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Abstract

Allocating scarce resources among agents to maximize global utility is, in general, com-
putationally challenging. We focus on problems where resources enable agents to execute
actions in stochastic environments, modeled as Markov decision processes (MDPs), such
that the value of a resource bundle is defined as the expected value of the optimal MDP
policy realizable given these resources. We present an algorithm that simultaneously solves
the resource-allocation and the policy-optimization problems. This allows us to avoid ex-
plicitly representing utilities over exponentially many resource bundles, leading to drastic
(often exponential) reductions in computational complexity. We then use this algorithm
in the context of self-interested agents to design a combinatorial auction for allocating re-
sources. We empirically demonstrate the effectiveness of our approach by showing that
it can, in minutes, optimally solve problems for which a straightforward combinatorial
resource-allocation technique would require the agents to enumerate up to 2100 resource
bundles and the auctioneer to solve an NP-complete problem with an input of that size.

1. Introduction

The problem of resource allocation is ubiquitous in many diverse research fields such as
economics, operations research, and computer science, with applications ranging from de-
centralized scheduling (e.g., Wellman, Walsh, Wurman, & MacKie-Mason, 2001) and net-
work routing (e.g., Feldmann, Gairing, Lucking, Monien, & Rode, 2003) to transportation
logistics (e.g., Sheffi, 2004; Song & Regan, 2002) and bandwidth allocation (e.g., McMillan,
1994; McAfee & McMillan, 1996), just to name a few. The core question in resource alloca-
tion is how to distribute a set of scarce resources among a set of agents (either cooperative or
self-interested) in a way that maximizes some measure of global utility, with social welfare
(sum of agents’ utilities) being one of the most popular criteria.

In many domains, an agent’s utility for obtaining a set of resources is defined by what
the agent can accomplish using these resources. For example, the value of a vehicle to a
delivery agent is defined by the additional revenue that the agent can obtain by using the
vehicle. However, to figure out how to best utilize a resource (or set of resources), an agent
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Figure 1: Dependency Cycle: To formulate their planning problems, the agents need to
know what resources they will get, but their utility functions, which define the
input to the resource-allocation problem, depend on the solutions to the planning
problems.

often must solve a non-trivial planning problem because actions might have long-term, non-
deterministic effects. Therefore, an agent’s value for a set of resources is defined by a solution
to a planning problem, but to formulate its planning problem the agent needs to know what
resources it will obtain. This leads to cyclic dependencies (depicted in Figure 1), wherein the
input to the resource allocation problem depends on the solution to the planning problem,
and vice versa. Unfortunately, for anything but the simplest domains, neither the resource-
allocation nor the planning problem can be solved in closed form, making it impossible to
obtain parameterized solutions.

Our focus in this paper is on solving the interdependent problems of resource allocation
and stochastic planning. The main question we consider is how to allocate the resources in
a way that maximizes the social welfare of the agents when the utility function of each agent
is defined by a Markov decision process (Puterman, 1994) whose action set is parameterized
by the resources. In this paper, we specifically focus on non-consumable resources (such
as vehicles) that enable actions, but are not themselves consumed during action execution.
We briefly mention the case of consumable resources in Section 6, and refer to the work by
Dolgov (2006) for a more detailed treatment.

We assume that the agents’ MDPs are weakly-coupled, meaning the agents only interact
through the resources, and once the resources are allocated, the transition and reward
functions of their MDPs are independent. Our model of weakly-coupled MDPs connected
via shared resources is similar to that of Meuleau, Hauskrecht, Kim, Peshkin, Kaelbling,
Dean, and Boutilier (1998) and Benazera, Brafman, Meuleau, and Hansen (2005), but
differs in that we further assume that resources are only allocated once, prior to any actions
being taken. While this “one-shot” allocation assumption limits our approach somewhat,
it also allows our approach to apply more broadly to non-cooperative settings (without
this assumption, the game-theoretic analysis of agents’ interactions is significantly more
complex). More importantly, it allows us to avoid the state space explosion (due to including
resource information in the MDP states), which limits that other work to finding only
approximately optimal solutions for non-trivial problems.

The main result presented in this paper is thus a new algorithm that, under the above
conditions, optimally solves the resource-allocation and the policy-optimization problems
simultaneously. By considering the two problems together, it sidesteps the dependency cycle
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mentioned above, which allows us to avoid an explicit representation of utility functions
on resource bundles, leading to an exponential reduction in complexity over combinatorial
resource allocation with flat utility functions. We empirically demonstrate that the resulting
algorithm scales well to finding optimal solutions for problems involving numerous agents
and resources.

Our algorithm can be viewed as contributing a new approach for dealing with the com-
putational complexity of resource allocation in domains with complex utility functions that
are not linearly decomposable in the resources (due to the effects of substitutability and
complementarity). In such combinatorial allocation problems, finding an optimal alloca-
tion is NP-complete in the (often exponentially large) space of resource bundles (Rothkopf,
Pekec, & Harstad, 1998). Previous approaches for addressing the complexity have included
determining classes of utility functions that lead to tractable problems (as surveyed by
de Vries & Vohra, 2003), iterative algorithms for resource allocation and preference elici-
tation (as surveyed by Sandholm & Boutilier, 2006), and concise languages for expressing
agents’ preferences (Sandholm, 1999; Nisan, 2000; Boutilier & Hoos, 2001; Boutilier, 2002).
The novelty of our approach with respect to these is that it explicitly embraces the under-
lying processes that define the agents’ utility functions, for cases where these processes can
be modeled as resource-parameterized MDPs. By doing so, not only does our approach use
such MDP-based models as a concise language for agents’ utility functions, but more impor-
tantly, it directly exploits the structure in these models to drastically reduce computational
complexity by simultaneously solving the planning and resource-allocation problems.

In the context of cooperative agents, our approach can be viewed as a way of solving
weakly-coupled multiagent MDPs, where agents’ transition and reward functions are inde-
pendent, but the space of joint actions is constrained, as, for example, in the models used
by Singh and Cohn (1998) or Meuleau et al. (1998). From that perspective, the concept of
resources can be viewed as a compact way of representing the interactions between agents,
similarly to the model used by Bererton, Gordon, and Thrun (2003); however, our work
differs in a number of assumptions. Moreover, our algorithms can be easily modified to work
with models where the constraints on the joint actions are modeled directly (for example,
via SAT formulas).

For non-cooperative agents, we apply our resource-allocation algorithm to the mechanism-
design problem (e.g., Mas-Colell, Whinston, & Green, 1995), where the goal is to allocate
resources among the agents in a way that maximizes the social welfare, given that each
participating agent is selfishly maximizing its own utility. For domains with self-interested
agents with complex preferences that exhibit combinatorial effects between the resources,
combinatorial auctions (e.g., de Vries & Vohra, 2003) are often used for resource-allocation.
The Generalized Vickrey Auction (GVA) (MacKie-Mason & Varian, 1994), which is an ex-
tension of Vickrey-Clarke-Groves (VCG) mechanisms (Vickrey, 1961; Clarke, 1971; Groves,
1973) to combinatorial auctions, is particularly attractive because of its nice analytical
properties (as described in Section 4.1). We develop a variant of a VCG auction, where
agents submit their resource-parameterized MDPs as bids, and the auctioneer simultane-
ously solves the resource-allocation and the policy-optimization problems, thus retaining the
compact representation of agents’ preferences throughout the process. We describe exten-
sions to the mechanism for distributing the computation and for encoding MDP information
to reduce the revelation of private information.
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The remainder of this paper proceeds as follows. After a brief review of MDPs in
Section 2, we present (in Section 3) our model of a decision-making agent: the resource-
parameterized MDP with capacity constraints. We analyze the problem of optimal policy
formulation in such a resource-parameterized capacity-constrained MDP, study its prop-
erties, and present a solution algorithm, based on the formulation of this (NP-complete)
problem as a mixed integer program.

With these building blocks, we move to the multiagent setting and present our main
result, the algorithm for simultaneously allocating resources and planning across agents
(Section 4). Based on that algorithm, we then design a combinatorial auction for allocating
resources among self-interested agents. We describe a distributed implementation of the
mechanism, and discuss techniques for preserving information privacy. In Section 5, we
analyze the computational efficiency of our approach, empirically demonstrating exponen-
tial reductions in computational complexity, compared to a straightforward combinatorial
resource-allocation algorithm with flat utility functions. Finally, in Section 6, we conclude
with a discussion of possible generalizations and extensions to our approach. For conciseness
and better readability, all proofs and some generalizations are deferred to appendices.

2. Markov Decision Processes

We base our model of agents’ decision problems on infinite-horizon fully-observable MDPs
with the total expected discounted reward optimization criterion (although our results are
also applicable to other classes of MDPs, such as MDPs with the average per-step rewards).
This section introduces our notation and assumptions, and serves as a brief overview of the
basic MDP results (see, for example, the text by Puterman (1994) for a detailed discussion
of the material in this section).

A classical single-agent, unconstrained, stationary, fully-observable MDP can be defined
as a 4-tuple 〈S,A, p, r〉, where:

• S is a finite set of states the agent can be in.

• A is a finite set of actions the agent can execute.

• p : S ×A× S 7→ [0, 1] defines the transition function. The probability that the agent
goes to state σ ∈ S upon execution of action a ∈ A in state s ∈ S is p(σ|s, a).
We assume that, for any action, the corresponding transition matrix is stochastic:∑

σ p(σ|s, a) = 1 ∀s ∈ S, a ∈ A.

• r : S ×A 7→ R defines the reward function. The agent obtains a reward of r(s, a) if it
executes action a ∈ A in state s ∈ S. We assume the rewards are bounded.

In a discrete-time fully-observable MDP, at each time step, the agent observes the current
state of the system and chooses an action according to its policy. A policy is said to be
Markovian (or history-independent) if the choice of action does not depend on the history
of states and actions encountered in the past, but rather only on the current state and
time. If, in addition to that, the policy does not depend on time, it is called stationary. By
definition, a stationary policy is always Markovian. A deterministic policy always prescribes
the execution of the same action in a state, while a randomized policy chooses actions
according to a probability distribution.
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Following the standard notation (Puterman, 1994), we refer to different classes of policies
as Πxy, where x = {H,M,S} specifies whether a policy is History-dependent, Markovian,
or Stationary, and y = {R,D} specifies whether the policy is Randomized or Deterministic
(e.g., the class of stationary deterministic policies is labeled ΠSD). Obviously, ΠHy ⊃ ΠMy ⊃
ΠSy and ΠxR ⊃ ΠxD, with history-dependent randomized policies ΠHR and stationary
deterministic policies ΠSD being the most and the least general, respectively.

A stationary randomized policy is thus a mapping of states to probability distributions
over actions: π : S × A 7→ [0, 1], where π(s, a) defines the probability that action a is
executed in state s. A stationary deterministic policy can be viewed as a degenerate case
of a randomized policy for which there is only one action for each state that has a nonzero
probability of being executed.

In an unconstrained discounted MDP, the goal is to find a policy that maximizes the
total expected discounted reward over an infinite time horizon:1

Uγ(π, α) = E
[ ∞∑

t=0

(γ)trt(π, α)
]
, (1)

where γ ∈ [0, 1) is the discount factor (a unit reward at time t + 1 is worth the same to the
agent as a reward of γ at time t), rt is the (random) reward the agent receives at time t,
whose distribution depends on the policy π and the initial distribution over the state space
α : S 7→ [0, 1].

One of the most important results in the theory of MDPs states that, for an uncon-
strained discounted MDP with the total expected reward optimization criterion, there al-
ways exists an optimal policy that is stationary, deterministic, and uniformly optimal, where
the latter term means that the policy is optimal for all distributions over the starting state.2

There are several commonly-used ways of finding the optimal policy, and central to all of
them is the concept of a value function of a policy, vπ : S 7→ R, where vπ(s) is the expected
cumulative value of the reward the agent would receive if it started in state s and behaved
according to policy π. For a given policy π, the value of every state is the unique solution
to the following system of |S| linear equations:

vπ(s) =
∑

a

r(s, a)π(s, a) + γ
∑

σ

p(σ|s, a)vπ(σ), ∀s ∈ S. (2)

To find the optimal policy, it is handy to consider the optimal value function v∗ : S 7→ R,
where v∗(s) represents the value of state s, given that the agent behaves optimally. The
optimal value function satisfies the following system of |S| nonlinear equations:

v∗(s) = max
a

[
r(s, a) + γ

∑
σ

p(σ|s, a)v∗(σ)
]
, ∀s ∈ S. (3)

Given the optimal value function v∗, an optimal policy is to simply act greedily with respect
to v∗ (with any method of tie-breaking in case of multiple optimal actions):

π(s, a) =

{
1 if a ∈ arg maxa

[
r(s, a) + γ

∑
σ p(σ|s, a)v∗(σ)

]
,

0 otherwise.
(4)

1. Notation: here and below (x)y is an exponent, while xy is a superscript.
2. Uniform optimality of policies is the reason why α is not included as a component of a textbook MDP.
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One of the possible ways of solving for the optimal value function is to formulate the
nonlinear system (3) as a linear program (LP) with |S| optimization variables v(s) and
|S||A| constraints:

min
∑

s

α(s)v(s)

subject to:

v(s) ≥ r(s, a) + γ
∑

σ

p(σ|s, a)v(σ), ∀s ∈ S, a ∈ A,

(5)

where α is an arbitrary constant vector with |S| positive components (α(s) > 0 ∀s ∈ S).3

In many problems (including the ones that are the focus of this paper), it is very use-
ful to consider the equivalent dual LP with |S||A| optimization variables x(s, a) and |S|
constraints:4

max
x

∑
s

∑
a

r(s, a)x(s, a)

subject to:∑
a

x(σ, a)− γ
∑

s

∑
a

x(s, a)p(σ|s, a) = α(σ), ∀σ ∈ S;

x(s, a) ≥ 0 ∀s ∈ S, a ∈ A.

(6)

The optimization variables x(s, a) are often called the visitation frequencies or the occupa-
tion measure of a policy. If we think of α as the initial probability distribution, then x(s, a)
can be interpreted as the total expected number of times action a is executed in state s.
Then, x(s) =

∑
a x(s, a) gives the total expected flow through state s, and the constraints

in the above LP can be interpreted as the conservation of flow through each of the states.
An optimal policy can be computed from a solution to the dual LP as:

π(s, a) =
x(s, a)∑
a x(s, a)

, (7)

where non-negativity of α guarantees that
∑

a x(s, a) > 0 ∀s ∈ S. In general, this appears to
lead to randomized policies. However, a bounded LP with n constraints always has a basic
feasible solution (e.g., Bertsimas & Tsitsiklis, 1997), which by definition has no more than
n non-zero components. If α is strictly positive, a basic feasible solution to the LP (7) will
have precisely |S| nonzero components (one for each state), which guarantees the existence
of an optimal deterministic policy. Such a policy can be easily obtained by most LP solvers
(e.g., simplex will always produce solutions that map to deterministic policies).

Furthermore, as mentioned above, for unconstrained discounted MDPs, there always
exist policies that are uniformly optimal (optimal for all initial distributions). The above
dual LP (6) yields uniformly optimal policies if a strictly positive α is used. However, the

3. The overloading of α as the objective function coefficients here and the initial probability distribution
of an MDP earlier is intentional and is explained shortly.

4. Note that some authors (e.g., Altman, 1996) prefer the opposite convention, where (6) is called the dual,
and (5), the primal.
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solution (x) to the dual LP retains its interpretation as the expected number of times state s
is visited and action a is executed only for the initial probability distribution α that was
used in the LP.

The main benefit of the dual LP (6) is manifested in constrained MDPs (Altman, 1999;
Kallenberg, 1983; Heyman & Sobel, 1984), where each action, in addition to producing a
reward r(s, a), also incurs a vector of costs ηk(s, a) : S × A 7→ R ∀k ∈ [1..K]. The prob-
lem then is to maximize the expected reward, subject to constraints on the expected costs.
Constrained models of this type arise in many domains, such as telecommunication appli-
cations (e.g., Ross & Chen, 1988; Ross & Varadarajan, 1989), where it is often desirable to
maximize expected throughput, subject to conditions on the average delay. Such problems,
where constraints are imposed on the expected costs, can be solved in polynomial time
using linear programming by simply augmenting the dual LP (6) with the following linear
constraints: ∑

s

∑
a

ηk(s, a)x(s, a) ≤ η̂k, ∀k ∈ [1..K], (8)

where η̂k is the upper bound on the expected cost of type k. The resulting constrained MDP
differs from the standard unconstrained MDP: in particular, deterministic policies are no
longer optimal, and uniformly optimal policies do not, in general, exist for such problems
(Kallenberg, 1983).

For the same reason of being easily augmentable with constraints, the dual LP (6) also
forms the basis for our approach. However, the constraints that arise in resource-allocation
problems that are our focus in this paper are very different from the linear constraints in (8),
leading to different optimization problems with different properties and requiring different
solution techniques (as described in more detail in Section 3).

We conclude the background section by introducing a simple unconstrained MDP that
will serve as the basis for a running example, to which we will refer throughout the rest of
this paper.

Example 1 Consider a simple delivery domain, depicted in Figure 2, where the agent can
obtain rewards for delivering furniture (action a1) or delivering appliances (action a2).
Delivering appliances produces higher rewards (as shown on the diagram), but it does more
damage to the delivery vehicle. If the agent only delivers furniture, the damage to the vehicle
is negligible, whereas if the agent delivers appliances, the vehicle is guaranteed to function
reliably for the first year (state s1), but after that (state s2) has a 10% probability of failure,
per year. The vehicle can be serviced (action a3), resetting its condition, but at the expense
of lowering profits. If the truck does break (state s3), it can be repaired (action a4), but with
a more significant negative impact on profits. We will assume a discount factor γ = 0.9.

The optimal value function is v∗(s1) ≈ 95.3, v∗(s2) ≈ 94.7, v∗(s3) ≈ 86.7, and the
corresponding optimal occupation measure (assuming a uniform α) is the following (listing
only the non-zero elements): x(s1, a2) ≈ 4.9, x(s2, a3) ≈ 4.8, x(s3, a4) ≈ 0.3. This maps to
the optimal policy that dictates that the agent is to start by delivering appliances (action a2

in state s1), then service the vehicle after the first year (action a3 in state s2), and fix the
vehicle if it ever gets broken (a4 in s3) (the latter has zero probability of happening under
this policy if the agent starts in state s1 or s2). �
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Figure 2: Unconstrained MDP example for a delivery domain. Transition probabilities (p)
and rewards (r) are shown on the diagram. Actions not shown result in transition
to same state with no reward. There is also a noop action a0 that corresponds to
doing nothing; it does not change state and produces zero reward.

3. Agent Model: Resource-Parameterized MDP

In this section, we introduce our model of the decision-making agent, and describe the
single-agent stochastic policy-optimization problem that defines the agent’s preferences over
resources. We show that, for this single-agent problem, formulated as an MDP whose
action set is parameterized on the resources available to the agent, stationary deterministic
policies are optimal, but uniformly optimal policies do not, in general, exist. We also show
that the problem of finding optimal policies is NP-complete. Finally, we present a policy-
optimization algorithm, based on a formulation of the problem as a mixed integer linear
program (MILP).

We model the agent’s resource-parameterized MDP as follows. The agent has a set of
actions that are potentially executable, and each action requires a certain combination of
resources. To capture local constraints on the sets of resources an agent can use, we use
the concept of capacities: each resource has capacity costs associated with it, and each
agent has capacity constraints. For example, a delivery company needs vehicles and loading
equipment (resources to be allocated) to make its deliveries (execute actions). However,
all equipment costs money and requires manpower to operate it (the agent’s local capacity
costs). Therefore, the amount of equipment the agent can acquire and successfully utilize
is constrained by factors such as its budget and limited manpower (agent’s local capacity
bounds). This two-layer model with capacities and resources represented separately might
seem unnecessarily complex (why not fold them together or impose constraints directly
on resources?), but the separation becomes evident and useful in the multiagent model
discussed in Section 4. We emphasize the difference here: resources are the items being
allocated among the agents, while capacities define the inherent limitations of an individual
agent on what combinations of resources it can usefully possess.

The agent’s optimization problem is to choose a subset of the available resources that
does not violate its capacity constraints, such that the best policy feasible under that bundle
of resources yields the highest utility. In other words, the single-agent problem analyzed in
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this section has no constraints on the total resource amounts (they are introduced in the
multiagent problem in the next section), and the constraints are only due to the agent’s
capacity limits. Adding limited resource amounts to the single-agent model would be a very
simple matter, since such constraints can be handled with a simple pruning of the agent’s
action space. Further, note that without capacity constraints, the single-agent problem
would be trivial, as it would always be optimal for the agent to simply take all resources
that are of potential use. However, in the presence of capacity constraints, we face a problem
that is similar to the cyclic dependency in Figure 1: the resource-selection problem requires
knowing the values of all resource bundles, which are defined by the planning problem, and
the planning problem is ill-defined until a resource bundle is chosen. In this section, we
focus on the single-agent problem of selecting an optimal subset of resources that satisfies
the agent’s capacity constraints and assume the agent has no value for acquiring additional
resources that exceed its capacity bounds.

The resources in the model outlined above are non-consumable, i.e., actions require
resources but do not consume them during execution. As mentioned in the Introduction,
in this work we focus only on non-consumable resources, and only briefly outline the case
of consumable resources in Section 6.

We can model the agent’s optimization problem as an n-tuple 〈S,A, p, r,O, ρ, C, κ, κ̂, α〉:

• 〈S,A, p, r〉 are the standard components of an MDP, as defined earlier in Section 2.

• O is the set of resources (e.g., O = {production equipment, vehicle, . . .}). We will use
o ∈ O to refer to a resource type.

• ρ : A × O 7→ R is a function that specifies the resource requirements of all actions;
ρ(a, o) defines how much of resource o ∈ O action a ∈ A needs to be executable (e.g.,
ρ(a, vehicle) = 1 means that action a requires one vehicle).

• C is the set of capacities of our agent (e.g., C = {space, money, manpower, . . .}). We
will use c ∈ C to refer to a capacity type.

• κ : O×C 7→ R is a function that specifies the capacity costs of resources; κ(o, c) defines
how much of capacity c ∈ C a unit of resource o ∈ O requires (e.g., κ(vehicle,money) =
$50000 defines the monetary cost of a vehicle, while κ(vehicle,manpower) = 2 means
that two people are required to operate the vehicle).

• κ̂ : C 7→ R specifies the upper bound on the capacities; κ̂(c) gives the upper bound
on capacity c ∈ C (e.g., κ̂(money) = $1,000,000 defines the budget constraint, and
κ̂(manpower) = 7 specifies the size of the workforce).

• α : S 7→ R is the initial probability distribution; α(s) is the probability that the agent
starts in state s.

Our goal is to find a policy π that yields the highest expected reward, under the con-
ditions that the resource requirements of that policy do not exceed the capacity bounds of
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the agent. In other words, we have to solve the following mathematical program:5

max
π

Uγ(π, α)

subject to:∑
o

κ(o, c) max
a

{
ρ(a, o)H

( ∑
s

π(s, a)
)}

≤ κ̂(c), ∀c ∈ C,
(9)

where H is the Heaviside “step” function of a nonnegative argument, defined as:

H(z) =

{
0 z = 0,

1 z > 0.

The constraint in (9) can be interpreted as follows. The argument of H is nonzero if
the policy π assigns a nonzero probability to using action a in at least one state. Thus,
H(

∑
s π(s, a)) serves as an indicator function that tells us whether the agent plans to use

action a in its policy, and max
{
ρ(a, o)H(

∑
s π(s, a))

}
tells us how much of resource o the

agent needs for its policy. We take a max with respect to a, because the same resource o can
be used by different actions. Therefore, when summed over all resources o, the left-hand
side gives us the total requirements of policy π in terms of capacity c, which has to be no
greater than the bound κ̂(c).

The following example illustrates the single-agent model.

Example 2 Let us augment Example 1 as follows. Suppose the agents needs to obtain a
truck to perform its delivery actions (a1 and a2). The truck is also required by the service
and repair actions (a3 and a4). Further, to deliver appliances, the agent needs to acquire
a forklift, and it needs to hire a mechanic to be able to repair the vehicle (a4). The noop
action a0 requires no resources. This maps to a model with three resources (truck, forklift,
and mechanic): O = {ot, of , om}, and the following action resource costs (listing only the
non-zero ones):

ρ(a1, ot) = 1, ρ(a2, ot) = 1, ρ(a2, of ) = 1, ρ(a3, ot) = 1, ρ(a4, ot) = 1, ρ(a4, om) = 1.

Moreover, suppose that the resources (truck ot, forklift of , or mechanic om) have the
following capacity costs (there is only one capacity type, money: C = {c1})

κ(ot, c1) = 2, κ(of , c1) = 3, κ(om, c1) = 4,

and the agent has a limited budget of κ̂ = 8. It can, therefore acquire no more than two of
the three resources, which means that the optimal solution to the unconstrained problem as
in Example 1 is no longer feasible. �

Let us observe that the MDP-based model of agents’ preferences presented above is
fully general for discrete indivisible resources, i.e., any non-decreasing utility function over
resource bundles can be represented via the resource-constrained MDP model described
above.

5. This formulation assumes a stationary policy, which is supported by the argument in Section 3.1.
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Theorem 1 Consider a finite set of n indivisible resources O = {oi} (i ∈ [1, n]), with
m ∈ N available units of each resource. Then, for any non-decreasing utility function
defined over resource bundles f : [0,m]n 7→ R, there exists a resource-constrained MDP
〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 (with the same resource set O) whose induced utility function over
the resource bundles is the same as f . In other words, for every resource bundle z ∈ [0,m]n,
the value of the optimal policy among those whose resource requirements do not exceed z
(call this set Π(z)) is the same as f(z):

∀f : [0,m]n 7→ R, ∃ 〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 :

∀ z ∈ [0,m]n,Π(z) =
{

π
∣∣∣ max

a

[
ρ(a, oi)H

( ∑
s

π(s, a)
)]
≤ zi

}
=⇒ max

π∈Π(z)
Uγ(π, α) = f(z).

Proof: See Appendix A.1. �
Let us comment that while Theorem 1 establishes the generality of the MDP-based pref-

erence model introduced in this section, the construction used in the proof is of little practi-
cal interest, as it requires an MDP with an exponentially large state or action space. Indeed,
we do not advocate mapping arbitrary unstructured utility functions to exponentially-large
MDPs as a general solution technique. Rather, our contention is that our techniques ap-
ply to domains where utility functions are induced by a stochastic decision-making process
(modeled as an MDP), thus resulting in well-structured preferences over resources that
can be exploited to drastically lower the computational complexity of resource-allocation
algorithms.

3.1 Properties of the Single-Agent Constrained MDP

In this section, we analyze the constrained policy-optimization problem (9). Namely, we
show that stationary deterministic policies are optimal for this problem, meaning that it
is not necessary to consider randomized, or history-dependent policies. However, solutions
to problem (9) are not, in general, uniformly optimal (optimal for any initial distribution).
Furthermore, we show that (9) is NP-hard, unlike the unconstrained MDPs, which can be
solved in polynomial time (Littman, Dean, & Kaelbling, 1995).

We begin by showing optimality of stationary deterministic policies for (9). In the
following, we use ΠHR to refer to the class of history-dependent randomized policies (the
most general policies), and ΠSD ⊂ ΠHR to refer to the class of stationary deterministic
policies.

Theorem 2 Given an MDP M = 〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 with resource and capacity
constraints, if there exists a policy π ∈ ΠHR that is a feasible solution for M , there exists a
stationary deterministic policy πSD ∈ ΠSD that is also feasible, and the expected total reward
of πSD is no less than that of π:

∀ π ∈ ΠHR, ∃ πSD ∈ ΠSD : Uγ(πSD, α) ≥ Uγ(π, α)

Proof: See Appendix A.2. �
The result of Theorem 2 is not at all surprising: intuitively, stationary deterministic

policies are optimal, because history dependence does not increase the utility of the policy,
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and using randomization can only increase resource costs. The latter is true because in-
cluding an action in a policy incurs the same costs in terms of resources regardless of the
probability of executing that action (or the expected number of times the action will be
executed). This is true because we are dealing with non-consumable resources; this prop-
erty does not hold for MDPs with consumable resources (as we discuss in more detail in
Section 6).

We now show that uniformly optimal policies do not always exist for our constrained
problem. This result is well known for another class of constrained MDPs, where constraints
are imposed on the total expected costs that are proportional to the expected number of
times the corresponding actions are executed (discussed earlier in Section 2). MDPs with
such constraints arise, for example, when bounds are imposed on the expected usage of
consumable resources, and as mentioned in Section 2, these problems can be solved using
linear programming by augmenting the dual LP (6) with linear constraints on expected
costs (8). Below, we establish the same result for problems with non-consumable resources
and capacity constraints.

Observation 1 There do not always exist uniformly optimal solutions to (9). In other
words, there exist two constrained MDPs that differ only in their initial conditions: M =
〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 and M ′ = 〈S,A, p, r,O, ρ, C, κ, κ̂, α′〉, such that there is no policy
that is optimal for both problems simultaneously, i.e., for any two policies π and π′ that are
optimal solutions to M and M ′, respectively, the following holds:

Uγ(π, α) > Uγ(π′, α), Uγ(π, α′) < Uγ(π′, α′) (10)

We demonstrate this observation by example.

Example 3 Consider the resource-constrained problem as in Example 2. It is easy to see
that if the initial conditions are α = [1, 0, 0] (the agent starts in state s1 with certainty),
the optimal policy for states s1 and s2 is the same as in Example 1 (s1 → a2 and s2 → a3),
which, given the initial conditions, results in zero probability of reaching state s3 (to which
the noop a0 is assigned). This policy requires the truck and the forklift. However, if the
agent starts in state s3 (α = [0, 0, 1]), the optimal policy is to fix the truck (execute a4 in
s3), and to resort to furniture delivery (do a1 in s1 and assign the noop ao to s2, which is
then never visited). This policy requires the mechanic and the truck. These two policies are
uniquely optimal for the corresponding initial conditions, and are suboptimal for other initial
conditions, which demonstrates that no uniformly optimal policy exists for this example. �

The intuition behind the fact that uniformly optimal policies do not, in general, exist
for constrained MDPs is that since the resource information is not a part of the MDP state
space, and there are constraints imposed on resource usage, the principle of Bellman opti-
mality does not hold (optimal actions for different states cannot be chosen independently).
Given a constrained MDP, it is possible to construct an equivalent unconstrained MDP with
the standard properties of optimal solutions (by folding the resource information into the
state space, and modeling resource constraints via the transition function), but the resulting
state space will be exponential in the number of resources.

We now analyze the computational complexity of the optimization problem (9).
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Theorem 3 The following decision problem is NP-complete. Given an instance of an MDP
〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 with resources and capacity constraints, and a rational number Y ,
does there exist a feasible policy π, whose expected total reward, given α, is no less than Y ?

Proof: See Appendix A.3. �
Note that the above complexity result stems from the limited capacities of the agents

and the fact that we define the resource requirements of a policy as the set of all resources
needed to carry out all actions that have a nonzero probability of being executed. If,
however, we defined constraints on the expected resource requirements, then actions with
low probability of being executed would have lower resource requirements, optimal policies
would be randomized, and the problem would be equivalent to a knapsack with continuously
divisible items, which is solvable in polynomial time via the LP formulation of MDPs with
linear constraints (6,8).

3.2 MILP Solution

Now that we have analyzed the properties of the optimization problem (9), we present a
formulation of (9) as a mixed integer linear program (MILP). Given that we have established
NP-completeness of (9) in the previous section, MILP (also NP-complete) is a reasonable
formulation that allows us to reap the benefits of a vast selection of efficient algorithms and
tools (see, for example, the text by Wolsey, 1998 and references therein).

In this section and in the rest of the paper we will assume that the resource requirements
of actions are binary, i.e., ρ(a, o) = {0, 1}. We make this assumption to simplify the
discussion, and it does not limit the generality of our results. We briefly describe the case
of non-binary resource costs in Appendix B for completeness, but refer to the work by
Dolgov (2006) for a more detailed discussion and examples.

Let us rewrite (9) in the occupation measure coordinates x by adding the constraints
from (9) to the standard LP in occupancy coordinates (6). Noticing that (for states with
nonzero probability of being visited) π(s, a) and x(s, a) are either zero or nonzero simulta-
neously:

H
( ∑

s

π(s, a)
)

= H
( ∑

s

x(s, a)
)
, ∀a ∈ A,

and that, when ρ(a, o) = {0, 1}, the total resource requirements of a policy can be simplified
as follows:

max
a

{
ρ(a, o)H

( ∑
s

x(s, a)
)}

= H
( ∑

a

ρ(a, o)
∑

s

x(s, a)
)
, ∀o ∈ O, (11)

we get the following program in x:

max
x

∑
s

∑
a

x(s, a)r(s, a)

subject to:∑
a

x(σ, a)− γ
∑

s

∑
a

x(s, a)p(σ|s, a) = α(σ), ∀σ ∈ S;∑
o

κ(o, c)H
( ∑

a

ρ(a, o)
∑

s

x(s, a)
)
≤ κ̂(c), ∀c ∈ C;

x(s, a) ≥ 0, ∀s ∈ S, a ∈ A.

(12)
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The challenge in solving this mathematical program is that the constraints are nonlinear
due to the Heaviside function H.

To linearize the Heaviside function, we augment the original optimization variables x

with a set of |O| binary variables δ(o) ∈ {0, 1}, where δ(o) = H
( ∑

a ρ(a, o)
∑

s x(s, a)
)
. In

other words, δ(o) is an indicator variable that shows whether the policy requires resource o.
Using δ(o), we can rewrite the resource constraints in (12) as:∑

o

κ(o, c)δ(o) ≤ κ̂(c), ∀c ∈ C, (13)

which are linear in δ. We can then synchronize δ and x via the following linear inequalities:

1/X
∑

a

ρ(a, o)
∑

s

x(s, a) ≤ δ(o), ∀o ∈ O, (14)

where X ≥ maxo
∑

a ρ(a, o)
∑

s x(s, a) is the normalization constant, for which any up-
per bound on the argument of H() can be used. The bound X is guaranteed to exist
for discounted problems. For example, we can use X = (1 − γ)−1 maxo

∑
a ρ(a, o), since∑

s,a x(s, a) = (1 − γ)−1 for any x that is a valid occupation measure for an MDP with
discount factor γ.6

Putting it all together, the problem (9) of finding optimal policies under resource con-
straints can be formulated as the following MILP:

max
x,δ

∑
s

∑
a

x(s, a)r(s, a)

subject to:∑
a

x(σ, a)− γ
∑

s

∑
a

x(s, a)p(σ|s, a) = α(σ), ∀σ ∈ S;∑
o

κ(o, c)δ(o) ≤ κ̂(c), ∀c ∈ C;

1/X
∑

a

ρ(a, o)
∑

s

x(s, a) ≤ δ(o), ∀o ∈ O;

x(s, a) ≥ 0, ∀s ∈ S, a ∈ A;
δ(o) ∈ {0, 1}, ∀o ∈ O.

(15)

We illustrate the MILP construction with an example.

Example 4 Let us formulate the MILP for the constrained problem from Example 3. Re-
call that in that problem there are three resources O = {ot, of , om} (truck, forklift, and
mechanic), one capacity type C = {c1} (money), and actions have the following resource
requirements (again, listing only the nonzero ones):

ρ(a1, ot) = 1, ρ(a2, ot) = 1, ρ(a2, of ) = 1, ρ(a3, ot) = 1, ρ(a4, ot) = 1, ρ(a4, om) = 1

6. Instead of using a single X for all resources, a different X(o) ≥
P

a ρ(a, o)
P

s x(s, a) can be used for
every resource, leading to more uniform normalization and potentially better numerical stability of the
MILP solver.
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The resources have the following capacity costs:

κ(ot, c1) = 2, κ(of , c1) = 3, κ(om, c1) = 4,

and the agent has a limited budget, i.e., a capacity bound, κ̂(c1) = 8.
To compute the optimal policy for an arbitrary α, we can formulate the problem as

an MILP as described above. Using binary variables δ(o) = {δ(ot), δ(of ), δ(om)}, we can
express the constraint on capacity cost as the following inequality:

2δ(ot) + 3δ(of ) + 4δ(om) ≤ 8,

For the constraints that synchronize the occupation measure x and the binary indicators δ(o),
we can set X = (1 − γ)−1 maxo

∑
a ρ(a, o) = 4(1 − γ)−1. Combining this with other

constraints from (15), we get an MILP with 12 continuous and 4 binary variables, and
|S| + |C| + |O| = 3 + 3 + 1 = 7 constraints (not counting the last two sets of range con-
straints). �

As mentioned earlier, even though solving such programs is, in general, an NP-complete
task, there is a wide variety of very efficient algorithms and tools for doing so. Therefore,
one of the benefits of formulating the optimization problem (9) as an MILP is that it allows
us to make use of the highly efficient existing tools.

4. Multiagent Resource Allocation

We now consider the multiagent problem of resource allocation between several agents,
where the resource preferences of the agents are defined by the constrained MDP model
described in the previous section. We reiterate our main assumptions about the problem:

1. Weak coupling. We assume that agents are weakly-coupled (Meuleau et al., 1998),
i.e., they only interact through the shared resources, and once the resources are allo-
cated, the agents’ transitions and rewards are independent. This assumption is critical
to our results.7

2. One-shot resource allocation. The resources are distributed once before the agents
start executing their MDPs. There is no reallocation of resources during the MDP
phase. This assumption is critical to our results; allowing reallocation of resources
would violate the weak-coupling assumption.

3. Initial central control over the resources. We assume that at the beginning of
the resource-allocation phase, the resources are controlled by a single authority. This
is the standard sell-auction setting. For problems where the resources are distributed

7. If agents are cooperative, the assumption about weak coupling can be relaxed (at the expense of an
increase in complexity), and the same MILP-based algorithm for simultaneously performing policy op-
timization and resource allocation can be applied if we consider the joint state spaces of the interacting
agents. For self-interested agents, a violation of the weakly-coupled assumption would mean that the
agents would be playing a Markov game (Shapley, 1953) once the resources are allocated, which would
significantly complicate the strategic analysis of the agents’ bidding strategies during the initial resource
allocation.
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among the agents to begin with, we face the problem of designing a computationally-
efficient combinatorial exchange (Parkes, Kalagnanam, & Eso, 2001), which is a more
complicated problem that is outside the scope of this work. However, many of the
ideas presented in this paper could potentially be applicable to that domain as well.

4. Binary resource costs. As before, we assume that agents’ resource costs are binary.
This assumption is not limiting. The case of non-binary resources is discussed in
Appendix B.

Formally, the input to the resource-allocation problem consists of the following:

• M is the set of agents; we will use m ∈M to refer to an agent.

• {〈S,A, pm, rm, αm, ρm, κ̂m〉} is the collection of weakly-coupled single-agent MDPs,
as defined in the single-agent model in Section 3. For simplicity, but without loss of
generality, we assume that all agents have the same state and action spaces S and A,
but each has its own transition and reward functions pm and rm, initial conditions αm,
as well as its own resource requirements ρm : A × O 7→ {0, 1} and capacity bounds
κ̂m : C 7→ R. We also assume that all agents have the same discount factor γ, but this
assumption can be trivially relaxed.

• O and C are the sets of resources and capacities, defined exactly as in the single-agent
model in Section 3.

• κ : O × C 7→ R specifies the capacity costs of the resources, defined exactly as in the
single-agent model in Section 3.

• ρ̂ : O 7→ R specifies the upper bound on the amounts of the shared resources (this
defines the additional bound for the multiagent problem).

Given the above, our goal is to design a mechanism for allocating the resources to the
agents in an economically efficient way, i.e., in a way that maximizes the social welfare of
the agents (one of the most often-used criteria in mechanism design). We would also like
the mechanism to be efficient from the computational standpoint.

Example 5 Suppose that there are two delivery agents. The MDP and capacity constraints
of the first agent are exactly as they were defined previously in Examples 1 and 2. The MDP
of the second agent is almost the same as that of the first agent, with the only difference
that it gets a slightly higher reward for delivering appliances: r2(s1, a2) = 12 (whereas
r1(s1, a2) = 10 for the first agent). Suppose there are two trucks, one forklift, and one
mechanic that are shared by the two agents. These bounds are specified as follows:

ρ̂(ot) = 2, ρ̂(of ) = 1, ρ̂(om) = 1.

Then the problem is to decide which agent should get the forklift, and which should get the
mechanic (trucks are plentiful in this example). �
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4.1 Combinatorial Auctions

As previously mentioned, the problem of finding an optimal resource allocation among
self-interested agents that have complex valuations over combinations of resources arises
in many different domains (e.g., Ferguson, Nikolaou, Sairamesh, & Yemini, 1996; Wellman
et al., 2001) and is often called a combinatorial allocation problem. A natural and widely
used mechanism for solving such problems is a combinatorial auction (CA) (e.g., de Vries
& Vohra, 2003). In a CA, each agent submits a set of bids for resource bundles to the
auctioneer, who then decides what resources each agent will get and at what price.

Consider the problem of allocating among a set of agents M a set of indivisible re-
sources O, where the total quantity of resource o ∈ O is bounded by ρ̂(o). Our earlier
simplifying assumption that actions’ resource requirements are binary implies that agents
will only be interested in bundles that contain no more than one unit of a particular resource.

In a combinatorial auction, each agent m ∈M submits a bid bm
w (specifying how much

the agent is willing to pay) for every bundle w ∈ Wm that has some value um
w > 0. In some

cases, it is possible to express such bids without enumerating all bundles (for example, using
an XOR bidding language (Sandholm, 1999) where it is necessary to only consider bundles
with strictly positive value, such that no subset of a bundle has the same value). Such
techniques often reduce the complexity of the resource-allocation problem, but do not, in
general, avoid the exponential blow up in the number of bids. Therefore, below we describe
the simplest combinatorial auction with flat bids, but it should be noted that many concise
bidding languages exist that in special cases can reduce the number of explicit bids.

After collecting all the bids, the auctioneer solves the winner-determination problem
(WDP), a solution to which prescribes how the resources should be distributed among the
agents and at what prices. If agent m wins bundle w at price qm

w , its utility is um
w − qm

w

(we are assuming risk-neutral agents with quasi-linear utility functions). Thus, the optimal
bidding strategy of an agent depends on how the auctioneer allocates the resources and sets
prices.

Vickrey-Clarke-Groves (VCG) mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973)
are a widely used family of mechanisms that have certain very attractive properties (dis-
cussed in more detail below). An instantiation of a VCG mechanism in the context of
combinatorial auctions is the Generalized Vickrey Auction (GVA) (MacKie-Mason & Var-
ian, 1994), which allocates resources and sets prices as follows. Given the bids bm

w of all
agents, the auctioneer chooses an allocation that maximizes the sum of agents’ bids. This
problem is NP-complete (Rothkopf et al., 1998) and can be expressed as the following in-
teger program, where the optimization variables zm

w = {0, 1} are indicator variables that
show whether bundle w is assigned to agent m, and nwo = {0, 1} specifies whether bundle w
contains o:8

8. There are other related algorithms for solving the WDP (e.g., Sandholm, 2002), but we will use the
integer program (16) as a representative formulation for the class of algorithms that perform a search in
the space of binary decisions on resource bundles.
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max
z

∑
m∈M

∑
w∈Wm

zm
w bm

w

subject to:∑
w∈Wm

zm
w ≤ 1, ∀m ∈M;∑

m∈M

∑
w∈Wm

zm
w nwo ≤ ρ̂(o), ∀o ∈ O.

(16)

The first constraint in (16) says that no agent can receive more than one bundle, while the
second constraint ensures that the total amount of resource o assigned to the agents does
not exceed the total amount available. Notice that MILP (16) performs the summation over
exponentially large sets of bundles w ∈ Wm. As outlined above, in an auction with XOR
bidding, these sets would typically be smaller, but, in general, still exponentially large.

A GVA assigns resources according to the optimal solution z̃ to (16) and sets the payment
for agent m to:

qm
w = V ∗−m −

∑
m′ 6=m

z̃m′
w bm′

w , (17)

where V ∗−m is the value of (16) if m were to not participate in the auction (the optimal
value if m does not submit any bids), and the second term is the sum of other agents’ bids
in the solution z̃ to the WDP with m participating.

A GVA has a number of nice properties. It is strategy-proof, meaning that the dominant
strategy of every agent is to bid its true value for every bundle: bm

w = um
w . The auction

is economically efficient, meaning that it allocates the resources to maximize the social
welfare of the agents (because, when agents bid their true values, the objective function
of (16) becomes the social welfare). Finally, a GVA satisfies the participation constraint,
meaning that no agent decreases its utility by participating in the auction.

A straightforward way to implement a GVA for our MDP-based problem is the following.
Let each agent m ∈ M enumerate all resource bundles Wm that satisfy its local capacity
constraints defined by κ̂m(c) (this is sufficient because our MDP model implies free disposal
of resources for the agents, and we make the same assumption about the auctioneer). For
each bundle w ∈ Wm, agent m would determine the feasible action set A(w) and formulate
an MDP Λm(w) = 〈S,A(w), pm(w), rm(w), αm〉, where pm(w) and rm(w) are the transition
and reward functions defined on the pruned action space A(w). Every agent would then
solve each Λm(w) corresponding to a feasible bundle to find the optimal policy π̃m(w), whose
expected discounted reward would define the value of bundle w: um

w = Um
γ (π̃m(w), αm).

This mechanism suffers from two major complexity problems. First, the agents have
to enumerate an exponential number of resource bundles and compute the value of each
by solving the corresponding (possibly large) MDP. Second, the auctioneer has to solve
an NP-complete winner-determination problem on exponentially large input. The following
sections are devoted to tackling these complexity problems.

Example 6 Consider the two-agent problem described in Example 5, where two trucks, one
forklift, and the services of one mechanic are being auctioned off. Using the straightforward
version of the combinatorial auction outlined above, each agent would have to consider

522



Resource Allocation Among Agents with MDP-Induced Preferences

2|O| = 23 = 8 possible resource bundles (since resource requirements of both agents are
binary, neither agent is going to bid on a bundle that contains two trucks). For every
resource bundle, each agent will have to formulate and solve the corresponding MDP to
compute the utility of the bundle.

For example, if we assume that both agents start in state s1 (different initial conditions
would result in different expected rewards, and thus different utility functions), the value of
the null resource bundle to both agents would be 0 (since the only action they would be able
to execute is the noop a0). On the other hand, the value of bundle [ot, of , om] = [1, 1, 1] that
contains all the resources would be 95.3 to the first agent and 112.4 to the second one. The
value of bundle [1, 1, 0] to each agent would be the same as the value of [1, 1, 1] (since their
optimal policies for the initial conditions that put them in s1 do not require the mechanic).

Once the agents submit their bids to the auctioneer, it will have to solve the WDP via
the integer program (16) with |M|2|O| = 2(2)3 = 16 binary variables. Given the above, the
optimal way to allocate the resources would be to assign a truck to each of the agents, the
forklift to the second agent, and the mechanic to either (or neither) of the two. Thus, the
agents would receive bundles [1, 0, 0] and [1, 1, 0], respectively, resulting in social welfare of
50 + 112.4 = 162.4. However, if at least one of the agents had a non-zero probability of
starting in state s3, the value of the resource bundles involving the mechanic would change
drastically, as would the optimal resource allocation and its social value. �

4.2 Avoiding Bundle Enumeration

To avoid enumerating all resource bundles that have non-zero value to an agent, two things
are required: i) the mechanism has to support a concise bidding language that allows
the agent to express its preferences to the auctioneer in a compact manner, and ii) the
agents have to be able to find a good representation of their preferences in that language. A
simple way to achieve both in our model is to create an auction where the agents submit the
specifications of their resource-parameterized MDPs to the auctioneer as bids: the language
is compact and, given our assumption that each agent can formulate its planning problem
as an MDP, this does not require additional computation for the agents. However, this
only changes the communication protocol between the agents and the auctioneer, similarly
to other concise bidding languages (Sandholm, 1999; Nisan, 2000; Boutilier & Hoos, 2001;
Boutilier, 2002). As such, it simply moves the burden of solving the valuation problem from
the agents to the auctioneer, which by itself does not lead to any gains in computational
efficiency. Such a mechanism also has implications on information privacy issues, because
the agents have to reveal their local MDPs to the auctioneer (which they might not want
to do). Nevertheless, we can build on this idea to increase the efficiency of solving both the
valuation and winner-determination problems and do so while keeping most of the agents’
MDP information private. We address ways of maintaining information privacy in the next
section, and for the moment focus on improving the computational complexity of the agents’
valuation and the auctioneer’s winner-determination problems.

The question we pose in this section is as follows. Given that the bid of each agent con-
sists of its MDP, its resource information and its capacity bounds 〈S,A, pm, rm, αm, ρm, κ̂m〉,
can the auctioneer formulate and solve the winner-determination problem more efficiently
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than by simply enumerating each agent’s resource bundles and solving the standard integer
program (16) with an exponential number of binary variables?

Therefore, the goal of the auctioneer is to find a joint policy (a collection of single-agent
policies under our weak-coupling assumption) that maximizes the sum of the expected total
discounted rewards for all agents, under the conditions that: i) no agent m is assigned a set
of resources that violates its capacity bound κ̂m (i.e., no agent is assigned more resources
than it can carry), and ii) the total amounts of resources assigned to all agents do not exceed
the global resource bounds ρ̂(o) (i.e., we cannot allocate to the agents more resources than
are available). This problem can be expressed as the following mathematical program:

max
π

∑
m

Um
γ (πm, αm)

subject to:∑
o

κ(o, c)H
(
ρm(a, o)

∑
s

πm(s, a)
)
≤ κ̂m(c), ∀c ∈ C,m ∈M;∑

m

ρm(a, o)H
( ∑

s

πm(s, a)
)
≤ ρ̂(o), ∀o ∈ O.

(18)

Obviously, the decision version of this problem is NP-complete, as it subsumes the single-
agent MDP with capacity constraints, NP-completeness of which was shown in Section 3.1.
Moreover, the problem remains NP-complete even in the absence of single-agent capacity
constraints. Indeed, the global constraint on the amounts of the shared resources is sufficient
to make the problem NP-complete, which can be shown with a straightforward reduction
from KNAPSACK, similar to the one used in the single-agent case in Section 3.1.

We can linearize (18) similarly to the single-agent problem from Section 3.2, yielding
the following MILP, which is simply a multiagent version of (15) (recall the assumption of
this section that resource requirements are binary):

max
x,δ

∑
m

∑
s

∑
a

xm(s, a)rm(s, a)

subject to:∑
a

xm(σ, a)− γ
∑

s

∑
a

xm(s, a)pm(σ|s, a) = αm(σ), ∀σ ∈ S,m ∈M;∑
o

κ(o, c)δm(o) ≤ κ̂m(c), ∀c ∈ C,m ∈M;∑
m

δm(o) ≤ ρ̂(o), ∀o ∈ O;

1/X
∑

a

ρm(a, o)
∑

s

xm(s, a) ≤ δm(o), ∀o ∈ O,m ∈M;

xm(s, a) ≥ 0, ∀s ∈ S, a ∈ A,m ∈M;
δm(o) ∈ {0, 1}, ∀o ∈ O,m ∈M,

(19)

where X ≥ maxo,m
∑

a ρ(a, o)
∑

s xm(s, a) is an upper bound on the argument of H(·),
used for normalization. As in the single-agent case, this bound is guaranteed to exist for
discounted MDPs and is easy to obtain.
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The MILP (19) allows the auctioneer to solve the WDP without having to enumerate
the possible resource bundles. As compared to the standard WDP formulation (16), which
has on the order of |M|2|O| binary variables, (19) has only |M||O| binary variables. This
exponential reduction is attained by exploiting the knowledge of the agents’ MDP-based
valuations and simultaneously solving the policy-optimization and resource-allocation prob-
lems. Given that the worst-case solution time for MILPs is exponential in the number of
integer variables, this reduction has a significant impact on the worst-case performance of
the mechanism. The average-case running time is also reduced drastically, as demonstrated
by our experiments, presented in Section 5.

Example 7 If we apply the mechanism discussed above to our running example as an al-
ternative to the straightforward combinatorial auction presented in Example 6, the winner-
determination MILP (19) will look as follows. It will have |M||S||A| = (2)(3)(5) = 30 con-
tinuous occupation-measure variables xm, and |M||O| = (2)(3) = 6 binary variables δm(o).
It will have |M||S| = (2)(3) = 6 conservation-of-flow constraints that involve continuous
variables only, as well as |M||C|+ |O|+ |M||O| = (2)(1) + 3 + (2)(3) = 9 constraints that
involve binary variables.

The capacity constraints for the agents will be exactly as in the single-agent case described
in Example 4, and the global resource constraints will be:

δ1(ot) + δ2(ot) ≤ 2, δ1(of ) + δ2(of ) ≤ 1, δ1(om) + δ2(om) ≤ 1.

Notice that in this example there is one binary decision variable per resource per agent
(yielding 6 such variables for this simple problem). This is exponentially fewer than the
number of binary variables in the straightforward CA formulation of Example 6, which
requires one binary variable per resource bundle per agent (yielding 16 such variables for
this problem). Given that MILPs are NP-complete in the number of integer variables, this
reduction from 16 to 6 variables is noticeable even in a small problem like this one and can
lead to drastic speedup for larger domains. �

The mechanism described above is an instantiation of the GVA, so by the well-known
properties of VCG mechanisms, this auction is strategy-proof (the agents have no incentive
to lie to the auctioneer about their MDPs), it attains the socially optimal resource allocation,
and no agent decreases its utility by participating in the auction.

To sum up the results of this section: by having the agents submit their MDP informa-
tion to the auctioneer instead of their valuations over resource bundles, we have essentially
removed all computational burden from the agents and at the same time significantly sim-
plified the auctioneer’s winner-determination problem (the number of integer variables in
the WDP is reduced exponentially).

4.3 Distributing the Winner-Determination Problem

Unlike the straightforward combinatorial auction implementation discussed earlier in Sec-
tion 4.1, where the agents shared some computational burden with the auctioneer, in the
mechanism from Section 4.2, the agents submit their information to the auctioneer and
then just idle while waiting for a solution. This suggests further potential improvements in
computational efficiency. Indeed, given the complexity of MILPs, it would be beneficial to
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exploit the computational power of the agents to offload some of the computation from the
auctioneer back to the agents (we assume that agents have no cost for “helping out” and
would prefer for the outcome to be computed faster).9 Thus, we would like to distribute
the computation of the winner-determination problem (19), the common objective in dis-
tributed algorithmic mechanism design (Feigenbaum & Shenker, 2002; Parkes & Shneidman,
2004).10

For concreteness, we will base the algorithm of this section on the branch and bound
method for solving MILPs (Wolsey, 1998), but exactly the same techniques will also work
for other MILP algorithms (e.g., cutting planes) that perform a search in the space of LP
relaxations of the MILP. In branch and bound for MILPs with binary variables, LP relax-
ations are created by choosing a binary variable and setting it to either 0 or 1, and relaxing
the integrality constraints of other binary variables. If a solution to an LP relaxation hap-
pens to be integer-valued, it provides a lower bound on the value of the global solution. A
non-integer solution provides an upper bound for the current subproblem, which (combined
with other lower bounds) is used to prune the search space.

Thus, a simple way for the auctioneer to distribute the branch and bound algorithm is
to simply farm out LP relaxations to other agents and ask them to solve the LPs. However,
it is easy to see that this mechanism is not strategy-proof. Indeed, an agent that is tasked
with performing some computation for determining the optimal resource allocation or the
associated payments could benefit from lying about the outcome of its computation to
the auctioneer. This is a common phenomenon in distributed mechanism implementations:
whenever some WDP calculations are offloaded to an agent participating in the auction, the
agent might be able to benefit from sabotaging the computation. There are several methods
to ensuring the strategy-proofness of a distributed implementation. The approach best
suited for our problem is based on the idea of redundant computation (Parkes & Shneidman,
2004),11 where multiple agents are asked to do the same task and any disagreement is
carefully punished to discourage lying. In the rest of this section, we demonstrate that this
is very easy to implement in our case.

The basic idea is very simple: let the auctioneer distribute LP relaxations to the agents,
but check their solutions and re-solve the problems if the agents return incorrect solutions
(this would make truthful computation a weakly-dominant strategy for the agents, and
a nonzero punishment can be used to achieve strong dominance). This strategy of the
auctioneer removes the incentive for the agents to lie and yields exactly the same solution
as the centralized algorithm. However, in order for this to be beneficial, the complexity of
checking a solution must be significantly lower than the complexity of solving the problem.
Fortunately, this is true for LPs.

Suppose the auctioneer has to solve the following LP, which can be written in two
equivalent ways (let us refer to the one on the left as the primal, and to the one on the right

9. As observed by Parkes and Shneidman (2004), this assumption is a bit controversial, since a desire for
efficient computation implies nonzero cost for computation, while the agents’ cost for “helping out” is
not modeled. It is, nonetheless, a common assumption in distributed mechanism implementations.

10. We describe one simple way of distributing the mechanism, others are also possible.
11. Redundant computation is discussed by Parkes and Shneidman (2004) in the context of ex post Nash

equilibria, whereas we are interested in dominant strategies, but the high-level idea is very similar.
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as the dual):
minαTv

subject to:

ATv ≥ r.

max rTx

subject to:
Ax = α; x ≥ 0.

(20)

By the strong duality property, if the primal LP has a solution v∗, then the dual also has a
solution x∗, and αTv∗ = rTx∗. Furthermore, given a solution to the primal LP, it is easy to
compute a solution to the dual: by complementary slackness, v∗T = rT B−1 and x∗ = B−1α,
where B is a square invertible matrix composed of columns of A that correspond to basic
variables of the solution.

These well-known properties can be used by the auctioneer to quickly check optimality
of solutions returned by the agents. Suppose that an agent returns v as a solution to the
primal LP. The auctioneer can calculate the dual solution vT = rT B−1 and check whether
rTx = αTv. Thus, the most expensive operation that the auctioneer has to perform is
the inversion of B, which can be done in sub-cubic time. As a matter of fact, from the
implementation perspective, it would be more efficient to ask the agents to return both the
primal and the dual solutions, since many popular algorithms compute both in the process
of solving LPs.

Thus, we have provided a simple method that allows us to effectively distribute the
winner-determination problem, while maintaining strategy-proofness of the mechanism and
with a negligible computation overhead for the auctioneer.

4.4 Preserving Information Privacy

The mechanism that we have discussed so far has the drawback that it requires agents
to reveal complete information about their MDPs to the auctioneer. The problem is also
exacerbated in the distributed WDP algorithm from the previous section, since not only
does each agent reveal its MDP information to the auctioneer, but that information is then
also spread to other agents via the LP relaxations of the global MILP. We now show how
to alleviate this problem.

Let us note that, in saying that agents prefer not to reveal their local information, we
are implicitly assuming that there is an external factor that affects agents’ utilities that is
not captured in the agents’ MDPs. A sensible way to measure the value of information is by
how it changes one’s decision-making process and its outcomes. Since this effect is not part
of our model (in fact, it contradicts our weak-coupling assumption), we cannot in a domain-
independent manner define what constitutes “useful” information, and how bad it is for an
agent to reveal too much about its MDP. Modeling such effects and carefully analyzing
them is an interesting research task, but it is outside the scope of this paper. Thus, for the
purposes of this section, we will be content with a mechanism that hides enough information
to make it impossible for the auctioneer or an agent to uniquely determine the transition
or reward function of any other agent (in fact, information revealed to any agent will map
to infinitely many MDPs of other agents).12 Many such transformations are possible; we
present just one to illustrate the concept.

12. A more stringent condition would require that agents’ preferences over resource bundles are not revealed
(Parkes, 2001), but we set a lower bar here.
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The main idea of our approach is to modify the previous mechanism so that the agents
submit their private information to the auctioneer in an “encrypted” form that allows the
auctioneer to solve the winner-determination problem, but does not allow it to infer the
agents’ original MDPs.

First, note that, instead of passing an MDP to the auctioneer, each agent can submit
an equivalent LP (6). So, the question becomes: can the agent transform its LP in such a
way that the auctioneer will be able to solve it, but will not be able to infer the transition
and reward functions of the originating MDP? In other words, the problem reduces to the
following. Given an LP L1 (created from an MDP Λ = 〈S,A, p, r, α〉 via (6)), we need to
find a transformation L1 → L2 such that a solution to the transformed LP L2 will uniquely
map to a solution to the original LP L1, but L2 will not reveal the transition or the reward
functions of the original MDP (p or r). We show that a simple change of variables suffices.

Suppose agent m1 has an MDP-originated LP and is going to ask agent m2 to solve it. In
order to maintain the linearity of the problem (to keep it simple for m2 to solve), m1 should
limit itself to linear transformations. Consider a linear, invertible transformation of the
primal coordinates u = Fv, and a linear, invertible transformation of the dual coordinates
y = Dx. Then, the LP from (20) will be transformed (by applying F , switching to the
dual, and then applying D) to an equivalent LP in the new coordinates y:

max rT D−1y

subject to:

(F−1)T AD−1y = (F−1)T α;

D−1y ≥ 0.

(21)

The value of the optimal solution to (21) will be the same as the value of the optimal solution
to (20), and given an optimal solution y∗ to (21), it is easy to compute the solution to the
original: x∗ = D−1y∗. Indeed, from the perspective of the dual, the primal transformation F
is equivalent to a linear transformation of the dual equality constraints Ax = α, which (given
that F is non-singular) has no effect on the solution or the objective function. Furthermore,
the dual transformation D is equivalent to a change of variables that modifies the solution
but not the value of the objective function.

However, a problem with the above transformations is that it gives away D−1. Indeed,
agent m2 will be able to simply read (up to a set of multiplicative constants) the trans-
formation off the constraints D−1y ≥ 0. Therefore, only diagonal matrices with positive
coefficients (which are equivalent to stretching the coordinate system) are not trivially de-
duced by m2, since they also map to y ≥ 0. Choosing a negative multiplier for some xi

(inverting the axis) is pointless, because that flips the non-negativity constraints to yi ≤ 0,
immediately revealing the sign to m2.

Let us demonstrate that, given any MDP Λ and the corresponding LP L1, we can
choose D and F such that it will be impossible for m2 to determine the coefficients of L1

(or equivalently the original transition and reward functions p and r). When agent m2

receives L2 (as in (21)), all it knows is that L2 was created from an MDP, so the columns
of the constraint matrix of the original LP L1 must sum to a constant:∑

j

Aji = 1− γ
∑

σ

p(σ|s, a) = 1− γ. (22)
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Figure 3: Preserving privacy example. Two different MDPs that can lead to the same LP
constraint matrix.

This gives m2 a system of |S| nonlinear equations for the diagonal D and arbitrary F ,
which have a total of |S||A|+ |S|2 free parameters. For everything but the most degenerate
cases (which can be easily handled by an appropriate choice of D and F ), these equations
are hugely under-constrained and will have infinitely many solutions. As a matter of fact,
by sacrificing |S| of the free parameters, m1 can choose D and F in such a way that the
columns of constraints in L2 will also sum to a constant γ′ ∈ (0, 1), which would have the
effect of transforming L1 to an L2 that corresponds to another valid MDP Λ2. Therefore,
given an L2, there are infinitely many original MDPs Λ and transformations D and F that
map to the same LP L2.

We also have to consider the connection of resource and capacity costs to agents’ oc-
cupation measures in the global WDP (19). There are two things that the auctioneer has
to be able to do: i) determine the value of each agent’s policy (to be able to maximize
the social welfare), and ii) determine the resource requirements of the policies (to check
the resource constraints). So, the question is, how does our transformation affect these?
As noted earlier, the transformation does not change the objective function, so the first
requirement holds. On the other hand, D does change the occupation measure xm(s, a) by
arbitrary multipliers. However, a multiplicative factor of xm(s, a) has no effect on the usage
of non-consumable resources, as it only matters whether the corresponding xm(s, a) is zero
or not (step function H nullifies the scaling effect). Thus, the second condition also holds.

Example 8 Consider the two-state MDP depicted in Figure 3a that represents the decision-
making problem of a sales company, with the two states corresponding to possible market
conditions, and the two actions — to two possible sales strategies. Market conditions in state
s1 are much more favorable than in state s2 (the rewards for both actions are higher). The
transitions between the two states correspond to probabilities of market conditions changing
and the rewards reflect the expected profitability in these two states. Obtaining such numbers
in a realistic scenario would require performing costly and time-consuming research, and the
company might not want to make this information public.

Therefore, if the company were to participate in the resource-allocation mechanism de-
scribed above, it would want to encrypt its MDP before submitting it to the auctioneer.
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The MDP has the following reward function

r = (1, 19.622, 0.063, 0.084)T , (23)

and the following transition function:

p(a1) =
(

1 0
0.5 0.5

)
, p(a2) =

(
0.986 0.014
0.5 0.5

)
. (24)

Using γ = 0.8, this corresponds to the following conservation of flow constraint matrix:

A =
(

0.2 0.212 −0.4 −0.4
0 −0.012 0.6 0.6

)
. (25)

Before submitting its LP to the auctioneer, the agent applies the following transformations:

D = diag(1, 0.102, 47.619, 47.619), F =
(

2 0
−0.084 0.126

)
, (26)

yielding the following new constraint matrix:

A′ = (F−1)T AD−1 =
(

0.1 1 0 0
0 −0.9 0.1 0.1

)
. (27)

However, the above constraint matrix A′ corresponds to a non-transformed conservation
of flow constraint for a different MDP (shown in Figure 3b) with γ = 0.9, the following
reward function:

r = (1, 2, 3, 4)T , (28)

and the following transition function:

p(a1) =
(

1 0
0 1

)
, p(a2) =

(
0 1
0 1

)
. (29)

Therefore, when the auctioneer receives the constraint matrix A′, it has no way of know-
ing whether the agent has an MDP with transition function (29) that was transformed
using (26) or the MDP with transition function (24) that was not transformed. Notice that
the dynamics of the two MDPs vary significantly: both in transition probabilities and state
connectivity. The second MDP does not reveal any information about the originating MDP
and the corresponding market dynamics. �

To sum up, we can, to a large extent, maintain information privacy in our mechanism by
allowing agents to apply linear transformations to their original LPs. The information that
is revealed by our mechanism consists of agents’ resource costs ρm(a, o), capacity bounds
κ̂m(c), and the sizes of their state and action spaces (the latter can be hidden by adding
dummy states and actions to the MDP).

The revealed information can be used to infer agents’ preferences and resource require-
ments. Further, numeric policies are revealed, but the lack of information about transition
and reward functions renders this information worthless (as just illustrated in Example 8,
there could be multiple originating MDPs with very different properties).
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5. Experimental Results

In this section we present an empirical analysis of the computational complexity of the
resource-allocation mechanism described in Section 4. We report results on the compu-
tational complexity of the mechanism from Section 4.2, where the agents submit their
MDPs to the auctioneer, who then simultaneously solves the resource-allocation and policy-
optimization problems. As far as the additional speedup achieved by distributing the WDP,
as described in Section 4.3, we do not report empirical results, since it is well-established
in the parallel programming literature that parallel versions of branch-and-bound MILP
solvers consistently achieve linear speedup (Eckstein, Phillips, & Hart, 2000). This is due
to the fact that branch-and-bound algorithms require very little inter-process communica-
tion.

For our experiments, we implemented a multiagent delivery problem, based on the
multiagent rover domain (Dolgov & Durfee, 2004). In this problem, agents operate in a
stochastic grid world with delivery locations randomly placed throughout the grid. Each
delivery task requires a set of resources, and there are limited quantities of the resources.
There are random delivery locations on the grid, and each location has a set of deliveries that
it accepts. Each resource has some size requirements (capacity cost), and each delivery agent
has bounded space to hold the resources (limited capacity). The agents participate in an
auction where they bid on delivery resources. In this setting, the value of a resource depends
on what other resources the agent acquires and what other deliveries it can make. Given a
bundle of resources, an agent’s policy optimization problem is to find the optimal delivery
plan. The exact parameters used in our experiments are not critical for the trends seen in
the results presented below, but for the sake of reproducibility the domain is described in
detail in Appendix C.13 All of the resource costs in the experiments presented below are
binary.

Computational complexity of constrained optimization problems can vary greatly as
constraints are tightened or relaxed. Therefore, as our first step in the analysis of empirical
computational complexity of our mechanism, we investigate how its running time depends
on the capacity constraints of each agent and on the bounds on the total amounts of
resources shared by the agents. As is common with other types of constrained optimization
or constraint-satisfaction problems, it is natural to expect that the WDP MILP will be
easy to solve when the problem is over- or under-constrained in either the capacity or the
resource bounds. To empirically verify this, we varied local capacity constraint levels from 0
(meaning agents cannot use any resources) to 1 (meaning each agent has the capacity to
use enough resources to execute its optimal unconstrained policy), as well as the global
constraint levels for which 0 meant that no resources were available to the agents, and 1
meant that there were enough resources to assign to each agent its most desired resource
bundle. In all of our experiments, the part of the MILP solver was played by CPLEX 8.1
on a Pentium-4 machine with 2GB of RAM (RAM was not a bottleneck due to the use of
sparse matrix representations). A typical running-time profile is shown in Figure 4. The
problem is very easy when it is over-constrained, becomes more difficult as the constraints
are relaxed and then abruptly becomes easy again when capacity and resource levels start
to approach utopia.

13. We also investigated other, randomly generated domains, and the results were qualitatively the same.
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Figure 4: Running time for MDP-based winner-determination MILP (19) for different lev-
els of global (ρ̂) and local (κ̂m) constraints. The constraint levels are fractions
of utopian levels that are needed to implement optimal unconstrained policies.
Problems involved 10 agents, each operating on a 5-by-5 grid, with 10 shared
resource types. Each data point shown is an average of ten runs over randomly-
generated problems.

In all of the following experiments we aim to avoid the easy regions of constraint levels.
Therefore, given the complexity profiles, we set the constraint levels to 0.5 for both local
capacity and global resource bounds. We also set the discount factor to γ = 0.95. This
value was chosen arbitrarily, because our investigations into the effect of the value of γ on
the running time of the MILP revealed no significant trends.

We begin by comparing the performance of our MDP-based auction (Section 4.2) to the
performance of the straightforward CA with flat preferences (as described in Section 4.1).
The results are summarized in Figure 5, which compares the time it takes to solve the
standard winner-determination problem on the space of all resource bundles (16) to the
time needed to solve the combined MDP-WDP problem (19) used in our mechanism, as
the number of resources is increased (with 5 agents, on a 5-by-5 grid). Despite the fact
that both algorithms have exponential worst-case running time, the number of integer
variables in (16) is exponentially larger than in our MILP (19), the effect of which is clearly
demonstrated in Figure 5. Furthermore, this comparison gives an extremely optimistic
view of the performance of the standard CA, as it does not take into account the additional
complexity of the valuation problem, which requires formulating and solving a very large
number of MDPs (one per resource bundle). On the other hand, the latter is embedded into
the WDP of our mechanism (19), thus including the time for solving the valuation problem
in the comparison would only magnify the effect. In fact, in our experiments, the time
required to solve the MDPs for the valuation problem was significantly greater than the
time for solving the resulting WDP MILP. However, we do not present quantitative results
to that effect here, because of the difference in implementation (iterating over resource
bundles and solving MDPs was done via a straightforward implementation in Matlab, while
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Figure 5: Gains in computation efficiency: MDP-based WDP versus a WDP in a straight-
forward CA implementation. The latter does not include the time for solving
the MDPs to compute resource-bundle values. Error bars show the standard
deviation over ten runs.
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Figure 6: Scaling the MDP-based winner-determination MILP (19) to more agents. Agents
operated on 5-by-5 grids and shared 10 types of resources.

MILPs were solved using highly-optimized CPLEX code). No parallelization of the WDP
was performed for these experiments for either algorithm.

Below we analyze the performance of our algorithm on larger problems infeasible for
the straightforward CA. Figure 6 illustrates the scaling effect as the number of agents
participating in the auction is increased. Here and below, each point on the plot corresponds
to a single run of the experiment (with no less than ten runs performed for every value of
parameters), and the solid line is the mean. Recall that the size of the WDP scales linearly
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Figure 7: (a)–(c): scaling of the MDP-based winner-determination MILP (19) with the
number of resources on three sets of problems with different grid sizes (n) and
different numbers of agents (|M|); (d): a linear-scale plot of the tail of the data
in (c).

with the number of agents. The graph therefore reflects a rather standard scaling effect
for an NP-complete problem. As can be seen from the plot, problems with 25 agents
and 10 resource types are well within the reach of the method, on average taking around
30 minutes.

Next, we analyze how the method scales with the number of resource types. Figure 7
shows the solution time as a function of the number of resource types for three different
sets of problems. In these problems, the number of actions scaled linearly with the number
of resource types, but each action required a constant number of resources, i.e., the number
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Figure 8: Complexity of MDP-based winner-determination MILP (19) as a function of the
number of actions’ resource requirements.

of nonzero ρ(a, o) per action was constant (two) regardless of the total number of resource
types. These problems exhibit an interesting trait wherein the running time peaks for
relatively low numbers of resource types, then falls quickly, and then increases much more
slowly as the number of resource types increases (as illustrated in Figure 7d, which uses
a linear scale). This is due to the fact that when the total number of resource types is
much higher than the number of resources required by any action, there is less contention
for a particular resource among the agents and between one agent’s actions. Therefore, the
problems become relatively under-constrained and the solution time increases slowly.

To better illustrate this effect, we ran a set of experiments inverse to the ones shown in
Figure 7: we kept the total number of resource types constant and increased the number of
resource types required by each action. The results are shown in Figure 8. The running-time
profile is similar to what we observed earlier when we varied the local and global constraints:
when the total number of resources per action is low or high, the problem is under- or over-
constrained and is relatively easy to solve, but its complexity increases significantly when
the number of resources required by each resource is in the range of 50-80% of the total
number of resource types.

Based on the above, we would expect that if the actions’ resource requirements increased
with the total number of resource types, the problem would not scale as gracefully as in
Figure 7. For example, Figure 9 illustrates the running time for problems where the number
of resources required by each action scales linearly with the total number of resources. There,
the complexity does increase significantly faster. However, it is not unreasonable to assume
that in many domains the number of actions does not, in fact, increase with the total
number of resource types involved. Indeed, it is natural to assume that the total number
of resource types increases as the problem becomes more complicated and the number of
tasks the agent can perform increases. However, why should the resource requirements of an
action increase as well? If the delivery agent from our running example acquires the ability
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Figure 9: Complexity when actions’ resource requirements grow proportionally to the total
number of resource types. The number of resource types needed by each action
is 10% of the total number of resource types |O|.

to deliver pizza, it might need new resources to perform actions related to this new activity,
but one would not expect the resource requirements for delivering furniture or appliances
to change. Therefore, we believe that in many real applications, our method will scale up
gracefully with the total number of resource types.

The above experiments illustrate the point that for domains where agents have pref-
erences that are defined by underlying Markov decision processes, the resource-allocation
mechanism developed in this paper can lead to significant computational advantages. As
shown in Figure 7, the method can be successfully applied to very large problems that, we
argue, are well beyond the reach of combinatorial resource-allocation mechanisms with flat
preferences. As our experiments show (Figure 5), even for small problems, combinatorial
resource allocation mechanisms with flat preferences can be time-consuming, and our at-
tempts to empirically evaluate those simpler mechanisms on larger problems proved futile.
For instance, our method takes under one minute to solve a problem that, in the standard
CA, requires the agents to enumerate up to 2100 bundles and the auctioneer to solve an
NP-complete problem with an input of that size.

6. Generalizations, Extensions, and Conclusions

There are many possible extensions and generalizations of the work presented here, and we
briefly outline several below.

The treatment in this paper focused on the problem of resource allocation among
self-interested agents, but the algorithms also apply to cooperative MDPs with weakly-
interacting agents. In the cooperative setting, the concept of resources can be viewed as
a compact way to model inter-agent constraints and their inability to include some com-
binations of joint actions in their policies. Such weakly-coupled MDPs, where agents have
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independent transition and reward functions, but certain combinations of joint actions are
not feasible is a widely used model of agents’ interactions (e.g., Singh & Cohn, 1998). Our
model was resource-centric, but more direct models are also certainly possible. For exam-
ple, agents can use SAT formulas to describe valid combinations of joint actions. This case
can be easily handled via simple modifications to the single and multiagent MILPs (15)
and (19). Indeed, any SAT formula can be expressed as a set of linear inequalities on
binary variables ∆(a) (or ∆m(a) in the multiagent case), which can be directly added to
the corresponding MILP (see the case of non-binary resources in Appendix B for an MILP
defined on indicators ∆(a), instead of the δ(o) used in the binary case).

As mentioned previously, our work can be extended to handle consumable resources that
are used up whenever agents execute actions. In fact, under some conditions, the problem
can be considerably simplified for domains with only these kinds of resources. The most
important change is that we have to redefine the value of a particular resource bundle to
an agent. The difficulty is that, given a policy, the total use of consumable resources is
uncertain, and the definition of the value of a resource bundle becomes ambiguous. One
possibility is to define the value of a bundle as the payoff of the best policy whose expected
resource usage does not exceed the amounts of resources in the bundle. The interpretation
of ρm(a, o) would also change to mean the amount of resource o consumed by action a
every time it is executed. This would make the constraints in (19) linear in the occupation
measure, which would tremendously simplify the WDP (making it polynomial). This is
analogous to the models used in constrained MDPs (Altman & Shwartz, 1991), as briefly
described earlier in Section 2. Information privacy can be handled similarly to the case of
non-consumable resources. However, given the transformation y = Dx, the resource cost
function ρm will also have to be scaled by D−1 (since the total consumption of consumable
resources is proportional to the occupation measure). This has the additional benefit of
hiding the resource cost functions (unlike the case of non-consumable resources where they
were revealed). A more detailed treatment of the model with consumable resources is
presented in the work by Dolgov (2006), including a discussion of risk-sensitive cases, where
the value of a resource bundle is defined as the payoff of the best policy whose probability
of exceeding the resource amounts is bounded.

In this work we exploited structure in agents’ preferences that stems from the underlying
policy-optimization problems. However, the latter were modeled using “flat” MDPs that
enumerate all possible states and actions. Such flat MDPs do not scale well due to the
curse of dimensionality (Bellman, 1961). To address this, the WDP MILP can be modified
to work with factored MDPs (Boutilier, Dearden, & Goldszmidt, 1995) by using a factored
resource-allocation algorithm (Dolgov & Durfee, 2006), which is based on the dual ALP
method for solving factored MDPs as developed by Guestrin (2003). This method allows us
to exploit both types of structure in the resource-allocation algorithms: structure in agents’
preferences induced by the underlying MDPs, as well as structure in MDPs themselves.

The resource-allocation mechanism discussed in this paper assumed a one-shot allocation
of resources and a static population of agents. An interesting extension of our work would
be to consider a system where agents and resources arrive and depart dynamically, as in the
online mechanism design work (Parkes & Singh, 2003; Parkes, Singh, & Yanovsky, 2004).
Combining the MDP-based model of utility functions with the dynamics of online problems
could be a valuable result and thus appears to be a worthwhile direction of future work. If
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the agent population is static, but a periodic re-allocation of resources is allowed, techniques
like phasing can be used to solve the resulting problem (Wu & Durfee, 2005).

To summarize the results of this paper, we presented a variant of a combinatorial auc-
tion for resource allocation among self-interested agents whose valuations of resource bundles
are defined by their weakly-coupled constrained MDPs. For such problems, our mechanism,
which exploits knowledge of the structure of agents’ MDP-based preferences, achieves an
exponential reduction in the number of integer decision variables, which in turn leads to
tremendous speedup over a straightforward implementation, as confirmed by our experimen-
tal results. Our mechanism can be implemented to achieve its reduction in computational
complexity without sacrificing any of the nice properties of a VCG mechanism (optimal out-
comes, strategy-proofness, and voluntary participation). We also discussed a distributed
implementation of the mechanism that retains strategy-proofness (using the fact that an
LP solution can be easily verified), and does not reveal agents’ private MDP information
(using a transformation of agents’ MDPs).

We believe that the models and solution algorithms described in this paper significantly
further the applicability of combinatorial resource-allocation mechanisms to practical prob-
lems, where the utility functions for resource bundles are defined by sequential stochastic
decision-making problems.
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Appendix A. Proofs

A.1 Proof of Theorem 1

Theorem 1 Consider a finite set of n indivisible resources O = {oi} (i ∈ [1, n]), with
m ∈ N available units of each resource. Then, for any non-decreasing utility function
defined over resource bundles f : [0,m]n 7→ R, there exists a resource-constrained MDP
〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 (with the same resource set O) whose induced utility function over
the resource bundles is the same as f . In other words, for every resource bundle z ∈ [0,m]n,
the value of the optimal policy among those whose resource requirements do not exceed z
(call this set Π(z)) is the same as f(z):

∀fq : [0,m]n 7→ R, ∃ 〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 :

∀ z ∈ [0,m]n,Π(z) =
{

π
∣∣∣ max

a

[
ρ(a, oi)H

( ∑
s

π(s, a)
)]
≤ zi

}
=⇒ max

π∈Π(z)
Uγ(π, α) = f(z).
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Figure 10: Creating an MDP with resources for an arbitrary non-decreasing utility function.
The case shown has three binary resources. All transitions are deterministic.

Proof: This statement can be shown via a straightforward construction of an MDP that
has an exponential number (one per resource bundle) of states or actions. Below we present
a reduction with a linear number of actions and an exponential number of states. Our choice
is due to the fact that, although the reverse mapping requiring two states and exponentially
many actions is even more straightforward, such an MDP feels somewhat unnatural.

Given an arbitrary non-decreasing utility function f , a corresponding MDP can be
constructed as follows (illustrated in Figure 10 for n = 3 and m = 1). The state space S of
the MDP consists of (m+1)n+1 states – one state (sz) for every resource bundle z ∈ [0,m]n,
plus a sink state (s0).

The action space of the MDP A = a0
⋃
{aij}, i ∈ [1, n], j ∈ [1,m] consists of mn + 1

actions: m actions per each resource oi, i ∈ [1, n], plus an additional action a0.
The transition function p is deterministic and is defined as follows. Action a0 is appli-

cable in every state and leads to the sink state s0. Every other action aij is applicable in
states sz, where zi = (j − 1) and leads with certainty to the states where zi = j:

p(σ|s, a) =


1 a = aij , s = sz, σ = sz′ , zi = (j − 1), z′i = j,

1 a = a0, σ = s0,

0 otherwise.

In other words, aij only applies in states that have j− 1 units of resource i and leads to the
state where the amount of ith resource increases to j.

The reward function r is defined as follows. There are no rewards in state s0, and
action a0 is the only action that produces rewards in other states:

r(s, a) =

{
f ′(z) a = ao, s = sz, ∀z ∈ [0,m]n

0 otherwise,

where f ′ is a simple transformation of f that compensates for the effects of discounting:

f ′(z) = f(z)(γ)−
P

i zi .
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In other words, it takes
∑

i zi transitions to get to state sz, so the contribution of the above
into the total discounted reward will be exactly f(z).

The resource requirements ρ of actions are as follows: action a0 does not require any
resources, while every other action aij requires j units of resource oi.

Finally, the initial conditions are α(sz=0) = 1, meaning that the agent always starts
in the state that corresponds to the empty resource bundle (state s000 in Figure 10). The
capacity costs κ and limits κ̂ are not used, so we set C = ∅.

It is easy to see that in the MDP constructed above, given a resource bundle z, any
policy from the feasible set Π(z) has zero probability of reaching any state sz′ for which
z′ > z (for any component i). Furthermore, an optimal policy from the set Π(z) will be to
transition to state sz (since f(z) is non-decreasing) and then use action a0, thus obtaining
a total discounted reward of f(z). �

A.2 Proof of Theorem 2

Theorem 2 Given an MDP M = 〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 with resource and capacity
constraints, if there exists a policy π ∈ ΠHR that is a feasible solution for M , there exists a
stationary deterministic policy πSD ∈ ΠSD that is also feasible, and the expected total reward
of πSD is no less than that of π:

∀ π ∈ ΠHR, ∃ πSD ∈ ΠSD : Uγ(πSD, α) ≥ Uγ(π, α)

Proof: Let us label A′ ⊆ A the set of all actions that have a non-zero probability of being
executed according to π, i.e.,

A′ = {a|∃s : π(s, a) > 0}

Let us also construct an unconstrained MDP: M ′ = 〈S,A′, p′, r′〉, where p′ and r′ are the
restricted versions of p and r with the action domain limited to A′:

p′ : S ×A′ × S 7→ [0, 1]
r′ : S ×A′ 7→ R
p′(σ|s, a) = p(σ|s, a), r′(s, a) = r(s, a) ∀s ∈ S, σ ∈ S, a ∈ A′

Due to a well-known property of unconstrained infinite-horizon MDPs with the total
expected discounted reward optimization criterion, M ′ is guaranteed to have an optimal
stationary deterministic solution (e.g., Theorem 6.2.10, Puterman, 1994), which we label
πSD.

Consider πSD as a potential solution to M . Clearly, πSD is a feasible solution, because
its actions come from the set A′ that includes actions that π uses with non-zero probability,
which means that the resource requirements (as in (9)) of πSD can be no greater than those
of π. Indeed:

max
a∈A′

{
ρ(a, o)H

( ∑
s

πSD(s, a)
)}

≤ max
a∈A′

ρ(a, o) = max
a∈A

{
ρ(a, o)H

( ∑
s

π(s, a)
)}

, (30)

where the first inequality is due to the fact that H(z) ≤ 1 ∀z, and the second equality
follows from the definition of A′.
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Figure 11: Reduction of KNAPSACK to M-OPER-CMDP. All transitions are determinis-
tic.

Furthermore, observe that πSD yields the same total reward under M ′ and M . Addi-
tionally, since πSD is a uniformly optimal solution to M ′, it is, in particular, optimal for
the initial conditions α of the constrained MDP M . Therefore, πSD constitutes a feasible
solution to M whose expected reward is greater than or equal to the expected reward of
any feasible policy π. �

A.3 Proof of Theorem 3

Theorem 3 The following decision problem is NP-complete. Given an instance of an MDP
〈S,A, p, r,O, ρ, C, κ, κ̂, α〉 with resources and capacity constraints, and a rational number Y ,
does there exist a feasible policy π, whose expected total reward, given α, is no less than Y ?

Proof: As shown in Theorem 2, there always exists an optimal policy for (9) that is
stationary and deterministic. Therefore, the presence in NP is obvious, since we can, in
polynomial time, guess a stationary deterministic policy, verify that it satisfies the resource
constraints, and calculate its expected total reward (the latter can be done by solving the
standard system of linear Markov equations (2) on the values of all states).

To show NP-completeness of the problem, we use a reduction from KNAPSACK (Garey
& Johnson, 1979). Recall that KNAPSACK in an NP-complete problem, which asks
whether, for a given set of items z ∈ Z, each of which has a cost c(z) and a value v(z),
there exists a subset Z ′ ⊆ Z such that the total value of all items in Z ′ is no less than
some constant v̂, and the total cost of the items is no greater than another constant ĉ, i.e.,∑

z∈Z′ c(z) ≤ ĉ and
∑

z∈Z′ v(z) ≥ v̂. Our reduction is illustrated in Figure 11 and proceeds
as follows.

Given an instance of KNAPSACK with |Z| = m, let us number all items as zi, i ∈
[1,m] as a notational convenience. For such an instance of KNAPSACK, we create an
MDP with m + 1 states {s1, s2, . . . sm+1}, m + 1 actions {a0, . . . am}, m types of resources
O = {o1, . . . om}, and a single capacity C = {c1}.

The transition function on these states is defined as follows. Every state si, i ∈ [1,m]
has two transitions from it, corresponding to actions ai and a0. Both actions lead to state
si+1 with probability 1. State sm+1 is absorbing and all transitions from it lead back to
itself.

The reward and the cost functions are defined as follows. We want action ai, i ∈ [1,m]
(which corresponds to item zi in KNAPSACK) to contribute v(zi) to the total discounted
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reward. Hence, we set the immediate reward for every action ai to v(zi)(γ)1−i, which, given
that our transition function implies that state si is reached exactly at step i − 1, ensures
that if action ai is ever executed, its contribution to the total discounted reward will be
v(zi)(γ)1−i(γ)i−1 = v(zi). Action a0 produces a reward of zero in all states.

The resource requirements of actions are defined as follows. Action ai, i ∈ [1,m] only
needs resource oi, i.e., ρ(ai, oj) = 1 ⇐⇒ i = j. We set the cost of resource oi to be the
cost c(zi) of item i in the KNAPSACK problem. The “null” action a0 requires no resources.

In order to complete the construction, we set the initial distribution α = [1, 0, . . .] so that
the agent starts in state s1 with probability 1. We also define the decision parameter Y = v̂
and the upper bound on the single capacity κ̂ = ĉ.

Essentially, this construction allows the agent to choose action ai or a0 at every state si.
Choosing action ai is equivalent to putting item zi into the knapsack, while action a0

corresponds to the choice of not including zi in the knapsack. Therefore, there exists a
policy that has the expected payoff no less than Y = v̂ and uses no more than κ̂ = ĉ
of the shared resource if and only if there exists a solution to the original instance of
KNAPSACK. �

Appendix B. Non-binary Resource Requirements

Below we describe an MILP formulation of the capacity-constrained single-agent optimiza-
tion problem (9) for arbitrary resource costs ρ : A × O 7→ R, as opposed to binary costs
that were assumed in the main parts of the paper. The corresponding multiagent winner-
determination problem (the non-binary equivalent of (19)) follows immediately from the
single-agent MILP.

For arbitrary resource costs, we obtain the following non-binary equivalent of the opti-
mization problem (12) in the occupation measure coordinates:

max
x

∑
s

∑
a

x(s, a)r(s, a)

subject to:∑
a

x(σ, a)− γ
∑

s

∑
a

x(s, a)p(σ|s, a) = α(σ), ∀σ ∈ S;∑
o

κ(o, c) max
a

{
ρ(a, o)H

( ∑
s

x(s, a)
)}

≤ κ̂(c), ∀c ∈ C;

x(s, a) ≥ 0, ∀s ∈ S, a ∈ A.

(31)

To linearize the sum of max operators in (31), let us observe that the inequality

n∑
i

g(ui) max
z∈Z

f(z, ui) = g(u1) max
z∈Z

f(z, u1) + . . . + g(un) max
z∈Z

f(z, un) ≤ a

is equivalent to the following system of |Z|n linear inequalities:

g(u1)f(z1, u1) + g(u2)f(z2, u2) + . . . + g(un)f(zn, un) ≤ a, ∀z1, z2, . . . zn ∈ Z.
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Applying this to the constraints from (31), we can express the original system of |C| nonlinear
constraints (each of which has a max):∑

o

κ(o, c) max
a

{
ρ(a, o)H

( ∑
s

x(s, a)
)}

≤ κ̂(c), ∀c ∈ C

as the following system of |C||A||O| constraints where the max is removed:∑
o

κ(o, c)ρ(ao, o)H
( ∑

s

x(s, a)
)
≤ κ̂(c), ∀c ∈ C, ao1 , ao2 , . . . ∈ A. (32)

Notice that this way of eliminating the maximization exponentially increases the number
of constraints, because the above expansion enumerates all possible actions for each resource
(i.e., it enumerates policies where each resource o is used by action a1, where it is used by
action a2, action a3, etc.) However, in many problems not all resources are used by all
actions. In such cases, most of the above constraints become redundant, and the number of
constraints can be reduced from |C||A||O| to |C|

∏
o |Ao|, where Ao is the number of actions

that use resource o.
We can linearize the Heaviside function analogously to the case of binary resource costs

in Section 3.2: we create a binary indicator variable that corresponds to the argument of
H() and tie it to the occupation measure x via linear inequalities. The only difference is that
for non-binary resource costs, instead of using indicators on resources, we use indicators on
actions: ∆(a) ∈ {0, 1}, where ∆(a) = H(

∑
s x(s, a)) is an indicator that shows whether

action a is used in the policy. Using ∆ and expanding the max as above, we can represent
the optimization problem (9) as the following MILP:

max
x,∆

∑
s

∑
a

x(s, a)r(s, a)

subject to:∑
a

x(σ, a)− γ
∑

s

∑
a

x(s, a)p(σ|s, a) = α(σ), ∀σ ∈ S;∑
o

κ(o, c)ρ(ao, o)∆(ao) ≤ κ̂(c), ∀c ∈ C, ao1 , ao2 , . . . ∈ A;∑
s

x(s, a)/X ≤ ∆(a), ∀a ∈ A;

x(s, a) ≥ 0, ∀s ∈ S, a ∈ A;
∆(a) ∈ {0, 1}, ∀a ∈ A,

(33)

where X ≥ max
∑

s x(s, a) is some constant finite upper bound on the expected number
of times action a is used, which exists for any discounted MDP. We can, for example, let
X = (1− γ)−1, since

∑
s,a x(s, a) = (1− γ)−1 for any x that is a valid occupation measure

for an MDP with discount factor γ.

Example 9 Let us formulate the MILP for the constrained problem from Example 3. Recall
that there are three resources O = {ot, of , om} (truck, forklift, and mechanic), one capacity
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type C = {c1} (money), and actions have the following resource requirements (listing only
the nonzero ones):

ρ(a1, ot) = 1, ρ(a2, ot) = 1, ρ(a2, of ) = 1, ρ(a3, ot) = 1, ρ(a4, ot) = 1, ρ(a4, om) = 1

The resources have the following capacity costs:

κ(ot, c1) = 2, κ(of , c1) = 3, κ(om, c1) = 4,

and the agent has a limited budget, i.e., a capacity bound κ̂(c1) = 8.
To compute the optimal policy for an arbitrary α, we can formulate the problem as an

MILP using the techniques described above. Using binary variables {∆(ai)} = {∆i} =
{∆1,∆2,∆3,∆4},14 we can express the constraint on capacity cost as the following system
of |C||A||O| = 1(4)3 = 64 linear constraints:

(2)(1)∆1 + (3)(0)∆1 + (4)(0)∆1 ≤ 8,

(2)(1)∆1 + (3)(0)∆1 + (4)(0)∆2 ≤ 8,

(2)(1)∆1 + (3)(0)∆1 + (4)(0)∆3 ≤ 8,

(2)(1)∆1 + (3)(0)∆1 + (4)(1)∆4 ≤ 8,

(2)(1)∆1 + (3)(1)∆2 + (4)(0)∆1 ≤ 8,

. . .

(2)(0)∆4 + (3)(0)∆4 + (4)(1)∆4 ≤ 8.

It is easy to see that most of these constraints are redundant, and the fact that each action
only requires a small subset of the resources allows us to prune many of the constraints. In
fact, the only resource that is used by multiple actions is ot. Therefore, in accordance with
our earlier discussion, we only need

∏
o |Ao| = 1× 4× 1 = 4 constraints:

(2)(1)∆1 + (3)(1)∆2 + (4)(1)∆4 ≤ 8,

(2)(1)∆2 + (3)(1)∆2 + (4)(1)∆4 ≤ 8,

(2)(1)∆3 + (3)(1)∆2 + (4)(1)∆4 ≤ 8,

(2)(1)∆4 + (3)(1)∆2 + (4)(1)∆4 ≤ 8,

where each of the four constraints corresponds to a case where the first resource (ot) is used
by a different action.

As mentioned earlier, we can set X = (1− γ)−1 for the constraints that synchronize the
occupation measure x and the binary indicators ∆. Combining this with other constraints
from (33), we get an MILP with 12 continuous and 4 binary variables, and |S|+|C|

∏
o |Ao|+

|A| = 3 + 4 + 3 = 10 constraints (not counting the last two sets of range constraints). �

Finally, let us observe that by expanding the resource and action sets, any problem
can be represented using binary resources only. If the domain contains mostly binary
requirements, it may be more effective to expand the non-binary resource requirements ρ
by augmenting the resource set O, and then use the binary formulation of Section 3.2 rather
than directly applying the more-general formulation described above.

14. We do not create a ∆0 for the noop action a0, as its resource costs are zero, and it drops out of all
expressions.
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Appendix C. Experimental Setup

This appendix details how our experimental domains were constructed. For a delivery
domain with |M| agents operating on an n-by-n grid and sharing |O| resource types, we
used the following parameters.

The resources enable agents to carry out delivery tasks. For a problem with |O| resource
types, there are |O| delivery actions, and performing action i ∈ [1, |O|] requires a random
subset of resources from O (where the number of resources required by an action is an
important parameter, whose effect on complexity is discussed in Section 5). The probability
that task i ∈ [1, |O|] can be carried at a location is 0.1+0.4(|O|−i)/(|O|−1), i.e., uniformly
distributed between 0.1 and 0.5, as a function of the action ID (actions with lower IDs are
more rewarding, per the definition of the reward function below, but can be executed at
fewer locations).

There are n2/5 possible delivery locations randomly placed on the grid. Each delivery
location is assigned a set of delivery tasks that can be executed there (a single location can
be used for multiple delivery tasks, and a single task can be carried out at any of several
locations). The assignment of tasks to locations is done randomly.

Each agent has 4 + |O| actions: drive in any of the four perpendicular directions and
execute one of the delivery tasks. The drive actions result in movement in the intended
direction with probability of 0.8 and with probability of 0.2 produce no change of location.
All movement actions incur a negative reward, the amount of which depends on the size of
the agent. For a problem with |M| agents, the movement penalty incurred by agent m ∈
[1, |M|] is −1 − 9(m − 1)/(|M| − 1), i.e., distributed uniformly on [−1,−10] as a function
of the agent’s ID.

Execution of an action corresponding to a delivery task i ∈ [1, |O|] in a location to which
the task is assigned produces a reward of 100i/|O| and moves the agent to a new random
location on the grid. The new location is chosen randomly at problem generation (thus
known to agent), but the transition is deterministic, which induces a topology with nearby
and remote locations. Attempting execution of a delivery task in an incorrect location does
not change state and produces zero reward.

The agents bid for delivery resources of |O| types. There are cglob|M| units of each
resource, where cglob is the global constraint level (set to 0.5 for most of our experiments,
as described in more detail in Section 5). There is one capacity type: size. The size
requirements for making deliveries of type i ∈ [1, |O|] is i. The capacity limit of agent m
is cloc/2|O|(|O| + 1), where cloc is the local constraint level (set to 0.5 for most of our
experiments, as was described in more detail in Section 5).

The initial location of each agent is randomly selected from a uniform distribution. The
discount factor is γ = 0.95.
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