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Abstract
In a field of research about general reasoning mechanisms, itis essential to have appropriate

benchmarks. Ideally, the benchmarks should reflect possible applications of the developed tech-
nology. In AI Planning, researchers more and more tend to draw their testing examples from the
benchmark collections used in the International Planning Competition (IPC). In the organization
of (the deterministic part of) the fourth IPC,IPC-4, the authors therefore invested significant effort
to create a useful set of benchmarks. They come from five different (potential) real-world applica-
tions of planning: airport ground traffic control, oil derivative transportation in pipeline networks,
model-checking safety properties, power supply restoration, and UMTS call setup. Adapting and
preparing such an application for use as a benchmark in the IPC involves, at the time, inevitable
(often drastic) simplifications, as well as careful choice between, and engineering of, domain en-
codings. For the first time in the IPC, we used compilations toformulate complex domain features
in simple languages such as STRIPS, rather than just dropping the more interesting problem con-
straints in the simpler language subsets. The article explains and discusses the five application
domains and their adaptation to form the PDDL test suites used in IPC-4. We summarize known
theoretical results on structural properties of the domains, regarding their computational complexity
and provable properties of their topology under theh+ function (an idealized version of the relaxed
plan heuristic). We present new (empirical) results illuminating properties such as the quality of
the most wide-spread heuristic functions (planning graph,serial planning graph, and relaxed plan),
the growth of propositional representations over instancesize, and the number of actions available
to achieve each fact; we discuss these data in conjunction with the best results achieved by the
different kinds of planners participating in IPC-4.
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1. Introduction

Today, to a large extent the research discipline of AI planning is concerned with improving the per-
formance of domain independent generative planning systems. A domain independent generative
planning system (planner) must be able to fully automatically findplans: solution sequences in
declaratively specified transition systems. The simplest planning formalism isdeterministic plan-
ning. There, a planner is given as input a set of state variables (often just Booleans, calledfacts),
an initial state(a value assignment to the variables), agoal (a formula), and a set ofactions(with a
precondition formula describing applicability, and with an effect specifying how the action changes
the state). A plan is a time-stamped sequence of actions thatmaps the initial state into a state that
satisfies the goal. This sort of formalism is called deterministic since the initial state is fully speci-
fied and the effects of the actions are non-ambiguous. Both restrictions may be weakened to obtain
non-deterministicandprobabilisticplanning.

Performance of planners is measured by testing them onbenchmarkexample instances of the
planning problem. The “best” algorithm at any point in time is, generally, considered to be the one
that solves these examples most efficiently. In particular,this is the idea in the International Plan-
ning Competition (IPC), a biennial event aimed at showcasing the capabilities of current planning
systems.

The first IPC took place in 1998, so at the time of writing therewere four such events. Provid-
ing details about the IPC is beyond the scope of this paper, and we refer the reader to the overview
articles written by the organizers of the respective IPC editions (McDermott, 2000; Bacchus, 2001;
Long & Fox, 2003; Hoffmann & Edelkamp, 2005). In particular,Hoffmann and Edelkamp (2005)
provide details about the 4th IPC, such as overall organization, different tracks, evaluation, partic-
ipating planners, and results. Basic information is included in this paper, so the reader should be
able to follow the main discussion without a detailed background. The language used to describe
planning problems in the IPC is calledPDDL: Planning Domain Definition Language. It was in-
troduced by McDermott (1998) for the first IPC, IPC-1, in 1998. A subset of the language was
selected by Bacchus (2000) for IPC-2 in 2000. The language was extended with temporal and nu-
merical constructs by Fox and Long (2003) to form the languagePDDL2.1for IPC-3 in 2002. It was
further extended with two additional constructs, “timed initial literals” and “derived predicates”, by
Hoffmann and Edelkamp (2005) to form the languagePDDL2.2for IPC-4 in 2004.

Since, even in its simplest forms, AI planning is a computationally hard problem, no system
can work efficiently inall problem instances (Bylander, 1994; Helmert, 2003). Thus, it is of cru-
cial importancewhat kinds of examples are used for testing. Today, more and more, AI Planning
researchers draw their testing examples from the collections used in the IPC. This makes the IPC
benchmarks a very important instrument for the field. In the organization of the deterministic part
of the 4th IPC (there was also a probabilistic part, see Younes, Littman, Weissman, & Asmuth,
2005), the authors therefore invested considerable effortinto creating a set of “useful” benchmarks
for planning.

The very first question to answer is what precisely is meant here by the word “useful”. This is
not an easy question. There is no widely accepted mathematical definition for deciding whether a
set of benchmarks should be considered useful. There are, however, widely acceptedintuitions of
when this is the case. Benchmarks should be:

1. Oriented at applications – a benchmark should reflect an application of the technologyde-
veloped in the field.
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2. Diverse in structure – a set of benchmarks should cover different kinds of structure, rather
than re-state very similar tasks.

The first of these is usually considered particularly important – indeed, AI planning has fre-
quently been criticized for its “obsession with toy examples”. In recent years, the performance of
state-of-the-art systems has improved dramatically, and with that more realistic examples have come
within reach. We made another step in this direction by orienting most of the IPC-4 benchmarks at
application domains. While traditionally planning benchmarks were more or less fantasy products
created having some “real” scenario in mind,1 we took actual (possible) applications of planning
technology, and turned them into something suitable for thecompetition. We considered five dif-
ferent application domains: airport ground traffic control(Airport), oil derivative transportation in
pipeline networks (Pipesworld), model checking safety properties (Promela), power supply restora-
tion (PSR), and setup of mobile communication in UMTS (UMTS). Of course, in the adaptation of
an application for use in the IPC, simplifications need to be made. We will get back to this below.

Diverse structure of benchmarks has traditionally been given less attention than realism, but
we believe that it is no less important. The structure underlying a testing example determines the
performance of the applied solving mechanism. This is particularly true for solving mechanisms
whose performance rises and falls with the quality of a heuristic they use. Hoffmann’s (2001, 2002,
2005) results suggest that much of the spectacular performance of modern heuristic search planners
is due to structural similarities between most of the traditional planning benchmarks. While this
does not imply that modern heuristic search planners aren’tuseful, it certainly shows that in the
creation of benchmarks there is a risk of introducing a bias towards one specific way of solving
them. In selecting the benchmark domains for IPC-4, we triedto cover a range of intuitively very
different kinds of problem structure. We will get back to this below.

On the one hand, a creator of planning benchmarks has the noble goal of realistic, and struc-
turally diverse, benchmark domains. On the other hand, he/she has the more pragmatic goal to
come up with a version/representation of the benchmarks that can be attacked with existing plan-
ning systems. Given the still quite restricted capabilities of systems, obviously the two goals are in
conflict. To make matters worse, there isn’t an arbitrarily large supply of planning applications that
are publicly available, and/or whose developers agree to have their application used as the basis of
a benchmark. For the IPC organizer, on top of all this, the final benchmarks must beaccessiblefor
a large enough number of competing systems, which means theymust be formulated in a language
understood by those systems. Further, the benchmarks must show differences between the scalabil-
ity of planners, i.e., they must not be too easy or too hard, thus straddling the boundary of current
system capabilities.

The solution to the above difficulties, at least our solutionin the organization of IPC-4, in-
volved a slow tedious interleaved process of contacting application developers, choosing domains,
exploring domain versions, and engineering domain versionrepresentations. This article presents,
motivates, and discusses our choice of benchmark domains for IPC-4; it explains the engineering
processes that led to the finally used domain versions and instances. Further, we report about,
and present some new data determining certain structural properties of the resulting benchmarks
(more details below). The main contribution of thework is the set of benchmarks, provided in

1. Of course, there are exceptions to this rule. One important one, in our context here, is the Satellite domain, used in
IPC-3, that we further refined for use in IPC-4. More on this later.
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IPC-4.2 The contributions of thisarticle are: first, providing the necessary documentation of these
benchmarks; second, describing the technical processes used in their creation; third, providing an
extensive discussion of the structural properties of the benchmarks. Apart from these more tech-
nical contributions, we believe that our work has value as anexample of a large-scale attempt at
engineering a useful set of benchmarks for classical planning.

It is difficult to make any formal claim about our created set of benchmarks, such as that they
are in some way better than the previous benchmarks. When working on this, our intent was to
overcome certain shortcomings of many benchmarks, though one would be hard pressed to come
up with a formal proof that such improvements were indeed made. After all, judging the quality of
a set of benchmarks is a rather complex matter guided mostly by intuitions, and, worse, personal
opinions.3 What we did was, do our best to create as realistic, structurally diverse, and accessible
benchmarks as possible for IPC-4. Our belief is that we succeeded in doing so. The benchmarks
definitely differ in certain ways from most of the previous benchmarks. We think that most of these
differences are advantageous; we will discuss this at the places where we point out the differences.

Regarding realism of the benchmarks, as pointed out above, the main step we took was to design
benchmarks “top-down”, i.e., start from actual possible applications of planning technology, and
turn them into something suitable for the competition – rather than the more traditional “bottom-
up” approach of just artificially creating a domain with some“real” scenario in mind. Of course,
for modelling an application in PDDL, particularly for modelling it in a way making it suitable
for use in the IPC, simplifications need to be made. In some cases, e.g., airport ground traffic
control, the simplifications were not overly drastic, and preserved the overall properties and intuitive
structure of the domain. But in other cases, e.g., oil derivative transportation in pipeline networks,
the simplifications we needed to make were so drastic that these domains could just as well have
been created in the traditional bottom-up way. Still, even if greatly simplified, a domain generated
top-down has a better chance to capture some structure relevant in a real application. Moreover,
a top-down domain has the advantage that since it is derived from a real application, it provides
a clear guideline towards more realism; the future challenge is to make planners work on more
realistic encodings of the application. In the previous competitions, the only domains generated
top-down in the above sense were the Elevator domain used in IPC-2 (Koehler & Schuster, 2000;
Bacchus, 2001), and the Satellite and Rovers domains used inIPC-3 (Long & Fox, 2003).

Regarding diverse structure of the benchmarks, in contrastto the previous competitions, in the
IPC-4 domains there is no common “theme” underlying many of the benchmarks. In IPC-1, 5 out
of 7 domains were variants of transportation; in IPC-2, 4 outof 7 domains were variants of trans-
portation; in IPC-3, 3 out of 6 domains were variants of transportation, and 2 were about gathering
data in space. Some of the “variants” are in fact very interesting in their use of constructs such
as locked locations, fuel units, road map graphs, stackableobjects, and complex side constraints.
However, there is certainly an intuitive similarity in the structure and relationships in the domains.
To some extent this similarity is even automatically detectable (Long & Fox, 2000). Not so in IPC-
4: airport ground traffic control, oil derivative transportation in pipeline networks, model checking
safety properties, power supply restoration, and UMTS callsetup are rather different topics. At

2. The benchmarks can be downloaded from the IPC-4 web page athttp://ipc.icaps-conference.org/
3. Consider for example the Movie domain used in IPC-1. All instances of this domain, no matter what their size is,

share the same space of reachable states; the only thing thatincreases is the connectivity between states, i.e. the
number of actions that have the same effect. Still one can argue that Movie is a useful benchmark, in the sense that it
can highlight systems/approaches that have/have no difficulties in attacking such problem characteristics.
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most one could claim that airport ground traffic control and UMTS call setup both have a schedul-
ing nature. We will see, however, that the IPC-4 version of airport ground traffic control allows
considerably more freedom than classical scheduling formulations, making it aPSPACE-complete
decision problem. The particulars of the domains will be overviewed in Section 3.

Approaching “structure” from a more formal point of view is more difficult. It is largely unclear
what, precisely, the relevant structure in a planning domain/instance is, in a general sense. While
Hoffmann (2001, 2002, 2005) provides one possible definition – search space surface topology un-
der a certain heuristic function – there are many other possible options. In particular, Hoffmann’s
results are relevant only for heuristic search planners that generate their heuristic functions based on
the “ignoring delete lists” relaxation (McDermott, 1996, 1999; Bonet, Loerincs, & Geffner, 1997;
Bonet & Geffner, 2001; Hoffmann & Nebel, 2001). For lack of a better formal handle, we used
Hoffmann’s definitions to qualify the structure of the domains. The selected domains cover dif-
ferent regions of Hoffmann’s “planning domain taxonomy”, in particular they lie in regions that
have less coverage in the traditional benchmarks. Because they are interesting in the context of
the paper at hand, we summarize Hoffmann’s (2005) results for 30 domains including all domains
used in the previous competitions. We also summarize Helmert’s (2006b) results on the computa-
tional complexity of satisficing and optimal planning in theIPC-4 domains. It turns out that their
complexity covers a wide range – the widest possible range, for propositional planning formalisms
– from PSPACE-hard to polynomial. We finally provide some newdata to analyze the structural
relationships and differences between the domains. Amongst other things, for each instance, we
measure: the number of (parallel and sequential) steps needed to achieve the goal, estimated by the
smallest plan found by any IPC-4 participant; the same number as estimated by planning graphs
and relaxed plans; and the distribution of the number of possible achieving actions for each fact.
The results are examined in a comparison between the different domains, taking into account the
runtime performance exhibited by the different kinds of planners in IPC-4.

Apart from realism and diverse structure, our main quest in the creation of the IPC-4 benchmarks
was to promote their accessibility. Applications are, typically, if they can be modelled at all in
PDDL, most naturally modelled using rather complex language constructs such as time, numeric
variables, logical formulas, and conditional effects. Most existing systems handle only subsets of
this, in fact more than half of the systems entered into IPC-4(precisely, 11 out of 19) could handle
only the simple STRIPS language, or slight extensions of it.4 In the previous competitions, as done
for example in the Elevator, Satellite, and Rovers domains,this was handled simply by dropping
the more interesting domain constraints in the simpler languages, i.e., by removing the respective
language constructs from the domain/instance descriptions. In contrast, for the first time in the IPC,
wecompiledas much of the domain semantics as possible down into the simpler language formats.
Such a compilation is hard, sometimes impossible, to do. Itcan be done for ADL constructs, as
well as for the two new constructs introduced for the IPC-4 language PDDL2.2, derived predicates
and timed initial literals. We implemented, and applied, compilation methods for all these cases.

4. STRIPS (Stanford Research Institute Problem Solver) is the name of the simplest and at the same time most wide-
spread planning language. In the form of the language used today, the state variables are all Boolean, formulas are
conjunctions of positive atoms, action effects are either atomic positive (make a fact true/add it) or atomic negative
(make a fact false/deleteit) (Fikes & Nilsson, 1971). The languages selected for IPC-2 (Bacchus, 2000), from which
PDDL2.1 and PDDL2.2 are derived, were STRIPS and ADL. ADL is aprominent, more expressive, alternative
to STRIPS, extending it with arbitrary first-order formulasas preconditions and goal, and with conditional effects,
i.e., effects that occur only if their individual effect condition (a first-order formula) is met in the state of execution
(Pednault, 1989).
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The compilations serve to preserve more of the original domain structure, in the simpler language
classes. For example, the STRIPS version of the Elevator domain in IPC-2 is so simplified from the
original ADL version that it bears only marginal similarityto real elevator control – in particular,
the planner can explicitlytell passengers to get into or out of the lift.5 In contrast, our STRIPS
formulation of the airport ground traffic domain is, semantically, identical to our ADL formulation
– it expresses the same things, but in a more awkward fashion.

The compiled domain “versions” were offered to the competitors as alternative domain ver-
sion “formulations”, yielding a 2-step hierarchy for each domain. That is, each domain in IPC-4
could contain several different domain versions, differing in terms of the number of domain con-
straints/properties considered. Within each domain version, there could be several domain ver-
sion formulations, differing in terms of the language used to formulate the (same) semantics. The
competitors could choose, within each version, whichever formulation their planners could handle
best/handle at all, and the results within the domain version were then evaluated together. This
way, we intended to make the competition as accessible as possible while at the same time keeping
the number of separation lines in the data – the number of distinctions that need to be made when
evaluating the data – at an acceptable level.

We are, of course, aware that encoding details can have a significant impact on system perfor-
mance.6 Particularly, when compiling ADL to STRIPS, in most cases wehad to revert to fully
grounded encodings. While this certainly isn’t desirable,we believe it to be an acceptable price to
pay for the benefit of accessibility. Most current systems ground the operators out as a pre-process
anyway. In cases where we considered the compiled domain formulations too different from the
original ones to allow for a fair comparison – typically because plan length increased significantly
due to the compilation – the compiled formulation was posed to the competitors as a separate do-
main version.

The article is organized as follows. The main body of text contains general information. In
Section 2, we give a detailed explanation of the compilationmethods we used. In Section 3, we give
a summary of the domains, each with a short application description, our motivation for including
the domain, a brief explanation of the main simplifications made, and a brief explanation of the
different domain versions and formulations. In Section 4, we summarize Hoffmann’s (2005) and
Helmert’s (2006b) theoretical results on the structure of the IPC-4 domains. Section 5, we provide
our own empirical analysis of structural properties. Section 6 discusses what was achieved, and
provides a summary of the main issues left open. For each of the IPC-4 domains, we include a
separate section in Appendix A, providing detailed information on the application, its adaptation
for IPC-4, its domain versions, the example instances used,and future directions. Although these
details are in an appendix, we emphasize that this is not because they are of secondary importance.
On the contrary, they describe the main body of work we did. The presentation in an appendix
seems more suitable since we expect the reader to, typically, examine the domains in detail in a
selective and non-chronological manner.

5. The passengers won’t get in (out) at floors other than theirorigin (destination); however, with explicit control, the
planner can choose tonot letsomeone in (out). The more accurate encoding is via conditional effects of the action
stopping the lift at a floor.

6. A very detailed account of such matters is provided by Howeand Dahlman (2002).
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2. PDDL Compilations

We used three kinds of compilation methods:

• ADL to SIMPLE-ADL (STRIPS with conditional effects) or STRIPS;

• PDDL with derived predicates to PDDL without them;

• PDDL with timed initial literals to PDDL without them.

We consider these compilation methods in this order, explaining, for each, how the compilation
works, what the main difficulties and their possible solutions are, and giving an outline of how we
used the compilation in the competition. Note that ADL, SIMPLE-ADL, and STRIPS are subsets
of PDDL. Each of the compilation methods was published elsewhere already (see the citations in
the text). This section serves as an overview article, sincea coherent summary of the techniques,
and their behavior in practice, has not appeared elsewhere in the literature.

2.1 Compilations of ADL to SIMPLE-ADL and STRIPS

ADL constructs can be compiled away with methods first proposed by Gazen and Knoblock (1997).
Suppose we are given a planning instance with constant (object) setC, initial stateI, goalG, and
operator setO. Each operatoro has a preconditionpre(o), and conditional effectse, taking the form
con(e), add(e), del(e) whereadd(e) anddel(e) are lists of atoms. Preconditions, effect conditions,
andG are first order logic formulas (effect conditions areTRUE for unconditional effects). Since
the domain of discourse – the set of constants – is finite, the formulas can be equivalently trans-
formed into propositional logic.

(1) Quantifiers are turned into conjunctions and disjunctions, simply by expanding them with the
available objects:∀x : φ(x) turns into

∧
c∈C φ(c) and∃x : φ(x) turns into

∨
c∈C φ(c). Iterate

until no more quantifiers are left.

Since STRIPS allows only conjunctions of positive atoms, some further transformations are neces-
sary.

(2) Formulas are brought into negation normal form:¬(φ∧ψ) turns into¬φ∨¬ψ and¬(φ∨ψ)
turns into¬φ ∧ ¬ψ. Iterate until negation is in front of atoms only.

(3) For each¬x that occurs in a formula: introduce a new predicatenot-x; setnot-x ∈ I iff
x 6∈ I; for all effectse: setnot-x ∈ add(e) iff x ∈ del(e) andnot-x ∈ del(e) iff x ∈ add(e);
in all formulas, replace¬x with not-x. Iterate until no more negations are left.

(4) Transform all formulas into DNF:(φ1 ∨ φ2) ∧ (ψ1 ∨ ψ2) turns into(φ1 ∧ ψ1) ∨ (φ1 ∧ ψ2) ∨
(φ2 ∧ ψ1) ∨ (φ2 ∧ ψ2). Iterate until no more conjunctions occur above disjunctions. If an
operator preconditionpre(o) hasn > 1 disjuncts, then createn copies ofo each with one
disjunct as precondition. If an effect conditioncon(e) hasn > 1 disjuncts, then createn
copies ofe each with one disjunct as condition. IfG hasn > 1 disjuncts, then introduce a
new factgoal-reached, setG := goal-reached, and createn new operators each with one
disjunct as precondition and a single unconditional effectaddinggoal-reached.
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(:action move
:parameters
(?a - airplane ?t - airplanetype ?d1 - direction ?s1 ?s2 - segment ?d2 - direction)
:precondition
(and (has-type ?a ?t) (is-moving ?a) (not (= ?s1 ?s2)) (facing ?a ?d1) (can-move ?s1 ?s2 ?d1)

(move-dir ?s1 ?s2 ?d2) (at-segment ?a ?s1)
(not (exists (?a1 - airplane) (and (not (= ?a1 ?a)) (blocked ?s2 ?a1))))
(forall (?s - segment) (imply (and (is-blocked ?s ?t ?s2 ?d2)(not (= ?s ?s1))) (not (occupied ?s)))))

:effect
(and (occupied ?s2) (blocked ?s2 ?a) (not (occupied ?s1)) (not (at-segment ?a ?s1)) (at-segment ?a ?s2)

(when (not (is-blocked ?s1 ?t ?s2 ?d2)) (not (blocked ?s1 ?a)))
(when (not (= ?d1 ?d2)) (and (not (facing ?a ?d1)) (facing ?a ?d2)))
(forall (?s - segment) (when (is-blocked ?s ?t ?s2 ?d2) (blocked ?s ?a)))
(forall (?s - segment) (when

(and (is-blocked ?s ?t ?s1 ?d1) (not (= ?s ?s2)) (not (is-blocked ?s ?t ?s2 ?d2)))
(not (blocked ?s ?a))))))

Figure 1: An operator from airport ground traffic control.

As an illustrative example, consider the operator description in Figure 1, taken from our domain
encoding airport ground traffic control. This operator moves an airplane from one airport segment
to another. Consider specifically the precondition formula(not (exists (?a1 - airplane) (and (not (=
?a1 ?a)) (blocked ?s2 ?a1)))), saying that no airplane different from “?a” is allowed to block segment
“?s2”, the segment we are moving into. Say the set of airplanes isa1, . . . , an. Then step (1) will
turn the formula into(not (or (and (not (= a1 ?a)) (blocked ?s2 a1)) . . . (and (not (= an ?a)) (blocked ?s2
an)))). Step (2) yields(and (or (= a1 ?a) (not (blocked ?s2 a1))) . . . (or (= an ?a) (not (blocked ?s2 an)))).
Step (3) yields(and (or (= a1 ?a) (not-blocked ?s2 a1)) . . . (or (= an ?a) (not-blocked ?s2 an))). Step (4),
finally, will (naively) transform this into(or (and (= a1 ?a) . . . (= an ?a)) . . . (and (not-blocked ?s2 a1)
. . . (not-blocked ?s2 an))), i.e., more mathematically notated:

∨

x∈{(= a1 ?a),(not-blocked ?s2 a1)}×...×{(= an ?a),(not-blocked ?s2 an)}

∧
x.

In words, transforming the formula into a DNF requires enumerating alln-vectors of atoms where
each vector positioni is selected from one of the two possible atoms regarding airplaneai. This
yields an exponential blow-up to a DNF with2n disjuncts. The DNF is then split up into its single
disjuncts, each one yielding a new copy of the operator.

The reader will have noticed that an exponential blow-up is also inherent in compilation step
(1), where each quantifier may be expanded to|C| sub-formulas, andk nested quantifiers will
be expanded to|C|k sub-formulas. Obviously, in general there is no way around either of the
blow-ups, other than to deal with more complex formulas thanallowed in STRIPS. In practice,
however, these blow-ups can typically be dealt with reasonably well, thanks to the relative simplicity
of operator descriptions, and the frequent occurrence ofstatic predicates, explained shortly. If
quantifiers aren’t deeply nested, like in Figure 1, then the blow-up inherent in step (1) does not
matter. Transformation to DNF is more often a problem – like in our example here. The key
to successful application of the compilation in practice, at least as far as our personal experience
goes, is the exploitation of static predicates. This idea isdescribed, for example, by Koehler and
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Hoffmann (2000). Static predicates aren’t affected by any operator effect. Such predicates can be
easily found, and their truth value is fully determined by the initial stateas soon as they are fully
instantiated. In the above transformation through step (4), the operatorparameters are still variables,
and even if we knew that “=” is (of course) a static predicate,this would not help us because we
wouldn’t know what “?a” is. If we instantiate “?a”, however,then, in each such instantiation of
the operator, the “(= ?a1 ?a)” atoms trivialize to TRUE or FALSE, and the large DNF collapses
to the single conjunction

∧
a 6= ?a1 airplane(not-blocked ?s2 ?a1), where “a” is our instantiation of

“?a”. Similarly, the expansion of quantifiers is often made much easier by first instantiating the
operator parameters, and then inserting TRUE or FALSE for any static predicate as soon as its
parameters are grounded. Inserting TRUE or FALSE often simplifies the formulas significantly
once this information is propagated upwards (e.g., a disjunction with a TRUE element becomes
TRUE itself).

Assuming our compilation succeeded thus far, after steps (1) to (4) are processed we are down to
a STRIPS description with conditional effects, i.e., the actions still have conditional effectscon(e),
add(e), del(e) wherecon(e) is a conjunction of atoms. This subset of ADL has been termed
“SIMPLE-ADL” by Fahiem Bacchus, who used it for the encodingof one of the versions of the
“Elevator” domain used in IPC-2 (i.e. the 2000 competition). We can now choose to leave it in
this language, necessitating a planning algorithm that candeal with conditional effects directly.
Several existing planning systems, for example FF (Hoffmann & Nebel, 2001) and IPP (Koehler,
Nebel, Hoffmann, & Dimopoulos, 1997), do this. It is a sensible approach since, as Nebel (2000)
proved, conditional effects cannot be compiled into STRIPSwithout either an exponential blow-
up in the task description, or a linear increase in plan length. One might suspect here that, like
with steps (1) and (4) above, the “exponential blow-up” can mostly be avoided in practice. The
airport move operator in Figure 1 provides an example of this. All effect conditions are static and so
the conditional effects disappear completely once we instantiate the parameters – which is another
good reason for doing instantiation prior to the compilation. However, the conditional effects donot
disappear in many other, even very simple, natural domains.Consider the following effect, taken
from the classical Briefcaseworld domain:

(forall (?o) (when (in ?o) (and (at ?o ?to) (not (at ?o ?from)))))

The effect says that any object “?o” that is currently in the briefcase moves along with the briefcase.
Obviously, the effect condition isnotstatic, and the outcome of the operator will truly depend on the
contents of the briefcase. Note that the “forall” here meansthat we actually have asetof (distinct)
conditional effects, one for each object.

There are basically two known methods to compile conditional effects away, corresponding to
the two options left open by Nebel’s (2000) result. The first option is to enumerate all possible
combinationsof effect outcomes, which preserves plan length at the cost of an exponential blow-up
in description size – exponential in the number of differentconditional effects of any single action.
Consider the above Briefcaseworld operator, and say that the object set iso1, . . . , on. For every
subseto′1, . . . o

′
k of o1, . . . , on, o′k+1

, . . . , o′n being the complement of the subset, we get a distinct
operator with a precondition that contains all of:

(in o′1) . . . (in o′
k
) (not-ino′

k+1
) . . . (not-ino′n)

Where the effect on the objects is:

(ato′1 ?to) . . . (ato′
k

?to) (not (ato′1 ?from)) . . . (not (ato′
k

?from))
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In other words, the operator can be applied (only) if exactlyo′1, . . . o
′
k are in the briefcase, and it

moves exactly these objects. Since (in deterministic planning as considered here) there never is
uncertainty about what objects are inside the briefcase andwhat are not, exactly one of the new
operators can be applied whenever the original operator canbe applied. So the compilation method
preserves the size (nodes) and form (edges) of the state space. However, we won’t be able to do the
transformation, or the planner won’t be able to deal with theresulting task, ifn grows beyond, say,
maximally10 . . . 20. Often, real-world operators contain more distinct conditional effects than that.

The alternative method, first proposed by Nebel (2000), is tointroduce artificial actions and
facts that enforce, after each application of a “normal” action, an effect-evaluation phase during
which all conditional effects of the action must be tried, and those whose condition is satisfied
must be applied. For the above Briefcaseworld example, thiswould look as follows. First, the
conditional effect gets removed, a new fact “evaluate-effects” is inserted into the add list, and a
new fact “normal” is inserted into the precondition and delete list. Then we have2n new operators,
two for each objectoi. One means “move-along-oi”, the other means “leave-oi”. The former has
“in(oi)” in its precondition, the latter “not-in(oi)”. The former has “(atoi ?to)” and “(not (atoi

?from)” in its effect. Both have “evaluate-effects” in their precondition, and a new fact “tried-oi”
as an add effect. There is a final new operator that stops the evaluation, whose precondition is the
conjunction of “evaluate-effects” and “tried-o1”, . . . , “tried-on”, whose add effect is “normal”, and
whose delete effect is “evaluate-effects”. If the conditional effects of several operators are compiled
away with this method, then the “evaluate-effects” and “tried-oi” facts are made specific to each
operator; “normal” can remain a single fact used by all the operators. If an effect hask > 1 facts in
its condition, thenk “leave-oi” actions must be created, each having the negation of one of the facts
in its precondition.

Nebel’s (2000) method increases plan length by the number ofdistinct conditional effects of
the operators. Note that this is not benign if there are, say,more than20 such effects. To a search
procedure that recognizes what the new constructs do, the search space essentially remains the
same as before the compilation. But, while the artificial constructs can easily be deciphered for
what they are by a human, this is not necessarily true (is likely to not be the case) for a computer
that searches with some general-purpose search procedure.Just as an example, in a naive forward
search space there is now a choice of how toorder the application of the conditional effects (which
could be avoided by enforcing some order with yet more artificial constructs). Probably more
importantly, standard search heuristics are unlikely to recognize the nature of the constructs. For
example, without delete lists it suffices to achieve all of “tried-o1”, . . . , “tried-on” just once, and
later on apply only those conditional effects that are needed.

We conclude that if it is necessary to eliminate conditionaleffects, whenever feasible, one should
compile conditional effects away with the first method, enumerating effect outcomes. We did so in
IPC-4. We took FF’s pre-processor, that implements the transformation steps (1) to (4) above, and
extended it with code that compiles conditional effects away, optionally by either of the two de-
scribed methods. We call the resulting tool “adl2strips”.7 In most cases where we had a domain
version formulated in ADL, we used adl2strips to generate a STRIPS formulation of that domain
version. In one case, a version of power supply restoration,we also generated a SIMPLE-ADL

7. Executables of adl2strips can be downloaded from the IPC-4 web page at http://ipc.icaps-conference.org. There is
also a download of a tool named “Ground”, based on the code of the Mips system (Edelkamp, 2003b), that takes in
the full syntax of PDDL2.2 (Hoffmann & Edelkamp, 2005) and puts out a grounded representation (we did not have
to use the tool in IPC-4 since the temporal and numeric planners all had their own pre-processing steps implemented).
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formulation. In all cases but one, enumerating effect outcomes was feasible. The single excep-
tion was another version of power supply restoration where we were forced to use Nebel’s (2000)
method. Details of this process, and exceptions where we didnot use adl2strips but some more
domain-specific method, are described in the sections on theindividual domains in Appendix A.

2.2 Compilations of Derived Predicates

There are several proposals in the literature as to how to compile derived predicates away, un-
der certain restrictions on their form or their use in the rest of the domain description (Gazen &
Knoblock, 1997; Garagnani, 2000). A compilation scheme that works in general has been proposed
by Thiébaux, Hoffmann, and Nebel (2003, 2005). Thiébaux et al. also proved that there is no com-
pilation scheme that works in general and that does not, in the worst case, involve an exponential
blow-up in either the domain description size or in the length of the plans. Note here that “expo-
nential” refers also to the increase in plan length, not justto the description blow-up, unlike the
compilation of conditional effects discussed above. This makes the compilation of derived pred-
icates a rather difficult task. In IPC-4, compilation schemes oriented at the approaches taken by
Gazen and Knoblock (1997), and Thiébaux et al. (2003, 2005), were used. We detail this below.
First, let us explain what derived predicates are, and how the compilations work.

Derived predicates are predicates that are not affected by any of the operators, but whose truth
value can be derived by a set ofderivation rules. These rules take the formφ(x) ⇒ P (x). The
basic intuition is that, ifφ(x) is satisfied for an instantiationc of the variable vectorx, thenP (c)
can be concluded. More formally, the semantics of the derivation rules are defined bynegation as
failure: starting with the empty extension, instances ofP (c) are derived until a fixpoint is reached;
the instances that lie outside the fixpoint are assumed to be FALSE. Consider the following example:

(:derived (trans ?x ?y) (or (edge ?x ?y ) (exists (?z) (and (edge ?x ?z) (trans ?z ?y)))))

This derivation rule defines the transitive closure over theedges in a graph. This is a very typical
application of derived predicates. For example, “above” inthe Blocksworld is naturally formalized
by such a predicate; in our power supply restoration domain,transitive closure models the power
flow over the paths in a network of electric lines. Obviously,the pairs “?x” and “?y” that arenot
transitively connected are those that do not appear in the fixpoint – negation as failure.

Matters become interesting when we think about how derived predicates are allowed to refer to
each other, and how they may be used in the rest of the task description. Some important distinctions
are: Can a derived predicate appear in the antecedent of a derivation rule? Can a derived predicate
appearnegatedin the antecedent of a derivation rule? Can a derived predicate appear negated in an
action precondition or the goal?

If derived predicates do not appear in the antecedents of derivation rules, then they are merely
non-recursive macros, serving as syntactic sugar. One can simply replace the derived predicates
with their definitions.8 If a derived predicateP appears negated in the (negation normal form of the)
antecedent of a derivation rule for predicateQ, then the fixpoints ofP andQ can not be computed
in an interleaved way: the extension ofQmay differ depending on the order in which the individual
instances are derived. Say the rule forP isA(x) ⇒ P (x), whereA is a basic predicate, and the rule
for Q is ¬P (x) ⇒ Q(x). Say we have objectsa andb, and our current state satisfies (only)A(a).

8. If the derived predicates are recursive but cycle-free, they can be replaced with their definitions but that may incure
an exponential blow-up.
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Computing the derived predicates in an interleaved way, we may deriveA(a) ⇒ P (a),¬A(b) ⇒
Q(b), and stop; we may also derive¬P (a) ⇒ Q(a),¬A(b) ⇒ Q(b), A(a) ⇒ P (a). There is
a non-monotonic behavior, making it non-trivial to define what the extension ofB is. To keep
things simple – after all the extensions of the derived predicates must be computed in every new
world state – Thiébaux et al. (2003, 2005) propose to simplyorderQ afterP . That is, we compute
P ’s extension first and then computeQ based on that. Generalized, one ends up with a semantics
corresponding to that of stratified logic programs (Apt, Blair, & Walker, 1988). In the context of
IPC-4, i.e., in PDDL2.2 (Hoffmann & Edelkamp, 2005), for thesake of simplicity the use of negated
derived predicates in the antecedents of derivation rules was not allowed.

Whether or not derived predicates appear negated in action preconditions or the goal makes
a difference for Gazen and Knoblock’s (1997) compilation scheme. The idea in that scheme is
to simply replace derivation rules with actions. Each ruleφ(x) ⇒ P (x) is replaced with a new
operator with parametersx, preconditionφ(x) and (add) effectP (x). Actions that can influence the
truth value ofφ – that affect any of the atoms mentioned inφ – delete all instances ofP . In words,
the new actions allow the derivation ofP , and if a normal action is applied that may influence the
value ofP , then the extension ofP is re-initialized.

If derived predicates are not used negated, then Gazen and Knoblock’s (1997) compilation
scheme works. However, say¬P (c) is contained in some action precondition. In the compiled
version, the planner can achieve this precondition simply by not applying the “derivation rule” – the
action – that addsP (c). That is, the planner now has a choice of what predicate instances to derive,
which of course is not the same as the negation as failure semantics. The reader may at this point
wonder why we do not compile the negations away first, and thereafter use Gazen and Knoblock’s
(1997) compilation. The problem there would be the need forinverse derivation rulesthat work
with the negation as failure semantics. It is not clear how this should be done. Say, for example, we
want to define the negated version of the “(trans ?x ?y)” predicate above. One would be tempted to
just take the negation of the derivation rule antecedent:

(:derived (not-trans ?x ?y) (and (not-edge ?x ?y) (forall (?z) (or (not-edge ?x ?z) (not-trans ?z ?y)))))

This does not work, however. Say every node in the graph has atleast one adjacent edge. Starting
with an empty extension of “(not-trans ?x ?y)”, not a single instantiation can be derived: given any
x and y between which there is no edge, for those z that have an edge to x we would have to have
(not-trans z y) in the first place.

One possible solution to the above difficulties is to extend Gazen and Knoblock’s (1997) compi-
lation with constructs that force the planner to compute theentire extension of the derived predicates
before resuming normal planning. A full description of this, dealing with arbitrary derivation rules,
is described by Thiébaux et al. (2003, 2005). In a nutshell,the compilation works as follows. One
introduces flags saying if one is in “normal” or in “fixpoint” mode. Normal actions invoke the fix-
point mode if they affect any predicates relevant to the derivation rules. In fixpoint mode, an action
can be applied that has one conditional effect for each derivation rule: if the effect condition is true,
and the respective derived predicate instance is false, then that predicate instance is added, plus a
flag “changes-made”. Another action tests whether there hasbeen a fixpoint: if “changes-made” is
true, then the action just resets it to false; if “changes-made” is false, then the action switches back
to normal mode. To reduce the domain to STRIPS, after this compilation of derived predicates, the
negations and conditional effects must be compiled away with the techniques explained earlier.
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One would imagine that Thiebaux et al.’s (2003, 2005) compilation, making use of rather com-
plicated constructs, tends to confuse domain independent search techniques. Indeed, Thiébaux
et al. (2003, 2005) report that even a completely naive explicit treatment of derived predicates in
FF performs a lot better, in some benchmark domains, than thestandard version of FF applied to
the compiled benchmarks. Gazen and Knoblock’s (1997) compilation makes use of less artificial
constructs, and is thus preferable whenever it can safely beapplied. Note, however, that both compi-
lations imply a potentially exponential blow-up in plan length: exponentialin the arity of the derived
predicates. The worst case is that every action affects the derivation rules, and every re-computation
of the extension of the derived predicates has to go through all those predicates’ instantiations. In
such a situation, between every pair of normal actions the planner has to apply on the order of|C|a

actions, wherea is the maximum arity of any derived predicate. Whilea is typically very small
– power supply restoration is the only domain we are aware of that features a derived predicate
with more than two (four, namely) arguments – even a plan length increase linear in the number of
objects can mean a quite significant decrease in planner performance.

Of the IPC-4 benchmarks, derived predicates occur (only) inpower supply restoration (Ap-
pendix A.4) and model checking safety properties (AppendixA.3). For the latter, where the derived
predicates do not occur negated, Stefan Edelkamp encoded a domain version without derived pred-
icates by hand, using a method along the lines of the one described by Gazen and Knoblock (1997).
For power supply restoration, where derived predicates do occur negated, we used a variation of the
method described by Thiébaux et al. (2003, 2005). In both cases, due to the increase in plan length
we considered the resulting domain formulation too different from the original formulation to be di-
rectly compared with it, in terms of planner performance. Sothe compiled formulations were posed
to the competitors as distinct domainversions, instead of alternative domain version formulations.
Indeed, just as we expected, planner results in IPC-4 were much worse for the compiled encodings.

2.3 Compilations of Timed Initial Literals

Timed initial literals are literals that are known to becometrue at time points pre-specified in the
initial state. Such literals can be compiled into durational PDDL relatively easily, at the cost of
the plan length and the domain description size blowing up linearly in the number of timed initial
literals. The compilation was proposed and brought to our attention by Fox, Long, and Halsey
(2004). The idea is to use a “wrapper” action that must be applied before any other action, and
whose duration is the occurrence time of the last timed initial literal. The planner must also apply
a sequence of “literal” actions that achieve all the timed initial literals by order of occurrence,
the durations being the time intervals between the occurrences. When the “wrapper” action has
terminated, the “literal” actions can no longer be applied.So the planner is forced to apply them all
in direct sequence. This suffices to encode the desired semantics. Consider the following example:

(:init
(at 9 (have-to-work))
(at 19 (not (have-to-work)))
(at 19 (bar-open))
(at 23 (not (bar-open))))

To encode this in standard durational PDDL, the “wrapper” will be:

(:action wrapper
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:parameters ()
:duration (= ?duration 23)
:condition
(at start (no-wrapper))
:effect
(and (at start (not (no-wrapper)))

(at start (wrapper-started))
(at start (wrapper-active))
(at start (literal-1-started))
(at end (not (wrapper-active)))))

Here, “no-wrapper” ensures only one wrapper action is executed; “wrapper-started” is inserted into
the precondition of every normal action and thus ensures that the wrapper is started before any other
action is executed; “wrapper-active” will be a precondition of the “literal” actions. Precisely, these
will be:

(:action literal-1
:parameters ()
:duration (= ?duration 9)
:condition
(and (over all (wrapper-active))

(over all (literal-1-started)))
:effect
(and (at end (not (literal-1-started)))

(at end (literal-2-started))
(at end (have-to-work))))

(:action literal-2
:parameters ()
:duration (= ?duration 10)
:condition
(and (over all (wrapper-active))

(over all (literal-2-started)))
:effect
(and (at end (not (literal-2-started)))

(at end (literal-3-started))
(at end (not (have-to-work)))
(at end (bar-open))))

(:action literal-3
:parameters ()
:duration (= ?duration 4)
:condition
(and (over all (wrapper-active))

(over all (literal-3-started)))
:effect
(and (at end (not (literal-3-started)))

(at end (not (bar-open)))
(at end (literals-done))))
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The fact “literals-done” will be made a goal, so the planner must actually apply the “literal” actions.
Note that we need only three of these actions here, since two of the timed initial literals – no
longer having to work and the opening of the bar – are scheduled to occur at the same time. Note
also that, as with Nebel’s (2000) compilation of conditional effects and Thiebaux et al.’s (2003,
2005) compilation of derived predicates, the compiled encoding is likely to be confusing for domain
independent search methods.

Many of the IPC-4 domains made use of timed initial literals (in some versions) to encode
various kinds of time windows (see Appendix A). We compiled these domain versions into pure
(durational) PDDL as above, and provided the resulting encodings as additional domainversions.
Due to the increase in the number of actions needed for the plans, we figured that the compilation
constructs were too much of a change for direct comparison. Indeed, as with the derived predicates,
planner results in IPC-4 were much worse for the domain versions compiled in this way.

3. A Summary of the Domains

In this section we provide a brief summary of the IPC-4 domains. For each domain, we provide: a
short description of the application; our motivation for inclusion of the domain; a brief explanation
of the main simplifications made for IPC-4; and a brief explanation of the different domain versions
and formulations used in IPC-4. We proceed in alphabetical order.

3.1 Airport

We had a contact person for this application domain, Wolfgang Hatzack, who has been working in
this application area for several years. The domain was adapted for IPC-4 by Jörg Hoffmann and
Sebastian Trüg
Application. The task here is to control the ground traffic at an airport. Timed travel routes must be
assigned to the airplanes so that they reach their targets. There is inbound and outbound traffic; the
former are airplanes that must take off, the latter are airplanes that have just landed and have to park.
The main problem constraint is, of course, to ensure the safety of the airplanes. This means to avoid
collisions, and also to prevent airplanes from entering theunsafe zones behind large airplanes that
have their engines running. The optimization criterion is to minimize the summed up travel time (on
the surface of the airport) of all airplanes.9 There usually arestandard routes, i.e., routes that any
airplane must take when outbound from a certain parking area, or inbound from a certain runway.
The reason for introducing such routes is to reduce complexity for human ground controllers, since
significant computer support is not yet available at real airports. Solving instances optimally (the
corresponding decision problem) isPSPACE-hard without standard routes (Helmert, 2006b) and
NP-complete ifall routes are standardized (Hatzack & Nebel, 2001). In the latter case, we have a
pure scheduling problem. In the former case, complicated – but unrealistic – airport traffic situations
can lead to exponentially long solutions, see Section 4.1.
Motivation. Our main motivation for including this domain was that we were able to model the
application quite accurately, and, in particular, to generate quite realistic instances. In fact, we
were able to generate instances based on a real airport. Thiswas made possible by our contact
to Wolfgang Hatzack, who completed a PhD about this application (Hatzack, 2002). Apart from

9. An alternative criterion would be to minimize the summed up squared delay of all airplanes. This is in the interest
of the airlines; minimizing summed up travel time is in the interest of the airport. Neither of the two can be easily
modelled in PDDL2.2, as we discuss in Simplifications, below.
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developing domain-specific solutions (Hatzack & Nebel, 2001), he developed a realistic simulation
tool, which he kindly supplied to us for the purpose of generating the IPC-4 domain versions and test
instances. Sebastian Trüg implemented options inside thesimulator that allowed it, at any point in
time during the simulation of traffic flow, to output the current traffic situation in PDDL format. The
simulator included the real airports Frankfurt, Zurich, and Munich. Frankfurt and Zurich proved too
large for our purposes, but we were able to devise competition instances based on Munich airport.
Simplifications. We had to make two simplifications. The first amounts to a discretization of space
(location) on the airport, making the domain amenable to PDDL style discrete actions. With a
continuous space representation, one would need actions with a continuous choice ofhow far to
move. While the discretization loses precision, we believethat it does not distort the nature of
the problem too much. Due to the amount of expected conflicting traffic at different points in the
airport, which is high only at parking positions, it is relatively easy to choose a discretization –
with segments ofdifferent length – that is precise and small enough at the same time. Oursecond
simplification is more severe: we had to drop the original optimization criterion, which is very
awkward to express in current PDDL. To model the travel timesof the airplanes, one needs access
to the times at which the planswait, i.e., do nothing.10 We are not aware of a way to express this
in current PDDL. The IPC-4 committee voted against the introduction of an additional language
construct, a “look at the clock”, since that didn’t seem relevant anywhere else. Another option
would be to introduce explicit waiting actions, which causes a lot of trouble because, similar to
continuous space, there must be a continuous choice ofhow longto wait. In the end, we decided
to just drop the criterion for now, and ask the planners to optimize standard makespan instead,11

corresponding to the arrival time of the last airplane (meaning, arrival at the destination in the
airport). This is not ideal, but a reasonable optimization criterion. No planning system participating
in IPC-4, with the single exception of LPG-td (Gerevini, Saetti, & Serina, 2006), was able to take
account of general optimization criteria other than the built-in ones (like makespan). We did not use
full standard routes, thus allowing the airplanes a choice of where to move. Wedid use standards
for some routes, particularly the regions near runways in large airports. For one thing, this served
to keep large airports manageable for the PDDL encoding and planners; for another thing, it seems
a good compromise of exploiting the capabilities of computers while at the same time remaining
close to existing practice.
Versions and Formulations. We generated four versions of the airport domain: a non-temporal
one; a temporal one; a temporal one with time windows, where the fact that planes will land in the
future and block certain runways is modeled using timed initial literals; and the latter version, but
with timed initial literals compiled away. In all versions,the constraints ensuring airplane safety
are modelled with ADL logical formulas. A compilation of these into partially grounded STRIPS
provides, in each version, an alternative formulation: each domain version has one ADL formulation
and one STRIPS formulation.

3.2 Pipesworld

Frederico Liporace has been working in this application area for several years; he submitted a paper
on an early domain version to the workshop on the competitionat ICAPS’03. The domain was
adapted for IPC-4 by Frederico Liporace and Jörg Hoffmann.

10. The same difficulty arises in the modelling of delay, for which one must also compute the travel times.
11. Makespan, in Planning, means the amount of time from the start of the plan until the last action stops executing.
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Application. Here the task is to control the flow of different oil derivatives through a pipeline
network, so that certain product amounts are transported totheir destinations. Pipeline networks
are graphs consisting of areas (nodes) and pipes (edges), where the pipes can differ in length. The
available actions are to pump liquid into ends of pipes, withthe effect that the liquid at the other end
of the pipe gets ejected. The application is rich in additional constraints, like, constraints on what
types of products may interface within a pipe, restricted tankage space in areas, and deadlines for
arrival of products.
Motivation. Our main motivation for including this domain was its original structure. If one inserts
something into a pipe at one end, something possibly completely different comes out of the pipe
at its other end. In this way,changing the position of one object directly results in changing the
position of several other objects– namely, all objects inside the affected pipeline. This is not the
case in any other transportation domain we are aware of, in fact it is more reminiscent of complicated
single-player games such as Rubik’s Cube. Indeed, the strong interaction between objects can lead
to several subtle phenomena. For example, there are instances where any solution must pump liquid
through a ring of pipeline segments in a cyclic fashion.
Simplifications. We had to severely simplify this domain in order to be able to solve reasonably
complex instances with current planners. Most importantly, our encoding is heavily based on assum-
ing a smallest indivisible unit of liquid, abatch. Every amount of liquid in the encoding is modelled
in terms of a number of batches. To capture the continuous nature of the real application, this means
that one has to choose batch size in a trade-off between encoding size and accuracy. The trade-off
is less well-behaved than the one in Airport (choosing “segments” sizes) since the unit size cannot
be made flexible: every batch may pass through every pipeline, and so the smallest batch governs
the discretization of all pipelines. This is in contrast to Airport, where segments may vary in size.
As another important simplification, we used “personalized” goals, i.e. the goals referred to specific
batch objects rather than to product amounts. This serves toavoid large disjunctions enumerating
all possible combinations of individual batches. The simplifications are quite severe and indeed
it seems unlikely that a realistic representation of Pipesworld, in particular with real-valued prod-
uct amounts instead of batches, could be solved efficiently by planners without introducing more
specialized language constructs – a sort of “queue” data structure – into PDDL, see Appendix A.2.5.
Versions and Formulations.We created six different versions of Pipesworld: four versions with /
without temporal actions, and with/without tankage restrictions, respectively; one temporal version
without tankage restrictions but with arrival deadlines for the goal batches; one version identical to
the last one except that timed initial literals were compiled away.

3.3 Promela

This domain was created for IPC-4 by Stefan Edelkamp.
Application. Here the task is to validate properties in systems of communicating processes (often
communication protocols), encoded in the Promela language. Promela (PROcess MEta LAnguage)
is the input language of the model checker SPIN (Holzmann, 2003). The language is loosely based
on Dijkstra’s guarded command language, borrowing some notation from Hoare’s CSP language.
One important property check is to detectdeadlockstates, where none of the processes can apply
a transition. For example, a process may be blocked when trying to read data from an empty
communication channel. Edelkamp (2003a) developed an automatic translation from Promela into
PDDL, which was extended to generate the competition examples.
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Motivation. Our main motivation for including this domain was to furtherpromote and make vis-
ible the important connection between Planning and Model Checking. Model Checking(Clarke,
Grumberg, & Peled, 1999) itself is an automated formal method that basically consists of three
phases: modeling, specification and checking. In the first two phases both the system and the cor-
rectness specification are modeled using some formalism. The last step automatically checks if the
model satisfies its specification. Roughly speaking, this step analyzes the state space of the model to
check the validity of the specification. Especially in concurrent systems, where several components
interact, state spaces grow exponentially in the size of thecomponents of the system. There are two
main research branches in model checking:explicit-state model checking, as implemented in SPIN,
exploits automata theory and stores each explored state individually, whilesymbolic model checking
describes sets of states and their properties using binary decision diagrams (BDDs) or other efficient
representations for Boolean formulas.

Checking the validity of areachability property, a property that asks if a system state with a cer-
tain property is reachable, is very similar to the question of plan existence. The use of model check-
ing approaches to solve planning problems has been exploredin some depth, e.g. by Cimatti, Roveri,
and Traverso (1998), Bertoli, Cimatti, Roveri, and Traverso (2001), Lago, Pistore, and Traverso
(2002), Kvarnström, Doherty, and Haslum (2000), Bacchus and Kabanza (2000), Hölldobler and
Stör (2000), Fourman (2000), Edelkamp (2003b), Dierks (2005), Kabanza and Thiébaux (2005).
However, not much has been done in the inverse direction, applying planners to model checking
problems. Running IPC-4 planners on planning encodings of Promela specifications is a first step
in doing just that.

The Promela domain also contributes unusual structural properties to our domain set; the com-
putational complexity and local search topology are quite different as will be discussed in Section 4.
Simplifications. The main simplification we had to make was to use very simple example classes
of communicating processes. As PDDL models refer to fixed-length state vectors, we could not
include process construction calls. We therefore only consideredactive processes, i.e., processes
that are called only once at initialization time. PDDL also does not support temporally extended
goals, so we had to consider reachability properties only. Moreover, by the prototypical nature of
our language compiler, many features of Promela such as rendezvous communication were not sup-
ported. Although we have limited support of shared variables, during the competition we chose
simple message passing protocols only; and while we experimented with other reachability prop-
erties, the PDDL goals in the competition event were on deadlock detection only. Concretely, the
IPC-4 instances come from two toy examples used in the area ofModel-Checking: the well-known
“Dining Philosophers” problem, and an “Optical Telegraph”problem which can be viewed as a
version of Dining Philosophers where the philosophers havea complex inner life, exchanging data
between the two hands (each of which is a separate process). In both, the goal is to reach a deadlock
state.
Versions and Formulations.We created eight different versions of the domain. They differ by the
Promela example class encoded (two options), by whether or not they use numeric variables in the
encoding, and by whether or not they use derived predicates in the encoding. The four encodings
of each Promela example class are semantically equivalent in the sense that there is a 1-to-1 corre-
spondence between plans. We decided to make them different versions, rather than formulations,
because derived predicates make a large difference in plan length, and numeric variables make a
large difference in applicability of planning algorithms/systems. The translation from Promela to
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PDDL makes use of ADL constructs, so each domain version contains one ADL formulation and
one (fully grounded) compiled STRIPS formulation.

3.4 PSR

Sylvie Thiébaux and others have worked on this applicationdomain. The domain was adapted for
IPC-4 by Sylvie Thiébaux and Jörg Hoffmann.
Application. The task in PSR (power supply restoration) is to reconfigure afaulty power distribu-
tion network so as to resupply customers affected by the faults. The network consists of electric
lines connected by switches and fed via a number of power sources that are equipped with circuit-
breakers. When faults occur, the circuit-breakers of the sources feeding the faulty lines open to
protect the network, leaving not only these lines but also many healthy ones un-supplied. The net-
work needs to be reconfigured by opening and closing switchesand circuit-breakers in such a way
as to resupply the healthy portions. Unreliable fault sensors and switches lead to uncertainty about
the state of the network. Furthermore, breakdown costs thatdepend on various parameters need to
be optimized under constraints on the capacity of sources and lines. The application is a topic of on-
going interest in the field of power distribution, and has been investigated by the AI community for
a long time, including from an AI planning standpoint (Thiébaux, Cordier, Jehl, & Krivine, 1996;
Thiébaux & Cordier, 2001; Bertoli, Cimatti, Slaney, & Thi´ebaux, 2002; Bonet & Thiébaux, 2003).
Motivation. Our motivation for including PSR was twofold. First, it is a well-researched interesting
application domain. Second, it has an original structure rarely found in previous benchmarks. The
most natural encoding models the power propagation using recursive derived predicates that com-
pute the transitive closure of the connectivity relation inthe network. In contrast with most other
planning benchmarks, the number of actions needed in an optimal plan does not necessarily grow
with instance size: the available actions are to alter the position of switches, and even in a large
network altering the position of just a few switches may suffice for reconfiguration. The difficult
question to answer is,whichswitches.
Simplifications. Three major simplifications had to be made. First, for deterministic planning we
had to assume that the network state is fully observable, i.e., that the initial state description is
complete, and that the actions always succeed. Second, we ignored all numerical and optimization
aspects of PSR. Third, we used personalized goals in the sense that the lines to be supplied are named
explicitly in the goal. Note that, even in this simplified form, the domain exhibits the structure
explained above.
Versions and Formulations. We created four domain versions, differing primarily by size and
available formulations. The most natural domain formulation is in ADL with derived predicates.
Though we experimented with many combinations of PDDL encodings and compilation strategies,
the size of the instances that we could compile into simpler languages was quite restricted. Precisely,
the versions are: a “large” version in ADL plus derived predicates; a “middle” version that we
could devise also in SIMPLE-ADL plus derived predicates andin STRIPS plus derived predicates;
a “middle-compiled” version in ADL, identical to the “middle” version except that the derived
predicates were compiled away; and a “small” version in pureSTRIPS. The instances in the latter
domain version had to be particularly small, since it was extremely difficult to come up with an
encoding in pure STRIPS that did not either yield prohibitively long plans, or prohibitively large
PDDL descriptions. In fact, to obtain the “small” version weapplied a pre-computation step (Bertoli
et al., 2002) that obviates the need for reasoning about power propagation and, consequently, the
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need for derived predicates. In the resulting tasks, opening or closing a switch directly – without the
detour to power propagation – affects other parts of the network. Thus the planner no longer needs
to compute the flow of power through the network, but is left with the issue of how to configure that
flow.

3.5 Satellite

This domain was introduced by Long and Fox (2003) for IPC-3; it was adapted for IPC-4 by Jörg
Hoffmann. The domain comes from a NASA space application, where satellites have to take images
of spatial phenomena. Our motivation for inclusion in IPC-4was that the domain is application-
oriented in a similar sense to the new domains. Also, we wanted to have some immediate compari-
son between the performance achieved at IPC-3, and that achieved at IPC-4. On top of the 5 domain
versions used in IPC-3, we added 4 new versions, introducingadditional time windows (formulated
alternatively with timed initial literals or their compilation) for the sending of data to earth.

3.6 Settlers

This domain was also introduced by Long and Fox (2003) for IPC-3. The task is to build up an
infrastructure in an unsettled area, involving the building of housing, railway tracks, sawmills, etc.
The distinguishing feature of the domain is that most of the domain semantics are encoded in nu-
meric variables. This makes the domain an important benchmark for numeric planning. For that
reason, and because at IPC-3 no participant could solve any but the smallest instances, we included
the domain into IPC-4. No modification was made except that wecompiled away some universally
quantified preconditions in order to improve accessibility.

3.7 UMTS

Roman Englert has been working in this application area for several years. The domain was adapted
for IPC-4 by Stefan Edelkamp and Roman Englert.
Application. The third generation of mobile communication, the so-called UMTS (Holma &
Toskala, 2000), makes available a broad variety of applications for mobile terminals. With that
comes the challenge tomaintain several applications on one terminal. First, due to limitedre-
sources, radio bearers have restrictions in the quality of service (QoS) for applications. Second, the
cell setup for the execution of several mobile applicationsmay lead to unacceptable waiting periods
for the user. Third, the QoS may be insufficient during the call setup in which case the execution
of the mobile application is shut down. Thus arises the callsetupproblem for several mobile ap-
plications. The main requirement is, of course, to do the setup in the minimum possible amount of
time. This is a (pure) scheduling problem that necessitatesordering and optimizing the execution of
the modules needed in the setup. As for many scheduling problems, findingsome, not necessarily
optimal, solution is trivial; the main challenge is to find good-quality solutions, optimal ones ideally.
Motivation. Our main motivation for modelling this pure scheduling problem as a planning domain
was that there is a strong industrial need forflexiblesolution procedures for the UMTS call setup,
due to the rapidly evolving nature of the domain, particularly of the sorts of mobile applications that
are available. The ideal solution would be to just put an automatic planner on the mobile device,
and let it compute the optimized schedules on-the-fly. In that sense, UMTS call setup is a very
natural and promising field for real-world application of automatic planners. This is also interesting
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in the sense that scheduling problems have so far not been central to competitive AI planning, so
our domain serves to advertise the usefulness of PDDL for addressing certain kinds of scheduling
problems.
Simplifications. The setup model we chose only considers coarse parts of the network environment
that are present when UMTS applications are invoked. Actionduration is fixed rather than computed
based on the network traffic. The inter-operational restrictions between different concurrent devices
were also neglected. We considered plausible timings for the instances rather than real-application
data from running certain applications on a UMTS device. We designed the domain for up to
10 applications on a single device. This is a challenge for optimal planners computing minimum
makespan solutions, but not so much a challenge for satisficing planners.
Versions and Formulations. We created six domain versions; these arise from two groups with
three versions each. The first group, the standard UMTS domain, comes with or without timing
constraints. The latter can be represented either using timed initial literals, or their compilation; as
before, we separated these two options into different domain versions (rather than domain version
formulations) due to the increase in plan size. The second group of domain versions has a similar
structure. The only difference is that each of the three domain versions includes an additional “flaw”
action. With a single step, that action achieves one needed fact, where, normally, several steps are
required. However, the action is useless in reality becauseit deletes another fact that is needed, and
that cannot be re-achieved. The flaw action was added to see what happens when we intentionally
stressed planners: beside increasing the branching factor, the flaw actiondoeslook useful from the
perspective of a heuristic function that ignores the deletelists.

4. Known (Theoretical) Results on Domain Structure

In this section, we start our structural analysis of the IPC-4 domains by summarizing some known
results from the literature. Helmert (2006b) analyzes the domains from a perspective of domain-
specific computational complexity. Hoffmann (2005) analyzes all domains used in the IPCs so far,
plus some standard benchmarks from the literature, identifying topological properties of the search
space surface under the “relaxed plan heuristic” that was introduced with the FF system (Hoffmann
& Nebel, 2001), and variants of which are used in many modern planning systems. Both studies are
exclusively concerned with purely propositional – non-temporal STRIPS and ADL – planning. In
what follows, by the domain names we refer to the respective (non-temporal) domain versions.12

4.1 Computational Complexity

Helmert (2006b) has studied the complexity of plan existence and bounded plan existence for the
IPC-4 benchmark problems. Plan existence asks whether a given planning task is solvable. Bounded
plan existence asks whether a given planning task is solvable with no more than a given number of
actions. Helmert established the following results.

In Airport, both plan existence and bounded plan existence are PSPACE-complete, even when
all aircraft are inbound and just need to taxi to and park at their goal location, the map is planar
and symmetric, and the safety constraints simply prevent planes from occupying adjacent segments.

12. The UMTS domain, which has only temporal versions, is nottreated in either of the studies. As for computational
complexity, it is easy to see that deciding plan existence isin P and deciding bounded plan existence (optimizing
makespan) isNP-complete for UMTS. Topological properties of the relaxed plan heuristic haven’t yet been defined
for a temporal setting.
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The proof is by reduction from the Sliding Tokens puzzle, where a set of tokens must reach a goal
assignment to the vertices of a graph, by moving to adjacent vertices while ensuring that no two
tokens ever find themselves on adjacent vertices. The lengthof optimal sequential plans can be
exponential in the number of tokens, and so likewise in the airport domain. Even parallel plans can
only be shorter by a linear amount, since each plane can move at most once per time step. The proof
for the Sliding Tokens puzzle is quite complicated because it involves construction of instances
with exponentially long optimal plans. As one would expect,the constructions used are more than
unlikely to occur on a real airport; this is in particular true for the necessary density of conflicting
“traffic” on the graph structure. We consider this interesting since it makes Airport a benchmark
with an extremely high worst-case complexity, but with amuchmore good-natured typical case
behavior. Typically, there is ample space in an airport for (comparatively) few airplanes moving
across it.

In Pipesworld, whether with or without tankage, both plan existence and bounded plan exis-
tence are NP-hard. It is unknown whether they are in NP, however. The NP-hardness proof is by
reduction from SAT with at most four literals per clause and where each variable occurs in at most
3 clauses. Such a SAT instance is reduced to a network in a way so that parts of the network (vari-
able subnetworks) represent the choice of an assignment foreach of the variables, and other parts
(clause subnetworks) represent the satisfaction of each ofthe clauses. The content of areas and pipes
are initialized with batches in a way so that interface restrictions will guarantee that a goal area is
reached by a certain batch in each clause subnetwork iff the clause is satisfied by the assignment.

For general Promela planning, as defined by Edelkamp (2003a), both plan existence and bounded
plan existence are PSPACE-complete. The PSPACE-hardness proof is by reduction from the halt-
ing problem in space-restricted Turing Machines (TM). The cells of the machine’s tape are each
mapped onto a process and a queue of unit capacity, the statesof the TM form the set of Promela
messages, the TM’s alphabet form the set of Promela states inall processes, and the Promela tran-
sitions encode the TM’s transitions. It can be shown that theTM halts iff the Promela task reaches
a deadlock.

Dining Philosophers, on the other hand, has a particular structure where there is one process per
philosopher, all with the same transition graph. Optimal plans can be generated in linear time in the
number of philosophers by making a constant number of transitions to reach the same known state
in each of the graphs. Similar considerations apply to Optical Telegraph.

PSR tasks can also be solved optimally in polynomial time, but this requires a rather complex
algorithm. All plans start with the wait action which opens all circuit-breakers affected by a fault. In
their simplest form, optimal plans will follow by prescribing a series of actions opening all switches
connecting a feedable line to a faulty one. This is necessarybut also sufficient to ensure that the
network is in a safe state in which no faulty line can be re-supplied. Then a minimal set of devices
(disjoint from the previous one) must be closed so as to resupply the rest of the network. This can
be achieved by generating a minimal spanning tree for the healthy part of the network, which can
be done in polynomial time.

Figure 2 gives an overview of these results and summarizes Helmert’s (2003) results for other
standard benchmarks. The domain set displayed is the same set as investigated by Hoffmann (2005),
with a few minor differences explained shortly. Blocksworld-no-arm, Briefcaseworld, Ferry, Fridge,
Simple-TSP, and Tireworld are traditional planning benchmarks that were never used in an IPC.13

13. Blocksworld-no-arm is the version of Blocksworld whereblocks can be moved directly to their destination, without
referring to a robot arm. Simple-TSP was used by (Fox & Long, 1999) to demonstrate the potential of symmetry
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Figure 2: An overview of Helmert’s results on the computational complexity of the benchmarks.

The IPC-1 benchmarks are Assembly, Grid, Gripper, Logistics, Movie, Mprime, and Mystery. The
IPC-2 benchmarks are Blocksworld-arm, Freecell, Logistics, Miconic-ADL, Miconic-SIMPLE,
Miconic-STRIPS (“Miconic” is Schindler Lift’s name for theelevator domain), and Schedule. The
IPC-3 benchmarks are Depots, Driverlog, Freecell, Rovers,Satellite, and Zenotravel. The IPC-4
benchmarks are displayed in bold face, including the (hypothetical) general Promela domain.

The table in Figure 2 is organized along two axes, where thex axis shows the complexity of
deciding bounded plan existence, and they axis shows the complexity of deciding (unbounded) plan
existence. Membership in a table entry means, for the NP and PSPACE rows and columns, that the
respective problem is complete for the respective complexity class. An exception is the Pipesworld
domain, for which, as stated above, it is still unknown whether the two decision problems are also
members of NP. The Assembly domain is not displayed since, there, Helmert (2003) proved only
the existence of exponentially long optimal plans, showingthat plan generation can be quite hard in
the domain. The table sectors above the diagonal are crossedout because unbounded plan existence
can be polynomially reduced to bounded plan existence – justset the bound to2n, wheren is the
number of distinct actions, or, in ADL, the number of distinct conditional effects.

The most striking new feature of IPC-4 is the introduction ofPSPACE-complete benchmark
domains, filling in the top right corner of Figure 2. Thus, thebenchmarks cover all four inhabited
sectors of the table. Of the previous IPCs, each of IPC-1 and IPC-2 cover three sectors – all inhabited

detection. One simply has to visitn nodes, using a move action that can be applied between any twonodes, so that
any permutation of the nodes is an optimal tour. Hoffmann (2005) also investigates the Towers of Hanoi domain.
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sectors except the top right corner – and the IPC-3 benchmarks cover only two sectors – namely,
bounded plan existence is NP-complete for all these domains, and all the domains except Freecell
have a polynomial time algorithm deciding unbounded plan existence.

The IPC-4 benchmarks are exceptional in further aspects notvisible in Figure 2. Most particu-
larly, as explained above, the polynomial decision algorithm for PSR is highly non-obvious. Such
benchmarks are important since, on the one hand, they in principle allow planners to provide effi-
cient solutions, while, on the other hand, necessitating that they employ interesting techniques for
doing so.14 Schedule is the only other polynomial benchmark for which bounded plan generation
requires a non-obvious algorithm. For all the other 20 domains in the left bottom and middle bottom
sectors of the table, the polynomial algorithms – deciding bounded or unbounded plan existence –
are completely trivial, mostly just addressing one subgoalat a time.

As was pointed out already, a final exception lies in the extraordinarily large difference between
worst-case and typical-case behavior in Airport. As we willsee in Section 5, even fully automated
methods (the IPC-4 planners) are, at least for unbounded plan existence (generation), quite efficient
in typical instances of this domain. While large differences between worst-case and typical-case
behavior are not unusual, we believe that the extent of this phenomenon in Airport really is unusual.
For example, planners tend to find PSR much harder than Airport.

4.2 The Topology ofh+

Hoffmann (2005) considers the state spaces (the forward search spaces) of STRIPS and ADL tasks
taken from standard benchmark domains. He defines, given such a task and a world states, h+(s)
to be the length of a shortest possible relaxed plan, or∞ if there is no relaxed plan. A relaxed plan
is a plan that achieves the goal froms if one assumes that the delete lists are all empty. Computing
h+ (the corresponding decision problem) isNP-hard (Bylander, 1994). Many modern planners,
e.g., HSP (Bonet & Geffner, 2001), FF (Hoffmann & Nebel, 2001), SGPlan (Wah & Chen, 2004;
Chen, Hsu, & Wah, 2004), YAHSP (Vidal, 2004), and Fast-Diagonally-Downward (Helmert, 2004,
2006a), can be interpreted as doing some sort of heuristic search with anapproximationof h+, plus
further techniques like problem decomposition (Wah & Chen,2004), lookahead techniques (Vidal,
2004), and additional different heuristic functions (Helmert, 2004). In this context, a question of
great practical interest is the quality of the underlying heuristic function in the addressed domains.
Heuristic quality can be measured in terms of topological properties of the search space surface:
How many local minima are there? How large are they? What about flat regions? Hoffmann (2005)
investigates these questions for theh+ function, for which topological properties of the search space
surface can beproven.

Hoffmann defines topological phenomena following Frank, Cheeseman, and Stutz (1997). He
identifies several parameters that show particularly interesting behavior in planning benchmarks. A
dead endis a world state that is reachable from the initial state but from which the goal state cannot
be reached. Anunrecognized dead endis a dead ends for which h+(s) < ∞. Theexit distance
from a states is the length of a shortest path in the state space leading from s to some other states′,
so thath+(s) = h+(s′), ands′ has a direct neighbor states′′ with h+(s′′) < h+(s′). That is, the
exit distance froms is the number of steps we need to go froms in order to find a better state (s′′),

14. In Helmert’s (2005) words: “I think that domains that canbe solved in polynomial time but where polynomial
algorithms are not obvious are extraordinarily interesting. Deterministic PSR definitely is a domain of that kind
with regard to optimization. NP-hard problems cannot be solved without strong reliance on search, but polynomial
problems can, if the planners capture the important concepts.”

476



ENGINEERING BENCHMARKS FORPLANNING

minus1 since the distance tos′ is measured. Here,s′ plays the role of an “exit” state as used by
Frank et al. (1997). A state lies on alocal minimumif all paths to an exit have a temporary increase
in the heuristic value; otherwise the state lies on abench. Themaximal local minimum exit distance
(mlmed), for a state space, is the maximum over the exit distances ofall states lying on local minima
in the state space. Similarly, themaximal bench exit distance(mbed) is the maximum over the exit
distances of all states lying on benches. The core results ofHoffmann’s (2005) investigation are
displayed in Figure 3.
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Figure 3: An overview of Hoffmann’s results on the topology of h+ in the benchmarks.

Thex-axis in Figure 3 corresponds to properties regarding dead ends. They-axis corresponds to
properties regarding the exit distance from local minima and benches. The domains are assigned to
the appropriate table sectors – classes of domains – depending on the worst-case behavior possible
in them. In more detail, the meaning of the table is the following. A state space is “undirected” if
every transition (action) can be directly inverted; the state space is “harmless” if such an inversion
is not possible, but there are no dead ends anyway; “recognized” means that there are dead ends, but
h+ is ∞ for all of them; “unrecognized” means that there is at least one unrecognized dead end. A
domain falls into the class of its worst-case instance: for example, if there is a single instance whose
state space contains a single unrecognized dead end, then the domain is considered “unrecognized”.
The results are proved, i.e., if a domain is, for example, considered “harmless”, then this means that
provably no instance of the domain contains any dead ends.

On they-axis in Figure 3, the distinction lines correspond to the existence or non-existence of
constantupper bounds on the maximal local minimum exit distance (upper line) and on the maximal
bench exit distance (lower line). Note that constant upper bounds on the maximal local minimum
exit distance exist inall domains below the upper line – in the domains below the lower line, both
bounds exist.15 By “constant”, it is meant here that the bound is valid for every instance of the

15. This presentation assumes that the domains with boundedbench exit distance are a subset of those with bounded
local minimum exit distance. This is not true in general, butdoes hold in all the considered benchmark domains.
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domain, regardless of its size. The actual bounds proved aredisplayed in brackets; local minimum
bound precedes bench bound in the cases where there are both.The right bottom part of the table
is crossed out since unrecognized dead ends have infinite exit distance and so these domain classes
are empty.16

The obvious intuition behind Figure 3 is that there is a transition from “easy” to “hard” – for
planning systems based on heuristic search approximatingh+ – as one moves from the left bottom
side to the top right side of the table. Indeed, the table does, in that sense, coincide very well with
the empirical behavior of, at least, the FF system. Note how extreme the topological behavior is
in many domains. If the upper bound on the local minimum exit distance is0 then this means that
there are no local minima at all. This is the case in 13 of the 30investigated domains. In several
domains, such as the widely used Logistics benchmark, on topof that a single step suffices to reach
an exit from benches. Hoffmann (2005) shows that FF would be polynomial in the bottom classes
of the table, provided with an oracle computingh+.

Considering the table from a perspective of benchmark development, one notices that particu-
larly the older benchmarks tend to lie on the left bottom side; consider for example Ferry, Brief-
caseworld, Fridge, Simple-TSP, and Tireworld. The distribution of the IPC-1 benchmarks – Gripper,
Logistics, Movie, Grid, Assembly, Mystery, and Mprime – is somewhat extreme: the first four in
our list here belong to the most simple classes, the last three belong to the hardest class (until today,
the Mystery and Mprime domains are amongst those causing planners the most trouble). In the
IPC-2 benchmarks – Logistics, Blocksworld-arm, Miconic-STRIPS, Miconic-SIMPLE, Schedule,
Freecell, and Miconic-ADL – again, we have many simple and a few very challenging domains.
The most notable exceptions in that respect are Blocksworld-arm, on the left top side of the table,
and Schedule, which does contain dead ends and local minima.In the IPC-3 benchmarks, the dis-
tribution starts to get more varied. The domains – Zenotravel, Satellite, Depots, Driverlog, Rovers,
and Freecell – span three of the four top classes in the table,plus one of the bottom classes. The
IPC-4 domains, shown in bold face, obviously continue this development. The only two of them
sharing a class are Pipesworld and PSR.17 They continue the emphasis on spanning the top classes
in the table; the only new domain in one of the bottom classes is Dining Philosophers, and that is
highly exceptional in that is has an exceedingly large bound, making the bound practically useless
for exploitation in planning.18 The Satellite domain adopted from the IPC-3 benchmarks serves to
represent (a more interesting instance of) the easier classes. Note that Satellite is so simple here
because we are talking about the STRIPS version, which dropsthe more challenging problem con-
straints formulated with numeric variables. The Airport domain is exceptional in the top right class
in that, again, its worst-case – its place in Figure 3 – differs a lot from its typical case. A dead
end in Airport is a situation where two airplanes completelyblock each other’s paths.19 Of course,
practical airports are designed in a way so that this doesn’tusually happen. As mentioned earlier,
there usually are – non-overlapping, as far as possible – standard routes, and the only place where
blocking can occur is in densely populated areas near parking positions.

16. One could skip unrecognized dead ends from the definitionof the maximum exit distances, but Hoffmann (2005)
argues that this is un-intuitive, plus making things unnecessarily complicated.

17. Actually, Pipesworld is invertible in the sense that every two-step sequence (starting and ending a pumping operation)
can be directly undone. It is considered “harmless” here since the single actions cannot be inverted.

18. Indeed,h+ is a very bad heuristic in Dining Philosophers. It basicallycomes down to counting the number of
unsatisfied goals.

19. The relaxed plan can use free space in between the planes to make them move “across” each other.
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5. New (Empirical) Results on Domain Structure

We now provide an empirical analysis of various structural parameters of the IPC-4 domains. For the
sake of readability and conciseness, we focus on the non-temporal domain versions only. For most
types of data we measure, the results for the temporal domainversions are quite similar. To some
extent, this is visible in the tables showing numbers of actions and facts, for all domain versions, in
the individual domain descriptions in Appendix A.

Our empirical analysis is aimed at highlighting further characteristics of, and differences be-
tween, the IPC-4 domains. Apart from focussing on more practical parameters, the analysis has –
compared to the theoretical results cited in the previous section – the big advantage that it tells us
something about the actualinstancesrun in the competition. Note that the choice of instances can
make a huge difference – for example, as stated earlier, a real-world airport is not very likely to have
exponentially long plans, and neither is it likely to provoke many dead-end situations. Where possi-
ble at all, the instances used in IPC-4 were chosen to be relatively realistic (details in Appendix A).

The analysis is structured into three sub-sections. Section 5.1 shows how, in the individual
domains, the size of the grounded encoding grows over instance size. Section 5.2 assesses the
correspondence between the quality of standard heuristic functions, and the runtime achieved in
IPC-4. Section 5.3, finally, assesses the “fact connectivity” over instance size, meaning the number
of choices one has to achieve each fact, and the number of actions a fact is required for.

5.1 Encoding Size

All current STRIPS and ADL planners, as far as the authors areaware, ground all parameters
and variables in a pre-process, ending up with a task representation consisting of ground facts and
ground actions. An obvious question to ask is how large thesegrounded encodings are. Figure 4
shows our data, numbers of facts and actions plotted over instance size for (selected versions of) the
different domains. The numbers are measured using FF’s pre-processor. This filters out static facts
– facts that are not added or deleted by any action – and “unreachable” actions, meaning actions that
do not appear in a relaxed planning graph (a planning graph without mutex reasoning) for the initial
state (Hoffmann & Nebel, 2001); formulas are compiled into simple STRIPS-like conjunctions of
facts, along the lines of Gazen and Knoblock (1997) as outlined in Section 2.
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Figure 4: Numbers of (a) ground facts and (b) ground actions,plotted over instance number, in
selected versions of the IPC-4 domains.
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In all cases except UMTS (that has only temporal versions), the domain version selected for
Figure 4 is non-temporal. Let us consider the domains one by one. In Airport, there is just one
non-temporal version. The plots in Figure 4 (a) and (b) show us quite nicely how the instances are
scaled, with sharp drops in the curves corresponding to steps to a new underlying airport. Precisely,
instances 1 to 3, 4 to 9, 10 to 20, 21 to 35, and 36 to 50 are based on growing airports, respectively,
and within each airport the number of travelling airplanes grows from just 1 or 2 until up to 15 (in
instance 50). For example, from instance 35 to instance 36 westep from one half of Munich airport,
with 12 airplanes, to the full Munich airport, with just 2 airplanes.

In Pipesworld, there are two non-temporal versions, with and without tankage restrictions. Fig-
ure 4 shows data for the former, which is the more challengingone (the IPC-4 planners fared much
worse on it); without tankage restrictions, there are slightly fewer facts, and about a factor of 5-
10 fewer actions. The Pipesworld instances are scaled in a similar way as the Airport ones: five
growing pipeline networks each feature a growing number of travelling liquid “batches”. The net-
works underlie the instances 1 to 10, 11 to 20, 21 to 30, 31 to 40, and 41 to 50, respectively.
Corresponding drops can be observed when stepping from instance 30 to 31, and, less significantly,
when stepping from 20 to 21 or from 40 to 41. A major differenceto Airport is visible in the
much more crippled nature (featuring much more variance) ofthe curve for the number of actions.
This is because, in Airport, few objects move on a big spacious structure, while, in Pipesworld,
many objects move within a rather dense space.20 This fundamental difference between Airport and
Pipesworld also manifests itself in that the order of curvesis reversed for the numbers of facts and
actions: in Airport, extraordinarily many facts are required to describe the huge airport structure,
while in Pipesworld there are fewer facts for a smaller structure, but many more actions describing
how things move along that structure. As stated earlier, in Pipesworld, different objects affect each
other’spositionwhen moving.

In the Promela domains, Dining Philosophers and Optical Telegraph, the data for the domain
versions with and without derived predicates are identical, if a derivation rule deriving a fact is
counted as an action achieving the fact. The main differenceto what we have seen before lies in
the extremely smooth scaling. Both domains have just a single size parameter, and the numbers of
ground facts and actions grow as linear functions in that parameter – the functions for Optical Tele-
graph being about an order of magnitude higher than those forDining Philosophers. The curves for
Optical Telegraph stop at instance 17 because after that we were not able to compute the grounded
representation – too much time and memory were needed in the simplification of precondition for-
mulas. Note that this is not an artifact of our data presentation, but rather constitutes a serious
limitation to any planner that tries to perform such pre-processing.

In PSR, the most interesting domain versions are “small”, since that could be formulated in
STRIPS, and “large”, since that goes up to instances of a realistic size (in the largest instances, that
is). As the name “small” suggests, the numbers are quite small – to be able to compile into STRIPS,
as indicated earlier we had to make the instancesvery small.21 Essentially the same compilation
problem is also visible in the curves for “large”, that have ahuge number of ground facts and actions
in relatively early instances already. The curves stop at instance 20 because beyond that, simplifying

20. How much the objects can or cannot move affects also the number of ground actions due to the mentioned filtering
of “unreachable” actions.

21. The only notable exception is instance nr. 25, where the number of actions peaks to 9400. This is due to an exceed-
ingly complex goal formula, with 9216 disjuncts in its DNF, of which each yields an extra goal-achievement action,
c.f. Section 2.
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formulas becomes extremely costly. In both versions, we note a high degree of variance both in the
numbers of facts and actions, which somewhat corresponds tothe huge degree of variance to be
observed for planner performance in this domain (see Figure8). Part of this variance, at least
the pace of the oscillations if not their amplitude, can be explained by the way the instances are
scaled. For a given number of sources (the instance size), wegenerated instances with an increasing
minimal number of switches originally fed by a given source,and for a given number of switches,
we generated instances with an increasing percentage of faulty lines ranging from 10% to 70%.
Intuitively, the larger the number of switches per source, the larger and harder we expect the instance
to be. Furthermore, the percentage of faulty lines tends to induce an easy-hard-easy pattern. If most
lines are faulty, only a small part of the network can be resupplied and only a few devices need
to be switched. Similarly, if a very few faulty lines exist, most of the network can be resupplied
with a few switching operations. With an intermediate percentage, the effects of the actions become
more complex – they are conditioned on the positions of many other switches – and so the instances
become critically constrained and harder to solve.

In Satellite, the main observation to be made is the extremely steep ascent of the curves after
instance 20, particularly the growth to extremely high numbers of actions. There are two reasons for
this. First, one action in Satellite (take-image) has 4 parameters and is “reachable” for almost any
combination of objects with the correct types (most of the time, actions have only 2 or 3 parameters).
Second, the size of the instances themselves grows very sharply beyond instance 20 – which, simply,
is because instances 21 to 36, as used in IPC-4, correspond tothe 16 instances posed in IPC-3 to
challenge thehand-tailoredplanners.

We do not consider Settlers here to ease readability of the graphs, and since that domain is
quite obviously exceptional anyway, in that it relies almost completely on numeric variables. For
UMTS, Figure 4 shows data for the plain domain version without time windows and flaw action.
The obvious characteristic is that the numbers of facts and actions areconstants. This is true for all
domain versions, the numbers vary only slightly. The reasonis that, the way the UMTS instances
are scaled, every instance describes the same applicationsand requirements; what changes is (only)
thegoal, specifying what applications actually need to be set up. Independent of this effect of the
particular scaling method used, we can observe that the numbers of facts and actions are relatively
low – around only 100 even in the largest instances, where allthe applications must be set up, and
the plans contain all the actions.

5.2 Quality of Heuristics, and Runtime

In this section, we measure the length of the best (sequential and parallel) plans found by any
planner, the (sequential and parallel) plan length estimates returned by the most common heuristic
functions, and the runtime taken by the planners. Precisely, for the optimal planners, we measure:

• The optimal makespan, as found by the IPC-4 parallel optimalplanners (planners optimizing
makespan).

• The length of a standard plan graph (Blum & Furst, 1997), i.e., the index of the first plan
graph layer that contains the goals without mutexes.

• The best runtime taken by any parallel optimal planner in IPC-4.

• The optimal sequential plan length, as found by the IPC-4 sequential optimal planners.
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• The length of a serialized plan graph, where any pair of non-NOOP actions is made mutex.

• The best runtime taken by any sequential optimal planner in IPC-4.

For the satisficing planners, we measure:

• The best (shortest) plan length, as found by any planner in IPC-4.

• The length of a relaxed plan for the initial state (an action sequence that solves the task if one
assumes all delete lists are empty; computed with FF (Hoffmann & Nebel, 2001)).

• The best runtime taken by any satisficing planner in IPC-4.

Our main goal will be to identify characteristic behavior ofdomains, and to identify characteristic
effects of heuristic quality on performance. The reader will note that, in our selection of measure-
ments, we make several simplifying assumptions. Optimal planners are not exclusively based on
plan graph estimates. Satisficing planners are not exclusively based on relaxed plan estimates. Fur-
ther, some of the satisficing planners minimize makespan, not sequential plan length. We chose to
not take account of the latter since there is no potentially over-estimating (non-admissible) heuristic
specifically estimating parallel plan length; to the best ofour knowledge, all satisficing planners
minimizing makespan actually use a heuristic estimating the number of remaining actions, and em-
ploy some method to greedily arrange the chosen actions as a parallel plan. That said, we do not
wish to imply that our simplifying assumptions are safe in the sense that we do not lose important
information. The simplifying assumptions are necessary tomake the analysis and its presentation
feasible. The data we show definitely do capture many crucialaspects of IPC-4 heuristic quality and
planner runtime. We show data for the individual domains, proceeding in alphabetical order. The
(IPC-4) runtime results were obtained on a Linux machine running two Pentium-4 CPUs at 3GHz,
with 6 GB main memory; time and memory cutoffs were 30 minutesand 1 GB, per instance.

Consider Figure 5, showing data for the Airport domain. Notethat they axis has two different
meanings, runtime on the left hand side, and number of (parallel or sequential) plan steps on the
right hand side. The same applies to all figures below in this sub-section. For Airport, we observe
a clear correlation between quality of plan length estimation, and runtime. For the optimal parallel
planners, Figure 5 (a), this is best observed between instances nr. 15 and 20. There, the difference
between makespan and its estimate by the plan graph grows, and with it grows the achieved runtime,
on an exponential scale. It may look like a counter example that, for instance nr. 20, where the plan
graph estimate is exact (coincides with the real makespan),the runtime does not get lower again.
Note however, that instance 20 is based on a much larger airport than the previous instances. From
instance 20 onwards, the only instances solved by any parallel planner have an exact plan graph
estimate. For the optimal sequential planners, Figure 5 (b), we get a similar behavior between
instances nr. 14 and 18. The behavior is also very strong in instances nr. 35 and 36: while the plan
length grows a lot from 35 to 36, the serial plan graph becomesa little shorter; correspondingly, the
runtime goes up by two orders of magnitude. The same is true for instances 20 and 21.

For the satisficing planners, in Figure 5 (c), the most striking observation is that the length of the
real plan coincides, in all instances,exactlywith the length of the relaxed plan (for the respective
initial state). This is actually quite easy to explain: an optimal plan moves the airplanes in a way
so that they never block their paths; the same plan is optimaleven when ignoring the delete lists.
Moving the airplanes without blocking is always possible atthe start. The situation changes only
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Figure 5: Airport domain. Plots of (parallel) plan length, its heuristic estimation, and runtime, for
(a) optimal parallel planners, (b) optimal sequential planners, and (c) satisficing planners.

when a wrong decision was made, so that additional moves havebecome necessary – in reality, but
not without delete lists – to avoid a blocking situation. Apart from this, Figure 5 shows quite nicely
that the runtime taken corresponds very closely to the length of the plan found. Note that the latter
is huge, 694 in the largest instance.

In the Pipesworld domain, there are two non-temporal domainversions: with/without tankage
restrictions, i.e., restrictions on the amount of liquid that can be stored in any of the network areas.
Figure 6 shows our data for the version without such restrictions; the observations to be made in the
other domain version are similar, except that both sorts of planners scale much worse, thus providing
us with less data. For the optimal planners, Figure 6 (a) and (b), the most striking difference with
the Airport domain in Figure 5 (a) and (b) is that the quality of even the parallel plan graph heuristic
is very bad: it underestimates the real makespan to a much larger extent than it does in Airport. The
underestimation grows with instance size, and, naturally,the runtime grows as well. Note that the
planners fail to scale much earlier than in Figure 5 (a) and (b). There is one slight exception to the
rule that a poorer heuristic estimate leads to a longer runtime: from instance number 10 to 11, the
optimal sequential plan length grows from 19 to 20, the length of the serial plan graph remains 9,
and the runtime drops from 1400 to 150 secs.
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Figure 6: Pipesworld domain without tankage restrictions.Plots of (parallel) plan length, its heuris-
tic estimation, and runtime, for (a) optimal parallel planners, (b) optimal sequential plan-
ners, and (c) satisficing planners.

Similarly to the situation for the optimal planners, for thesatisficing planners, Figure 6 (c),
the main difference from Figure 5 (c) is the much worse quality of the heuristic function: the
relaxed plan length now differs greatly from the length of the real plans found, particularly for the
larger instances. Very curiously, despite the worse quality of the heuristic, the runtimes aremuch
lower. The longest time taken for any instance is below 10 seconds. This goes to show, first, the
shortcomings of our analysis here: we give the heuristic quality only for the initial state, which may
differ a lot from the situation in the rest of the state space.For example, in Airport a planner using
relaxed plans may get lost in huge dead ends when a wrong decision was made early on. Second,
of course, other techniques that the satisficing planners use are also relevant. The runtime data in
Figure 5 (b) are exclusively due to SGPlan (Wah & Chen, 2004) and YAHSP (Vidal, 2004), whose
problem decomposition/greedy lookahead techniques appear to work extremely well in this domain.
All other satisficing planners perform much worse, failing to solve the largest instances. We note
that in Pipesworld, the overall runtime curves (for all planners) are characteristically very jagged
and show considerable variance in comparison to, e.g., Airport. This information gets lost in the
best-of presentation chosen for our figures here. It seems tobe that hardness in this domain comes

484



ENGINEERING BENCHMARKS FORPLANNING

from interactions too subtle to be seen with the rather high-level parameters measured here. We re-
iterate that the domain versionwith tankage restrictions is much more challenging to the planners,
the only planner getting anywhere close to the largest instances being YAHSP.
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Figure 7: Dining Philosophers domain without derived predicates. Plots of (parallel) plan length,
its heuristic estimation, and runtime, for (a) optimal planners and (b) satisficing planners.

Figure 7 shows our data for Promela/Dining Philosophers without derived predicates. We do not
show two separate figures for the optimal planners since the curves are quite easy to read. From even
a quick glance, one sees that the domain has a very characteristic behavior different from the other
domains. The optimal makespan, plan graph length, and serial plan graph length are all constant
across instance size. In contrast, the optimal sequential plan length grows as a linear function of
size; note the logarithmic scale of the right hand sidey axis in Figure 7 (a), which we had to use
to make the figure (the values of the other plan step measures)readable. The best plans found
by the satisficing planners are optimal, i.e., the NrActionsdata are identical on both sides of the
figure. In Figure 7 (a), we once again see the effect of heuristic quality on search performance:
the parallel planners scale as a linear function in instancesize, while the sequential planners, for
whom the heuristic function becomes worse and worse, scale highly exponentially. The latter might
also be true for the satisficing planners; it is a bit hard to tell since the solved instances are solved
extremely quickly. The reason why no instance with index higher than 29 is solved is that, for these
instances, similarly to what we discussed above (Section 5.1), simplifying precondition formulas
became prohibitively costly, so these instances were available in ADL only. The only two satisficing
planners that scaled well in Dining Philosophers (without derived predicates) were SGPlan and
YAHSP – neither of which could handle the ADL formulation of the domain. Similarly, from
the optimal planners only SATPLAN’04 and Optiplan scaled well, and neither could handle the
ADL formulation. Note that the inability of planners to handle formulas without pre-simplification
techniques thus constitutes a serious limitation.

In Optical Telegraph without derived predicates (no figure shown) the observations are similar
to the ones in Figure 7, except that the planners scale much worse. Most particularly, the optimal
sequential planners solve only the single smallest instance, and the best satisficing runtime is clearly
exponential in instance size, taking over 1500 seconds to solve instance number 25. In the Promela
domain versionswith derived predicates, there are no results for optimal planners since none of
them could handle derived predicates. The observations forthe satisficing planners are similar to
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the above: NrActions grows as a linear function of instance size, relaxed plan length grows as a
linear function with significantly lower gradient. The planners are very fast in Dining Philosophers
but need a lot of time (> 1000 sec) to solve the largest Optical Telegraph instances (some of which
remain unsolved). We omit the results for the Promela domainversions using numeric variables,
since only two planners participated in these domain versions.
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Figure 8: PSR domain. Plots of (parallel) plan length, its heuristic estimation, and runtime, for (a)
parallel optimal planners in PSR “small” (STRIPS version),(b) sequential optimal plan-
ners in PSR “small”, (c) satisficing planners in PSR “small”,and (d) satisficing planners
in PSR “large” (featuring ADL and derived predicates).

Figure 8 shows our results for the PSR domain. Figure 8 (a), (b) and (c) show plots for the do-
main version PSR “small”, which comes in pure STRIPS and was addressed by all IPC-4 planners;
Figure 8 (d) shows plots for PSR “large”, which comes in ADL with derived predicates and was
addressed by four satisficing planners only. We do not show data for PSR “middle-compiled” and
PSR “middle”: in the former, just two satisficing planners participated; in the latter, six satisficing
planners participated, but they all scaled quite well on these less challenging instances so the results
are less interesting than those for PSR large.
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First, note that all curves in PSR “small” show a large amountof zig-zagging, which is quite
unusual and which cannot simply be accounted for by the way the instances are scaled.22 Consider
Figure 8 (a). The main observation to be made is that the real optimal makespan ismuchlarger than
its estimation by a plan graph, particularly in the larger instances. Still, the optimal parallel planners
are quite efficient, at least in that they can solve all the instances. The runtime data are entirely due
to SATPLAN’04, whose search techniques are apparently quite efficient in this domain even with
a bad plan graph lower bound. The other optimal planners are all at least one order of magnitude
slower, and can’t solve some of the largest instances; for example, none can solve instances 48 and
49. As for the optimal sequential planners in Figure 8 (b), the results are pretty similar except that
the runtime scaling is somewhat worse. For both kinds of optimal planners, the runtime is clearly
correlated with the length of the optimal plans, which, since the plan graph bounds are almost
constant, coincides with the difference between the real plan length and its estimate.

In Figure 8 (c), we observe that the relaxed plan is a very bad estimator of plan length in PSR
“small” (at least for the respective initial states), but that the planners solve all instances quite ef-
ficiently anyway. The runtime data are entirely due to YAHSP and Fast Downward; particularly
Fast Downward is extremely efficient, showing only a very slight increase of runtime over instance
size, being the only satisficing planner capable of solving instances 48 and 49. Note that YAHSP
(Vidal, 2004) uses powerful techniques besides a relaxed plan heuristic, and that Fast Downward
(Helmert, 2004) uses a more involved (and apparently more powerful, in this case) heuristic func-
tion. Note also that, at least in terms of solved instances, optimal and satisficing planners are,
unusually, equally good (or bad) in this domain: exactly oneof each group solves all instances, all
other planners cannot solve instances 48 and 49. The difficulty the planners are experiencing in
this domain is also remarkable since the instances, or at least their grounded encodings, are actually
very small when compared to the instances of the other domains, c.f. Figure 4. This indicates that
the domain has some fundamental characteristic that is not yet captured very well by the search
heuristics/techniques of (most of) the planners – which nicely complements what we said about the
non-obvious polynomial algorithm for PSR in Section 4.1.

In Figure 8 (d), we see that the relaxed plan (computed with the version of FF handling derived
predicates, see Thiébaux et al., 2003, 2005) is a rather useless estimator in the PSR domain when
expressed in the most natural way using ADL and derived predicates. The relaxed plan constantly
contains0 steps, meaning that the over-approximation of the semantics of derived predicates makes
the initial state look like a goal state; the same happens in PSR middle. While the situation may be
different in other parts of the state space – the heuristic value is not constantly0 – this, apparently,
causes serious trouble for all satisficing planners except Fast Downward. No planner except Fast
Downward can solve an instance higher than number 16. Fast Downward seems to profit, again,
from its more involved heuristic function, reaching its scaling limit at instance number 31.

In the Satellite domain, which has many temporal and some numeric domain versions, we select,
for our presentation here, the single pure STRIPS version. In Figure 9 (a) and (b), we observe that,
like Pipesworld and Promela, and unlike Airport and PSR, Satellite is a domain where a serial
plan graph provides much worse heuristic values (for sequential planning) than a parallel planning
graph (for parallel planning). Over the few instances solved by the optimal planners, parallel plan
length and (serial or parallel) plan graph length do not growmuch, while sequential plan length
does. Consequently, the sequentially optimal planners scale much worse than the parallel ones.

22. The same is true for the runtime curves of the individual planners. In fact, the planners even disagree widely about
which instances are solved easily and which take a lot of time.
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Figure 9: Satellite domain. Plots of (parallel) plan length, its heuristic estimation, and runtime, for
(a) optimal parallel planners, (b) optimal sequential planners, and (c) satisficing planners.

In Figure 9 (a), we can also nicely see how, during instances 8, 9, 10, the parallel plan length
does a down-up movement (8, 6, 8) over the constant parallel plan graph length (4), resulting in a
movement of pretty much the same shape – on a logarithmic scale! – of the best parallel runtime.

In Figure 9 (c), we observe that, like in Airport and unlike inany of the other domains, the
relaxed plans for the initial states have almost the same length as the real plans (there is actually
a slight over-estimation most of the time). As we have seen earlier, c.f. Section 4.2, Hoffmann
(2005) has shown that, for Satellite, the relaxed plan length is, in fact, bound to be close to real plan
length for all states (in contrast to Airport, where unrecognized dead ends are possible in principle).
Indeed, Satellite is very easy to tackle for almost all of thesatisficing planners in IPC-4. While the
runtime shown in Figure 9 (c) appears non-trivial, rememberthat these instances arehuge, see in
particular the number of ground actions in Figure 4 (b). Up toinstance 20, most satisficing IPC-4
planners could solve each instance within a minute.

We skip the Settlers domain since that relies almost exclusively on numeric variables to encode
the domain semantics, which makes it rather incomparable with the other domains. Figure 10 shows
our data for the UMTS domain. This has only temporal and numeric versions, half of which feature
also time windows. We consider the versions without time windows; Figure 10 (a) and (b) concern
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Figure 10: UMTS domain. Plots of (durational) plan length, its heuristic estimation, and runtime,
for (a) optimal (b) satisficing planners in plain temporal version, (c) optimal (d) satisfic-
ing planners in temporal version with flaw action.

the plain domain version, Figure 10 (c) and (d) is with “flaw” action. Let us first consider the optimal
planners, on the left hand side of the overall figure. The onlyoptimal planners that could tackle this
domain – i.e., the domain’s syntax – were TP4 and HSP∗

a (Haslum & Geffner, 2001). These are
makespan-minimizing planners, and so there are no data for sequentially optimal planners (which
wouldn’t make a lot of sense in the temporal setting anyway).The “PlanGraph” curves in Figure 10
(a) and (c) correspond to the makespan estimation deliveredfor the initial state by TP4’s temporal
numeric extension of that heuristic. For the effect of heuristic quality on runtime, we observe once
again a very strong correlation. In Figure 10 (a), up to instance 21 the makespan estimate is very
close to the real makespan – most of the time, the two actuallycoincide – and the runtimes are
very good. Starting from instance 22, the real makespan makes a sudden leap upwards that is not
followed by the estimation, and the runtimes shoot upwards.The phenomenon is also very clear
in instances 18, 19, 20, where the makespan estimation exhibits a good, bad, good pattern, and
the runtime does just the same. In Figure 10 (c), the very samesort of behavior can be observed,
meaning in particular that the flaw action does not have an effect on makespan and its estimation by
TP4. In fact, the makespan and its estimation are exactly thesame in all instances solved in both
domain versions. As contained implicitly in the latter sentence, the flaw actiondoesaffect runtime
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and with it the set of solved instances. The runtime with the flaw action is consistently more than
a factor of 2 larger than without the flaw action. In the most challenging instances the planners fail
when the flaw action is present. This decrease in performanceis presumably due to the larger state
space incurred by the flaw action.

Consider the satisficing planners, Figure 10 (b) and (d). We first observe that, once more, we
are facing a very individual and characteristic behavior, and that the domain is no challenge at all to
the satisficing planners. The latter shows that the domain isnot a useful benchmark for satisficing
planners; it also shows once again how heterogeneous our benchmark set is: while it is common that
satisficing planners are faster than optimal ones – except inPSR – there is no other domain where
that picture is as extreme as in UMTS. As stated earlier, the domain is a pure scheduling problem,
and obviously the satisficing planners provide runtime-efficient greedy solutions to that problem.23

Looking at the plots in a little more detail, we find in Figure 10 (b) that the sequential plan length (the
plans found are optimal) is a simple stepwise linear function in these instances, and that relaxed plan
length for the initial state coincides once again with the real plan length – which isn’t a surprise given
the excellent runtimes of the satisficing planners, and the fact that this is a scheduling domain. (In a
sequentialized schedule no harmful delete effects occur.)This picture changes a lot in Figure 10 (d).
The real plan length stays basically the same (is increased by a constant of2), but the relaxed plan
length becomes a lot shorter due to the flaw action. The satisficing planners are unaffected, largely
keeping their excellent runtime behavior. Apparently, these planners incorporate some technique
for recognizing the uselessness of the flaw action (this can be done with simple domain analysis
techniques), and getting rid of its influence. This suspicion is confirmed by the fact that there is one
satisficing planner thatdoesget affected by the flaw action in the way one should expect. CRIKEY,
a heuristic search forward state space planner using a relaxed plan heuristic, solves each task within
70 seconds without the flaw action, but sometimes takes over 1000 secondswith the flaw action.

Let us briefly summarize the overall observations:

• In the presented data, most of the time the performance of theplanners correlates well with
the quality of the relevant heuristic function. The most notable exceptions to this rule – as far
as can be observed in our data here – are Fast Downward in PSR “large”, where relaxed plans
are pretty much devoid of information, and SGPlan and YAHSP (to some extent also Fast
Downward) in Pipesworld, where relaxed plans provide poor estimates and all other planners
experience (much more) serious difficulties.

• Usually, here and in the known benchmarks in general, satisficing planners are several orders
of magnitude faster than optimal ones. Exceptions here are PSR – where both groups perform
almost equally – and UMTS – where the satisficing planners hardly need any time at all.

• Usually, here and in the known benchmarks in general, parallel plan graph length is a much
better estimator of parallel plan length than serial plan graph length is of sequential plan
length. The exceptions here are Airport – where there is often a huge difference between
the lengths of the two kinds of plan graphs – and, to some extent, PSR “small” – where the
difference between parallel and sequential plan length is not very big. Note that none of our
domains is purely sequential, i.e. some parallelism is possible in all of them.

23. In terms of quality of the solutions found, the satisficing planners also do reasonably well. For example, LPG-td,
which minimizes makespan in this domain, finds, with its version optimized for speed, plans that take maximally
10% more time than the optimal ones found by TP4. For the version of LPG-td optimized for plan quality, this goes
down to 1%.
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• Usually, here and in the known benchmarks in general, there is a considerable difference
between the length of a relaxed plan for the initial state, and the length of a real plan for
the initial state. Exceptions here are Airport, Satellite,and UMTS, where both lengths are
identical or nearly so.

• Usually, here and in the known benchmarks in general, the largest instances that can be solved
within the given particular time and memory (30 minutes and 1GB) have plans with around a
hundred steps or more. PSR is exceptional in that Fast Downward is the only planner able to
find a plan with more than 35 (namely, with 57) steps.

It once again indicates the diversity of the IPC-4 domains that almost every one of them appears at
least once in the “exceptions” listed here. The only domainsthat don’t appear there are the Promela
domains and Pipesworld. This is a sort of exception in itself, meaning that these domains contribute
the more typical benchmark behaviors to the overall set.

We take the existence of some of the mentioned distinguishing features as evidence that the
IPC-4 domains indeed have several novel aspects, besides being oriented at applications and being
structurally diverse. In particular, the behavior of the PSR domain stands out from what one typi-
cally observes. Note here that, while it is typically easy toconstruct artificial domains that provoke
some unusual behavior, the domains we have here areoriented at applications, and so the exhib-
ited behavior, particularly that of the PSR domain, is not only unusual, but also relevant in a very
concrete sense.

5.3 Fact Connectivity

We conclude our empirical analysis with some data aimed at assessing a sort of “connectivity” of the
facts. For each factp, we measure the number ofadders: actions that havep in their add list (in the
ADL case, that have an effect withp in its adds list). This gives an indication of the branching factor
– action choices – that comes with the fact. We further measure the number ofrequirers: actions
that havep in their precondition (in the ADL case, that have an effect with p in its condition). This
gives an indication of how central a fact is to the task. For a given planning task, we measure the
parameters of the distribution of adders(p) and requirers(p), over the set of factsp: the minimum
(min), mean (mean), maximum (max), and standard deviation (dev). Within domain versions, we
plot these data over instance size (number).

The data are too abstract to allow deep conclusions about reasons for planner performance, but
weareable to highlight some more characteristic features of the domains. In particular, we will see
that these abstract measurements behave more characteristically different in the IPC-4 domains than
in the IPC-3 domains. Figure 11 shows our plots for the IPC-4 domains Airport, Pipesworld, Dining
Philosophers, and Satellite. The picture for PSR is relatively complicated and shown separately in
Figure 12. Settlers is left out because it is exceptional. The picture for UMTS is extremely simple,
and explained in the text below.

Consider Figure 11 (a), the (non-temporal) Airport domain.Themin curves are not shown
since they are constantly0: “is-pushing-back(airplane)” is never added since pushback requests (of
outbound traffic) are not modelled; “occupied(segment)” isonly required in its negation. Themax
curves are step functions since they follow the size of the underlying airports: “is-moving(airplane)”
has as many adders as there are segments, since “start-up-engine” can be done at any segment; “is-
pushing-back(airplane)” is required by every such action,leading to the overall similar form of
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Figure 11: Distributions of the numbers of actions adding a fact, and of actions requiring a fact,
in selected versions of some IPC-4 domains: (a) Airport, (b)Pipesworld, (c) Dining
Philosophers, (d) Satellite.

themax requirers curve. Themean adders curve is flattened because all facts other than “is-
moving(airplane)” are added only at certain places on the airport. Themean requirers curve, in-
terestingly, shows a similar downwards step behavior as thenumbers of facts and actions shown
in Figure 4. The reason lies in the “not-occupied” facts, that exist for every segment, and that are
needed in every action moving an (any)airplane across the segment. The number of these facts
increases with the number of airplanes. Since there are manyof these facts, they have a strong
influence on the mean. There is not much of a correspondence toruntime in the data, other than the
trivial one that both tend to grow with instance size.

Data for Pipesworld, no tankage non-temporal, are shown in Figure 11 (b). Several observations
can be made: 1. themax andmean curves clearly follow the scaling pattern, with growing traffic
on the5 growing underlying networks. 2. themin curves are non-zero. 3. there is a characteristic
difference between the curves up to instance 10, and afterwards. 4. the curves for adders and
requirers almost (but not exactly) coincide. Apart from 1, which is also present in the Airport data,
these observations clearly distinguish Pipesworld from all the other domains. As for observation
2, sometimes in the larger instances themin number of addersdoesdrop to 0. This is due to
interactions in more complex networks, where certain configurations inside pipes are true initially
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but can not be re-achieved later on – some of these interactions are recognized by the “reachability”
pre-process made by FF for actions, c.f. the explanation in Section 5.1. Observation 3 is due to
a large contrast between the smallest network and all largerones: the smallest network has only
unitary pipelines (containing just a single batch), the others have pipelines of at least length2.
Observation 4 is particularly at odds with all the other domains, where there are large differences
between adders and requirers. In fact, measuring the distribution of thedifferencebetween adders
and requirers, we found that these numbers (not only their distribution parameters) are extremely
close together: in instance 50, where themax adders is1524 andmax requirers is1520, themax of
the difference is29, with amean of 1.63 anddev of 5.31. In Pipesworld with tankage restrictions,
the phenomenon is somewhat less extreme but still there. Another characteristic is the enormously
largemax number of adders and requirers, about an order of magnitude larger than in the other
domains. Themax adders and requirers come from “do-normal” facts, which control the status of
individual pipelines, and are affected by each action moving some combination of batches through
the respective pipeline; all other facts depend on only single batches (not combinations of them),
which flattens themean curves by two orders of magnitude. Regarding runtime, as mentioned
earlier, in Pipesworld the scaling pattern does not have a clear correlation with runtime; neither
does the fact connectivity we measure here.

Consider the Promela domain in Figure 11 (c), data shown for Dining Philosophers with derived
predicates. Once again, the extreme characteristics of thedomain are recognizable at first glance.
The data for Dining Philosophers without derived predicates are identical, the data for Optical Tele-
graph differ only in that the numbers are higher. Themin curves are both0, the adders are constant,
the requirers are linear. There exist facts without adders due to an oddity in the encoding, where
certain start-up transitions put the forks on the table in the first place; the facts without requirers are
“blocked-philosopher”, which are only needed for the goal.The number of adders does not depend
on the instance size due to the very static sort of domain structure, where size increases the number
of parallel processes (philosophers), but the form of the processes stays fixed, and every process
interacts with exactly two other processes. The number of requirers is linear (non-constant, in par-
ticular) due to a technicality of the encoding, where “activating” (requesting) and “performing”
(executing) a transition requiresall communication channels to be in neutral state; so the respective
flags are required by all transitions, and that number of course grows over size. All other facts are
required only locally, resulting in the much lower (easily two orders of magnitude)mean. As one
would expect in a domain with such a simple scaling pattern, planner performance is pretty much a
function of size.

Data for Satellite (STRIPS version) are shown in Figure 11 (d). The most characteristic feature,
in comparison to the other domains, is the extremely smooth and parallel close-together growth of
the curves. The only curve that stands out a little ismax requirers;max adders is due to “point-
ing(satellite, direction)” facts that can be added when turning there from any other direction;max
requirers is due to “power-on(instrument)” facts, which are needed for every “take-image” with the
instrument, which can be done in everycombinationof direction and image mode supported by
the instrument. Note that, in contrast to the other domains where themax curves are about two
orders of magnitude higher than themean, heremax requirers is only one order of magnitude
above all the other curves, and these other curves are all roughly of the same order. Themin curves
are not shown since they are constantly1 for adders – “power-on(instrument)” is only added by
“switch-on(instrument)” – and constantly0 for requirers – “have-image(direction)” is only needed
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for the goal. The runtime performance of the IPC-4 planners scales relatively smoothly with size in
Satellite, like our parameters here do.

In UMTS, all the parameters are constants. This is another consequence of the aforementioned
scaling pattern, where the number of specified applicationsis the same in all instances, and what
changes is (only) the goal, specifying which of the applications shall actually be scheduled. Pre-
cisely, in the plain domain version, the number of adders is1 for all facts, nicely showing the
scheduling-domain characteristic where there is no choiceof how to accomplish tasks, but only
aboutwhento accomplish them. This is another illustration of why the satisficing planners find this
domain trivial, whereas an optimal planner like TP4 (Haslum& Geffner, 2001) can spend a long
time searching for the optimal schedule. The number of requirers is minimum0, maximum2, mean
0.89, standard deviation 0.57. In the domain version with flaw action, the most notable difference
is that nowmax adders is2 – due to the alternative provided by the “flaw” action (min is now0,
mean1.2, deviation0.5). It is interesting to note in this context that, as mentioned above, in this
domain version thereis a satisficing planner, CRIKEY, that experiences serious trouble.
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Figure 12: Distributions of the numbers of actions adding a fact, and of actions requiring a fact, in
PSR “small” and “large”: (a) adders “small”, (b) requirers “small”, (c) adders “large”,
(d) requirers “large”.

Data for PSR are shown in Figure 12. Here, we show plots for adders and requirers separately
because that makes them much more readable. Since the data contain some particularly interesting
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phenomena, we show it for two domain versions, “small” and “large”. The most obvious feature in
“small”, Figure 12 (a) and (b), is, once again, the huge amount of variance in the data. The clearly
discernible peaks in the curves (instance nrs. 15, 25, 31, and 40) coincide with the peaks in size
as measured by numbers of facts and actions in Figure 4. We also note that there is a very large
range of values, spanning four orders of magnitude, even though the instances are (except number
25) all very small in comparison to the other domains shown inFigure 4. The minimum numbers of
adders and requirers are constantly1: “updated(breaker)” is added only by a “wait(breaker)” action,
“not-closed(breaker)” is only needed if one wants to close it.24 Regarding the maximum adders and
requirers, in instance 25, which has by far the highest (9400) total number of actions,max adders
(9216) is due to the “goal-reached” fact, i.e., to the 9216 disjuncts in the DNF of the goal formula;
max requirers (9251) is due to “do-normal”, which is a flag neededfor every goal-reached action,
plus the actions opening or closing breakers. We remark thatthe same facts are responsible for all
of the peaks in the curves, i.e., the same happens also in instances 15, 31, and 40.

It is highly characteristic for PSR “small” that themax numbers of adders and requirers ap-
proach and sometimes exceed two thirds of the total number ofactions. This is not the case for any
other domain, not even for any other domainversionof PSR (see below). The intuitive reason lies
in one of the pre-compilation steps that we employed in orderto be able to formulate reasonably
large PSR instances in pure STRIPS: the compilation step (Bertoli et al., 2002) “removes” network
reasoning (and with it, the need for derived predicates) by basically enumerating the breaker config-
urations and their effects on the flow of current in the network. The result is a very dense structure
where each end of the network directly affects every other end, explaining the very high degree of
fact connectivity, in particular explaining the extremelycomplex goal formulas in the four “peak”
cases mentioned above.

The pre-compilation step is also the key to understanding the huge difference between the be-
havior in “small”, and in “large”. The latter is shown in Figure 12 (c) and (d). There, themax
adders curve is a small linear function – note the non-logarithmic scale of they axis – in spite of the
(mostly) much larger numbers of actions. For example, the instance with the highest number (7498)
of actions and derivation rules is number 20, where themax number of adders is 31,less than half a
percent of the total number of actions. In the natural high-level domain encoding that we have here,
the flow of current through the network is modelled as the transitive closure over derivation rules
that each propagate current based on thelocal status of the network. So in particular the breaker
configurations and their effects on the flow of current are implicit in the structure of the network.

Once again, in PSR “large”, themin curves are constantly0 for both adders and requirers; “not-
affected(breaker)” is the negation of a derived predicate (needed as precondition of open and close
actions), which isn’t added by an inverse rule, but given itsmeaning through the negation as failure
semantics of derived predicates; “fed(line)” is only required for the goal. Themean anddev of the
adders are completely flattened by the numerous (5029 out of 5237, in instance 20) “upstream(x,y)”
facts, true if there is currently a path open from a side of node x to a side of node y, that are added
only by a local derivation rule that relies on the same predicate for the neighbors of y. Similarly to
Satellite, themax number of requirers is generally a lot larger than themax number of adders. For
example, 542 vs. 31 in instance 20, wheremax requirers is due to a fact “closed(device)” that is
required in derivation rules talking aboutpairs of devices; in instance 20, 7360 of the 7498 actions
are such rules; there are 46 devices.

24. Sometimes there are0 minimum requirers due to an artificial “goal-reached” fact,introduced to get rid of complex
goal formulas, c.f. Section 2.
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 1

 10

 100

 1000

 2  4  6  8  10  12  14  16  18  20

Nr. Instance

#Adders, max
#Adders, mean
#Adders, deviation
#Requirers, max
#Requirers, mean
#Requirers, deviation

 1

 10

 100

 1000

 2  4  6  8  10  12  14  16  18  20

Nr. Instance

#Adders, max
#Adders, mean
#Adders, deviation
#Requirers, max
#Requirers, mean
#Requirers, deviation

(a) (b)

 1

 10

 100

 1000

 10000

 2  4  6  8  10  12  14  16  18  20

Nr. Instance

#Adders, max
#Adders, mean
#Adders, deviation
#Requirers, max
#Requirers, mean
#Requirers, deviation

 1

 10

 100

 1000

 2  4  6  8  10  12  14  16  18  20

Nr. Instance

#Adders, max
#Adders, mean
#Adders, deviation
#Requirers, max
#Requirers, mean
#Requirers, deviation

(c) (d)

Figure 13: Distributions of the numbers of actions adding a fact, and of actions requiring a fact, in
the STRIPS versions of the IPC-3 domains except Freecell andSatellite: (a) Depots, (b)
Driverlog, (c) Rovers, (d) Zenotravel.

To sum up the sub-section, the data are, generally, too abstract to be really tightly interconnected
with the performance exhibited by planners. On the other hand, certain characteristics are visible.
Most particularly: In Pipesworld, the numbers of adders andrequirers are almost identical. In
Promela, the adders are constant and the requirers are linear. In Satellite, all curves are very close
together. In PSR “small” there is a lot of variance, and themax numbers of adders and requirers
approach and sometimes exceed two thirds of the total numberof actions. In contrast, in PSR
“large” themax adders decline to less than half a percent of the total numberof actions. In UMTS,
all the parameters are constant. Except for PSR and UMTS, these phenomena are somewhat hard
to interpret. If nothing else, they certainly show us that the domains have some rather different
characteristics. Interestingly, the differences are not as significant for the IPC-3 benchmarks shown
in Figure 13. Clearly, the behavior is not as characteristically diverse as what we have just seen for
the IPC-4 domains. For all the four domains in Figure 13, we basically observe mostly parallel lines
that are pretty close together except for themax lines, which are about an order of magnitude higher
than the others. The only striking feature is the zig-zag nature of the curves in Depots. This is due
to the scaling pattern: In the smallest instances, the number of crates (blocks) grows continually up
to 15 crates in instance 6. Thereafter, there come blocks of 3instances each, of which the first has 6
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crates, the second 10 crates, and the third 15 crates (acrossthe blocks, other instance size parameters
grow). This means that the zig-zag shape of the curves corresponds exactly to the zig-zag shape of
the crate numbers.

Note that the behavior of the plots in Figure 13 is similar to the behavior of the plot for Satellite
in Figure 11 (d), in particular for the first 20 instances. These were the instances posed to the fully
automated planners in IPC-3, as also shown in Figure 13. The only IPC-3 domain that truly stands
out in terms of the behavior of these curves is Freecell.25 There, we observe a phenomenon similar
to that of the Pipesworld in Figure 11 (b), where the curves for adders and requirers almost coincide.
The phenomenon is a little weaker than in Pipesworld: in the largest Freecell instance, number 20,
themax of (both) adders and requirers is1638, while themax of the difference is102, with amean
of 14.30 anddev of 24.86. For comparison, in the largest Pipesworld instance,max adders is1524,
max requirers is1520, and themax of the difference is29, with amean of 1.63 anddev of 5.31.

To sum up the overall empirical analysis, the data certainlydon’t solve the mystery of what is
behind the performance of every planner in every domain (andinstance). They do, however, provide
some interesting insights about how instances are scaled inthe domains, about certain subtleties and
peculiarities of their encodings, and about how standard heuristic methods, and groups of planners,
react to them. We can observe large characteristic differences between the domains. In that sense the
results nicely complement the technical descriptions in Appendix A, as well as the known theoretical
results from Section 4.

6. Conclusion

In a field of research about general reasoning mechanisms, such as AI planning, it is essential to
have useful benchmarks: benchmarks that reflect possible applications of the developed technology,
and that help drive research into new and fruitful directions. In the development of the benchmark
domains and instances for IPC-4, the authors have invested significant effort into creating such a set
of useful benchmarks for AI planning.

As explained in the introduction, the three main goals we tried to achieve were 1. realism, 2.
structural diversity, and 3. accessibility of the benchmarks. It is debatable to what extent these goals
were achieved. To some extent, this is inherent in the conflicting nature of the goals. Accessibility
of a benchmark – formulation in as simple as possible PDDL dialects – is obviously in conflict with
realism. Structural diversity is also in conflict with realism since, in the time window available to
create a competition benchmark set, there may not be (and hasnot been, in our case) a large set
of suitable applications to choose from. One must make do with what’s available. We stressed
on realism since the lack of realism was traditionally considered as one of the main weaknesses
of AI Planning – achieving “just” structural diversity and accessibility would, in fact, have been
comparatively easy (see also below). That said, to adapt theapplications for the IPC we had to
make many significant simplifications. Still, having derived the domains from applications, one can
expect that they capture some important features even aftersimplification; on top of that, there is a
clear path towards more realism.

We believe that the domains constitute the best possible compromise for IPC-4. To name the
most distinguishing features of the domain set:

25. It somehow makes sense that it’s precisely this domain that stands out, as it is also intuitively different from the other
domains. Most notably, deciding plan existence in Freecellis NP-hard while it is easy in the other domains, c.f.
Section 4.1.
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1. Airport, Pipesworld, PSR, and UMTS are derived directly from applications (Promela is a
special case since the model checking instances we could encode are very simplistic). This
was previously the case only for the Elevator domain (IPC-2)and the Rovers and Satellite
domains (IPC-3).

2. The complexity of satisficing and optimal planning in the STRIPS domain versions covers
the entire rangeP, NP, andPSPACE– deciding (bounded) plan existence is inP for PSR
and PSPACE-complete for Airport and general Promela. We are not aware of a previous
PSPACE-complete STRIPS benchmark; the polynomial algorithm for finding plans in PSR
is, in contrast to those for all the other STRIPS benchmarks with such algorithms, quite non-
trivial.

3. In Hoffmann’s (2005) taxonomy of domain classes with differenth+ topology, the IPC-4
domains lie in classes with sparse coverage by previous benchmarks. In particular, none of
our new domains has nearly as simple a topology as proved by Hoffmann for most of the
traditional benchmarks. When taking into account that Pipesworld actionscanbe inverted in
(not one but) two steps, each of the domains lies in a different class of Hoffmann’s taxonomy,
covering more classes (6) than any previous IPC benchmark set (3, 5, and 4 for IPC-1, IPC-2,
and IPC-3, respectively). Dining Philosophers is exceptional in that it lies in a “simple” class
but doesn’t have a simple topology; Airport is exceptional in that it lies in a “very hard” class
but is typically (in real-world instances) easy.

4. The behavior of the different kinds of planners in IPC-4 shows a lot of very characteristic
patterns in the individual domains. In Airport, sheer size is the main obstacle. In Pipesworld,
particularly with tankage restrictions, the known heuristic functions do very badly. In the
Promela domains, the main obstacle is, in a lot of cases, the impossibility of compiling the
PDDL description into a fully grounded simpler representation. In PSR, there is an extremely
large amount of variance, and optimal planners perform justas well (or poorly) as satisficing
planners. In UMTS, satisficing planners need no time at all.

5. At a very abstract level that just looks at the numbers of actions adding/needing each fact, the
behavior of the domains is more characteristically diversethan that of the IPC-3 domains.

6. Last but not least, the STRIPS versions of our domains preserve much more of the original
domain structure than what was previously the case. The IPC-2 STRIPS version of Elevator is
hardly an elevator problem anymore, and the IPC-3 STRIPS versions of Satellite and Rovers
are devoid of all of the more interesting problem constraints. In contrast, the STRIPS versions
of Airport and Promela are semantically identical to the ADLversions, and the PSR STRIPS
version, while pre-compiled a lot, still preserves much of the original difficulty of the domain
(judging, e.g., by the behavior of the IPC-4 planners in it).

Feature 1 is, obviously, a point for realism. Features 2 to 5 are points for diverse structure; par-
ticularly Feature 4 shows how the domains pose very different challenges to (current) planning
technology. Feature 6 is a point for realism combined with accessibility. We would like to stress
that accessibility in this respect is really quite important. Of the 19 planners entered into IPC-4, only
8 could handle (some) ADL features. Our compilation approach enabled us to confront the other 11
planners with reasonably realistic problems. That said, itcertainly is debatable what role STRIPS
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plays or should play for the community. Some people may say that many of the core algorithms,
e.g., planning graphs (Blum & Furst, 1997) and relaxed plan heuristics (McDermott, 1999; Bonet
& Geffner, 2001; Hoffmann & Nebel, 2001), have been inventedin STRIPS. Others may say that
the focus on STRIPS-like languages and algorithms distracts us from considering temporal and nu-
merical problems of a truly different nature. This notwithstanding, STRIPS is still the most widely
used language among the research community. This cannot be ignored by competition organizers.

Having pointed out the advantages of our benchmark set, we should also point out a few of the
disadvantages. As explained in detail in the individual sections in Appendix A, we had to make
many simplifications in order to make the applications fit foruse in IPC-4. To some extent, whether
or not the simplifications preserve the original domain structure is a debatable matter. We feel
that our Airport encoding is very close to the real “physical” thing. Not being able to represent
the real optimization criterion is bad, but ameliorated by the fact that, out of 19 planners, only a
single one (LPG-td) could actually deal with user-defined optimization criteria.26 In Pipesworld,
the simplifications are more severe. The IPC-4 domain still resembles some of the core difficulties,
but is more reminiscent of a (complicated) toy example than of software that could be used to control
real pipelines. The Promela examples go to show that toy examples in the model checking area are
not any better than the traditional toy examples in planning. In PSR, removing the uncertainty and
the numerical optimization renders the IPC-4 domain unsuitable for practical use.

Of course, the domain set is not exhaustive, meaning that there presumably are numerous appli-
cations whose essential structure is not similar to any of the IPC-4 domains. Some examples that
spring to mind are action choice in autonomous robots, detecting security holes in computer net-
works (Boddy, Gohde, Haigh, & Harp, 2005), and online manufacturing (Ruml, Do, & Fromherz,
2005). As for structural diversity, it would be easy to construct a set of artificial domains that
explore more of the possible extreme cases. Such domains would probably be completely infea-
sible for current planners, thus posing very strong challenges. Just think of, for example, Rubik’s
Cube, Sokoban, or Rintanen’s (2004) purely randomly generated instance distributions. Then again,
such a domain set would be devoid of realism. At some point during the preparation of IPC-4, we
considered introducing a separate class of domains, called“Diverse Structure”, which would have
contained domains of this sort. We decided to not do so since the competition event was already
very large without it. Also, we felt that our applications were already quite diverse on the structural
side. As pointed out above, several theoretical and empirical phenomena suggest that the latter is
indeed the case.

During our work, we experienced various successes and failures in accurately formulating our
application domains in PDDL. People have asked us if, through this, we obtained a picture of how
suitable PDDL is, in its current form, to formulate applications, and in what sorts of domains it
works well. The answer is, we don’t feel like we obtained manyinsights into these matters that
are particularly deep or haven’t been known before. A few lessons learned are these. First and
foremost, formulating an application in STRIPS takes a hugeamount of engineering expertise unless
one just drops all problem constraints; some simplifications are unavoidable. Second, the discrete
nature of action instantiations in all previous IPC PDDL dialects seriously impedes formulation
of domains with continuous aspects. A discretization must be chosen, which is sometimes easy
(Airport) and sometimes very hard (Pipesworld) to do. A goodway out seems to be to adopt the
“duration inequalities” suggested by Fox and Long (2003). Third, the community should pay more

26. This is a good example of a case where PDDL has been moving faster than the actual planning technology.
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attention to lifted encodings, and how to deal with them in modern planning algorithms: one lesson
from our compilation activities is that grounding out all parameters is often simply not possible
(Promela, PSR). Since compiling away ADL constructs is often not feasible without grounding (c.f.
Section 2), this is also very relevant in the ADL/STRIPS context. As a final “lesson”, we (the AI
Planning community) are still, mostly, far away from as-is applicability of planners in the real world.
But we are on the right track.

To conclude, we spent significant time and effort creating a useful set of planning benchmarks
for IPC-4. We hope that they will become standard benchmarksin the coming years.
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Appendix A. Detailed Domain Descriptions

We now provide detailed descriptions of all the domains, in alphabetical order. Each section (except
those for the Satellite and Settlers domains, which were adapted from the IPC-3) is organized in
sub-sections as follows. We first give an outline of the application domain. We then explain the
main adaptations made to model the application as a PDDL domain in IPC-4, we explain the IPC-4
domain structure, i.e., the domain versions and their formulations as used in IPC-4, and we explain
how we generated the example instances for the IPC-4 test suites. Finally, we discuss possible future
extensions.

A.1 Airport

We had a contact person for this application domain, Wolfgang Hatzack, who has been working in
this application area for several years. The domain was adapted for IPC-4 by Jörg Hoffmann and
Sebastian Trüg.
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A.1.1 APPLICATION DOMAIN

The task is to control the ground traffic on an airport. Timed travel routes must be assigned to
the airplanes so that they reach their targets. There is inbound and outbound traffic; the former
are airplanes that must take off (reach a certain runway), the latter are airplanes that have just
landed and have to get parked (reach a certain parking position). The main problem constraint is,
of course, to ensure the safety of the airplanes. This means to avoid collisions, and also to prevent
airplanes from entering the unsafe zones behind large airplanes that have their engines running. The
optimization criterion is to minimize the summed up travel time (on the surface of the airport) of
all airplanes.27 There usually arestandard routes, i.e., routes that any airplane outbound from a
certain park position area, or inbound from a certain runway, musttake. The reason for introducing
such routes is, simply, the sheer complexity of managing thesituation otherwise, without significant
computer support (which is as yet not available on real airports). We will see below that whether or
not standard routes are present makes a big difference also computationally.

The airplanes move on the airport infrastructure, which consists of runways, taxiways, and
parking positions. The runways and taxiways are sub-divided into smallersegments. The position
of an airplane is given by the segment it is currently locatedin, plus its direction and the more
precise positionwithin the segment – several airplanes can be in the segment at the same time.

Airplanes are generally divided into three categories,light, medium, and heavy, which classify
them according to their engine exhaust (jet blast). An airplane that has to be moved is either in-
bound or out-bound. In-bound airplanes have recently landed and are on their way from the runway
to a parking position, usually a gate. Out-bound airplanes are ready for departure, meaning they
are on their way to the departure runway. Since airplanes cannot move backwards, they need to be
pushed back from the gate onto the taxiway, where they start up their engines. Some airports also
provide different park positions that allow an airplane to start its engines directly.

To ensure safety, an airplane must not get too close to the back of another airplane whose engines
are running. How far the safety distance has to be depends on the category (jet blast) of the second
airplane.

The ground controller – the planner – has to communicate to the airplanes which ways they
shall take and when to stop. While such guidance can be given purely reactively, it pays off to base
decisions on anticipating the future. Otherwise it may happen that airplanes block each other and
need more time than necessary to reach their destinations onthe airport. The objective is, as said,
to minimize the overall summed up traveling times of all airplanes.

As instances of the domain, one considers the traffic situation at some given point in time, with
a time horizon of, say, one hour. If new airplanes are known toland during given time slots inside
the time horizon, then during these time slots the respective runways are considered blocked, and
the planner has to make sure these runways are free at these times. Of course, because the situation
changes continually (new planes have to be moved and plans cannot be executed as intended), con-
tinuous re-planning, i.e., consideration of the domain instance describing the new traffic situation, is
necessary. Solving instances optimally (the corresponding decision problem) isPSPACE-complete
without standard routes (Helmert, 2006b) andNP-complete ifall routes are standardized (Hatzack
& Nebel, 2001). In the latter case, we have a pure scheduling problem. In the former case, compli-

27. This criterion is whatthe airportwants to minimize, in order to maximize its throughput. Fromthe point of view of
the airlines, it would be better to minimize delay, e.g., by minimizing the summed up squared delay of all airplanes.
The two criteria may be in conflict. Neither of the two can be easily modelled in PDDL2.2, see below.
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cated (highly unrealistic, of course) airport topologies can lead to exponentially long solutions, c.f.
Section 4.1.

A.1.2 IPC-4 PDDL ADAPTATION

The PDDL encoding (as well as our example instance generation process, see below) is based on
software by Wolfgang Hatzack, namely on a system calledAstras: Airport Surface ground TRAffic
Simulator. This is a software package that was originally designed to be a training platform for
airport controllers. Astras provides a two-dimensional view of the airport, allowing the user to
control the airplanes by means of point and click. Astras canalso simulate the traffic flow on an
airport over the course of a specified time window.

We made three simplifications, one of them benign, to the airport model. As for the benign
simplification: we did not model park positions where the airplane can start up its engines directly,
without being pushed back to the taxiway first. While it is notdifficult to model such park positions
in PDDL, they seldom occur in reality and so are not very relevant to the application. Our first
more important simplification was to assume a somewhat cruder notion of airplane locatedness, by
requiring that only a single airplane can be located in a segment at any time. That is, we use the
term “segment” with the meaning of a smallest indivisible unit of space. To minimize the loss of
precision, (some of) the original “segments” were sub-divided into several new smaller segments.
The safety distance behind the back of an airplane whose engines are running is then also measured
in terms of a number of segments. While this discretization makes us lose precision, we believe that
it does not distort the nature of the problem too much: due to the amount of expected conflicting
traffic at different points on the airport (high only near parking positions), it is relatively easy to
choose a discretization – with segments ofdifferentlength – that is precise and small enough at the
same time.28 The last simplification is more severe. We had to give up on thereal optimization
criterion. We say more on this rather strong simplification below. We did not use full standard
routes, thus allowing the airplanes a choice of where to move. We did use standards for some
routes, particularly the regions near runways in large airports. For one thing, this served to keep
large airports manageable for the PDDL encoding and planners; for another thing, it seems a good
compromise at exploiting the capabilities of computers while at the same time keeping close to
traditions at airports. We get back to this matter in SectionA.1.5.

The full PDDL description of our domain encoding can be downloaded from the IPC-4 web page
at http://ipc.icaps-conference.org/. Briefly, the encoding works as follows. The available actions are
to “pushback” (move a plane away backwards from a parking position), to “startup” the engines,
to “move” between segments, to “park” (turning off the engines), and to “takeoff” (which amounts
to removing the plane from the airport). The semantics of these actions are encoded based on
predicates defining the current state of the airplane. At anypoint in time, an airplane is either
moving, pushed, parked, or airborne. An airplane always occupies one segment and, if its engines
are running, may block several other segments depending on the size of the occupied segment
and the category of the airplane. The action preconditions ensure that blocked segments are never
occupied by another airplane. In the initial state, each plane is either parked, or moving. A parked
plane can be pushed back, and after starting up its engines, it is moving. A moving airplane can

28. The need for smallest indivisible units (of space, in this case) is a fundamental consequence of the discrete nature of
PDDL2.2; some more on this is said in Section A.1.5.
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either move from its current segment to a neighboring segment, park – at a parking position – or
take off – on a runway.

As an example, have a look at the PDDL encoding of the (non-durational) “move” action (one
of the preconditions was used as an example in Section 2 already):

(:action move
:parameters
(?a - airplane ?t - airplanetype ?d1 - direction ?s1 ?s2 - segment ?d2 - direction)
:precondition
(and (has-type ?a ?t) (is-moving ?a) (not (= ?s1 ?s2)) (facing ?a ?d1) (can-move ?s1 ?s2 ?d1)

(move-dir ?s1 ?s2 ?d2) (at-segment ?a ?s1)
(not (exists (?a1 - airplane) (and (not (= ?a1 ?a)) (blocked ?s2 ?a1))))
(forall (?s - segment) (imply (and (is-blocked ?s ?t ?s2 ?d2)(not (= ?s ?s1))) (not (occupied ?s)))))

:effect
(and (occupied ?s2) (blocked ?s2 ?a) (not (occupied ?s1)) (not (at-segment ?a ?s1)) (at-segment ?a ?s2)

(when (not (is-blocked ?s1 ?t ?s2 ?d2)) (not (blocked ?s1 ?a)))
(when (not (= ?d1 ?d2)) (and (not (facing ?a ?d1)) (facing ?a ?d2)))
(forall (?s - segment) (when (is-blocked ?s ?t ?s2 ?d2) (blocked ?s ?a)))
(forall (?s - segment) (when

(and (is-blocked ?s ?t ?s1 ?d1) (not (= ?s ?s2)) (not (is-blocked ?s ?t ?s2 ?d2)))
(not (blocked ?s ?a))))))

The six parameters – which is a lot compared to most of the usual benchmarks – do not cause
a prohibitive explosion in instantiations since there is a lot of restriction through static predicates.
Airplane “?a” moves; its type (category) is “?t”; it is at segment “?s1” facing in direction “?d1”, and
will be at “?s2” facing in direction “?d2” after the move. “Direction” here is a very simple concept
that just says which end of the segment the airplane is facing. Of course, moves from “?s1 ?d1”
to “?s2 ?d2” are only possible as specified by the – static – topology of the airport (“can-move”,
“move-dir”). The first of the two more complex preconditionssays that “?s2” must not currently
be blocked by any airplane other than “?a” itself. The secondcomplex precondition makes sure
that, after the move, “?a” will not block a segment that is currently occupied (by another airplane,
necessarily): “(is-blocked ?s ?t ?s2 ?d2)” is a static predicate that is true iff “?s” is endangered –
blocked – if a plane of type “?t” is at “?s2”w facing direction“?d2”. The effects should be self-
explanatory; they simply update the “at”, “occupied”, and “blocked” information. The only effect
that looks a little complicated – the last one – says that those segments that were blocked before the
move, but are no longer blocked after the move, become un-blocked. Note that the conditions of all
conditional effects are static, so the conditions disappear once the parameter instantiation is chosen.

In durational PDDL, the actions take time according to some simple computations. The time
taken to move across a segment depends, naturally, on the segment length and the speed. We
assumed that airplanes move at the same speed regardless of their category. The time taken to start
up the engines is proportional to the number of engines. The other actions have some fixed duration.

If some planes are known to land in the near future, blocking runways, then we model the
blocking during these time windows using timed initial literals, respectively their compilation into
artificial (temporal) PDDL constructs. The timed literals are simply instances of the usual “blocked”
predicate, becoming true when the respective time window starts, and becoming false again when it
ends.

We were not able to model the real optimization criterion of airport ground traffic control. The
standard criterion in PDDL is to minimize the execution time, i.e., makespan, of the plan. In our
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encoding of the domain this comes down to minimizing the arrival time (meaning, arrival at the
destination on the airport) of the last airplane. But the real objective is, as said above, to minimize
the overall summed up travel time of all airplanes. There appears to be no good way of modeling
this criterion in current PDDL. The difficulty lies in accessing the waiting times of the planes, i.e.
the times at which they stay on a segment waiting for some other plane to pass.29

The only way (we could think of) to get access to the waiting times, in current PDDL, is to
introduce an explicit waiting action. But then one must be able to tell the planner, i.e., to encode in
the action, how long the plane is supposed to wait. One optionis to use the “duration inequalities”
proposed by Fox and Long (2003). There the action imposes only some constraints on its duration,
and the planner can/has to choose the actual duration of the action, at each point where it is used in
the plan, as an additional (rational-valued) parameter. The potential disadvantage of this approach
is that the choice of the waiting time introduces, in principle, an infinite branching factor into the
state space, and may thus make the problem much harder for automated planners. Moreover, du-
ration inequalities were not put to use in IPC-3, and were nota part of PDDL2.1. When not using
duration inequalities, the only way to encode the requestedwaiting time into the action is to use
a discretization of time. One can then introduce new objectsrepresenting every considered time
interval, and give the waiting action a parameter ranging over these objects. Apart from the loss
of precision involved in the discretization, this approachis also likely to cause huge performance
problems for automated planners. As an alternative way out,we considered introducing a special
“current-time” variable into PDDL2.2, returning the time of its evaluation in the plan execution.
Using such a “look at the clock”, one could make each plane record its arrival time, and thus formu-
late the true optimization criterion without any major changes to the domain structure. The IPC-4
organizing committee decided against the introduction of a“current-time” variable as it seemed to
be problematic from an algorithmic point of view (it impliesa commitment to precise time points
at planning time), and didn’t seem to be very relevant anywhere except in Airport.

All in all, the IPC-4 PDDL encoding of the Airport domain is realistic except for the optimiza-
tion criterion, which demands to minimize maximal arrival time – makespan – instead of summed
up travel time. It remains to remark that all but one (LPG-td)of the IPC-4 planners ignored the
optimization criterion anyway. Also, minimizing the latest arrival time does appear a useful (if not
ideal) objective.

A.1.3 IPC-4 DOMAIN STRUCTURE

The Airport domain versions used in IPC-4 arenon-temporal, temporal, temporal-timewindows,
and temporal-timewindows-compiled. The first of these versions is, as the name suggests, non-
durational PDDL. In the second version, actions take time asexplained above. The third and fourth
versions also consider runways blocked in the future by planes known to land during given time
windows. The third version encodes these time windows usingtimed initial literals, the fourth
version uses those literals’ compilation into standard temporal PDDL constructs, c.f. Section 2.

In all the domain versions, the problem constraints are modeled using ADL, i.e., complex pre-
conditions and conditional effects. We compiled the ADL encodings to STRIPS with domain-
specific software implemented for this purpose. We groundedout most– not all – of the operator
parameters, precisely, all the parameters except, for eachaction, the one giving the name of the

29. Modelling summed up (squared) delay of all airplanes, the optimization criterion for airlines, would pose essentially
the same difficulty: it also involves computing the arrival time (in order to compute the delay).
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version formulation max-#op max-#act

non-temporal ADL 5 (1048) 989
non-temporal STRIPS 1408 (21120) 13100
temporal ADL 5 (1408) 989
temporal STRIPS 1408 (21120) 13100
temporal-tw ADL 5 (995) 854
temporal-tw STRIPS 1408 (22038) 13100
temporal-twc ADL 14 (911) 861
temporal-twc STRIPS 1429 (21141) 13121

Table 1: Overview over the different domain versions and formulations of Airport. Abbrevia-
tions used: “temporal-tw” for “temporal-timewindows”, “temporal-twc” for temporal-
timewindows-compiled;max-#op is the maximum number of (parameterized) PDDL
operators for any instance,max-#act is the maximum number of ground actions for any
instance. For the ADL formulations, the set of ground actions could not be generated for
the largest instances; data are shown for the largest instances that could be handled. Data
in parentheses are collected before FF’s “reachability” pre-process (see text).

affected individual airplane. Once all the other parameters are fixed, the formulas and conditional
effects can be simplified to the usual STRIPS constructs. Each Airport domain version contains
the original ADL formulation, as well as its compilation to STRIPS. The result of the grounding
process depends on the specific airport considered in the instance, and on the set of airplanes that
are travelling. So, in the STRIPS formulations, to each instance there is an individual domain file
(the same applies to all STRIPS compilations in the other domains described later).

The domain versions, as well as the blow-up incurred by the compilation, are overviewed in
Table 1.30 The numbers shown in the table indicate numbers of PDDL operators, and numbers
of grounded actions. For each domain version/formulation,the maximum such number of any
instance is shown. Note that, in the ADL formulations excepttemporal-timewindows-compiled,
there is just a single domain file so the number of operators isidentical for all instances. In the
STRIPS formulations, the number of operators is high because, as explained, most of the operator
parameters are grounded. The difference in the number of ground actions between the STRIPS and
the ADL formulations is because, with our automated software, we were not able to generate the
ground actions in the larger ADL instances; the data shown are for the largest instances that we
could handle. The numbers shown in parentheses refer to the situation beforeFF’s “reachability”
pre-process; as said before, this builds a relaxed planninggraph for the initial state, and removes all
actions that do not appear in that graph. The difference between the numbers inside and outside of
the parentheses indicates how much this simple pre-processhelps. We see that it helps quite a lot
here, pruning almost half of the actions (which would never become applicable, in a forward search
at least, but which blow up the representation regardless ofwhat algorithm is used).

30. The instantiation process is, of course, planner-dependent. Similarly as before in Section 5, our data are based on
FF’s pre-processor. We extended that pre-processor (precisely, the one of Metric-FF (Hoffmann, 2003)) to deal with
temporal constructs.
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A.1.4 IPC-4 EXAMPLE INSTANCES

The Airport example instances were generated by Sebastian Trüg, with an implementation based on
the aforementioned airport simulation tool Astras. Five scaling airport topologies were designed,
and used as the basis for the instance generation. The airports are named “Minimal”, “Mintoy”,
“Toy”, “Half-MUC”, and “MUC”. The smallest of these airports is the smallest possible airport
Astras can handle. The two largest airports correspond to one half of Munich Airport (MUC), and
to the full MUC airport. Figure 14 shows sketches of the “Minimal” airport, and of the “MUC”
airport.

(a)

(b)

Figure 14: The smallest (a), and the largest (b) of the IPC-4 Airport topologies. Park position
segments are marked in black (e.g., at the top of part (a)), while the segments airplanes
can takeoff from are marked in white (e.g., at the left bottomside of part (a)). The lines
show the road network on the airport. Topology (b) corresponds to MUC airport.

Sebastian Trüg implemented PDDL instance generation software inside Astras. During a simu-
lation of the traffic flow on an airport, if desired by the user the software exports the current traffic
situation in the various PDDL encodings explained above. The simulator was run with the different
airports, and 50 scaling traffic situations were exported (3on “Minimal”, 6 on “Mintoy”, 11 on
“Toy”, 15 on “Half-MUC”, and 15 on “MUC”). For each airport, the instances scale in terms of the
number of travelling airplanes. The largest instance features 15 planes to be moved to their desti-
nations on Munich airport, with 10 planes landing in the future to be considered (in the respective
domain versions). This can be considered a realistically sized traffic situation, at this airport.
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A.1.5 FUTURE WORK

It remains to explore how to relax some of the simplificationswe had to make. Most importantly,
how to overcome the discrete model of space (locatedness), and how to model the real optimization
criterion. Our difficulties with both are, as partly described above already, mostly due to the discrete
nature of PDDL2.2, which does not allow acontinuouschoice in the instantiation of an action. Such
a continuous choice would be the most natural way of sayinghow fara plane will be moving and
how long it will be waiting. So the best way to go about this direction is, probably, to assume
the “duration inequalities” proposed by Fox and Long (2003), together with the numeric variables
already contained in PDDL2.2. This should be easy on the modelling side. The main problem
is probably on the technology side, i.e., to develop planners that can deal efficiently with such
continuous choice points. At the time of IPC-4, as said, continuous choice appeared too much to
demand from the planners.

One interesting topic for future work arises if one restricts the airplanes completely to standard
routes, i.e., leaves them no choice at all of what route to take to their destination. As said, first,
this is usually done at real airports, for the sheer complexity of managing the situation otherwise,
without significant computer support (which is as yet not available at real airports). Second, in IPC-
4 we made only limited use of this feature, to retain some of the flexibility that could be offered
by automatized methods. Third, the restriction turns thePSPACE-complete ground traffic control
problem into a pure,NP-complete (Hatzack & Nebel, 2001), scheduling problem, where the only
question iswhenthe planes move across what segment. One could exploit this to create a much
more concise PDDL encoding. The restricted problem comes down to resolving allconflictsthat
arise when two planes need to cross the same airport segment.One could thus try to not encode in
PDDL the physical airport, but only the conflicts and their possible solutions, ideally in connection
with the real optimization criterion. It can be expected that planners will be much more efficient in
such a simpler and more concisely encoded problem.

A.2 Pipesworld

Frederico Liporace has been working in this application area for several years; he submitted a paper
on an early domain version to the workshop on the competitionat ICAPS’03. The domain was
adapted for IPC-4 by Frederico Liporace and Jörg Hoffmann.

A.2.1 APPLICATION DOMAIN

Pipelines play an important role in the transportation of Petroleum and its derivatives, since it is
the most effective way to transport large volumes over largedistances. The application domain
we consider here deals with complex problems that arise whentransporting oil derivative products
through a multi-commodity pipeline system. Note that, while there are many planning benchmarks
dealing with variants of transportation problems, transporting oil derivatives through a pipeline
system has a very different and characteristic kind of structure, since it uses stationary carriers
whose cargo moves rather than the more usual moving carriersof stationary cargo. In particular,
changing the position of one object directly results in changing the position of several other objects.
This is less reminiscent of transportation domains than of complicated single-player games such as
Rubic’s Cube. It can lead to several subtle phenomena. For example, it may happen that a solution
must reverse the flow of liquid through a pipeline segment several times. It may also happen that
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liquid must be pumped through a ring of pipeline segments in acyclic fashion, to achieve the goal
(we will see an example of this later).

In more detail, the application domain is the following. A pipeline network is a graph of opera-
tional areas connected by pipeline segments. Operational areas may be harbors, distribution centers
or refineries. These may be connected by one or more pipeline segments. The oil derivatives are
moved between the areas through the pipelines.

There can be different types of petroleum derivative products. Each area has a set of tanks
that define the storage capacity for each product type. Each pipeline segment has a fixed volume
and speed. The volume depends on the segment’s length and cross section diameter, and the speed
depends on the power of the pumps that move the contents. A segment may be uni-directional, i.e.
only usable for transportation in one direction.

Pipeline segments are always pressurized, that is, they must be always completely filled with
petroleum derivative products. Because of that, the only way to move a pipeline segment’s contents
is by pumping some amount of product from an adjacent area into the segment. This operation
results, assuming incompressible fluids, in the same amountof a possibly different product being
received in the area at the other end of the segment.

The pumping operations can only be executed if they do not violate any interface or tanking
constraints. As for the former, distinct products have direct contact inside the pipeline segment, so
it is unavoidable that there is some loss due to the mixture inthe interface between them. These
interface losses are a major concern in pipeline operation,because the mixed products can not be
simply discarded. They must pass through a special treatment that may involve sending them back to
a refinery, and that may require the use of special tanks. The severity of interface losses depends on
the products that interface inside the pipeline segment. Iftwo product types are known to generate
high interface losses, the pipeline plan must not place themadjacently into the segment. Such a pair
of product types is said to have an interface restriction.

Tanking constraints are limits on the product amounts that can be stored in an area, arising from
the respective tank capacities. Such constraints may effectively block a pipeline segment, if there is
no room in the receiving area to store the product that would leave the segment in the process of a
pumping operation.

The task in the application is to bring certain amounts of products to the areas in which they are
required, i.e. one has to find a plan of pumping operations that shifts the positions of the product
amounts in a way so that the goal specifications are met. Sometimes there is a deadline specifying
when, at the latest, a product amount has to arrive at its destination area. It may also be the case that
an area (typically, a refinery) is known to produce some givenamount of a product at a given point
in time, and that the plan must make sure that there is enough tank space available at the respective
area to store the new product amount. Similarly, an area (typically, a harbor or a distribution center)
may be known to consume some given amount of a product at a given point in time, thereby freeing
the respective amount of tank space.

A.2.2 IPC-4 PDDL ADAPTATION

The main adaptations made in the PDDL encoding are unitary batches, split pumping operations,
and “personalized” goals (see below for the latter). The term “batch” is used in the oil pipeline
industry to refer to an amount of a product that must be transported through the pipeline. Batches
are thus associated with a single product and have predefinedvolume. Batches are also indivisible.
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When a batchBi is pumped from an areaAj into a segmentSj,k, it is not possible for another batch
to be pumped fromAj intoSj,k until all ofBi’s volume is pumped. Of course, in reality the product
amount in a batch is a rational number. Using such a numeric encoding in IPC-4 seemed completely
infeasible due to complications in the modeling, and the expected capabilities of the participating
planners (see Section A.2.5). Instead, we based the encoding on the concept of what we called
unitary batches. These are the smallest considered – indivisible – portions of product. The pumping
operations refer to unitary batches. The pipeline segments’ volumes and the volumes of tanks are
also defined in terms of unitary batches. When encoding a real-world instance of the domain, the
actual volume associated with a unitary batch is a choice variable. Smaller unitary batches decrease
the rounding error in the PDDL encoding, at the cost of a larger encoding size. Note that, like the
smallest units of space in the Airport domain, this is a discretization the need for which is due to the
non-continuous nature of actions in PDDL2.2; we get back to this in Section A.2.5.

We modeled pipe segments in a directional fashion, i.e. there is a default direction assigning
one area the “from” role, and the other area the “to” role. Thepumping operations accordingly
distinguish between “push” actions, which move liquid in the respective segment’s default direction,
and “pop” actions, which move liquid in the opposite direction. This is simply a technical device to
enable the encoding of the pipe segment contents through predicates defining the “first” and “last”
batches in the segments (as well as a “successor” relation).The “push” and the “pop” actions receive
(amongst other things) as arguments the pipeline segment whose contents are being moved, and the
batch that is being inserted into the segment. The batch thatleaves the segment depends on the
segment content before the action is executed. Figure 15 shows an example.
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Figure 15: A small example. A1 plays the “from” role. The fill pattern for each batch represents
its product. (a) shows the initial state, (b) shows state (a)after a “push” operation with
B3 being inserted into the segment, (c) shows state (b) aftera “pop” operation with B6
being inserted into the segment.

Apart from the pipe segment and the batch being inserted, the“push” and “pop” actions have
to take several more parameters regarding, e.g., product types and tank slots. In particular, in order
to be able to update the segment contents correctly, the actions also need parameters giving the
respective first, last, and second last batch in the current contents of the segment. Thus such an
action has four parameters ranging over batches, yielding at leastn4 ground instances of the action
when there aren (unitary) batches in the considered task. We found that thismade the domain
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completely infeasible for any planning system that grounded out the actions. Since many unitary
batches are needed to encode even relatively small Pipesworld examples, such planners typically
died in the pre-processing phase already.31 We avoided this phenomenon by splitting the actions
into two parts, a “start” action taking as batch parameters only the inserted batch and the first batch
in the pipe, and an “end” action taking as batch parameters only the last and second last batches in
the pipe. To make this more concrete, here is the split “push”action:

(:action PUSH-START
:parameters
(?pipe - pipe ?batch-atom-in - batch-atom ?from-area - area?to-area - area
?first-batch-atom - batch-atom ?product-batch-atom-in - product
?product-first-batch - product)
:precondition
(and (normal ?pipe) (first ?first-batch-atom ?pipe) (connect ?from-area ?to-area ?pipe)

(on ?batch-atom-in ?from-area) (not-unitary ?pipe)
(is-product ?batch-atom-in ?product-batch-atom-in)
(is-product ?first-batch-atom ?product-first-batch)
(may-interface ?product-batch-atom-in ?product-first-batch))

:effect
(and (push-updating ?pipe) (not (normal ?pipe)) (first ?batch-atom-in ?pipe)

(not (first ?first-batch-atom ?pipe)) (follow ?first-batch-atom ?batch-atom-in)
(not (on ?batch-atom-in ?from-area))))

(:action PUSH-END
:parameters
(?pipe - pipe ?from-area - area ?to-area - area ?last-batch-atom - batch-atom
?next-last-batch-atom - batch-atom)
:precondition
(and (push-updating ?pipe) (last ?last-batch-atom ?pipe)(connect ?from-area ?to-area ?pipe)

(not-unitary ?pipe) (follow ?last-batch-atom ?next-last-batch-atom))
:effect
(and (not (push-updating ?pipe)) (normal ?pipe)

(not (follow ?last-batch-atom ?next-last-batch-atom))
(last ?next-last-batch-atom ?pipe) (not (last ?last-batch-atom ?pipe))
(on ?last-batch-atom ?to-area)))

The constructs should be largely self-explanatory. The static predicates used are: “connect”,
encoding the topology of the network; “is-product”, encoding the types of liquid; “may-interface”,
encoding the interface restrictions;32 “not-unitary”, saying whether or not a pipe segment contains
just one batch – in which case the “push” and “pop” actions aremuch simpler and need not be
split (the “first” and “last” elements in the pipe are identical). The predicates “normal” and “push-
updating” ensure, in the obvious way, that the two parts of the split action can only be used as
intended. Finally, “on”, “first”, “follow”, and “last” encode where the relevant batches are. The
role of “on” should be clear, it just encodes locatedness in areas. As for the pipe contents, they are
modelled in a queue-like fashion, with a head “first”, a tail “last”, and a successor function “follow”.
The two parts of the “push” action update this representation accordingly.

31. Matters may be easier for planning systems that do not ground out actions in a pre-process. This didn’t affect our
design decision here since the large majority of systems around at the time of IPC-4did employ such a pre-process.

32. Note here that we donot model the interface loss for those products thatmayinterface.
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We did not encode uni-directional pipe segments, i.e. for all segments both “push” and “pop”
actions are available in the IPC-4 encodings. We modeled tankage restrictions with simple con-
structs involving tank slots located in areas, each slot having the capacity to store one unitary batch
of some given product type – that is, the “push” and “pop” actions now also specify what tank slot
the inserted/outgoing batch comes from/is inserted into. For simple examples regarding interface
and tankage restrictions, re-consider Figure 15. If the storage capacity forP2 in A2 is equal to zero,
then the transition from state (a) to state (b) becomes invalid. If we forbid the interface betweenP1

andP3, then the transition from state (b) to state (c) becomes invalid.
Pipe segment speed can be easily taken account of (in durational PDDL). If the speed of a

segment iss, then simply assign the “push”/“pop” actions regarding that segment a duration pro-
portional to1

s
. (In the IPC-4 encoding, each “start”/“end” action takes exactly that time, while the

non-split actions regarding length-1 segments take time2

s
.)

In reality, as outlined above the goals refer to amounts of product requested to be at certain
destination areas. With our encoding based on batches, formulating such a goal would mean to in-
troduce a potentially large disjunction of conjunctive goals. If one wants to say, e.g., that three uni-
tary batches of productP are requested in areaA, then the needed goal condition is the disjunction∨

{b1,b2,b3}⊆B(atb1A) ∧ (atb2A) ∧ (atb3A) of the respective conjunctive goal for all three-subsets
{b1, b2, b3} of the batchesB of typeP . To avoid exponential blow-ups of this kind, in our encoding
we used “personalized” goals instead, referring to specificbatches instead of product amounts. Ba-
sically, this comes down to pre-selecting one of the{b1, b2, b3} subsets in the above disjunction.33

One could also avoid the blow-up by replacing the disjunction with an existential quantification; but
that step would be undone in the compilation to STRIPS anyway.

Deadlines on the arrival of batches are, in durational PDDL,easily modeled by their compilation
to timed initial literals. For each goal deadline there is a literal saying that the respective batch can
still be ejected from the end of a pipe segment. The literal isinitially true, and becomes false at
the time of the deadline. As described above, in the application there can also be pre-specified time
points at which an area produces or consumes a given amount ofa product. We did not model this
in the IPC-4 domain (see also Section A.2.5).

As mentioned above, the structure of the Pipesworld domain can lead to several subtle phenom-
ena in the possible plans. An example where plans have to perform a cyclic sequence of pumping
operations is depicted in Figure 16. The goal is to place B8 inA3. The shortest plan is the follow-
ing (for readability, in the action parameters only the batches going into and out of the pipes are
shown):0: PUSH S1,4 B8 B2, 1: POP S2,4 B2 B3, 2: POP S1,2 B3 B1, 3: PUSH S1,4 B1 B8, 4:
PUSH S4,3 B8 B7, 5: POP S2,3 B7 B4, 6: PUSH S2,4 B4 B2, 7: PUSH S4,3 B2 B8. Observe that
this plan contains two cyclic patterns. Action0 insertsB8 into S14. Actions1, 2, 3 then form a
cycle{S2,4, S1,2, S1,4} that bringsB8 into A4. Thereafter, action4 insertsB8 intoS43, and actions
5, 6, 7 form another cycle{S2,3, S2,4, S4,3} bringingB8 to its goal positionA3.34

33. Note that a bad choice of{b1, b2, b3} can make the task harder to solve. We are, however, currentlyinvestigat-
ing the computational complexity of different variants of the Pipesworld, and our preliminary results suggest that
allowing/disallowing personalized goals does not affect the complexity.

34. Note that the need for such cyclic patterns isnot an oddity introduced by our encoding. It is something that may (but
is probably not very likely to) happen in reality: like in theexample, it becomes necessary if there isn’t enough liquid
in an origin area (here, A1 and A4) to push the needed amount ofliquid (here, B8) through to its destination.
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Figure 16: An example where cycling is required to achieve the goal (place B8 in A3). Pipe segment
Si, j is directed fromAi toAj.

version formulation max-#op max-#act

notankage-nontemporalSTRIPS 6 (14800) 13696
notankage-temporal STRIPS 6 (14800) 13696
notankage-temporal-d STRIPS 6 (8172) 7740
notankage-temporal-dc STRIPS 9 (8175) 7742
tankage-nontemporal STRIPS 6 (107120) 101192
tankage-temporal STRIPS 6 (107120) 101192

Table 2: Overview over the different domain versions of Pipesworld. Abbreviations used:
“temporal-d” for “temporal-deadlines”, “temporal-dc” for deadlines-compiled;max-#op
is the maximum number of (parameterized) PDDL operators forany instance,max-#act
is the maximum number of ground actions for any instance. Data in parentheses are col-
lected before FF’s “reachability” pre-process (see text).

A.2.3 IPC-4 DOMAIN STRUCTURE

The Pipesworld domain versions used in IPC-4 arenotankage-nontemporal, tankage-nontemporal,
notankage-temporal, tankage-temporal, notankage-temporal-deadlines, andnotankage-temporal-
deadlines-compiled. All versions include interface restrictions. The versions with “tankage” in
their name include tankage restrictions. In the versions with “temporal” in their name, actions take
different amounts of time depending on the pipeline segmentthat is being moved, as explained
above. The versions with “deadlines” in their name include deadlines on the arrival of the goal
batches. One of these versions models the deadlines using timed initial literals, in the other version
(naturally, with “compiled” in its name) these literals arecompiled into artificial (temporal) PDDL
constructs. None of the encodings uses any ADL constructs, and of each version there is just one
(STRIPS) formulation.

The domain versions and numbers of ground actions are overviewed in Table 2. As before,
the data were measured using (a temporal extension of) FF’s pre-processor. The numbers shown
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in parentheses refer to the situationbeforethat pre-processor’s “reachability” pre-process, which
builds a relaxed planning graph for the initial state and removes all actions that do not appear in
that graph. We can observe that the numbers of ground actionsare very low in the domain versions
with deadlines, and extremely high in the versions with tankage restrictions. The former is simply
because, due to the complicated generation process (explained in the next sub-section), examples
with deadlines were generated only up to a smaller size. The latter – high numbers of actions in
the presence of tankage restriction – is due to the additional blow-up incurred by the choice of tank
slots from which to draw/in which to put the batches. We note that the effect of the “reachability”
pruning is relatively moderate, in particular much lower than, e.g., in Airport, c.f. Section A.1.3.

A.2.4 IPC-4 EXAMPLE INSTANCES

The Pipesworld example instances were generated by Frederico Liporace, in a process going from
random generators to XML files to PDDL files.35 Five scaling network topologies were designed
and used as the basis for the instance generation. Figure 17 shows the network topologies, as well
as a real-world network topology for comparison. As one can see, the largest network topology
used in IPC-4 is not quite yet in the same ballpark as the real network; but neither is it trivially
small in comparison. The volumes for pipeline segments thatconnect the same areas in the real-
world example are not necessarily the same because the segments may have different cross section
diameters.

For the domain versions without tankage restrictions and deadlines, for each of the network
topologies 10 scaling random instances were generated. Within a network, the instances scaled
in terms of the total number of batches and the number of batches with a goal location. For the
instances featuring tankage restrictions or deadlines, the generation process was more complicated
because we wanted to make sure to obtain only solvable instances. For the tankage restriction exam-
ples, we ran Mips (Edelkamp, 2003b) on the respective “notankage” instances, with incrementally
growing tankage.36 We chose each instance at a random point between the first instance solved by
Mips, and the maximum needed tankage (enough tankage in eacharea to accommodate all instance
batches). Some instances could not be solved by Mips even when given several days of runtime,
and for these we inserted the maximum tankage. For the deadline examples, we ran Mips on the
corresponding instances without deadlines, then arrangedthe deadline for each goal batch at a ran-
dom point in the interval between the arrival time of the batch in Mips’s plan, and the end time of
Mips’s plan. The instances not solved by Mips were left out.

A.2.5 CURRENT AND FUTURE WORK

There is ongoing work on developing a Pipesworld specific solver, named Plumber (Milidiú & dos
Santos Liporace, 2004a; Milidiú & dos Santos Liporace, 2004b). Plumber incorporates a pipeline
simulator, domain specific heuristics, and procedures for reducing the branching factor by symmetry
elimination. It also lets the user choose between differentsearch strategies, such as enforced hill
climbing (Hoffmann & Nebel, 2001) and learning real time A*(Korf, 1990). Currently it is being
extended to support temporal planning as well.

35. The same XML file is mapped into different PDDL files depending on the kind of encoding used; there was a lot of
trial and error before we came up with the final IPC-4 encoding.

36. Mips was a convenient choice since it is one of our own planners, and can also deal with temporal constructs.
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Figure 17: The IPC-4 Pipesworld network topologies (a), anda real network topology (b). The
segment volumes in the latter are annotated in100m3 units.

The availability of this solver will enable the extension ofthe Pipesworld benchmark, since it
will be easier to overcome the aforementioned difficulties in generating large feasible instances. We
hope to be able to generate feasible instances for real-world pipeline topologies, like the one shown
in Figure 17.

In addition to generating larger instances, the Pipesworldbenchmark may be extended in many
ways to make it closer to the real application scenario. The relevant possible extensions include:

• Defining some pipeline segments with a single flow direction,that is, segments where only
“push” or “pop” actions are allowed. Note that this introduces dead ends/critical choices into
the problem.

• Un-personalized goals. This could be accomplished, e.g., by imposing the desired tank vol-
ume for the goal products in the respective areas. The planner then also has to decide which
batches will be used to bring the tank volume up to the desiredlevel.

• Modeling production and consumption of products at pre-specified points in time, as de-
scribed above.
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• Using rational numbers to model tank capacities and currentvolumes, instead of the encoding
based on unitary tank slots. Apart from being a more precise model of the real world (when
combined with rational-valued batch sizes, see below), such an encoding would avoid un-
necessary symmetries that currently arise from the availability of several non-distinguishable
tank slots (in the same area, for the same product).

The most important shortcoming of our encoding is the use of unitary batches. It would be much
more appropriate to base the encoding on product amounts given by real numbers. One problematic
aspect of such an encoding is that it would, most naturally, demand a continuous choice ofhow
much liquid to pump into a pipeline. Like in Airport (c.f. SectionA.1.5), such a choice could
naturally be modelled using Fox and Long’s (2003) “durationinequalities”, but it is unclear how to
develop planners that can deal with these reasonably well. Unlike in Airport, implementing such
a choice is not the end of the difficulties on the modelling side. How to model the continuous
contents of a pipeline? The number of distinct regions of liquid in the pipeline can grow arbitrarily
high, in principle. One solution might be to fix some upper bound, and simply disallow a pumping
operation if it would result in too many distinct regions. This may be a bearable loss of precision,
given the upper bound is high enough. But even then, it is bound to be awkward to correctly update
the contents of the pipeline when some amountx of product is pushed in: the number of different
products leaving the pipe depends onx. An option here may be to use a complicated construct of
conditional effects.

All in all, our impression is that pipeline scheduling won’tbe realistically modelled in PDDL,
and successfully solved with planners, unless one introduces into the language a data structure
suitable for modelling the contents of pipes. Basically, this would be queues whose elements are
annotated with real numbers, and whose basic operations arethe usual “push” and “pop”. The
semantics of the pipes could then be explicitly computed inside the planner, rather than awkwardly
modelled using language constructs that are likely to disturb a general search mechanism.

A.3 Promela

This domain was created for IPC-4 by Stefan Edelkamp.

A.3.1 APPLICATION DOMAIN

Before dropping into the Promela domain, we briefly recall its origin.
The model checkerSPIN (Holzmann, 2003) targets efficient software verification. It has been

used to trace logical design errors in distributed systems design, such as operating systems, data
communications protocols, switching systems, concurrentalgorithms, railway signaling protocols,
etc. The tool checks the logical consistency of a specification. SPIN reports on deadlocks, unspeci-
fied receptions and identifies race conditions, and unwarranted assumptions about the relative speeds
of processes. SPIN (starting with Version 4) provides support for the use of embedded C code as
part of model specifications. This makes it possible to directly verify implementation level software
specifications, using SPIN as a driver and as a logic engine toverify high level temporal proper-
ties. SPIN works on-the-fly, which means that it avoids the need to construct a global state graph
as a prerequisite for the verification of system properties.SPIN supports property checking in lin-
ear temporal logic (LTL). LTL expresses state trajectory constraints, using temporal modalities like
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eventually, always, anduntil37. SPIN uses specific mechanisms for specifying deadlock-freeness
and other safety properties, in addition to general LTL specifications. To explore the state space an
ordinary or a nested search algorithm is applied, dependingon whether or not a state-based (a.k.a.
safety) property is to be verified.

Promelais SPIN’s input specification language. Its computational model is that of asynchronous
communicating finite state machines. Promela allows to define classes of finite processes. A special
process calledinit is started first and usually governs the instantiation of theother processes of the
system. As it is possible for a process to invoke another one,Promela allows modeling systems with
dynamic creation of state components. Communication in Promela is achieved via shared variables
and message channels. Two kind of message channels are distinguished for synchronous and asyn-
chronous communication. An asynchronous channel is basically a FIFO queue, while synchronous
channels imply rendezvous communication in which a transition of the system involves two pro-
cesses, one reading a message from the channel and another sending a message to it. Here, we
consider only asynchronous communication. The body of eachprocess class is basically a sequence
of statements. Each statement is interpreted as a transition of the process. Typical statements in-
clude assignments, numerical and boolean expressions and channel operations. Promela also allows
to define atomic regions, whose are a sequence of transitionsthat should be treated as an atomic
action. They can be interpreted as weighted transitions whose costs are the number of steps within
the regions.38

For IPC-4, we used two example communication protocols formulated in Promela: Dijkstra’s
Dining Philosophersproblem, and the so-calledOptical Telegraphprotocol. We briefly describe
the latter protocol in Section A.3.4. To illustrate the Promela language, let us consider the Dining
Philosophers problem, wheren philosophers sit around a table to have lunch. There aren plates,
one for each philosopher, andn forks located to the left and to the right of each plate. Sincetwo
forks are required to eat the spaghetti on the plates, not allphilosopher can eat at a time. Moreover,
no communication except taking and releasing the forks is allowed. The task is to devise a local
strategy for each philosopher that lets all philosophers eventually eat. The simplest solution to
access the left fork followed by the right one, has an obviousproblem. If all philosophers wait for
the second fork to be released there is no possible progress;a deadlock has occurred.

It is not difficult and probably insightful to derive abottom-upPDDL encoding for the Dining
Philosophers domain, using actions likeeat, wait andthink. Our motivation, however, was to come
up with a top-down encoding, starting from a Promela specification, automatically translating it into
PDDL.

The deadlock model of the Dining Philosophers is specified inPromela as shown in Figure 18.
The first lines define some macros and declare the array ofN boolean variables that represent the
availability of the forks. The following lines define the behavior of a process of typephilosopher.
The process iterates indefinitely in an endless loop (do) with one unique entry marked by symbol
::. Statements are separated by a semicolon. The first transitionleft!fork consists of the send
operation of tagfork to channelleft, which itself is a macro to addressforks with the current
process idpid. It represents the availability of the left fork of the philosopher. The access transi-
tion left?fork can be executed only if reading tagfork from channelleft is successful. The

37. Note that some fragments of LTL are likely to be included into the PDDL language for the next international planning
competition (Gerevini & Long, 2005)

38. Further documentation for the Promela specification language can be found on the web site for SPIN at
http://netlib.bell-labs.com/netlib/spin/whatispin.html
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#define MAX PHILOSOPHERS N
mtype=fork
#define left forks[pid]
#define right forks[(pid+1) % MAX PHILOSOPHERS]

chan forks[MAX PHILOSOPHERS] = [1] of bit;
active [MAX PHILOSOPHERS] proctype philosopher()
{

left!fork;
do
::left?fork -> /* try to get left fork */

right?fork; /* try to get right fork */
/* eat... */
left!fork; right!fork /* release forks */
/* meditation... */

od
}

Figure 18: Promela specification for a model of the Dining Philosophers problem.

next transitionright?fork is similar to the first, while the last two ones sends tagfork back to
the channelsleft andright.

A.3.2 IPC-4 PDDL ADAPTATION

Model Checking and Action Planning are closely related, c.f. Section 3. While a model checker
searches for a counterexample in the form of a sequence of transitions to falsify a given specifi-
cation, a planner searches for a sequence of actions that satisfies a given goal. In both cases, the
basic models (STRIPS Planning, Kripke structures), refer to implicit graphs, where the nodes are
annotated with atomic propositions.

For automatically generating a PDDL model from the Promela syntax we wrote a com-
piler (Edelkamp, 2003a). It is restricted to safety properties, especially deadlocks, but assertions
and global invariances are not difficult to obtain. We also concentrated on models with a fixed num-
ber of processes, since most of the models of communication protocols adhere to this restriction.39

The compiler does not parse the Promela code itself, but takes as the input the intermediate
representation of the problem that is generated by the SPIN validation tool40. Figure 19 shows
the textual automata representation for the philosopher process. In this case, the valueN has been
initialized with 10 philosophers. While this file contains almost all necessary information for the

39. The dynamic creation of processes with PDDL would require a language extension fordynamic object creation.
This extension was dismissed since it would involve heavy changes to existing planner technology, and its relevance
(beyond Promela) is unclear.

40. More precisely, the Promela input file was taken, the corresponding c-file was generated, the verifier was compiled
and the executable was run with option-d.
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translation, the number of processes and queues (i.e., message channels) as well as the queue ca-
pacities had to be read from the original Promela input file41.

proctype philosopher
state 1 -(trans 3)-> state 6 line 11 => forks[ pid]!fork
state 6 -(trans 4)-> state 3 line 12 => forks[ pid]?fork
state 3 -(trans 5)-> state 4 line 14 => forks[(( pid+1)%10)]?fork
state 4 -(trans 3)-> state 5 line 16 => forks[ pid]!fork
state 5 -(tras 6)-> state 6 line 16 => forks[(( pid+1)%10)]!fork

Figure 19: Automata representation for the model of the 10 Dining Philosophers problem.

To derive a suitable PDDL encoding of the domain, each process is represented by a finite state
automata. Hence, the propositional encoding simulates theautomaton. Some propositional atoms
true in the initial state of one process in the running example problem is shown in Figure 20 (a)42.

(is-a-process philosopher-0 philosopher)
(at-process philosopher-0 state-1)
(trans philosopher trans-3 state-1 state-6)
(trans philosopher trans-4 state-6 state-3)
(trans philosopher trans-5 state-3 state-4)
(trans philosopher trans-3 state-4 state-5)
(trans philosopher trans-6 state-5 state-6)

(is-a-queue forks-0 queue-1)
(queue-head forks-0 qs-0)
(queue-tail forks-0 qs-0)
(queue-next queue-1 qs-0 qs-0)
(queue-head-msg forks-0 empty)
(queue-size forks-0 zero)
(settled forks-0)

(a) (b)

(writes philosopher-0 forks-0 trans-3) (trans-msg trans-3 fork)
(reads philosopher-0 forks-0 trans-4) (trans-msg trans-4fork)
(reads philosopher-0 forks-1 trans-5) (trans-msg trans-5fork)
(writes philosopher-0 forks-1 trans-6) (trans-msg trans-6 fork)

(c)

Figure 20: Propositional encoding of one philosopher’s process (a), Propositional encoding of a
(single-cell) communication channel (b), Connecting communication to local state tran-
sitions (c).

The encoding of the communication structure represents channels as graphs. The PDDL encod-
ing additionally exploits a cyclic embedding of a queue intoan array. More formally, each (FIFO)
channelQ is represented by a structureGQ = (SQ,headQ, tailQ, δQ,messQ,contQ), with SQ being
the set of queue cells,headQ, tailQ ∈ SQ being the head and tail cells ofQ, messQ ∈ M|SQ| being

41. To avoid conflicts with pre-compiler directives, we firstinvoked the c-compiler with command line option-E, which
only executes the pre-compiler.

42. Here we use transition IDs, in the competition a less accessible textual representation of the label was chosen.
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the vector of messages inQ (M is the set of all messages),contQ ∈ IR|SQ| being the vector of
variable values inQ andδQ : SQ → SQ being the successor relation forQ; if SQ = s[1], . . . , s[k]
thenδ(s[i]) = s[(i + 1) mod k]. Explicitly modeling head and tail positions in the queue trades
space for time, since queue updates reduce to constant time.

A queue is either empty (or full) if both pointers refer to thesame queue state. As a special case,
very simple queues (as in our example) may consist of only onequeue state, so the successor bucket
of queue state 0 is the queue state 0 itself. In this case the grounded propositional encoding includes
operators where the add and the delete lists share an atom. Wehere make the standard assumption
that deletion is done first. The propositional atoms for one queue and the adaption of two queues to
one process are exemplified in Figure 20 (b) and (c).

Queue content, shared and local variables are modeled by PDDL fluents. The only difference of
local variables compared to shared ones is the restricted visibility scope, so that local variables are
prefixed with the process they appear in. The two benchmark protocols we selected for IPC-4 rely
on pure message passing, so that no numerical state variables there are involved. This allowed us to
supply a propositional model for all problems.

(:action activate-trans
:parameters (?p - process ?pt - proctype ?t - transition ?s1 ?s2 - state)
:precondition (and (forall (?q - queue) (settled ?q)) (trans ?pt ?t ?s1 ?s2)

(is-a-process ?p ?pt) (at-process ?p ?s1) (pending ?p))
:effect (and (activate ?p ?t) (not (pending ?p)))))

Figure 21: Testing if a transition is enabled and activatingit.

Our PDDL domain encoding uses seven operators, namedactivate-trans, queue-read,
queue-write, advance-queue-head, advance-empty-queue-tail, advance-non-empty-queue-tail, and
process-trans. The activation of a process is shown in Figure 21. Here we seethat a pending process
is activated, if all queues are settled and there is a transition that matches the current process state.

Briefly, the operators encode the protocol semantics as follows. Operatoractivate-transactivates
a transition in a process of a given type from local states1 to s2. The operator sets the predicate
activate. This boolean flag is a precondition of thequeue-readandqueue-writeactions, which set
propositions that initialize the reading/writing of a message. For queueQ in an activated transition
querying messagem, this corresponds to the Promela expressionQ?m, respectivelyQ!m. After the
read/write operation has been initialized, the queue update operators must be applied, i.e.advance-
queue-head, advance-empty-queue-tail, or advance-non-empty-queue-tailas appropriate. As the
names indicate, these operators respectively update the head and the tail positions, as needed to
implement the requested read/write operation. The operators also set asettledflag, which is a
precondition of every queue access action. Actionprocess-transcan then be applied. It executes the
transition from local states1 to s2, i.e. sets the new local process state and re-sets the flags.

If the stored message does not match the query, or the queue capacity is either too small or too
large, then the active local state transition will block. Ifall active transitions in a process block, the
process itself will block. If all processes are blocked, we have a deadlock in the system. Detection
of such deadlocks is implemented, in different domain versions, either as a collection of specifically
engineered actions or, more elegantly, as a set of derived predicates. In both cases one can infer,
along the lines of argumentation outlined above, that a process/the entire system is blocked. The
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(:derived (blocked-trans ?p - process ?t - transition)
(exists (?q - queue)

(exists (?m - message)
(exists (?n - number)

(and (activate ?p ?t) (reads ?p ?q ?t) (settled ?q)
(trans-msg ?t ?m) (queue-size ?q ?n) (is-zero ?n))))))

(:derived (blocked ?p - process)
(exists (?s - state)

(exists (?pt - proctype)
(and (at-process ?p ?s) (is-a-process ?p ?pt)

(forall (?t - transition)
(or (blocked-trans ?p ?t) (forall (?s2 - state) (not (trans ?pt ?t ?s ?s2)))))))))

Figure 22: Derivation of a deadlock.

goal condition that makes the planners detect the deadlocksin the protocols is simply a conjunction
of atoms requiring that all processes are blocked. As an example of the derivation rules for derived
predicates, the PDDL description for the derivation of a deadlock based on blocked read accesses is
shown in Figure 22.

A.3.3 IPC-4 DOMAIN STRUCTURE

For each of the two benchmark protocols in IPC-4, we created three different domain versions:
derivedpredicates, which contains derived predicates to infer deadlocks;plain, a purely proposi-
tional specification with specific actions that have to be applied to establish the deadlock (the later
actions are basically the Gazen and Knoblock (1997) compilation of derived predicates, c.f. Sec-
tion 2); fluentsan alternative to the latter with numerical state variablesthat encodes the size of
the queues and the messages used to access their contents. Wealso made a version calledfluents-
derivedpredicates, the obvious combination, but none of the IPC-4 competitorsparticipated in there,
so we omit it herein. Within each domain version, there is oneformulation that includes the ADL
constructsquantification, disjunctive preconditions, andnegated preconditions. In those domain
versions without fluents, another formulation is in pure STRIPS, obtained from the respective ADL
encodings using theadl2stripscompiler (which can not handle numeric variables). Unfortunately,
some of the larger problem instances lead to STRIPS files thatwere too big to be stored on disk
(remember that adl2strips grounds out all operator parameters). These too-large instances were, of
course, left out of the respective test suites.

We keptfluent-domains as separated domainversions, rather than domain version formulations,
in order be able to compare propositional and numerical exploration efficiencies, and to emphasize
that fluent variables are essential in real-world model checking and should be treated separately.

The domain versions and numbers of operators and ground actions are overviewed in Table 3.
Consider the rows in the table from top to bottom. As before, times in parentheses are values
before FF’s “reachability” pre-process, which builds a relaxed planning graph for the initial state
and removes all actions that do not appear in that graph. The STRIPS formulation is fully grounded
using the adl2strips program, derived from FF’s pre-processor (c.f. Section 2). This is both the
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version formulation max-#op max-#act

optical-telegraph STRIPS 3345 (3345) 3345
optical-telegraph ADL 11 (5070) 3345
optical-telegraph-dp STRIPS DP 4014 (4014) 4014
optical-telegraph-dp ADL DP 11 (6084) 4014
optical-telegraph-fluents ADL 11 (1337) 1169

philosophers STRIPS 840 (840) 840
philosophers ADL 11 (930) 840
philosophers-dp STRIPS DP 1372 (1372) 1372
philosophers-dp ADL DP 11 (1519) 1372
philosophers-fluents ADL 11 (930) 930

Table 3: Overview over the different domain versions of Promela. Abbreviations used: “dp” de-
rived predicates;max-#op is the maximum number of (parameterized) PDDL operators
for any instance,max-#act is the maximum number of ground actions for any instance.
Data in parentheses are collected before FF’s “reachability” pre-process (see text). Deriva-
tion rules (ground derivation rules) are counted as operators (ground actions).

reason why the number of operators is the same as the number ofground actions, and why FF’s pre-
process – identical to the one run by adl2strips – has no effect. In the ADL formulation, we see that
the reachability pruning reduces the number of actions by a factor of almost 2, similar to the Airport
domain (c.f. Section A.1.3). The picture for the next two domain versions, with derived predicates,
is very similar. In fact, since, consistently with the data in Section 5, we count derivation rules as
actions, the data areidentical. The only reason why it is not identical in Table 3 is that, using derived
predicates instead of operators, FF’s pre-processor scales to larger instances (presumably, due to
some unimportant implementation detail). In the next domain version, formulated with numeric
variables, FF’s pre-processor scales even worse. However,even in instances with the same number
of telegraphs, there are less ground actions than before, due to the more different encoding. The
observations to be made in Dining Philosophers are exactly the same, only with different numbers.
The only notable difference is that the effect of FF’s reachability pruning is weaker, yielding only a
slight decrease in the number of actions in the versions without fluents, and no decrease at all in the
version with fluents. Apparently, the more complex process structure of Optical Telegraph leads to
more useless action instances.

A.3.4 IPC-4 EXAMPLE INSTANCES

As said, we have selected two simple communication protocols as benchmarks for IPC-4: the en-
coding of theDining Philosopherproblem as described above, and the so-calledOptical Telegraph
protocol (Holzmann, 1990).

The Optical Telegraph protocol involvesn pairs of communicating processes, each pair featur-
ing an “up” and a “down” process. Such a pair can go through a fairly long, heavily interactive,
sequence of operations, implementing the possible data exchange between the two stations. Before
data are exchanged, various initializing steps must be taken to ensure the processes are working
synchronously. Most importantly, each process writes a token into a “control channel” (queue) at
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the beginning of the sequence, and reads the token out again at the end. This causes a deadlock
situation because there are onlyn control channels, each of which is accessed by two processes.
When every pair of up/down processes has occupied just one control channel, the overall system is
blocked.

In both theDining Philosopherand theOptical Telegraphbenchmark, the instances scale via a
single parameter, the number of philosophers and the numberof control stations, respectively. We
scaled that parameter from2 to 49 for the competition instances. The Promela models of the bench-
marks are distributed together with our experimental modelchecking tool HSF-SPIN (Edelkamp,
Leue, & Lluch-Lafuente, 2004), that extends SPIN with heuristic search strategies to improve error
detection.

A.3.5 FUTURE WORK

In general terms, we see the Promela planning benchmark as another important step towards exploit-
ing synergies between the research areas of Planning and Model Checking (Giunchiglia & Traverso,
1999). For example, complement to recent progress in planning, explicit directed model checking
in the domain of protocol validation (Edelkamp et al., 2004)andsymbolic directed model checking
in the domain of hardware validation (Reffel & Edelkamp, 1999) has led to drastic improvements
to state-of-the-art model checkers. This and other work, e.g., (Yang & Dill, 1998; Bloem, Ravi,
& Somenzi, 2000), show that in model checking there is a growing interest in guided exploration,
mostly to find errors faster than blind state space enumeration algorithms. With the compilation of
the Promela domain model, an alternative option of applyingheuristic search to model checking
problems is available. More work is needed to understand when planning heuristics work or fail in
model checking benchmarks.

We strongly believe that both communities will profit from a wide-spread availability of tech-
niques that represent Model Checking problems in PDDL. Thisallows a direct comparison of explo-
ration efficiencies. Based on the design of the Promela domain, suitable PDDL domain encodings of
two further expressive model checking input languages, Graph Transformation Systems (Edelkamp,
Jabbar, & Lluch-Lafuente, 2005) and Petri Nets (Edelkamp & Jabbar, 2005), have been proposed.
The encodings exploit the expressive power of PDDL as well asthe efficiency of current planners.
As a result, state-of-the-art planners are often faster compared to model checkers in these bench-
marks.

A.4 PSR

Sylvie Thiébaux and others have worked on this applicationdomain. The domain was adapted for
IPC-4 by Sylvie Thiébaux and Jörg Hoffmann.

A.4.1 APPLICATION DOMAIN

The Power Supply Restoration (PSR) domain we consider here is derived from an application in-
vestigated by Sylvie Thiébaux and others (Thiébaux et al., 1996; Thiébaux & Cordier, 2001). PSR
deals with reconfiguring a faulty power distribution systemto resupply customers affected by the
faults. This is a topic of ongoing interest in the field of power distribution.

In more detail, a power distribution system (see Figure 23),is viewed as a network of elec-
tric lines connected by switches and fed via a number of powersources that are equipped with
circuit-breakers. Switches and circuit-breakers have twopossible positions, open or closed, and are
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Figure 23: Sample power distribution system. Sources/circuit-breakers (e.g., CB4) are represented
by large squares, and switches (e.g., SD3) by small squares.Open switches (e.g., SD8)
are white. The area fed by CB4 is boxed. Gray and dark are used to distinguish adjacent
areas fed by different sources

connected to at most two lines. There is no restriction on theconnectivity of lines, some extremities
of which can also be connected to earth. When the circuit-breaker of a power source is closed, the
power flows from the source to the lines downstream, until theflow is stopped by an open switch.
The switches are used to appropriately configure the networkand their position is initially set so
that each line is fed by exactly one source.

Due to bad weather conditions, permanent faults can affect one or more lines of the network.
When a power source feeds a faulty line, the circuit-breakerfitted to this source opens to protect the
rest of the network from overloads. This leavesall the lines fed by the source without power. The
problem consists in planning a sequence of switching operations (opening or closing switches and
circuit-breakers) bringing the network into a configuration where a maximum of non-faulty lines
are resupplied. For instance, suppose that line l20 becomesfaulty. This leads the circuit-breaker
CB4 to open and the boxed area to be without power. A possible restoration plan would be the
following: open switches SD16 and SD17 to isolate the faultyline, then close SD15 to have source
CB7 resupply l19, and finally re-close CB4 to resupply the others.

In the original PSR problem (Thiébaux & Cordier, 2001), themaximal capacity of sources and
lines, as well as the load requested by customers are taken into account. The plan must optimize
various numerical parameters such as breakdown costs, power margins, and distance to the initial
configuration, subject to the capacity constraints. Furthermore, due to the fault sensors and switches
being unreliable, the location of the faults and the currentnetwork configuration are only partially
observable. When optimizing, this leads to a complex tradeoff between acting to resupply lines and
acting (intrusively) to reduce uncertainty.
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A.4.2 IPC-4 PDDL ADAPTATION

In the PDDL adaptation, we benefited from contributions by Piergiorgio Bertoli, Blai Bonet, Alessan-
dro Cimatti, and John Slaney (Bertoli et al., 2002; Bonet & Thiébaux, 2003). Compared to the
original PSR domain described above, the IPC-4 version underwent 3 major adaptations. Firstly,
the IPC deals with fully observable domains. Hence, while partial observability in PSR is a crucial
issue (Thiébaux et al., 1996; Bertoli et al., 2002; Bonet & Thiébaux, 2003), the IPC version assumes
complete observability. Secondly, given the difficulty of encoding even the basic problem, we chose
to ignore the numerical and optimization aspects of PSR (capacities, power margins, . . . ). Thirdly,
the IPC-4 version is set up as a pure goal-achievement problem, where the goal specifies a set of
lines that must be (re)-supplied. We considered a more realistic goal asking the planner to supply
any line that can be. However, we were unable to compile this goal into STRIPS in reasonable
space, and opted for the simpler goal to keep the STRIPS formulation as consistent as possible with
others.

Our highest level and most natural IPC-4 encoding of PSR involves ADL constructs and derived
predicates. Briefly, the encoding works as follows. PSR problem instances specify (1) the network
topology, i.e., the objects in the network and their connections (the lines, the switching devices, that
is, the switches and the sources/circuit-breakers, two “side” constants side1 and side2 to denote the
two connection points of a switching device, and the connection relations between those objects),
(2) the initial configuration, i.e., the initial positions (open/closed) of the switching devices, and (3)
the modes (faulty or not) of the various lines. Among those, only the devices’ positions can change.
A number of other predicates are derived from these basic ones. They model the propagation of the
current into the network with a view to determining which lines are currently fed and which sources
are affectedby a fault, i.e. feed a fault. The closed-world assumption semantics of PDDL2.2
derived predicates is exactly what is needed to elegantly encode such relations. These require a
recursive traversal of the network paths which is naturallyrepresented as the transitive closure of
the connection relation of the network. The most complex of these derived predicates,upstream,
requires four parameters, two of which, however can only take two possible values, and expresses
that the power flows from one of the two sides of some device (side ?sx of device ?x) to one of the
sides of another (side ?sy of device ?y) This happens when theside of ?x which is opposite to ?sx is
directly connected to ?sy (via some line), or if there existssome closed device ?z one side of which
is upstream of ?sx and the other side of which is connected to ?sy:

(:derived (upstream ?x - DEVICE ?sx - SIDE ?y - DEVICE ?sy - SIDE)
(and (closed ?x)

(or (and (= ?sx side1) (con ?x side2 ?y ?sy))
(and (= ?sx side2) (con ?x side1 ?y ?sy))
(exists (?z - DEVICE)

(and (closed ?z)
(or (and (con ?z side1 ?y ?sy) (upstream ?x ?sx ?z side2))

(and (con ?z side2 ?y ?sy) (upstream ?x ?sx ?z side1))))))))

From upstream, it is relatively easy to define predicates stating whether a given line is fed or a given
source is affected.
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The goal in a problem instance asks that given lines be fed andall sources be unaffected.43

The available actions are closing and opening a switching device. Their effect is simply to set the
device position as requested. In addition, there is an action wait, which models the event of circuit-
breakers opening when they become affected. Wait is applicable when an affected source exists,
and is the only applicable action in that case (the open and close actions require as a precondition
that no source is affected). This, together with the goal, ensures that the wait action is applied as
soon as a source is affected. The effect of the wait action is to open all the affected circuit-breakers.
Concretely, the wait and close actions are as follows (note that open is similar to close and that earth
is treated as a device whose position cannot be changed by theactions):

(:action close
:parameters (?x - DEVICE)
:precondition (and (not (= ?x earth))

(not (closed ?x))
(forall (?b - DEVICE) (not (affected ?b))))

:effect (closed ?x))

(:action wait
:parameters ()
:precondition (exists (?b - DEVICE) (affected ?b))
:effect (forall (?b - DEVICE) (when (affected ?b) (not (closed ?b)))))

It would have been possible to encode the opening of affectedbreakers as a conditional effect of the
close action. However, this would have required more complex derived predicates with an additional
device as parameter and a conditional flavor, specifying, e.g., whether or not a circuit-breakerwould
beaffectedif we were to close that device.

A.4.3 IPC-4 DOMAIN STRUCTURE

We used four domain versions of PSR in IPC-4. Primarily, these versions differ by the size of
the problem instances encoded. The instance size determined in what languages we were able
to formulate the domain version. We tried to generate instances of size appropriate to evaluate
current planners, i.e, we scaled the instances from “push-over for everybody” to “impossibly hard
for current automated planners”, where we got our intuitions by running a version of FF enhanced
to deal with derived predicates. The largest instances are of the kind of size one typically encounters
in the real world. More on the instance generation process issaid in Section A.4.4.

The domain versions are named 1.large, 2. middle, 3. middle-compiled, and 4. small.
Version 1 has the single formulationadl-derivedpredicates. Version 2 has the formulationsadl-
derivedpredicates, simpleadl-derivedpredicates, and strips-derivedpredicates. Version 3 has the
single formulationadl, and version 4 has the single formulationstrips. The formulation names sim-
ply give the language used. Version 1 contains the largest instances, versions 2 and 3 contain (the
same) medium instances, and version 4 contains the smallestinstances. Theadl-derivedpredicates

43. Note that after the circuit-breaker of an affected source opens, this source is not affected any more, as it does not feed
any line. Then, if the circuit-breaker is closed again, the source will stay unaffected unless it re-starts feeding a faulty
line.
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version formulation max-#op max-#act

large ADL DP 7 (14038) 7498
middle ADL DP 7 (7055) 3302
middle SIMPLE-ADL DP 3485 (3485) 3485
middle STRIPS DP 3560 (3560) 3560
middle-compiled ADL 5 (99) 71
small STRIPS 9400 (9400) 9400

Table 4: Overview over the different domain versions and formulations of PSR. Abbreviations used:
“dp” derived predicates;max-#op is the maximum number of (parameterized) PDDL
operators for any instance,max-#act is the maximum number of ground actions for any
instance. Data in parentheses are collected before FF’s “reachability” pre-process (see
text). Derivation rules (ground derivation rules) are counted as operators (ground actions).

formulation is inspired by Bonet and Thiébaux (2003); it makes use of derived predicates as ex-
plained above, and of ADL constructs in the derived predicate, action, and goal definitions. In the
simpleadl-derivedpredicatesandstrips-derivedpredicatesformulations, all ADL constructs (except
conditional effects in thesimpleadlcase) are compiled away. The resulting fully grounded encod-
ings are significantly larger than the original, while on theother hand the length of plans remains
nearly unaffected44. The pureadl formulation is obtained from theadl-derivedpredicatesformula-
tion by compiling derived predicates away, using the methoddescribed by Thiébaux et al. (2003,
2005). While there is no significant increase in the domain size, the compilation method can lead to
an increase in plan length that is exponential in the arity ofthe derived predicates (no compilation
method can avoid such a blow-up in the worst case, see Thiébaux et al., 2003, 2005). Indeed, in
our particular PSR example instances, we observed a considerable blow up in plan length. We felt
that this blow up was too much to allow for a useful direct comparison of data generated foradl-
derivedpredicatesas opposed toadl, and we separated theadl formulation out into domain version
3 as listed above.

The strips domain formulation proved quite a challenge. All the 20 or soschemes we con-
sidered for compiling both derived predicates and ADL constructs away led to either completely
unmanageable domain descriptions or completely unmanageable plans. The problem is that feasi-
ble compilations of derived predicates create new actions with highly conditional effects, and that
compiling those away is impractical. We therefore adopted adifferent fully-grounded encoding in-
spired by Bertoli et al. (2002). The encoding is generated from a description of the problem instance
by a tool performing the reasoning about power propagation.In the resulting tasks, the effects of the
close actions directly specify which circuit-breakers open as a result of closing a switch in a given
network configuration. No derived predicates are needed, and consequently the STRIPS encoding
is much simpler and only refers to the positions of the devices and not to the lines, faults, or connec-
tions. Nevertheless, we were still only able to formulate comparatively small instances in STRIPS,
without a prohibitive blow-up in the encoding size.

44. The only variation is due to the fact that the existentialprecondition of the wait action causes the compilation to split
this action into as many wait actions as circuit-breakers
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The domain versions, formulations, and their respective numbers of operators and ground ac-
tions, are shown in Figure 4. Data in parentheses are collected before FF’s “reachability” pre-
process, building a relaxed planning graph for the initial state and removing all actions that do not
appear in that graph. In the encodings using ADL and derived predicates, this reduces the num-
ber of ground actions by a factor of around2; for only ADL, the factor is much smaller; for the
other encodings, no reduction at all is obtained, simply dueto the fact that these encodings are ob-
tained with adl2strips, which uses the same pruning process. Some interesting observations can be
made in the “middle” versions and formulations. The data shown there correspond to the largest
instance that FF’s pre-processor could handle inall versions/formulations, to enable direct compar-
ison. We see that, for formulation in SIMPLE-ADL and STRIPS,we need to introduce some more
ground actions. We also see that, curiously, in the compilation of derived predicates (compilation to
“middle-compiled”), the number of ground actions decreases dramatically. The reason for this lies
in that these data count ground derivation rules as ground actions, and in the subtleties of the com-
pilation of derived predicates. In the “middle” formulations, almost all ground actions are in fact
ground derivation rules. These are compiled away for “middle-compiled” following Thiébaux et al.
(2003, 2005), introducing asingleaction that has one distinct conditional effect for each deriva-
tion rule, c.f. Section 2. Which just means that the complexity of thousands of derivation rules is
replaced with the complexity of an action with thousands of conditional effects.

A.4.4 IPC-4 EXAMPLE INSTANCES

Due to contractual agreements, we were unable to use real data in the competition. Instead, PSR
instances were randomly generated using “randomnet”, a special purpose tool implemented by John
Slaney.

Power distribution networks often have a mesh-able structure exploited radially: the path taken
by the power of each source forms a tree whose nodes are switches and whose arcs are electric
lines; terminal switches connect the various trees together. Randomnet takes as input the number of
sources, a percentage of faulty lines, and a range of parameters for controlling tree depth, branching,
and tree adjacency, whose default values are representative of real networks. Randomnet randomly
generates a network topology and a set of faulty lines. Theseare turned into the various PDDL
encodings above by a tool called net2pddl, implemented by Piergiorgio Bertoli and Sylvie Thiébaux.
net2pddl computes the set of all lines that can be supplied, and makes this the goal.

The instances we generated make use of randomnet default settings, with two exceptions to
create problems of increasing difficulty. The first is that the maximal depth of the trees takes a range
of values up to twice the default. The larger this value, the harder the problem. The second is that
the percentage of faulty lines ranges from 0.1 to 0.7. Problems at the middle of the range are harder
on average, those at the bottom of the range are more realistic.

Each instance suite contains 50 instances. The small instances feature between 1 to 6 sources,
the middle instances feature up to 10 sources, and the large instances feature up to 100 sources.
The large instances are of a size typical for real-world instances, or even larger. The example in
Figure 23 is representative of a difficult instance in the middle set.

A.4.5 FUTURE WORK

While PSR has been around for some time as a benchmark for planning under uncertainty, we expect
that the work done in the framework of IPC-4 will facilitate its acceptance as one of the standard
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benchmarks for planning. To this end, we have developed a PSRresource web page giving access
to the relevant papers, data, and tools (net2pddl, randomnet, . . . ).45 One aspect of future work is to
complete and maintain this website, making available a number of already existing tools, such as
SyDRe (Thiébaux et al., 1996), a domain-specific system forthe full PSR problem, and Matt Gray’s
net2jpeg which graphically displays networks generated byrandomnet.

Considering future IPCs, there is potential for extending the PDDL encoding to take the numer-
ical and optimization aspects of the benchmark into account. PDDL-like encodings of the partially
observable version of the benchmark exist (Bonet & Thiébaux, 2003) and are ready to be used in a
future edition of the probabilistic part of the IPC.46

A.5 Satellite

TheSatellitedomain was introduced in IPC-3 by Long and Fox (2003). It is motivated by a NASA
space application: a number of satellites have to take images of a number of spatial phenomena,
obeying constraints such as data storage space and fuel usage. In IPC-3, there were 5 versions of the
domain, corresponding to different levels of the language PDDL2.1: Strips, Numeric, SimpleTime
(action durations are constants),Time (action durations are expressions in static variables), and
Complex(durationsandnumerics, i.e. the “union” of Numeric and Time).

The adaptation of the Satellite domain for IPC-4 was done by Jörg Hoffmann. All IPC-3 domain
versions and example instances were re-used, except SimpleTime – like in the other IPC-4 domains,
we didn’t want to introduce an extra version distinction just for the difference between constant
durations and static durations. On top of the IPC-3 versions, 4 new domain versions were added.
The idea was to make the domain more realistic by additionally introducing time windows for the
sending of the image data to earth, i.e. to antennas that are visible for satellites only during certain
periods of time – according to Derek Long, the lack of such time windows was the main shortcoming
of the IPC-3 domain.47

We extended the IPC-3 Time domain version to two IPC-4 domainversions,Time-timewindows
andTime-timewindows-compiled. We extended the IPC-3 Complex domain version to the two IPC-4
domain versionsComplex-timewindowsandComplex-timewindows-compiled. In all cases, we in-
troduced a new action for the sending of data to an antenna. Anantenna can receive data of only
a single satellite at a time, an antenna is visible for only subsets of the satellites for certain time
periods, and the sending of an image takes time proportionalto the size of the image. The time
windows were modelled using timed initial literals, and in the “-compiled” domain versions, these
literals were compiled into artificial PDDL constructs. None of the domain versions uses ADL
constructs, so of all versions there is only a single (STRIPS) formulation.

The instances were generated as follows. Our objectives were to clearly demonstrate the effect
of additional time windows, and to produce solvable instances only. To accomplish the former, we
re-used the IPC-3 instances, so that the only difference between, e.g., Time and Time-timewindows,
lies in the additional time window constructs. To ensure solvability, we implemented a tool that read
the plans produced by one of the IPC-3 participants, namely TLPlan, and then arranged the time
windows so that the input plan was suitable to solve the enriched instance. It is important to note

45. The page is available at http://rsise.anu.edu.au/∼thiebaux/benchmarks/pds
46. The probabilistic part of IPC-4 did not feature partially observable domains.
47. We have learned in the meantime that the lack of time windows for the gathering of datais also, or even more,

essential: often, due to occlusion by other objects or due tothe rotation of the earth, targets are visible only during
very restricted periods of time. This probably constitutesone of the most important future directions for this domain.
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here that the time windows werenot arranged to exactly meet the times extracted from the IPC-3
plan. Rather, we introduced one time window per each 5 “take-image” actions, made the antenna
visible during that time window for only the respective 5 satellites, and let the image size for each
individual image be a random value within a certain range where the time window was 5 times as
long as the sending time resulting from the maximum possiblesize.

Of course, the above generation process is arranged rather arbitrarily, and the resulting instances
might be a long way away from the typical characteristics of the Satellite problem as it occurs in
the real world. While this isn’t nice, it is the best we could do without inside knowledge of the
application domain, and it has the advantage that the enriched instances are solvable, and directly
comparable to the IPC-3 ones.

In the new domain versions derived from Complex, we also introduced utilities for the time
window inside which an image is sent to earth. For each image,the utility is either the same for all
windows, or it decreases monotonically with the start time of the window, or it is random within
a certain interval. Each image was put randomly into one of these classes, and the optimization
requirement is to minimize a linear combination of makespan, fuel usage, and summed up negated
image utility.

A.6 Settlers

TheSettlersdomain was introduced in IPC-3 by Long and Fox (2003). It makes extensive use of
numeric variables. These variables carry most of the domainsemantics, which is about building up
an infrastructure in an unsettled area, involving the building of housing, railway tracks, sawmills,
etc. The domain was included into IPC-4 in order to pose a challenge for the numeric planners –
the other domains mostly do not make much use of numeric variables, other than computing the
(static) durations of actions.48 We used the exact same domain file and example instances as in
IPC-3, except that we removed some universally quantified preconditions to improve accessibility
for planners. The quantifiers ranged over domain constants only so they could easily be replaced by
conjunctions of atoms.

A.7 UMTS

Roman Englert has been working in this application area for several years. The domain was adapted
for IPC-4 by Stefan Edelkamp and Roman Englert.

A.7.1 APPLICATION DOMAIN

Probably the best known feature of UMTS (Universal Mobile Telecommunication Standard) is
higher bit rate (Holma & Toskala, 2000): packet-switched connections can reach up to 2 mega
bit per second (Mbps) in the optimal case. Compared to existing mobile networks, UMTS provides
a new and important feature, namely the negotiation ofQuality of Service(QoS) and of transfer
properties. The attributes that define the characteristicsof the transfer are throughput, transfer de-
lay, and data error rate. UMTS bearers have to be generic in order to provide good support for
existing applications and the evolution of new applications. Applications and services are divided

48. Note that, to some extent, this is just because the numeric values were abstracted away in the PDDL encoding,
mostly (in Airport and Pipesworld, c.f. Sections A.1.5 and A.2.5) in order to obtain a discrete encoding suitable for
PDDL2.2-style actions.

529
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Class Conversational Streaming Interactive Background
Preserve time Preserve time Request res- Undefined
relation between relation between ponse pattern. delay.

Constraints information flow information Preserve data Preserve
on the stream. entities of the integrity data
Conversational stream integrity
pattern (low delay)
Voice, video Streaming Web browsing, Background

Examples telephony & multimedia network games download
video games of e-mails

Table 5: UMTS quality of service classes and their characteristics.

into four traffic classes by their QoS (TS23107, 2002; Holma &Toskala, 2000). The traffic classes,
their fundamental characteristics, and examples for applications are summarized in Table 5.

The main distinguishing factor between these classes is howdelay-sensitive the traffic is: the
conversational class is very delay sensitive (approximately 40 ms time preservation), and the back-
ground class has no defined maximum delay.

The UMTS call set-up can be modularized using the perspective of Intelligent Software Agents
(Appleby & Steward, 1999; Busuioc, 1999), since agents are logical units and enable a discrete
perspective of the continuous signaling process. The call set-up is partitioned into the following
modules that are executed in sequential order (Englert, 2005):

TRM The initial step is the initiation of an application on the mobile and the determination of the
required resources for the execution. The resources of the mobile like display and memory are
checked by theTerminal Resource Management(TRM) and allocated, if possible. Otherwise,
the execution is aborted.

CT The wireless connection to the radio network is initiated via the dedicated control channel of
GSM (Holma & Toskala, 2000). In case of success, the transmission of ”Ready for service”
is transferred via the node B to the mobile in order to ensure theConnection Timing(CT) for
bearer service availability.

AM The information of the mobile like location and data handling capabilities is sent to the ap-
plication server in the Internet (cf. AEEI). The transmission can be done comfortably by a
so-called service agent (Farjami, Görg, & Bell, 2000) thatis controlled by theAgent Man-
agement(AM) in the CND. The advantage of a service agent is, that in case of failure, e.g.,
network resources are not sufficiently available, the agentcan negotiate with the terminal’s
agent about another QoS class or different quality parameters.

AEEM A service agent with the required QoS class for the executionof the application and with
parameters of the mobile application is sent from the mobile’s Agent Execution Environment
Mobile (AEEM) to the application server in the Internet (cf. AEEI).

RRC The Radio Resource Controller(RRC) provisions/allocates the required QoS by logical re-
sources from the MAC level in the radio bearer (Holma & Toskala, 2000).
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RAB Then, the bearer resources are supplied on the physical level from theRadio Access Bearer
(RAB) from the CND and the call flow is set-up by mapping the logical QoS parameters and
the physical QoS resources together.

AEEI The Agent Execution Environment Internet(AEEI) establishes the data transfer from the
core network to a PDN (e.g., Internet) and sends a service agent (controlled by AM) to the
application in the PDN in order to ensure the QoS for the application.

BS Finally, theBearer Service(BS) for the execution of the mobile application is established with
the required radio bearer resources with QoS. Messages are sent to the modules TRM and
AEEI to start the execution of the application.

These modules are executed in sequential order to set-up a call for the execution of mobile
applications. Two modules (AEEM and AEEI) have to be executed in time windows in order to
ensure that the agents are life in the network. However, two constraints have been added: First, the
intra-application constraint, where modules from one application are ordered. Second, the inter-
application constraint, where modules with same names fromdifferent applications cannot be exe-
cuted in parallel in order to ensure that the required resources are available.

A.7.2 IPC-4 PDDL ADAPTATION

Besides action duration, the domain encodes scheduling types of resources49, consuming some
amount at action initialization time and releasing the sameamount at action ending time. Scheduling
types of resources have not been used in planning benchmarksbefore, and the good news is that
temporal PDDL2.1 (Level 3) is capable of expressing them. Infact we used a similar encoding to
the one that we found forJob- andFlow-Shopproblems. As one feature, actions are defined to
temporarilyproducerather than to temporarilyconsumeresources. As current PDDL has no way
of stating such resource constraints explicitly, plannersthat want to exploit that knowledge have to
look for a certain patterns ofincrease/decreaseeffects to recognize them. Additionally, the resource
modeling of our UMTS adaptation is constrained to the most important parameters (in total 15). In
real networks several hundred parameters are applied.

In UMTS, two subsequent actions can both check and update thevalue of some resources (e.g.,
has-mobile-cpu) at their starting (resp. ending) time points as far as the start (resp. ending) events
are separated byε time steps, whereε is minimum slack time required between two dependent
events. When modeling renewable resources with anover all construct the invariant condition of
the action has to check, what theat startevent did change. We decided that this is not the best choice
for a proper temporal action. Consequently, the temporal actions require resources to be available
beforeadding the amount used.

Finally, the time windows for the two agent-based modules are defined using the average exe-
cution times of the modules. The average times are estimatedbased on signaling durations of the
UMTS network (Holma & Toskala, 2000).

Resources may be renewable or consumable: an example for a renewable resource is the key-
board of the mobile. It can be used to input data for several applications. Consumable resources are

49. The terminology forresourcesin planning and scheduling varies. In job-shop scheduling,a machine is resource,
while in planning such a machine would be a domain object. In PDDL, renewableandconsumableresources are
both modeled using numerical fluents and are not per se distinguished.
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mobile-cpu used withx per cent per application
d-available partition of the display, e.g., ticker and chess
e-balance energy balance of mobile accumulator
mobile-channels used for data transfer
-available
num-mobiles number of mobiles which are tractable

by a node B
num-calls mobile network load for a node B
mobile-storage memory on S(IM)AT card
logical-channels number of logical channels available in the CN
cell-update report UE location into RNC
handover handover required to get a higher bit rate
active-set-up update connection
ggsn-bitrate capacity (kbit/s) from GGSN to PDN
max-no-pdp max. no. of packet data protocols per mobile
max-no-apn max. access point names (APN) per mobile

Table 6: Scheduling types of resources in the UMTS call set-up.

released after action execution. The resources that are realized in the experiments are summarized
in Table 6 (see 3GPP, 2004 for a complete list of resources forthe UMTS call set-up).

The PDDL representation of the planning domain is based on the eight modules for the UMTS
call set-up. There are eight operators corresponding to these eight modules. Let us consider, as an
example, the BS action, that is, the final action that can be used to establish the predicatebs-ok.
It is defined as follows:

(:durative-action BS
:parameters
(?A-new - application ?M - mobile ?L - list ?MS1 ?MS2 - message?a - agent)
:duration
(= ?duration (time-bs ?A-new))
:condition
(and (at start (initiated ?A-new ?M))

(at start (aeei-ok ?A-new ?M ?L ?a))
(at start (qos-params ?A-new ?L))
(at start (message-trm ?M ?MS1))
(at start (message-aeei ?A-new ?MS2)))

:effect
(and (at end (iu-bearer ?A-new ?M ?L)) (at end (bs-ok ?A-new ?M ?L ?a)))))

The action has as preconditions the successful execution ofthe module AEEI during the call
set-up, the satisfaction of the required QoS class parameters (denoted as listL), and the transfered
messages of the set-up status to the application in the mobile and the PDN. The resources are already
allocated by the preceding modules. As effect the bearer andthe network connection for the mobile
application are set up.
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The initiation of an application starts in the mobile with the TRM. Afterwards, the CT in the
AND is asked for a ready-for-service signal. In the core of the call set-up is the radio access bearer
procedure in the CND. Let us consider the latter in more detail. As first step the logical resources
must be allocated (RRC), e.g., the required number of channels must be provided by the logical
level in the radio bearer and later these logical resources are mapped to the physical channels. The
PDDL RRC action looks as follows:

(:durative-action RRC
:parameters
(?A-new - application ?M - mobile ?L - list ?a - agent)
:duration
(= ?duration (time-rrc ?A-new))
:condition
(and (at start (ct-ok ?A-new ?M ?L))

(at start (aeem-ok ?A-new ?M ?L ?a))
(at start (<= (has-logical-channels)

(- (max-logical-channels) (app-channels ?A-new ?m))))
(at start (<= (has-cell-update) (- (max-cell-update) 2)))
(at start (< (has-handover) (max-handover)))
(at start (< (has-active-set-up) (max-active-set-up))))

:effect
(and (at start (increase (has-logical-channels) (app-channels ?A-new ?M)))

(at end (decrease (has-logical-channels) (app-channels ?A-new ?M)))
(at start (increase (has-cell-update) 2))
(at end (decrease (has-cell-update) 2))
(at start (increase (has-handover) 1))
(at end (decrease (has-handover) 1))
(at start (increase (has-active-set-up) 1))
(at end (decrease (has-active-set-up) 1))
(at end (rrc-ok ?A-new ?M ?L ?a))))

If the requested QoS class is not available, then the factrab-ok is not true and a service
agent must be sent to the mobile in order to negotiate with theapplication or user for weaker QoS
requirements. In case of success the predicaterab-ok is true and the connection to the PDN must
be checked. Finally, the goal predicate BS can be fulfilled ifall resources are available.

A.7.3 IPC-4 DOMAIN STRUCTURE

As used in IPC-4, the UMTS domain has six versions. The first three are: temporal, a domain
version with no timing constraints,temporal-timewindows, a domain version with PDDL2.2 timed
initial facts, andtemporal-timewindows-compiled, a domain version with a PDDL2.1 wrapper en-
coding for the timed initial literals. The second domain version setflaw-temporal, flaw-temporal-
timewindows, andflaw-temporal-timewindows-compiled, includes the following “flaw” action:

(:durative-action FLAW
parameters
(?A-new - application ?M - mobile ?L - list ?a - agent)
:duration (= ?duration 4)
:condition
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version formulation max-#op max-#act

temporal STRIPS-TEMPORAL 8 (5120) 80
temporal-tw STRIPS-TEMPORAL-TW 8 (5120) 80
temporal-twc STRIPS-TEMPORAL 13 (5125) 85
flaw-temporal STRIPS-TEMPORAL 9 (5310) 90
flaw-temporal-tw STRIPS-TEMPORAL-TW 9 (5310) 90
flaw-temporal-twc STRIPS-TEMPORAL 14 (5315) 95

Table 7: Overview over the different domain versions of UMTS. Abbreviations used: “temporal-
tw” for “temporal-timewindows”, “temporal-twc” for temporal-timewindows-compiled;
max-#op is the maximum number of (parameterized) PDDL operators forany instance,
max-#act is the maximum number of ground actions for any instance. Data in parenthe-
ses are collected before FF’s “reachability” pre-process (see text).

(and (at start (initiated ?A-new ?M))
(at start (qos-params ?A-new ?L))
(at start (trm-ok ?A-new ?M ?L)))

:effect
(and (at end (rab-ok ?A-new ?M ?L ?a))

(at start (not (initiated ?A-new ?M)))))

This action offers a shortcut to therab-ok predicate, but can not be used in a real solution
because it deletes theinitiated predicate. But the actioncan be used in heuristic functions
based on ignoring the negative effects. In that sense, the action encodes a flaw that may disturb
the heuristic techniques used in modern planners. To determine that the action is not useful, neg-
ative interactions have to be considered. The idea of flaw is practically motivated in order to see
how heuristic planners react to it. In its standard form, thedomain is not a big challenge to such
planners, as we have seen in Section 5. All domain versions have one formulation, namelystrips-
fluents-temporal, where numerical fluents, but - except typing - no ADL constructs are used. In all
instances, the plan objective is to minimizemakespan.

The domain versions and numbers of operators and ground actions are overviewed in Table 7. As
with many of the empirical data for UMTS that we have seen before, the data are quite exceptional,
and at the same time easy to interpret. First, similar to whatwe have seen in Section 5.3, the data
are actually constant across all instances within each domain version, which is once again due to the
fact that the instances scale only in their specification of what applications need actually be started.
Second, the numbers of operators and actions do not differ between the versions with and without
time windows; they increase somewhat, through the additional artificial actions, if we compile
timed initial literals away (c.f. Section 2); they also increase somewhat, of course, if we introduce
the “flaw” action. Third, the most striking observation is the hugeeffect of FF’s reachability pre-
processor, building a relaxed planning graph for the initial state and removing all actions that do not
appear in that graph. This is due to the technical subtletiesof the encoding, where the restrictions
on feasible action instantiations are, partly, implicit inthe possible action sequences, rather than
explicit in the static predicates.

534



ENGINEERING BENCHMARKS FORPLANNING

A.7.4 IPC-4 EXAMPLE INSTANCES

The UMTS call set-up domain has the following challenges forthe planning task (Englert & Cre-
mers, 2001):

Real-time: Can plans for the execution of mobile applications be generated in an appropriate time?
Planning has to be done with a maximum duration that does not exceed the UMTS call set-up
time.

Completeness:Is it possible to generate the plan, i.e. does planning result in an (optimal) plan for
the required applications that minimizes the waiting period until all applications are started?

The PDDL structure of the basic problem for the discrete UMTScall set-up (DUCS) domain is
the following:

(define (problem DUCS DOMAIN BASIC VERSION)
(:domain DUCSDOMAIN BASIC VERSION
(:objects MS1 MS2 - message

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 - application
M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 - mobile
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 - list
ae - agent)

(:init (= (time-trm A1) 76) (= (time-ct A1) 48)
(= (time-am A1) 74) (= (time-aeem A1) 66)
(= (time-rrc A1) 202) (= (time-rab A1) 67)
(= (time-aeei A1) 36) (= (time-bs A1) 28)
[...]
(location M1) ;; types
(authentification M1)
[...]
(= (has-mobile-cpu) 0) ;; current status
[...] )

(:goal (and (bs-ok A1 M1 L1 ae) [...] )))

First in this PDDL description come the objects for the applications and the mobiles. Then
come the durations of the modules depending on the applications, e.g., the module TRM requires
less time for a news ticker than for a chess game, since the latter requires more terminal resources
than the ticker. The current status of the resources is initialized. Finally, the goal is defined: the
bearer establishment for the execution start of the initiated mobile applications. The total execution
time should be minimized.

For IPC-4 the time windows are varied with small perturbations in order to generate different
instances. The perturbations are motivated by the average execution times of the modules in a radio
network according to the load. Furthermore, the number of applications to be set up is varied from 1
up to 10. The domains assume that the applications run on one mobile terminal. However, they can
also be distributed to several mobile terminals. There are 50 different instances per domain version.

A.7.5 FUTURE WORK

The UMTS domain is not a big challenge for modern heuristic, i.e. HSP/FF/LPG-style, planners
because these planners are satisficing (potentially returnsub-optimal plans). The objective in UMTS
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is to minimize the execution time, and if one ignores that objective then the task trivializes. To
the optimal planners, UMTS is a realistic challenge. The domain is already relatively realistically
modelled, except for the left-out additional constraints on the (many) less important resources. It
remains to be seen if, when introducing all these resources,planner (in particular optimal planner)
performance gets degraded. An option in this case may be to introduce explicit language constructs
for the different types (renewable and consumable) of resources.

In the future the following two challenges shall be investigated. First, the negotiation of UMTS
Quality of Service (QoS) parameters could be considered. Assume a video application on a mobile
terminal is initiated, but the bearer resources are not sufficiently available. Then the QoS has to be
negotiated between the terminal and the bearer. This leads to the planning of a negotiation during
the plan execution for the already initiated applications.

Second, the approach for the optimization of the UMTS call set-up can be applied to the Wireless
LAN registration. The challenge is to transfer the QoS parameters, since the current Wireless LAN
standard (802.11b) does not contain QoS. This demerit can besolved by applying an additional
service level that addresses QoS.
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