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Abstract
The Partially Observable Markov Decision Process has long been recognized as a rich frame-

work for real-world planning and control problems, especially in robotics. However exact solu-
tions in this framework are typically computationally intractable for all but the smallest problems.
A well-known technique for speeding up POMDP solving involves performing value backups at
specific belief points, rather than over the entire belief simplex. The efficiency of this approach,
however, depends greatly on the selection of points. This paper presents a set of novel techniques
for selecting informative belief points which work well in practice. The point selection procedure
is combined with point-based value backups to form an effective anytime POMDP algorithm called
Point-Based Value Iteration (PBVI). The first aim of this paper is to introduce this algorithm and
present a theoretical analysis justifying the choice of belief selection technique. The second aim of
this paper is to provide a thorough empirical comparison between PBVI and other state-of-the-art
POMDP methods, in particular the Perseus algorithm, in an effort to highlight their similarities and
differences. Evaluation is performed using both standard POMDP domains and realistic robotic
tasks.

1. Introduction

The concept of planning has a long tradition in the AI literature (Fikes & Nilsson, 1971; Chapman,
1987; McAllester & Roseblitt, 1991; Penberthy & Weld, 1992; Blum & Furst, 1997). Classical
planning is generally concerned with agents which operate in environments that are fully observable,
deterministic, finite, static, and discrete. While these techniques are able to solve increasingly
large state-space problems, the basic assumptions of classical planning—full observability, static
environment, deterministic actions—make these unsuitable for most robotic applications.

Planning under uncertainty aims to improve robustness by explicitly reasoning about the type of
uncertainty that can arise. The Partially Observable Markov Decision Process (POMDP) (Ästrom,
1965; Sondik, 1971; Monahan, 1982; White, 1991; Lovejoy, 1991b; Kaelbling, Littman, & Cassan-
dra, 1998; Boutilier, Dean, & Hanks, 1999) has emerged as possibly the most general representation
for (single-agent) planning under uncertainty. The POMDP supersedes other frameworks in terms
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of representational power simply because it combines the most essential features for planning under
uncertainty.

First, POMDPs handle uncertainty in both action effects and state observability, whereas many
other frameworks handle neither of these, and some handle only stochastic action effects. To han-
dle partial state observability, plans are expressed over information states, instead of world states,
since the latter ones are not directly observable. The space of information states is the space of all
beliefs a system might have regarding the world state. Information states are easily calculated from
the measurements of noisy and imperfect sensors. In POMDPs, information states are typically
represented by probability distributions over world states.

Second, many POMDP algorithms form plans by optimizing a value function. This is a power-
ful approach to plan optimization, since it allows one to numerically trade off between alternative
ways to satisfy a goal, compare actions with different costs/rewards, as well as plan for multiple
interacting goals. While value function optimization is used in other planning approaches—for ex-
ample Markov Decision Processes (MDPs) (Bellman, 1957)—POMDPs are unique in expressing
the value function over information states, rather than world states.

Finally, whereas classical and conditional planners produce a sequence of actions, POMDPs
produce a full policy for action selection, which prescribes the choice of action for any possible
information state. By producing a universal plan, POMDPs alleviate the need for re-planning, and
allow fast execution. Naturally, the main drawback of optimizing a universal plan is the computa-
tional complexity of doing so. This is precisely what we seek to alleviate with the work described
in this paper

Most known algorithms for exact planning in POMDPs operate by optimizing the value function
over all possible information states (also known as beliefs). These algorithms can run into the well-
known curse of dimensionality, where the dimensionality of planning problem is directly related to
the number of states (Kaelbling et al., 1998). But they can also suffer from the lesser known curse
of history, where the number of belief-contingent plans increases exponentially with the planning
horizon. In fact, exact POMDP planning is known to be PSPACE-complete, whereas propositional
planning is only NP-complete (Littman, 1996). As a result, many POMDP domains with only a few
states, actions and sensor observations are computationally intractable.

A commonly used technique for speeding up POMDP solving involves selecting a finite set
of belief points and performing value backups on this set (Sondik, 1971; Cheng, 1988; Lovejoy,
1991a; Hauskrecht, 2000; Zhang & Zhang, 2001). While the usefulness of belief point updates
is well acknowledged, how and when these backups should be applied has not been thoroughly
explored.

This paper describes a class of Point-Based Value Iteration (PBVI) POMDP approximations
where the value function is estimated based strictly on point-based updates. In this context, the
choice of points is an integral part of the algorithm, and our approach interleaves value backups
with steps of belief point selection. One of the key contributions of this paper is the presentation
and analysis of a set of heuristics for selecting informative belief points. These range from a naive
version that combines point-based value updates with random belief point selection, to a sophisti-
cated algorithm that combines the standard point-based value update with an estimate of the error
bound between the approximate and exact solutions to select belief points. Empirical and theoret-
ical evaluation of these techniques reveals the importance of taking distance between points into
consideration when selecting belief points. The result is an approach which exhibits good perfor-
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mance with very few belief points (sometimes less than the number of states), thereby overcoming
the curse of history.

The PBVI class of algorithms has a number of important properties, which are discussed at
greater length in the paper:

• Theoretical guarantees. We present a bound on the error of the value function obtained by
point-based approximation, with respect to the exact solution. This bound applies to a number
of point-based approaches, including our own PBVI, Perseus (Spaan & Vlassis, 2005), and
others.

• Scalability. We are able to handle problems on the order of 103 states, which is an or-
der of magnitude larger than problems solved by more traditional POMDP techniques. The
empirical performance is evaluated extensively in realistic robot tasks, including a search-for-
missing-person scenario.

• Wide applicability. The approach makes few assumptions about the nature or structure of the
domain. The PBVI framework does assume known discrete state/ action/observation spaces
and a known model (i.e., state-to-state transitions, observation probabilities, costs/rewards),
but no additional specific structure (e.g., constrained policy class, factored model).

• Anytime performance. An anytime solution can be achieved by gradually alternating phases
of belief point selection and phases of point-based value updates. This allows for an effective
trade-off between planning time and solution quality.

While PBVI has many important properties, there are a number of other recent POMDP ap-
proaches which exhibit competitive performance (Braziunas & Boutilier, 2004; Poupart & Boutilier,
2004; Smith & Simmons, 2004; Spaan & Vlassis, 2005). We provide an overview of these tech-
niques in the later part of the paper. We also provide a comparative evaluation of these algorithms
and PBVI using standard POMDP domains, in an effort to guide practitioners in their choice of
algorithm. One of the algorithms, Perseus (Spaan & Vlassis, 2005), is most closely related to PBVI
both in design and in performance. We therefore provide a direct comparison of the two approaches
using a realistic robot task, in an effort to shed further light on the comparative strengths and weak-
nesses of these two approaches.

The paper is organized as follows. Section 2 begins by exploring the basic concepts in POMDP
solving, including representation, inference, and exact planning. Section 3 presents the general
anytime PBVI algorithm and its theoretical properties. Section 4 discusses novel strategies to se-
lect good belief points. Section 6 presents an empirical comparison of POMDP algorithms using
standard simulation problems. Section 7 pursues the empirical evaluation by tackling complex robot
domains and directly comparing PBVI with Perseus. Finally, Section 5 surveys a number of existing
POMDP approaches that are closely related to PBVI.

2. Review of POMDPs

Partially Observable Markov Decision Processes provide a general planning and decision-making
framework for acting optimally in partially observable domains. They are well-suited to a great
number of real-world problems where decision-making is required despite prevalent uncertainty.
They generally assume a complete and correct world model, with stochastic state transitions, im-
perfect state tracking, and a reward structure. Given this information, the goal is to find an action
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strategy which maximizes expected reward gains. This section first establishes the basic terminol-
ogy and essential concepts pertaining to POMDPs, and then reviews optimal techniques for POMDP
planning.

2.1 Basic POMDP Terminology

Formally, a POMDP is defined by six distinct quantities, denoted {S, A,Z, T,O,R}. The first three
of these are:

• States. The state of the world is denoted s, with the finite set of all states denoted by S =
{s0, s1, . . .}. The state at time t is denoted st, where t is a discrete time index. The state is
not directly observable in POMDPs, where an agent can only compute a belief over the state
space S.

• Observations. To infer a belief regarding the world’s state s, the agent can take sensor mea-
surements. The set of all measurements, or observations, is denoted Z = {z0, z1, . . .}. The
observation at time t is denoted zt. Observation zt is usually an incomplete projection of the
world state st, contaminated by sensor noise.

• Actions. To act in the world, the agent is given a finite set of actions, denoted A =
{a0, a1, . . .}. Actions stochastically affect the state of the world. Choosing the right action as
a function of history is the core problem in POMDPs.

Throughout this paper, we assume that states, actions and observations are discrete and finite.
For mathematical convenience, we also assume that actions and observations are alternated over
time.

To fully define a POMDP, we have to specify the probabilistic laws that describe state transitions
and observations. These laws are given by the following distributions:

• The state transition probability distribution,

T (s, a, s′) := Pr(st = s′ | st−1 = s, at−1 = a) ∀t, (1)

is the probability of transitioning to state s′, given that the agent is in state s and se-
lects action a, for any (s, a, s′). Since T is a conditional probability distribution, we have∑

s′∈S T (s, a, s′) = 1,∀(s, a). As our notation suggests, T is time-invariant.

• The observation probability distribution,

O(s, a, z) := Pr(zt = z | st−1 = s, at−1 = a) ∀t, (2)

is the probability that the agent will perceive observation z upon executing action a in state s.
This conditional probability is defined for all (s, a, z) triplets, for which

∑
z∈Z O(s, a, z) =

1,∀(s, a). The probability function O is also time-invariant.

Finally, the objective of POMDP planning is to optimize action selection, so the agent is given
a reward function describing its performance:
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• The reward function. R(s, a) : S × A −→ <, assigns a numerical value quantifying the
utility of performing action a when in state s. We assume the reward is bounded, Rmin <
R < Rmax. The goal of the agent is to collect as much reward as possible over time. More
precisely, it wants to maximize the sum:

E[
T∑

t=t0

γt−t0rt], (3)

where rt is the reward at time t, E[ ] is the mathematical expectation, and γ where 0 ≤ γ < 1
is a discount factor, which ensures that the sum in Equation 3 is finite.

These items together, the states S, actions A, observations Z, reward R, and the probability
distributions, T and O, define the probabilistic world model that underlies each POMDP.

2.2 Belief Computation

POMDPs are instances of Markov processes, which implies that the current world state, st, is suf-
ficient to predict the future, independent of the past {s0, s1, ..., st−1}. The key characteristic that
sets POMDPs apart from many other probabilistic models (such as MDPs) is the fact that the state
st is not directly observable. Instead, the agent can only perceive observations {z1, . . . , zt}, which
convey incomplete information about the world’s state.

Given that the state is not directly observable, the agent can instead maintain a complete trace
of all observations and all actions it ever executed, and use this to select its actions. The ac-
tion/observation trace is known as a history. We formally define

ht := {a0, z1, . . . , zt−1, at−1, zt} (4)

to be the history at time t.
This history trace can get very long as time goes on. A well-known fact is that this history

does not need to be represented explicitly, but can instead be summarized via a belief distribu-
tion (Ästrom, 1965), which is the following posterior probability distribution:

bt(s) := Pr(st = s | zt, at−1, zt−1, . . . , a0, b0). (5)

This of course requires knowing the initial state probability distribution:

b0(s) := Pr(s0 = s), (6)

which defines the probability that the domain is in state s at time t = 0. It is common either to
specify this initial belief as part of the model, or to give it only to the runtime system which tracks
beliefs and selects actions. For our work, we will assume that this initial belief (or a set of possible
initial beliefs) are available to the planner.

Because the belief distribution bt is a sufficient statistic for the history, it suffices to condition
the selection of actions on bt, instead of on the ever-growing sequence of past observations and
actions. Furthermore, the belief bt at time t is calculated recursively, using only the belief one time
step earlier, bt−1, along with the most recent action at−1 and observation zt.
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We define the belief update equation, τ(), as:

τ(bt−1, at−1, zt) = bt(s′)

=

∑
s′

O(s′, at−1, zt) T (s, at−1, s
′) bt−1(s)

Pr(zt|bt−1, at−1)
(7)

where the denominator is a normalizing constant.
This equation is equivalent to the decades-old Bayes filter (Jazwinski, 1970), and is commonly

applied in the context of hidden Markov models (Rabiner, 1989), where it is known as the forward
algorithm. Its continuous generalization forms the basis of Kalman filters (Kalman, 1960).

It is interesting to consider the nature of belief distributions. Even for finite state spaces, the
belief is a continuous quantity. It is defined over a simplex describing the space of all distributions
over the state space S. For very large state spaces, calculating the belief update (Eqn 7) can be com-
putationally challenging. Recent research has led to efficient techniques for belief state computation
that exploit structure of the domain (Dean & Kanazawa, 1988; Boyen & Koller, 1998; Poupart &
Boutilier, 2000; Thrun, Fox, Burgard, & Dellaert, 2000). However, by far the most complex as-
pect of POMDP planning is the generation of a policy for action selection, which is described next.
For example in robotics, calculating beliefs over state spaces with 106 states is easily done in real-
time (Burgard et al., 1999). In contrast, calculating optimal action selection policies exactly appears
to be infeasible for environments with more than a few dozen states (Kaelbling et al., 1998), not
directly because of the size of the state space, but because of the complexity of the optimal policies.
Hence we assume throughout this paper that the belief can be computed accurately, and instead
focus on the problem of finding good approximations to the optimal policy.

2.3 Optimal Policy Computation

The central objective of the POMDP perspective is to compute a policy for selecting actions. A
policy is of the form:

π(b) −→ a, (8)

where b is a belief distribution and a is the action chosen by the policy π.
Of particular interest is the notion of optimal policy, which is a policy that maximizes the ex-

pected future discounted cumulative reward:

π∗(bt0) = argmax
π

Eπ

 T∑
t=t0

γt−t0rt

∣∣∣∣∣bt0

 . (9)

There are two distinct but interdependent reasons why computing an optimal policy is challeng-
ing. The more widely-known reason is the so-called curse of dimensionality: in a problem with
n physical states, π is defined over all belief states in an (n − 1)-dimensional continuous space.
The less-well-known reason is the curse of history: POMDP solving is in many ways like a search
through the space of possible POMDP histories. It starts by searching over short histories (through
which it can select the best short policies), and gradually considers increasingly long histories. Un-
fortunately the number of distinct possible action-observation histories grows exponentially with
the planning horizon.
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The two curses—dimensionality and history—often act independently: planning complexity
can grow exponentially with horizon even in problems with only a few states, and problems with a
large number of physical states may still only have a small number of relevant histories. Which curse
is predominant depends both on the problem at hand, and the solution technique. For example, the
belief point methods that are the focus of this paper specifically target the curse of history, leaving
themselves vulnerable to the curse of dimensionality. Exact algorithms on the other hand typically
suffer far more from the curse of history. The goal is therefore to find techniques that offer the best
balance between both.

We now describe a straightforward approach to finding optimal policies by Sondik (1971). The
overall idea is to apply multiple iterations of dynamic programming, to compute increasingly more
accurate values for each belief state b. Let V be a value function that maps belief states to values in
<. Beginning with the initial value function:

V0(b) = max
a

∑
s∈S

R(s, a)b(s), (10)

then the t-th value function is constructed from the (t− 1)-th by the following recursive equation:

Vt(b) = max
a

[∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z

Pr(z | a, b)Vt−1(τ(b, a, z))

]
, (11)

where τ(b, a, z) is the belief updating function defined in Equation 7. This value function update
maximizes the expected sum of all (possibly discounted) future pay-offs the agent receives in the
next t time steps, for any belief state b. Thus, it produces a policy that is optimal under the planning
horizon t. The optimal policy can also be directly extracted from the previous-step value function:

π∗t (b) = argmax
a

[∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z

Pr(z | a, b)Vt−1(τ(b, a, z))

]
. (12)

Sondik (1971) showed that the value function at any finite horizon t can be expressed by a set
of vectors: Γt = {α0, α1, . . . , αm}. Each α-vector represents an |S|-dimensional hyper-plane, and
defines the value function over a bounded region of the belief:

Vt(b) = max
α∈Γt

∑
s∈S

α(s)b(s). (13)

In addition, each α-vector is associated with an action, defining the best immediate policy
assuming optimal behavior for the following (t − 1) steps (as defined respectively by the sets
{Vt−1, ..., V0}).

The t-horizon solution set, Γt, can be computed as follows. First, we rewrite Equation 11 as:

Vt(b) = max
a∈A

∑
s∈S

R(s, a)b(s) + γ
∑
z∈Z

max
α∈Γt−1

∑
s∈S

∑
s′∈S

T (s, a, s′)O(s′, a, z)α(s′)b(s)

 . (14)

Notice that in this representation of Vt(b), the nonlinearity in the term P (z|a, b) from Equation 11
cancels out the nonlinearity in the term τ(b, a, z), leaving a linear function of b(s) inside the max
operator.

341



PINEAU, GORDON & THRUN

The value Vt(b) cannot be computed directly for each belief b ∈ B (since there are infinitely
many beliefs), but the corresponding set Γt can be generated through a sequence of operations on
the set Γt−1.

The first operation is to generate intermediate sets Γa,∗
t and Γa,z

t ,∀a ∈ A,∀z ∈ Z (Step 1):

Γa,∗
t ← αa,∗(s) = R(s, a) (15)

Γa,z
t ← αa,z

i (s) = γ
∑
s′∈S

T (s, a, s′)O(s′, a, z)αi(s′),∀αi ∈ Γt−1

where each αa,∗ and αa,z
i is once again an |S|-dimensional hyper-plane.

Next we create Γa
t (∀a ∈ A), the cross-sum over observations1, which includes one αa,z from

each Γa,z
t (Step 2):

Γa
t = Γa,∗

t + Γa,z1
t ⊕ Γa,z2

t ⊕ . . . (16)

Finally we take the union of Γa
t sets (Step 3):

Γt = ∪a∈A Γa
t . (17)

This forms the pieces of the backup solution at horizon t. The actual value function Vt is
extracted from the set Γt as described in Equation 13.

Using this approach, bounded-time POMDP problems with finite state, action, and observation
spaces can be solved exactly given a choice of the horizon T . If the environment is such that the
agent might not be able to bound the planning horizon in advance, the policy π∗t (b) is an approxima-
tion to the optimal one whose quality improves in expectation with the planning horizon t (assuming
0 ≤ γ < 1).

As mentioned above, the value function Vt can be extracted directly from the set Γt. An im-
portant aspect of this algorithm (and of all optimal finite-horizon POMDP solutions) is that the
value function is guaranteed to be a piecewise linear, convex, and continuous function of the be-
lief (Sondik, 1971). The piecewise-linearity and continuous properties are a direct result of the fact
that Vt is composed of finitely many linear α-vectors. The convexity property is a result of the
maximization operator (Eqn 13). It is worth pointing out that the intermediate sets Γa,z

t , Γa,∗
t and Γa

t

also represent functions of the belief which are composed entirely of linear segments. This property
holds for the intermediate representations because they incorporate the expectation over observation
probabilities (Eqn 15).

In the worst case, the exact value update procedure described could require time doubly ex-
ponential in the planning horizon T (Kaelbling et al., 1998). To better understand the complexity
of the exact update, let |S| be the number of states, |A| the number of actions, |Z| the number of
observations, and |Γt−1| the number of α-vectors in the previous solution set. Then Step 1 creates
|A| |Z| |Γt−1| projections and Step 2 generates |A| |Γt−1||Z| cross-sums. So, in the worst case, the
new solution requires:

|Γt| = O(|A||Γt−1||Z|) (18)

1. The symbol ⊕ denotes the cross-sum operator. A cross-sum operation is defined over two sets, A =
{a1, a2, . . . , am} and B = {b1, b2, . . . , bn}, and produces a third set, C = {a1 + b1, a1 + b2, . . . , a1 + bn, a2 +
b1, a2 + b2, . . . , . . . , am + bn}.
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α-vectors to represent the value function at horizon t; these can be computed in time
O(|S|2|A| |Γt−1||Z|).

It is often the case that a vector in Γt will be completely dominated by another vector over the
entire belief simplex:

αi · b < αj · b, ∀b. (19)

Similarly, a vector may be fully dominated by a set of other vectors (e.g., α2 in Fig. 1 is dom-
inated by the combination of α1 and α3). This vector can then be pruned away without affecting
the solution. Finding dominated vectors can be expensive. Checking whether a single vector is
dominated requires solving a linear program with |S| variables and |Γt| constraints. Nonetheless it
can be time-effective to apply pruning after each iteration to prevent an explosion of the solution
size. In practice, |Γt| often appears to grow singly exponentially in t, given clever mechanisms for
pruning unnecessary linear functions. This enormous computational complexity has long been a
key impediment toward applying POMDPs to practical problems.

α 0V={ ,α 1,α 2,α 3}

Figure 1: POMDP value function representation

2.4 Point-Based Value Backup

Exact POMDP solving, as outlined above, optimizes the value function over all beliefs. Many
approximate POMDP solutions, including the PBVI approach proposed in this paper, gain compu-
tational advantage by applying value updates at specific (and few) belief points, rather than over all
beliefs (Cheng, 1988; Zhang & Zhang, 2001; Poon, 2001). These approaches differ significantly
(and to great consequence) in how they select the belief points, but once a set of points is selected,
the procedure for updating their value is standard. We now describe the procedure for updating the
value function at a set of known belief points.

As in Section 2.3, the value function update is implemented as a sequence of operations on a
set of α-vectors. If we assume that we are only interested in updating the value function at a fixed
set of belief points, B = {b0, b1, ..., bq}, then it follows that the value function will contain at most
one α-vector for each belief point. The point-based value function is therefore represented by the
corresponding set {α0, α1, . . . , αq}.

Given a solution set Γt−1, we simply modify the exact backup operator (Eqn 14) such that only
one α-vector per belief point is maintained. The point-based backup now gives an α-vector which
is valid over a region around b. It assumes that the other belief points in that region have the same
action choice and lead to the same facets of Vt−1 as the point b. This is the key idea behind all
algorithms presented in this paper, and the reason for the large computational savings associated
with this class of algorithms.
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To obtain solution set Γt from the previous set Γt−1, we begin once again by generating inter-
mediate sets Γa,∗

t and Γa,z
t ,∀a ∈ A,∀z ∈ Z (exactly as in Eqn 15) (Step 1):

Γa,∗
t ← αa,∗(s) = R(s, a) (20)

Γa,z
t ← αa,z

i (s) = γ
∑
s′∈S

T (s, a, s′)O(s′, a, z)αi(s′),∀αi ∈ Γt−1.

Next, whereas performing an exact value update requires a cross-sum operation (Eqn 16), by
operating over a finite set of points, we can instead use a simple summation. We construct Γa

t ,∀a ∈
A (Step 2):

Γa
t ← αa

b = Γa,∗
t +

∑
z∈Z

argmax
α∈Γa,z

t

(
∑
s∈S

α(s)b(s)),∀b ∈ B. (21)

Finally, we find the best action for each belief point (Step 3):

αb = argmax
Γa

t ,∀a∈A
(
∑
s∈S

Γa
t (s)b(s)), ∀b ∈ B. (22)

Γt = ∪b∈B αb (23)

While these operations preserve only the best α-vector at each belief point b ∈ B, an estimate
of the value function at any belief in the simplex (including b /∈ B) can be extracted from the set Γt

just as before:

Vt(b) = max
α∈Γt

∑
s∈S

α(s)b(s). (24)

To better understand the complexity of updating the value of a set of points B, let |S| be the
number of states, |A| the number of actions, |Z| the number of observations, and |Γt−1| the number
of α-vectors in the previous solution set. As with an exact update, Step 1 creates |A| |Z| |Γt−1|
projections (in time |S|2 |A| |Z| |Γt−1|). Steps 2 and 3 then reduce this set to at most |B| components
(in time |S| |A| |Γt−1| |Z| |B|). Thus, a full point-based value update takes only polynomial time,
and even more crucially, the size of the solution set Γt remains constant at every iteration. The
point-based value backup algorithm is summarized in Table 1.

Note that the algorithm as outlined in Table 1 includes a trivial pruning step (lines 13-14),
whereby we refrain from adding to Γt any vector already included in it. As a result, it is often the
case that |Γt| ≤ |B|. This situation arises whenever multiple nearby belief points support the same
vector. This pruning step can be computed rapidly (without solving linear programs) and is clearly
advantageous in terms of reducing the set Γt.

The point-based value backup is found in many POMDP solvers, and in general serves to im-
prove estimates of the value function. It is also an integral part of the PBVI framework.

3. Anytime Point-Based Value Iteration

We now describe the algorithmic framework for our new class of fast approximate POMDP algo-
rithms called Point-Based Value Iteration (PBVI). PBVI-class algorithms offer an anytime solution
to large-scale discrete POMDP domains. The key to achieving an anytime solution is to interleave
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Γt=BACKUP(B, Γt−1) 1
For each action a ∈ A 2

For each observation z ∈ Z 3
For each solution vector αi ∈ Γt−1 4

αa,z
i (s) = γ

∑
s′∈S T (s, a, s′)O(s′, a, z)αi(s′),∀s ∈ S 5

End 6
Γa,z

t = ∪i αa,z
i 7

End 8
End 9
Γt = ∅ 10
For each belief point b ∈ B 11

αb = argmaxa∈A

[∑
s∈S R(s, a)b(s) +

∑
z∈Z maxα∈Γa,z

t
[
∑

s∈S α(s)b(s)]
]

12
If(αb /∈ Γt) 13

Γt = Γt ∪ αb 14
End 15
Return Γt 16

Table 1: Point-based value backup

two main components: the point-based update described in Table 1 and steps of belief set selec-
tion. The approximate value function we find is guaranteed to have bounded error (compared to the
optimal) for any discrete POMDP domain.

The current section focuses on the overall anytime algorithm and its theoretical properties, in-
dependent of the belief point selection process. Section 4 then discusses in detail various novel
techniques for belief point selection.

The overall PBVI framework is simple. We start with a (small) initial set of belief points to
which are applied a first series of backup operations. The set of belief points is then grown, a
new series of backup operations are applied to all belief points (old and new), and so on, until a
satisfactory solution is obtained. By interleaving value backup iterations with expansions of the
belief set, PBVI offers a range of solutions, gradually trading off computation time and solution
quality.

The full algorithm is presented in Table 2. The algorithm accepts as input an initial belief point
set (BInit), an initial value (Γ0), the number of desired expansions (N ), and the planning horizon
(T ). A common choice for BInit is the initial belief b0; alternately, a larger set could be used,
especially in cases where sample trajectories are available. The initial value, Γ0, is typically set to
be purposefully low (e.g., α0(s) = Rmin

1−γ ,∀s ∈ S). When we do this, we can show that the point-
based solution is always be a lower-bound on the exact solution (Lovejoy, 1991a). This follows
from the simple observation that failing to compute an α-vector can only lower the value function.

For problems with a finite horizon, we run T value backups between each expansion of the
belief set. In infinite-horizon problems, we select the horizon T so that

γT [Rmax −Rmin] < ε, (25)

where Rmax = maxs,a R(s, a) and Rmin = mins,a R(s, a).
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The complete algorithm terminates once a fixed number of expansions (N ) have been com-
pleted. Alternately, the algorithm could terminate once the value function approximation reaches a
given performance criterion. This is discussed further below.

The algorithm uses the BACKUP routine described in Table 1. We can assume for the moment
that the EXPAND subroutine (line 8) selects belief points at random. This performs reasonably
well for small problems where it is easy to achieve good coverage of the entire belief simplex.
However it scales poorly to larger domains where exponentially many points are needed to guarantee
good coverage of the belief simplex. More sophisticated approaches to selecting belief points are
presented in Section 4. Overall, the PBVI framework described here offers a simple yet flexible
approach to solving large-scale POMDPs.

Γ=PBVI-MAIN(BInit, Γ0, N , T ) 1
B=BInit 2
Γ = Γ0 3
For N expansions 4

For T iterations 5
Γ =BACKUP(B,Γ) 6

End 7
Bnew =EXPAND(B,Γ) 8
B = B ∪Bnew 9

End 10
Return Γ 11

Table 2: Algorithm for Point-Based Value Iteration (PBVI)

For any belief set B and horizon t, the algorithm in Table 2 will produce an estimate of the value
function, denoted V B

t . We now show that the error between V B
t and the optimal value function V ∗

is bounded. The bound depends on how densely B samples the belief simplex ∆; with denser
sampling, V B

t converges to V ∗
t , the t-horizon optimal solution, which in turn has bounded error

with respect to V ∗, the optimal solution. So cutting off the PBVI iterations at any sufficiently large
horizon, we can show that the difference between V B

t and the optimal infinite-horizon V ∗ is not too
large. The overall error in PBVI is bounded, according to the triangle inequality, by:

‖V B
t − V ∗‖∞ ≤ ‖V B

t − V ∗
t ‖∞ + ‖V ∗

t − V ∗‖∞. (26)

The second term is bounded by γt‖V ∗
0 − V ∗‖ (Bertsekas & Tsitsiklis, 1996). The remainder of this

section states and proves a bound on the first term, which we denote εt.
Begin by assuming that H denotes an exact value backup, and H̃ denotes the PBVI backup.

Now define ε(b) to be the error introduced at a specific belief b ∈ ∆ by performing one iteration of
point-based backup:

ε(b) = |H̃V B(b)−HV B(b)|∞.

Next define ε to be the maximum total error introduced by doing one iteration of point-based backup:

ε = |H̃V B −HV B|∞
= max

b∈∆
ε(b).
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Finally define the density δB of a set of belief points B to be the maximum distance from any belief
in the simplex ∆ to a belief in set B. More precisely:

δB = max
b′∈∆

min
b∈B
‖b− b′‖1. (27)

Now we can prove the following lemma:

Lemma 1. The error introduced in PBVI when performing one iteration of value backup over B,
instead of over ∆, is bounded by

ε ≤ (Rmax −Rmin)δB

1− γ

Proof: Let b′ ∈ ∆ be the point where PBVI makes its worst error in value update, and b ∈ B
be the closest (1-norm) sampled belief to b′. Let α be the vector that is maximal at b, and α′ be the
vector that would be maximal at b′. By failing to include α′ in its solution set, PBVI makes an error
of at most α′ · b′ − α · b′. On the other hand, since α is maximal at b, then α′ · b ≤ α · b. So,

ε ≤ α′ · b′ − α · b′

= α′ · b′ − α · b′ + (α′ · b− α′ · b) Add zero
≤ α′ · b′ − α · b′ + α · b− α′ · b Assume α is optimal at b

= (α′ − α) · (b′ − b) Re-arrange the terms
≤ ‖α′ − α‖∞‖b′ − b‖1 By Hölder inequality
≤ ‖α′ − α‖∞δB By definition of δB

≤ (Rmax−Rmin)δB

1−γ

The last inequality holds because each α-vector represents the reward achievable starting from
some state and following some sequence of actions and observations. Therefore the sum of rewards
must fall between Rmin

1−γ and Rmax
1−γ .

Lemma 1 states a bound on the approximation error introduced by one iteration of point-based
value updates within the PBVI framework. We now look at the bound over multiple value updates.

Theorem 3.1. For any belief set B and any horizon t, the error of the PBVI algorithm εt = ‖V B
t −

V ∗
t ‖∞ is bounded by

εt ≤
(Rmax −Rmin)δB

(1− γ)2

Proof:

εt = ||V B
t − V ∗

t ||∞
= ||H̃V B

t−1 −HV ∗
t−1||∞ By definition of H̃

≤ ||H̃V B
t−1 −HV B

t−1||∞ + ||HV B
t−1 −HV ∗

t−1||∞ By triangle inequality

≤ (Rmax−Rmin)δB

1−γ + ||HV B
t−1 −HV ∗

t−1||∞ By lemma 1

≤ (Rmax−Rmin)δB

1−γ + γ||V B
t−1 − V ∗

t−1||∞ By contraction of exact value backup

= (Rmax−Rmin)δB

1−γ + γεt−1 By definition of εt−1

≤ (Rmax−Rmin)δB

(1−γ)2
By sum of a geometric series
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The bound described in this section depends on how densely B samples the belief simplex ∆.
In the case where not all beliefs are reachable, PBVI does not need to sample all of ∆ densely, but
can replace ∆ by the set of reachable beliefs ∆̄ (Fig. 2). The error bounds and convergence results
hold on ∆̄. We simply need to re-define b′ ∈ ∆̄ in lemma 1.

As a side note, it is worth pointing out that because PBVI makes no assumption regarding
the initial value function V B

0 , the point-based solution V B is not guaranteed to improve with the
addition of belief points. Nonetheless, the theorem presented in this section shows that the bound
on the error between V B

t (the point-based solution) and V ∗ (the optimal solution) is guaranteed
to decrease (or stay the same) with the addition of belief points. In cases where V B

t is initialized
pessimistically (e.g., V B

0 (s) = Rmin
1−γ ,∀s ∈ S, as suggested above), then V B

t will improve (or stay
the same) with each value backup and addition of belief points.

This section has thus far skirted the issue of belief point selection, however the bound presented
in this section clearly argues in favor of dense sampling over the belief simplex. While randomly
selecting points according to a uniform distribution may eventually accomplish this, it is generally
inefficient, in particular for high dimensional cases. Furthermore, it does not take advantage of
the fact that the error bound holds for dense sampling over reachable beliefs. Thus we seek more
efficient ways to generate belief points than at random over the entire simplex. This is the issue
explored in the next section.

4. Belief Point Selection

In section 3, we outlined the prototypical PBVI algorithm, while conveniently avoiding the question
of how and when belief points should be selected. There is a clear trade-off between including fewer
beliefs (which would favor fast planning over good performance), versus including many beliefs
(which would slow down planning, but ensure a better bound on performance). This brings up the
question of how many belief points should be included. However the number of points is not the only
consideration. It is likely that some collections of belief points (e.g., those frequently encountered)
are more likely to produce a good value function than others. This brings up the question of which
beliefs should be included.

A number of approaches have been proposed in the literature. For example, some exact value
function approaches use linear programs to identify points where the value function needs to be
further improved (Cheng, 1988; Littman, 1996; Zhang & Zhang, 2001), however this is typically
very expensive. The value function can also be approximated by learning the value at regular points,
using a fixed-resolution (Lovejoy, 1991a), or variable-resolution (Zhou & Hansen, 2001) grid. This
is less expensive than solving LPs, but can scales poorly as the number of states increases. Alter-
nately, one can use heuristics to generate grid-points (Hauskrecht, 2000; Poon, 2001). This tends
to be more scalable, though significant experimentation is required to establish which heuristics are
most useful.

This section presents five heuristic strategies for selecting belief points, from fast and naive
random sampling, to increasingly more sophisticated stochastic simulation techniques. The most
effective strategy we propose is one that carefully selects points that are likely to have the largest
impact in reducing the error bound (Theorem 3.1).

Most of the strategies we consider focus on selecting reachable beliefs, rather than getting
uniform coverage over the entire belief simplex. Therefore it is useful to begin this discussion by
looking at how reachability is assessed.
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While some exact POMDP value iteration solutions are optimal for any initial belief, PBVI (and
other related techniques) assume a known initial belief b0. As shown in Figure 2, we can use the
initial belief to build a tree of reachable beliefs. In this representation, each path through the tree
corresponds to a sequence in belief space, and increasing depth corresponds to an increasing plan
horizon. When selecting a set of belief points for PBVI, including all reachable beliefs would guar-
antee optimal performance (conditioned on the initial belief), but at the expense of computational
tractability, since the set of reachable beliefs, ∆̄, can grow exponentially with the planning hori-
zon. Therefore, it is best to select a subset B ⊂ ∆̄ which is sufficiently small for computational
tractability, but sufficiently large for good value function approximation.2

b
1   0a z b

1   1a z b
1   qa z

b
p   0a z b

p   1a z b
p   qa z

b
0

b
0   0   0   0a z  a z

b
0   0   p   qa z  a z b

0   1   0   0a z  a z b
0   1   p   qa z  a z

b
0   0a z b

0   1a z b
0   qa z

... ... ...

... ...

... ... ... ...

... ... ......

... ... ...

...

Figure 2: The set of reachable beliefs

In domains where the initial belief is not known (or not unique), it is still possible to use reach-
ability analysis by sampling a few initial beliefs (or using a set of known initial beliefs) to seed
multiple reachability trees.

We now discuss five strategies for selecting belief points, each of which can be used within the
PBVI framework to perform expansion of the belief set.

4.1 Random Belief Selection (RA)

The first strategy is also the simplest. It consists of sampling belief points from a uniform distri-
bution over the entire belief simplex. To sample over the simplex, we cannot simply sample each
b(s) independently over [0, 1] (this would violate the constraint that

∑
s b(s) = 1). Instead, we use

the algorithm described in Table 3 (see Devroye, 1986, for more details including proof of uniform
coverage).

This random point selection strategy, unlike the other strategies presented below, does not focus
on reachable beliefs. For this reason, we do not necessarily advocate this approach. However we
include it because it is an obvious choice, it is by far the simplest to implement, and it has been used
in related work by Hauskrecht (2000) and Poon (2001). In smaller domains (e.g., <20 states), it

2. All strategies discussed below assume that the belief point set, B, approximately doubles in size on each belief
expansion. This ensures that the number of rounds of value iteration is logarithmic (in the final number of belief
points needed). Alternately, each strategy could be used (with very little modification) to add a fixed number of new
belief points, but this may require many more rounds of value iteration. Since value iteration is much more expensive
than belief computation, it seems appropriate to double the size of B at each expansion.
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Bnew=EXPANDRA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

S := number of states 4
For i = 0 : S 5

btmp[i]=randuniform(0,1) 6
End 7
Sort btmp in ascending order 8
For i = 1 : S − 1 9

bnew[i]=btmp[i + 1]− btmp[i] 10
End 11
Bnew = Bnew ∪ bnew 12

End 13
Return Bnew 14

Table 3: Algorithm for belief expansion with random action selection

performs reasonably well, since the belief simplex is relatively low-dimensional. In large domains
(e.g., 100+ states), it cannot provide good coverage of the belief simplex with a reasonable number
of points, and therefore exhibits poor performance. This is demonstrated in the experimental results
presented in Section 6.

All of the remaining belief selection strategies make use of the belief tree (Figure 2) to focus on
reachable beliefs, rather than trying to cover the entire belief simplex.

4.2 Stochastic Simulation with Random Action (SSRA)

To generate points along the belief tree, we use a technique called stochastic simulation. It involves
running single-step forward trajectories from belief points already in B. Simulating a single-step
forward trajectory for a given b ∈ B requires selecting an action and observation pair (a, z), and
then computing the new belief τ(b, a, z) using the Bayesian update rule (Eqn 7). In the case of
Stochastic Simulation with Random Action (SSRA), the action selected for forward simulation is
picked (uniformly) at random from the full action set. Table 4 summarizes the belief expansion
procedure for SSRA. First, a state s is drawn from the belief distribution b. Second, an action a
is drawn at random from the full action set. Next, a posterior state s′ is drawn from the transition
model T (s, a, s′). Finally, an observation z is drawn from the observation model O(s′, a, z). Using
the triple (b, a, z), we can calculate the new belief bnew = τ(b, a, z) (according to Equation 7), and
add to the set of belief points Bnew.

This strategy is better than picking points at random (as described above), because it restricts
Bnew to the belief tree (Fig. 2). However this belief tree is still very large, especially when the
branching factor is high, due to large numbers of actions/observations. By being more selective
about which paths in the belief tree are explored, one can hope to effectively restrict the belief set
further.
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Bnew=EXPANDSSRA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

s=randmultinomial(b) 4
a=randuniform(A) 5
s′=randmultinomial(T (s, a, ·)) 6
z=randmultinomial(O(s′, a, ·)) 7
bnew = τ(b, a, z) (see Eqn 7) 8
Bnew = Bnew ∪ bnew 9

End 10
Return Bnew 11

Table 4: Algorithm for belief expansion with random action selection

A similar technique for stochastic simulation was discussed by Poon (2001), however the be-
lief set was initialized differently (not using b0), and therefore the stochastic simulations were not
restricted to the set of reachable beliefs.

4.3 Stochastic Simulation with Greedy Action (SSGA)

The procedure for generating points using Stochastic Simulation with Greedy Action (SSGA) is
based on the well-known ε-greedy exploration strategy used in reinforcement learning (Sutton &
Barto, 1998). This strategy is similar to the SSRA procedure, except that rather than choosing an
action randomly, SSEA will choose the greedy action (i.e., the current best action at the given belief
b) with probability 1− ε, and will chose a random action with probability ε (we use ε = 0.1). Once
the action is selected, we perform a single-step forward simulation as in SSRA to yield a new belief
point. Table 5 summarizes the belief expansion procedure for SSGA.

A similar technique, featuring stochastic simulation using greedy actions, was outlined
by Hauskrecht (2000). However in that case, the belief set included all extreme points of the belief
simplex, and stochastic simulation was done from those extreme points, rather than from the initial
belief.

4.4 Stochastic Simulation with Exploratory Action (SSEA)

The error bound in Section 3 suggests that PBVI performs best when its belief set is uniformly dense
in the set of reachable beliefs. The belief point strategies proposed thus far ignore this information.
The next approach we propose gradually expands B by greedily choosing new reachable beliefs
that improve the worst-case density.

Unlike SSRA and SSGA which select a single action to simulate the forward trajectory for
a given b ∈ B, Stochastic Sampling with Exploratory Action (SSEA) does a one step forward
simulation with each action, thus producing new beliefs {ba0 , ba1 , ...}. However it does not accept
all new beliefs {ba0 , ba1 , ...}, but rather calculates the L1 distance between each ba and its closest
neighbor in B. We then keep only that point ba that is farthest away from any point already in B.
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Bnew=EXPANDSSGA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

s=randmultinomial(b) 4
If randuniform[0, 1] < ε 5

a=randuniform(A) 6
Else 7

a=argmaxα∈Γ

∑
s∈S α(s)b(s) 8

End 9
s′=randmultinomial(T (s, a, ·)) 10
z=randmultinomial(O(s′, a, ·)) 11
bnew = τ(b, a, z) (see Eqn 7) 12
Bnew = Bnew ∪ bnew 13

End 14
Return Bnew 15

Table 5: Algorithm for belief expansion with greedy action selection

We use the L1 norm to calculate distance between belief points to be consistent with the error bound
in Theorem 3.1. Table 6 summarizes the SSEA expansion procedure.

Bnew=EXPANDSSEA(B, Γ) 1
Bnew= B 2
Foreach b ∈ B 3

Foreach a ∈ A 4
s=randmultinomial(b) 5
s′=randmultinomial(T (s, a, ·)) 6
z=randmultinomial(O(s′, a, ·)) 7
ba=τ(b, a, z) (see Eqn 7) 8

End 9
bnew = maxa∈A minb′∈Bnew

∑
s∈S |ba(s)− b′(s)| 10

Bnew = Bnew ∪ bnew (see Eqn 7) 11
End 12
Return Bnew 13

Table 6: Algorithm for belief expansion with exploratory action selection

4.5 Greedy Error Reduction (GER)

While the SSEA strategy above is able to improve the worst-case density of reachable beliefs, it
does not directly minimize the expected error. And while we would like to directly minimize the
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error, all we can measure is a bound on the error (Lemma 1). We therefore propose a final strategy
which greedily adds the candidate beliefs that will most effectively reduce this error bound. Our
empirical results, as presented below, show that this strategy is the most successful one discovered
thus far.

To understand how we expand the belief set in the GER strategy, it is useful to re-consider the
belief tree, which we reproduce in Figure 3. Each node in the tree corresponds to a specific belief.
We can divide these nodes into three sets. Set 1 includes those belief points already in B, in this
case b0 and ba0z0 . Set 2 contains those belief points that are immediate descendants of the points
in B (i.e., the nodes in the grey zone). These are the candidates from which we will select the new
points to be added to B. We call this set the envelope (denoted B̄). Set 3 contains all other reachable
beliefs.

b
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b
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b
0

b
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Figure 3: The set of reachable beliefs

We need to decide which belief b should be removed from the envelope B̄ and added to the set
of active belief points B. Every point that is added to B will improve our estimate of the value
function. The new point will reduce the error bounds (as defined in Section 3 for points that were
already in B; however, the error bound for the new point itself might be quite large. That means that
the largest error bound for points in B will not monotonically decrease; however, for a particular
point in B (such as the initial belief b0) the error bound will be decreasing.

To find the point which will most reduce our error bound, we can look at the analysis of
Lemma 1. Lemma 1 bounds the amount of additional error that a single point-based backup in-
troduces. Write b′ for the new belief which we are considering adding, and write b for some belief
which is already in B. Write α for the value hyper-plane at b, and write α′ for b′. As the lemma
points out, we have

ε(b′) ≤ (α′ − α) · (b′ − b)

When evaluating this error, we need to minimize over all b ∈ B. Also, since we do not know what
α′ will be until we have done some backups at b′, we make a conservative assumption and choose
the worst-case value of α′ ∈ [Rmin/(1− γ), Rmax/(1− γ)]|S|. Thus, we can evaluate:

ε(b′) ≤ min
b∈B

∑
s∈S

{
(Rmax

1−γ − α(s))(b′(s)− b(s)) b′(s) ≥ b(s)
(Rmin

1−γ − α(s))(b′(s)− b(s)) b′(s) < b(s)
(28)
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While one could simply pick the candidate b′ ∈ B̄ which currently has the largest error bound,3

ε(b′), this would ignore reachability considerations. Rather, we evaluate the error at each b ∈ B, by
weighing the error of the fringe nodes by their reachability probability:

ε(b) = max
a∈A

∑
z∈Z

O(b, a, z) ε(τ(b, a, z)) (29)

= max
a∈A

∑
z∈Z

∑
s∈S

∑
s′∈S

T (s, a, s′)O(s′, a, z)b(s)

 ε(τ(b, a, z)),

noting that τ(b, a, z) ∈ B̄, and ε(τ(b, a, z)) can be evaluated according to Equation 28.
Using Equation 29, we find the existing point b ∈ B with the largest error bound. We can now

directly reduce its error by adding to our set one of its descendants. We select the next-step belief
τ(b, a, z) which maximizes error bound reduction:

B = B ∪ τ(b̃, ã, z̃), (30)

where b̃, ã := argmax
b∈B,a∈A

∑
z∈Z

O(b, a, z) ε(τ(b, a, z)) (31)

z̃ := argmax
z∈Z

O(b̃, ã, z) ε(τ(b̃, ã, z)) (32)

Table 7 summarizes the GER approach to belief point selection.

Bnew=EXPANDGER(B, Γ) 1
Bnew= B 2
N=|B| 3
For i = 1 : N 4

b̃, ã := argmaxb∈B,a∈A

∑
z∈Z O(b, a, z) ε(τ(b, a, z)) 5

z̃ := argmaxz∈Z O(b̃, ã, z) ε(τ(b̃, ã, z)) 6
bnew = τ(b̃, ã, z̃) 7
Bnew = Bnew ∪ bnew 8

End 9
Return Bnew 10

Table 7: Algorithm for belief expansion

The complexity of adding one new points with GER is O(SAZB) (where S=#states,
A=#actions, Z=#observations, B=#beliefs already selected). In comparison, a value backup (for
one point) is O(S2AZB), and each point typically needs to be updated several times. As we point
out in empirical results below, belief selection (even with GER) takes minimal time compared to
value backup.

This concludes our presentation of belief selection techniques for the PBVI framework. In
summary, there are three factors to consider when picking a belief point: (1) how likely is it to

3. We tried this, however it did not perform as well empirically as what we suggest in Equation 29, because it did not
consider the probability of reaching that belief.
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occur? (2) how far is it from other belief points already selected? (3) what is the current approximate
value for that point? The simplest heuristic (RA) accounts for none of these, whereas some of the
others (SSRA, SSGA, SSEA) account for one, and GER incorporates all three factors.

4.6 Belief Expansion Example

We consider a simple example, shown in Figure 4, to illustrate the difference between the various
belief expansion techniques outlined above. This 1D POMDP (Littman, 1996) has four states, one
of which is the goal (indicated by the star). The two actions, left and right, have the expected
(deterministic) effect. The goal state is fully observable (observation=goal), while the other three
states are aliased (observation=none). A reward of +1 is received for being in the goal state,
otherwise the reward is zero. We assume a discount factor of γ = 0.75. The initial distribution is
uniform over non-goal states, and the system resets to that distribution whenever the goal is reached.

Figure 4: 1D POMDP

The belief set B is always initialized to contain the initial belief b0. Figure 5 shows part of
the belief tree, including the original belief set (top node), and its envelope (leaf nodes). We now
consider what each belief expansion method might do.

b2=[  0   0   1   0  ] b4=[  0   0   1   0  ]b3=[  0   0.5   0   0.5  ]b1=[  1   0   0   0  ]

b0=[  1/ 3   1/ 3   0   1/ 3  ]

a=righta=left

[  2/ 3   0   1/ 3   0  ] [  0   1/ 3   1/ 3   1/ 3  ]

Pr(z=none)=2/3 Pr(z=none)=2/3 Pr(z=goal) = 1/3Pr(z=goal) = 1/3

Figure 5: 1D POMDP belief tree

The Random heuristic can pick any belief point (with equal probability) from the entire belief
simplex. It does not directly expand any branches of the belief tree, but it will eventually put samples
nearby.

The Stochastic Simulation with Random Action has a 50% chance of picking each action.
Then, regardless of which action was picked, there’s a 2/3 chance of seeing observation none, and a
1/3 chance of seeing observation goal. As a result, the SSRA will select: Pr(bnew = b1) = 0.5∗ 2

3 ,
Pr(bnew = b2) = 0.5 ∗ 1

3 , Pr(bnew = b3) = 0.5 ∗ 2
3 , Pr(bnew = b4) = 0.5 ∗ 1

3 .

355



PINEAU, GORDON & THRUN

The Stochastic Simulation with Greedy Action first needs to know the policy at b0. A few
iterations of point-based updates (Section 2.4) applied to this initial (single point) belief set reveal
that π(b0) = left.4 As a result, expansion of the belief will greedily select action left with proba-
bility 1− ε + ε

|A| = 0.95 (assuming ε = 0.1 and |A| = 2). Action right will be selected for belief
expansion with probability ε

|A| = 0.05. Combining this along with the observation probabilities, we
can tell that SSGA will expand as follows: Pr(bnew = b1) = 0.95 ∗ 2

3 , Pr(bnew = b2) = 0.95 ∗ 1
3 ,

Pr(bnew = b3) = 0.05 ∗ 2
3 , Pr(bnew = b4) = 0.05 ∗ 1

3 .
Predicting the choice of Stochastic Simulation with Exploratory Action is slightly more com-

plicated. Four cases can occur, depending on the outcomes of random forward simulation from b0:

1. If action left goes to b1 (Pr = 2/3) and action right goes to b3 (Pr = 2/3), then b1 will be
selected because ||b0 − b1||1 = 4/3 whereas ||b0 − b3||1 = 2/3. This case will occur with
Pr = 4/9.

2. If action left goes to b1 (Pr = 2/3) and action right goes to b4 (Pr = 1/3), then b4 will be
selected because ||b0 − b4||1 = 2. This case will occur with Pr = 2/9.

3. If action left goes to b2 (Pr = 1/3) and action right goes to b3 (Pr = 2/3), then b2 will be
selected because ||b0 − b2||1 = 2. This case will occur with Pr = 2/9.

4. If action left goes to b2 (Pr = 1/3) and action right goes to b4 (Pr = 1/3), then either can
be selected (since they are equidistant to b0). In this case each b2 and b4 has Pr = 1/18 of
being selected.

All told, Pr(bnew = b1) = 4/9, Pr(bnew = b2) = 5/18, Pr(bnew = b3) = 0, Pr(bnew = b4) =
5/18.

Now looking at belief expansion using Greedy Error Reduction, we need to compute the
error ε(τ(b0, a, z)),∀a, z. We consider Equation 28: since B has only one point, b0, then nec-
essarily b = b0. To estimate α, we apply multiple steps of value backup at b0 and obtain
α = [0.94 0.94 0.92 1.74]. Using b and α as such, we can now estimate the error at each can-
didate belief: ε(b1) = 2.93, ε(b2) = 4.28, ε(b3) = 1.20, ε(b4) = 4.28. Note that because B has
only one point, the dominating factor is their distance to b0. Next, we factor in the observation
probabilities, as in Eqns 31-32, which allows us to determine that ã = left and z̃ = none, and
therefore we should select bnew = b1.

In summary, we note that SSGA, SSEA and GER all favor selecting b1, whereas SSRA picks
each option with equal probability (considering that b2 and b4 are actually the same). In general,
for a problem of this size, it is reasonable to expand the entire belief tree. Any of the techniques
discussed here will be do this quickly, except RA which will not pick the exact nodes in the belief
tree, but will select equally good nearby beliefs. This example is provided simply to illustrate the
different choices made by each strategy.

5. A Review of Point-Based Approaches for POMDP Solving

The previous section describes a new class of point-based algorithms for POMDP solving. The idea
of using point-based updates in POMDPs has been explored previously in the literature, and in this

4. This may not be obvious to the reader, but it follows directly from the repeated application of equations 20–23.
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section we summarize the main results. For most of the approaches discussed below, the procedure
for updating the value function at a given point remains unchanged (as outlined in Section 2.4).
Rather, the approaches are mainly differentiated by how the belief points are selected, and by how
the updates are ordered.

5.1 Exact Point-Based Algorithms

Some of the earlier exact POMDP techniques use point-based backups to optimize the value func-
tion over limited regions of the belief simplex (Sondik, 1971; Cheng, 1988). These techniques
typically require solving multiple linear programs to find candidate belief points where the value
function is sub-optimal, which can be an expensive operation. Furthermore, to guarantee that an ex-
act solution is found, relevant beliefs must be generated systematically, meaning that all reachable
beliefs must be considered. As a result, these methods typically cannot scale beyond a handful of
states/actions/observations.

In work by Zhang and Zhang (2001), point-based updates are interleaved with standard dy-
namic programming updates to further accelerate planning. In this case the points are not generated
systematically, but rather backups are applied to both a set of witness points and LP points. The
witness points are identified as a result of the standard dynamic programming updates, whereas
the LP points are identified by solving linear programs to identify beliefs where the value has not
yet been improved. Both of these procedures are significantly more expensive than the belief se-
lection heuristics presented in this paper and results are limited to domains with at most a dozen
states/actions/observations. Nonetheless this approach is guaranteed to converge to the optimal so-
lution.

5.2 Grid-Based Approximations

There exists many approaches that approximate the value function using a finite set of belief points
along with their values. These points are often distributed according to a grid pattern over the belief
space, thus the name grid-based approximation. An interpolation-extrapolation rule specifies the
value at non-grid points as a function of the value of neighboring grid-points. These approaches
ignore the convexity of the POMDP value function.

Performing value backups over grid-points is relatively straightforward: dynamic programming
updates as specified in Equation 11 can be adapted to grid-points for a simple polynomial-time
algorithm. Given a set of grid points G, the value at each bG ∈ G is defined by:

V (bG) = max
a

[∑
s∈S

bG(s)R(s, a) + γ
∑
z∈Z

Pr(z | a, b)V (τ(b, a, z))

]
. (33)

If τ(b, a, z) is part of the grid, then V (τ(b, a, z)) is defined by the value backups. Otherwise,
V (τ(b, a, z)) is approximated using an interpolation rule such as:

V (τ(b, a, z) =
|G|∑
i=1

λ(i)V (bG
i ), (34)

where λ(i) ≥ 0 and
∑|G|

i=1 λ(i) = 1. This produces a convex combination over grid-points. The
two more interesting questions with respect to grid-based approximations are (1) how to calculate
the interpolation function; and (2) how to select grid points.
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In general, to find the interpolation that leads to the best value function approximation at a point
b requires solving the following linear program:

Minimize
|G|∑
i=1

λ(i)V (bG
i ) (35)

Subject to b =
|G|∑
i=1

λ(i)bG
i (36)

|G|∑
i=1

λ(i) = 1 (37)

0 ≤ λ(i) ≤ 1, 1 ≤ i ≤ |G|. (38)

Different approaches have been proposed to select grid points. Lovejoy (1991a) constructs a
fixed-resolution regular grid over the entire belief space. A benefit is that value interpolations can be
calculated quickly by considering only neighboring grid-points. The disadvantage is that the number
of grid points grows exponentially with the dimensionality of the belief (i.e., with the number of
states). A simpler approach would be to select random points over the belief space (Hauskrecht,
1997). But this requires slower interpolation for estimating the value of the new points. Both
of these methods are less than ideal when the beliefs encountered are not uniformly distributed.
In particular, many problems are characterized by dense beliefs at the edges of the simplex (i.e.,
probability mass focused on a few states, and most other states have zero probability), and low
belief density in the middle of the simplex. A distribution of grid-points that better reflects the
actual distribution over belief points is therefore preferable.

Alternately, Hauskrecht (1997) also proposes using the corner points of the belief simplex (e.g.,
[1 0 0 . . . ], [0 1 0 . . . ], . . . , [0 0 0 . . . 1]), and generating additional successor belief points through
one-step stochastic simulations (Eqn 7) from the corner points. He also proposes an approximate
interpolation algorithm that uses the values at |S|−1 critical points plus one non-critical point in the
grid. An alternative approach is that by Brafman (1997), which builds a grid by also starting with the
critical points of the belief simplex, but then uses a heuristic to estimate the usefulness of gradually
adding intermediate points (e.g., bk = 0.5bi + 0.5bj , for any pair of points). Both Hauskrecht’s
and Brafman’s methods—generally referred to as non-regular grid approximations—require fewer
points than Lovejoy’s regular grid approach. However the interpolation rule used to calculate the
value at non-grid points is typically more expensive to compute, since it involves searching over all
grid points, rather than just the neighboring sub-simplex.

Zhou and Hansen (2001) propose a grid-based approximation that combines advantages from
both regular and non-regular grids. The idea is to sub-sample the regular fixed-resolution grid
proposed by Lovejoy. This gives a variable resolution grid since some parts of the beliefs can be
more densely sampled than others and by restricting grid points to lie on the fixed-resolution grid
the approach can guarantee fast value interpolation for non-grid points. Nonetheless, the algorithm
often requires a large number of grid points to achieve good performance.

Finally, Bonet (2002) proposes the first grid-based algorithm for POMDPs with ε-optimality
(for any ε > 0). This approach requires thorough coverage of the belief space such that every point
is within δ of a grid-point. The value update for each grid point is fast to implement, since the
interpolation rule depends only on the nearest neighbor of the one-step successor belief for each
grid point (which can be pre-computed). The main limitation is the fact that ε-coverage of the belief
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space can only be attained by using exponentially many grid points. Furthermore, this method
requires good coverage of the entire belief space, as opposed to the algorithms of Section 4, which
focus on coverage of the reachable beliefs.

5.3 Approximate Point-Based Algorithms

More similar to the PBVI-class of algorithms are those approaches that update both the value and
gradient at each grid point (Lovejoy, 1991a; Hauskrecht, 2000; Poon, 2001). These methods are able
to preserve the piecewise linearity and convexity of the value function, and define a value function
over the entire belief simplex. Most of these methods use random beliefs, and/or require the inclu-
sion of a large number of fixed beliefs such as the corners of the probability simplex. In contrast, the
PBVI-class algorithms we propose (with the exception of PBVI+RA) select only reachable beliefs,
and in particular those belief points that improve the error bounds as quickly as possible. The idea
of using reachability analysis (also known as stochastic simulation) to generate new points was ex-
plored by some of the earlier approaches (Hauskrecht, 2000; Poon, 2001). However their analysis
indicated that stochastic simulation was not superior to random point placements. We re-visit this
question (and conclude otherwise) in the empirical evaluation presented below.

More recently, a technique closely related to PBVI called Perseus has been proposed (Vlassis
& Spaan, 2004; Spaan & Vlassis, 2005). Perseus uses point-based backups similar to the ones
used in PBVI, but the two approaches differ in two ways. First, Perseus uses randomly generated
trajectories through the belief space to select a set of belief points. This is in contrast to the belief-
point selection heuristics outlined above for PBVI. Second, whereas PBVI systematically updates
the value at all belief points at every epoch of value iteration, Perseus selects a subset of points
to update at every epoch. The method used to select points is the following: points are randomly
sampled one at a time and their value is updated. This continues until the value of all points has
been improved. The insight resides in observing that updating the α-vector at one point often also
improves the value estimate of other nearby points (which are then removed from the sampling set).
This approach is conceptually simple and empirically effective.

The HSVI algorithm (Smith & Simmons, 2004) is another point-based algorithm, which differs
from PBVI both in how it picks belief points, and in how it orders value updates. It maintains a lower
and an upper bound on the value function approximation, and uses it to select belief points. The
updating of the upper bound requires solving linear programs and is generally the most expensive
step. The ordering of value update is as follows: whenever a belief point is expanded from the
belief tree, HSVI updates only the value of its direct ancestors (parents, grand-parents, etc., all the
way back to the initial belief in the head node). This is in contrast to PBVI which performs a batch
of belief point expansions, followed by a batch of value updates over all points. In other respects,
HSVI and PBVI share many similarities: both offer anytime performance, theoretical guarantees,
and scalability; finally the HSVI also takes reachability into account. We will evaluate empirical
differences between HSVI and PBVI in the next section.

Finally, the RTBSS algorithm (Paquet, 2005) offers an online version of point-based algorithms.
The idea is to construct a belief reachability tree similar to Figure 2, but using the current belief
as the top node, and terminating the tree at some fixed depth d. The value at each node can be
computed recursively over the finite planning horizon d. The algorithm can eliminate some subtrees
by calculating a bound on their value, and comparing it to the value of other computed subtrees.
RTBSS can in fact be combined with an offline algorithms such as PBVI, where the offline algorithm
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is used to pre-compute a lower bound on the exact value function; this can be used to increase subtree
pruning, thereby increasing the depth of the online tree construction and thus also the quality of the
solution. This online algorithm can yield fast results in very large POMDP domains. However the
overall solution quality does not achieve the same error guarantees as the offline approaches.

6. Experimental Evaluation

This section looks at a variety of simulated POMDP domains to evaluate the empirical performance
of PBVI. The first three domains—Tiger-grid, Hallway, Hallway2—are extracted from the estab-
lished POMDP literature (Cassandra, 1999). The fourth—Tag—was introduced in some of our
earlier work as a new challenge for POMDP algorithms.

The first goal of these experiments is to establish the scalability of the PBVI framework; this is
accomplished by showing that PBVI-type algorithms can successfully solve problems in excess of
800 states. We also demonstrate that PBVI algorithms compare favorably to alternative approximate
value iteration methods. Finally, following on the example of Section 4.6, we study at a larger scale
the impact of the belief selection strategy, which confirms the superior performance of the GER
strategy.

6.1 Maze Problems

There exists a set of benchmark problems commonly used to evaluate POMDP planning algo-
rithms (Cassandra, 1999). This section presents results demonstrating the performance of PBVI-
class algorithms on some of those problems. While these benchmark problems are relatively small
(at most 92 states, 5 actions, and 17 observations) compared to most robotics planning domains,
they are useful from an analysis point of view and for comparison to previous work.

The initial performance analysis focuses on three well-known problems from the POMDP liter-
ature: Tiger-grid (also known as Maze33), Hallway, and Hallway2. All three are maze navigation
problems of various sizes. The problems are fully described by Littman, Cassandra, and Kaelbling
(1995a); parameterization is available from Cassandra (1999).

Figure 6a presents results for the Tiger-grid domain. Replicating earlier experiments by Braf-
man (1997), test runs terminate after 500 steps (there’s an automatic reset every time the goal is
reached) and results are averaged over 151 runs.

Figures 6b and 6c present results for the Hallway and Hallway2 domains, respectively. In this
case, test runs are terminated when the goal is reached or after 251 steps (whichever occurs first),
and the results are averaged over 251 runs. This is consistent with earlier experiments by Littman,
Cassandra, and Kaelbling (1995b).

All three figures compare the performance of three different algorithms:

1. PBVI with Greedy Error Reduction (GER) belief point selection (Section 4.5).

2. QMDP (Littman et al., 1995b),

3. Incremental Pruning (Cassandra, Littman, & Zhang, 1997),

The QMDP heuristic (Littman et al., 1995b) takes into account partial observability at the cur-
rent step, but assumes full observability on subsequent steps:

πQMDP (b) = argmax
a∈A

∑
s∈S

b(s)QMDP (s, a). (39)
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The resulting policy has some ability to resolve uncertainty, but cannot benefit from long-term
information gathering, or compare actions with different information potential. QMDP can be seen
as providing a good performance baseline. For the three problems considered, it finds a policy
extremely quickly, but the policy is clearly sub-optimal.

At the other end of the spectrum, the Incremental Pruning algorithm (Zhang & Liu, 1996; Cas-
sandra et al., 1997) is a direct extension of the enumeration algorithm described above. The princi-
pal insight is that the pruning of dominated α-vectors (Eqn 19) can be interleaved directly with the
cross-sum operator (Eqn 16). The resulting value function is the same, but the algorithm is more
efficient because it discards unnecessary vectors earlier on. While Incremental Pruning algorithm
can theoretically find an optimal policy, for the three problems considered here it would take far too
long. In fact, only a few iterations of exact backups were completed in reasonable time. In all three
problems, the resulting short-horizon policy was worse than the corresponding PBVI policy.

As shown in Figure 6, PBVI+GER provides a much better time/performance trade-off. It finds
policies that are better than those obtained with QMDP, and does so in a matter of seconds, thereby
demonstrating that it does not suffer from the same paralyzing complexity as Incremental Pruning.

While those who take a closer look at these results may be surprised to see that the performance
of PBVI actually decreases at some points (e.g., the “dip” in Fig. 6c), this is not unexpected. It
is important to remember that the theoretical properties of PBVI only guarantee a bound on the
estimate of the value function, but as shown here, this does not necessarily imply that the policy
needs to improve monotonically. Nonetheless, as the value function converges, so will the policy
(albeit at a slower rate).

6.2 Tag Problem

While the previous section establishes the good performance of PBVI on some well-known simu-
lation problems, these are quite small and do not fully demonstrate the scalability of the algorithm.
To provide a better understanding of PBVI’s effectiveness for large problems, this section presents
results obtained when applying PBVI to the Tag problem, a robot version of the popular game of
lasertag. In this problem, the agent must navigate its environment with the goal of searching for,
and tagging, a moving target (Rosencrantz, Gordon, & Thrun, 2003). Real-world versions of this
problem can take many forms, and in Section 7 we present a similar problem domain where an
interactive service robot must find an elderly patient roaming the corridors of a nursing home.

The synthetic scenario considered here is an order of magnitude larger (870 states) than most
other POMDP benchmarks in the literature (Cassandra, 1999). When formulated as a POMDP prob-
lem, the goal is for the robot to optimize a policy allowing it to quickly find the person, assuming
that the person moves (stochastically) according to a fixed policy. The spatial configuration of the
environment used throughout this experiment is illustrated in Figure 7.

The state space is described by the cross-product of two position features, Robot =
{s0, . . . , s29} and Person = {s0, . . . , s29, sfound}. Both start in independently-selected random
positions, and the scenario finishes when Person = sfound. The robot can select from five actions:
{North, South, East, West, Tag}. A reward of −1 is imposed for each motion action; the Tag action
results in a +10 reward if the robot and person are in the same cell, or −10 otherwise. Through-
out the scenario, the Robot’s position is fully observable, and a Move action has the predictable
deterministic effect, e. g.:

Pr(Robot = s10 | Robot = s0, North) = 1,
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Figure 6: PBVI performance on well-known POMDP problems. Each figure shows the sum of
discounted reward as a function of the computation time for a different problem domain.
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362



ANYTIME POINT-BASED APPROXIMATIONS FOR LARGE POMDPS

and so on for each adjacent cell and direction. The position of the person, on the other hand,
is completely unobservable unless both agents are in the same cell. Meanwhile at each step, the
person (with omniscient knowledge) moves away from the robot with Pr = 0.8 and stays in place
with Pr = 0.2, e. g.:

Pr(Person = s16 | Person = s15&Robot = s0) = 0.4
Pr(Person = s20 | Person = s15&Robot = s0) = 0.4
Pr(Person = s15 | Person = s15&Robot = s0) = 0.2.

Figure 8 shows the performance of PBVI with Greedy Error Reduction on the Tag domain. Re-
sults are averaged over 1000 runs, using different (randomly chosen) start positions for each run.
The QMDP approximation is also tested to provide a baseline comparison. The results show a grad-
ual improvement in PBVI’s performance as samples are added (each shown data point represents a
new expansion of the belief set with value backups). It also confirms that computation time is di-
rectly related to the number of belief points. PBVI requires fewer than 100 belief points to overcome
QMDP, and the performance keeps on improving as more points are added. Performance appears to
be converging with approximately 250 belief points. These results show that a PBVI-class algorithm
can effectively tackle a problem with 870 states.
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Figure 8: PBVI performance on Tag problem. We show the sum of discounted reward as a function
of the computation time.

This problem is far beyond the reach of the Incremental Pruning algorithm. A single iteration of
optimal value iteration on a problem of this size could produce over 1020 α-vectors before pruning.
Therefore, it was not applied.

This section describes one version of the Tag problem, which was used for simulation purposes
in our work and that of others (Braziunas & Boutilier, 2004; Poupart & Boutilier, 2004; Smith &
Simmons, 2004; Vlassis & Spaan, 2004). In fact, the problem can be re-formulated in a variety
of ways to accommodate different environments, person motion models, and observation models.
Section 7 discusses variations on this problem using more realistic robot and person models, and
presents results validated onboard an independently developed robot simulator.
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6.3 Empirical Comparison of PBVI-Class Algorithms

Having establish the good performance of PBVI+GER on a number of problems, we now consider
empirical results for the different PBVI-class algorithms. This allows us to compare the effects
of the various belief expansion heuristics. We repeat the experiments on the Tiger-grid, Hallway,
Hallway2 and Tag domains, as outlined above, but in this case we compare the performance of five
different PBVI-class algorithms:

1. PBVI+RA: PBVI with belief points selected randomly from belief simplex (Section 4.1).

2. PBVI+SSRA: PBVI with belief points selected using stochastic simulation with random ac-
tion (Section 4.2).

3. PBVI+SSGA: PBVI with belief points selected using stochastic simulation with greedy action
(Section 4.3).

4. PBVI+SSEA: PBVI with belief points selected using stochastic simulation with exploratory
action (Section 4.4).

5. PBVI+GER: PBVI with belief points selected using greedy error reduction (Section 4.5).

All PBVI-class algorithms can converge to the optimal value function given a sufficiently large
set of belief points. But the rate at which they converge depends on their ability to generally pick
useful points, and leave out the points containing less information. Since the computation time
is directly proportional to the number of belief points, the algorithm with the best performance is
generally the one which can find a good solution with the fewest belief points.

Figure 9 shows a comparison between the performance of each of the five PBVI-class algorithms
enumerated above on each of the four problem domains. In these pictures, we present performance
results as a function of computation time.5

As seen from these results, in the smallest domain—Tiger-grid—PBVI+GER is similar in per-
formance to the random approach PBVI+RA. In the Hallway domain, PBVI+GER reaches near-
optimal performance earlier than the other algorithms. In Hallway2, it is unclear which of the five
algorithms is best, though GER seems to converge earlier.

In the larger Tag domain, the situation is more interesting. The PBVI+GER combination is
clearly superior to the others. There is reason to believe that PBVI+SSEA could match its perfor-
mance, but would require on the order of twice as many points to do so. Nonetheless, PBVI+SSEA
performs better than either PBVI+SSRA or PBVI+SSGA. With the random heuristic (PBVI+RA),
the reward did not improve regardless of how many belief points were added (4000+), and there-
fore we do not include it in the results. The results presented in Figure 9 suggest that the choice
of belief points is crucial when dealing with large problems. In general, we believe that GER (and
SSEA to a lesser degree) is superior to the other heuristics for solving domains with large numbers
of action/observation pairs, because it has the ability to selectively chooses which branches of the
reachability tree to explore.

As a side note, we were surprised by SSGA’s poor performance (in comparison with SSRA) on
the Tiger-grid and Tag domains. This could be due to a poorly tuned greedy bias ε, which we did

5. Nearly identical graphs can be produced showing performance results as a function of the number of belief points.
This confirms complexity analysis showing that the computation time is directly related to the number of belief
points.
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Figure 9: Belief expansion results showing execution performance as a function of the computation
time.

not investigate at length. Future investigations using problems with a larger number of actions may
shed better light on this issue.

In terms of computational requirement, GER is the most expensive to compute, followed by
SSEA. However in all cases, the time to perform the belief expansion step is generally negligible
(< 1%) compared to the cost of the value update steps. Therefore it seems best to use the more
effective (though more expensive) heuristic.

The PBVI framework can accommodate a wide variety of strategies, past what is described in
this paper. For example, one could extract belief points directly from sampled experimental traces.
This will be the subject of future investigations.

6.4 Comparative Analysis

While the results outlined above show that PBVI-type algorithms are able to handle a wide spectrum
of large-scale POMDP domains, it is not sufficient to compare the performance of PBVI only to
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QMDP and Incremental Pruning—the two ends of the spectrum—as done in Section 6.1. In fact
there has been significant activity in recent years in the development of fast approximate POMDP
algorithms, and so it is worthwhile to spend some time comparing the PBVI framework to these
alternative approaches. This is made easy by the fact that many of these have been validated using
the same set of problems as described above.

Table 8 summarizes the performance of a large number of recent POMDP approximation algo-
rithms, including PBVI, on the four target domains: Tiger-grid, Hallway, Hallway2, and Tag. The
algorithms listed were selected based on the availability of comparable published results or available
code, or in some cases because the algorithm could be re-implemented easily.

We compare their empirical performance, in terms of execution performance versus planning,
on a set of simulation domains. However as is often the case, these results show that there is not a
single algorithm that is best for solving all problems. We therefore also compile a summary of the
attributes and characteristics of each algorithm, in an attempt to tell which algorithm may be best
for what types of problems. Table 8 includes (whenever possible) the goal completion rates, sum
of rewards, policy computation time, number of required belief points, and policy size (number of
α-vectors, or number of nodes in finite state controllers). The number of belief points and policy
size are often identical, however the latter can be smaller if a single α-vector is best for multiple
belief points.

The results marked [*] were computed by us on a 3GHz Pentium 4; other results were likely
computed on different platforms, and therefore time comparisons may be approximate at best.
Nonetheless the number of samples and the size of the final policy are both useful indicators of
computation time. The results reported for PBVI correspond to the earliest data point from Fig-
ures 6 and 8 where PBVI+GER achieves top performance.

Algorithms are listed in order of performance, starting with the algorithm(s) achieving the high-
est reward. All results assume a standard (not lookahead) controller (see Hauskrecht, 2000, for
definition).

Overall, the results indicate that some of the algorithms achieve sub-par performance in terms of
expected reward. In the case of QMDP, this is because of fundamental limitations in the algorithm.
While Incremental Pruning and the exact value-directed compression can theoretically reach optimal
performance, they would require longer computation time to do so. The grid method (see Tiger-grid
results), BPI (see Tiger-grid, Hallway and Tag results) and PBUA (see Tag results) suffer from a
similar problem, but offer much more graceful performance degradation. It is worth noting that none
of these approaches assumes a known initial belief, so in effect they are solving harder problems.
The results for BBSLS are not sufficiently extensive to comment at length, but it appears to be able
to find reasonable policies with small controllers (see Tag results).

The remaining algorithms—HSVI, Perseus, and our own PBVI+GER—all offer comparable
performance on these relatively large POMDP domains. HSVI seems to offer good control perfor-
mance on the full range of tasks, but requires bigger controllers, and is therefore probably slower,
especially on domains with high stochasticity (e.g., Tiger-grid, Hallway, Hallway2). The trade-offs
between Perseus and PBVI+GER are less clear: the planning time, controller size and performance
quality are quite comparable, and in fact the two approaches are very similar. Similarities and
differences between the two approaches are explored further in Section 7.
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Method Goal% Reward ± Conf.Int. Time(s) |B| |π|
Tiger-Grid (Maze33)
HSVI (Smith & Simmons, 2004) n.a. 2.35 10341 n.v. 4860
Perseus (Vlassis & Spaan, 2004) n.a. 2.34 104 10000 134
PBUA (Poon, 2001) n.a. 2.30 12116 660 n.v.
PBVI+GER[*] n.a. 2.27 ± 0.13 397 512 508
BPI (Poupart & Boutilier, 2004) n.a. 1.81 163420 n.a. 1500
Grid (Brafman, 1997) n.a. 0.94 n.v. 174 n.a.
QMDP (Littman et al., 1995b)[*] n.a. 0.276 0.02 n.a. 5
IncPrune (Cassandra et al., 1997)[*] n.a. 0.0 24hrs+ n.a. n.v.
Exact VDC (Poupart & Boutilier, 2003)[*] n.a. 0.0 24hrs+ n.a. n.v.
Hallway
PBUA (Poon, 2001) 100 0.53 450 300 n.v.
HSVI (Smith & Simmons, 2004) 100 0.52 10836 n.v. 1341
PBVI+GER[*] 100 0.51 ± 0.03 19 64 64
Perseus (Vlassis & Spaan, 2004) n.v. 0.51 35 10000 55
BPI (Poupart & Boutilier, 2004) n.v. 0.51 249730 n.a. 1500
QMDP (Littman et al., 1995b)[*] 51 0.265 0.03 n.a. 5
Exact VDC (Poupart & Boutilier, 2003)[*] 39 0.161 24hrs+ n.a. n.v.
IncPrune (Cassandra et al., 1997)[*] 39 0.161 24hrs+ n.a. n.v.
Hallway2
PBVI+GER[*] 100 0.37 ± 0.04 6 32 31
Perseus (Vlassis & Spaan, 2004) n.v. 0.35 10 10000 56
HSVI (Smith & Simmons, 2004) 100 0.35 10010 n.v. 1571
PBUA (Poon, 2001) 100 0.35 27898 1840 n.v.
BPI (Poupart & Boutilier, 2004) n.v. 0.28 274280 n.a. 1500
Grid (Brafman, 1997) 98 n.v. n.v. 337 n.a.
QMDP (Littman et al., 1995b)[*] 22 0.109 1.44 n.a. 5
Exact VDC (Poupart & Boutilier, 2003)[*] 48 0.137 24hrs+ n.a. n.v.
IncPrune (Cassandra et al., 1997)[*] 48 0.137 24hrs+ n.a. n.v.
Tag
HSVI (Smith & Simmons, 2004) 100 -6.37 10113 n.v. 1657
PBVI+GER[*] 100 -6.75 ± 0.39 8946 256 203
Perseus (Vlassis & Spaan, 2004) n.v. -6.85 3076 10000 205
BBSLS (Braziunas & Boutilier, 2004) n.v. -8.31 100054 n.a. 30
BPI (Poupart & Boutilier, 2004) n.v. -9.18 59772 n.a. 940
QMDP (Littman et al., 1995b)[*] 19 -16.62 1.33 n.a. 5
PBUA (Poon, 2001)[*] 0 -19.9 24hrs+ 4096 n.v.
IncPrune (Cassandra et al., 1997)[*] 0 -19.9 24hrs+ n.a. n.v.
n.a.=not applicable n.v.=not available [*]=results computed by us

Table 8: Results of PBVI for standard POMDP domains
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6.5 Error Estimates

The results presented thus far suggest that the PBVI framework performs best when using the
Greedy Error Reduction (GER) technique for selecting belief points. Under this scheme, to de-
cide which belief points will be included, we estimate an error bound at a set of candidate points
and then pick the one with the largest error estimate. The error bound is estimated as described in
Equation 28. We now consider the question of how this estimate evolves as more and more points
are added. The natural intuition is that with the first few points, error estimates will be very large,
but as the density of the belief set increases, the error estimates will become much smaller.

Figure 10 reconsiders the four target domains: Tiger-grid, Hallway, Hallway2 and Tag. In each
case, we present both the reward performance as a function of the number of belief points (top
row graphs), and the error estimate of each point selected according the order in which points were
picked (bottom row graphs). In addition, the bottom graphs also show (in dashed line) a trivial
bound on the error ||Vt − V ∗

t || ≤ Rmax−Rmin
1−γ , valid for any t-step value function of an arbitrary

policy. As expected, our bound is typically tighter than the trivial bound. In Tag, this only occurs
once the number of belief points exceeds the number of states, which is not surprising, given that our
bound depends on distance between reachable beliefs, and that all states are reachable beliefs in this
domain. Overall, it seems that there is reasonably good correspondence between an improvement
in performance and a decrease in our error estimates. We can conclude from this figure that even
though the PBVI error is quite loose, it can in fact be informative in guiding exploration of the belief
simplex.

We note that there is significant variance in our error estimates from one belief point to the next,
as illustrated by the non-monotonic behavior of the curves in the bottom graphs of Figure 10. This
behavior can be attributed to a few possibilities. First, there is the fact that the error estimate at
a given belief is only approximate. And the value function used to calculate the error estimate is
itself approximate. In addition, there is the fact that new belief points are always selected from the
envelope of reachable beliefs, not from the set of all reachable beliefs. This suggests that GER could
be improved by maintaining a deeper envelope of candidate belief points. Currently the envelope
contains those points that are 1-step forward simulations from the points already selected. It may
be useful to consider points 2–3 steps ahead. We predict this would reduce the jaggedness seen in
Figure 10, and more importantly, also reduce the number of points necessary for good performance.
Of course, the tradeoff between the time spent selecting points and the time spent planning would
have to be re-evaluated under this light.

7. Robotic Applications

The overall motivation behind the work described in this paper is the desire to provide high-quality
robust planning for real-world autonomous systems, and in particular for robots. On the practi-
cal side, our search for a robust robot controller has been in large part guided by the Nursebot
project (Pineau, Montermerlo, Pollack, Roy, & Thrun, 2003). The overall goal of the project is to
develop personalized robotic technology that can play an active role in providing improved care
and services to non-institutionalized elderly people. Pearl, shown in Figure 11, is the main robotic
platform used for this project.

From the many services a nursing-assistant robot could provide (Engelberger, 1999; Lacey
& Dawson-Howe, 1998), much of the work to date has focused on providing timely cognitive re-
minders (e.g., medications to take, appointments to attend, etc.) to elderly subjects (Pollack, 2002).
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Figure 10: Sum of discounted reward (top graphs) and estimate of the bound on the error (bottom
graphs) as a function of the number of selected belief points.

Figure 11: Pearl the Nursebot, interacting with elderly people at a nursing facility

An important component of this task is finding the patient whenever it is time to issue a reminder.
This task shares many similarities with the Tag problem presented in Section 6.2. In this case,
however, a robot-generated map of a real physical environment is used as the basis for the spatial
configuration of the domain. This map is shown in Figure 12. The white areas correspond to free
space, the black lines indicate walls (or other obstacles) and the dark gray areas are not visible or
accessible to the robot. One can easily imagine the patient’s room and physiotherapy unit lying at
either end of the corridor, with a common area shown in the upper-middle section.

The overall goal is for the robot to traverse the domain in order to find the missing patient and
then deliver a message. The robot must systematically explore the environment, reasoning about
both spatial coverage and human motion patterns, in order to find the person.
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Figure 12: Map of the environment

7.1 POMDP Modeling

The problem domain is represented jointly by two state features: RobotPosition, PersonPosition.
Each feature is expressed through a discretization of the environment. Most of the experiments
below assume a discretization of 2 meters, which means 26 discrete cells for each feature, for a total
of 676 states.

It is assumed that the person and robot can move freely throughout this space. The robot’s
motion is deterministically controlled by the choice of action (North, South, East, West). The robot
has a fifth action (DeliverMessage), which concludes the scenario when used appropriately (i.e.,
when the robot and person are in the same location).

The person’s motion is stochastic and falls in one of two modes. Part of the time, the person
moves according to Brownian motion (e.g., moves in each cardinal direction with Pr = 0.1, other-
wise stays put). At other times, the person moves directly away from the robot. The Tag domain of
Section 6.2 assumes that the person always moves always moves away the robot. This is not real-
istic when the person cannot see the robot. The current experiment instead assumes that the person
moves according to Brownian motion when the robot is far away, and moves away from the robot
when it is closer (e.g., < 4m). The person policy was designed this way to encourage the robot to
find a robust policy.

In terms of state observability, there are two components: what the robot can sense about its
own position, and what it can sense about the person’s position. In the first case, the assumption
is that the robot knows its own position at all times. While this may seem like a generous (or
optimistic) assumption, substantial experience with domains of this size and maps of this quality
have demonstrated robust localization abilities (Thrun et al., 2000). This is especially true when
planning operates at relatively coarse resolution (2 meters) compared to the localization precision
(10 cm). While exact position information is assumed for planning in this domain, the execution
phase (during which we actually measure performance) does update the belief using full localization
information, which includes positional uncertainty whenever appropriate.

Regarding the detection of the person, the assumption is that the robot has no knowledge of
the person’s position unless s/he is within a range of 2 meters. This is plausible given the robot’s
sensors. However, even in short-range, there is a small probability (Pr = 0.01) that the robot will
miss the person and therefore return a false negative.

In general, one could make sensible assumptions about the person’s likely position (e.g., based
on a knowledge of their daily activities), however we currently have no such information and there-
fore assume a uniform distribution over all initial positions. The person’s subsequent movements
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are expressed through the motion model described above (i.e., a mix of Brownian motion and pur-
poseful avoidance).

The reward function is straightforward: R = −1 for any motion action, R = 10 when the
robot decides to DeliverMessage and it is in the same cell as the person, and R = −100 when
the robot decides to DeliverMessage in the person’s absence. The task terminates when the robot
successfully delivers the message (i.e., a = DeliverMessage and srobot = sperson). We assume a
discount factor of 0.95.

We assume a known initial belief, b0, consisting of a uniform distribution over all states. This
is used both for selecting belief points during planning, and subsequently for executing and testing
the final policy.

The initial map (Fig. 12) of the domain was collected by a mobile robot, and slightly cleaned
up by hand to remove artifacts (e.g., people walking by). We then assumed the model parameters
described here, and applied PBVI planning to the problem as such. Value updates and belief point
expansions were applied in alternation until (in simulation) the policy was able to find the person
on 99% of trials (trials were terminated when the person is found or after 100 execution steps). The
final policy was implemented and tested onboard the publicly available CARMEN robot simula-
tor (Montemerlo, Roy, & Thrun, 2003).

7.2 Comparative Evaluation of PBVI and Perseus

The subtask described here, with its 626 states, is beyond the capabilities of exact POMDP solvers.
Furthermore, as will be demonstrated below, MDP-type approximations are not equipped to handle
uncertainty of the type exhibited in this task. The main purpose of our analysis is to evaluate the
effectiveness of the point-based approach described in this paper to address this problem. While the
results on the Tag domain (Section 6.2) hint at the fact that PBVI and other algorithms may be able
to handle this task, the more realistic map and modified motion model provide new challenges.

We begin our investigation by directly comparing the performance of PBVI (with GER be-
lief points selection) with that of the Perseus algorithm on this complex robot domain. Perseus
was described in Section 5; results presented below were produced using code provided by its au-
thors (Perseus, 2004). Results for both algorithms assume that a fixed POMDP model was generated
by the robot simulator. This model is then stored and solved offline by each algorithm.

PBVI and Perseus each have a few parameters to set. PBVI requires: number of new belief
points to add at each expansion (Badd) and planning horizon for each expansion (H). Perseus
requires: number of belief points to generate during random walk (B) and the maximum planning
time (T ). Results presented below assume the following parameter settings: Badd = 30, H = 25,
B=10,000, T=1500. Both algorithms were fairly robust to changes in these parameters.6

Figure 13 summarizes the results of this experiment. These suggest a number of observations.

• As shown in Figure 13(a), both algorithms find the best solution in a similar time, but
PBVI+GER has better anytime performance than Perseus (e.g., a much better policy is found
given only 100 sec).

• As shown in Figure 13(b), both algorithms require a similar number of α-vectors.

• As shown in Figure 13(c), PBVI+GER requires many fewer beliefs.

6. A ±25% change in parameter value yielded sensibly similar results in terms of reward and number of α vectors,
though of course the time, memory, and number of beliefs varied.
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Figure 13: Comparison of PBVI and Perseus on robot simulation domain

• Because it requires fewer beliefs, PBVI+GER has much lower memory requirements; this is
quantified in Figure 13(d).

These new results suggest that PBVI and Perseus have similar performance if the objective is to
find a near-optimal solution, and time and memory are not constrained. In cases where one is willing
to trade off accuracy for time, then PBVI may provide superior anytime performance. And in cases
where memory is limited, PBVI’s conservative approach with respect to belief point selection is
advantageous. Both these properties suggest that PBVI may scale better to very large domains.

7.3 Experimental Results with Robot Simulator

The results presented in above assume that the same POMDP model is used for planning and test-
ing (i.e., to compute the reward in Figure 13(a)). This is useful to carry out a large number of
experiments. The model however cannot entirely capture the dynamics of a realistic robot system,
therefore there is some concern that the policy learned by point-based methods will not perform as
well on a realistic robot. To verify the robustness of our approach, the final PBVI control policy
was implemented and tested onboard the publicly available CARMEN robot simulator (Montemerlo
et al., 2003).
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The resulting policy is illustrated in Figure 14. This figure shows five snapshots obtained from
a single run. In this particular scenario, the person starts at the far end of the left corridor. The
person’s location is not shown in any of the figures since it is not observable by the robot. The
figure instead shows the belief over person positions, represented by a distribution of point samples
(grey dots in Fig. 14). Each point represents a plausible hypothesis about the person’s position. The
figure shows the robot starting at the far right end of the corridor (Fig. 14a). The robot moves toward
the left until the room’s entrance (Fig. 14b). It then proceeds to check the entire room (Fig. 14c).
Once relatively certain that the person is nowhere to be found, it exits the room (Fig. 14d), and
moves down the left branch of the corridor, where it finally finds the person at the very end of the
corridor (Fig. 14e).

This policy is optimized for any start position (for both the person and the robot). The scenario
shown in Figure 14 is one of the longer execution traces since the robot ends up searching the entire
environment before finding the person. It is interesting to compare the choice of action between
snapshots (b) and (d). The robot position in both is practically identical. Yet in (b) the robot chooses
to go up into the room, whereas in (d) the robot chooses to move toward the left. This is a direct
result of planning over beliefs, rather than over states. The belief distribution over person positions
is clearly different between those two cases, and therefore the policy specifies a very different course
of action.

Figure 15 looks at the policy obtained when solving this same problem using the QMDP heuris-
tic. Four snapshots are offered from different stages of a specific scenario, assuming the person
started on the far left side and the robot on the far right side (Fig. 15a). After proceeding to the
room entrance (Fig. 15b), the robot continues down the corridor until it almost reaches the end
(Fig. 15c). It then turns around and comes back toward the room entrance, where it stations itself
(Fig. 15d) until the scenario is forcibly terminated. As a result, the robot cannot find the person
when s/he is at the left edge of the corridor or in the room. What’s more, because of the running-
away behavior adopted by the subject, even when the person starts elsewhere in the corridor, as the
robot approaches the person will gradually retreat to the left and similarly escape from the robot.

Even though QMDP does not explicitly plan over beliefs, it can generate different policy actions
for cases where the state is identical but the belief is different. This is seen when comparing Fig-
ure 15 (b) and (d). In both of these, the robot is identically located, however the belief over person
positions is different. In (b), most of the probability mass is to the left of the robot, therefore it trav-
els in that direction. In (d), the probability mass is distributed evenly between the three branches
(left corridor, room, right corridor). The robot is equally pulled in all directions and therefore stops
there. This scenario illustrates some of the strength of QMDP. Namely, there are many cases where
it is not necessary to explicitly reduce uncertainty. However, it also shows that more sophisticated
approaches are needed to handle some cases.

These results show that PBVI can perform outside the bounds of simple maze domains, and
is able to handle realistic problem domains. In particular, throughout this evaluation, the robot
simulator was in no way constrained to behave as described in our POMDP model (Sec. 7.1). This
means that the robot’s actions often had stochastic effects, the robot’s position was not always
fully observable, and that belief tracking had to be performed asynchronously (i.e., not always a
straightforward ordering of actions and observations). Despite this misalignment between the model
assumed for planning, and the execution environment, the control policy optimized by PBVI could
successfully be used to complete the task.
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(a) t=1

(b) t=7

(c) t=12

(d) t=17

(e) t=29

Figure 14: Example of a PBVI policy successfully finding the person

374



ANYTIME POINT-BASED APPROXIMATIONS FOR LARGE POMDPS

(a) t=1

(b) t=7

(c) t=17

(d) t=27

Figure 15: Example of a QMDP policy failing to find the person
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8. Discussion

This paper describes a class of anytime point-based POMDP algorithms called PBVI, which com-
bines point-based value updates with strategic selection of belief points, to solve large POMDPs.
Further extensions to the PBVI framework, whereby value updates are applied to groups of belief
points according to their spatial distribution, are described by (Pineau, Gordon, & Thrun, 2004).
The main contributions pertaining to the PBVI framework are now summarized.

Scalability. The PBVI framework is an important step towards truly scalable POMDP solutions.
This is achieved by bounding the policy size through the selection of a small set of belief points.

Anytime planning. PBVI-class algorithms alternates between steps of value updating and steps
of belief point selection. As new points are added, the solution improves, at the expense of increased
computational time. The trade-off can be controlled by adjusting the number of points. The algo-
rithm can be terminated either when a satisfactory solution is found, or when planning time is
elapsed.

Bounded error. We provide a theoretical bound on the error of the approximation introduced
in the PBVI framework. This result holds for a range of belief point selection methods, and lead
directly to the development of a new PBVI-type algorithm: PBVI+GER, where estimates of the
error bound are used directly to select belief points. Furthermore we find that the bounds can be
useful in assessing when to stop adding belief points.

Exploration. We proposed a set of new point selection heuristics, which explore the tree of
reachable beliefs to select useful belief points. The most successful technique described, Greedy
Error Reduction (GER), uses an estimate of the error bound on candidate belief points to select the
most useful points.

Improved empirical performance. PBVI has demonstrated the ability to reduce planning time
for a number of well-known POMDP problems, including Tiger-grid, Hallway, and Hallway2. By
operating on a set of discrete points, PBVI algorithms can perform polynomial-time value updates,
thereby overcoming the curse of history that paralyzes exact algorithms. The GER technique used to
select points allows us to solve large problems with fewer belief points than alternative approaches.

New problem domain. PBVI was applied to a new POMDP planning domain (Tag), for which
it generated an approximate solution that outperformed baseline algorithms QMDP and Incremental
Pruning. This new domain has since been adopted as a test case for other algorithms (Vlassis &
Spaan, 2004; Smith & Simmons, 2004; Braziunas & Boutilier, 2004; Poupart & Boutilier, 2004).
This fosters an increased ease of comparison between new techniques. Further comparative analysis
was provided in Section 7.2 highlighting similarities and differences between PBVI and Perseus.

Demonstrated performance. PBVI was applied in the context of a robotic search-and-rescue
type scenario, where a mobile robot is required to search its environment and find a non-stationary
individual. PBVI’s performance was evaluated using a realistic, independently-developed, robot
simulator.

A significant portion of this paper is dedicated to a thorough comparative analysis of point-based
methods. This includes evaluating a range of point-based selection methods, as well as evaluating
mechanisms for ordering value updates. The comparison of point-based selection techniques sug-
gest that the GER method presented in Section 4.5 is superior to more naive techniques. In terms of
ordering of value updates, the randomized strategy which is used in the Perseus algorithm appears
effective to accelerate planning. A natural next step would be to combine the GER belief selection
heuristic with Perseus’s random value updates. We performed experiments along these lines, but
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did not achieve any significant speed-up over the current performance of PBVI or Perseus (e.g., as
reported in Figure 13(a)). It is likely that when belief points are chosen carefully (as in GER), each
of these points needs to be updated systematically and therefore there is no additional benefit to
using randomized value updates.

Looking towards the future, it is important to remember that while we have demonstrated the
ability to solve problems which are large by POMDP standards, many real-world domains far exceed
the complex of domains considered in this paper. In particular, it is not unusual for a problem to be
expressed through a number of multi-valued state features, in which case the number of states grows
exponentially with the number of features. This is of concern because each belief point and each
α-vector has dimensionality |S| (where |S| is the number of states) and all dimensions are updated
simultaneously. This is an important issue to address to improve the scalability of point-based value
approaches in general.

There are various existing attempts at overcoming the curse of dimensionality in POMDPs.
Some of these—e. g. the belief compression techniques by Roy and Gordon (2003)—cannot be
incorporated within the PBVI framework without compromising its theoretical properties (as dis-
cussed in Section 3). Others, in particular the exact compression algorithm by Poupart and Boutilier
(2003), can be combined with PBVI. However, preliminary experiments in this direction have
yielded little performance improvement. There is reason to believe that approximate value com-
pression would yield better results, but again at the expense of forgoing PBVI’s theoretical proper-
ties. The challenge therefore is to devise function-approximation techniques that both reduce the
dimensionality effectively, while maintaining the convexity properties of the solution.

A secondary (but no less important) issue concerning the scalability of PBVI pertains to the
number of belief points necessary to obtain a good solution. While problems addressed thus far can
usually be solved with O(|S|) belief points, this need not be true. In the worse case, the number
of belief points necessary may be exponential in the plan length. The PBVI framework can accom-
modate a wide variety of strategies for generating belief points, and the Greedy Error Reduction
technique seems particularly effective. However this is unlikely to be the definitive answer to belief
point selection. In more general terms, this relates closely to the well-known issue of exploration
versus exploitation, which arises across a wide array of problem-solving techniques.

These promising opportunities for future research aside, the PBVI framework has already
pushed the envelope of POMDP problems that can be solved with existing computational resources.
As the field of POMDPs matures, finding ways of computing policies efficiently will likely continue
to be a major bottleneck. We hope that point based algorithms such as the PBVI will play a leading
role in the search for more efficient algorithms.
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