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Abstract

Multimodal conversational interfaces provide a natural means for users to communi-
cate with computer systems through multiple modalities such as speech and gesture. To
build effective multimodal interfaces, automated interpretation of user multimodal inputs
is important. Inspired by the previous investigation on cognitive status in multimodal
human machine interaction, we have developed a greedy algorithm for interpreting user
referring expressions (i.e., multimodal reference resolution). This algorithm incorporates
the cognitive principles of Conversational Implicature and Givenness Hierarchy and ap-
plies constraints from various sources (e.g., temporal, semantic, and contextual) to resolve
references. Our empirical results have shown the advantage of this algorithm in efficiently
resolving a variety of user references. Because of its simplicity and generality, this approach
has the potential to improve the robustness of multimodal input interpretation.

1. Introduction

Multimodal systems provide a natural and effective way for users to interact with computers
through multiple modalities such as speech, gesture, and gaze. Since the first appearance
of the “Put-That-There” system (Bolt, 1980), a number of multimodal systems have been
built, among which there are systems that combine speech, pointing (Neal & Shapiro, 1991;
Stock, 1993), and gaze (Koons, Sparrell, & Thorisson, 1993), systems that integrate speech
with pen inputs (e.g., drawn graphics) (Cohen, Johnston, McGee, Oviatt, Pittman, Smith,
Chen, & Clow, 1996; Wahlster, 1998), systems that combine multimodal inputs and outputs
(Cassell, Bickmore, Billinghurst, Campbell, Chang, Vilhjalmsson, & Yan, 1999), systems
in mobile environments (Oviatt, 1999a), and systems that engage users in an intelligent
conversation (Gustafson, Bell, Beskow, Boye, Carlson, Edlund, Granstrom, House, & Wiren,
2000; Stent, Dowding, Gawron, Bratt, & Moore, 1999). Earlier studies have shown that
multimodal interfaces enable users to interact with computers naturally and effectively
(Oviatt, 1996, 1999b).

One important aspect of building multimodal systems is multimodal interpretation,
which is a process that identifies the meanings of user inputs. In particular, a key element
in multimodal interpretation is known as reference resolution, which is a process that finds
the most proper referents to referring expressions. Here a referring expression is a phrase
that is given by a user in her inputs (most likely in speech inputs) to refer to a specific
entity or entities. A referent is an entity (e.g., a specific object) to which the user refers.
Suppose that a user points to House 6 on the screen and says how much is this one. In this
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case, reference resolution must infer that the referent House 6 should be assigned to the
referring expression this one. This paper particularly addresses this problem of reference
resolution in multimodal interpretation.

In a multimodal conversation, the way users communicate with a system depends on
the available interaction channels and the situated context (e.g., conversation focus, visual
feedback). These dependencies form a rich set of constraints from various aspects (e.g.,
semantic, temporal, and contextual). A correct interpretation can only be attained by
simultaneously considering these constraints.

Previous studies have shown that user referring behavior during multimodal conversation
does not occur randomly, but rather follows certain linguistic and cognitive principles.
In human machine interaction, earlier work has shown strong correlations between the
cognitive status in Givenness Hierarchy and the form of referring expressions (Kehler, 2000).
Inspired by this early work, we have developed a greedy algorithm for multimodal reference
resolution. This algorithm incorporates the principles of Conversational Implicature and
Givenness Hierarchy and applies constraints from various sources (e.g., gesture, conversation
context, and visual display). Our empirical results have shown the promise of this algorithm
in efficiently resolving a variety of user references. One major advantage of this greedy
algorithm is that the prior linguistic and cognitive knowledge can be used to guide the
search and prune the search space during constraint satisfaction. Because of its simplicity
and generality, this approach has the potential to improve the robustness of interpretation
and provide a practical solution to multimodal reference resolution (Chai, Prasov, Blaim,
& Jin, 2005).

In the following sections, we will first demonstrate different types of referring behavior
observed in our studies. We then briefly introduce the underlying cognitive principles for
human-human communication and describe how these principles can be used in a com-
putational model to efficiently resolve multimodal references. Finally, we will present the
experimental results.

2. Multimodal Reference Resolution

In our previous work (Chai, Hong, & Zhou, 2004b; Chai, Hong, Zhou, & Prasov, 2004), a
multimodal conversational system was developed for users to acquire real estate information1.
Figure 1 is the snapshot of a graphical user interface. Users can interact with this interface
through both speech and gesture. Table 1 shows a fragment of the conversation.

In this fragment, the user exhibits different types of referring behavior. For example,
the input from U1 is considered as a simple input. This type of simple input only has one
referring expression in the spoken utterance and one accompanying gesture. Multimodal
fusion that combines information from speech and gesture will likely resolve what this
refers to. In the second user input (U2), there is no accompanying gesture and no referring
expression is explicitly used in the speech utterance. At this time, the system needs to
use the conversation context to infer that the object of interest is the house mentioned in
the previous turn of the conversation. In the third user input, there are multiple referring
expressions and multiple gestures. These types of inputs are considered complex inputs.

1. The first prototype of this system was developed at IBM T. J. Watson Research Center with P. Hong,
M. Zhou, and colleagues at the Intelligent Multimedia Interaction group.
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Figure 1: A snapshot of the multimodal conversational system.

U1 Speech: How much does this cost?
Gesture: point to a position on the screen

S1 Speech: The price is 400K
Graphics: highlight the house in discussion

U2 Speech: How large?
S2 Speech: 2500 square feet
U3 Speech: Compare it with this house and this one

Gesture: ....circle....cirle (put two consecutive circles on the screen)
S3 Speech: Here are your comparison results

Graphics: show a table of comparison

Table 1: A fragment demonstrating interaction with different types of referring behavior

Complex inputs are more difficult to resolve. We need to consider the temporal relations
between the referring expressions and the gestures, the semantic constraints specified by
the referring expressions, and the contextual constraints from the prior conversation. For
example, in the case of U3, the system needs to understand that it refers to the house that
was the focus of the previous turn; and this house and this one should be aligned with the
two consecutive gestures. Any subtle variations in any of the constraints, including the
temporal ordering, the semantic compatibility, and the gesture recognition results will lead
to different interpretations.

From this example, we can see that in a multimodal conversation, the way a user inter-
acts with a system is dependent not only on the available input channels (e.g., speech and
gesture), but also upon his/her conversation goals, the state of the conversation, and the
multimedia feedback from the system. In other words, there is a rich context that involves
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dependencies from many different aspects established during the interaction. Interpreting
user inputs can only be situated in this rich context. For example, the temporal relations
between speech and gesture are important criteria that determine how the information from
these two modalities can be combined. The focus of attention from the prior conversation
shapes how users refer to those objects, and thus, influences the interpretation of referring
expressions. Therefore, we need to simultaneously consider the temporal relations between
the referring expressions and the gestures, the semantic constraints specified by the refer-
ring expressions, and the contextual constraints from the prior conversation. In this paper,
we present an efficient approach that is driven by cognitive principles to combine temporal,
semantic, and contextual constraints for multimodal reference resolution.

3. Related Work

Considerable effort has been devoted to studying user multimodal behavior (Cohen, 1984;
Oviatt, 1999a) and mechanisms to interpret user multimodal inputs (Chai et al., 2004b;
Gustafson et al., 2000; Huls, Bos, & Classen, 1995; Johnston, Cohen, McGee, Oviatt,
Pittman, & Smith, 1997; Johnston, 1998; Johnston & Bangalore, 2000; Kehler, 2000; Koons
et al., 1993; Neal & Shapiro, 1991; Oviatt, DeAngeli, & Kuhn, 1997; Stent et al., 1999; Stock,
1993; Wahlster, 1998; Wu & Oviatt, 1999; Zancanaro, Stock, & Strapparava, 1997).

For multimodal reference resolution, some early work keeps track of a focus space from
the dialog (Grosz & Sidner, 1986) and a display model to capture all objects visible on the
graphical display (Neal, Thielman, Dobes, M., & Shapiro, 1998). It then checks semantic
constraints such as the type of the candidate objects being referenced and their properties
for reference resolution. A modified centering model for multimodal reference resolution
is also introduced in previous work (Zancanaro et al., 1997). The idea is that based on
the centering movement between turns, segments of discourse can be constructed. The
discourse entities appearing in the segment that is accessible to the current turn can be
used to constrain the referents to referring expressions. Another approach is introduced
to use contextual factors for multimodal reference resolution (Huls et al., 1995). In this
approach, a salience value is assigned to each instance based on the contextual factors.
To determine the referents of multimodal referring expressions, this approach retrieves the
most salient referent that satisfies the semantic restrictions of the referring expressions. All
these earlier approaches have some greedy nature, which is largely dependent on semantic
constraints and/or constraints from conversation context.

To resolve multimodal references, there are two important issues. First it is the mecha-
nism to combine information from various sources and modalities. The second is the capa-
bility to obtain the best interpretation (among all the possible alternatives) given a set of
temporal, semantic, and contextual constraints. In this section, we give a brief introduction
to three recent approaches that address these issues.

3.1 Multimodal Fusion

Approaches to multimodal fusion (Johnston, 1998; Johnston & Bangalore, 2000), although
they focus on a different problem of overall input interpretation, provide effective solutions
to reference resolution. There are two major approaches to multimodal fusion: unification-
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based approaches (Johnston, 1998) and finite state approaches (Johnston & Bangalore,
2000).

The unification-based approach identifies referents to referring expressions by unifying
feature structures generated from speech utterances and gestures using a multimodal gram-
mar (Johnston et al., 1997; Johnston, 1998). The multimodal grammar combines both
temporal and spatial constraints. Temporal constraints encode the absolute temporal re-
lations between speech and gesture (Johnston, 1998),. The grammar rules are predefined
based on empirical studies of multimodal interaction (Oviatt et al., 1997). For example, one
rule indicates that speech and gesture can be combined only when the speech either overlaps
with gesture or follows the gesture within a certain time frame. The unification approach
can also process certain complex cases (as long as they satisfy the predefined multimodal
grammar) in which a speech utterance is accompanied by more than one gesture of different
types (Johnston, 1998). Using this approach to accommodate various situations such as
those described in Figure 1 will require adding different rules to cope with each situation.
If a specific user referring behavior did not exactly match any existing integration rules
(e.g., temporal relations), the unification would fail and therefore references would not be
resolved.

The finite state approach applies finite-state transducers for multimodal parsing and
understanding (Johnston & Bangalore, 2000). Unlike the unification-based approach with
chart parsing that is subject to significant computational complexity concerns (Johnston
& Bangalore, 2000), the finite state approach provides more efficient, tight-coupling of
multimodal understanding with speech recognition. In this approach, a multimodal context-
free grammar is defined to transform the syntax of multimodal inputs to the semantic
meanings. The domain-specific semantics are directly encoded in the grammar. Based
on these grammars, multi-tape finite state automata can be constructed. These automata
are used for identifying semantics of combined inputs. Rather than absolute temporal
constraints as in the unification-based approach, this approach relies on temporal order
between different modalities. During the parsing stage, the gesture input from the gesture
tape (e.g., pointing to a particular person) that can be combined with the speech expression
in the speech tape (e.g., this person) is considered as the referent to the expression. A
problem with this approach is that the multi-tape structure only takes input from speech
and gesture and does not incorporate the conversation history into consideration.

3.2 Decision List

To identify potential referents, previous work has investigated Givenness Hierarchy (to
be introduced later) in multimodal interaction (Kehler, 2000). Based on data collected
from Wizard of Oz experiments, this investigation suggests that users tend to tailor their
expressions to what they perceive to be the system’s beliefs concerning the cognitive status
of referents from their prominence (e.g., highlight) on the display. The tailored referring
expressions can then be resolved with a high accuracy based on the following decision list:

1. If an object is gestured to, choose that object.

2. Otherwise, if the currently selected object meets all semantic type constraints imposed
by the referring expression, choose that object.
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3. Otherwise, if there is a visible object that is semantically compatible, then choose
that object.

4. Otherwise, a full NP (such as a proper name) is used to uniquely identify the referent.

From our studies (Chai, Prasov, & Hong, 2004a), we found this decision list has the
following limitations:

• Depending on the interface design, ambiguities (from a system’s perspective) could
occur. For example, given an interface where one object (e.g., house) can sometimes
be created on top of another object (e.g., town), a pointing gesture could result in
multiple potential objects. Furthermore, given an interface with crowded objects, a
finger point could also result in multiple objects with different probabilities. The
decision list is not able to handle these ambiguous cases.

• User inputs are not always simple (consisting of no more than one referring expression
and one gesture as indicated in the decision list). In fact, in our study (Chai et al.,
2004a), we found that user inputs can also be complex, consisting of multiple referring
expressions and/or multiple gestures. The referents to these referring expressions
could come from different sources, such as gesture inputs and conversation context.
The temporal alignment between speech and gesture is also important in determining
the correct referent for a given expression. The decision list is not able to handle these
types of complex inputs.

Nevertheless, the previous findings (Kehler, 2000) have inspired this work and provided a
basis for the algorithm described in this paper.

3.3 Optimization

Recently, a probabilistic approach was developed for optimizing reference resolution based
on graph matching (Chai et al., 2004b). In the graph-matching approach, information
gathered from multiple input modalities and the conversation context is represented as
attributed relational graphs (ARGs) (Tsai & Fu, 1979). Specifically, two graphs are used.
One graph represents referring expressions from speech utterances (i.e., called referring
graph). A referring graph contains referring expressions used in a speech utterance and
the relations between these expressions. Each node corresponds to one referring expression
and consists of the semantic and temporal information extracted from that expression.
Each edge represents the semantic and temporal relation between two referring expressions.
The resulting graph is a fully connected, undirected, graph. For example, as shown in
Figure 2(a), from the speech input compare this house, the green house, and the brown one,
three nodes are generated in the referring graph representing three referring expressions.
Each node contains semantic and temporal features related to its corresponding referring
expression. These include the expression’s semantic type (house, town, etc.), number of
potential referents, type dependent features (size, price, etc.), syntactic category of the
expression, and the timestamp of when the expression was produced. Each edge contains
features describing semantic and temporal relations between a pair of nodes. The semantic
features simply indicate whether or not two nodes share the same semantic type if this
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Figure 2: Reference resolution through probabilistic graph-matching

can be inferred from the utterance. Otherwise, the semantic type relation is deemed to be
unknown. The temporal features indicate which of the two expressions was uttered first.

Similarly, another graph represents all potential referents gathered from gestures, his-
tory, and the visual display (i.e., called referent graph). Each node in a referent graph
captures the semantic and temporal information about a potential referent, together with
its selection probability. The selection probability is particularly applied to objects indi-
cated by a gesture. Because a gesture such as a pointing or a circle can potentially introduce
ambiguity in terms of the intended referents, a selection probability is used to indicate how
likely it is that an object is selected by a particular gesture. This selection probability is
derived by a function of the distance between the location of the entity and the focus point
of the recognized gesture on the display. As in a referring graph, each edge in a referent
graph captures the semantic and temporal relations between two potential referents such
as whether the two referents share the same semantic type and the temporal order between
two referents as they are introduced into the discourse. For example, since the gesture input
consists of two pointings, the referent graph (Figure 2b) consists of all potential referents
from these two pointings. The objects in the first dashed rectangle are potential referents
selected by the first pointing, and those in the second dashed rectangle correspond to the
second pointing. Furthermore, the salient objects from the prior conversation are also in-
cluded in the referent graph since they could be the potential referents as well (e.g., the
rightmost dashed rectangle in Figure 2b).

Given these graph representations, the reference resolution problem becomes a proba-
bilistic graph-matching problem (Gold & Rangarajan, 1996). The goal is to find a match
between the referring graph Gs and the referent graph Gc

2 that achieves the maximum
compatibility (i.e., maximizes Q(Gc, Gs)) as described in the following equation:

2. The subscription s in Gs refers to speech referring expressions and c in Gc refers to candidate referents.
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Q(Gc, Gs) =
∑

x

∑
m P (αx, αm)NodeSim(αx, αm)

+
∑

x

∑
y

∑
m

∑
n P (αx, αm)P (αy, αn)EdgeSim(γxy , γmn) (1)

P (αx, αm) is the matching probability between a referent node αx and a referring node
αm. The overall compatibility Q(Gc, Gs) depends on the node compatibility NodeSim
and the edge compatibility EdgeSim, which were further defined by temporal and semantic
constraints (Chai et al., 2004). When the algorithm converges, P (αx, αm) gives the matching
probabilities between a referent node αx and a referring node αm that maximizes the overall
compatibility function. Using these matching probabilities, the system is able to identify the
most probable referent αx to each referring node αm. Specifically, the referring expression
that matches a potential referent is assigned to the referent if the probability of this match
exceeds an empirically computed threshold. If this threshold is not met, the referring
expression remains unresolved.

Theoretically, this approach provides a solution that maximizes the overall satisfaction
of semantic, temporal, and contextual constraints. However, like many other optimization
approaches, this algorithm is non-polynomial. It relies on an expensive matching process,
which attempts every possible assignment, in order to converge on an optimal interpretation
based on those constraints. However, previous linguistic and cognitive studies indicate that
user language behavior does not occur randomly, but rather follows certain cognitive prin-
ciples. Therefore, a question arises whether any knowledge from these cognitive principles
can be used to guide this matching process and reduce the complexity.

4. Cognitive Principles

Motivated by previous work (Kehler, 2000), we specifically focus on two principles: Con-
versational Implicature and Givenness Hierarchy.

4.1 Conversational Implicature

Grice’s Conversational Implicature Theory indicates that the interpretation and inference of
an utterance during communication is guided by a set of four maxims (Grice, 1975). Among
these four maxims, the Maxim of Quantity and the Maxim of Manner are particularly useful
for our purpose.

The Maxim of Quantity has two components: (1) make your contribution as informa-
tive as is required (for the current purposes of the exchange), and (2) do not make your
contribution more informative than is required. In the context of multimodal conversation,
this maxim indicates that users generally will not make any unnecessary gestures or speech
utterances. This is especially true for pen-based gestures since they usually require a special
effort from a user. Therefore, when a pen-based gesture is intentionally delivered by a user,
the information conveyed is often a crucial component used in interpretation.

Grice’s Maxim of Manner has four components: (1) avoid obscurity of expression, (2)
avoid ambiguity, (3) be brief, and (4) be orderly. This maxim indicates that users will
not intentionally make ambiguous references. They will use expressions (either speech or
gesture) they believe can uniquely describe the object of interest so that listeners (in this
case a computer system) can understand. The expressions they choose depend on the
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Status Expression Form
In focus it

↓
Activated that, this, this N

↓
Familiar that N

↓
Unique identifiable the N

↓
Referential indefinite this N

↓
Identifiable a N

Figure 3: Givenness Hierarchy

information in their mental models about the current state of the conversation. However,
the information in a user’s mental model might be different from the information the system
possesses. When such an information gap happens, different ambiguities could occur from
the system point of view. In fact, most ambiguities are not intentionally caused by the
human speakers, but rather by the system’s incapability of choosing among alternatives
given incomplete knowledge representation, limited capability of contextual inference, and
other factors (e.g., interface design issues). Therefore, the system should not anticipate
deliberate ambiguities from users (e.g., a user only utters a house to refer to a particular
house on the screen), but rather should focus on dealing with the types of ambiguities
caused by the system’s limitations (e.g., gesture ambiguity due to the interface design or
speech ambiguity due to incorrect recognition).

These two maxims help positioning the role of gestures in reference resolution. In
particular, these maxims have put the potential referents indicated by a gesture at a very
important position, which is described in Section 5.

4.2 Givenness Hierarchy

The Givenness Hierarchy proposed by Gundel et al. explains how different determiners
and pronominal forms signal different information about memory and attention state (i.e.,
cognitive status) (Gundel, Hedberg, & Zacharski, 1993). As in Figure 3, there are six
cognitive statuses in the hierarchy. For example, In focus indicates the highest attentional
state that is likely to continue to be the topic. Activated indicates entities in short term
memory. Each of these statuses is associated with some forms of referring expressions. In
this hierarchy, each cognitive status implies the statuses down the list. For example, In focus
implies Activated, Familiar, etc. The use of a particular expression form not only signals
that the associated cognitive status is met, but also signals that all lower statuses have been
met. In other words, a given form that is used to describe a lower status can also be used to
refer to a higher status, but not vice versa. Cognitive statuses are necessary conditions for
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appropriate use of different forms of referring expressions. Gundel et al. found that different
referring expressions almost exclusively correlate with the six statuses in this hierarchy.

The Givenness Hierarchy has been investigated earlier in algorithms for resolving pro-
nouns and demonstratives in spoken dialog systems (Eckert & Strube, 2000; Byron, 2002)
and in multimodal interaction (Kehler, 2000). In particular, we would like to extend the pre-
vious work (Kehler, 2000) and investigate whether Conversational Implicature and Given-
ness Hierarchy can be used to resolve a variety of references from simple to complex, and
from precise to ambiguous. Furthermore, the decision list used in Kehler (2000) is pro-
posed based on data analysis and has not been implemented or evaluated in a real-time
system. Therefore, our second goal is to design and implement an efficient algorithm by
incorporating these cognitive principles and empirically compare its performance with the
optimization approach (Chai et al., 2004), the finite state approach (Johnston & Bangalore,
2000), and the decision list approach (Kehler, 2000).

5. A Greedy Algorithm

A greedy algorithm always makes the choice that looks best at the moment of processing.
That is, it makes a locally optimal choice in the hope that this choice will lead to a glob-
ally optimal solution. Simple and efficient greedy algorithms can be used to approximate
many optimization problems. Here we explore the use of Conversational Implicature and
Givenness Hierarchy in designing an efficient greedy algorithm. In particular, we extend the
decision list from Kehler (2000) and utilize the concepts from the two cognitive principles
in the following way:

• Corresponding to the Givenness Hierarchy, the following hierarchy holds for potential
referents: Focus > V isible. This hierarchy indicates that objects in focus have higher
status in terms of attention states than objects in the visual display. Here Focus
corresponds to the cognitive statuses In focus and Activated in the Givenness Hierarchy,
and Visible corresponds to the statuses Familiar and Uniquely identifiable. Note that
Givenness Hierarchy is fine grained in terms of different statuses. Our application
may not be able to distinguish the difference between these statuses (e.g., In focus
and Activated) and effectively use them. Therefore, Focus and Visible are introduced
here to group some similar statuses (with respect to our application) together. Since
there is a need to differentiate the objects that have been mentioned recently (e.g.,
in focus and activated) and objects that are accessible either on the graph display
or from the domain model (e.g., familiar and unique identifiable), we assign them to
different modified statuses (e.g., Focus and Visible).

• Based on the Conversational Implicature, since a pen-based gesture takes a special ef-
fort to deliver, it must convey certain useful information. In fact, objects indicated by
a gesture should have the highest attentional state since they are deliberately singled
out by a user. Therefore, by combining (1) and (2), we derive a modified hierarchy
Gesture > Focus > V isible > Others. Here Others corresponds to indefinite cases
in Givenness Hierarchy. This modified hierarchy coincides with the processing order
of the Kehler’s decision list (2000). This modified hierarchy will guide the greedy
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algorithm in its search for solutions. Next, we describe in detail the algorithm and
related representations and functions.

5.1 Representation

At each turn3 (i.e., after receiving a user input) of the conversation, we use three vectors to
represent the first three statuses in our modified hierarchy: objects selected by a gesture,
objects in the focus, and objects visible on the display as follows:

• Gesture vector (�g) captures objects selected by a series of gestures. Each element gi

is an object potentially selected by a gesture. For elements gi and gj where i < j, the
gesture that selects objects gi should: 1) temporally precede the gesture that selects
gj or 2) be the same as the gesture that selects gj since one gesture could result in
multiple objects.

• Focus vector (�f) captures objects that are in the focus but are not selected by any
gesture. Each element represents an object considered to be the focus of attention
from the previous turn of the conversation. There is no temporal precedence relation
between these elements. We consider all the corresponding objects are simultaneously
accessible to the current turn of the conversation.

• Display vector (�d) captures objects that are visible on the display but are neither
selected by any gesture (i.e., �g) nor in the focus (�f). There is also no temporal prece-
dence relation between these elements. All elements are simultaneously accessible.

Based on these representations, each object in the domain of interest belongs to either
one of these above vectors or Others. Each object in the above vectors consists of the
following attributes:

• Semantic type of the object. For example, the semantic type could be a House or a
Town.

• The attributes of the object. This is a domain dependent feature. A set of attributes
is associated with each semantic type. For example, a house object has Price, Size,
Year Built, etc. as its attributes. Furthermore, each object has visual properties that
reflect the appearance of the object on the display such as Color of an object icon.

• The identifier of the object. Each object has a unique name.

• The selection probability. It refers to the probability that a given object is selected.
Depending on the interface design, a gesture could result in a list of potential referents.
We use this selection probability to indicate the likelihood of an object selected by
a gesture. The calculation of the selection probability is described later. For objects
from the focus vector and the display vector, the selection probabilities are set to 1/N
where N is the total number of objects in the respective vector.

3. Currently, user inactivity (i.e., 2 seconds with no input from either speech or gesture) is used as the
boundary to decide an interaction turn.
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• Temporal information. The relative temporal ordering information for the correspond-
ing gesture. Instead of applying time stamps as in our previous work (Chai et al.,
2004b), here we only use the index of gestures according to the order of their occur-
rences. If an object is selected by the first gesture, then its temporal information
would be 1.

In addition to vectors that capture potential referents, for each user input, a vector
that represents referring expressions from a speech utterance (�r) is also maintained. Each
element (i.e., a referring expression) has the following information:

• The identifier of the potential referent indicated by the referring expression. For
example, the identifier of the potential referent to the expression house number eight
is a house object with an identifier Eight.

• The semantic type of the potential referents indicated by the expression. For example,
the semantic type of the referring expression this house is House.

• The number of potential referents as indicated by the referring expression or the
utterance context. For example, a singular noun phrase refers to one object. A
phrase like three houses provides the exact number of referents (i.e., 3).

• Type dependent features. Any features associated with potential referents, such as
Color and Price, are extracted from the referring expression.

• The temporal ordering information indicating the order of referring expressions as
they are uttered. Again, instead of the specific time stamp, here we only use the
temporal ordering information. If an utterance consists of N consecutive referring
expressions, then the temporal ordering information for each of them would be 1, 2,
and up to N .

• The syntactic categories of the referring expressions. Currently, for each referring
expression, we assign it to one of six syntactic categories (e.g., demonstrative and
pronoun). Details are explained later.

These four vectors are updated after each user turn in the conversation based on the current
user input and the system state (e.g., what is shown on the screen and what was identified
as focus from the previous turn of the conversation).

5.2 Algorithm

The flow chart with the pseudo code of the algorithm is shown in Figure 4. For each
multimodal input at a particular turn in the conversation, this algorithm takes the inputs
of a vector (�r) of referring expressions with size k, a gesture vector (�g ) of size m, a focus
vector of (�f ) of size n, and a display vector (�d) of size l. It first creates three matrices
G[i][j], F [i][j], and D[i][j] to capture the scores of matching each referring expression from
�r to each object in the three vectors. Calculation of the matching score is described later.
Note that, if any of the �g,�f , and �d is empty, then the corresponding matrix (i.e., G, F , or
D) is empty.
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InitializeMatchMatrix (,,,){
for (i = 1..m; j = 1..k)   G[i][j] = Match(gi, rj)
for (i = 1..n; j = 1..k)    F[i][j] = Match(fi, rj)
for (i = 1..l; j = 1..k)     D[i][j] = Match(di, rj)

}

Is G  empty

GreedySortingGesture {
index_max = 1; //index to the column
for (i = 1..m) {

find j index_max, where G[i][j] is the largest among the elements in row i. 
add a mark “*” to the G[i][j];
index_max = j;  } //complete finding the best match from a view of each object

AssignReferentsFromMatrix (G);
}

Is F empty

GreedySortingFocus{
for (j = 1..k)

if (rj is resolved)
then Cross out column j in F  //only keep ones not resolved 

for ( i = 1..n){
find j where F[i][j] is the largest among the elements in row i. 
mark “*” to the F[i][j]; }

AssignReferentsFromMatrix (F);
}

GreedySortingDisplay{
for (j = 1..k)

if (rj is resolved) 
then Cross out column j in D;

for ( i = 1..l){
find j where D[i][j] is the largest among the elements in row i. 
mark “*” to D[i][j]; }

AssignReferentsFromMatrix (D);
}

All references resolved?

No

No

No

Yes

Return results

All references resolved?

No

Yes

Yes

Return results

Yes

Return results

AssignReferentsFromMatrix (Matrix X){
for (i = 1..k) // i.e., for each expression ri in column i

if (ri indicates a specific number N and more than N elements 
in ith column of X with “*”)

then assign N largest elements  with “*” to ri as referents.  
else assign all elements with “*” to ri as referents;

}

Figure 4: A greedy algorithm for multimodal reference resolution
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Based on the matching scores in the three matrices, the algorithm applies a greedy
search that is guided by our modified hierarchy as described earlier. Since Gesture has
the highest status, the algorithm first searches the Gesture Matrix (G) that keeps track of
matching scores between all referring expressions and all objects from gestures. It identifies
the highest (or multiple highest) matching scores and assigns all possible objects from
gestures to the expressions (GreedySortingGesture).

If more referring expressions are left to be resolved after gestures are processed, the
algorithm looks at objects from the Focus Matrix (F ) since Focus is the next highest cogni-
tive status (GreedySortingFocus). If there are still more expressions to be resolved, then the
algorithm looks at objects from the Display Matrix (D) (GreedySortingDisplay). Currently,
our algorithm focuses on these three statuses. Certainly, if there are still more expressions
to be resolved after all these steps, the algorithm can consult with proper name resolution.
Once all the referring expressions are resolved, the system will output the results. For the
next multimodal input, the system will generate four new vectors and then apply the greedy
algorithm again.

Note that in GreedySortingGesture, we use index-max to keep track of the column index
that corresponds to the largest matching value. As the algorithm incrementally processes
each row in the matrix, this index-max should incrementally increase. This is because the re-
ferring expressions and the gesture should be aligned according to their order of occurrences.
Since objects in the Focus Matrix and the Display Matrix do not have temporal precedence
relations, GreedySortingFocus and GreedySortingDisplay do not use this constraint.

The reason we call this algorithm greedy is that it always finds the best assignment for a
referring expression given a cognitive status in the hierarchy. In other words, this algorithm
always makes the best choice for each referring expression one at a time according to the
order of their occurrence in the utterance. One can imagine that a mistaken assignment
made to an expression can affect the assignment of the following expressions. Therefore,
the greedy algorithm may not lead to a globally optimal solution. Nevertheless, the general
user behavior following the guiding principles makes this greedy algorithm useful.

One major advantage of this greedy algorithm is that the use of the modified hierar-
chy can significantly prune the search space compared to the graph-matching approach.
Given m referring expressions and n potential referents from various sources (e.g., gesture,
conversation context, and visual display), this algorithm can find a solution in O(mn).
Furthermore, this algorithm goes beyond simple and precise inputs as illustrated by the
decision list in Kehler (2000). The scoring mechanism (described later) and the greedy
sorting process accommodate both complex and ambiguous user inputs.

5.3 Matching Functions

An important component of the algorithm is the matching score between an object (o) and
a referring expression (e). We use the following equation to calculate the matching score:

Match(o, e) = [
∑

S∈{G,F,D}
P (o|S) ∗ P (S|e)] ∗ Compatibility(o, e) (2)

In this formula, S represents the possible associated status of an object o. It could
have three potential values: G (representing Gesture), F (Focus), and D (Display). This
function is determined by three components:
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• The first, P (o|S), is the object selectivity component that measures the probability
of an object to be the referent given a status (S) of that object (i.e., gesture, focus,
or visual display).

• The second, P (S|e), is the likelihood of status component that measures the likelihood
of the status of the potential referent given a particular type of referring expression.

• The third, Compatibility(o, e), is the compatibility component that measures the
semantic and temporal compatibility between the object o and the referring expression
e.

Next we explain these three components in detail.

5.3.1 Object Selectivity

To calculate P (o|S = Gesture), we use a function that takes into consideration of the
distance between an object and the focus point of a gesture on the display (Chai et al.,
2004b).

Given an object from Focus (i.e., not selected by any gesture), P (o|S = Focus) = 1/N ,
where N is the total number of objects that are in the Focus vector. If an object is neither
selected by a gesture, nor in the focus, but visible on the screen, then P (o|S = Display) =
1/M , where M is the total number of objects that are in the Display vector. Currently,
we only applied the simplest uniform distribution for objects in focus and on the graphical
display. In the future, we intend to incorporate the recency in conversation discourse to
model P (o|S = Focus) and use visual prominence (e.g., based on visual characteristics)
to model P (o|S = Display). Note that, as discussed earlier in Section 5.1, each object is
associated with only one of the three statuses. In other words, for a given object o, only
one of P (o|S = Gesture), P (o|S = Focus), and P (o|S = Display) is non-zero.

5.3.2 Likelihood of Status

Motivated by the Givenness Hierarchy and earlier work (Kehler, 2000) that the form of
referring expressions can reflect the cognitive status of referred entities in a user’s mental
model, we use the likelihood of status to measure the probability of a reflected status given
a particular type of referring expression. In particular, we use the data reported in Kehler
(2000) to derive the likelihood of the status of potential referents given a particular type
of referring expression P (S|e). We categorize referring expressions into the following six
categories:

• Empty: no referring expression is used in the utterance.

• Pronouns: such as it, they, and them

• Locative adverbs: such as here and there

• Demonstratives: such as this, that, these, and those

• Definite Noun Phrases: noun phrases with the definite article the

• Full noun phrases: other types such as proper nouns.
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P (S|E) Empty Pronoun Locative Demonstratives Definite Full
Visible 0 0 0 0 0 0
Focus 0.56 0.85 0.57 0.33 0.07 0.47

Gesture 0.44 0.15 0.43 0.67 0.67 0.16
Sum 1 1 1 1 1 1

Table 2: Likelihood of status of referents given a particular type of expression

Table 2 shows the estimated P (S|e). Note that, in the original data provided by Kehler
(2000), there is zero count for a certain combination of a referring type and a referent status.
These zero counts result in zero probability in the table. We did not use any smoothing
techniques to re-distribute the probability mass. Furthermore, there is no probability mass
assigned to the status Others.

5.3.3 Compatibility Measurement

The term Compatibility(o, e) measures the compatibility between an object o and a referring
expression e. Similar to the compatibility measurement in our earlier work (Chai et al.,
2004), it is defined by a multiplication of many factors in the following equation:

Compatibility(o, e) = Id(o, e) ∗ Sem(o, e) ∗
∏

k

Attrk(o, e) ∗ Temp(o, e) (3)

In this equation:

Id(o, e) It captures the compatibility between the identifier (or name) for o and the identifier
(or name) specified in e. It indicates that the identifier of the potential referent, as
expressed in a referring expression, should match the identifier of the true referent.
This is particularly useful for resolving proper nouns. For example, if the referring
expression is house number eight, then the correct referent should have the identifier
number eight. Id(o, e) = 0 if the identities of o and e are different. Id(o, e) = 1 if the
identities of o and e are either the same or one/both of them unknown.

Sem(o, e) It captures the semantic type compatibility between o and e. It indicates that the
semantic type of a potential referent as expressed in the referring expression should
match the semantic type of the correct referent. Sem(o, e) = 0 if the semantic types
of o and e are different. Sem(o, e) = 1 if they are the same or unknown.

Attrk(o, e) It captures the type-specific constraint concerning a particular semantic feature
(indicated by the subscript k). This constraint indicates that the expected features of
a potential referent as expressed in a referring expression should be compatible with
features associated with the true referent. For example, in the referring expression
the Victorian house, the style feature is Victorian. Therefore, an object can only be a
possible referent if the style of that object is Victorian. Thus, we define the following:
Attrk(o, e) = 0 if both o and e have the feature k and the values of the feature k are
not equal. Otherwise, Attrk(o, e) = 1.
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Gesture input: ……...……… .. ….…. …...… ……

Time

(House 3
Town 1)

(House 9
Town 2)

(House 1
Town 2)

Speech input: Compare  it   with   these  houses.

Figure 5: An example of a complex input

Temp(o, e) It captures the temporal compatibility between o and e. Here we only con-
sider the temporal ordering between speech and gesture. Specifically, the temporal
compatibility is defined as the following:

Temp(o, e) = exp(−|OrderIndex(o) − OrderIndex(e)|) (4)

The order when the speech and the accompanying gestures occur is important in
deciding which gestures should be aligned with which referring expressions. The
order in which the accompanying gestures are introduced into the discourse should
be consistent with the order in which the corresponding referring expressions are
uttered. For example, suppose a user input consists of three gestures g1, g2, g3 and
two referring expressions, s1, s2. It will not be possible for g3 to align with s1 and
g2 to align with s2. Note that, if the status of an object is either Focus or Visible,
then Temp(o, e) = 1. This definition of temporal compatibility is different from the
function used in our previous work (Chai et al., 2004) that takes real time stamps
into consideration. Section 6.2 shows different performance results based on different
temporal compatibility functions.

5.4 An Example

Figure 5 shows an example of a complex input that involves multiple referring expressions
and multiple gestures. Because the interface displays house icons on top of town icons, a
point (or circle) could result in both a house and a town object. In this example, the first
gesture results in both House 3 and Town 1. The second gesture results in House 9 and
Town 2, and the third results in House 1 and Town 2. Suppose before this input takes
place, House 8 is highlighted on the screen from the previous turn of conversation (i.e.,
House 8 is in the focus). Furthermore, there are eight other objects visible on the screen.
To resolve referents to the expressions it and these houses, the greedy algorithm takes the
following steps:

1. The four input vectors, �g,�f , �d, and �r are created with lengths 6, 1, 8, 2, respectively to
represent six objects in the gesture vector, one object in the focus, eight more objects
on the graphical display, and two referring expressions used in the utterance.

2. Gesture Matrix G62, Focus Matrix F12, and Display Matrix D82 are created.

3. These three matrixes are then initialized by Equation 2. Figure 6 shows the resulting
Gesture Matrix. The probability values of P (S|e) come from Table 2. The difference
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1 0.67 0 = 01 0.15 0 = 0i = 6: Town 2

1 0.67 0.37 = 0.25*1 0.15 0.14 = 0.02i = 5: House 1
Gesture 3

1 0.67 0 = 01 0.15 0 = 0i = 4: Town 2

1 0.67 1 = 0.67*1 0.15 0.37 = 0.055i = 3: House 9
Gesture 2

1 0.67 0 = 01 0.15 0 = 0i = 2:  Town 2

1 0.67 0.37 = 0.25*1 0.15 1 = 0.15i = 1:  House 3 
Gesture 1

j = 2: these housesj = 1: it

Referring Expression MatchPotential
Referent

Status
(G)

(a) Gesture Matrix

1 0.85 1= 0.85*i = 1:   House 8Focus

j = 2: these housesj = 1:    it

Referring Expression MatchPotential
Referent

Status
(F)

(b) Focus  Matrix

Figure 6: The Gesture Matrix (a) and Focus Matrix (b) for processing the example in Figure 5.
Each cell in the Referring Expression Match columns corresponds to an instantiation of
the matching function.

in the compatibility values for the house objects in the Gesture Matrix is mainly due
to the temporal ordering compatibilities.

4. Next the GreedySortingGesture procedure is executed. For each row in Gesture Ma-
trix, the algorithm finds the largest legitimate value and marks the corresponding cell
with *. The legitimate means that the corresponding cell for the row i + 1 has to
be either on the same column or the column to the right of the corresponding cell
in row i. These values are shown in bold in Figure 6(a). Next, starting from each
column, the algorithm checks for each referring expression whether any ∗ exists in
its corresponding column. If so, those objects with ∗ are assigned to the referring
expressions based on the number constraints. In this case, since no specific number is
given in the referring expression these houses, all three marked objects are assigned
to these houses.

5. After these houses, there is still it left to be resolved. Now the algorithm continues to
execute GreedySortingFocus. The Focus Matrix prior to executing GreedySortingFocus
is shown in Figure 6(b). Note that since these houses is no longer considered, its
corresponding column is deleted from the Focus Matrix. Similar to the previous step,
the largest non-zero match value is marked (shown in bold in Figure 6(b)) and assigned
to the remaining referring expression it.

6. The resulting Display Matrix is not shown because at this point, all referring expres-
sions are resolved.
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g1 g2 g3 g4 g5 g6 Total
no one mult. one mult. pts & Num
gest. pt pts cir cirs cirs

s1: the(adj)∗(N |Ns) 2 8 0 2 0 1 13
s2: (this|that)(adj∗)N 4 43 3 33 1 7 91
s3: (these|those)(num+)(adj∗)Ns 0 0 0 31 0 5 36
s4: it|this|that|(this|that|the)adj∗one 3 8 0 10 0 0 21
s5: (these|those)num+adj∗ones|them 0 0 0 2 0 0 2
s6: here|there 1 1 0 5 0 0 7
s7: empty expression 1 1 0 1 0 0 3
s8: proper nouns 1 5 3 3 0 3 15
s9: multiple expressions 1 0 4 11 13 2 31
Total Num: 13 66 10 98 14 18 219

Table 3: Detailed description of user referring behavior

6. Evaluation

We use the data collected from our previous work (Chai et al., 2004) to evaluate this greedy
algorithm. The questions addressed in our evaluation are the following:

• What is the impact of temporal alignment between speech and gesture on the perfor-
mance of the greedy algorithm?

• What is the role of modeling the cognitive status in the greedy algorithm?

• How effective is the greedy algorithm compared to the graph matching algorithm
(Section 3.3)?

• What error sources contribute to the failure in real-time reference resolution?

• How is the greedy algorithm compared to the finite state approach (Section 3.1) and
the decision list approach (Section 3.2)?

6.1 Experiment Setup

The evaluation data were collected from eleven subjects who participated in our study.
Each of the subjects was asked to interact with the system using both speech and gestures
(e.g., pointing and circle) to accomplish five tasks related to real estate information seeking.
The first task was to find the least expensive house in the most populated town. In order
to accomplish this task, the user would have to first find the town that has the highest
population and then find the least expensive house in this town. The next task involved
obtaining a description of the house located in the previous task. The next task was to
compare the house that was located in the first task with all of the houses in a particular
town in terms of price. Additionally, the least expensive house in this second town should
be determined. Another task was to find the most expensive house in a particular town.
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G0: No G1: One G2: Multi- Total
Gesture Gesture Gesture Num

S0: No referring expression 1 (a) 2 (a) 0 (c) 3
S1: One referring expression 11 (a) 151 (b) 23 (c) 185
S2: Multiple referring expressions 1 (c) 11 (c) 19 (c) 31
Total Num: 13 164 42 219

Table 4: Summary of user referring behavior

The last task involved comparing the resulting houses of the previous four tasks. For this
last task, the previous four tasks may have to be completely or partially repeated. These
tasks were designed so that users were required to explore the interface to acquire various
types of information.

The acoustic model for each subject was trained individually to minimize speech recog-
nition errors. The study session was videotaped to capture both audio and video on the
screen movement (including gestures and system responses). The IBM Viavoice speech
recognizer was used to process each speech input.

Table 3 provides a detailed description of the referring behavior observed in the study.
The columns indicate whether no gesture, one gesture (pointing or circle), or multiple ges-
tures are involved in a multimodal input. The rows indicate the type of referring expressions
in a speech utterance. Each table entry shows the number of a particular combination of
speech and gesture inputs.

Table 4 summarizes Table 3 in terms of whether no gesture, one gesture, or multiple
gestures (shown as columns) and whether no referring expression, one referring expression,
or multiple referring expressions (shown as rows) are involved in the input. Note that in
this table an intended input is counted as one input even if this input may be split into a
few turns by our system during the run time.

Based on Table 4, we further categorize user inputs into the following three categories:

• Simple Inputs with One-Zero Alignment: inputs that contain no speech referring
expression with no gesture (i.e.,< S0, G0 >), one referring expression with zero gesture
(i.e.,< S1, G0 >), and no referring expression with one gesture (i.e., < S0, G1 >).
These types of inputs require the conversation context or visual context to resolve
references. One example of this type is the U2 in Table 1. From our data, a total of
14 inputs belong to this category (marked (a) in Table 4).

• Simple Inputs with One-One Alignment: inputs that contain exactly one referring
expression and one gesture (i.e., < S1, G1 >). These types of inputs can be resolved
mostly by combining gesture and speech using multimodal fusion. A total of 151
inputs belong to this category (marked (b) in Table 4).

• Complex Inputs: inputs that contain more than one referring expression and/or ges-
ture. This corresponds to the entry < S1, G2 >, < S2, G0 >,< S2, G1 >, and
< S2, G2 > in Table 4. One example of this type is U3 in Table 1. A total of 54
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No. Correctly Resolved Ordering Absolute Combined
Simple One-Zero Alignment 5 5 5
Simple One-One Alignment 104 104 104
Complex 24 19 23
Total 133 128 132
Accuracy 60.7% 58.4% 60.3%

Table 5: Performance comparison based on different temporal compatibility functions

inputs belong to this category (marked (c) in Table 4). These types of inputs are
particularly challenging to resolve.

In this section, we will focus on different performance evaluations based on these three
types of referring behaviors.

6.2 Temporal Alignment Between Speech and Gesture

In multimodal interpretation, how to align speech and gesture based on their temporal
information is an important question. This is especially the case for complex inputs where
a multimodal input consists of multiple referring expressions and multiple gestures. We
evaluated different temporal compatibility functions for the greedy approach. In particular,
we compared the following three functions:

• The ordering temporal constraint as in Equation 4.

• The absolute temporal constraint as defined by the following formula:

Temp(o, e) = exp(−|BeginT ime(o) − BeginT ime(e)|) (5)

Here, the absolute timestamps of the potential referents (e.g., indicated by a gesture)
and the referring expressions are used instead of the relative orders of relevant entities
in a user input.

• The combined temporal constraint that combines the two aforementioned constraints,
giving each equal weight in determining the compatibility score between an object
and a referring expression.

The results are shown in Table 5. Different temporal constraints only affect the process-
ing of complex inputs. The ordering temporal constraint worked slightly better than the
absolute temporal constraint. In fact, temporal alignment between speech and gesture is of-
ten one of the problems that may affect interpretation results. Previous studies have found
the gestures tend to occur before the corresponding speech unit takes place (Oviatt et al.,
1997). The findings suggest that users tend to tap on the screen first and then start the
speech utterance. This behavior was observed in a simple command based system (Oviatt
et al., 1997) where each speech unit corresponds with a single gesture (i.e., the simple inputs
in our work).
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Speech First Gesture First Total
Non-overlap 7% 45% 52%
Overlap 8% 40% 48%
Total : 15% 85% 100%

Table 6: Overall temporal relations between speech and gesture

From our study, we found that temporal alignment between gesture and corresponding
speech units is still an issue that needs to be further investigated in order to improve
the robustness in multimodal interpretation. Table 6 shows the percentage of different
temporal relations observed in our study. The rows indicate whether there is an overlap
between speech referring expressions and their accompanied gestures. The columns indicate
whether the speech (more precisely, the referring expressions) or the gesture occurred first.
Consistent with the previous findings (Oviatt et al., 1997), in most cases (85% of time),
gestures occurred before the referring expressions were uttered. However, in 15% of the cases
the speech referring expressions were uttered before the corresponding gesture occurred.
Among those cases, 8% had an overlap between the referring expressions and the gesture
and 7% had no overlap.

Furthermore, although multimodal behaviors such as sequential (i.e., non-overlap) or
simultaneous (e.g., overlap) integration are quite consistent during the course of interac-
tion (Oviatt, Coulston, Tomko, Xiao, Bunsford, Wesson, & Carmichael, 2003), there are
some exceptions. Figure 7 shows the temporal alignments from individual users in our study.
User 2 , User 6, and User 8 maintained a consistent behavior in that User 2’s gesture always
happened before and overlapped with the corresponding speech referring expressions; User
6’s gesture always occurred ahead of the speech expressions without overlapping; and User
8’s speech referring expressions always occurred before the corresponding gestures (without
any overlap). The other users exhibited varied temporal alignment between speech and
gesture during the interaction. It will be difficult for a system using pre-defined temporal
constraints to anticipate and accommodate all these different behaviors. Therefore, it is
desirable to have a mechanism that can automatically learn the user behavior of alignment
and automatically adjust to that behavior.

One potential approach is to introduce a calibration process before real human computer
interaction. In this calibration process, two tasks will be performed by a user. In the first
task, the user will be asked to describe objects on the graph display with both speech
and deictic gestures. In the second task, the user will be asked to respond to the system
questions by using both speech and deictic gestures. The reason to have users perform
these two tasks is to identify whether there is any difference between user initiated inputs
and system initiated user responses. Based on these tasks, the temporal relations between
the speech units and corresponding gestures can be captured and used in the real-time
interaction.
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Figure 7: Temporal alignment behavior from our user study

No. Correctly Resolved with Cognitive Principles without Cognitive Principles
Simple One-Zero Alignment 5 5
Simple One-One Alignment 104 92
Complex 24 18
Total 133 115

Table 7: The role of cognitive principles in the greedy algorithm

6.3 The Role of Cognitive Principles

To further examine the role of modeling cognitive status in multimodal reference, we com-
pared the two configurations of the greedy algorithm. The first configuration is based on the
matching score defined in Equation 2, which incorporates the cognitive principles described
earlier. The second configuration only uses the matching score that is completely depen-
dent on the compatibility between a referring expression and a gesture (i.e., Section 5.3.3)
without using the cognitive principles (i.e., P (o|S) and P (S|e) are not included in Equation
2).

Table 7 shows the comparison results in terms of these two configurations. The algorithm
using the cognitive principles outperforms the algorithm that does not use the cognitive
principles by more than 15%. The performance difference applies to both simple inputs
with one-one alignment and complex inputs. The results indicate that modeling cognitive
status can potentially improve reference resolution performance.
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Total Num Graph-matching Greedy
Num % Num %

Total 219 130 59.4% 133 60.7%
Simple One-Zero Alignment 14 7 50.0% 5 35.7%
Simple One-One Alignment 151 104 68.9% 104 68.9%
Complex 54 19 35.2% 24 44.4%

Table 8: Performance comparison between the graph-matching algorithm and the greedy
algorithm

6.4 Greedy Algorithm versus Graph-matching Algorithm

We further compared the greedy algorithm and the graph-matching algorithm in terms of
performance and runtime. Table 8 shows the performance comparison. Overall, the greedy
algorithm performs comparably with the graph-matching algorithm.

To compare the runtime, we ran each algorithm on each user 10 times where each input
was run 100 times. In other words, each user input was run 1000 times by each algorithm
to get the average runtime measurement. This experiment was done on a UltraSPARC-III
server with 750MHz and 64bit.

Both the greedy algorithm and the graph-matching algorithm have the same function
calls to process speech inputs (e.g., parsing) and gesture inputs (e.g., identify potentially
intended objects). The difference between these algorithms are the specific implementations
regarding graph creation and matching as in the graph-matching algorithm and the greedy
search as in the greedy algorithm. As a result, the average time for the greedy algorithm
to process simple inputs and complex inputs are 17.3 milliseconds and 21.2 milliseconds
respectively. The average time for the graph matching algorithm to process simple and
complex inputs are 22.3 milliseconds and 24.8 milliseconds respectively. These results show
that on average the greedy algorithm runs slightly faster than the graph-matching algorithm
given our current implementation, although in the worst case, the graph-matching algorithm
is asymptotically more complex.

6.5 Real-time Error Analysis

To understand the bottleneck in real-time multimodal reference resolution, we examined
the error cases where the algorithm failed to provide correct referents.

Like in most spoken dialog systems, speech recognition is a major bottleneck. Although
we have trained each user’s acoustic model individually, the speech recognition rate is still
very low. Only 127 of inputs had correctly recognized referring expressions. Among these
inputs, 103 of them were resolved with correct referents. Fusing inputs from multiple
modalities together can sometimes compensate for the recognition errors (Oviatt, 1996).
Among 92 inputs in which referring expressions were incorrectly recognized, 29 of them
were correctly assigned referents due to the mutual disambiguation. A mechanism to reduce
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the recognition errors, especially by utilizing information from other modalities, will be
important to provide a robust solution for real time multimodal reference resolution.

The second source of errors comes from another common problem in most spoken dialog
systems, namely out-of-vocabulary words. For example, area was not in our vocabulary.
So the additional semantic constraint expressed by area was not captured. Therefore, the
system could not identify whether a house or a town was referred to when the user uttered
this area. It is important for the system to have a capability to acquire knowledge (e.g.,
vocabulary) dynamically by utilizing information from other modalities and the interaction
context. Furthermore, the errors also came from a lack of understanding of spatial relations
(as in the house just close to the red one) and superlatives (as in the most expensive house).
Algorithms for aligning visual features to resolve spatial references are desirable (Gorniak
& Roy, 2004).

In addition to these two main sources, some errors are caused by unsynchronized inputs.
Currently, we use an idle status (i.e., 2 seconds with no input from either speech or gesture)
as the boundary to delimit an interaction turn. Two types of out of synchronization were
observed. The first type is unsynchronized inputs from the user (such as a big pause between
speech and gesture) and the other comes from the underlying system implementation. The
system captures speech inputs and gesture inputs from two different servers through a
TCP/IP protocol. A communication delay sometimes split one synchronized input into
two separate turns of inputs (e.g., one turn was speech input alone and the other turn was
gesture input alone). A better engineering mechanism for synchronizing inputs is desired.

The disfluencies from the users also accounted for a small number of errors. The cur-
rent algorithm is incapable of distinguishing disfluent cases from normal cases. Fortunately,
the disfluent situations did not occur frequently in our study (only 6 inputs with disflu-
ency). This is consistent with the previous findings that speech disfluency rate is lower in
human machine conversation than in spontaneous speech (Brennan, 2000). During human-
computer conversation, users tend to speak carefully and utterances tend to be short. Recent
findings indicated that gesture patterns could be used as an additional source to identify
different types of speech disfluencies during human-human conversation (Chen, Harper, &
Quek, 2002). Based on our limited cases, we found that gesture patterns could be indicators
of speech disfluencies when they did occur. For example, if a user says show me the red
house (point to house A), the green house (still point to the house A), then the behavior of
pointing to the same house with different speech description usually indicates a repair. Fur-
thermore, gestures also involve disfluencies; for example, repeatedly pointing to an object is
a gesture repetition. Failure in identifying these disfluencies caused problems with reference
resolution. It will be ideal to have a mechanism that can identify these disfluencies using
multimodal information.

6.6 Comparative Evaluation with Two Other Approaches

To further examine how the greedy algorithm is compared to the finite state approach
(Section 3.1) and the decision list approach (Section 3.2), we conducted a comparative eval-
uation. In the original finite state approach, the N-best speech hypotheses are maintained
in the speech tape. In our data here, we only had the best speech hypothesis for each speech
input. Therefore, we manually updated some incorrectly recognized words so that the finite
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No. Correctly Resolved Greedy Finite State Decision List
Simple Inputs with one-one alighment 116 115 88
Simple Inputs with zero-one alighment 8 0 12

Complex Inputs 24 13 0
Total 148 128 100

Table 9: Performance comparison with two other approaches

state approach would not be penalized because of the lack of N-best speech hypotheses 4.
The modified data were used in all three approaches. Table 9 shows the comparison results.

As shown in this table, the greedy algorithm correctly resolved more inputs than the
finite state approach and the decision list approach. The major problem with the finite state
approach is that it does not incorporate conversation context in the finite state transducer.
This problem contributes to the failure in resolving simple inputs with zero-one alignment
and some of the complex inputs. The major problem with the decision list approach, as
described earlier, is the lack of capabilities to process ambiguous gestures and complex
inputs.

Note that the greedy algorithm is not an algorithm to obtain the full semantic inter-
pretation of a multimodal input. But rather it is an algorithm specifically for reference
resolution, which uses information from context and gesture to resolve speech referring ex-
pressions. In this regard, the greedy algorithm is different from the finite state approach
whose goal is to get a full interpretation of user inputs and reference resolution is only a
part of this process.

7. Conclusion

Motivated by earlier investigation on the cognitive status in human machine interaction, this
paper describes a greedy algorithm that incorporates the cognitive principles underlying hu-
man referring behavior to resolve a variety of references during human machine multimodal
interaction. In particular, this algorithm relies on the theories of Conversation Implicature
and Givenness Hierarchy to effectively guide the system in searching for potential refer-
ents. Our empirical studies have shown that modeling the form of referring experssions and
its implication on the cognitive status can achieve better results than the algorithm that
only considers the compatibility between referring expressions and potential referents. This
greedy algorithm can efficiently achieve comparable performance as a previous optimization
approach based on graph-matching. Furthermore, because this greedy algorithm handles
a variety of user inputs ranging from precise to ambiguous and from simple to complex,
it outperforms the finite state approach and the decision list approach in our experiments.
Because of its simplicity and generality, this approach has a potential to improve the ro-
bustness of multimodal interpretation. We have learned from this investigation that prior

4. Note that we only corrected those inputs where there was a direct correspondence between the recognized
words and transcribed words to maintain the consistency of timestamps.
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knowledge from linguistic and cognitive studies can be very beneficial in designing efficient
and practical algorithms for enabling multimodal human machine communication.
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