms. In International Conference on Space Mission Chal-
lenges for Information Technology, Pasadena, CA.

Globus, A., Crawford, J., Lohn, J., & Pryor, A. (2004). A comparison of techniques for
scheduling earth observing satellites. In Proceedings of the Sixteenth Innovative Ap-
plications of Artificial Intelligence Conference, San Jose, CA.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, MA.

Gooley, T. (1993). Automating the Satellite Range Scheduling Process. In Masters Thesis.
Air Force Institute of Technology.

Jang, K. (1996). The Capacity of the Air Force Satellite Control Network. In Masters
Thesis. Air Force Institute of Technology.

Johnston, M., & Miller, G. (1994). Spike: Intelligent scheduling of Hubble space telescope
observations. In Morgan, M. B. (Ed.), Intelligent Scheduling, pp. 391–422. Morgan
Kaufmann Publishers.

Joslin, D. E., & Clements, D. P. (1999). “Squeaky Wheel” Optimization. In Journal of
Artificial Intelligence Research, Vol. 10, pp. 353–373.

Kramer, L., & Smith, S. (2003). Maximizing flexibility: A retraction heuristic for oversub-
scribed scheduling problems. In Proceedings of 18th International Joint Conference
on Artificial Intelligence, Acapulco, Mexico.

Lemâıtre, M., Verfaillie, G., & Jouhaud, F. (2000). How to manage the new generation of
Agile Earth Observation Satellites. In 6th International SpaceOps Symposium (Space
Operations), Toulouse, France.

Parish, D. (1994). A Genetic Algorithm Approach to Automating Satellite Range Schedul-
ing. In Masters Thesis. Air Force Institute of Technology.

Pemberton, J. (2000). Toward Scheduling Over-Constrained Remote-Sensing Satellites. In
Proceedings of the Second NASA International Workshop on Planning and Scheduling
for Space, San Francisco, CA.

Rabideau, G., Chien, S., Willis, J., & Mann, T. (1999). Using iterative repair to automate
planning and scheduling of shuttle payload operations. In Innovative Applications of
Artificial Intelligence (IAAI 99), Orlando,FL.

ROADEF Challenge (2003). French Society of Operations Research and De-
cision Analisys ROADEF Challenge 2003. http://www.prism.uvsq.fr/˜
vdc/ROADEF/CHALLENGES/2003/.

Roberts, M., Whitley, L., Howe, A., & Barbulescu, L. (2005). Random walks and neighbor-
hood bias in oversubscribed scheduling. In Multidisciplinary International Conference
on Scheduling (MISTA-05), New York, NY.

Schalck, S. (1993). Automating Satellite Range Scheduling. In Masters Thesis. Air Force
Institute of Technology.

614

Understanding Algorithm Performance

Shaw, K., & Fleming, P. (1997). Use of rules and preferences for schedule builders in
genetic algorithms for production scheduling. Proceedings of the AISB’97 Workshop
on Evolutionary Computation. Lecture Notes in Computer Science, 1305, 237–250.

Singer, J., Gent, I., & Smaill, A. (2000). Backbone Fragility and the Local Search Cost
Peak. In Journal of Artificial Intelligence Research, Vol. 12, pp. 235–270.

Smith, S., & Cheng, C. (1993). Slack-based Heuristics for Constraint Satisfaction Problems.
In Proceedings of the Eleventh National Conference on Artificial Intelligence (AAAI-
93), pp. 139–144, Washington, DC. AAAI Press.

Starkweather, T., McDaniel, S., Mathias, K., Whitley, D., & Whitley, C. (1991). A Com-
parison of Genetic Sequencing Operators. In Booker, L., & Belew, R. (Eds.), Proc. of
the 4th Int’l. Conf. on GAs, pp. 69–76. Morgan Kaufmann.

Syswerda, G. (1991). Schedule Optimization Using Genetic Algorithms. In Davis, L. (Ed.),
Handbook of Genetic Algorithms, chap. 21. Van Nostrand Reinhold, NY.

Syswerda, G., & Palmucci, J. (1991). The Application of Genetic Algorithms to Resource
Scheduling. In Booker, L., & Belew, R. (Eds.), Proc. of the 4th Int’l. Conf. on GAs.
Morgan Kaufmann.

Watson, J. P., Rana, S., Whitley, D., & Howe, A. (1999). The Impact of Approximate Eval-
uation on the Performance of Search Algorithms for Warehouse Scheduling. Journal
of Scheduling, 2(2), 79–98.

Whitley, D., Starkweather, T., & Fuquay, D. (1989). Scheduling Problems and Traveling
Salesmen: The Genetic Edge Recombination Operator. In Schaffer, J. D. (Ed.), Proc.
of the 3rd Int’l. Conf. on GAs. Morgan Kaufmann.

Whitley, L. D. (1989). The GENITOR Algorithm and Selective Pressure: Why Rank Based
Allocation of Reproductive Trials is Best. In Schaffer, J. D. (Ed.), Proc. of the 3rd
Int’l. Conf. on GAs, pp. 116–121. Morgan Kaufmann.

Wolfe, W. J., & Sorensen, S. E. (2000). Three Scheduling Algorithms Applied to the Earth
Observing Systems Domain. In Management Science, Vol. 46(1), pp. 148–168.

Zweben, M., Daun, B., & Deale, M. (1994). Scheduling and rescheduling with iterative
repair. In Zweben, M., & Fox, M. (Eds.), Intelligent Scheduling. Morgan Kaufmann.

615

