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Abstract

In a field of research about general reasoning mechanisisseésential to have appropriate
benchmarks. Ideally, the benchmarks should reflect passipplications of the developed tech-
nology. In Al Planning, researchers more and more tend tev dineir testing examples from the
benchmark collections used in the International Planningh@etition (IPC). In the organization
of (the deterministic part of) the fourth IP@RC-4, the authors therefore invested significant effort
to create a useful set of benchmarks. They come from fiverdiftg potential) real-world applica-
tions of planning: airport ground traffic control, oil deaiwe transportation in pipeline networks,
model-checking safety properties, power supply restomatind UMTS call setup. Adapting and
preparing such an application for use as a benchmark in Bén¥lves, at the time, inevitable
(often drastic) simplifications, as well as careful choietvieen, and engineering of, domain en-
codings. For the first time in the IPC, we used compilatiorfetmulate complex domain features
in simple languages such as STRIPS, rather than just drgpip@more interesting problem con-
straints in the simpler language subsets. The article apknd discusses the five application
domains and their adaptation to form the PDDL test suited uséPC-4. We summarize known
theoretical results on structural properties of the domaggarding their computational complexity
and provable properties of their topology underthefunction (an idealized version of the relaxed
plan heuristic). We present new (empirical) results illnating properties such as the quality of
the most wide-spread heuristic functions (planning graphal planning graph, and relaxed plan),
the growth of propositional representations over instaime, and the number of actions available
to achieve each fact; we discuss these data in conjunctitnthé best results achieved by the
different kinds of planners participating in IPC-4.
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1. Introduction

Today, to a large extent the research discipline of Al plagns concerned with improving the per-
formance of domain independent generative planning systékndomain independent generative
planning systemplanne) must be able to fully automatically finglans solution sequences in
declaratively specified transition systems. The simpléstrpng formalism isdeterministic plan-
ning. There, a planner is given as input a set of state variabféen(ust Booleans, callefhcts,
aninitial state (a value assignment to the variablesyjcal (a formula), and a set @fctions(with a
precondition formula describing applicability, and with effect specifying how the action changes
the state). A plan is a time-stamped sequence of actionsrthps the initial state into a state that
satisfies the goal. This sort of formalism is called deterstimsince the initial state is fully speci-
fied and the effects of the actions are non-ambiguous. Bethatons may be weakened to obtain
non-deterministi@ndprobabilistic planning.

Performance of planners is measured by testing thefmemchmarkexample instances of the
planning problem. The “best” algorithm at any point in tinsedgenerally, considered to be the one
that solves these examples most efficiently. In partictites, is the idea in the International Plan-
ning Competition IPC), a biennial event aimed at showcasing the capabilitiesiokat planning
systems.

The first IPC took place in 1998, so at the time of writing themexe four such events. Provid-
ing details about the IPC is beyond the scope of this papdmerefer the reader to the overview
articles written by the organizers of the respective IPGi@us (McDermott, 2000; Bacchus, 2001;
Long & Fox, 2003; Hoffmann & Edelkamp, 2005). In particuleipffmann and Edelkamp (2005)
provide details about the 4th IPC, such as overall organizatlifferent tracks, evaluation, partic-
ipating planners, and results. Basic information is inelligh this paper, so the reader should be
able to follow the main discussion without a detailed baokgd. The language used to describe
planning problems in the IPC is call®®DDL: Planning Domain Definition Language. It was in-
troduced by McDermott (1998) for the first IPC, IPC-1, in 1998 subset of the language was
selected by Bacchus (2000) for IPC-2 in 2000. The languageextended with temporal and nu-
merical constructs by Fox and Long (2003) to form the languigDL2.1for IPC-3 in 2002. It was
further extended with two additional constructs, “timeitia literals” and “derived predicates”, by
Hoffmann and Edelkamp (2005) to form the langu&ggDL2.2for IPC-4 in 2004.

Since, even in its simplest forms, Al planning is a computsily hard problem, no system
can work efficiently inall problem instances (Bylander, 1994; Helmert, 2003). Thus,of cru-
cial importancewhat kinds of examples are used for testifigday, more and more, Al Planning
researchers draw their testing examples from the collestised in the IPC. This makes the IPC
benchmarks a very important instrument for the field. In tlganization of the deterministic part
of the 4th IPC (there was also a probabilistic part, see Ysuh#tman, Weissman, & Asmuth,
2005), the authors therefore invested considerable efftarcreating a set of “useful” benchmarks
for planning.

The very first question to answer is what precisely is mearg hg the word “useful”. This is
not an easy question. There is no widely accepted matheahdg€inition for deciding whether a
set of benchmarks should be considered useful. There amevieg widely acceptethtuitions of
when this is the case. Benchmarks should be:

1. Oriented at applications — a benchmark should reflect an application of the technottegy
veloped in the field.
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2. Diverse in structure — a set of benchmarks should cover different kinds of strecttather
than re-state very similar tasks.

The first of these is usually considered particularly imaort— indeed, Al planning has fre-
qguently been criticized for its “obsession with toy exanspleln recent years, the performance of
state-of-the-art systems has improved dramatically, dtidthat more realistic examples have come
within reach. We made another step in this direction by dingrmost of the IPC-4 benchmarks at
application domains. While traditionally planning bencrks were more or less fantasy products
created having some “real” scenario in mihdse took actual (possible) applications of planning
technology, and turned them into something suitable forctrapetition. We considered five dif-
ferent application domains: airport ground traffic con{girport), oil derivative transportation in
pipeline networksRipesworld, model checking safety propertieBromelg, power supply restora-
tion (PSR, and setup of mobile communication in UMTBNITS. Of course, in the adaptation of
an application for use in the IPC, simplifications need to laelen We will get back to this below.

Diverse structure of benchmarks has traditionally beeergiess attention than realism, but
we believe that it is no less important. The structure unytagla testing example determines the
performance of the applied solving mechanism. This is @alily true for solving mechanisms
whose performance rises and falls with the quality of a lstigrthey use. Hoffmann’s (2001, 2002,
2005) results suggest that much of the spectacular perfarenaf modern heuristic search planners
is due to structural similarities between most of the tradal planning benchmarks. While this
does not imply that modern heuristic search planners avseful, it certainly shows that in the
creation of benchmarks there is a risk of introducing a biagtds one specific way of solving
them. In selecting the benchmark domains for IPC-4, we tioecbver a range of intuitively very
different kinds of problem structure. We will get back tosthielow.

On the one hand, a creator of planning benchmarks has the gohl of realistic, and struc-
turally diverse, benchmark domains. On the other handhbéias the more pragmatic goal to
come up with a version/representation of the benchmarksctrabe attacked with existing plan-
ning systems. Given the still quite restricted capabgitié systems, obviously the two goals are in
conflict. To make matters worse, there isn't an arbitraaingé supply of planning applications that
are publicly available, and/or whose developers agreeue tieeir application used as the basis of
a benchmark. For the IPC organizer, on top of all this, thd beachmarks must baccessibldor
a large enough number of competing systems, which meansrtbsiybe formulated in a language
understood by those systems. Further, the benchmarks hawstdifferences between the scalabil-
ity of planners, i.e., they must not be too easy or too hanas 8traddling the boundary of current
system capabilities.

The solution to the above difficulties, at least our solutiorthe organization of IPC-4, in-
volved a slow tedious interleaved process of contactindiegjmn developers, choosing domains,
exploring domain versions, and engineering domain vengpnesentations. This article presents,
motivates, and discusses our choice of benchmark domainBP®4; it explains the engineering
processes that led to the finally used domain versions andnces. Further, we report about,
and present some new data determining certain structupglepies of the resulting benchmarks
(more details below). The main contribution of thwrk is the set of benchmarks, provided in

1. Of course, there are exceptions to this rule. One impbdae, in our context here, is the Satellite domain, used in
IPC-3, that we further refined for use in IPC-4. More on thisila
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IPC-42 The contributions of thigrticle are: first, providing the necessary documentation of these
benchmarks; second, describing the technical processesiusheir creation; third, providing an
extensive discussion of the structural properties of thrcbmarks. Apart from these more tech-
nical contributions, we believe that our work has value agxample of a large-scale attempt at
engineering a useful set of benchmarks for classical phayni

It is difficult to make any formal claim about our created sebenchmarks, such as that they
are in some way better than the previous benchmarks. Whekingoon this, our intent was to
overcome certain shortcomings of many benchmarks, thonghwmuld be hard pressed to come
up with a formal proof that such improvements were indeedanadter all, judging the quality of
a set of benchmarks is a rather complex matter guided mogtigtbitions, and, worse, personal
opinions?’ What we did was, do our best to create as realistic, strubtutverse, and accessible
benchmarks as possible for IPC-4. Our belief is that we sdmx in doing so. The benchmarks
definitely differ in certain ways from most of the previousibbmarks. We think that most of these
differences are advantageous; we will discuss this at theeglwhere we point out the differences.

Regarding realism of the benchmarks, as pointed out aboeenéin step we took was to design
benchmarks “top-down”, i.e., start from actual possibleligptions of planning technology, and
turn them into something suitable for the competition —eattman the more traditional “bottom-
up” approach of just artificially creating a domain with sofneal” scenario in mind. Of course,
for modelling an application in PDDL, particularly for mdtieg it in a way making it suitable
for use in the IPC, simplifications need to be made. In somes;as.g., airport ground traffic
control, the simplifications were not overly drastic, anelgarved the overall properties and intuitive
structure of the domain. But in other cases, e.g., oil dévedransportation in pipeline networks,
the simplifications we needed to make were so drastic thaetdemains could just as well have
been created in the traditional bottom-up way. Still, eegreatly simplified, a domain generated
top-down has a better chance to capture some structureantlgva real application. Moreover,
a top-down domain has the advantage that since it is derhoed & real application, it provides
a clear guideline towards more realism; the future cha#leisgto make planners work on more
realistic encodings of the application. In the previous petitions, the only domains generated
top-down in the above sense were the Elevator domain usd®ldr2l (Koehler & Schuster, 2000;
Bacchus, 2001), and the Satellite and Rovers domains use€H3 (Long & Fox, 2003).

Regarding diverse structure of the benchmarks, in contiatbie previous competitions, in the
IPC-4 domains there is no common “theme” underlying manyheflienchmarks. In IPC-1, 5 out
of 7 domains were variants of transportation; in IPC-2, 4afuf domains were variants of trans-
portation; in IPC-3, 3 out of 6 domains were variants of tpamation, and 2 were about gathering
data in space. Some of the “variants” are in fact very intargsn their use of constructs such
as locked locations, fuel units, road map graphs, staclatjkcts, and complex side constraints.
However, there is certainly an intuitive similarity in thieugcture and relationships in the domains.
To some extent this similarity is even automatically degblet (Long & Fox, 2000). Not so in IPC-
4: airport ground traffic control, oil derivative transpadron in pipeline networks, model checking
safety properties, power supply restoration, and UMTS seilip are rather different topics. At

2. The benchmarks can be downloaded from the IPC-4 web pdd#pdtfipc.icaps-conference.org/

3. Consider for example the Movie domain used in IPC-1. Adtamces of this domain, no matter what their size is,
share the same space of reachable states; the only thingp¢hedses is the connectivity between states, i.e. the
number of actions that have the same effect. Still one camedttat Movie is a useful benchmark, in the sense that it
can highlight systems/approaches that have/have no dlifisin attacking such problem characteristics.
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most one could claim that airport ground traffic control andT$ call setup both have a schedul-
ing nature. We will see, however, that the IPC-4 version ghat ground traffic control allows
considerably more freedom than classical scheduling fatioms, making it #SPACE-complete
decision problem. The particulars of the domains will beresved in Section 3.

Approaching “structure” from a more formal point of view ione difficult. It is largely unclear
what, precisely, the relevant structure in a planning dofimr@stance is, in a general sense. While
Hoffmann (2001, 2002, 2005) provides one possible defmiticearch space surface topology un-
der a certain heuristic function — there are many other ptessiptions. In particular, Hoffmann’s
results are relevant only for heuristic search plannettsgii@erate their heuristic functions based on
the “ignoring delete lists” relaxation (McDermott, 19989B; Bonet, Loerincs, & Geffner, 1997,
Bonet & Geffner, 2001; Hoffmann & Nebel, 2001). For lack of etter formal handle, we used
Hoffmann’s definitions to qualify the structure of the domsi The selected domains cover dif-
ferent regions of Hoffmann’s “planning domain taxonomy, particular they lie in regions that
have less coverage in the traditional benchmarks. Bec#gseare interesting in the context of
the paper at hand, we summarize Hoffmann’s (2005) result8daomains including all domains
used in the previous competitions. We also summarize H&B(@006b) results on the computa-
tional complexity of satisficing and optimal planning in t&C-4 domains. It turns out that their
complexity covers a wide range — the widest possible ramygarbpositional planning formalisms
— from PSPACE-hard to polynomial. We finally provide some riata to analyze the structural
relationships and differences between the domains. Antager things, for each instance, we
measure: the number of (parallel and sequential) stepsddedichieve the goal, estimated by the
smallest plan found by any IPC-4 participant; the same nurabeestimated by planning graphs
and relaxed plans; and the distribution of the number ofiptessichieving actions for each fact.
The results are examined in a comparison between the diffel@amains, taking into account the
runtime performance exhibited by the different kinds ofplers in IPC-4.

Apart from realism and diverse structure, our main questercteation of the IPC-4 benchmarks
was to promote their accessibility. Applications are, ¢gfly, if they can be modelled at all in
PDDL, most naturally modelled using rather complex languegnstructs such as time, numeric
variables, logical formulas, and conditional effects. Masisting systems handle only subsets of
this, in fact more than half of the systems entered into IR@rdcisely, 11 out of 19) could handle
only the simple STRIPS language, or slight extensions bfiitthe previous competitions, as done
for example in the Elevator, Satellite, and Rovers domatms,was handled simply by dropping
the more interesting domain constraints in the simplerdaggs, i.e., by removing the respective
language constructs from the domain/instance descrgtioncontrast, for the first time in the IPC,
we compiledas much of the domain semantics as possible down into thdesitapguage formats.
Such a compilation is hard, sometimes impossible, to daatitbe done for ADL constructs, as
well as for the two new constructs introduced for the IPCrgleage PDDL2.2, derived predicates
and timed initial literals. We implemented, and appliednpdation methods for all these cases.

4. STRIPS (Stanford Research Institute Problem Solvehasiame of the simplest and at the same time most wide-
spread planning language. In the form of the language uskytthe state variables are all Boolean, formulas are
conjunctions of positive atoms, action effects are eithemic positive (make a fact truedd it) or atomic negative
(make a fact falseleleteit) (Fikes & Nilsson, 1971). The languages selected for BP@acchus, 2000), from which
PDDL2.1 and PDDL2.2 are derived, were STRIPS and ADL. ADL igraminent, more expressive, alternative
to STRIPS, extending it with arbitrary first-order formulas preconditions and goal, and with conditional effects,
i.e., effects that occur only if their individual effect atition (a first-order formula) is met in the state of execntio
(Pednault, 1989).
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The compilations serve to preserve more of the original dorsi@ucture, in the simpler language
classes. For example, the STRIPS version of the Elevatoauhoim IPC-2 is so simplified from the
original ADL version that it bears only marginal similarity real elevator control — in particular,
the planner can explicitlyell passengers to get into or out of the fiftin contrast, our STRIPS
formulation of the airport ground traffic domain is, semealll, identical to our ADL formulation
— it expresses the same things, but in a more awkward fashion.

The compiled domain “versions” were offered to the compdiitas alternative domain ver-
sion “formulations”, yielding a 2-step hierarchy for eaatnthin. That is, each domain in IPC-4
could contain several different domain versions, diffgrin terms of the number of domain con-
straints/properties considered. Within each domain earsinere could be several domain ver-
sion formulations, differing in terms of the language usefbrmulate the (same) semantics. The
competitors could choose, within each version, whichesantilation their planners could handle
best/handle at all, and the results within the domain varsiere then evaluated together. This
way, we intended to make the competition as accessible agpmsvhile at the same time keeping
the number of separation lines in the data — the number ahdigtns that need to be made when
evaluating the data — at an acceptable level.

We are, of course, aware that encoding details can have ificagm impact on system perfor-
mance® Particularly, when compiling ADL to STRIPS, in most cases hvael to revert to fully
grounded encodings. While this certainly isn’t desirakle,believe it to be an acceptable price to
pay for the benefit of accessibility. Most current systenmigd the operators out as a pre-process
anyway. In cases where we considered the compiled domainufations too different from the
original ones to allow for a fair comparison — typically basa plan length increased significantly
due to the compilation — the compiled formulation was pogetihé competitors as a separate do-
main version.

The article is organized as follows. The main body of texttaims general information. In
Section 2, we give a detailed explanation of the compilati@thods we used. In Section 3, we give
a summary of the domains, each with a short application ght&er, our motivation for including
the domain, a brief explanation of the main simplificationade, and a brief explanation of the
different domain versions and formulations. In Section 4, summarize Hoffmann’s (2005) and
Helmert's (2006b) theoretical results on the structureheflPC-4 domains. Section 5, we provide
our own empirical analysis of structural properties. S®r# discusses what was achieved, and
provides a summary of the main issues left open. For eacheofR@@-4 domains, we include a
separate section in Appendix A, providing detailed infotiova on the application, its adaptation
for IPC-4, its domain versions, the example instances wmadl future directions. Although these
details are in an appendix, we emphasize that this is nouksedhey are of secondary importance.
On the contrary, they describe the main body of work we dide Pphesentation in an appendix
seems more suitable since we expect the reader to, typiexiymine the domains in detail in a
selective and non-chronological manner.

5. The passengers won't get in (out) at floors other than tir@gin (destination); however, with explicit control, the
planner can choose twt letsomeone in (out). The more accurate encoding is via comditieffects of the action
stopping the lift at a floor.

6. A very detailed account of such matters is provided by Hame Dahiman (2002).
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2. PDDL Compilations

We used three kinds of compilation methods:
e ADL to SIMPLE-ADL (STRIPS with conditional effects) or STRS;
e PDDL with derived predicates to PDDL without them;
e PDDL with timed initial literals to PDDL without them.

We consider these compilation methods in this order, exipigj for each, how the compilation
works, what the main difficulties and their possible solusi@re, and giving an outline of how we
used the compilation in the competition. Note that ADL, SINBPADL, and STRIPS are subsets
of PDDL. Each of the compilation methods was published disger already (see the citations in
the text). This section serves as an overview article, sinceherent summary of the techniques,
and their behavior in practice, has not appeared elsewhdhe iiterature.

2.1 Compilations of ADL to SIMPLE-ADL and STRIPS

ADL constructs can be compiled away with methods first preddsy Gazen and Knoblock (1997).
Suppose we are given a planning instance with constantdlgetC), initial state/, goal G, and
operator sef). Each operatos has a preconditiopre(o), and conditional effects, taking the form
con(e), add(e), del(e) whereadd(e) anddel(e) are lists of atoms. Preconditions, effect conditions,
and( are first order logic formulas (effect conditions &&U F for unconditional effects). Since
the domain of discourse — the set of constants — is finite,dhadlas can be equivalently trans-
formed into propositional logic.

(1) Quantifiers are turned into conjunctions and disjumgjsimply by expanding them with the
available objectsyz : ¢(z) turns into/\ .. #(c) and3z : ¢(x) turnsinto\/ . ¢(c). Iterate
until no more quantifiers are left.

Since STRIPS allows only conjunctions of positive atomsadurther transformations are neces-
sary.

(2) Formulas are brought into negation normal forais A 1) turns into—¢ vV —p and—(¢ V )
turns into—¢ A —1). Iterate until negation is in front of atoms only.

(3) For each—zx that occurs in a formula: introduce a new predicate-x; setnot-x € I iff
x ¢ I, for all effectse: setnot-z € add(e) iff x € del(e) andnot-z € del(e) iff x € add(e);
in all formulas, replace.x with not-z. Iterate until no more negations are left.

(4) Transform all formulas into DNRp; V ¢2) A (11 V 1b2) turns into(ér A 1) V (1 A ha) V
(2 A 2h1) V (g2 A 2p2). Iterate until no more conjunctions occur above disjumdgiolf an
operator preconditiopre(o) hasn > 1 disjuncts, then create copies ofo each with one
disjunct as precondition. If an effect conditienn(e) hasn > 1 disjuncts, then create
copies ofe each with one disjunct as condition. & hasn > 1 disjuncts, then introduce a
new factgoal-reached, setG := goal-reached, and creater new operators each with one
disjunct as precondition and a single unconditional eféelttinggoal-reached.
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(:action move
:parameters
(?a - airplane ?t - airplanetype ?d1 - direction ?s1 ?s2 - seg@u2 - direction)
‘precondition
(and (has-type ?a ?t) (is-moving ?a) (not (= ?sl ?s2)) @ea?d1l) (can-move ?sl ?s2 ?d1)
(move-dir ?s1 ?s2 ?d2) (at-segment ?a ?s1)
(not (exists (?al - airplane) (and (not (= ?al ?a)) (blocls2d?a1))))
(forall (?s - segment) (imply (and (is-blocked ?s ?t ?s2 Pd@) (= ?s ?s1))) (not (occupied ?s)))))
-effect
(and (occupied ?s2) (blocked ?s2 ?a) (not (occupied ?sd)jdrsegment ?a ?s1)) (at-segment ?a ?s2)
(when (not (is-blocked ?s1 ?t ?s2 ?d2)) (not (blocked ?9) ?a)
(when (not (= ?d1 ?d2)) (and (not (facing ?a ?d1)) (facingd23)?
(forall (?s - segment) (when (is-blocked ?s ?t ?s2 ?d2) Keld@s ?a)))
(forall (?s - segment) (when
(and (is-blocked ?s ?t ?s1 ?d1) (not (= ?s ?s2)) (not (iskbb@s ?t ?s2 ?d2)))
(not (blocked ?s ?a))))))

Figure 1: An operator from airport ground traffic control.

As an illustrative example, consider the operator degonph Figure 1, taken from our domain
encoding airport ground traffic control. This operator nwge airplane from one airport segment
to another. Consider specifically the precondition formulet (exists (?al - airplane) (and (not (=
?al ?a)) (blocked ?s2 ?al))¥aying that no airplane different from “?a” is allowed todk segment
“?s2”, the segment we are moving into. Say the set of airglage;, ..., a,. Then step (1) will
turn the formula intaqnot (or (and (not (= a?a)) (blocked ?s2:3) ... (and (not (= g ?a)) (blocked ?s2
a,)))). Step (2) yieldgand (or (= a ?a) (not (blocked ?s2,3) ... (or (= a, ?a) (not (blocked ?s2,¥)).
Step (3) yieldgand (or (= a ?a) (not-blocked ?s2 ) ... (or (= g, ?a) (not-blocked ?s2,3). Step (4),
finally, will (naively) transform this intqor (and (= a ?a) ...(= @ ?a)) ... (and (not-blocked ?s2)a
... (not-blocked ?s2,3)), i.e., more mathematically notated:

ze{(= & ?a)(not-blocked ?s2d} x...x{(= &, ?a)(not-blocked ?s2.,9}

In words, transforming the formula into a DNF requires entatieg alln-vectors of atoms where
each vector position is selected from one of the two possible atoms regardindaaiem;. This
yields an exponential blow-up to a DNF witt disjuncts. The DNF is then split up into its single
disjuncts, each one yielding a new copy of the operator.

The reader will have noticed that an exponential blow-uplgs &nherent in compilation step
(1), where each quantifier may be expandedd¢ sub-formulas, and: nested quantifiers will
be expanded toC|* sub-formulas. Obviously, in general there is no way aroititee of the
blow-ups, other than to deal with more complex formulas thowed in STRIPS. In practice,
however, these blow-ups can typically be dealt with realsignaell, thanks to the relative simplicity
of operator descriptions, and the frequent occurrencstatic predicates, explained shortly. If
guantifiers aren’t deeply nested, like in Figure 1, then tlesvhup inherent in step (1) does not
matter. Transformation to DNF is more often a problem — likeour example here. The key
to successful application of the compilation in practiceleast as far as our personal experience
goes, is the exploitation of static predicates. This idedeiscribed, for example, by Koehler and
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Hoffmann (2000). Static predicates aren’t affected by gogrator effect. Such predicates can be
easily found, and their truth value is fully determined bg thitial stateas soon as they are fully
instantiated In the above transformation through step (4), the opepmmeters are still variables,
and even if we knew that “=" is (of course) a static predic#tés would not help us because we
wouldn’'t know what “?a” is. If we instantiate “?a”, howevéhen, in each such instantiation of
the operator, the “(= ?al ?a)” atoms trivialize to TRUE or 5K, and the large DNF collapses
to the single conjunction\, -« 7a1 ajrplandnot-blocked ?s2 ?alwhere ‘a” is our instantiation of
“?a”. Similarly, the expansion of quantifiers is often madecin easier by first instantiating the
operator parameters, and then inserting TRUE or FALSE fgrsiatic predicate as soon as its
parameters are grounded. Inserting TRUE or FALSE often Ifiegpthe formulas significantly
once this information is propagated upwards (e.g., a ditiom with a TRUE element becomes
TRUE itself).

Assuming our compilation succeeded thus far, after steyge (%) are processed we are down to
a STRIPS description with conditional effects, i.e., théaas still have conditional effecten(e),
add(e), del(e) wherecon(e) is a conjunction of atoms. This subset of ADL has been termed
“SIMPLE-ADL” by Fahiem Bacchus, who used it for the encodimigone of the versions of the
“Elevator” domain used in IPC-2 (i.e. the 2000 competitiohye can now choose to leave it in
this language, necessitating a planning algorithm thatdssat with conditional effects directly.
Several existing planning systems, for example FF (Hofim&Nebel, 2001) and IPP (Koehler,
Nebel, Hoffmann, & Dimopoulos, 1997), do this. It is a sefesilpproach since, as Nebel (2000)
proved, conditional effects cannot be compiled into STRWBout either an exponential blow-
up in the task description, or a linear increase in plan kengdne might suspect here that, like
with steps (1) and (4) above, the “exponential blow-up” cavstly be avoided in practice. The
airport move operator in Figure 1 provides an example of #hilseffect conditions are static and so
the conditional effects disappear completely once we iistie the parameters — which is another
good reason for doing instantiation prior to the compilatislowever, the conditional effects dot
disappear in many other, even very simple, natural domauwsider the following effect, taken
from the classical Briefcaseworld domain:

(forall (?0) (when (in ?0) (and (at ?0 ?to) (not (at ?0 ?from))

The effect says that any object “?0” that is currently in thefoase moves along with the briefcase.
Obviously, the effect condition isot static, and the outcome of the operator will truly dependhen t
contents of the briefcase. Note that the “forall” here mahaswe actually have setof (distinct)
conditional effects, one for each object.

There are basically two known methods to compile conditiefi@cts away, corresponding to
the two options left open by Nebel’'s (2000) result. The fingtian is to enumerate all possible
combinationof effect outcomes, which preserves plan length at the dast exponential blow-up
in description size — exponential in the number of differemditional effects of any single action.
Consider the above Briefcaseworld operator, and say tlablfect set isq,...,0,. For every
subset, ..o, Of o1,...,04, 0 _4,...,0, being the complement of the subset, we get a distinct
operator with a precondition that contains all of:

(ino}) ...(ino,) (not-inop, ;) ... (not-ino;,)
Where the effect on the objects is:

(ato) ?to) ... (at) ?to) (not (ab) ?from)) ... (not (ab;, ?from))
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In other words, the operator can be applied (only) if exaatly. .. o, are in the briefcase, and it
moves exactly these objects. Since (in deterministic ptenas considered here) there never is
uncertainty about what objects are inside the briefcasevdrat are not, exactly one of the new
operators can be applied whenever the original operatobeapplied. So the compilation method
preserves the size (nodes) and form (edges) of the state.dpawever, we won't be able to do the
transformation, or the planner won't be able to deal withrémulting task, if» grows beyond, say,
maximally 10 ... 20. Often, real-world operators contain more distinct caondal effects than that.

The alternative method, first proposed by Nebel (2000), imtmduce artificial actions and
facts that enforce, after each application of a “normaliamgtan effect-evaluation phase during
which all conditional effects of the action must be triedd ahose whose condition is satisfied
must be applied. For the above Briefcaseworld example,vtiisid look as follows. First, the
conditional effect gets removed, a new fact “evaluateetdfeis inserted into the add list, and a
new fact “normal” is inserted into the precondition and telest. Then we havén new operators,
two for each objecb;. One means “move-along-, the other means “leave;”. The former has
“in(o;)” in its precondition, the latter “not-im{)”. The former has “(ab; ?to)” and “(not (ato;
?from)” in its effect. Both have “evaluate-effects” in th@recondition, and a new fact “trieg)”
as an add effect. There is a final new operator that stops Hieatn, whose precondition is the
conjunction of “evaluate-effects” and “trieg}-’, ..., “tried-o,,”, whose add effect is “normal”, and
whose delete effect is “evaluate-effects”. If the conditibeffects of several operators are compiled
away with this method, then the “evaluate-effects” andetti,” facts are made specific to each
operator; “normal”’ can remain a single fact used by all therafors. If an effect haks > 1 facts in
its condition, therk “leaveo;” actions must be created, each having the negation of orfedhtts
in its precondition.

Nebel's (2000) method increases plan length by the numbeistihct conditional effects of
the operators. Note that this is not benign if there are, saye thar20 such effects. To a search
procedure that recognizes what the new constructs do, #relsspace essentially remains the
same as before the compilation. But, while the artificialstorcts can easily be deciphered for
what they are by a human, this is not necessarily true (i$yliteenot be the case) for a computer
that searches with some general-purpose search procellisteas an example, in a naive forward
search space there is now a choice of howrtter the application of the conditional effects (which
could be avoided by enforcing some order with yet more adificonstructs). Probably more
importantly, standard search heuristics are unlikely tmgaize the nature of the constructs. For
example, without delete lists it suffices to achieve all ofetd-o,", ..., “tried-0,,” just once, and
later on apply only those conditional effects that are ndede

We conclude that if it is necessary to eliminate conditigftdcts, whenever feasible, one should
compile conditional effects away with the first method, epuating effect outcomes. We did so in
IPC-4. We took FF’s pre-processor, that implements thestommation steps (1) to (4) above, and
extended it with code that compiles conditional effects ygveptionally by either of the two de-
scribed methods. We call the resulting tool “adl2stripslin most cases where we had a domain
version formulated in ADL, we used adI2strips to generatd RIS formulation of that domain
version. In one case, a version of power supply restoratanalso generated a SIMPLE-ADL

7. Executables of adl2strips can be downloaded from thedR&b page at http://ipc.icaps-conference.org. There is
also a download of a tool named “Ground”, based on the codeeoiips system (Edelkamp, 2003b), that takes in
the full syntax of PDDL2.2 (Hoffmann & Edelkamp, 2005) andgaut a grounded representation (we did not have
to use the tool in IPC-4 since the temporal and numeric plaaiehad their own pre-processing steps implemented).
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formulation. In all cases but one, enumerating effect auies was feasible. The single excep-
tion was another version of power supply restoration whezemgre forced to use Nebel’'s (2000)
method. Details of this process, and exceptions where waalidise adl2strips but some more
domain-specific method, are described in the sections oimdedual domains in Appendix A.

2.2 Compilations of Derived Predicates

There are several proposals in the literature as to how tgierderived predicates away, un-
der certain restrictions on their form or their use in tha méthe domain description (Gazen &
Knoblock, 1997; Garagnani, 2000). A compilation scheméwlaaks in general has been proposed
by Thiébaux, Hoffmann, and Nebel (2003, 2005). Thiébawad.ealso proved that there is no com-
pilation scheme that works in general and that does not,amibrst case, involve an exponential
blow-up in either the domain description size or in the léngft the plans. Note here that “expo-
nential” refers also to the increase in plan length, not jaghe description blow-up, unlike the
compilation of conditional effects discussed above. Thakes the compilation of derived pred-
icates a rather difficult task. In IPC-4, compilation schemeented at the approaches taken by
Gazen and Knoblock (1997), and Thiébaux et al. (2003, 2008je used. We detail this below.
First, let us explain what derived predicates are, and hevetimpilations work.

Derived predicates are predicates that are not affecteahppfathe operators, but whose truth
value can be derived by a set dérivation rules These rules take the for;\z) = P(z). The
basic intuition is that, ity(Z) is satisfied for an instantiationof the variable vectoE, then P(¢)
can be concluded. More formally, the semantics of the déowaules are defined byegation as
failure: starting with the empty extension, instancedgf) are derived until a fixpoint is reached,;
the instances that lie outside the fixpoint are assumed tAb8E. Consider the following example:

(:derived (trans ?x ?y) (or (edge ?x ?y ) (exists (?z) (anddexk ?z) (trans ?z ?y)))))

This derivation rule defines the transitive closure overdtiges in a graph. This is a very typical
application of derived predicates. For example, “abovehmBlocksworld is naturally formalized
by such a predicate; in our power supply restoration dontedmsitive closure models the power
flow over the paths in a network of electric lines. Obvioushe pairs “?x” and “?y” that araot
transitively connected are those that do not appear in theifik— negation as failure.

Matters become interesting when we think about how derivedipates are allowed to refer to
each other, and how they may be used in the rest of the taskptést Some important distinctions
are: Can a derived predicate appear in the antecedent oivataer rule? Can a derived predicate
appeamegatedn the antecedent of a derivation rule? Can a derived predaggpear negated in an
action precondition or the goal?

If derived predicates do not appear in the antecedents dfatien rules, then they are merely
non-recursive macros, serving as syntactic sugar. Oneigglysreplace the derived predicates
with their definitions® If a derived predicaté appears negated in the (negation normal form of the)
antecedent of a derivation rule for predicélethen the fixpoints of” and(@ can not be computed
in an interleaved way: the extension@fmay differ depending on the order in which the individual
instances are derived. Say the rule fois A(Z) = P(T), whereA is a basic predicate, and the rule
for Q is =P (Z) = Q(z). Say we have objects andb, and our current state satisfies (onija).

8. If the derived predicates are recursive but cycle-frieey tan be replaced with their definitions but that may incure
an exponential blow-up.
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Computing the derived predicates in an interleaved way, &g deriveA(a) = P(a), ~A(b) =

Q(b), and stop; we may also deriveP(a) = Q(a),~A(b) = Q(b), A(a) = P(a). There is

a non-monotonic behavior, making it non-trivial to defineawihe extension o3 is. To keep
things simple — after all the extensions of the derived megtds must be computed in every new
world state — Thiébaux et al. (2003, 2005) propose to siropder Q after P. That is, we compute

P’s extension first and then compuiebased on that. Generalized, one ends up with a semantics
corresponding to that of stratified logic programs (Apt,iBl& Walker, 1988). In the context of
IPC-4,i.e.,in PDDL2.2 (Hoffmann & Edelkamp, 2005), for tteke of simplicity the use of negated
derived predicates in the antecedents of derivation rubesnet allowed.

Whether or not derived predicates appear negated in actegopditions or the goal makes
a difference for Gazen and Knoblock’s (1997) compilatiohesne. The idea in that scheme is
to simply replace derivation rules with actions. Each @) = P(z) is replaced with a new
operator with parametels preconditions(z) and (add) effecP(Z). Actions that can influence the
truth value ofp — that affect any of the atoms mentionedsir- delete all instances d@?. In words,
the new actions allow the derivation &%, and if a normal action is applied that may influence the
value of P, then the extension a? is re-initialized.

If derived predicates are not used negated, then Gazen aodldGk’s (1997) compilation
scheme works. However, sayP(¢) is contained in some action precondition. In the compiled
version, the planner can achieve this precondition simplgdi applying the “derivation rule” —the
action — that add#(¢). That is, the planner now has a choice of what predicaterinstato derive,
which of course is not the same as the negation as failurergemmaThe reader may at this point
wonder why we do not compile the negations away first, anceifesr use Gazen and Knoblock’s
(1997) compilation. The problem there would be the needrfeerse derivation ruleshat work
with the negation as failure semantics. It is not clear hawghould be done. Say, for example, we
want to define the negated version of the “(trans ?x ?y)” peddiabove. One would be tempted to
just take the negation of the derivation rule antecedent:

(:derived (not-trans ?x ?y) (and (not-edge ?x ?y) (foral) (®r (not-edge ?x ?z) (not-trans ?z ?y)))))

This does not work, however. Say every node in the graph Hassttone adjacent edge. Starting
with an empty extension of “(not-trans ?x ?y)”, not a singistantiation can be derived: given any
x and y between which there is no edge, for those z that havegmte x we would have to have
(not-trans z y) in the first place.

One possible solution to the above difficulties is to exteadéh and Knoblock’s (1997) compi-
lation with constructs that force the planner to computeetiitire extension of the derived predicates
before resuming normal planning. A full description of thdgaling with arbitrary derivation rules,
is described by Thiébaux et al. (2003, 2005). In a nutsh&ll,compilation works as follows. One
introduces flags saying if one is in “normal” or in “fixpoint”’ade. Normal actions invoke the fix-
point mode if they affect any predicates relevant to thevdéon rules. In fixpoint mode, an action
can be applied that has one conditional effect for each akgwiv rule: if the effect condition is true,
and the respective derived predicate instance is falsa,ttia predicate instance is added, plus a
flag “changes-made”. Another action tests whether therdeas a fixpoint: if “changes-made” is
true, then the action just resets it to false; if “changesiaias false, then the action switches back
to normal mode. To reduce the domain to STRIPS, after thigpdation of derived predicates, the
negations and conditional effects must be compiled away thig techniques explained earlier.
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One would imagine that Thiebaux et al.’s (2003, 2005) coatipih, making use of rather com-
plicated constructs, tends to confuse domain independsntls techniques. Indeed, Thiébaux
et al. (2003, 2005) report that even a completely naive eitglieatment of derived predicates in
FF performs a lot better, in some benchmark domains, thastmeard version of FF applied to
the compiled benchmarks. Gazen and Knoblock’s (1997) datigsi makes use of less artificial
constructs, and is thus preferable whenever it can safedypplked. Note, however, that both compi-
lations imply a potentially exponential blow-up in plandgh: exponentiain the arity of the derived
predicates The worst case is that every action affects the derivatitesy and every re-computation
of the extension of the derived predicates has to go throlighase predicates’ instantiations. In
such a situation, between every pair of normal actions ther@r has to apply on the order|6f|*
actions, where: is the maximum arity of any derived predicate. Whilés typically very small
— power supply restoration is the only domain we are awardaif fieatures a derived predicate
with more than two (four, namely) arguments — even a plantleimgrease linear in the number of
objects can mean a quite significant decrease in plannarpeahce.

Of the IPC-4 benchmarks, derived predicates occur (onhypawer supply restoration (Ap-
pendix A.4) and model checking safety properties (AppeddB). For the latter, where the derived
predicates do not occur negated, Stefan Edelkamp encodadaiversion without derived pred-
icates by hand, using a method along the lines of the oneidleddry Gazen and Knoblock (1997).
For power supply restoration, where derived predicatescdarmegated, we used a variation of the
method described by Thiébaux et al. (2003, 2005). In basesadue to the increase in plan length
we considered the resulting domain formulation too diffiéfeom the original formulation to be di-
rectly compared with it, in terms of planner performancett#&ocompiled formulations were posed
to the competitors as distinct domaiarsions instead of alternative domain version formulations.
Indeed, just as we expected, planner results in IPC-4 weohmvorse for the compiled encodings.

2.3 Compilations of Timed Initial Literals

Timed initial literals are literals that are known to becomee at time points pre-specified in the
initial state. Such literals can be compiled into duratloRBDL relatively easily, at the cost of
the plan length and the domain description size blowing ngalily in the number of timed initial
literals. The compilation was proposed and brought to owemé&bn by Fox, Long, and Halsey
(2004). The idea is to use a “wrapper” action that must beiegglefore any other action, and
whose duration is the occurrence time of the last timedaihiitieral. The planner must also apply
a sequence of “literal” actions that achieve all the timeitiahliterals by order of occurrence,
the durations being the time intervals between the occoesnWhen the “wrapper” action has
terminated, the “literal” actions can no longer be appli®d.the planner is forced to apply them all
in direct sequence. This suffices to encode the desired siesmatonsider the following example:

(cinit
(at 9 (have-to-work))
(at 19 (not (have-to-work)))
(at 19 (bar-open))
(at 23 (not (bar-open))))

To encode this in standard durational PDDL, the “wrappetl bg:

(:action wrapper
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:parameters ()
:duration (= ?duration 23)
:condition
(at start (no-wrapper))
-effect
(and (at start (not (no-wrapper)))
(at start (wrapper-started))
(at start (wrapper-active))
(at start (literal-1-started))
(at end (not (wrapper-active)))))

Here, “no-wrapper” ensures only one wrapper action is eeetwrapper-started” is inserted into
the precondition of every normal action and thus ensurdgtibavrapper is started before any other
action is executed; “wrapper-active” will be a preconditiof the “literal” actions. Precisely, these

will be:

(:action literal-1

parameters ()

:duration (= ?duration 9)

:condition

(and (over all (wrapper-active))
(over all (literal-1-started)))

-effect

(and (at end (not (literal-1-started)))
(at end (literal-2-started))
(at end (have-to-work))))

(:action literal-2

‘parameters ()

:duration (= ?duration 10)

:condition

(and (over all (wrapper-active))
(over all (literal-2-started)))

-effect

(and (at end (not (literal-2-started)))
(at end (literal-3-started))
(at end (not (have-to-work)))
(at end (bar-open))))

(:action literal-3

:parameters ()

:duration (= ?duration 4)

:condition

(and (over all (wrapper-active))
(over all (literal-3-started)))

-effect

(and (at end (not (literal-3-started)))
(at end (not (bar-open)))
(at end (literals-done))))
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The fact “literals-done” will be made a goal, so the plannestractually apply the “literal” actions.
Note that we need only three of these actions here, since tvilbectimed initial literals — no
longer having to work and the opening of the bar — are schddol®ccur at the same time. Note
also that, as with Nebel's (2000) compilation of conditibefiects and Thiebaux et al.’s (2003,
2005) compilation of derived predicates, the compiled dimapis likely to be confusing for domain
independent search methods.

Many of the IPC-4 domains made use of timed initial literdis fome versions) to encode
various kinds of time windows (see Appendix A). We compilBdse domain versions into pure
(durational) PDDL as above, and provided the resulting éimgs as additional domawersions
Due to the increase in the number of actions needed for thmes plee figured that the compilation
constructs were too much of a change for direct comparisatedd, as with the derived predicates,
planner results in IPC-4 were much worse for the domain eesscompiled in this way.

3. A Summary of the Domains

In this section we provide a brief summary of the IPC-4 domakor each domain, we provide: a
short description of the application; our motivation foclusion of the domain; a brief explanation
of the main simplifications made for IPC-4; and a brief exptéon of the different domain versions
and formulations used in IPC-4. We proceed in alphabetiaidro

3.1 Airport

We had a contact person for this application domain, Woligdatzack, who has been working in
this application area for several years. The domain wasteddpr IPC-4 by Jorg Hoffmann and
Sebastian Trig

Application. The task here is to control the ground traffic at an airporméd travel routes must be
assigned to the airplanes so that they reach their targbtseTs inbound and outbound traffic; the
former are airplanes that must take off, the latter areaigs that have just landed and have to park.
The main problem constraint is, of course, to ensure theysaféhe airplanes. This means to avoid
collisions, and also to prevent airplanes from enteringutigafe zones behind large airplanes that
have their engines running. The optimization criterioroigiinimize the summed up travel time (on
the surface of the airport) of all airplangsThere usually arstandard routesi.e., routes that any
airplane must take when outbound from a certain parking, areimbound from a certain runway.
The reason for introducing such routes is to reduce comtgléi human ground controllers, since
significant computer support is not yet available at regais. Solving instances optimally (the
corresponding decision problem) BSPACE-hard without standard routes (Helmert, 2006b) and
NP-complete ifall routes are standardized (Hatzack & Nebel, 2001). In therladise, we have a
pure scheduling problem. In the former case, complicatad afirealistic — airport traffic situations
can lead to exponentially long solutions, see Section 4.1.

Motivation. Our main motivation for including this domain was that we g&eable to model the
application quite accurately, and, in particular, to gatemruite realistic instances. In fact, we
were able to generate instances based on a real airport. welsisnade possible by our contact
to Wolfgang Hatzack, who completed a PhD about this apptinaiHatzack, 2002). Apart from

9. An alternative criterion would be to minimize the summexsquared delay of all airplanes. This is in the interest
of the airlines; minimizing summed up travel time is in theeiest of the airport. Neither of the two can be easily
modelled in PDDL2.2, as we discuss in Simplifications, below
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developing domain-specific solutions (Hatzack & Nebel,D0fe developed a realistic simulation
tool, which he kindly supplied to us for the purpose of getiegethe IPC-4 domain versions and test
instances. Sebastian Trilg implemented options insidsithelator that allowed it, at any point in
time during the simulation of traffic flow, to output the curtéraffic situation in PDDL format. The
simulator included the real airports Frankfurt, Zurichd &tunich. Frankfurt and Zurich proved too
large for our purposes, but we were able to devise compeiitistances based on Munich airport.
Simplifications. We had to make two simplifications. The first amounts to a ditzation of space
(location) on the airport, making the domain amenable to PB@le discrete actions. With a
continuous space representation, one would need actidhsavgontinuous choice dfow farto
move. While the discretization loses precision, we belithat it does not distort the nature of
the problem too much. Due to the amount of expected confijdtiaffic at different points in the
airport, which is high only at parking positions, it is reda@ly easy to choose a discretization —
with segments oflifferentlength — that is precise and small enough at the same time s€xand
simplification is more severe: we had to drop the originalrojation criterion, which is very
awkward to express in current PDDL. To model the travel timiethe airplanes, one needs access
to the times at which the plangait, i.e., do nothing® We are not aware of a way to express this
in current PDDL. The IPC-4 committee voted against the thiation of an additional language
construct, a “look at the clock”, since that didn't seem valg anywhere else. Another option
would be to introduce explicit waiting actions, which casiselot of trouble because, similar to
continuous space, there must be a continuous choibewflongto wait. In the end, we decided
to just drop the criterion for now, and ask the planners tanoige standard makespan instéad,
corresponding to the arrival time of the last airplane (niegnarrival at the destination in the
airport). This is not ideal, but a reasonable optimizatiotedon. No planning system participating
in IPC-4, with the single exception of LPG-td (Gerevini, 8a& Serina, 2006), was able to take
account of general optimization criteria other than thdtfimiones (like makespan). We did not use
full standard routes, thus allowing the airplanes a chofosh®re to move. Welid use standards
for some routes, particularly the regions near runwaysrigelairports. For one thing, this served
to keep large airports manageable for the PDDL encoding mhers; for another thing, it seems
a good compromise of exploiting the capabilities of computehile at the same time remaining
close to existing practice.

Versions and Formulations. We generated four versions of the airport domain: a non-teatp
one; a temporal one; a temporal one with time windows, wheeddct that planes will land in the
future and block certain runways is modeled using timedaihiiterals; and the latter version, but
with timed initial literals compiled away. In all versionse constraints ensuring airplane safety
are modelled with ADL logical formulas. A compilation of $einto partially grounded STRIPS
provides, in each version, an alternative formulationheamain version has one ADL formulation
and one STRIPS formulation.

3.2 Pipesworld

Frederico Liporace has been working in this applicatiom &oe several years; he submitted a paper
on an early domain version to the workshop on the competiofCAPS’'03. The domain was
adapted for IPC-4 by Frederico Liporace and Jorg Hoffmann.

10. The same difficulty arises in the modelling of delay, fériath one must also compute the travel times.
11. Makespan, in Planning, means the amount of time fromttreaf the plan until the last action stops executing.
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Application. Here the task is to control the flow of different oil derivas/through a pipeline
network, so that certain product amounts are transporteleio destinations. Pipeline networks
are graphs consisting of areas (nodes) and pipes (edgexke Wie pipes can differ in length. The
available actions are to pump liquid into ends of pipes, Witheffect that the liquid at the other end
of the pipe gets ejected. The application is rich in add#laonstraints, like, constraints on what
types of products may interface within a pipe, restrictatkége space in areas, and deadlines for
arrival of products.

Motivation. Our main motivation for including this domain was its origirstructure. If one inserts
something into a pipe at one end, something possibly cosipleifferent comes out of the pipe
at its other end. In this waghanging the position of one object directly results in djiag the
position of several other objectsnamely, all objects inside the affected pipeline. Thisdsthe
case in any other transportation domain we are aware ofciitfa more reminiscent of complicated
single-player games such as Rubik’s Cube. Indeed, thegsinberaction between objects can lead
to several subtle phenomena. For example, there are imstarftere any solution must pump liquid
through a ring of pipeline segments in a cyclic fashion.

Simplifications. We had to severely simplify this domain in order to be abledives reasonably
complex instances with current planners. Most importaotly encoding is heavily based on assum-
ing a smallest indivisible unit of liquid, batch Every amount of liquid in the encoding is modelled
in terms of a number of batches. To capture the continuousenat the real application, this means
that one has to choose batch size in a trade-off between iaigcside and accuracy. The trade-off
is less well-behaved than the one in Airport (choosing “sexgiisi’ sizes) since the unit size cannot
be made flexible: every batch may pass through every pipaing so the smallest batch governs
the discretization of all pipelines. This is in contrast topdrt, where segments may vary in size.
As another important simplification, we used “personalizgmhls, i.e. the goals referred to specific
batch objects rather than to product amounts. This servagdid large disjunctions enumerating
all possible combinations of individual batches. The sifiggltions are quite severe and indeed
it seems unlikely that a realistic representation of Pigakly in particular with real-valued prod-
uct amounts instead of batches, could be solved efficientlplénners without introducing more
specialized language constructs — a sort of “queue” datatstie — into PDDL, see Appendix A.2.5.
Versions and Formulations. We created six different versions of Pipesworld: four vamsiwith /
without temporal actions, and with/without tankage retins, respectively; one temporal version
without tankage restrictions but with arrival deadlinestfee goal batches; one version identical to
the last one except that timed initial literals were conbéevay.

3.3 Promela

This domain was created for IPC-4 by Stefan Edelkamp.

Application. Here the task is to validate properties in systems of comoatinig processes (often
communication protocols), encoded in the Promela languagemela (PROcess MEta LAnguage)
is the input language of the model checker SPIN (Holzman@3R0The language is loosely based
on Dijkstra’s guarded command language, borrowing somatioot from Hoare’s CSP language.
One important property check is to deteletadlockstates, where none of the processes can apply
a transition. For example, a process may be blocked whengtrig read data from an empty
communication channel. Edelkamp (2003a) developed amretio translation from Promela into
PDDL, which was extended to generate the competition exasnpl
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Motivation. Our main motivation for including this domain was to furttpromote and make vis-
ible the important connection between Planning and Modeldkimg. Model CheckingClarke,
Grumberg, & Peled, 1999) itself is an automated formal nebttiat basically consists of three
phases: modeling, specification and checking. In the firstatases both the system and the cor-
rectness specification are modeled using some formalism lakh step automatically checks if the
model satisfies its specification. Roughly speaking, tleig ahalyzes the state space of the model to
check the validity of the specification. Especially in comeat systems, where several components
interact, state spaces grow exponentially in the size ofdingponents of the system. There are two
main research branches in model checkiexplicit-state model checkings implemented in SPIN,
exploits automata theory and stores each explored statédadlly, while symbolic model checking
describes sets of states and their properties using biegigidn diagrams (BDDs) or other efficient
representations for Boolean formulas.

Checking the validity of aeachability propertya property that asks if a system state with a cer-
tain property is reachable, is very similar to the questibplan existence. The use of model check-
ing approaches to solve planning problems has been exptosetne depth, e.g. by Cimatti, Roveri,
and Traverso (1998), Bertoli, Cimatti, Roveri, and Traee(2001), Lago, Pistore, and Traverso
(2002), Kvarnstrom, Doherty, and Haslum (2000), Bacchus labanza (2000), Holldobler and
Stdr (2000), Fourman (2000), Edelkamp (2003b), Dierk9f)0Kabanza and Thiébaux (2005).
However, not much has been done in the inverse directionyiagpplanners to model checking
problems. Running IPC-4 planners on planning encodinggahBla specifications is a first step
in doing just that.

The Promela domain also contributes unusual structurglgpties to our domain set; the com-
putational complexity and local search topology are quifferént as will be discussed in Section 4.
Simplifications. The main simplification we had to make was to use very simplargle classes
of communicating processes. As PDDL models refer to fixedile state vectors, we could not
include process construction calls. We therefore only ickemed active processes.e., processes
that are called only once at initialization time. PDDL alsmed not support temporally extended
goals, so we had to consider reachability properties onlgredver, by the prototypical nature of
our language compiler, many features of Promela such agzgads communication were not sup-
ported. Although we have limited support of shared varigbtiuring the competition we chose
simple message passing protocols only; and while we expetiad with other reachability prop-
erties, the PDDL goals in the competition event were on aekdiletection only. Concretely, the
IPC-4 instances come from two toy examples used in the ardél-Checking: the well-known
“Dining Philosophers” problem, and an “Optical Telegragirbblem which can be viewed as a
version of Dining Philosophers where the philosophers lzaeemplex inner life, exchanging data
between the two hands (each of which is a separate proceds)th, the goal is to reach a deadlock
state.

Versions and Formulations.We created eight different versions of the domain. The\ediffy the
Promela example class encoded (two options), by whethestdhay use numeric variables in the
encoding, and by whether or not they use derived predicatdseiencoding. The four encodings
of each Promela example class are semantically equivaigéhtisense that there is a 1-to-1 corre-
spondence between plans. We decided to make them diffeeesibms, rather than formulations,
because derived predicates make a large difference in @tgytH, and numeric variables make a
large difference in applicability of planning algorithregstems. The translation from Promela to
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PDDL makes use of ADL constructs, so each domain versiomraagtmbne ADL formulation and
one (fully grounded) compiled STRIPS formulation.

3.4 PSR

Sylvie Thiébaux and others have worked on this applicatiomain. The domain was adapted for
IPC-4 by Sylvie Thiébaux and Jorg Hoffmann.

Application. The task in PSR (power supply restoration) is to reconfigueibly power distribu-
tion network so as to resupply customers affected by thdasfadlhe network consists of electric
lines connected by switches and fed via a number of powercesuhat are equipped with circuit-
breakers. When faults occur, the circuit-breakers of thecas feeding the faulty lines open to
protect the network, leaving not only these lines but alsayrteealthy ones un-supplied. The net-
work needs to be reconfigured by opening and closing switahd<ircuit-breakers in such a way
as to resupply the healthy portions. Unreliable fault semnaad switches lead to uncertainty about
the state of the network. Furthermore, breakdown costsiégaend on various parameters need to
be optimized under constraints on the capacity of source$ires. The application is a topic of on-
going interest in the field of power distribution, and hasrbesestigated by the Al community for
a long time, including from an Al planning standpoint (Tthe&ix, Cordier, Jehl, & Krivine, 1996;
Thiébaux & Cordier, 2001; Bertoli, Cimatti, Slaney, & Efidux, 2002; Bonet & Thieébaux, 2003).
Motivation. Our motivation for including PSR was twofold. First, it is &livresearched interesting
application domain. Second, it has an original structurelydound in previous benchmarks. The
most natural encoding models the power propagation usitursive derived predicates that com-
pute the transitive closure of the connectivity relatiortie network. In contrast with most other
planning benchmarks, the number of actions needed in amabfilan does not necessarily grow
with instance size: the available actions are to alter thstipa of switches, and even in a large
network altering the position of just a few switches may seffior reconfiguration. The difficult
guestion to answer isyhichswitches.

Simplifications. Three major simplifications had to be made. First, for deiistic planning we
had to assume that the network state is fully observablg,that the initial state description is
complete, and that the actions always succeed. Secondneegyall numerical and optimization
aspects of PSR. Third, we used personalized goals in the #eatthe lines to be supplied are named
explicitly in the goal. Note that, even in this simplified fior the domain exhibits the structure
explained above.

Versions and Formulations. We created four domain versions, differing primarily byesand
available formulations. The most natural domain formolatis in ADL with derived predicates.
Though we experimented with many combinations of PDDL emgsland compilation strategies,
the size of the instances that we could compile into simplegliages was quite restricted. Precisely,
the versions are: a “large” version in ADL plus derived poadiés; a “middle” version that we
could devise also in SIMPLE-ADL plus derived predicates en8TRIPS plus derived predicates;
a “middle-compiled” version in ADL, identical to the “midell version except that the derived
predicates were compiled away; and a “small” version in @IFRIPS. The instances in the latter
domain version had to be particularly small, since it wagsesrely difficult to come up with an
encoding in pure STRIPS that did not either yield prohikilong plans, or prohibitively large
PDDL descriptions. In fact, to obtain the “small” version ayplied a pre-computation step (Bertol
et al., 2002) that obviates the need for reasoning about pprepagation and, consequently, the
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need for derived predicates. In the resulting tasks, ogemirclosing a switch directly — without the
detour to power propagation — affects other parts of the otwr hus the planner no longer needs
to compute the flow of power through the network, but is lettwtine issue of how to configure that
flow.

3.5 Satellite

This domain was introduced by Long and Fox (2003) for IPC-8ias adapted for IPC-4 by Jorg
Hoffmann. The domain comes from a NASA space applicatiorgrerkatellites have to take images
of spatial phenomena. Our motivation for inclusion in IP@¢ds that the domain is application-
oriented in a similar sense to the new domains. Also, we wiaisttiave some immediate compari-
son between the performance achieved at IPC-3, and thavachat IPC-4. On top of the 5 domain
versions used in IPC-3, we added 4 new versions, introdwadialifional time windows (formulated
alternatively with timed initial literals or their comptian) for the sending of data to earth.

3.6 Settlers

This domain was also introduced by Long and Fox (2003) for-82C'he task is to build up an
infrastructure in an unsettled area, involving the buddof housing, railway tracks, sawmills, etc.
The distinguishing feature of the domain is that most of thmdin semantics are encoded in nu-
meric variables. This makes the domain an important bendhifoa numeric planning. For that
reason, and because at IPC-3 no participant could solvewdrzidosmallest instances, we included
the domain into IPC-4. No modification was made except thatevepiled away some universally
guantified preconditions in order to improve accessibility

3.7 UMTS

Roman Englert has been working in this application areadeel years. The domain was adapted
for IPC-4 by Stefan Edelkamp and Roman Englert.

Application. The third generation of mobile communication, the so-caléMTS (Holma &
Toskala, 2000), makes available a broad variety of apjicatfor mobile terminals. With that
comes the challenge tmaintain several applications on one terminal. First, due to limited
sources, radio bearers have restrictions in the qualitgfice (QoS) for applications. Second, the
cell setup for the execution of several mobile applicatimasy lead to unacceptable waiting periods
for the user. Third, the QoS may be insufficient during thé setup in which case the execution
of the mobile application is shut down. Thus arises the setilipproblem for several mobile ap-
plications. The main requirement is, of course, to do thepsit the minimum possible amount of
time. This is a (pure) scheduling problem that necessitasring and optimizing the execution of
the modules needed in the setup. As for many scheduling erahlfindingsome not necessarily
optimal, solution is trivial; the main challenge is to findogbquality solutions, optimal ones ideally.
Motivation. Our main motivation for modelling this pure scheduling gesb as a planning domain
was that there is a strong industrial needffekible solution procedures for the UMTS call setup,
due to the rapidly evolving nature of the domain, partidylaf the sorts of mobile applications that
are available. The ideal solution would be to just put an rattic planner on the mobile device,
and let it compute the optimized schedules on-the-fly. In femse, UMTS call setup is a very
natural and promising field for real-world application of@matic planners. This is also interesting
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in the sense that scheduling problems have so far not bed¢ralcencompetitive Al planning, so
our domain serves to advertise the usefulness of PDDL foregdihg certain kinds of scheduling
problems.

Simplifications. The setup model we chose only considers coarse parts of tihvenkeenvironment
that are present when UMTS applications are invoked. Adtimation is fixed rather than computed
based on the network traffic. The inter-operational resbns between different concurrent devices
were also neglected. We considered plausible timings foirtstances rather than real-application
data from running certain applications on a UMTS device. Wsighed the domain for up to
10 applications on a single device. This is a challenge foimad planners computing minimum
makespan solutions, but not so much a challenge for satigfidanners.

Versions and Formulations. We created six domain versions; these arise from two grots w
three versions each. The first group, the standard UMTS dgnsaimes with or without timing
constraints. The latter can be represented either usiregtinitial literals, or their compilation; as
before, we separated these two options into different domwisions (rather than domain version
formulations) due to the increase in plan size. The secoodpgof domain versions has a similar
structure. The only difference is that each of the three diowersions includes an additional “flaw”
action. With a single step, that action achieves one neetggvihere, normally, several steps are
required. However, the action is useless in reality becéusetes another fact that is needed, and
that cannot be re-achieved. The flaw action was added to saehappens when we intentionally
stressed planners: beside increasing the branching féotoilaw actiordoeslook useful from the
perspective of a heuristic function that ignores the ddiste.

4. Known (Theoretical) Results on Domain Structure

In this section, we start our structural analysis of the PP@mains by summarizing some known
results from the literature. Helmert (2006b) analyzes thimains from a perspective of domain-
specific computational complexity. Hoffmann (2005) analyall domains used in the IPCs so far,
plus some standard benchmarks from the literature, igemgiftopological properties of the search
space surface under the “relaxed plan heuristic” that wasdnced with the FF system (Hoffmann
& Nebel, 2001), and variants of which are used in many modkmning systems. Both studies are
exclusively concerned with purely propositional — non{emal STRIPS and ADL — planning. In
what follows, by the domain names we refer to the respective-temporal) domain versions.

4.1 Computational Complexity

Helmert (2006b) has studied the complexity of plan existemied bounded plan existence for the
IPC-4 benchmark problems. Plan existence asks whetheea gianning task is solvable. Bounded
plan existence asks whether a given planning task is sa@waith no more than a given number of
actions. Helmert established the following results.

In Airport, both plan existence and bounded plan existemed?&PACE-complete, even when
all aircraft are inbound and just need to taxi to and park air thoal location, the map is planar
and symmetric, and the safety constraints simply prevemtgs from occupying adjacent segments.

12. The UMTS domain, which has only temporal versions, istrezted in either of the studies. As for computational
complexity, it is easy to see that deciding plan existenda B and deciding bounded plan existence (optimizing
makespan) ifNNP-complete for UMTS. Topological properties of the relaxdahpheuristic haven't yet been defined
for a temporal setting.
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The proof is by reduction from the Sliding Tokens puzzle, wehe set of tokens must reach a goal
assignment to the vertices of a graph, by moving to adjaceriices while ensuring that no two

tokens ever find themselves on adjacent vertices. The lasfghptimal sequential plans can be
exponential in the number of tokens, and so likewise in theoai domain. Even parallel plans can
only be shorter by a linear amount, since each plane can mawest once per time step. The proof
for the Sliding Tokens puzzle is quite complicated becatisevolves construction of instances

with exponentially long optimal plans. As one would expdicg constructions used are more than
unlikely to occur on a real airport; this is in particulardrtor the necessary density of conflicting
“traffic” on the graph structure. We consider this intemgtsince it makes Airport a benchmark
with an extremely high worst-case complexity, but wittmachmore good-natured typical case
behavior. Typically, there is ample space in an airport tmmgparatively) few airplanes moving

across it.

In Pipesworld, whether with or without tankage, both plamstnce and bounded plan exis-
tence are NP-hard. It is unknown whether they are in NP, hewelhe NP-hardness proof is by
reduction from SAT with at most four literals per clause arfteve each variable occurs in at most
3 clauses. Such a SAT instance is reduced to a network in asvéhasparts of the network (vari-
able subnetworks) represent the choice of an assignmeptfir of the variables, and other parts
(clause subnetworks) represent the satisfaction of eatte@lauses. The content of areas and pipes
are initialized with batches in a way so that interface retsdns will guarantee that a goal area is
reached by a certain batch in each clause subnetwork ifiluse is satisfied by the assignment.

For general Promela planning, as defined by Edelkamp (2008t plan existence and bounded
plan existence are PSPACE-complete. The PSPACE-hardrasfsip by reduction from the halt-
ing problem in space-restricted Turing Machines (TM). Tle#scof the machine’s tape are each
mapped onto a process and a queue of unit capacity, the efdtes TM form the set of Promela
messages, the TM’s alphabet form the set of Promela statdkgrocesses, and the Promela tran-
sitions encode the TM's transitions. It can be shown thaflikehalts iff the Promela task reaches
a deadlock.

Dining Philosophers, on the other hand, has a particulactstre where there is one process per
philosopher, all with the same transition graph. Optimahglcan be generated in linear time in the
number of philosophers by making a constant number of tiansito reach the same known state
in each of the graphs. Similar considerations apply to @pfielegraph.

PSR tasks can also be solved optimally in polynomial time ttis requires a rather complex
algorithm. All plans start with the wait action which opetiscacuit-breakers affected by a fault. In
their simplest form, optimal plans will follow by prescriig a series of actions opening all switches
connecting a feedable line to a faulty one. This is necedsainglso sufficient to ensure that the
network is in a safe state in which no faulty line can be repfisd. Then a minimal set of devices
(disjoint from the previous one) must be closed so as to mgupe rest of the network. This can
be achieved by generating a minimal spanning tree for thithygaart of the network, which can
be done in polynomial time.

Figure 2 gives an overview of these results and summarizéaeits (2003) results for other
standard benchmarks. The domain set displayed is the saaeiseestigated by Hoffmann (2005),
with a few minor differences explained shortly. Blocksvaenio-arm, Briefcaseworld, Ferry, Fridge,
Simple-TSP, and Tireworld are traditional planning benahks that were never used in an IB.

13. Blocksworld-no-arm is the version of Blocksworld whétecks can be moved directly to their destination, without
referring to a robot arm. Simple-TSP was used by (Fox & Lor#9) to demonstrate the potential of symmetry
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Figure 2: An overview of Helmert's results on the computadilocomplexity of the benchmarks.

The IPC-1 benchmarks are Assembly, Grid, Gripper, Logisfitovie, Mprime, and Mystery. The
IPC-2 benchmarks are Blocksworld-arm, Freecell, Logsstiliconic-ADL, Miconic-SIMPLE,
Miconic-STRIPS (“Miconic” is Schindler Lift's name for thelevator domain), and Schedule. The
IPC-3 benchmarks are Depots, Driverlog, Freecell, Rovgasellite, and Zenotravel. The IPC-4
benchmarks are displayed in bold face, including the (Hygtotal) general Promela domain.

The table in Figure 2 is organized along two axes, whererthgis shows the complexity of
deciding bounded plan existence, andgtexis shows the complexity of deciding (unbounded) plan
existence. Membership in a table entry means, for the NP &RARE rows and columns, that the
respective problem is complete for the respective comfglekass. An exception is the Pipesworld
domain, for which, as stated above, it is still unknown whketthe two decision problems are also
members of NP. The Assembly domain is not displayed sinegeitHelmert (2003) proved only
the existence of exponentially long optimal plans, showvtirag plan generation can be quite hard in
the domain. The table sectors above the diagonal are crossbégcause unbounded plan existence
can be polynomially reduced to bounded plan existence -sgisthe bound t@", wheren is the
number of distinct actions, or, in ADL, the number of distinonditional effects.

The most striking new feature of IPC-4 is the introductionR8PACE-complete benchmark
domains, filling in the top right corner of Figure 2. Thus, ttenchmarks cover all four inhabited
sectors of the table. Of the previous IPCs, each of IPC-1R@da cover three sectors — all inhabited

detection. One simply has to visithodes, using a move action that can be applied between anyddes, so that
any permutation of the nodes is an optimal tour. Hoffman®& @lso investigates the Towers of Hanoi domain.
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sectors except the top right corner — and the IPC-3 benclar@anker only two sectors — namely,
bounded plan existence is NP-complete for all these domamsall the domains except Freecell
have a polynomial time algorithm deciding unbounded plasterce.

The IPC-4 benchmarks are exceptional in further aspectsisibte in Figure 2. Most particu-
larly, as explained above, the polynomial decision alpamifor PSR is highly non-obvious. Such
benchmarks are important since, on the one hand, they iniplenallow planners to provide effi-
cient solutions, while, on the other hand, necessitatiag tiey employ interesting techniques for
doing so'* Schedule is the only other polynomial benchmark for whichrigted plan generation
requires a non-obvious algorithm. For all the other 20 doshai the left bottom and middle bottom
sectors of the table, the polynomial algorithms — decidiograled or unbounded plan existence —
are completely trivial, mostly just addressing one subgoaltime.

As was pointed out already, a final exception lies in the extliaarily large difference between
worst-case and typical-case behavior in Airport. As we gg in Section 5, even fully automated
methods (the IPC-4 planners) are, at least for unboundedesiatence (generation), quite efficient
in typical instances of this domain. While large differendeetween worst-case and typical-case
behavior are not unusual, we believe that the extent of tikmpmenon in Airport really is unusual.
For example, planners tend to find PSR much harder than Airpor

4.2 The Topology ofh™

Hoffmann (2005) considers the state spaces (the forwardlsspaces) of STRIPS and ADL tasks
taken from standard benchmark domains. He defines, givdnastask and a world state 4™ (s)

to be the length of a shortest possible relaxed plaroaf there is no relaxed plan. A relaxed plan
is a plan that achieves the goal fronif one assumes that the delete lists are all empty. Computing
h* (the corresponding decision problem)Né-hard (Bylander, 1994). Many modern planners,
e.g., HSP (Bonet & Geffner, 2001), FF (Hoffmann & Nebel, 20@GPlan (Wah & Chen, 2004;
Chen, Hsu, & Wah, 2004), YAHSP (Vidal, 2004), and Fast-Draaly-Downward (Helmert, 2004,
2006a), can be interpreted as doing some sort of heuristiclsavith anapproximationof ~™, plus
further techniques like problem decomposition (Wah & CI#004), lookahead techniques (Vidal,
2004), and additional different heuristic functions (Hehtn 2004). In this context, a question of
great practical interest is the quality of the underlyingiigtic function in the addressed domains.
Heuristic quality can be measured in terms of topologicabprties of the search space surface:
How many local minima are there? How large are they? Whattdtaduegions? Hoffmann (2005)
investigates these questions for thiefunction, for which topological properties of the searchep
surface can bproven.

Hoffmann defines topological phenomena following Franke€eman, and Stutz (1997). He
identifies several parameters that show particularly @stiang behavior in planning benchmarks. A
dead ends a world state that is reachable from the initial state barmfwhich the goal state cannot
be reached. Aminrecognized dead erid a dead end for which 4" (s) < co. Theexit distance
from a states is the length of a shortest path in the state space leading4ito some other stat€,
so thath™ (s) = h*(s'), ands’ has a direct neighbor stat€ with 1+ (s”) < h*(s'). That s, the
exit distance froms is the number of steps we need to go frenm order to find a better stata’(),

14. In Helmert's (2005) words: “I think that domains that da@ solved in polynomial time but where polynomial
algorithms are not obvious are extraordinarily intergstiiDeterministic PSR definitely is a domain of that kind
with regard to optimization. NP-hard problems cannot beesblwithout strong reliance on search, but polynomial
problems can, if the planners capture the important coscept
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minus1 since the distance tg is measured. Here/ plays the role of an “exit” state as used by
Frank et al. (1997). A state lies ori@al minimumif all paths to an exit have a temporary increase
in the heuristic value; otherwise the state lies deach Themaximal local minimum exit distance
(mlmed, for a state space, is the maximum over the exit distancal sthtes lying on local minima
in the state space. Similarly, tmeaximal bench exit distandembed is the maximum over the exit
distances of all states lying on benches. The core resultotimann’s (2005) investigation are
displayed in Figure 3.

| | | Mystery
Blocksworld—arm : Pipesworld : i Mprime
Depots PSR Rovers Miconic—ADL
Driverlog | Optical-Telegraph | Freecell
| | | Assembly
| Airport
Hanoi [0] |
Blocksworld—no—arm [0]
© | Fridge [0]
_\é Briefcaseworld [0] Grid [0] ‘
s S
£ | Tireworld [0,6] | Dining-Phil. [31,31] |
& o | Satellite [4,4] | Schedule [5,5] |
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3 | Logistics [0,1] ' Miconic—SIMPLE [0,1]
€ | Ferry [0,1] Miconic—STRIPS [0,1]
Gripper [0,1] i Movie [0,1] 1 b
| Simple=TSP [0,0] | ‘
undirected | harmless | recognized | unrecognized

Figure 3: An overview of Hoffmann'’s results on the topolody:d in the benchmarks.

Thez-axis in Figure 3 corresponds to properties regarding dedsd. €l hey-axis corresponds to
properties regarding the exit distance from local minima laenches. The domains are assigned to
the appropriate table sectors — classes of domains — deygeodithe worst-case behavior possible
in them. In more detail, the meaning of the table is the foilfmy A state space is “undirected” if
every transition (action) can be directly inverted; theesepace is “harmless” if such an inversion
is not possible, but there are no dead ends anyway; “recedihineans that there are dead ends, but
ht is oo for all of them; “unrecognized” means that there is at least onrecognized dead end. A
domain falls into the class of its worst-case instance: fangple, if there is a single instance whose
state space contains a single unrecognized dead end, thdarttain is considered “unrecognized”.
The results are proved, i.e., if a domain is, for examplesimred “harmless”, then this means that
provably no instance of the domain contains any dead ends.

On they-axis in Figure 3, the distinction lines correspond to thistexice or non-existence of
constantupper bounds on the maximal local minimum exit distance €uppe) and on the maximal
bench exit distance (lower line). Note that constant uppemds on the maximal local minimum
exit distance exist imll domains below the upper line — in the domains below the loimer, both
bounds exist® By “constant”, it is meant here that the bound is valid forrgvimstance of the

15. This presentation assumes that the domains with boubelech exit distance are a subset of those with bounded
local minimum exit distance. This is not true in general, does hold in all the considered benchmark domains.
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domain, regardless of its size. The actual bounds provedigptayed in brackets; local minimum
bound precedes bench bound in the cases where there areTbethight bottom part of the table

is crossed out since unrecognized dead ends have infinitdisteince and so these domain classes
are emptyt®

The obvious intuition behind Figure 3 is that there is a fitéors from “easy” to “hard” — for
planning systems based on heuristic search approximhtingas one moves from the left bottom
side to the top right side of the table. Indeed, the table dodhkat sense, coincide very well with
the empirical behavior of, at least, the FF system. Note hxweme the topological behavior is
in many domains. If the upper bound on the local minimum eisitaghce i) then this means that
there are no local minima at all. This is the case in 13 of thn@8stigated domains. In several
domains, such as the widely used Logistics benchmark, ooftthat a single step suffices to reach
an exit from benches. Hoffmann (2005) shows that FF woulddignpmial in the bottom classes
of the table, provided with an oracle computing.

Considering the table from a perspective of benchmark dpweént, one notices that particu-
larly the older benchmarks tend to lie on the left bottom swnsider for example Ferry, Brief-
caseworld, Fridge, Simple-TSP, and Tireworld. The distidn of the IPC-1 benchmarks — Gripper,
Logistics, Movie, Grid, Assembly, Mystery, and Mprime — @gewhat extreme: the first four in
our list here belong to the most simple classes, the last theong to the hardest class (until today,
the Mystery and Mprime domains are amongst those causinm@ia the most trouble). In the
IPC-2 benchmarks — Logistics, Blocksworld-arm, MiconiEF8PS, Miconic-SIMPLE, Schedule,
Freecell, and Miconic-ADL — again, we have many simple andva ¥ery challenging domains.
The most notable exceptions in that respect are Blocksvasrid on the left top side of the table,
and Schedule, which does contain dead ends and local mihmmtlae IPC-3 benchmarks, the dis-
tribution starts to get more varied. The domains — Zenoly&egellite, Depots, Driverlog, Rovers,
and Freecell — span three of the four top classes in the tphig,one of the bottom classes. The
IPC-4 domains, shown in bold face, obviously continue tlagetbpment. The only two of them
sharing a class are Pipesworld and PSRhey continue the emphasis on spanning the top classes
in the table; the only new domain in one of the bottom classé3ining Philosophers, and that is
highly exceptional in that is has an exceedingly large boumaking the bound practically useless
for exploitation in plannindg® The Satellite domain adopted from the IPC-3 benchmarksesdos
represent (a more interesting instance of) the easieredaddote that Satellite is so simple here
because we are talking about the STRIPS version, which dhgpsiore challenging problem con-
straints formulated with numeric variables. The Airportrdin is exceptional in the top right class
in that, again, its worst-case — its place in Figure 3 — differlot from its typical case. A dead
end in Airport is a situation where two airplanes completatyck each other’s patH$. Of course,
practical airports are designed in a way so that this doeswially happen. As mentioned earlier,
there usually are — non-overlapping, as far as possiblendatd routes, and the only place where
blocking can occur is in densely populated areas near gagasitions.

16. One could skip unrecognized dead ends from the definitidghe maximum exit distances, but Hoffmann (2005)
argues that this is un-intuitive, plus making things unisseely complicated.

17. Actually, Pipesworld is invertible in the sense thatrgwe/o-step sequence (starting and ending a pumping opajati
can be directly undone. Itis considered “harmless” heressthe single actions cannot be inverted.

18. Indeed,h™ is a very bad heuristic in Dining Philosophers. It basicalmes down to counting the number of
unsatisfied goals.

19. The relaxed plan can use free space in between the ptanegke them move “across” each other.
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5. New (Empirical) Results on Domain Structure

We now provide an empirical analysis of various structuesthmeters of the IPC-4 domains. For the
sake of readability and conciseness, we focus on the nopeteihdomain versions only. For most
types of data we measure, the results for the temporal doweasions are quite similar. To some
extent, this is visible in the tables showing numbers ofamstiand facts, for all domain versions, in
the individual domain descriptions in Appendix A.

Our empirical analysis is aimed at highlighting further icweristics of, and differences be-
tween, the IPC-4 domains. Apart from focussing on more macparameters, the analysis has —
compared to the theoretical results cited in the previooi@e— the big advantage that it tells us
something about the actumistancesrun in the competition. Note that the choice of instances can
make a huge difference — for example, as stated earlier]-avoell airport is not very likely to have
exponentially long plans, and neither is it likely to proeakany dead-end situations. Where possi-
ble at all, the instances used in IPC-4 were chosen to bévedlatealistic (details in Appendix A).

The analysis is structured into three sub-sections. Se&ib shows how, in the individual
domains, the size of the grounded encoding grows over iostaize. Section 5.2 assesses the
correspondence between the quality of standard heurigtictibns, and the runtime achieved in
IPC-4. Section 5.3, finally, assesses the “fact connegtiaer instance size, meaning the number
of choices one has to achieve each fact, and the number ohactifact is required for.

5.1 Encoding Size

All current STRIPS and ADL planners, as far as the authorsaarare, ground all parameters
and variables in a pre-process, ending up with a task reqesmn consisting of ground facts and
ground actions. An obvious question to ask is how large tigesended encodings are. Figure 4
shows our data, numbers of facts and actions plotted oviamios size for (selected versions of) the
different domains. The numbers are measured using FF'prpiessor. This filters out static facts
— facts that are not added or deleted by any action — and “cinaé¢e” actions, meaning actions that
do not appear in a relaxed planning graph (a planning gragifoui mutex reasoning) for the initial
state (Hoffmann & Nebel, 2001); formulas are compiled intopde STRIPS-like conjunctions of
facts, along the lines of Gazen and Knoblock (1997) as @dlin Section 2.
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Figure 4: Numbers of (a) ground facts and (b) ground actipiatied over instance number, in
selected versions of the IPC-4 domains.
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In all cases except UMTS (that has only temporal versiom®,domain version selected for
Figure 4 is non-temporal. Let us consider the domains onenigy dn Airport, there is just one
non-temporal version. The plots in Figure 4 (a) and (b) shewuite nicely how the instances are
scaled, with sharp drops in the curves corresponding t@ $te@ new underlying airport. Precisely,
instances 1to 3,410 9, 10 to 20, 21 to 35, and 36 to 50 are basgrbwing airports, respectively,
and within each airport the number of travelling airplanssag from just 1 or 2 until up to 15 (in
instance 50). For example, from instance 35 to instance 3apsfrom one half of Munich airport,
with 12 airplanes, to the full Munich airport, with just 2 glianes.

In Pipesworld, there are two non-temporal versions, witthw&ithout tankage restrictions. Fig-
ure 4 shows data for the former, which is the more challengmgy(the IPC-4 planners fared much
worse on it); without tankage restrictions, there are sljgfewer facts, and about a factor of 5-
10 fewer actions. The Pipesworld instances are scaled imigasiway as the Airport ones: five
growing pipeline networks each feature a growing numberaseling liquid “batches”. The net-
works underlie the instances 1 to 10, 11 to 20, 21 to 30, 31 tcadAd 41 to 50, respectively.
Corresponding drops can be observed when stepping froamicest30 to 31, and, less significantly,
when stepping from 20 to 21 or from 40 to 41. A major differemgeAirport is visible in the
much more crippled nature (featuring much more variancéheturve for the number of actions.
This is because, in Airport, few objects move on a big spactmucture, while, in Pipesworld,
many objects move within a rather dense spAcEhis fundamental difference between Airport and
Pipesworld also manifests itself in that the order of culigagversed for the numbers of facts and
actions: in Airport, extraordinarily many facts are reggirto describe the huge airport structure,
while in Pipesworld there are fewer facts for a smaller $tme; but many more actions describing
how things move along that structure. As stated earlierjpe$orld, different objects affect each
other’'spositionwhen moving.

In the Promela domains, Dining Philosophers and Opticadgrelph, the data for the domain
versions with and without derived predicates are identidad derivation rule deriving a fact is
counted as an action achieving the fact. The main differénaghat we have seen before lies in
the extremely smooth scaling. Both domains have just aesisige parameter, and the numbers of
ground facts and actions grow as linear functions in thedmpater — the functions for Optical Tele-
graph being about an order of magnitude higher than thodeifong Philosophers. The curves for
Optical Telegraph stop at instance 17 because after thatesxe not able to compute the grounded
representation — too much time and memory were needed inntipdifecation of precondition for-
mulas. Note that this is not an artifact of our data presematut rather constitutes a serious
limitation to any planner that tries to perform such pregassing.

In PSR, the most interesting domain versions are “smalii¢esithat could be formulated in
STRIPS, and “large”, since that goes up to instances of &tieadize (in the largest instances, that
is). As the name “small” suggests, the numbers are quitel snb@be able to compile into STRIPS,
as indicated earlier we had to make the instanegy small?! Essentially the same compilation
problem is also visible in the curves for “large”, that haveuge number of ground facts and actions
in relatively early instances already. The curves stopstaitce 20 because beyond that, simplifying

20. How much the objects can or cannot move affects also thieuof ground actions due to the mentioned filtering
of “unreachable” actions.

21. The only notable exception is instance nr. 25, where timeber of actions peaks to 9400. This is due to an exceed-
ingly complex goal formula, with 9216 disjuncts in its DNF,wehich each yields an extra goal-achievement action,
c.f. Section 2.
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formulas becomes extremely costly. In both versions, we adtigh degree of variance both in the
numbers of facts and actions, which somewhat corresponttethuge degree of variance to be
observed for planner performance in this domain (see FigurePart of this variance, at least
the pace of the oscillations if not their amplitude, can bpla@red by the way the instances are
scaled. For a given number of sources (the instance sizgjengrated instances with an increasing
minimal number of switches originally fed by a given souraerd for a given number of switches,
we generated instances with an increasing percentage lof fanes ranging from 10% to 70%.
Intuitively, the larger the number of switches per sourke larger and harder we expect the instance
to be. Furthermore, the percentage of faulty lines tendsdode an easy-hard-easy pattern. If most
lines are faulty, only a small part of the network can be rpsad and only a few devices need
to be switched. Similarly, if a very few faulty lines existost of the network can be resupplied
with a few switching operations. With an intermediate petage, the effects of the actions become
more complex — they are conditioned on the positions of maémgreswitches — and so the instances
become critically constrained and harder to solve.

In Satellite, the main observation to be made is the extresielep ascent of the curves after
instance 20, particularly the growth to extremely high nenstof actions. There are two reasons for
this. First, one action in Satellite (take-image) has 4 p&tars and is “reachable” for almost any
combination of objects with the correct types (most of theetiactions have only 2 or 3 parameters).
Second, the size of the instances themselves grows veiylghayond instance 20 —which, simply,
is because instances 21 to 36, as used in IPC-4, correspdhd 1® instances posed in IPC-3 to
challenge thénand-tailoredplanners.

We do not consider Settlers here to ease readability of taphgt and since that domain is
quite obviously exceptional anyway, in that it relies alinosmpletely on numeric variables. For
UMTS, Figure 4 shows data for the plain domain version withtoue windows and flaw action.
The obvious characteristic is that the numbers of facts atidres areconstants This is true for all
domain versions, the numbers vary only slightly. The reasdhat, the way the UMTS instances
are scaled, every instance describes the same applicatidngquirements; what changes is (only)
the goal, specifying what applications actually need to be set udependent of this effect of the
particular scaling method used, we can observe that the enxsnaf facts and actions are relatively
low — around only 100 even in the largest instances, whet@ealhpplications must be set up, and
the plans contain all the actions.

5.2 Quality of Heuristics, and Runtime

In this section, we measure the length of the best (sequientih parallel) plans found by any
planner, the (sequential and parallel) plan length esémegturned by the most common heuristic
functions, and the runtime taken by the planners. Precik®lyhe optimal planners, we measure:

e The optimal makespan, as found by the IPC-4 parallel optptzainers (planners optimizing
makespan).

e The length of a standard plan graph (Blum & Furst, 1997), the index of the first plan
graph layer that contains the goals without mutexes.

e The best runtime taken by any parallel optimal planner in-fRPC

e The optimal sequential plan length, as found by the IPC-diesetipl optimal planners.
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e The length of a serialized plan graph, where any pair of Nn@QGR actions is made mutex.
e The best runtime taken by any sequential optimal planng?@r4.

For the satisficing planners, we measure:
e The best (shortest) plan length, as found by any plannerGs4P

e The length of a relaxed plan for the initial state (an actiequence that solves the task if one
assumes all delete lists are empty; computed with FF (Hoffmé&aNebel, 2001)).

e The best runtime taken by any satisficing planner in IPC-4.

Our main goal will be to identify characteristic behaviordfimains, and to identify characteristic
effects of heuristic quality on performance. The readel mate that, in our selection of measure-
ments, we make several simplifying assumptions. Optimahqeérs are not exclusively based on
plan graph estimates. Satisficing planners are not exelysdbased on relaxed plan estimates. Fur-
ther, some of the satisficing planners minimize makesparsetuential plan length. We chose to
not take account of the latter since there is no potentialgr-@stimating (non-admissible) heuristic
specifically estimating parallel plan length; to the besbof knowledge, all satisficing planners
minimizing makespan actually use a heuristic estimatimgntlbmber of remaining actions, and em-
ploy some method to greedily arrange the chosen actions asaligh plan. That said, we do not
wish to imply that our simplifying assumptions are safe ia fiense that we do not lose important
information. The simplifying assumptions are necessampaie the analysis and its presentation
feasible. The data we show definitely do capture many crasgécts of IPC-4 heuristic quality and
planner runtime. We show data for the individual domainscpeding in alphabetical order. The
(IPC-4) runtime results were obtained on a Linux machineaing two Pentium-4 CPUs at 3GHz,
with 6 GB main memory; time and memory cutoffs were 30 minated 1 GB, per instance.

Consider Figure 5, showing data for the Airport domain. Nbtd they axis has two different
meanings, runtime on the left hand side, and number of (phxa sequential) plan steps on the
right hand side. The same applies to all figures below in thilssection. For Airport, we observe
a clear correlation between quality of plan length estiomgtand runtime. For the optimal parallel
planners, Figure 5 (a), this is best observed between icestamr. 15 and 20. There, the difference
between makespan and its estimate by the plan graph grodrsjitimit grows the achieved runtime,
on an exponential scale. It may look like a counter exampag thr instance nr. 20, where the plan
graph estimate is exact (coincides with the real makesplaa);untime does not get lower again.
Note however, that instance 20 is based on a much largertiham the previous instances. From
instance 20 onwards, the only instances solved by any ph@éinner have an exact plan graph
estimate. For the optimal sequential planners, Figure 5w)get a similar behavior between
instances nr. 14 and 18. The behavior is also very strongstamces nr. 35 and 36: while the plan
length grows a lot from 35 to 36, the serial plan graph becaarldtde shorter; correspondingly, the
runtime goes up by two orders of magnitude. The same is truastances 20 and 21.

For the satisficing planners, in Figure 5 (c), the most stgldbservation is that the length of the
real plan coincides, in all instancesxactlywith the length of the relaxed plan (for the respective
initial state). This is actually quite easy to explain: animpl plan moves the airplanes in a way
so that they never block their paths; the same plan is optawveh when ignoring the delete lists.
Moving the airplanes without blocking is always possibleéhat start. The situation changes only
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Figure 5: Airport domain. Plots of (parallel) plan lengtts heuristic estimation, and runtime, for
(a) optimal parallel planners, (b) optimal sequential pkns, and (c) satisficing planners.

when a wrong decision was made, so that additional moveshienamme necessary — in reality, but
not without delete lists — to avoid a blocking situation. Agdeom this, Figure 5 shows quite nicely
that the runtime taken corresponds very closely to the keafithe plan found. Note that the latter
is huge, 694 in the largest instance.

In the Pipesworld domain, there are two non-temporal domeirions: with/without tankage
restrictions, i.e., restrictions on the amount of liquidttban be stored in any of the network areas.
Figure 6 shows our data for the version without such regirist the observations to be made in the
other domain version are similar, except that both sort¢asfrers scale much worse, thus providing
us with less data. For the optimal planners, Figure 6 (a) Bhdife most striking difference with
the Airport domain in Figure 5 (a) and (b) is that the qualityeen the parallel plan graph heuristic
is very bad: it underestimates the real makespan to a mugdrlaxtent than it does in Airport. The
underestimation grows with instance size, and, naturddly,runtime grows as well. Note that the
planners fail to scale much earlier than in Figure 5 (a) apdThere is one slight exception to the
rule that a poorer heuristic estimate leads to a longermetifrom instance number 10 to 11, the
optimal sequential plan length grows from 19 to 20, the lergjtthe serial plan graph remains 9,
and the runtime drops from 1400 to 150 secs.
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Figure 6: Pipesworld domain without tankage restrictidPists of (parallel) plan length, its heuris-
tic estimation, and runtime, for (a) optimal parallel plars) (b) optimal sequential plan-
ners, and (c) satisficing planners.

Similarly to the situation for the optimal planners, for teatisficing planners, Figure 6 (c),
the main difference from Figure 5 (c) is the much worse guaiit the heuristic function: the
relaxed plan length now differs greatly from the length @ tkal plans found, particularly for the
larger instances. Very curiously, despite the worse gualithe heuristic, the runtimes arsuch
lower. The longest time taken for any instance is below 1@@s. This goes to show, first, the
shortcomings of our analysis here: we give the heuristidityuznly for the initial state, which may
differ a lot from the situation in the rest of the state spdear. example, in Airport a planner using
relaxed plans may get lost in huge dead ends when a wrongategisas made early on. Second,
of course, other techniques that the satisficing plannersates also relevant. The runtime data in
Figure 5 (b) are exclusively due to SGPlan (Wah & Chen, 2004)¥AHSP (Vidal, 2004), whose
problem decomposition/greedy lookahead techniques appeark extremely well in this domain.
All other satisficing planners perform much worse, failingsblve the largest instances. We note
that in Pipesworld, the overall runtime curves (for all plars) are characteristically very jagged
and show considerable variance in comparison to, e.g.o/irprhis information gets lost in the
best-of presentation chosen for our figures here. It seeins that hardness in this domain comes
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from interactions too subtle to be seen with the rather egkt parameters measured here. We re-
iterate that the domain versiomth tankage restrictions is much more challenging to the plemne
the only planner getting anywhere close to the largestiicssbeing YAHSP.
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Figure 7: Dining Philosophers domain without derived pratis. Plots of (parallel) plan length,
its heuristic estimation, and runtime, for (a) optimal plars and (b) satisficing planners.

Figure 7 shows our data for Promela/Dining Philosopherbaut derived predicates. We do not
show two separate figures for the optimal planners sinceutves are quite easy to read. From even
a quick glance, one sees that the domain has a very chaséicteehavior different from the other
domains. The optimal makespan, plan graph length, and gdaia graph length are all constant
across instance size. In contrast, the optimal sequen#allpngth grows as a linear function of
size; note the logarithmic scale of the right hand sjdexis in Figure 7 (a), which we had to use
to make the figure (the values of the other plan step measteadpble. The best plans found
by the satisficing planners are optimal, i.e., the NrActidata are identical on both sides of the
figure. In Figure 7 (a), we once again see the effect of héurigtality on search performance:
the parallel planners scale as a linear function in instaiwe while the sequential planners, for
whom the heuristic function becomes worse and worse, si@éyrexponentially. The latter might
also be true for the satisficing planners; it is a bit hard Hostace the solved instances are solved
extremely quickly. The reason why no instance with indexhbighan 29 is solved is that, for these
instances, similarly to what we discussed above (Sectib)y Simplifying precondition formulas
became prohibitively costly, so these instances wereahlaiin ADL only. The only two satisficing
planners that scaled well in Dining Philosophers (withoetived predicates) were SGPlan and
YAHSP — neither of which could handle the ADL formulation dietdomain. Similarly, from
the optimal planners only SATPLAN’04 and Optiplan scalediwand neither could handle the
ADL formulation. Note that the inability of planners to ha@dormulas without pre-simplification
techniques thus constitutes a serious limitation.

In Optical Telegraph without derived predicates (no figureven) the observations are similar
to the ones in Figure 7, except that the planners scale muckewMost particularly, the optimal
sequential planners solve only the single smallest instaantd the best satisficing runtime is clearly
exponential in instance size, taking over 1500 secondslve swstance number 25. In the Promela
domain versionsvith derived predicates, there are no results for optimal plkanagce none of
them could handle derived predicates. The observationthéosatisficing planners are similar to
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the above: NrActions grows as a linear function of instarize,gelaxed plan length grows as a
linear function with significantly lower gradient. The pfeers are very fast in Dining Philosophers
but need a lot of timex 1000 sec) to solve the largest Optical Telegraph instarsmad of which
remain unsolved). We omit the results for the Promela domarsions using numeric variables,
since only two planners participated in these domain vassio
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Figure 8: PSR domain. Plots of (parallel) plan length, itsriatic estimation, and runtime, for (a)
parallel optimal planners in PSR “small” (STRIPS versidh), sequential optimal plan-
ners in PSR “small”, (c) satisficing planners in PSR “smadiid (d) satisficing planners
in PSR “large” (featuring ADL and derived predicates).

Figure 8 shows our results for the PSR domain. Figure 8 (apr{t (c) show plots for the do-
main version PSR “small”, which comes in pure STRIPS and wdsessed by all IPC-4 planners;
Figure 8 (d) shows plots for PSR “large”, which comes in ADLilwderived predicates and was
addressed by four satisficing planners only. We do not shda fda PSR “middle-compiled” and
PSR “middle”: in the former, just two satisficing plannerstgdpated; in the latter, six satisficing
planners participated, but they all scaled quite well os¢fless challenging instances so the results
are less interesting than those for PSR large.
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First, note that all curves in PSR “small” show a large amaafrtig-zagging, which is quite
unusual and which cannot simply be accounted for by the wayritances are scalétl Consider
Figure 8 (a). The main observation to be made is that the pmhal makespan isuchlarger than
its estimation by a plan graph, particularly in the largestamces. Still, the optimal parallel planners
are quite efficient, at least in that they can solve all thaimses. The runtime data are entirely due
to SATPLAN’04, whose search techniques are apparentheafficient in this domain even with
a bad plan graph lower bound. The other optimal plannersibat l@ast one order of magnitude
slower, and can't solve some of the largest instances; famg@ke, none can solve instances 48 and
49. As for the optimal sequential planners in Figure 8 (b3, risults are pretty similar except that
the runtime scaling is somewhat worse. For both kinds ofnegitiplanners, the runtime is clearly
correlated with the length of the optimal plans, which, eikhe plan graph bounds are almost
constant, coincides with the difference between the read [@ngth and its estimate.

In Figure 8 (c), we observe that the relaxed plan is a very lsithator of plan length in PSR
“small” (at least for the respective initial states), buattthe planners solve all instances quite ef-
ficiently anyway. The runtime data are entirely due to YAHS$IE &ast Downward; particularly
Fast Downward is extremely efficient, showing only a vergldlincrease of runtime over instance
size, being the only satisficing planner capable of solvirggances 48 and 49. Note that YAHSP
(Vidal, 2004) uses powerful technigues besides a relaxad Ipturistic, and that Fast Downward
(Helmert, 2004) uses a more involved (and apparently moneegdal, in this case) heuristic func-
tion. Note also that, at least in terms of solved instancesimal and satisficing planners are,
unusually, equally good (or bad) in this domain: exactly oheach group solves all instances, all
other planners cannot solve instances 48 and 49. The diffitud planners are experiencing in
this domain is also remarkable since the instances, orsittleair grounded encodings, are actually
very small when compared to the instances of the other danaih Figure 4. This indicates that
the domain has some fundamental characteristic that is etatgptured very well by the search
heuristics/techniques of (most of) the planners — whicklgicomplements what we said about the
non-obvious polynomial algorithm for PSR in Section 4.1.

In Figure 8 (d), we see that the relaxed plan (computed wahvérsion of FF handling derived
predicates, see Thiébaux et al., 2003, 2005) is a rathérsssestimator in the PSR domain when
expressed in the most natural way using ADL and derived padels. The relaxed plan constantly
containg) steps, meaning that the over-approximation of the sensaaotiderived predicates makes
the initial state look like a goal state; the same happen$siR Riddle. While the situation may be
different in other parts of the state space — the heuristitevis not constantly) — this, apparently,
causes serious trouble for all satisficing planners excagt Bownward. No planner except Fast
Downward can solve an instance higher than number 16. FaghWard seems to profit, again,
from its more involved heuristic function, reaching itslgog limit at instance number 31.

In the Satellite domain, which has many temporal and someengrdomain versions, we select,
for our presentation here, the single pure STRIPS versiofidure 9 (a) and (b), we observe that,
like Pipesworld and Promela, and unlike Airport and PSRel& is a domain where a serial
plan graph provides much worse heuristic values (for saigianning) than a parallel planning
graph (for parallel planning). Over the few instances sblvg the optimal planners, parallel plan
length and (serial or parallel) plan graph length do not grouch, while sequential plan length
does. Consequently, the sequentially optimal plannere soach worse than the parallel ones.

22. The same is true for the runtime curves of the individdahpers. In fact, the planners even disagree widely about
which instances are solved easily and which take a lot of.time
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Figure 9: Satellite domain. Plots of (parallel) plan length heuristic estimation, and runtime, for
(a) optimal parallel planners, (b) optimal sequential pkns, and (c) satisficing planners.

In Figure 9 (a), we can also nicely see how, during instance3, 80, the parallel plan length
does a down-up movement (8, 6, 8) over the constant parddielgraph length (4), resulting in a
movement of pretty much the same shape — on a logarithmie!sealf the best parallel runtime.

In Figure 9 (c), we observe that, like in Airport and unlikeany of the other domains, the
relaxed plans for the initial states have almost the samgtheas the real plans (there is actually
a slight over-estimation most of the time). As we have seeleeac.f. Section 4.2, Hoffmann
(2005) has shown that, for Satellite, the relaxed plan keiggtin fact, bound to be close to real plan
length for all states (in contrast to Airport, where unretiagd dead ends are possible in principle).
Indeed, Satellite is very easy to tackle for almost all ofgh#sficing planners in IPC-4. While the
runtime shown in Figure 9 (c) appears non-trivial, rementbat these instances anege see in
particular the number of ground actions in Figure 4 (b). Upitance 20, most satisficing IPC-4
planners could solve each instance within a minute.

We skip the Settlers domain since that relies almost exalyson numeric variables to encode
the domain semantics, which makes it rather incomparaltitetivé other domains. Figure 10 shows
our data for the UMTS domain. This has only temporal and nimversions, half of which feature
also time windows. We consider the versions without timedeims; Figure 10 (a) and (b) concern
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Figure 10: UMTS domain. Plots of (durational) plan length,hieuristic estimation, and runtime,
for (a) optimal (b) satisficing planners in plain temporaisien, (c) optimal (d) satisfic-
ing planners in temporal version with flaw action.

the plain domain version, Figure 10 (c) and (d) is with “flawgtian. Let us first consider the optimal
planners, on the left hand side of the overall figure. The oplymal planners that could tackle this
domain — i.e., the domain’s syntax — were TP4 and H@faslum & Geffner, 2001). These are
makespan-minimizing planners, and so there are no dataedfprestially optimal planners (which
wouldn’t make a lot of sense in the temporal setting anywakig “PlanGraph” curves in Figure 10
(a) and (c) correspond to the makespan estimation delivieretie initial state by TP4’s temporal
numeric extension of that heuristic. For the effect of hgtigiquality on runtime, we observe once
again a very strong correlation. In Figure 10 (a), up to ims¢a21 the makespan estimate is very
close to the real makespan — most of the time, the two acteallycide — and the runtimes are
very good. Starting from instance 22, the real makespan snalseidden leap upwards that is not
followed by the estimation, and the runtimes shoot upwafd® phenomenon is also very clear
in instances 18, 19, 20, where the makespan estimation iexkilgood, bad, good pattern, and
the runtime does just the same. In Figure 10 (c), the very samteof behavior can be observed,
meaning in particular that the flaw action does not have atefih makespan and its estimation by
TP4. In fact, the makespan and its estimation are exactlgdhee in all instances solved in both
domain versions. As contained implicitly in the latter ssmte, the flaw actiodoesaffect runtime
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and with it the set of solved instances. The runtime with the fhction is consistently more than
a factor of 2 larger than without the flaw action. In the mostlieinging instances the planners fail
when the flaw action is present. This decrease in performianmesumably due to the larger state
space incurred by the flaw action.

Consider the satisficing planners, Figure 10 (b) and (d). Y8edbserve that, once more, we
are facing a very individual and characteristic behavind that the domain is no challenge at all to
the satisficing planners. The latter shows that the domaiotis useful benchmark for satisficing
planners; it also shows once again how heterogeneous ocintmank set is: while itis common that
satisficing planners are faster than optimal ones — excdpBR — there is no other domain where
that picture is as extreme as in UMTS. As stated earlier, tmeain is a pure scheduling problem,
and obviously the satisficing planners provide runtimesieffit greedy solutions to that probléeth.
Looking at the plots in a little more detail, we find in Figuri@(b) that the sequential plan length (the
plans found are optimal) is a simple stepwise linear fumcitithese instances, and that relaxed plan
length for the initial state coincides once again with tte pdan length — which isn't a surprise given
the excellent runtimes of the satisficing planners, anddbethat this is a scheduling domain. (In a
sequentialized schedule no harmful delete effects oc€hig picture changes a lot in Figure 10 (d).
The real plan length stays basically the same (is increagedcbnstant o), but the relaxed plan
length becomes a lot shorter due to the flaw action. The satigfplanners are unaffected, largely
keeping their excellent runtime behavior. Apparently,sth@lanners incorporate some technique
for recognizing the uselessness of the flaw action (this eaddme with simple domain analysis
techniques), and getting rid of its influence. This suspiggoconfirmed by the fact that there is one
satisficing planner thatoesget affected by the flaw action in the way one should expeclKER,

a heuristic search forward state space planner using acef@an heuristic, solves each task within
70 seconds without the flaw action, but sometimes takes &@9 $econdsvith the flaw action.
Let us briefly summarize the overall observations:

¢ In the presented data, most of the time the performance gfldmners correlates well with
the quality of the relevant heuristic function. The mostati¢ exceptions to this rule — as far
as can be observed in our data here — are Fast Downward in B®R"|where relaxed plans
are pretty much devoid of information, and SGPlan and YAH®Ps¢me extent also Fast
Downward) in Pipesworld, where relaxed plans provide pstimreates and all other planners

experience (much more) serious difficulties.

e Usually, here and in the known benchmarks in general, satigfplanners are several orders
of magnitude faster than optimal ones. Exceptions here@Re-Pwhere both groups perform
almost equally — and UMTS — where the satisficing plannerdihaeed any time at all.

e Usually, here and in the known benchmarks in general, ghnalthn graph length is a much
better estimator of parallel plan length than serial plaapbrlength is of sequential plan
length. The exceptions here are Airport — where there imadftduge difference between
the lengths of the two kinds of plan graphs — and, to some eX&8R “small” — where the
difference between parallel and sequential plan lengtlisvery big. Note that none of our
domains is purely sequential, i.e. some parallelism isiptess all of them.

23. In terms of quality of the solutions found, the satisficplanners also do reasonably well. For example, LPG-td,
which minimizes makespan in this domain, finds, with its i@roptimized for speed, plans that take maximally
10% more time than the optimal ones found by TP4. For themersi LPG-td optimized for plan quality, this goes
down to 1%.
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e Usually, here and in the known benchmarks in general, theege gonsiderable difference
between the length of a relaxed plan for the initial state] #re length of a real plan for
the initial state. Exceptions here are Airport, Satellard UMTS, where both lengths are
identical or nearly so.

e Usually, here and in the known benchmarks in general, tige$ainstances that can be solved
within the given particular time and memory (30 minutes a@®B) have plans with around a
hundred steps or more. PSR is exceptional in that Fast Domiww#he only planner able to
find a plan with more than 35 (namely, with 57) steps.

It once again indicates the diversity of the IPC-4 domaiias #imost every one of them appears at
least once in the “exceptions” listed here. The only dom#diasdon’t appear there are the Promela
domains and Pipesworld. This is a sort of exception in itgefaning that these domains contribute
the more typical benchmark behaviors to the overall set.

We take the existence of some of the mentioned distingugsfeatures as evidence that the
IPC-4 domains indeed have several novel aspects, besiggsdreented at applications and being
structurally diverse. In particular, the behavior of theRR®main stands out from what one typi-
cally observes. Note here that, while it is typically easgdastruct artificial domains that provoke
some unusual behavior, the domains we have herergpted at applicationsand so the exhib-
ited behavior, particularly that of the PSR domain, is ndyamusual, but also relevant in a very
concrete sense.

5.3 Fact Connectivity

We conclude our empirical analysis with some data aimedsasaing a sort of “connectivity” of the
facts. For each fagi, we measure the number afiders actions that have in their add list (in the
ADL case, that have an effect within its adds list). This gives an indication of the branchiagtbr

— action choices — that comes with the fact. We further meathe@ number ofequirers actions
that havep in their precondition (in the ADL case, that have an effedhwiin its condition). This
gives an indication of how central a fact is to the task. Foivargplanning task, we measure the
parameters of the distribution of adders(p) and requipgrsiver the set of facts: the minimum
(min), mean fnean), maximum (rax), and standard deviatioddv). Within domain versions, we
plot these data over instance size (number).

The data are too abstract to allow deep conclusions abostmedor planner performance, but
we are able to highlight some more characteristic features of tmeains. In particular, we will see
that these abstract measurements behave more charawtyistifferent in the IPC-4 domains than
in the IPC-3 domains. Figure 11 shows our plots for the IP@#ains Airport, Pipesworld, Dining
Philosophers, and Satellite. The picture for PSR is redfticomplicated and shown separately in
Figure 12. Settlers is left out because it is exceptionak pikture for UMTS is extremely simple,
and explained in the text below.

Consider Figure 11 (a), the (non-temporal) Airport domairhe min curves are not shown
since they are constantly “is-pushing-back(airplane)” is never added since pusklvaquests (of
outbound traffic) are not modelled; “occupied(segment)rik/ required in its negation. Theax
curves are step functions since they follow the size of tletging airports: “is-moving(airplane)”
has as many adders as there are segments, since “starting“ecan be done at any segment; “is-
pushing-back(airplane)” is required by every such actleading to the overall similar form of
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Figure 11: Distributions of the numbers of actions adding@,fand of actions requiring a fact,
in selected versions of some IPC-4 domains: (a) Airport,Ripesworld, (¢) Dining
Philosophers, (d) Satellite.

the max requirers curve. Thenean adders curve is flattened because all facts other than “is-
moving(airplane)” are added only at certain places on theodi Themean requirers curve, in-
terestingly, shows a similar downwards step behavior asitimbers of facts and actions shown
in Figure 4. The reason lies in the “not-occupied” factst #hast for every segment, and that are
needed in every action moving an (araidplane across the segment. The number of these facts
increases with the number of airplanes. Since there are mfathese facts, they have a strong
influence on the mean. There is not much of a correspondemaatime in the data, other than the
trivial one that both tend to grow with instance size.

Data for Pipesworld, no tankage non-temporal, are showigim€ 11 (b). Several observations
can be made: 1. theax andmean curves clearly follow the scaling pattern, with growingffia
on theb growing underlying networks. 2. th@in curves are non-zero. 3. there is a characteristic
difference between the curves up to instance 10, and aftdswad. the curves for adders and
requirers almost (but not exactly) coincide. Apart from hieh is also present in the Airport data,
these observations clearly distinguish Pipesworld frohth&l other domains. As for observation
2, sometimes in the larger instances thén number of addersloesdrop to0. This is due to
interactions in more complex networks, where certain comditions inside pipes are true initially
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but can not be re-achieved later on — some of these intenacéiee recognized by the “reachability”
pre-process made by FF for actions, c.f. the explanatiorenti@ 5.1. Observation 3 is due to
a large contrast between the smallest network and all lamges: the smallest network has only
unitary pipelines (containing just a single batch), theeathhave pipelines of at least length
Observation 4 is particularly at odds with all the other doxaawhere there are large differences
between adders and requirers. In fact, measuring theliston of thedifferencebetween adders
and requirers, we found that these numbers (not only thsirildition parameters) are extremely
close together: in instance 50, where thex adders id 524 andmax requirers isl520, themax of
the difference i29, with amean of 1.63 anddev of 5.31. In Pipesworld with tankage restrictions,
the phenomenon is somewhat less extreme but still thereth&ncoharacteristic is the enormously
large max number of adders and requirers, about an order of magniaurderl than in the other
domains. Thenax adders and requirers come from “do-normal” facts, whichrmbnthe status of
individual pipelines, and are affected by each action mpgome combination of batches through
the respective pipeline; all other facts depend on onlylsibgtches (not combinations of them),
which flattens thenean curves by two orders of magnitude. Regarding runtime, astioreed
earlier, in Pipesworld the scaling pattern does not haveear @orrelation with runtime; neither
does the fact connectivity we measure here.

Consider the Promela domain in Figure 11 (c), data showniftin® Philosophers with derived
predicates. Once again, the extreme characteristics afdimain are recognizable at first glance.
The data for Dining Philosophers without derived predisatee identical, the data for Optical Tele-
graph differ only in that the numbers are higher. Hh& curves are both, the adders are constant,
the requirers are linear. There exist facts without addaestd an oddity in the encoding, where
certain start-up transitions put the forks on the table éfitst place; the facts without requirers are
“blocked-philosopher”, which are only needed for the gddde number of adders does not depend
on the instance size due to the very static sort of domaictstre, where size increases the number
of parallel processes (philosophers), but the form of tluegsses stays fixed, and every process
interacts with exactly two other processes. The numberafirers is linear (non-constant, in par-
ticular) due to a technicality of the encoding, where “afiivg” (requesting) and “performing”
(executing) a transition requiredl communication channels to be in neutral state; so the régpec
flags are required by all transitions, and that number ofsegrows over size. All other facts are
required only locally, resulting in the much lower (easilyotorders of magnitudehean. As one
would expect in a domain with such a simple scaling pattdammer performance is pretty much a
function of size.

Data for Satellite (STRIPS version) are shown in Figure )1 Ttle most characteristic feature,
in comparison to the other domains, is the extremely smouathparallel close-together growth of
the curves. The only curve that stands out a littlenigr requirers;maz adders is due to “point-
ing(satellite, direction)” facts that can be added whenitg there from any other directiomaz
requirers is due to “power-on(instrument)” facts, which aeeded for every “take-image” with the
instrument, which can be done in evasgmbinationof direction and image mode supported by
the instrument. Note that, in contrast to the other domaiherev themax curves are about two
orders of magnitude higher than theean, heremax requirers is only one order of magnitude
above all the other curves, and these other curves are ghiyof the same order. Thain curves
are not shown since they are constaritlfor adders — “power-on(instrument)” is only added by
“switch-on(instrument)” — and constantlyfor requirers — “have-image(direction)” is only needed
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for the goal. The runtime performance of the IPC-4 planneates relatively smoothly with size in
Satellite, like our parameters here do.

In UMTS, all the parameters are constants. This is another consequitiheeaforementioned
scaling pattern, where the number of specified applicatioitise same in all instances, and what
changes is (only) the goal, specifying which of the appiieat shall actually be scheduled. Pre-
cisely, in the plain domain version, the number of adder$ fer all facts, nicely showing the
scheduling-domain characteristic where there is no choideow to accomplish tasks, but only
aboutwhento accomplish them. This is another illustration of why ta&sficing planners find this
domain trivial, whereas an optimal planner like TP4 (HaskkirGeffner, 2001) can spend a long
time searching for the optimal schedule. The number of reggiis minimun?, maximum?2, mean
0.89, standard deviation 0.57. In the domain version with flavioagtthe most notable difference
is that nowmaxz adders i®2 — due to the alternative provided by the “flaw” actionif. is now0,
meanl.2, deviation0.5). It is interesting to note in this context that, as mentaéove, in this
domain version theris a satisficing planner, CRIKEY, that experiences seriousiim
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Figure 12: Distributions of the numbers of actions addinga,fand of actions requiring a fact, in
PSR “small” and “large™: (a) adders “small”, (b) requirersiall”, (c) adders “large”,
(d) requirers “large”.

Data for PSR are shown in Figure 12. Here, we show plots foersdand requirers separately
because that makes them much more readable. Since the da@mme particularly interesting
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phenomena, we show it for two domain versions, “small” aradé”. The most obvious feature in
“small”, Figure 12 (a) and (b), is, once again, the huge arhotimariance in the data. The clearly
discernible peaks in the curves (instance nrs. 15, 25, 31 48h coincide with the peaks in size
as measured by numbers of facts and actions in Figure 4. Wenatg that there is a very large
range of values, spanning four orders of magnitude, eveigtihthe instances are (except number
25) all very small in comparison to the other domains showkigure 4. The minimum numbers of
adders and requirers are constantlyupdated(breaker)” is added only by a “wait(breaker)’iact
“not-closed(breaker)” is only needed if one wants to clogé Regarding the maximum adders and
requirers, in instance 25, which has by far the highest (p#fi@l number of actionsnax adders
(9216) is due to the “goal-reached” fact, i.e., to the 92Xgudlicts in the DNF of the goal formula;
maz requirers (9251) is due to “do-normal”, which is a flag neeftecevery goal-reached action,
plus the actions opening or closing breakers. We remarkilieasame facts are responsible for all
of the peaks in the curves, i.e., the same happens also anoest 15, 31, and 40.

It is highly characteristic for PSR “small” that theax numbers of adders and requirers ap-
proach and sometimes exceed two thirds of the total numbectmins. This is not the case for any
other domain, not even for any other domaarsionof PSR (see below). The intuitive reason lies
in one of the pre-compilation steps that we employed in otddre able to formulate reasonably
large PSR instances in pure STRIPS: the compilation stefiqiBet al., 2002) “removes” network
reasoning (and with it, the need for derived predicates)dsydally enumerating the breaker config-
urations and their effects on the flow of current in the nekwdihe result is a very dense structure
where each end of the network directly affects every othdr erplaining the very high degree of
fact connectivity, in particular explaining the extremelymplex goal formulas in the four “peak”
cases mentioned above.

The pre-compilation step is also the key to understandiechtige difference between the be-
havior in “small”, and in “large”. The latter is shown in Figul12 (c) and (d). There, theax
adders curve is a small linear function — note the non-ltigaiic scale of thgy axis —in spite of the
(mostly) much larger numbers of actions. For example, thairce with the highest number (7498)
of actions and derivation rules is number 20, wheretlw: number of adders is 3lgss than half a
percent of the total number of actians the natural high-level domain encoding that we have here
the flow of current through the network is modelled as thesitave closure over derivation rules
that each propagate current based onltical status of the network. So in particular the breaker
configurations and their effects on the flow of current arelicitpn the structure of the network.

Once again, in PSR “large”, thein curves are constantlyfor both adders and requirers; “not-
affected(breaker)” is the negation of a derived predicage¢ed as precondition of open and close
actions), which isn’t added by an inverse rule, but givemi&aning through the negation as failure
semantics of derived predicates; “fed(line)” is only reqdifor the goal. Thenean anddev of the
adders are completely flattened by the numerous (5029 o@33f, 5n instance 20) “upstream(x,y)”
facts, true if there is currently a path open from a side oferwdb a side of node y, that are added
only by a local derivation rule that relies on the same praédidor the neighbors of y. Similarly to
Satellite, thenax number of requirers is generally a lot larger thansther number of adders. For
example, 542 vs. 31 in instance 20, whetex requirers is due to a fact “closed(device)” that is
required in derivation rules talking abagpiirs of devices; in instance 20, 7360 of the 7498 actions
are such rules; there are 46 devices.

24. Sometimes there afeminimum requirers due to an artificial “goal-reached” fastroduced to get rid of complex
goal formulas, c.f. Section 2.
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Figure 13: Distributions of the numbers of actions addinga,fand of actions requiring a fact, in
the STRIPS versions of the IPC-3 domains except Freecelbatellite: (a) Depots, (b)
Driverlog, (c) Rovers, (d) Zenotravel.

To sum up the sub-section, the data are, generally, tocegbsirbe really tightly interconnected
with the performance exhibited by planners. On the othedheertain characteristics are visible.
Most particularly: In Pipesworld, the numbers of adders eemlirers are almost identical. In
Promela, the adders are constant and the requirers are linégatellite, all curves are very close
together. In PSR “small” there is a lot of variance, and#her numbers of adders and requirers
approach and sometimes exceed two thirds of the total nuwfbactions. In contrast, in PSR
“large” themax adders decline to less than half a percent of the total nuoftations. In UMTS,
all the parameters are constant. Except for PSR and UMT Sg thlekenomena are somewhat hard
to interpret. If nothing else, they certainly show us tha ttomains have some rather different
characteristics. Interestingly, the differences are saignificant for the IPC-3 benchmarks shown
in Figure 13. Clearly, the behavior is not as characteg#tidiverse as what we have just seen for
the IPC-4 domains. For all the four domains in Figure 13, wsdadly observe mostly parallel lines
that are pretty close together except for ther lines, which are about an order of magnitude higher
than the others. The only striking feature is the zig-zagimeadf the curves in Depots. This is due
to the scaling pattern: In the smallest instances, the nupflerates (blocks) grows continually up
to 15 crates in instance 6. Thereafter, there come blocksrat8nces each, of which the first has 6
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crates, the second 10 crates, and the third 15 crates (dloedstocks, other instance size parameters
grow). This means that the zig-zag shape of the curves qumels exactly to the zig-zag shape of
the crate numbers.

Note that the behavior of the plots in Figure 13 is similarti® behavior of the plot for Satellite
in Figure 11 (d), in particular for the first 20 instances. 3édevere the instances posed to the fully
automated planners in IPC-3, as also shown in Figure 13. filyd®C-3 domain that truly stands
out in terms of the behavior of these curves is Fregéellhere, we observe a phenomenon similar
to that of the Pipesworld in Figure 11 (b), where the curvesiflwlers and requirers almost coincide.
The phenomenon is a little weaker than in Pipesworld: in &éingdst Freecell instance, number 20,
themax of (both) adders and requirerslig38, while themax of the difference i402, with amean
of 14.30 anddev of 24.86. For comparison, in the largest Pipesworld instameey adders id524,
mazx requirers isl520, and themax of the difference i29, with amean of 1.63 anddev of 5.31.

To sum up the overall empirical analysis, the data certaioly't solve the mystery of what is
behind the performance of every planner in every domain ifgstdnce). They do, however, provide
some interesting insights about how instances are scatbe olomains, about certain subtleties and
peculiarities of their encodings, and about how standawdistec methods, and groups of planners,
react to them. We can observe large characteristic difterehetween the domains. In that sense the
results nicely complement the technical descriptions ipexmix A, as well as the known theoretical
results from Section 4.

6. Conclusion

In a field of research about general reasoning mechanisrol,asuAl planning, it is essential to
have useful benchmarks: benchmarks that reflect possipleatons of the developed technology,
and that help drive research into new and fruitful directiom the development of the benchmark
domains and instances for IPC-4, the authors have invegeificant effort into creating such a set
of useful benchmarks for Al planning.

As explained in the introduction, the three main goals wedtto achieve were 1. realism, 2.
structural diversity, and 3. accessibility of the benchkeait is debatable to what extent these goals
were achieved. To some extent, this is inherent in the coinflimature of the goals. Accessibility
of a benchmark — formulation in as simple as possible PDDledia — is obviously in conflict with
realism. Structural diversity is also in conflict with resi since, in the time window available to
create a competition benchmark set, there may not be (anddtdseen, in our case) a large set
of suitable applications to choose from. One must make dh what's available. We stressed
on realism since the lack of realism was traditionally cdesed as one of the main weaknesses
of Al Planning — achieving “just” structural diversity andcaessibility would, in fact, have been
comparatively easy (see also below). That said, to adapappécations for the IPC we had to
make many significant simplifications. Still, having dedwhe domains from applications, one can
expect that they capture some important features evensafgdification; on top of that, there is a
clear path towards more realism.

We believe that the domains constitute the best possiblgrmmise for IPC-4. To name the
most distinguishing features of the domain set:

25. It somehow makes sense that it’s precisely this domairstiands out, as it is also intuitively different from thbeat
domains. Most notably, deciding plan existence in FreaseélP-hard while it is easy in the other domains, c.f.
Section 4.1.
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1. Airport, Pipesworld, PSR, and UMTS are derived directiyni applications (Promela is a
special case since the model checking instances we coutitleraze very simplistic). This
was previously the case only for the Elevator domain (IP@) the Rovers and Satellite
domains (IPC-3).

2. The complexity of satisficing and optimal planning in thHERBPS domain versions covers
the entire rangd®, NP, and PSPACE — deciding (bounded) plan existence isHrfor PSR
and PSPACE-complete for Airport and general Promela. We are not awér@ grevious
PSPACE-complete STRIPS benchmark; the polynomial algorithm fodifig plans in PSR
is, in contrast to those for all the other STRIPS benchmaiits such algorithms, quite non-
trivial.

3. In Hoffmann’s (2005) taxonomy of domain classes withatit 1™ topology, the IPC-4
domains lie in classes with sparse coverage by previoushbean®s. In particular, none of
our new domains has nearly as simple a topology as proved [fynkion for most of the
traditional benchmarks. When taking into account that ®iueld actionsanbe inverted in
(not one but) two steps, each of the domains lies in a diffeskass of Hoffmann’s taxonomy,
covering more classes (6) than any previous IPC benchma(R,s& and 4 for IPC-1, IPC-2,
and IPC-3, respectively). Dining Philosophers is exceyatian that it lies in a “simple” class
but doesn’t have a simple topology; Airport is exceptiomathat it lies in a “very hard” class
but is typically (in real-world instances) easy.

4. The behavior of the different kinds of planners in IPC-évg# a lot of very characteristic
patterns in the individual domains. In Airport, sheer siéhie main obstacle. In Pipesworld,
particularly with tankage restrictions, the known heigigtnctions do very badly. In the
Promela domains, the main obstacle is, in a lot of casespntpedsibility of compiling the
PDDL description into a fully grounded simpler representatin PSR, there is an extremely
large amount of variance, and optimal planners performgastell (or poorly) as satisficing
planners. In UMTS, satisficing planners need no time at all.

5. Atavery abstract level that just looks at the numbers tbas adding/needing each fact, the
behavior of the domains is more characteristically divénse that of the IPC-3 domains.

6. Last but not least, the STRIPS versions of our domainepresnuch more of the original
domain structure than what was previously the case. The2lBTRIPS version of Elevator is
hardly an elevator problem anymore, and the IPC-3 STRIPSores of Satellite and Rovers
are devoid of all of the more interesting problem constgaifri contrast, the STRIPS versions
of Airport and Promela are semantically identical to the Arsions, and the PSR STRIPS
version, while pre-compiled a lot, still preserves muchhef original difficulty of the domain
(judging, e.g., by the behavior of the IPC-4 planners in it).

Feature 1 is, obviously, a point for realism. Features 2 toebpaints for diverse structure; par-
ticularly Feature 4 shows how the domains pose very diffechallenges to (current) planning
technology. Feature 6 is a point for realism combined witteasibility. We would like to stress
that accessibility in this respect is really quite impottadf the 19 planners entered into IPC-4, only
8 could handle (some) ADL features. Our compilation appnaatabled us to confront the other 11
planners with reasonably realistic problems. That saickitainly is debatable what role STRIPS
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plays or should play for the community. Some people may sarttany of the core algorithms,
e.g., planning graphs (Blum & Furst, 1997) and relaxed plauristics (McDermott, 1999; Bonet
& Geffner, 2001; Hoffmann & Nebel, 2001), have been inverite@ TRIPS. Others may say that
the focus on STRIPS-like languages and algorithms distiastrom considering temporal and nu-
merical problems of a truly different nature. This notwidrsling, STRIPS is still the most widely
used language among the research community. This cannghbeed by competition organizers.

Having pointed out the advantages of our benchmark set, a@dhlso point out a few of the
disadvantages. As explained in detail in the individuatises in Appendix A, we had to make
many simplifications in order to make the applications fitdse in IPC-4. To some extent, whether
or not the simplifications preserve the original domain cttrce is a debatable matter. We feel
that our Airport encoding is very close to the real “physidhaing. Not being able to represent
the real optimization criterion is bad, but ameliorated by fact that, out of 19 planners, only a
single one (LPG-td) could actually deal with user-definetinjzation criteria?® In Pipesworld,
the simplifications are more severe. The IPC-4 domain stiémbles some of the core difficulties,
but is more reminiscent of a (complicated) toy example tHaofiware that could be used to control
real pipelines. The Promela examples go to show that toy pbeanin the model checking area are
not any better than the traditional toy examples in planning?SR, removing the uncertainty and
the numerical optimization renders the IPC-4 domain uablétfor practical use.

Of course, the domain set is not exhaustive, meaning thed tiresumably are numerous appli-
cations whose essential structure is not similar to any ®fifC-4 domains. Some examples that
spring to mind are action choice in autonomous robots, tatpsecurity holes in computer net-
works (Boddy, Gohde, Haigh, & Harp, 2005), and online maciifidang (Ruml, Do, & Fromherz,
2005). As for structural diversity, it would be easy to const a set of artificial domains that
explore more of the possible extreme cases. Such domainisl ywombably be completely infea-
sible for current planners, thus posing very strong chghen Just think of, for example, Rubik’s
Cube, Sokoban, or Rintanen’s (2004) purely randomly géediiastance distributions. Then again,
such a domain set would be devoid of realism. At some poirihduhe preparation of IPC-4, we
considered introducing a separate class of domains, célisdrse Structure”, which would have
contained domains of this sort. We decided to not do so simeedmpetition event was already
very large without it. Also, we felt that our applications malready quite diverse on the structural
side. As pointed out above, several theoretical and enapipicenomena suggest that the latter is
indeed the case.

During our work, we experienced various successes anddaiin accurately formulating our
application domains in PDDL. People have asked us if, thidtigs, we obtained a picture of how
suitable PDDL is, in its current form, to formulate applioas, and in what sorts of domains it
works well. The answer is, we don't feel like we obtained masights into these matters that
are particularly deep or haven't been known before. A fevgdes learned are these. First and
foremost, formulating an application in STRIPS takes a largeunt of engineering expertise unless
one just drops all problem constraints; some simplificatiare unavoidable. Second, the discrete
nature of action instantiations in all previous IPC PDDLIlei#s seriously impedes formulation
of domains with continuous aspects. A discretization maesthosen, which is sometimes easy
(Airport) and sometimes very hard (Pipesworld) to do. A geay out seems to be to adopt the
“duration inequalities” suggested by Fox and Long (2003)ird, the community should pay more

26. This is a good example of a case where PDDL has been mastey than the actual planning technology.
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attention to lifted encodings, and how to deal with them irdera planning algorithms: one lesson
from our compilation activities is that grounding out allrpaneters is often simply not possible
(Promela, PSR). Since compiling away ADL constructs isroftet feasible without grounding (c.f.
Section 2), this is also very relevant in the ADL/STRIPS eant As a final “lesson”, we (the Al
Planning community) are still, mostly, far away from asqpkcability of planners in the real world.
But we are on the right track.

To conclude, we spent significant time and effort creatingeful set of planning benchmarks
for IPC-4. We hope that they will become standard benchmarkse coming years.
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Appendix A. Detailed Domain Descriptions

We now provide detailed descriptions of all the domains)phabetical order. Each section (except
those for the Satellite and Settlers domains, which wergtadafrom the IPC-3) is organized in
sub-sections as follows. We first give an outline of the ajgpion domain. We then explain the
main adaptations made to model the application as a PDDL idam&PC-4, we explain the IPC-4
domain structure, i.e., the domain versions and their ftatians as used in IPC-4, and we explain
how we generated the example instances for the IPC-4 tésss#inally, we discuss possible future
extensions.

A.1 Airport

We had a contact person for this application domain, Woligdatzack, who has been working in
this application area for several years. The domain wasteddpr IPC-4 by Jorg Hoffmann and
Sebastian Trig.
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A.1.1 APPLICATION DOMAIN

The task is to control the ground traffic on an airport. Timexvel routes must be assigned to
the airplanes so that they reach their targets. There isuimb@nd outbound traffic; the former
are airplanes that must take off (reach a certain runway),ldtter are airplanes that have just
landed and have to get parked (reach a certain parking @usitThe main problem constraint is,
of course, to ensure the safety of the airplanes. This meaasoid collisions, and also to prevent
airplanes from entering the unsafe zones behind largeaaieplthat have their engines running. The
optimization criterion is to minimize the summed up traveld (on the surface of the airport) of
all airplanes’ There usually arstandard routesi.e., routes that any airplane outbound from a
certain park position area, or inbound from a certain runwaysttake. The reason for introducing
such routes is, simply, the sheer complexity of managingithiation otherwise, without significant
computer support (which is as yet not available on real dispoWe will see below that whether or
not standard routes are present makes a big difference @isputationally.

The airplanes move on the airport infrastructure, whichsiia of runways, taxiways, and
parking positions. The runways and taxiways are sub-dividéo smallersegmentsThe position
of an airplane is given by the segment it is currently locatedplus its direction and the more
precise positionwvithin the segment — several airplanes can be in the segment antledtisze.

Airplanes are generally divided into three categoriiggit, medium, and heayyvhich classify
them according to their engine exhaust plas). An airplane that has to be moved is either in-
bound or out-bound. In-bound airplanes have recently ldaael are on their way from the runway
to a parking position, usually a gate. Out-bound airplanesr@ady for departure, meaning they
are on their way to the departure runway. Since airplanesatanove backwards, they need to be
pushed back from the gate onto the taxiway, where they gpattieir engines. Some airports also
provide different park positions that allow an airplanetartsits engines directly.

To ensure safety, an airplane must not get too close to thedfanother airplane whose engines
are running. How far the safety distance has to be dependsearategory (jet blast) of the second
airplane.

The ground controller — the planner — has to communicate daattplanes which ways they
shall take and when to stop. While such guidance can be giweiypreactively, it pays off to base
decisions on anticipating the future. Otherwise it may lapihat airplanes block each other and
need more time than necessary to reach their destinatiottseairport. The objective is, as said,
to minimize the overall summed up traveling times of all &Enes.

As instances of the domain, one considers the traffic sitnatt some given point in time, with
a time horizon of, say, one hour. If new airplanes are knowlartd during given time slots inside
the time horizon, then during these time slots the respectinways are considered blocked, and
the planner has to make sure these runways are free at thmese ©Of course, because the situation
changes continually (new planes have to be moved and plan®the executed as intended), con-
tinuous re-planning, i.e., consideration of the domaiteinse describing the new traffic situation, is
necessary. Solving instances optimally (the correspgndeatision problem) i® SPACE-complete
without standard routes (Helmert, 2006b) aid-complete ifall routes are standardized (Hatzack
& Nebel, 2001). In the latter case, we have a pure schedulioglgm. In the former case, compli-

27. This criterion is whathe airportwants to minimize, in order to maximize its throughput. Fribra point of view of
the airlines, it would be better to minimize delay, e.g., bypimizing the summed up squared delay of all airplanes.
The two criteria may be in conflict. Neither of the two can bsilgamodelled in PDDL2.2, see below.
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cated (highly unrealistic, of course) airport topologias tead to exponentially long solutions, c.f.
Section 4.1.

A.1.2 IPC-4 PDDL ADAPTATION

The PDDL encoding (as well as our example instance genarptiocess, see below) is based on
software by Wolfgang Hatzack, namely on a system calisilas Airport Surface ground TRA(ffic
Simulator. This is a software package that was originallgigleed to be a training platform for
airport controllers. Astras provides a two-dimensionawiof the airport, allowing the user to
control the airplanes by means of point and click. Astrasalao simulate the traffic flow on an
airport over the course of a specified time window.

We made three simplifications, one of them benign, to theodinmodel. As for the benign
simplification: we did not model park positions where thelaine can start up its engines directly,
without being pushed back to the taxiway first. While it is difticult to model such park positions
in PDDL, they seldom occur in reality and so are not very r@hivo the application. Our first
more important simplification was to assume a somewhat cnm@n of airplane locatedness, by
requiring that only a single airplane can be located in a seqrat any time. That is, we use the
term “segment” with the meaning of a smallest indivisiblét uri space. To minimize the loss of
precision, (some of) the original “segments” were subetid into several new smaller segments.
The safety distance behind the back of an airplane whosaeemngre running is then also measured
in terms of a number of segments. While this discretizatiakes us lose precision, we believe that
it does not distort the nature of the problem too much: duéécaimount of expected conflicting
traffic at different points on the airport (high only near kpag positions), it is relatively easy to
choose a discretization — with segmentslifferentlength — that is precise and small enough at the
same time&® The last simplification is more severe. We had to give up orréiaé optimization
criterion. We say more on this rather strong simplificatiaiolv. We did not use full standard
routes, thus allowing the airplanes a choice of where to mdWe did use standards for some
routes, particularly the regions near runways in largeasigy For one thing, this served to keep
large airports manageable for the PDDL encoding and planif@r another thing, it seems a good
compromise at exploiting the capabilities of computersleviat the same time keeping close to
traditions at airports. We get back to this matter in Secfidh5.

The full PDDL description of our domain encoding can be daaded from the IPC-4 web page
at http://ipc.icaps-conference.org/. Briefly, the enagdivorks as follows. The available actions are
to “pushback” (move a plane away backwards from a parkingtipoy, to “startup” the engines,
to “move” between segments, to “park” (turning off the eregy and to “takeoff” (which amounts
to removing the plane from the airport). The semantics o$¢hactions are encoded based on
predicates defining the current state of the airplane. At@wigt in time, an airplane is either
moving, pushed, parked, or airborne. An airplane alwaysijgies one segment and, if its engines
are running, may block several other segments dependingpesite of the occupied segment
and the category of the airplane. The action preconditiossire that blocked segments are never
occupied by another airplane. In the initial state, eachepla either parked, or moving. A parked
plane can be pushed back, and after starting up its enginissmioving. A moving airplane can

28. The need for smallest indivisible units (of space, is tidse) is a fundamental consequence of the discrete néture o
PDDL2.2; some more on this is said in Section A.1.5.
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either move from its current segment to a neighboring segnpamk — at a parking position — or
take off — on a runway.

As an example, have a look at the PDDL encoding of the (noataural) “move” action (one
of the preconditions was used as an example in Section 2gkea

(:action move
:parameters
(?a - airplane ?t - airplanetype ?d1 - direction ?s1 ?s2 - segfu?2 - direction)
‘precondition
(and (has-type ?a ?t) (is-moving ?a) (not (= ?sl ?s2)) @’a?d1l) (can-move ?sl ?s2 ?d1)
(move-dir ?s1 ?s2 ?d2) (at-segment ?a ?s1)
(not (exists (?al - airplane) (and (not (= ?al ?a)) (blocls2d?a1))))
(forall (?s - segment) (imply (and (is-blocked ?s ?t ?s2 Pd@) (= ?s ?s1))) (not (occupied ?s)))))
-effect
(and (occupied ?s2) (blocked ?s2 ?a) (not (occupied ?sd)jdrsegment ?a ?s1)) (at-segment ?a ?s2)
(when (not (is-blocked ?s1 ?t ?s2 ?d2)) (not (blocked ?9) ?a)
(when (not (= ?d1 ?d2)) (and (not (facing ?a ?d1)) (facingd23)?
(forall (?s - segment) (when (is-blocked ?s ?t ?s2 ?d2) keld@s ?a)))
(forall (?s - segment) (when
(and (is-blocked ?s ?t ?s1 ?d1) (not (= ?s ?s2)) (not (iskbb@s ?t ?s2 ?d2)))
(not (blocked ?s ?a))))))

The six parameters — which is a lot compared to most of thel iierechmarks — do not cause
a prohibitive explosion in instantiations since there istaof restriction through static predicates.
Airplane “?a” moves; its type (category) is “?t"; it is at segnt “?s1” facing in direction “?d1”, and
will be at “?s2” facing in direction “?d2” after the move. “iiction” here is a very simple concept
that just says which end of the segment the airplane is faddfgcourse, moves from “?s1 ?d1”
to “?s2 ?d2” are only possible as specified by the — static elégy of the airport (“can-move”,
“move-dir”). The first of the two more complex preconditiosays that “?s2” must not currently
be blocked by any airplane other than “?a” itself. The secommplex precondition makes sure
that, after the move, “?a” will not block a segment that isreatly occupied (by another airplane,
necessarily): “(is-blocked ?s ?t ?s2 ?d2)” is a static peddithat is true iff “?s” is endangered —
blocked — if a plane of type “?t" is at “?s2"w facing directié®d2”. The effects should be self-
explanatory; they simply update the “at”, “occupied”, anmictked” information. The only effect
that looks a little complicated — the last one — says thatelsegments that were blocked before the
move, but are no longer blocked after the move, become wkédib Note that the conditions of all
conditional effects are static, so the conditions disappeee the parameter instantiation is chosen.

In durational PDDL, the actions take time according to soim®k computations. The time
taken to move across a segment depends, naturally, on theesedength and the speed. We
assumed that airplanes move at the same speed regardlbsg chtegory. The time taken to start
up the engines is proportional to the number of engines. Ter actions have some fixed duration.

If some planes are known to land in the near future, blockingvays, then we model the
blocking during these time windows using timed initial fdés, respectively their compilation into
artificial (temporal) PDDL constructs. The timed literate aimply instances of the usual “blocked”
predicate, becoming true when the respective time windavsstand becoming false again when it
ends.

We were not able to model the real optimization criterionigf@t ground traffic control. The
standard criterion in PDDL is to minimize the execution tjme., makespan, of the plan. In our
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encoding of the domain this comes down to minimizing thevatriime (meaning, arrival at the
destination on the airport) of the last airplane. But thé obgective is, as said above, to minimize
the overall summed up travel time of all airplanes. Thereeappto be no good way of modeling
this criterion in current PDDL. The difficulty lies in acc@ss the waiting times of the planes, i.e.
the times at which they stay on a segment waiting for somer piee to pas$?

The only way (we could think of) to get access to the waitimgets, in current PDDL, is to
introduce an explicit waiting action. But then one must bie ab tell the planner, i.e., to encode in
the action, how long the plane is supposed to wait. One ofitmuse the “duration inequalities”
proposed by Fox and Long (2003). There the action imposegssmmhe constraints on its duration,
and the planner can/has to choose the actual duration ottlos gat each point where it is used in
the plan, as an additional (rational-valued) parametee @dtential disadvantage of this approach
is that the choice of the waiting time introduces, in pritej@n infinite branching factor into the
state space, and may thus make the problem much harder omatgid planners. Moreover, du-
ration inequalities were not put to use in IPC-3, and wereanpart of PDDL2.1. When not using
duration inequalities, the only way to encode the requestgiting time into the action is to use
a discretization of time. One can then introduce new objegjisesenting every considered time
interval, and give the waiting action a parameter rangingr dkese objects. Apart from the loss
of precision involved in the discretization, this approaalso likely to cause huge performance
problems for automated planners. As an alternative wayweeitconsidered introducing a special
“current-time” variable into PDDL2.2, returning the timé its evaluation in the plan execution.
Using such a “look at the clock”, one could make each planerckits arrival time, and thus formu-
late the true optimization criterion without any major cbas to the domain structure. The IPC-4
organizing committee decided against the introduction ‘@uarent-time” variable as it seemed to
be problematic from an algorithmic point of view (it impliascommitment to precise time points
at planning time), and didn’'t seem to be very relevant anye/kescept in Airport.

All'in all, the IPC-4 PDDL encoding of the Airport domain isalestic except for the optimiza-
tion criterion, which demands to minimize maximal arriviahé — makespan — instead of summed
up travel time. It remains to remark that all but one (LPGatlthe IPC-4 planners ignored the
optimization criterion anyway. Also, minimizing the latesrival time does appear a useful (if not
ideal) objective.

A.1.3 IPC-4 DOMAIN STRUCTURE

The Airport domain versions used in IPC-4 aren-temporal temporal temporal-timewindows

and temporal-timewindows-compiledThe first of these versions is, as the nhame suggests, non-
durational PDDL. In the second version, actions take timexgtained above. The third and fourth
versions also consider runways blocked in the future bygdamown to land during given time
windows. The third version encodes these time windows uBingd initial literals, the fourth
version uses those literals’ compilation into standardpteral PDDL constructs, c.f. Section 2.

In all the domain versions, the problem constraints are meodasing ADL, i.e., complex pre-
conditions and conditional effects. We compiled the ADL @tings to STRIPS with domain-
specific software implemented for this purpose. We grouramédanost— not all — of the operator
parameters, precisely, all the parameters except, for aetobn, the one giving the name of the

29. Modelling summed up (squared) delay of all airplanesojftimization criterion for airlines, would pose essdhtia
the same difficulty: it also involves computing the arriviad¢ (in order to compute the delay).
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| version | formulation || maa-#op | maz-#act |
non-temporal ADL 5 (1048) 989
non-temporal STRIPS 1408 (21120) 13100
temporal ADL 5 (1408) 989
temporal STRIPS 1408 (21120) 13100
temporal-tw | ADL 5 (995) 854
temporal-tw | STRIPS 1408 (22038) 13100
temporal-twc| ADL 14 (911) 861
temporal-twc| STRIPS 1429 (21141) 13121

Table 1: Overview over the different domain versions andnigdations of Airport. Abbrevia-
tions used: “temporal-tw” for “temporal-timewindows”, €inporal-twc” for temporal-
timewindows-compiled;naz-#op is the maximum number of (parameterized) PDDL
operators for any instanceyax-#act is the maximum number of ground actions for any
instance. For the ADL formulations, the set of ground actioauld not be generated for
the largest instances; data are shown for the largest oestahat could be handled. Data
in parentheses are collected before FF’s “reachabilitg*ymocess (see text).

affected individual airplane. Once all the other paransesge fixed, the formulas and conditional
effects can be simplified to the usual STRIPS constructs.h Bdiport domain version contains
the original ADL formulation, as well as its compilation taBIPS. The result of the grounding
process depends on the specific airport considered in ttenires and on the set of airplanes that
are travelling. So, in the STRIPS formulations, to eachainsé there is an individual domain file
(the same applies to all STRIPS compilations in the otheradosndescribed later).

The domain versions, as well as the blow-up incurred by thepdation, are overviewed in
Table 13° The numbers shown in the table indicate numbers of PDDL ¢pexaand numbers
of grounded actions. For each domain version/formulatibe, maximum such number of any
instance is shown. Note that, in the ADL formulations exdstporal-timewindows-compiled,
there is just a single domain file so the number of operatoideistical for all instances. In the
STRIPS formulations, the number of operators is high bexaas explained, most of the operator
parameters are grounded. The difference in the number ahdractions between the STRIPS and
the ADL formulations is because, with our automated softyare were not able to generate the
ground actions in the larger ADL instances; the data showrf@arthe largest instances that we
could handle. The numbers shown in parentheses refer to theisitusfore FF’'s “reachability”
pre-process; as said before, this builds a relaxed plargrengh for the initial state, and removes all
actions that do not appear in that graph. The difference dmtvthe numbers inside and outside of
the parentheses indicates how much this simple pre-prdmd#gs. We see that it helps quite a lot
here, pruning almost half of the actions (which would newesdme applicable, in a forward search
at least, but which blow up the representation regardlesghat algorithm is used).

30. The instantiation process is, of course, planner-digrgn Similarly as before in Section 5, our data are based on
FF's pre-processor. We extended that pre-processor getgcthe one of Metric-FF (Hoffmann, 2003)) to deal with
temporal constructs.
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A.1.4 IPC-4 EXAMPLE INSTANCES

The Airport example instances were generated by Sebadiimy) With an implementation based on
the aforementioned airport simulation tool Astras. Fivaling airport topologies were designed,
and used as the basis for the instance generation. Thetaigoar named “Minimal”, “Mintoy”,
“Toy”, “Half-MUC”, and “MUC". The smallest of these airpastis the smallest possible airport
Astras can handle. The two largest airports correspond eédhaif of Munich Airport (MUC), and
to the full MUC airport. Figure 14 shows sketches of the “Mail” airport, and of the “MUC”
airport.

(@)

(b)

Figure 14: The smallest (a), and the largest (b) of the IPGrpokt topologies. Park position
segments are marked in black (e.g., at the top of part (a))ewre segments airplanes
can takeoff from are marked in white (e.g., at the left bot®de of part (a)). The lines
show the road network on the airport. Topology (b) corregisan MUC airport.

Sebastian Triig implemented PDDL instance generatiowagadtinside Astras. During a simu-
lation of the traffic flow on an airport, if desired by the usee software exports the current traffic
situation in the various PDDL encodings explained above Simulator was run with the different
airports, and 50 scaling traffic situations were exporte@dr{3'Minimal”, 6 on “Mintoy”, 11 on
“Toy”, 15 on “Half-MUC”, and 15 on “MUC"). For each airporthe instances scale in terms of the
number of travelling airplanes. The largest instance featd5 planes to be moved to their desti-
nations on Munich airport, with 10 planes landing in the fatto be considered (in the respective
domain versions). This can be considered a realisticatlydsiraffic situation, at this airport.
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A.1.5 FUTURE WORK

It remains to explore how to relax some of the simplificatisreshad to make. Most importantly,
how to overcome the discrete model of space (locatednas$@v to model the real optimization
criterion. Our difficulties with both are, as partly desecbabove already, mostly due to the discrete
nature of PDDL2.2, which does not allovcantinuouschoice in the instantiation of an action. Such
a continuous choice would be the most natural way of salgmg fara plane will be moving and
how longit will be waiting. So the best way to go about this directien probably, to assume
the “duration inequalities” proposed by Fox and Long (20@8yether with the numeric variables
already contained in PDDL2.2. This should be easy on the Hingleside. The main problem
is probably on the technology side, i.e., to develop plasitkat can deal efficiently with such
continuous choice points. At the time of IPC-4, as said, ioous choice appeared too much to
demand from the planners.

One interesting topic for future work arises if one restritie airplanes completely to standard
routes, i.e., leaves them no choice at all of what route te taktheir destination. As said, first,
this is usually done at real airports, for the sheer complexfi managing the situation otherwise,
without significant computer support (which is as yet notlate at real airports). Second, in IPC-
4 we made only limited use of this feature, to retain some effléxibility that could be offered
by automatized methods. Third, the restriction turnsRIS®?ACE-complete ground traffic control
problem into a pureNP-complete (Hatzack & Nebel, 2001), scheduling problem, nertibe only
guestion iswhenthe planes move across what segment. One could exploitdtdeetite a much
more concise PDDL encoding. The restricted problem comesido resolving allconflictsthat
arise when two planes need to cross the same airport seg@®eatcould thus try to not encode in
PDDL the physical airport, but only the conflicts and theisgible solutions, ideally in connection
with the real optimization criterion. It can be expected thlanners will be much more efficient in
such a simpler and more concisely encoded problem.

A.2 Pipesworld

Frederico Liporace has been working in this applicatiorm &oe several years; he submitted a paper
on an early domain version to the workshop on the compet#iofCAPS’'03. The domain was
adapted for IPC-4 by Frederico Liporace and Jorg Hoffmann.

A.2.1 APPLICATION DOMAIN

Pipelines play an important role in the transportation afédeum and its derivatives, since it is
the most effective way to transport large volumes over lalgéances. The application domain
we consider here deals with complex problems that arise wrhesporting oil derivative products
through a multi-commaodity pipeline system. Note that, wltiiere are many planning benchmarks
dealing with variants of transportation problems, tram8pg oil derivatives through a pipeline
system has a very different and characteristic kind of stne¢ since it uses stationary carriers
whose cargo moves rather than the more usual moving cadfietstionary cargo. In particular,
changing the position of one object directly results in ajiag the position of several other objects.
This is less reminiscent of transportation domains tharoofgicated single-player games such as
Rubic’s Cube. It can lead to several subtle phenomena. Faongbe, it may happen that a solution
must reverse the flow of liquid through a pipeline segmenévimes. It may also happen that
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liquid must be pumped through a ring of pipeline segmentsancéic fashion, to achieve the goal
(we will see an example of this later).

In more detail, the application domain is the following. Avgline network is a graph of opera-
tional areas connected by pipeline segments. Operatiosas anay be harbors, distribution centers
or refineries. These may be connected by one or more pipedgments. The oil derivatives are
moved between the areas through the pipelines.

There can be different types of petroleum derivative préglu€ach area has a set of tanks
that define the storage capacity for each product type. Empeltine segment has a fixed volume
and speed. The volume depends on the segment’s length asslsaction diameter, and the speed
depends on the power of the pumps that move the contents. mMesggnay be uni-directional, i.e.
only usable for transportation in one direction.

Pipeline segments are always pressurized, that is, they lmeuslways completely filled with
petroleum derivative products. Because of that, the onlytwanove a pipeline segment’s contents
is by pumping some amount of product from an adjacent areativt segment. This operation
results, assuming incompressible fluids, in the same anwiumipossibly different product being
received in the area at the other end of the segment.

The pumping operations can only be executed if they do ndatgany interface or tanking
constraints. As for the former, distinct products havedimntact inside the pipeline segment, so
it is unavoidable that there is some loss due to the mixtutheninterface between them. These
interface losses are a major concern in pipeline operatiecause the mixed products can not be
simply discarded. They must pass through a special treatimenmay involve sending them back to
a refinery, and that may require the use of special tanks. &erity of interface losses depends on
the products that interface inside the pipeline segmentvdfproduct types are known to generate
high interface losses, the pipeline plan must not place thiacently into the segment. Such a pair
of product types is said to have an interface restriction.

Tanking constraints are limits on the product amounts thatoe stored in an area, arising from
the respective tank capacities. Such constraints maytiefgcblock a pipeline segment, if there is
no room in the receiving area to store the product that waedsld the segment in the process of a
pumping operation.

The task in the application is to bring certain amounts oflpods to the areas in which they are
required, i.e. one has to find a plan of pumping operationssthifts the positions of the product
amounts in a way so that the goal specifications are met. $uewethere is a deadline specifying
when, at the latest, a product amount has to arrive at itind¢isin area. It may also be the case that
an area (typically, a refinery) is known to produce some gamount of a product at a given point
in time, and that the plan must make sure that there is en@utspace available at the respective
area to store the new product amount. Similarly, an areécéip a harbor or a distribution center)
may be known to consume some given amount of a product at a goiat in time, thereby freeing
the respective amount of tank space.

A.2.2 IPC-4 PDDL AAPTATION

The main adaptations made in the PDDL encoding are unitaghbg, split pumping operations,
and “personalized” goals (see below for the latter). Thent#vatch” is used in the oil pipeline

industry to refer to an amount of a product that must be tranieg through the pipeline. Batches
are thus associated with a single product and have predefoheche. Batches are also indivisible.
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When a batclB; is pumped from an ared, into a segmens; ., it is not possible for another batch
to be pumped fromi; into S; ;. until all of B;’s volume is pumped. Of course, in reality the product
amount in a batch is a rational number. Using such a numecioding in IPC-4 seemed completely
infeasible due to complications in the modeling, and thesetgd capabilities of the participating
planners (see Section A.2.5). Instead, we based the emrodithe concept of what we called
unitary batches. These are the smallest considered —sitilevi- portions of product. The pumping
operations refer to unitary batches. The pipeline segrheolismes and the volumes of tanks are
also defined in terms of unitary batches. When encoding awedd instance of the domain, the
actual volume associated with a unitary batch is a choidabia: Smaller unitary batches decrease
the rounding error in the PDDL encoding, at the cost of a laegeoding size. Note that, like the
smallest units of space in the Airport domain, this is a diszation the need for which is due to the
non-continuous nature of actions in PDDL2.2; we get backitih Section A.2.5.

We modeled pipe segments in a directional fashion, i.e.etieea default direction assigning
one area the “from” role, and the other area the “to” role. Ppheping operations accordingly
distinguish between “push” actions, which move liquid ia tespective segment’s default direction,
and “pop” actions, which move liquid in the opposite direnti This is simply a technical device to
enable the encoding of the pipe segment contents througlicptes defining the “first” and “last”
batches in the segments (as well as a “successor” relafitue).push” and the “pop” actions receive
(amongst other things) as arguments the pipeline segmesgerdontents are being moved, and the
batch that is being inserted into the segment. The batchi¢haés the segment depends on the
segment content before the action is executed. Figure Mgsséwo example.

Figure 15: A small example. Al plays the “from” role. The filitpern for each batch represents
its product. (a) shows the initial state, (b) shows stataft@r a “push” operation with
B3 being inserted into the segment, (c) shows state (b) aftpop” operation with B6
being inserted into the segment.

Apart from the pipe segment and the batch being inserted;pii&h” and “pop” actions have
to take several more parameters regarding, e.g., prodoes nd tank slots. In particular, in order
to be able to update the segment contents correctly, thenactilso need parameters giving the
respective first, last, and second last batch in the curremieats of the segment. Thus such an
action has four parameters ranging over batches, yielditepatn* ground instances of the action
when there arex (unitary) batches in the considered task. We found thatrttage the domain
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completely infeasible for any planning system that grouhdet the actions. Since many unitary

batches are needed to encode even relatively small Piplelsesxamples, such planners typically

died in the pre-processing phase alre3ldy\Ve avoided this phenomenon by splitting the actions
into two parts, a “start” action taking as batch parametetg the inserted batch and the first batch

in the pipe, and an “end” action taking as batch parametdystbe last and second last batches in
the pipe. To make this more concrete, here is the split “paskidn:

(:action PUSH-START
:parameters
(?pipe - pipe ?batch-atom-in - batch-atom ?from-area - 2i@area - area
?first-batch-atom - batch-atom ?product-batch-atom-ioepct
?product-first-batch - product)
‘precondition
(and (normal ?pipe) (first ?first-batch-atom ?pipe) (cohA&om-area ?to-area ?pipe)
(on ?batch-atom-in ?from-area) (not-unitary ?pipe)
(is-product ?batch-atom-in ?product-batch-atom-in)
(is-product ?first-batch-atom ?product-first-batch)
(may-interface ?product-batch-atom-in ?product-fiestich))
-effect
(and (push-updating ?pipe) (not (normal ?pipe)) (first Giv@tom-in ?pipe)
(not (first ?first-batch-atom ?pipe)) (follow ?first-batatom ?batch-atom-in)
(not (on ?batch-atom-in ?from-area))))
(:action PUSH-END
:parameters
(?pipe - pipe ?from-area - area ?to-area - area ?last-lbéoh- batch-atom
?next-last-batch-atom - batch-atom)
:precondition
(and (push-updating ?pipe) (last ?last-batch-atom ?jgoeinect ?from-area ?to-area ?pipe)
(not-unitary ?pipe) (follow ?last-batch-atom ?next-laatch-atom))
-effect
(and (not (push-updating ?pipe)) (normal ?pipe)
(not (follow ?last-batch-atom ?next-last-batch-atom))
(last ?next-last-batch-atom ?pipe) (not (last ?lastibatom ?pipe))
(on ?last-batch-atom ?to-area)))

The constructs should be largely self-explanatory. Thecspaeedicates used are: “connect”,
encoding the topology of the network; “is-product”, enaaglihe types of liquid; “may-interface”,
encoding the interface restrictiodSnot-unitary”, saying whether or not a pipe segment corstain
just one batch — in which case the “push” and “pop” actionsmateh simpler and need not be
split (the “first” and “last” elements in the pipe are ideatjc The predicates “normal” and “push-
updating” ensure, in the obvious way, that the two parts efdplit action can only be used as
intended. Finally, “on”, “first”, “follow”, and “last” encde where the relevant batches are. The
role of “on” should be clear, it just encodes locatednessaéas As for the pipe contents, they are
modelled in a queue-like fashion, with a head “first”, a tékt”, and a successor function “follow”.
The two parts of the “push” action update this represemniaitcordingly.

31. Matters may be easier for planning systems that do naingrout actions in a pre-process. This didn't affect our
design decision here since the large majority of systemaarat the time of IPC-did employ such a pre-process.
32. Note here that we dwot model the interface loss for those products thayinterface.
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We did not encode uni-directional pipe segments, i.e. foseiments both “push” and “pop”
actions are available in the IPC-4 encodings. We modelekhtgnrestrictions with simple con-
structs involving tank slots located in areas, each sloingathe capacity to store one unitary batch
of some given product type — that is, the “push” and “pop” @i now also specify what tank slot
the inserted/outgoing batch comes from/is inserted intr. skmple examples regarding interface
and tankage restrictions, re-consider Figure 15. If theag® capacity foP in A, is equal to zero,
then the transition from state (a) to state (b) becomesithvHilwe forbid the interface betweeh;
and Ps, then the transition from state (b) to state (c) becomeditva

Pipe segment speed can be easily taken account of (in cumhfRDDL). If the speed of a
segment iss, then simply assign the “push”/“pop” actions regardingt thegment a duration pro-
portional to%. (In the IPC-4 encoding, each “start”/“end” action takeacly that time, while the
non-split actions regarding length-1 segments take ﬁrme

In reality, as outlined above the goals refer to amounts oflpct requested to be at certain
destination areas. With our encoding based on batchesufatimg such a goal would mean to in-
troduce a potentially large disjunction of conjunctive Igodf one wants to say, e.g., that three uni-
tary batches of produd? are requested in ared then the needed goal condition is the disjunction
V (b1 5,65y (atb1A) A (atba A) A (atbsA) of the respective conjunctive goal for all three-subsets
{b1, b, b3} Of the batched3 of type P. To avoid exponential blow-ups of this kind, in our encoding
we used “personalized” goals instead, referring to spegdtches instead of product amounts. Ba-
sically, this comes down to pre-selecting one of {he bs, b3} subsets in the above disjunctigh.
One could also avoid the blow-up by replacing the disjumctigth an existential quantification; but
that step would be undone in the compilation to STRIPS anyway

Deadlines on the arrival of batches are, in durational PDdaksjly modeled by their compilation
to timed initial literals. For each goal deadline there igexdl saying that the respective batch can
still be ejected from the end of a pipe segment. The literatitgally true, and becomes false at
the time of the deadline. As described above, in the appicdhere can also be pre-specified time
points at which an area produces or consumes a given amoargrotiuct. We did not model this
in the IPC-4 domain (see also Section A.2.5).

As mentioned above, the structure of the Pipesworld doneairiead to several subtle phenom-
ena in the possible plans. An example where plans have torped cyclic sequence of pumping
operations is depicted in Figure 16. The goal is to place B&inThe shortest plan is the follow-
ing (for readability, in the action parameters only the haggoing into and out of the pipes are
shown):0: PUSH S1,4 B8 B2, 1: POP S2,4 B2 B3, 2: POP S1,2 B3 B1, 3: PUSHES1BS, 4:
PUSH S4,3 B8 B7, 5: POP S2,3 B7 B4, 6: PUSH S2,4 B4 B2, 7: PUSHB24B8 Observe that
this plan contains two cyclic patterns. ActiOninserts B8 into S14. Actions 1,2, 3 then form a
cycle{Ss 4, 51,2, 51,4} that bringsB8 into A4. Thereafter, action insertsB8 into 543, and actions
5,6, 7 form another cyclgS 5, S5 4, 54,3} bringing B8 to its goal position43.34

33. Note that a bad choice ¢b:, b2, b3} can make the task harder to solve. We are, however, currewggtigat-
ing the computational complexity of different variants bétPipesworld, and our preliminary results suggest that
allowing/disallowing personalized goals does not affaetcomplexity.

34. Note that the need for such cyclic patternsasan oddity introduced by our encoding. It is something thay (hait
is probably not very likely to) happen in reality: like in tegample, it becomes necessary if there isn’t enough liquid
in an origin area (here, A1 and A4) to push the needed amodiguidl (here, B8) through to its destination.
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Figure 16: Anexample where cycling is required to achieegjibal (place B8 in A3). Pipe segment
S1i, j is directed fromAi to Aj.

version formulation | maz-#op | maz-#act |

notankage-nontemporal STRIPS 6 (14800) 13696
notankage-temporal STRIPS (14800) 13696
notankage-temporal-d | STRIPS (8172) 7740
notankage-temporal-d¢ STRIPS (8175) 7742
tankage-nontemporal | STRIPS (107120) 101192
tankage-temporal STRIPS (107120) 101192

OO OO

Table 2: Overview over the different domain versions of Biperld. Abbreviations used:
“temporal-d” for “temporal-deadlines”, “temporal-dc”’rfdeadlines-compiledyax-#op
is the maximum number of (parameterized) PDDL operatoraifgrinstancemaz-#act
is the maximum number of ground actions for any instancea aparentheses are col-
lected before FF's “reachability” pre-process (see text).

A.2.3 IPC-4 DOMAIN STRUCTURE

The Pipesworld domain versions used in IPC-4ray@ankage-nontemporalankage-nontemporal
notankage-temporaltankage-temporalnotankage-temporal-deadlineand notankage-temporal-
deadlines-compiled All versions include interface restrictions. The versiomith “tankage” in
their name include tankage restrictions. In the versionk Wemporal” in their name, actions take
different amounts of time depending on the pipeline segniemitis being moved, as explained
above. The versions with “deadlines” in their name incluéadlines on the arrival of the goal
batches. One of these versions models the deadlines usiad tnitial literals, in the other version
(naturally, with “compiled” in its name) these literals a@mpiled into artificial (temporal) PDDL
constructs. None of the encodings uses any ADL construatspheach version there is just one
(STRIPS) formulation.

The domain versions and numbers of ground actions are eveed in Table 2. As before,
the data were measured using (a temporal extension of) F&prpcessor. The numbers shown
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in parentheses refer to the situatibaforethat pre-processor’s “reachability” pre-process, which
builds a relaxed planning graph for the initial state andoees all actions that do not appear in
that graph. We can observe that the numbers of ground aciengery low in the domain versions
with deadlines, and extremely high in the versions with &gekrestrictions. The former is simply
because, due to the complicated generation process (exgla the next sub-section), examples
with deadlines were generated only up to a smaller size. atterl— high numbers of actions in
the presence of tankage restriction — is due to the additldaa-up incurred by the choice of tank
slots from which to draw/in which to put the batches. We nbt the effect of the “reachability”
pruning is relatively moderate, in particular much lowearthe.g., in Airport, c.f. Section A.1.3.

A.2.4 IPC-4 EXAMPLE INSTANCES

The Pipesworld example instances were generated by Feeddgorace, in a process going from
random generators to XML files to PDDL filé3.Five scaling network topologies were designed
and used as the basis for the instance generation. FigureoW’ she network topologies, as well
as a real-world network topology for comparison. As one aa the largest network topology
used in IPC-4 is not quite yet in the same ballpark as the re@bark; but neither is it trivially
small in comparison. The volumes for pipeline segments ¢hahect the same areas in the real-
world example are not necessarily the same because the isesgmey have different cross section
diameters.

For the domain versions without tankage restrictions aratlidiees, for each of the network
topologies 10 scaling random instances were generatechin/Mt network, the instances scaled
in terms of the total number of batches and the number of batahth a goal location. For the
instances featuring tankage restrictions or deadlinesgémeration process was more complicated
because we wanted to make sure to obtain only solvable cestafor the tankage restriction exam-
ples, we ran Mips (Edelkamp, 2003b) on the respective “rkatge’ instances, with incrementally
growing tankagé® We chose each instance at a random point between the firshagssolved by
Mips, and the maximum needed tankage (enough tankage iraee&to accommodate all instance
batches). Some instances could not be solved by Mips even gitien several days of runtime,
and for these we inserted the maximum tankage. For the deagkamples, we ran Mips on the
corresponding instances without deadlines, then arratigedeadline for each goal batch at a ran-
dom point in the interval between the arrival time of the hatcMips’s plan, and the end time of
Mips's plan. The instances not solved by Mips were left out.

A.2.5 CURRENT AND FUTURE WORK

There is ongoing work on developing a Pipesworld specifieesphamed Plumber (Milidii & dos
Santos Liporace, 2004a; Milidil & dos Santos Liporace, &0 Plumber incorporates a pipeline
simulator, domain specific heuristics, and proceduressitucing the branching factor by symmetry
elimination. It also lets the user choose between diffesgairch strategies, such as enforced hill
climbing (Hoffmann & Nebel, 2001) and learning real time Ktff, 1990). Currently it is being
extended to support temporal planning as well.

35. The same XML file is mapped into different PDDL files depegan the kind of encoding used; there was a lot of
trial and error before we came up with the final IPC-4 encoding
36. Mips was a convenient choice since it is one of our ownneas, and can also deal with temporal constructs.
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Figure 17: The IPC-4 Pipesworld network topologies (a), armeal network topology (b). The
segment volumes in the latter are annotatetbinm? units.

The availability of this solver will enable the extensiontbé Pipesworld benchmark, since it
will be easier to overcome the aforementioned difficultregenerating large feasible instances. We
hope to be able to generate feasible instances for reathyiktline topologies, like the one shown
in Figure 17.

In addition to generating larger instances, the Pipeswmetithmark may be extended in many
ways to make it closer to the real application scenario. Elevant possible extensions include:

e Defining some pipeline segments with a single flow directibat is, segments where only
“push” or “pop” actions are allowed. Note that this introdaalead ends/critical choices into
the problem.

e Un-personalized goals. This could be accomplished, eygmposing the desired tank vol-
ume for the goal products in the respective areas. The plahee also has to decide which
batches will be used to bring the tank volume up to the de$inea.

e Modeling production and consumption of products at precifigel points in time, as de-
scribed above.
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¢ Using rational numbers to model tank capacities and cuna@nmes, instead of the encoding
based on unitary tank slots. Apart from being a more precisdetof the real world (when
combined with rational-valued batch sizes, see below)h sucencoding would avoid un-
necessary symmetries that currently arise from the avéijabf several non-distinguishable
tank slots (in the same area, for the same product).

The most important shortcoming of our encoding is the useéry batches. It would be much
more appropriate to base the encoding on product amourds bivreal numbers. One problematic
aspect of such an encoding is that it would, most naturaiynahd a continuous choice bbdw
muchliquid to pump into a pipeline. Like in Airport (c.f. Sectiof.1.5), such a choice could
naturally be modelled using Fox and Long’s (2003) “durafimequalities”, but it is unclear how to
develop planners that can deal with these reasonably waellikéJin Airport, implementing such
a choice is not the end of the difficulties on the modellingesidHow to model the continuous
contents of a pipeline? The number of distinct regions afitign the pipeline can grow arbitrarily
high, in principle. One solution might be to fix some upperfmhuand simply disallow a pumping
operation if it would result in too many distinct regions. iFimay be a bearable loss of precision,
given the upper bound is high enough. But even then, it is ddotve awkward to correctly update
the contents of the pipeline when some amouwf product is pushed in: the number of different
products leaving the pipe dependsmanAn option here may be to use a complicated construct of
conditional effects.

All'in all, our impression is that pipeline scheduling woh# realistically modelled in PDDL,
and successfully solved with planners, unless one integluicto the language a data structure
suitable for modelling the contents of pipes. Basicallys tliould be queues whose elements are
annotated with real numbers, and whose basic operationtharesual “push” and “pop”. The
semantics of the pipes could then be explicitly computediethe planner, rather than awkwardly
modelled using language constructs that are likely to disigeneral search mechanism.

A.3 Promela

This domain was created for IPC-4 by Stefan Edelkamp.

A.3.1 APPLICATION DOMAIN

Before dropping into the Promela domain, we briefly recalbitigin.

The model checkeBPIN (Holzmann, 2003) targets efficient software verificationhds been
used to trace logical design errors in distributed systeassgd, such as operating systems, data
communications protocols, switching systems, concuraégurithms, railway signaling protocols,
etc. The tool checks the logical consistency of a speci@inats PIN reports on deadlocks, unspeci-
fied receptions and identifies race conditions, and unweadaassumptions about the relative speeds
of processes. SPIN (starting with Version 4) provides supjoo the use of embedded C code as
part of model specifications. This makes it possible to diye@rify implementation level software
specifications, using SPIN as a driver and as a logic enginverity high level temporal proper-
ties. SPIN works on-the-fly, which means that it avoids thedne construct a global state graph
as a prerequisite for the verification of system propert&3IN supports property checking in lin-
ear temporal logic (LTL). LTL expresses state trajectorgstmaints, using temporal modalities like
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eventually always anduntil®’. SPIN uses specific mechanisms for specifying deadlo@a@ss
and other safety properties, in addition to general LTL gmations. To explore the state space an
ordinary or a nested search algorithm is applied, depenolinghether or not a state-based (a.k.a.
safety) property is to be verified.

Promelais SPIN’s input specification language. Its computationadiet is that of asynchronous
communicating finite state machines. Promela allows to defiasses of finite processes. A special
process calledhit is started first and usually governs the instantiation ofotiver processes of the
system. As it is possible for a process to invoke another@ramela allows modeling systems with
dynamic creation of state components. Communication imela is achieved via shared variables
and message channels. Two kind of message channels anguiisiied for synchronous and asyn-
chronous communication. An asynchronous channel is Hps&c&IFO queue, while synchronous
channels imply rendezvous communication in which a traomsibf the system involves two pro-
cesses, one reading a message from the channel and anatteElgse message to it. Here, we
consider only asynchronous communication. The body of pemtess class is basically a sequence
of statements. Each statement is interpreted as a transitithe process. Typical statements in-
clude assignments, numerical and boolean expressiondhandel operations. Promela also allows
to define atomic regions, whose are a sequence of transitiatshould be treated as an atomic
action. They can be interpreted as weighted transitionsse/lcosts are the number of steps within
the regions®

For IPC-4, we used two example communication protocols fimted in Promela: Dijkstra’s
Dining Philosophersroblem, and the so-calleQptical Telegraphprotocol. We briefly describe
the latter protocol in Section A.3.4. To illustrate the Padalanguage, let us consider the Dining
Philosophers problem, wherephilosophers sit around a table to have lunch. Therewgokates,
one for each philosopher, amdforks located to the left and to the right of each plate. Sinee
forks are required to eat the spaghetti on the plates, nphdtisopher can eat at a time. Moreover,
no communication except taking and releasing the forkslasvald. The task is to devise a local
strategy for each philosopher that lets all philosopheentally eat. The simplest solution to
access the left fork followed by the right one, has an obvimablem. If all philosophers wait for
the second fork to be released there is no possible progrelesgdlock has occurred.

It is not difficult and probably insightful to derivelzottom-upPDDL encoding for the Dining
Philosophers domain, using actions ligat wait andthink. Our motivation, however, was to come
up with a top-down encoding, starting from a Promela spextifia, automatically translating it into
PDDL.

The deadlock model of the Dining Philosophers is specifiddromela as shown in Figure 18.
The first lines define some macros and declare the arr@y bbolean variables that represent the
availability of the forks. The following lines define the lasfior of a process of typehi | osopher.
The process iterates indefinitely in an endless labp) (vith one unique entry marked by symbol
. . . Statements are separated by a semicolon. The first tamisiif t | f or k consists of the send
operation of tad or k to channel ef t , which itself is a macro to addreg®r ks with the current
process idpi d. It represents the availability of the left fork of the phitipher. The access transi-
tion| ef t ?f or k can be executed only if reading thgr k from channel ef t is successful. The

37. Note that some fragments of LTL are likely to be includ#d the PDDL language for the next international planning
competition (Gerevini & Long, 2005)

38. Further documentation for the Promela specificatiorgdage can be found on the web site for SPIN at
http://netlib.bell-labs.com/netlib/spin/whatispitri
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#define MAXPHILOSOPHERS N

mtype=fork

#define left forks[pid]

#define right forks[(pid+1) % MAX_PHILOSOPHERS]

chan forksf]MAX PHILOSOPHERS] = [1] of bit;
active [MAX_PHILOSOPHERS] proctype philosopher()

{
left!fork;
do
::left?fork = /* try to get left fork */
right?fork; /* try to get right fork */
[* eat... */
left!fork; right!fork /* release forks */
/* meditation... */
od
}

Figure 18: Promela specification for a model of the Diningd&uphers problem.

next transitiorr i ght ?f or k is similar to the first, while the last two ones sendsftag k back to
the channel¢eft andright.

A.3.2 IPC-4 PDDL ADAPTATION

Model Checking and Action Planning are closely related, 8éction 3. While a model checker
searches for a counterexample in the form of a sequencerditioms to falsify a given specifi-
cation, a planner searches for a sequence of actions thsfiesaf given goal. In both cases, the
basic models (STRIPS Planning, Kripke structures), rafémplicit graphs, where the nodes are
annotated with atomic propositions.

For automatically generating a PDDL model from the Promselatax we wrote a com-
piler (Edelkamp, 2003a). It is restricted to safety prapsttespecially deadlocks, but assertions
and global invariances are not difficult to obtain. We alsocamtrated on models with a fixed num-
ber of processes, since most of the models of communicatimogols adhere to this restrictidf.

The compiler does not parse the Promela code itself, bustakethe input the intermediate
representation of the problem that is generated by the SBliation toof®. Figure 19 shows
the textual automata representation for the philosophergss. In this case, the valbhas been
initialized with 10 philosophers. While this file containgnast all necessary information for the

39. The dynamic creation of processes with PDDL would rexjailanguage extension fdynamic object creatian
This extension was dismissed since it would involve heaanges to existing planner technology, and its relevance
(beyond Promela) is unclear.

40. More precisely, the Promela input file was taken, theesmonding c-file was generated, the verifier was compiled
and the executable was run with optiod.
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translation, the number of processes and queues (i.e.ageshannels) as well as the queue ca-
pacities had to be read from the original Promela input¥ile

proctype philosopher
state 1 -(trans 3)> state 6 line 11 > forks[_pid]!fork
state 6 -(trans 4)> state 3 line 12 = forks[_pid]?fork
state 3 -(trans 5)> state 4 line 14 > forks[((_pid+1)%210)]?fork
state 4 -(trans 3)> state 5 line 16 > forks[_pid]!fork
state 5 -(tras 6)> state 6 line 16 > forks[((_pid+1)%210)]!fork

Figure 19: Automata representation for the model of the I0rgi Philosophers problem.

To derive a suitable PDDL encoding of the domain, each psisaepresented by a finite state
automata. Hence, the propositional encoding simulatesut@maton. Some propositional atoms
true in the initial state of one process in the running exanmpbblem is shown in Figure 20 ()

(is-a-process philosopher-0 philosopher)is-a-queue forks-0 queue-1)
(at-process philosopher-0 state-1) (queue-head forks-0 gs-0)

(trans philosopher trans-3 state-1 state-§yjueue-tail forks-0 gs-0)

(trans philosopher trans-4 state-6 state-3jjueue-next queue-1 gs-0 gs-0)
(trans philosopher trans-5 state-3 state-{gjueue-head-msg forks-0 empty)
(trans philosopher trans-3 state-4 state-%gjueue-size forks-0 zero)

(trans philosopher trans-6 state-5 state-§3ettled forks-0)

(@) (b)

(writes philosopher-0 forks-0 trans-3) (trans-msg trarierk)
(reads philosopher-0 forks-0 trans-4) (trans-msg trafsig)
(reads philosopher-0 forks-1 trans-5) (trans-msg trafmsig
(writes philosopher-0 forks-1 trans-6) (trans-msg trérierk)

()

Figure 20: Propositional encoding of one philosopher'scpss (a), Propositional encoding of a
(single-cell) communication channel (b), Connecting camivation to local state tran-
sitions (c).

The encoding of the communication structure representsneis as graphs. The PDDL encod-
ing additionally exploits a cyclic embedding of a queue iatoarray. More formally, each (FIFO)
channelk? is represented by a structuf®, = (Sg, head,, tailp, o, mesg),conty), with S being
the set of queue cellbiead,, tailg € S being the head and tail cells Gf, mesg € M%<l being

41. To avoid conflicts with pre-compiler directives, we firstoked the c-compiler with command line optief, which
only executes the pre-compiler.
42. Here we use transition IDs, in the competition a lesssmible textual representation of the label was chosen.
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the vector of messages @ (M is the set of all messagegonty < IR!%l being the vector of
variable values i) andédg : Sg — Sg being the successor relation @, if Sg = s[1],.. ., s[k]
thend(s[i]) = s[(i + 1) mod k]. Explicitly modeling head and tail positions in the quelsdes
space for time, since queue updates reduce to constant time.

A queue is either empty (or full) if both pointers refer to #amme queue state. As a special case,
very simple queues (as in our example) may consist of onlygoree state, so the successor bucket
of queue state 0 is the queue state 0 itself. In this case thumded propositional encoding includes
operators where the add and the delete lists share an atorheM/enake the standard assumption
that deletion is done first. The propositional atoms for omeug and the adaption of two queues to
one process are exemplified in Figure 20 (b) and (c).

Queue content, shared and local variables are modeled by FiD&nts. The only difference of
local variables compared to shared ones is the restrictlility scope, so that local variables are
prefixed with the process they appear in. The two benchmaroqols we selected for IPC-4 rely
on pure message passing, so that no numerical state vartabke are involved. This allowed us to
supply a propositional model for all problems.

(:action activate-trans

:parameters (?p - process ?pt - proctype ?t - transition &1 &ate)

:precondition (and (forall (?q - queue) (settled ?q)) @r@pt ?t ?s1 ?s2)
(is-a-process ?p ?pt) (at-process ?p ?sl) (pending ?p))

-effect (and (activate ?p ?t) (not (pending ?p)))))

Figure 21: Testing if a transition is enabled and activating

Our PDDL domain encoding uses seven operators, naamiVate-trans queue-read
gueue-write advance-queue-headdvance-empty-queue-taddvance-non-empty-queue-tagnd
process-transThe activation of a process is shown in Figure 21. Here wélege pending process
is activated, if all queues are settled and there is a tianditat matches the current process state.

Briefly, the operators encode the protocol semantics asisll Operatoactivate-transactivates
a transition in a process of a given type from local stat¢o s;. The operator sets the predicate
activate This boolean flag is a precondition of thaeue-reacandqueue-writeactions, which set
propositions that initialize the reading/writing of a mags. For queu& in an activated transition
querying message., this corresponds to the Promela expressidm., respectivelyQ!m. After the
read/write operation has been initialized, the queue @pola¢rators must be applied, iadvance-
gueue-headadvance-empty-queue-taibr advance-non-empty-queue-tais appropriate. As the
names indicate, these operators respectively update ok dred the tail positions, as needed to
implement the requested read/write operation. The opwratiso set asettledflag, which is a
precondition of every queue access action. Acparcess-trangan then be applied. It executes the
transition from local state; to ss, i.e. sets the new local process state and re-sets the flags.

If the stored message does not match the query, or the qupaeityais either too small or too
large, then the active local state transition will blockallfactive transitions in a process block, the
process itself will block. If all processes are blocked, vagena deadlock in the system. Detection
of such deadlocks is implemented, in different domain e either as a collection of specifically
engineered actions or, more elegantly, as a set of derivedigates. In both cases one can infer,
along the lines of argumentation outlined above, that age®ithe entire system is blocked. The
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(:derived (blocked-trans ?p - process ?t - transition)
(exists (?q - queue)
(exists (?m - message)
(exists (?n - number)
(and (activate ?p ?t) (reads ?p ?q ?t) (settled ?q)
(trans-msg ?t ?m) (queue-size ?q ?n) (is-zero ?7n))))))

(:derived (blocked ?p - process)
(exists (?s - state)
(exists (?pt - proctype)
(and (at-process ?p ?s) (is-a-process ?p ?pt)
(forall (?t - transition)
(or (blocked-trans ?p ?t) (forall (?s2 - state) (not (trgois?? ?s ?s2)))))))))

Figure 22: Derivation of a deadlock.

goal condition that makes the planners detect the deadiotks protocols is simply a conjunction
of atoms requiring that all processes are blocked. As an pbeaaf the derivation rules for derived
predicates, the PDDL description for the derivation of adii®ek based on blocked read accesses is
shown in Figure 22.

A.3.3 IPC-4 DOMAIN STRUCTURE

For each of the two benchmark protocols in IPC-4, we credtegketdifferent domain versions:
derivedpredicateswhich contains derived predicates to infer deadlogkaijn, a purely proposi-
tional specification with specific actions that have to beliadgo establish the deadlock (the later
actions are basically the Gazen and Knoblock (1997) cotmpiladf derived predicates, c.f. Sec-
tion 2); fluentsan alternative to the latter with numerical state varialtkeg encodes the size of
the queues and the messages used to access their conterdisoWeade a version calldients-
derivedpredicateshe obvious combination, but none of the IPC-4 competparsicipated in there,
so we omit it herein. Within each domain version, there is fommulation that includes the ADL
constructsguantification disjunctive preconditionsandnegated preconditionsin those domain
versions without fluents, another formulation is in pure R obtained from the respective ADL
encodings using thadl2stripscompiler (which can not handle numeric variables). Unfoately,
some of the larger problem instances lead to STRIPS filesntbed too big to be stored on disk
(remember that adl2strips grounds out all operator paensietThese too-large instances were, of
course, left out of the respective test suites.

We keptfluentdomains as separated doma@rsions rather than domain version formulations,
in order be able to compare propositional and numericaloeapbn efficiencies, and to emphasize
that fluent variables are essential in real-world model kimgcand should be treated separately.

The domain versions and numbers of operators and grourzhadaire overviewed in Table 3.
Consider the rows in the table from top to bottom. As befoiraes$ in parentheses are values
before FF’s “reachability” pre-process, which builds esareld planning graph for the initial state
and removes all actions that do not appear in that graph. TRFES formulation is fully grounded
using the adl2strips program, derived from FF's pre-pregegc.f. Section 2). This is both the
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| version | formulation || maz-#op | maz-#act |
optical-telegraph STRIPS 3345 (3345) 3345
optical-telegraph ADL 11 (5070) 3345
optical-telegraph-dp STRIPS DP 4014 (4014) 4014
optical-telegraph-dp ADL DP 11 (6084) 4014
optical-telegraph-fluents ADL 11 (1337) 1169
philosophers STRIPS 840 (840) 840
philosophers ADL 11 (930) 840
philosophers-dp STRIPS DP 1372 (1372) 1372
philosophers-dp ADL DP 11 (1519) 1372
philosophers-fluents ADL 11 (930) 930

Table 3: Overview over the different domain versions of Petan Abbreviations used: “dp” de-
rived predicatesinax-#op is the maximum number of (parameterized) PDDL operators
for any instancemax-#act is the maximum number of ground actions for any instance.
Data in parentheses are collected before FF's “reachdljilie-process (see text). Deriva-
tion rules (ground derivation rules) are counted as opesdtound actions).

reason why the number of operators is the same as the numéperusfd actions, and why FF's pre-
process — identical to the one run by adI2strips — has noteffethe ADL formulation, we see that
the reachability pruning reduces the number of actions lagtf of almost 2, similar to the Airport
domain (c.f. Section A.1.3). The picture for the next two @omversions, with derived predicates,
is very similar. In fact, since, consistently with the dateSection 5, we count derivation rules as
actions, the data ardentical The only reason why itis not identical in Table 3 is thatpgsilerived
predicates instead of operators, FF's pre-processorsstaliarger instances (presumably, due to
some unimportant implementation detail). In the next domesarsion, formulated with numeric
variables, FF’s pre-processor scales even worse. Howayam,in instances with the same number
of telegraphs, there are less ground actions than befoeetadthe more different encoding. The
observations to be made in Dining Philosophers are exdwlgame, only with different numbers.
The only notable difference is that the effect of FF's redditg pruning is weaker, yielding only a
slight decrease in the number of actions in the versionsowitfiuents, and no decrease at all in the
version with fluents. Apparently, the more complex procéagtire of Optical Telegraph leads to
more useless action instances.

A.3.4 |IPC-4 EXAMPLE INSTANCES

As said, we have selected two simple communication prasoaslbenchmarks for IPC-4: the en-
coding of theDining Philosophemproblem as described above, and the so-cdllptical Telegraph
protocol (Holzmann, 1990).

The Optical Telegraph protocol involvespairs of communicating processes, each pair featur-
ing an “up” and a “down” process. Such a pair can go throughrly flong, heavily interactive,
sequence of operations, implementing the possible dateaege between the two stations. Before
data are exchanged, various initializing steps must bentakeensure the processes are working
synchronously. Most importantly, each process writes aridkto a “control channel” (queue) at
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the beginning of the sequence, and reads the token out agtia and. This causes a deadlock
situation because there are omlycontrol channels, each of which is accessed by two processes
When every pair of up/down processes has occupied just onteotchannel, the overall system is
blocked.

In both theDining Philosopherand theOptical Telegraptbenchmark, the instances scale via a
single parameter, the number of philosophers and the nuailwemtrol stations, respectively. We
scaled that parameter fro2rto 49 for the competition instances. The Promela models of theliben
marks are distributed together with our experimental matiecking tool HSF-SPIN (Edelkamp,
Leue, & Lluch-Lafuente, 2004), that extends SPIN with hgtizisearch strategies to improve error
detection.

A.3.5 FUTURE WORK

In general terms, we see the Promela planning benchmarlogseaimportant step towards exploit-
ing synergies between the research areas of Planning anel i@bdcking (Giunchiglia & Traverso,
1999). For example, complement to recent progress in pignakplicit directed model checking
in the domain of protocol validation (Edelkamp et al., 20843 symbolic directed model checking
in the domain of hardware validation (Reffel & Edelkamp, @P8as led to drastic improvements
to state-of-the-art model checkers. This and other woik, €Yang & Dill, 1998; Bloem, Ravi,
& Somenzi, 2000), show that in model checking there is a grgvimterest in guided exploration,
mostly to find errors faster than blind state space enuneeraigorithms. With the compilation of
the Promela domain model, an alternative option of applyiagristic search to model checking
problems is available. More work is needed to understanchvyafenning heuristics work or fail in
model checking benchmarks.

We strongly believe that both communities will profit from &erspread availability of tech-
nigues that represent Model Checking problems in PDDL. @hisvs a direct comparison of explo-
ration efficiencies. Based on the design of the Promela doreaitable PDDL domain encodings of
two further expressive model checking input languagesplBTaansformation Systems (Edelkamp,
Jabbar, & Lluch-Lafuente, 2005) and Petri Nets (EdelkammBbar, 2005), have been proposed.
The encodings exploit the expressive power of PDDL as weasfficiency of current planners.
As a result, state-of-the-art planners are often fastempemed to model checkers in these bench-
marks.

A.4 PSR

Sylvie Thiébaux and others have worked on this applicatiomain. The domain was adapted for
IPC-4 by Sylvie Thiébaux and Jorg Hoffmann.

A.4.1 APPLICATION DOMAIN

The Power Supply Restoration (PSR) domain we consider Baterived from an application in-
vestigated by Sylvie Thiebaux and others (Thiébaux etl8P6; Thieébaux & Cordier, 2001). PSR
deals with reconfiguring a faulty power distribution systenresupply customers affected by the
faults. This is a topic of ongoing interest in the field of powléstribution.

In more detail, a power distribution system (see Figure B3yjiewed as a network of elec-
tric lines connected by switches and fed via a number of p@eerces that are equipped with
circuit-breakers. Switches and circuit-breakers havegessible positions, open or closed, and are
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Figure 23: Sample power distribution system. Sourcesfititreakers (e.g., CB4) are represented
by large squares, and switches (e.g., SD3) by small squamen switches (e.g., SD8)
are white. The area fed by CB4 is boxed. Gray and dark are osdidtinguish adjacent
areas fed by different sources

connected to at most two lines. There is no restriction orctimmectivity of lines, some extremities
of which can also be connected to earth. When the circuakaeof a power source is closed, the
power flows from the source to the lines downstream, untiffliwe is stopped by an open switch.
The switches are used to appropriately configure the netandktheir position is initially set so
that each line is fed by exactly one source.

Due to bad weather conditions, permanent faults can affeeton more lines of the network.
When a power source feeds a faulty line, the circuit-breéited to this source opens to protect the
rest of the network from overloads. This leawadsthe lines fed by the source without power. The
problem consists in planning a sequence of switching ojpasa{opening or closing switches and
circuit-breakers) bringing the network into a configuratishere a maximum of non-faulty lines
are resupplied. For instance, suppose that line 120 bectamnd#ty. This leads the circuit-breaker
CB4 to open and the boxed area to be without power. A possidionmation plan would be the
following: open switches SD16 and SD17 to isolate the falutig, then close SD15 to have source
CB7 resupply 119, and finally re-close CB4 to resupply theeath

In the original PSR problem (Thiébaux & Cordier, 2001), thaximal capacity of sources and
lines, as well as the load requested by customers are tat@®adnount. The plan must optimize
various numerical parameters such as breakdown costs poargins, and distance to the initial
configuration, subject to the capacity constraints. Funtioee, due to the fault sensors and switches
being unreliable, the location of the faults and the currettvork configuration are only partially
observable. When optimizing, this leads to a complex tridmtween acting to resupply lines and
acting (intrusively) to reduce uncertainty.
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A.4.2 IPC-4 PDDL AAPTATION

Inthe PDDL adaptation, we benefited from contributions lerélorgio Bertoli, Blai Bonet, Alessan-
dro Cimatti, and John Slaney (Bertoli et al., 2002; Bonet &€Baux, 2003). Compared to the
original PSR domain described above, the IPC-4 versionwetdg 3 major adaptations. Firstly,
the IPC deals with fully observable domains. Hence, whilgiglaobservability in PSR is a crucial
issue (Thiébaux et al., 1996; Bertoli et al., 2002; Bonetl&Ebaux, 2003), the IPC version assumes
complete observability. Secondly, given the difficulty ateding even the basic problem, we chose
to ignore the numerical and optimization aspects of PSRa@tes, power margins, ...). Thirdly,
the IPC-4 version is set up as a pure goal-achievement pnobldnere the goal specifies a set of
lines that must be (re)-supplied. We considered a morest&atjoal asking the planner to supply
any line that can be. However, we were unable to compile tha onto STRIPS in reasonable
space, and opted for the simpler goal to keep the STRIPS fatim as consistent as possible with
others.

Our highest level and most natural IPC-4 encoding of PSRweg0ADL constructs and derived
predicates. Briefly, the encoding works as follows. PSR lgrolinstances specify (1) the network
topology, i.e., the objects in the network and their conioest(the lines, the switching devices, that
is, the switches and the sources/circuit-breakers, twae"stonstants sidel and side2 to denote the
two connection points of a switching device, and the conaeratlations between those objects),
(2) the initial configuration, i.e., the initial positionsgen/closed) of the switching devices, and (3)
the modes (faulty or not) of the various lines. Among thosdy the devices’ positions can change.
A number of other predicates are derived from these basie. drfeey model the propagation of the
current into the network with a view to determining whichdinare currently fed and which sources
are affectedby a fault, i.e. feed a fault. The closed-world assumptiomaaics of PDDL2.2
derived predicates is exactly what is needed to eleganttpdm such relations. These require a
recursive traversal of the network paths which is naturadjyresented as the transitive closure of
the connection relation of the network. The most complexheté derived predicatespstream,
requires four parameters, two of which, however can onlg talo possible values, and expresses
that the power flows from one of the two sides of some devide(86x of device ?x) to one of the
sides of another (side ?sy of device ?y) This happens whesidbef ?x which is opposite to ?sx is
directly connected to ?sy (via some line), or if there exssisie closed device ?z one side of which
is upstream of ?sx and the other side of which is connectesyto ?

(:derived (upstream ?x - DEVICE ?sx - SIDE ?y - DEVICE ?sy - B)D
(and (closed ?x)

(or (and (= ?sx sidel) (con ?x side2 ?y ?sy))
(and (= ?sx side2) (con ?x sidel ?y ?sy))
(exists (?z - DEVICE)

(and (closed ?z)
(or (and (con ?z sidel ?y ?sy) (upstream ?x ?sx ?z side2))
(and (con ?z side2 ?y ?sy) (upstream ?x ?sx ?z sidel))))))))

From upstream, it is relatively easy to define predicatamgtavhether a given line is fed or a given
source is affected.

524



ENGINEERING BENCHMARKS FORPLANNING

The goal in a problem instance asks that given lines be fedadirsburces be unaffectéd.
The available actions are closing and opening a switchingcee Their effect is simply to set the
device position as requested. In addition, there is anmetait, which models the event of circuit-
breakers opening when they become affected. Wait is apdiocahen an affected source exists,
and is the only applicable action in that case (the open arskdctions require as a precondition
that no source is affected). This, together with the goaduess that the wait action is applied as
soon as a source is affected. The effect of the wait actiamapén all the affected circuit-breakers.
Concretely, the wait and close actions are as follows (f@tedpen is similar to close and that earth
is treated as a device whose position cannot be changed bygtibas):

(:action close
:parameters (?x - DEVICE)
:precondition (and (not (= ?x earth))
(not (closed ?x))
(forall (?b - DEVICE) (not (affected ?b))))
.effect (closed ?x))

(:action wait
:parameters ()
:precondition (exists (?b - DEVICE) (affected ?b))
-effect (forall (?b - DEVICE) (when (affected ?b) (not (cbak?b)))))

It would have been possible to encode the opening of affdmeakers as a conditional effect of the
close action. However, this would have required more corbégived predicates with an additional
device as parameter and a conditional flavor, specifying, @hether or not a circuit-breaketould
be affectedif we were to close that device.

A.4.3 IPC-4 DOMAIN STRUCTURE

We used four domain versions of PSR in IPC-4. Primarily, ¢hesrsions differ by the size of
the problem instances encoded. The instance size detetrmnehat languages we were able
to formulate the domain version. We tried to generate it&arof size appropriate to evaluate
current planners, i.e, we scaled the instances from “pweh+or everybody” to “impossibly hard
for current automated planners”, where we got our intugibg running a version of FF enhanced
to deal with derived predicates. The largest instancesfdhe &ind of size one typically encounters
in the real world. More on the instance generation procesaitsin Section A.4.4.

The domain versions are named large, 2. middle 3. middle-compiled and 4. small
Version 1 has the single formulaticad|-derivedpredicates Version 2 has the formulatioresd|-
derivedpredicatessimpleadl-derivedpredicatesind strips-derivedpredicates Version 3 has the
single formulatioradl, and version 4 has the single formulatismps The formulation names sim-
ply give the language used. Version 1 contains the largettnges, versions 2 and 3 contain (the
same) medium instances, and version 4 contains the smalésihces. Thadl-derivedpredicates

43. Note that after the circuit-breaker of an affected sewens, this source is not affected any more, as it doesexbt fe
any line. Then, if the circuit-breaker is closed again, therse will stay unaffected unless it re-starts feeding #yau
line.
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‘ version ‘ formulation H max-#op ‘ max-#act ‘
large ADL DP 7 (14038) 7498
middle ADL DP 7 (7055) 3302
middle SIMPLE-ADL DP 3485 (3485) 3485
middle STRIPS DP 3560 (3560) 3560
middle-compiled| ADL 5 (99) 71
small STRIPS 9400 (9400) 9400

Table 4: Overview over the different domain versions anthigdations of PSR. Abbreviations used:
“dp” derived predicatesmnax-#op is the maximum number of (parameterized) PDDL
operators for any instancejax-#act is the maximum number of ground actions for any
instance. Data in parentheses are collected before FRglebility” pre-process (see
text). Derivation rules (ground derivation rules) are dedras operators (ground actions).

formulation is inspired by Bonet and Thiébaux (2003); itkexa use of derived predicates as ex-
plained above, and of ADL constructs in the derived predicattion, and goal definitions. In the
simpleadl-derivedpredicatemndstrips-derivedpredicateformulations, all ADL constructs (except
conditional effects in theimpleadicase) are compiled away. The resulting fully grounded encod
ings are significantly larger than the original, while on ttker hand the length of plans remains
nearly unaffectetf. The pureadl formulation is obtained from thadl-derivedpredicateformula-
tion by compiling derived predicates away, using the metthestribed by Thieébaux et al. (2003,
2005). While there is no significant increase in the domaa,she compilation method can lead to
an increase in plan length that is exponential in the aritthefderived predicates (no compilation
method can avoid such a blow-up in the worst case, see Tiédtaal., 2003, 2005). Indeed, in
our particular PSR example instances, we observed a coabldélow up in plan length. We felt
that this blow up was too much to allow for a useful direct cangon of data generated fadl-
derivedpredicatess opposed tadl|, and we separated tlaell formulation out into domain version
3 as listed above.

The strips domain formulation proved quite a challenge. All the 20 orsshemes we con-
sidered for compiling both derived predicates and ADL cartds away led to either completely
unmanageable domain descriptions or completely unmahbgpkans. The problem is that feasi-
ble compilations of derived predicates create new actiails lighly conditional effects, and that
compiling those away is impractical. We therefore adoptddfarent fully-grounded encoding in-
spired by Bertoli et al. (2002). The encoding is generatedhfa description of the problem instance
by a tool performing the reasoning about power propagatiothe resulting tasks, the effects of the
close actions directly specify which circuit-breakers mps a result of closing a switch in a given
network configuration. No derived predicates are needeaticansequently the STRIPS encoding
is much simpler and only refers to the positions of the devared not to the lines, faults, or connec-
tions. Nevertheless, we were still only able to formulateparatively small instances in STRIPS,
without a prohibitive blow-up in the encoding size.

44. The only variation is due to the fact that the existeqgiatondition of the wait action causes the compilation tit sp
this action into as many wait actions as circuit-breakers
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The domain versions, formulations, and their respectivalyers of operators and ground ac-
tions, are shown in Figure 4. Data in parentheses are caefldotfore FF’'s “reachability” pre-
process, building a relaxed planning graph for the initiatesand removing all actions that do not
appear in that graph. In the encodings using ADL and derivedigates, this reduces the num-
ber of ground actions by a factor of arouddfor only ADL, the factor is much smaller; for the
other encodings, no reduction at all is obtained, simplytdube fact that these encodings are ob-
tained with adl2strips, which uses the same pruning proc@ssie interesting observations can be
made in the “middle” versions and formulations. The datanshthere correspond to the largest
instance that FF's pre-processor could handlaliversions/formulations, to enable direct compar-
ison. We see that, for formulation in SIMPLE-ADL and STRIR®& need to introduce some more
ground actions. We also see that, curiously, in the conpilaif derived predicates (compilation to
“middle-compiled”), the number of ground actions decrsai@matically. The reason for this lies
in that these data count ground derivation rules as groummghac and in the subtleties of the com-
pilation of derived predicates. In the “middle” formulat® almost all ground actions are in fact
ground derivation rules. These are compiled away for “n@eiimpiled” following Thiébaux et al.
(2003, 2005), introducing single action that has one distinct conditional effect for eachivder
tion rule, c.f. Section 2. Which just means that the compjeaf thousands of derivation rules is
replaced with the complexity of an action with thousandsasfditional effects.

A.4.4 IPC-4 EXAMPLE INSTANCES

Due to contractual agreements, we were unable to use realrddie competition. Instead, PSR
instances were randomly generated using “randomnet”, @agmirpose tool implemented by John
Slaney.

Power distribution networks often have a mesh-able straauploited radially: the path taken
by the power of each source forms a tree whose nodes are switrid whose arcs are electric
lines; terminal switches connect the various trees togeRendomnet takes as input the number of
sources, a percentage of faulty lines, and a range of pagasrfet controlling tree depth, branching,
and tree adjacency, whose default values are representditieal networks. Randomnet randomly
generates a network topology and a set of faulty lines. Thesdurned into the various PDDL
encodings above by a tool called net2pddl, implemented éxgRirgio Bertoli and Sylvie Thiébaux.
net2pddl computes the set of all lines that can be suppliedin@akes this the goal.

The instances we generated make use of randomnet defaingsewith two exceptions to
create problems of increasing difficulty. The first is that thaximal depth of the trees takes a range
of values up to twice the default. The larger this value, thelér the problem. The second is that
the percentage of faulty lines ranges from 0.1 to 0.7. Problat the middle of the range are harder
on average, those at the bottom of the range are more realisti

Each instance suite contains 50 instances. The small oesdrature between 1 to 6 sources,
the middle instances feature up to 10 sources, and the lastgnces feature up to 100 sources.
The large instances are of a size typical for real-worldainegs, or even larger. The example in
Figure 23 is representative of a difficult instance in thedtedet.

A.4.5 FUTURE WORK

While PSR has been around for some time as a benchmark fariptaander uncertainty, we expect
that the work done in the framework of IPC-4 will facilitates acceptance as one of the standard
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benchmarks for planning. To this end, we have developed arBSRirce web page giving access
to the relevant papers, data, and tools (net2pddl, randpmng*> One aspect of future work is to
complete and maintain this website, making available a rarmobalready existing tools, such as
SyDRe (Thiébaux et al., 1996), a domain-specific systerthiofull PSR problem, and Matt Gray’s
net2jpeg which graphically displays networks generatecabgomnet.

Considering future IPCs, there is potential for extendlmyPDDL encoding to take the numer-
ical and optimization aspects of the benchmark into accd@DDL-like encodings of the partially
observable version of the benchmark exist (Bonet & Thig&ha003) and are ready to be used in a
future edition of the probabilistic part of the IP€.

A.5 Satellite

The Satellitedomain was introduced in IPC-3 by Long and Fox (2003). It igivated by a NASA
space application: a number of satellites have to take imafj@ number of spatial phenomena,
obeying constraints such as data storage space and fuel usdgC-3, there were 5 versions of the
domain, corresponding to different levels of the languaB®B2.1: Strips Numeri¢ SimpleTime
(action durations are constantgjjme (action durations are expressions in static variables), an
Complex(durationsand numerics, i.e. the “union” of Numeric and Time).

The adaptation of the Satellite domain for IPC-4 was donedby Hloffmann. All IPC-3 domain
versions and example instances were re-used, except Jimgle- like in the other IPC-4 domains,
we didn’t want to introduce an extra version distinctiontjt the difference between constant
durations and static durations. On top of the IPC-3 versidngew domain versions were added.
The idea was to make the domain more realistic by additipnatfoducing time windows for the
sending of the image data to earth, i.e. to antennas thaisibéevfor satellites only during certain
periods of time — according to Derek Long, the lack of sucletimmdows was the main shortcoming
of the IPC-3 domairt!

We extended the IPC-3 Time domain version to two IPC-4 domaisions,Time-timewindows
andTime-timewindows-compileilVe extended the IPC-3 Complex domain version to the two4PC-
domain version€€omplex-timewindowand Complex-timewindows-compiledh all cases, we in-
troduced a new action for the sending of data to an antennaanfenna can receive data of only
a single satellite at a time, an antenna is visible for onlyssts of the satellites for certain time
periods, and the sending of an image takes time proportimntéde size of the image. The time
windows were modelled using timed initial literals, andlie t'-compiled” domain versions, these
literals were compiled into artificial PDDL constructs. Noof the domain versions uses ADL
constructs, so of all versions there is only a single (STRfBSnulation.

The instances were generated as follows. Our objectives wwearlearly demonstrate the effect
of additional time windows, and to produce solvable inségngnly. To accomplish the former, we
re-used the IPC-3 instances, so that the only differencedast, e.g., Time and Time-timewindows,
lies in the additional time window constructs. To ensureaality, we implemented a tool that read
the plans produced by one of the IPC-3 participants, nameRidn, and then arranged the time
windows so that the input plan was suitable to solve the baddnstance. It is important to note

45. The page is available at http://rsise.anu.edwtiébaux/benchmarks/pds

46. The probabilistic part of IPC-4 did not feature paryiabservable domains.

47. We have learned in the meantime that the lack of time wirsdior the gathering of datas also, or even more,
essential: often, due to occlusion by other objects or dubdaotation of the earth, targets are visible only during
very restricted periods of time. This probably constitudae of the most important future directions for this domain.
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here that the time windows weret arranged to exactly meet the times extracted from the IPC-3
plan. Rather, we introduced one time window per each 5 “talage” actions, made the antenna
visible during that time window for only the respective 5edlites, and let the image size for each
individual image be a random value within a certain rangere/ige time window was 5 times as
long as the sending time resulting from the maximum possizie.

Of course, the above generation process is arranged ratfieeaaly, and the resulting instances
might be a long way away from the typical characteristicshef atellite problem as it occurs in
the real world. While this isn’t nice, it is the best we could @ithout inside knowledge of the
application domain, and it has the advantage that the erttioistances are solvable, and directly
comparable to the IPC-3 ones.

In the new domain versions derived from Complex, we alsathiced utilities for the time
window inside which an image is sent to earth. For each imibgeytility is either the same for all
windows, or it decreases monotonically with the start tirth¢he window, or it is random within
a certain interval. Each image was put randomly into one e$d¢hclasses, and the optimization
requirement is to minimize a linear combination of makespa@l usage, and summed up negated
image utility.

A.6 Settlers

The Settlersdomain was introduced in IPC-3 by Long and Fox (2003). It nsadegensive use of
numeric variables. These variables carry most of the dosenmantics, which is about building up

an infrastructure in an unsettled area, involving the lngdf housing, railway tracks, sawmills,
etc. The domain was included into IPC-4 in order to pose daeiged for the numeric planners —
the other domains mostly do not make much use of numericbhlagaother than computing the
(static) durations of actiorf$. We used the exact same domain file and example instances as in
IPC-3, except that we removed some universally quantifiedgrditions to improve accessibility

for planners. The quantifiers ranged over domain constamysso they could easily be replaced by
conjunctions of atoms.

A7 UMTS

Roman Englert has been working in this application areadeeal years. The domain was adapted
for IPC-4 by Stefan Edelkamp and Roman Englert.

A.7.1 APPLICATION DOMAIN

Probably the best known feature of UMTS (Universal Mobilde€emmunication Standard) is
higher bit rate (Holma & Toskala, 2000): packet-switchedireextions can reach up to 2 mega
bit per second (Mbps) in the optimal case. Compared to agistiobile networks, UMTS provides
a new and important feature, namely the negotiatio@oélity of Servicg(QoS) and of transfer
properties. The attributes that define the characterisfitse transfer are throughput, transfer de-
lay, and data error rate. UMTS bearers have to be genericder @ao provide good support for
existing applications and the evolution of new applicagioApplications and services are divided

48. Note that, to some extent, this is just because the nurmahies were abstracted away in the PDDL encoding,
mostly (in Airport and Pipesworld, c.f. Sections A.1.5 an@/A) in order to obtain a discrete encoding suitable for
PDDL2.2-style actions.
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Class Conversational Streaming Interactive Background
Preserve time Preserve time | Requestres- | Undefined
relation between | relation betweer] ponse pattern. | delay.

Constraints|| information flow | information Preserve data | Preserve
on the stream. entities of the integrity data
Conversational stream integrity
pattern (low delay)

\oice, video Streaming Web browsing,| Background
Examples || telephony & multimedia network games download
video games of e-mails

Table 5: UMTS quality of service classes and their charaties.

into four traffic classes by their QoS (TS23107, 2002; Holm#&agkala, 2000). The traffic classes,
their fundamental characteristics, and examples for egiitins are summarized in Table 5.

The main distinguishing factor between these classes isdabay-sensitive the traffic is: the
conversational class is very delay sensitive (approxily@t@ ms time preservation), and the back-
ground class has no defined maximum delay.

The UMTS call set-up can be modularized using the perspeofilntelligent Software Agents
(Appleby & Steward, 1999; Busuioc, 1999), since agents @gecdl units and enable a discrete
perspective of the continuous signaling process. The el is partitioned into the following
modules that are executed in sequential order (Englerg)200

TRM The initial step is the initiation of an application on thelnie and the determination of the
required resources for the execution. The resources of tiderlike display and memory are
checked by th@erminal Resource Managem&mRM) and allocated, if possible. Otherwise,
the execution is aborted.

CT The wireless connection to the radio network is initiatea tvie dedicated control channel of
GSM (Holma & Toskala, 2000). In case of success, the trarsomf "Ready for service”
is transferred via the node B to the mobile in order to ensie€bnnection TimingCT) for
bearer service availability.

AM The information of the mobile like location and data hangllcapabilities is sent to the ap-
plication server in the Internet (cf. AEEI). The transmissican be done comfortably by a
so-called service agent (Farjami, Gorg, & Bell, 2000) tisatontrolled by theAgent Man-
agemeni{AM) in the CND. The advantage of a service agent is, that seaaf failure, e.g.,
network resources are not sufficiently available, the agantnegotiate with the terminal’s
agent about another QoS class or different quality parasiete

AEEM A service agent with the required QoS class for the execuifdhe application and with
parameters of the mobile application is sent from the mbilgent Execution Environment
Mobile (AEEM) to the application server in the Internet (cf. AEEI).

RRC The Radio Resource ControllgRRC) provisions/allocates the required QoS by logical re-
sources from the MAC level in the radio bearer (Holma & Toak&000).
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RAB Then, the bearer resources are supplied on the physicalftewe the Radio Access Bearer
(RAB) from the CND and the call flow is set-up by mapping theidajQoS parameters and
the physical QoS resources together.

AEEI The Agent Execution Environment Intern@EEI) establishes the data transfer from the
core network to a PDN (e.g., Internet) and sends a servicet égentrolled by AM) to the
application in the PDN in order to ensure the QoS for the appitn.

BS Finally, theBearer Servic€BS) for the execution of the mobile application is estdi#d with
the required radio bearer resources with QoS. Message®atr¢osthe modules TRM and
AEEI to start the execution of the application.

These modules are executed in sequential order to set-up forcthe execution of mobile
applications. Two modules (AEEM and AEEI) have to be exatuietime windows in order to
ensure that the agents are life in the network. However, tmstraints have been added: First, the
intra-application constraint, where modules from one igpfibn are ordered. Second, the inter-
application constraint, where modules with same names tliffigrent applications cannot be exe-
cuted in parallel in order to ensure that the required ressuare available.

A.7.2 IPC-4 PDDL AAPTATION

Besides action duration, the domain encodes schedulires tgp resourcé€, consuming some
amount at action initialization time and releasing the sameunt at action ending time. Scheduling
types of resources have not been used in planning benchrpefise, and the good news is that
temporal PDDL2.1 (Level 3) is capable of expressing thenfath we used a similar encoding to
the one that we found falob- and Flow-Shopproblems. As one feature, actions are defined to
temporarilyproducerather than to temporarilgonsumeesources. As current PDDL has no way
of stating such resource constraints explicitly, plantleas want to exploit that knowledge have to
look for a certain patterns daficreasédecreaseeffects to recognize them. Additionally, the resource
modeling of our UMTS adaptation is constrained to the mogiortant parameters (in total 15). In
real networks several hundred parameters are applied.

In UMTS, two subsequent actions can both check and updateathe of some resources (e.g.,
has-mobile-cpuat their starting (resp. ending) time points as far as the ftesp. ending) events
are separated by time steps, where is minimum slack time required between two dependent
events. When modeling renewable resources witlowar all construct the invariant condition of
the action has to check, what taestartevent did change. We decided that this is not the best choice
for a proper temporal action. Consequently, the tempoitabra require resources to be available
beforeadding the amount used.

Finally, the time windows for the two agent-based modulesdefined using the average exe-
cution times of the modules. The average times are estinfeteeld on signaling durations of the
UMTS network (Holma & Toskala, 2000).

Resources may be renewable or consumable: an example foewable resource is the key-
board of the mobile. It can be used to input data for severai@gions. Consumable resources are

49. The terminology foresourcesin planning and scheduling varies. In job-shop schedulingyachine is resource,
while in planning such a machine would be a domain object. DIDB, renewableand consumableesources are
both modeled using numerical fluents and are not per se giisshed.
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mobile-cpu used with: per cent per application
d-available partition of the display, e.qg., ticker and ches
e-balance energy balance of mobile accumulator
mobile-channels  used for data transfer
-available
num-mobiles number of mobiles which are tractable

by a node B
num-calls mobile network load for a node B
mobile-storage memory on S(IM)AT card
logical-channels ~ number of logical channels availabldnén@N
cell-update report UE location into RNC
handover handover required to get a higher bit rate
active-set-up update connection
ggsn-bitrate capacity (kbit/s) from GGSN to PDN
max-no-pdp max. no. of packet data protocols per mobile
max-no-apn max. access point names (APN) per mobile

Table 6: Scheduling types of resources in the UMTS call pet-u

released after action execution. The resources that dizegtin the experiments are summarized
in Table 6 (see 3GPP, 2004 for a complete list of resourceth®UMTS call set-up).

The PDDL representation of the planning domain is based emitiht modules for the UMTS
call set-up. There are eight operators corresponding getbaght modules. Let us consider, as an
example, the BS action, that is, the final action that can ke ts establish the predicales - ok.

It is defined as follows:

(:durative-action BS
:parameters
(?A-new - application ?M - mobile ?L - list ?MS1 ?MS2 - message agent)
:duration
(= ?duration (time-bs ?A-new))
:condition
(and (at start (initiated ?A-new ?M))
(at start (aeei-ok ?A-new ?M ?L ?a))
(at start (qos-params ?A-new ?L))
(at start (message-trm ?M ?MS1))
(at start (message-aeei ?A-new ?MS2)))
-effect
(and (at end (iu-bearer ?A-new ?M ?L)) (at end (bs-ok ?A-nW?R ?a)))))

The action has as preconditions the successful executitimeainodule AEEI during the call
set-up, the satisfaction of the required QoS class param@enoted as list), and the transfered
messages of the set-up status to the application in the enartil the PDN. The resources are already
allocated by the preceding modules. As effect the bearetra@ndetwork connection for the mobile
application are set up.
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The initiation of an application starts in the mobile witletiRM. Afterwards, the CT in the
AND is asked for a ready-for-service signal. In the core efc¢hll set-up is the radio access bearer
procedure in the CND. Let us consider the latter in more Hef first step the logical resources
must be allocated (RRC), e.g., the required number of chammaest be provided by the logical
level in the radio bearer and later these logical resourcesmapped to the physical channels. The
PDDL RRC action looks as follows:

(:durative-action RRC
:parameters
(?A-new - application ?M - mobile ?L - list ?a - agent)
:duration
(= ?duration (time-rrc ?A-new))
:condition
(and (at start (ct-ok ?A-new ?M ?L))
(at start (aeem-ok ?A-new ?M ?L ?a))
(at start &= (has-logical-channels)
(- (max-logical-channels) (app-channels ?A-new ?m))))
(at start &= (has-cell-update) (- (max-cell-update) 2)))
(at start & (has-handover) (max-handover)))
(at start & (has-active-set-up) (max-active-set-up))))
-effect
(and (at start (increase (has-logical-channels) (appiutia ?A-new ?M)))
(at end (decrease (has-logical-channels) (app-chanAaie® ?M)))
(at start (increase (has-cell-update) 2))
(at end (decrease (has-cell-update) 2))
(at start (increase (has-handover) 1))
(at end (decrease (has-handover) 1))
(at start (increase (has-active-set-up) 1))
(at end (decrease (has-active-set-up) 1))
(at end (rrc-ok ?A-new ?M ?L ?a))))

If the requested QoS class is not available, then therfati- ok is not true and a service
agent must be sent to the mobile in order to negotiate witlaipdication or user for weaker QoS
requirements. In case of success the predicate ok is true and the connection to the PDN must
be checked. Finally, the goal predicate BS can be fulfilledlifesources are available.

A.7.3 IPC-4 DOMAIN STRUCTURE

As used in IPC-4, the UMTS domain has six versions. The fingtettare:temporal a domain
version with no timing constraintsemporal-timewindowsa domain version with PDDL2.2 timed
initial facts, andtemporal-timewindows-compiled domain version with a PDDL2.1 wrapper en-
coding for the timed initial literals. The second domainsien setflaw-temporal flaw-temporal-
timewindowsandflaw-temporal-timewindows-compilethcludes the following flaw” action:

(:durative-action FLAW

parameters

(?A-new - application ?M - mobile ?L - list ?a - agent)
:duration (= ?duration 4)

:condition
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‘ version ‘ formulation H max-#op ‘ max-#act ‘
temporal STRIPS-TEMPORAL 8 (5120) 80
temporal-tw STRIPS-TEMPORAL-TW, 8 (5120) 80
temporal-twc STRIPS-TEMPORAL 13 (5125) 85
flaw-temporal STRIPS-TEMPORAL 9 (5310) 90
flaw-temporal-tw | STRIPS-TEMPORAL-TW 9 (5310) 90
flaw-temporal-twc| STRIPS-TEMPORAL 14 (5315) 95

Table 7: Overview over the different domain versions of UMBBbreviations used: “temporal-
tw” for “temporal-timewindows”, “temporal-twc” for tempal-timewindows-compiled;
max-#op is the maximum number of (parameterized) PDDL operatoraufgrinstance,
maz-#act is the maximum number of ground actions for any instancea Daparenthe-

ses are collected before FF's “reachability” pre-procesg {ext).

(and (at start (initiated ?A-new ?M))
(at start (qos-params ?A-new ?L))
(at start (trm-ok ?A-new ?M ?L)))
-effect
(and (at end (rab-ok ?A-new ?M ?L ?a))
(at start (not (initiated ?A-new ?M)))))

This action offers a shortcut to threab- ok predicate, but can not be used in a real solution
because it deletes theni t i at ed predicate. But the actionan be used in heuristic functions
based on ignoring the negative effects. In that sense, tienaencodes a flaw that may disturb
the heuristic techniques used in modern planners. To diterthat the action is not useful, neg-
ative interactions have to be considered. The idea of flawastjgally motivated in order to see
how heuristic planners react to it. In its standard form,dbenain is not a big challenge to such
planners, as we have seen in Section 5. All domain versiovs trge formulation, namelstrips-
fluents-temporalwhere numerical fluents, but - except typing - no ADL corssare used. In all
instances, the plan objective is to minimi@kespan

The domain versions and numbers of operators and grourwhaetre overviewed in Table 7. As
with many of the empirical data for UMTS that we have seeniegfihe data are quite exceptional,
and at the same time easy to interpret. First, similar to wieahave seen in Section 5.3, the data
are actually constant across all instances within each oloveasion, which is once again due to the
fact that the instances scale only in their specification lséivapplications need actually be started.
Second, the numbers of operators and actions do not differclea the versions with and without
time windows; they increase somewhat, through the additiantificial actions, if we compile
timed initial literals away (c.f. Section 2); they also isase somewhat, of course, if we introduce
the “flaw” action. Third, the most striking observation i®thugeeffect of FF's reachability pre-
processor, building a relaxed planning graph for the inétiate and removing all actions that do not
appear in that graph. This is due to the technical subtlefi¢lse encoding, where the restrictions
on feasible action instantiations are, partly, implicittire possible action sequences, rather than
explicit in the static predicates.
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A.7.4 IPC-4 EXAMPLE INSTANCES

The UMTS call set-up domain has the following challengesthier planning task (Englert & Cre-
mers, 2001):

Real-time: Can plans for the execution of mobile applications be gdedria an appropriate time?
Planning has to be done with a maximum duration that doesxeeee the UMTS call set-up
time.

Completeness:ls it possible to generate the plan, i.e. does planningtresah (optimal) plan for
the required applications that minimizes the waiting petaatil all applications are started?

The PDDL structure of the basic problem for the discrete UMabset-up (DUCS) domain is
the following:

(define (problem DUCS DOMAIN BASIC VERSION)
(:domain DUCSDOMAIN _BASIC_VERSION
(:objects MS1 MS2 - message
Al A2 A3 A4 A5 A6 A7 A8 A9 A10 - application
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 - mobile
L1L2L3L4L5L6L7 L8LIL1O - list
ae - agent)
(:init (= (time-trm A1) 76) (= (time-ct A1) 48)
(= (time-am Al) 74) (= (time-aeem Al) 66)
(= (time-rrc A1) 202) (= (time-rab Al) 67)
(= (time-aeei Al) 36) (= (time-bs A1) 28)
[.-]
(location M1) ;; types
(authentification M1)
[.-]

(= (has-mobile-cpu) 0) ;; current status

[-1)
(:goal (and (bs-ok A1 M1 L1 ae)[...])))

First in this PDDL description come the objects for the agadions and the mobiles. Then
come the durations of the modules depending on the applitatie.g., the module TRM requires
less time for a news ticker than for a chess game, since tlee tajuires more terminal resources
than the ticker. The current status of the resources iglizéid. Finally, the goal is defined: the
bearer establishment for the execution start of the ieiiahobile applications. The total execution
time should be minimized.

For IPC-4 the time windows are varied with small perturbadian order to generate different
instances. The perturbations are motivated by the averapeition times of the modules in a radio
network according to the load. Furthermore, the number pliegtions to be set up is varied from 1
up to 10. The domains assume that the applications run on ob#entterminal. However, they can
also be distributed to several mobile terminals. There @mifferent instances per domain version.

A.7.5 FUTURE WORK

The UMTS domain is not a big challenge for modern heuristee, HSP/FF/LPG-style, planners
because these planners are satisficing (potentially retw+optimal plans). The objective in UMTS
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is to minimize the execution time, and if one ignores thaeotiye then the task trivializes. To
the optimal planners, UMTS is a realistic challenge. The @ions already relatively realistically
modelled, except for the left-out additional constraintstioe (many) less important resources. It
remains to be seen if, when introducing all these resouptasner (in particular optimal planner)
performance gets degraded. An option in this case may bértalirce explicit language constructs
for the different types (renewable and consumable) of messu

In the future the following two challenges shall be investagl. First, the negotiation of UMTS
Quiality of Service (QoS) parameters could be consideredug a video application on a mobile
terminal is initiated, but the bearer resources are notcsesffily available. Then the QoS has to be
negotiated between the terminal and the bearer. This |esile tplanning of a negotiation during
the plan execution for the already initiated applications.

Second, the approach for the optimization of the UMTS c@lugecan be applied to the Wireless
LAN registration. The challenge is to transfer the QoS patans, since the current Wireless LAN
standard (802.11b) does not contain QoS. This demerit casolved by applying an additional
service level that addresses QoS.
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