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Abstract

In this paper, we present the partitioning of mutual-exclusion (mutex) constraints in
temporal planning problems and its implementation in the SGPlany planner. Based on
the strong locality of mutex constraints observed in many benchmarks of the Fourth In-
ternational Planning Competition (IPC4), we propose to partition the constraints of a
planning problem into groups based on their subgoals. Constraint partitioning leads to
significantly easier subproblems that are similar to the original problem and that can
be efficiently solved by the same planner with some modifications to its objective func-
tion. We present a partition-and-resolve strategy that looks for locally optimal subplans in
constraint-partitioned temporal planning subproblems and that resolves those inconsistent
global constraints across the subproblems. We also discuss some implementation details of
SGPlany, which include the resolution of violated global constraints, techniques for han-
dling producible resources, landmark analysis, path finding and optimization, search-space
reduction, and modifications of Metric-FF when used as a basic planner in SGPlany. Last,
we show results on the sensitivity of each of these techniques in quality-time trade-offs
and experimentally demonstrate that SGPlany is effective for solving the IPC3 and IPC4
benchmarks.

1. Introduction

In this paper, we present an innovative partition-and-resolve strategy and its implementa-
tion in SGPlany for solving temporal planning problems in PDDL2.2. Our strategy par-
titions the mutual-exclusion (mutex) constraints of a temporal planning problem by its
subgoals into subproblems, solves the subproblems individually using a modified Metric-FF
planner, and resolves those violated global constraints iteratively across the subproblems.
We evaluate various heuristics for resolving global constraints and demonstrate the perfor-
mance of SGPlan, in solving the benchmarks of the Third (IPC3) and the Fourth (IPC4)
International Planning Competitions.

Most general and popular methods for solving large planning problems, such as system-
atic search, heuristic search, and transformation methods, can be viewed as the recursive
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Figure 1: Search-space partitioning branches on variable assignments in order to decom-
pose P into a disjunction (V) of subproblems with disjoint search spaces. The
complexity of each subproblem is similar to that of P.

partitioning of a search space into independent subproblems and the iterative evaluation
of the subproblems until a feasible solution is found. At each level of application of the
approach, a problem or a subproblem is decomposed by partitioning its variable space into
a disjunction (V) of subspaces (Figure 1a). To reduce the search complexity, the approach is
often combined with intelligent backtracking that employs variable/value ordering to order
the subproblems generated, that pre-filters partial inconsistent assignments to eliminate
infeasible subproblems, and that prunes subproblems using bounds computed by relaxation
or approximation.

Search-space partitioning can be directly applied on a planning problem or on a trans-
formed version of the problem. Direct methods include complete and heuristic searches. As
is illustrated in Figure 1b, these methods partition a search space recursively by branching
on assigned variables (selection of actions). The difference between a complete search and
a heuristic search is that the former enumerates all subspaces systematically, whereas the
latter prioritizes subspaces by a heuristic function and evaluates them selectively. Exam-
ples of complete planners include UCPOP (Penberethy & Weld, 1992), Graphplan (Blum
& Furst, 1997), STAN (Long & Fox, 1998), PropPLAN (Fourman, 2000), System R (Lin,
2001), SIPE-2 (Wilkins, 1990), O-Plan2 (Tate, Drabble, & Kirby, 1994), ZENO (Penberethy
& Weld, 1994), TALplanner (Doherty & Kvarnstrm, 1999), and SHOP2 (Nau, Muoz-Avila,
Cao, Lotem, & Mitchell, 2001); examples of heuristic planners include HSP (Bonet &
Geffner, 2001), FF (Hoffmann & Nebel, 2001), AltAlt (Nigenda, Nguyen, & Kambham-
pati, 2000), GRT (Refanidis & Vlahavas, 2001), MO-GRT (Refanidis & Vlahavas, 2002),
ASPEN (Chien, Rabideau, Knight, Sherwood, Engelhardt, Mutz, Estlin, Smith, Fisher,
Barrett, Stebbins, & Tran, 2000), Metric-FF (Hoffmann & Nebel, 2001), GRT-R (Refanidis
& Vlahavas, 2001), LPG (Gerevini & Serina, 2002), MIPS (Edelkamp, 2002), Sapa (Sub-
barao & Kambhampati, 2002), and Europa (Jonsson, Morris, Muscettola, & Rajan, 2000).
In contrast, in a transformation approach, a problem is first transformed into a satisfiability
or an optimization problem, before the transformed problem is solved by a SAT or integer
programming solver that employs search-space partitioning. Notable planners using this
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Figure 2: Constraint partitioning decomposes P into a conjunction (A) of subproblems
with disjoint constraints but possibly overlapping search spaces, and a set of
global constraints (G) to be resolved. Since the complexity of each subproblem is
substantially smaller than that of P, it leads to an exponential decrease in solution
time by Metric-FF on two IPC4 benchmarks (AIRPORT-NONTEMP-20 and
PIPESWORLD-NOTANKAGE-NONTEMP-50) when the number of subgoals in
a subproblem is decreased from 5 to 1.

approach include SATPLAN (Kautz & Selman, 1996), Blackbox (Kautz & Selman, 1999),
ILP-PLAN (Kautz & Walser, 2000), and LPSAT (Wolfman & Weld, 2000).

One of the limitations of search-space partitioning is that the complexity of a problem
is not dramatically reduced through partitioning. Although pruning and ordering strate-
gies can make the search more efficient by not requiring the search of every subspace, the
aggregate complexity of finding a solution to one of the subproblems is the same as that of
the original problem.

In this paper, we study a constraint-partitioning approach that decomposes the con-
straints of a planning problem into a conjunction (A) of subproblems with disjoint con-
straints but possibly overlapping search spaces (Figure 2a). The concept of constraints on
planning problems studied in this paper is precisely defined in Section 2.1. Informally, a
(mutex) constraint refers to the condition under which two actions can overlap with each
other in their execution. Since all the constraints must be satisfied, all the subproblems
must be solved in order to solve the original problem.

By decomposing the constraints of a problem into subproblems and by solving each
independently, a subproblem will require significantly less time to solve because it is much
more relaxed than the original problem. As an illustration, Figure 2b shows the exponential
decrease in solution time when the number of subgoals in a subproblem is reduced linearly.
Here, a subgoal is a collection of conjuncts in a conjunctive top-level goal of the problem. For
both of the IPC4 instances evaluated, the run time is more than 1500 seconds when there
are five subgoals in a subproblem and less than one second when there is one. Hence, the
aggregate complexity of solving all the decomposed subproblems is exponentially smaller
than that of the original problem.
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Figure 3: Partitioning the constraints of a planning problem along its temporal horizon into
three stages requires finding suitable intermediate states S; and Sy in order to
connect the subplans in the three stages together. Sy and S3 are, respectively,
the initial and the final states.

Constraint partitioning, however, leads to global constraints across subproblems (S,
in Figure 2a) that need to be resolved. These global constraints include those that span
across common variables in multiple subproblems, such as those that relate two actions
in different subproblems. Since these constraints may not be satisfied after solving the
subproblems independently, the subproblems may need to be solved multiple times in order
to resolve any violated global constraints.

In general, violated global constraints across subproblems cannot be efficiently resolved
by brute-force enumeration because the search space for the global constraints is defined
by the Cartesian product of the search spaces across the subproblems and is exponentially
large. Dynamic programming cannot be applied because global constraints may span across
multiple subproblems. This means that a partial feasible plan that dominates another
partial feasible plan in one subproblem will fail to execute when the dominating plan violates
a global constraint in another subproblem.

To address the resolution of violated global constraints, we summarize in Section 3 the
theory of extended saddle points developed in our previous work (Wah & Chen, 2006). By
choosing a suitable neighborhood, the theory allows a mixed-integer nonlinear program-
ming problem (MINLP) to be partitioned into subproblems that are related by a necessary
condition on the global constraints. Further, a necessary condition on each subproblem
significantly prunes the Cartesian product of the search spaces across the subproblems in
which inconsistent global constraints are to be resolved.

In addition to the efficient resolution of violated global constraints, the success of our
approach depends on a strong locality of the constraints with respect to the actions they
relate. We have observed informally in our previous work a strong locality of the con-
straints. Based on this strong locality, we have studied two alternatives for partitioning
the constraints: partitioning them by time (Wah & Chen, 2006; Chen & Wah, 2003) and
partitioning them by subgoals (Wah & Chen, 2004, 2003).

The idea of partitioning a planning problem by time is to partition its constraints by
their temporal bindings into stages. To find an overall feasible plan, a planner will need
to find a subplan from the initial to the final states of each stage that satisfy the local as
well as the global constraints, where the final state of one stage will be the initial state of
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the next stage. For example, after partitioning the horizon into three stages (Figure 3), the
planner assigns some values to the intermediate states S; and Ss, solves each subproblem
individually, and perturbs S7 and Sy to look for another solution if feasible subplans cannot
be found in any of the stages.

A major drawback of partitioning a planning problem by its temporal horizon is that
constraint resolutions may have to sequentially propagate through multiple stages. We have
found that the partitioning of the constraints in PDDL2.1 benchmarks along their temporal
horizon often leads to many global constraints that only relate states in adjacent stages.
As a result, when a violated subgoal is caused by an incorrect assignment of states in an
early stage of the horizon, the resolution of the incorrect assignment will have to propagate
sequentially through the stages. Oftentimes, the propagation of such information may cause
a search to get stuck in an infeasible point for an extended period of time (Wah & Chen,
2004). To this end, an expensive enumeration of the final state in each stage (57 and Sy in
Figure 3) may be needed in order to resolve the inconsistencies.

A second approach we have studied in our previous work is to partition the constraints
of a planning problem by their subgoals (Wah & Chen, 2004, 2003). After evaluating the
subproblems, any inconsistent global constraints among them are first identified, and the
subproblems are re-evaluated until all the global constraints are satisfied. Partitioning by
subgoals eliminates the need of selecting a final state for each subproblem because the
initial and the final states of each subgoal are known. Using this approach, our previous
work has shown improvements in time and quality over the MIPS planner in solving some
IPC3 benchmarks.

With respect to the second approach, we have made four main contributions in this
paper.

First, we quantitatively evaluate in Section 2.2 the locality of constraints of all TPC4
benchmarks as well as benchmarks from the Blocksworld domain and the Depots domain.
Our results show that constraint partitioning by subgoals consistently leads to a lower
fraction of initial active global constraints than constraint partitioning by time. Our results
also explain why constraint partitioning does not work well on some domains, such as
Blocksworld and Depots.

Second, we incorporate Metric-FF (Hoffmann, 2003) as our basic planner in SGPlany
and SGPlany 1, instead of MIPS as in our previous work (Wah & Chen, 2004). This change
is non-trivial because it requires significant extensions of Metric-FF in order to handle the
new features in PDDL2.2 beyond those in PDDL2.1. These extensions include the support
of temporal planning, the handling of derived predicates and timed initial literals, and the
handling of wrappers for timed initial literals (Section 5.3).

Third, we describe new techniques for improving search efficiency in the global- and
local-level architectures of our partition-and-resolve approach (Section 4.1). These include
the handling of producible resources (Section 4.3), subgoal-level decomposition using land-
mark analysis, path finding and path optimization (Section 5.1), and subgoal-level planning
using search-space reduction (Section 5.2). We explain their integration in our planners and
analyze their effectiveness.

Last, we study in Section 4.2 trade-offs between solution time and quality in our heuris-
tics for updating the penalties of violated global constraints. These trade-offs allow us to
generate plans either of better quality but more time (SGPlany ), or of lower quality but
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less time (SGPlany). The optimization of quality requires the estimation of the makespan
of multiple subplans by an enhanced PERT algorithm (Section 5.3). In our previous work
on constraint partitioning by subgoals (Wah & Chen, 2004), we have focused only on mini-
mizing the planning time. Without optimizing quality, violated global constraints are often
easier to resolve because a planner can always delay one or more actions in order to avoid
such constraints. Finally, we compare in Section 7 the performance of our planners with
respect to that of other planners.

2. Locality of Mutex Constraints in Temporal Planning

In this section, we define the mutex constraints of planning problems. Based on the structure
of these constraints in IPC4 benchmarks, we show that constraint partitioning by subgoals
leads to constraints that can be localized better than constraint partitioning by time.

2.1 Representation of Mutex Constraints

By following standard notations and definitions in the literature (Hoffmann & Nebel, 2001;
Garrido, Fox, & Long, 2002), we summarize in this section the basic definitions of mutex
constraints used in this paper.

Definition 1. A planning problem T = (O, F,Z,G) is a quadruple, where O is the set of
possible actions in 7, F is the set of all facts, Z is the set of initial facts, and G is the set
of goal facts.

Definition 2. A state S = {fl, e ’f"s} is a subset of facts in F that are true.

Definition 3. A STRIPS action a € O is associated with the following attributes:
a) pre(a), a set of facts that define the preconditions of action «;
b) add(a), a set of facts that define the add effects of a; and
c) del(a), a set of facts that define the delete effects of a.
The resulting state of applying action a to state S is defined as:

Result(S,a) =

{(SUadd(a))\del(a) if pre(a) € S (1)

if pre(a) € S.

The resulting state of applying a sequence of actions aq,--- ,a, to S is recursively defined
as:

Result(S, (a1, -+ ,a,)) = Result(Result(S, (a1, -+ ,an—1)), an). (2)

Next, we extend our action model to temporal planning. For durative actions supported
in PDDL2.2, a precondition fact can be effective at the beginning, at the end, or during the
entire duration of an action; whereas an add effect or a delete effect can be effective only
at the beginning or at the end of an action.

Definition 4. A temporal action a € O is associated with the following attributes:
a) s(a) and e(a) define, respectively, the start time and the end time of a.
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Figure 4: An example temporal plan, where active mutexes between actions are shown as
dashed lines, and inactive mutexes as dotted lines.

b) The preconditions can be divided into three types: pregpre(a), the set of initial
preconditions to be held at s(a); prec,q(a), the set of final preconditions to be held at e(a);
and pregyerqir(a), the set of invariant preconditions over an open interval (s(a),e(a)).

c¢) There are two types of add effects: addsiqri(a), the set of initial add effects to be
asserted at s(a); and add.,q(a), the set of final add effects to be asserted at e(a).

d) There are two type of delete effects: delgr¢(a), the set of initial delete effects to be
asserted at s(a); and del.,q(a), the set of final delete effects to be asserted at e(a).

Definition 5. A temporal plan P = {ay, a2, -+ ,an} is a list of m temporal actions, where
a; has been assigned start time s(a;) and end time e(a;).

Figure 4 illustrates a temporal plan of seven actions. In each action, we indicate, where
appropriate, its preconditions, add effects, and delete effects.

Concurrent actions in a plan must be arranged in such a way that observes mutual
exclusions (mutexes). The notion of mutex was first proposed in GraphPlan (Blum & Furst,
1997). It was defined for a planning graph, which is a level-by-level constraint graph that
alternates between a fact level and an action level. Mutex relationships in a planning graph
can be classified into transient (level-dependent) and persistent (level-independent) (Blum
& Furst, 1997). A mutex is transient if it exists only in certain levels of the graph and
vanishes as more levels of the graph are built. In contrast, a mutex is persistent if it holds
at every level until the fix-point level (the last level of the graph) is achieved. In this paper,
we only consider level-independent, persistent mutex relationships, as transient mutexes are
exclusively used for searches in GraphPlan.

Actions a and b are marked as persistently mutual exclusive when one of the following
oceurs.
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a) Actions a and b have persistent competing needs,' in which competing needs are
represented by the persistent mutex of the preconditions of a and those of b;

b) They have persistent inconsistent effects, when one action deletes an add effect of
the other.

¢) They have persistent interference, when one action deletes a precondition of the other.

Two facts p and g are persistently mutual exclusive if all possible ways of making p true
are persistently exclusive with all possible ways of making ¢ true; that is, each action a
having p as an add effect (p € add(a)) is persistently mutual exclusive with each action
b having ¢ as an add effect (¢ € add(b)). For simplicity, in the rest of this paper, mutex
actions and facts refer to the corresponding persistent mutex actions and facts.

Given a temporal plan, a mutex relationship can be active or inactive. For example,
actions a; and as in Figure 4 have an active mutex because the two actions overlap in their
execution and have persistent interference. However, as and a3 have an inactive mutex
because they do not overlap in their execution.

Based on the above discussion, the conditions for an active mutex to occur between two
actions a and b can be summarized in four cases (Garrido et al., 2002):

a) Actions a and b start together, and there is a nonempty intersection between their
initial preconditions (resp. add effects) and their initial delete effects (resp. delete effects).

b) Actions a and b end together, and there is a nonempty intersection between their
final preconditions (resp. add effects) and their final delete effects (resp. delete effects).

c¢) Action a ends when b starts, and there is a nonempty intersection between the final
delete effects (resp. delete effects, add effects, and preconditions) of a and the initial add
effects (resp. preconditions, delete effects, and delete effects) of b.

d) Action a starts (resp. ends) during the execution of b, and there is a nonempty inter-
section between the initial (resp. final) delete effects of a and the invariant preconditions
of b.

While the conditions above are introduced to prevent two mutually exclusive actions
from executing simultaneously, there may be actions that block the propagation of facts
(no-op action) and that cause unsupported actions later. Such a condition can be detected
by looking for actions that delete some existing facts in the current plan. With respect to
conditions for mutex due to competing needs, we do not need to represent them explicitly
because mutexes due to competing needs must accompany the other two types of mutex:
when two preconditions are mutually exclusive due to competing needs, the two action
sequences of making them true are also mutually exclusive. As example, the active mutex
between a5 and ag in Figure 4 is due to competing needs and is caused by the active mutex
between as and ay.

The mutex constraints studied in this paper are not in closed form. Instead, each is
defined by a discrete procedural function that checks if a pair of actions meet one of the four
conditions above. The inputs to the function are the start time and the end time of each
action, which are continuous in temporal problems and discrete in propositional problems.

” s

1. The terms “competing needs,” “inconsistent effects,” and “interference” were originally proposed for
GraphPlan (Blum & Furst, 1997).
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Subproblem 1

a) 63 mutex constraints among actions b) Partitioning the mutex constraints by subgoals

Figure 5: Mutex constraints in the IPC4 AIRPORT-TEMP-4 instance. Each rectangular
box represents an action, and a line joining two actions represents a mutex con-
straint (that may be inactive). Most constraints (52 out of 63 or 83%) are local
constraints after partitioning them by subgoals. Global mutex constraints are
shown in dashed lines in (b).

2.2 Locality of Mutex Constraints

In this section, we evaluate the partitioning of mutex constraints for some planning bench-
marks. Our analysis shows the strong locality of these constraints when they are partitioned
by subgoals as compared to the case when they are partitioned by time. We do not study
other criteria for partitioning because they may lead to subproblems whose initial and fi-
nal states are not specified. Such subproblems will be hard to solve by existing planners
because they may require a systematic enumeration of their initial and final states when
finding feasible plans.

Figure 5a shows the 63 mutex constraints in a solution plan to the fourth instance of the
IPC4 AIRPORT-TEMP domain. The instance involves moving three planes in an airport
to designated gates. Each rectangular box in the figure represents an action, whereas a line
joining two actions represents a mutex constraint (that may be inactive). Figure 5b shows
the partitioning of the constraints into three subproblems, each involving the movement of
one plane. We show local constraints (those that are relevant to the actions in one subprob-
lem) in solid lines and global constraints relating those actions in different subproblems in
dashed lines. It is clear that a majority (83%) of the constraints are local after partitioning
them by subgoals.

To demonstrate the localization of mutex constraints when partitioned by subgoals, we
analyze all the IPC4 instances. We first modify the original Metric-FF planner (Hoffmann,
2003) in order to support the new features in PDDI.2.2, such as temporal actions and derived
predicates. For each instance, we use the modified planner to find an initial subplan for
each of the subproblems. We then find all the mutexes among the actions, including active
and inactive ones. Finally, we compute the number of global constraints related to actions
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Figure 6: Variations of r ., r ., and r_, . across the instances of seven IPC4 domain

variants as well as the instances of the DEPOTS-TIME domain variant from
IPC3 and those of the Blocksworld domain from IPC2. (The latter two domains
are deemed difficult for constraint partitioning.)

in different subplans, as well as the number of initial active global constraints based on the
subplan evaluated for each subproblem. As a comparison, we also evaluate the partitioning
of the constraints by their temporal horizon.

Figure 6 illustrates the results for seven IPC4 domain variants, as well as the Blocksworld
domain from IPC2 and the DEPOTS-TIME variant from IPC3. Table 1 further summarizes
the average statistics across all the instances in each IPC4 domain variant and those of the
Blocksworld domain and the Depots domain variants. For each instance in partitioning
by time, we use the modified Metric-FF planner to find an initial plan, set the number of
temporal stages to be the same as the number of subgoals, and partition the horizon of the
solution plan evenly into multiple stages. We then count the number of local constraints
in each stage and the number of global constraints relating actions in different stages. For
each instance, let N, be the total number of mutex constraints, IV, gT be the number of global
constraints under constraint partitioning by time, NgG be the number of global constraints
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Table 1: Averager, ., 7, ., T, o across the instances of IPC4 domains as well as the Depots
domain from IPC3 and the Blocksworld domain from IPC2. (The latter two are
deemed difficult for constraint partitioning.) Boxed numbers are less than 0.1.

| Domain Variant | Tor T, Tooc |
ATRPORT-NONTEMP 0.557  0.219 0.017
AIRPORT-TEMP 0.568  0.208 .
AIRPORT-TEMP-TIMEWINDOWS 0494  0.184
ATRPORT-TEMP-TIMEWINDOWS-CO 0495  0.188
PIPESWORLD-NOTANKAGE-NONTEMP 0.695  0.313
PIPESWORLD-NOTANKAGE-TEMP 0.682  0.301
PIPESWORLD-NOTANKAGE-TEMP-DEADLINE 0.674  0.297
PIPESWORLD-TANKAGE-NONTEMP 0.687  0.677
PIPESWORLD-TANKAGE-TEMP 0.683  0.459 .
PIPESWORLD-NOTANKACGE-TEMP-DEADLINE-CO | 0.682  0.296 0.039
PROMELA-OPTICAL-TELEGRAPH 0575  0.399 0.052
PROMELA-OPTICAL-TELEGRAPH-DP 0.759  0.265 0.020
PROMELA-OPTICAL-TELEGRAPH-FL 0.799  0.426
PROMELA-PHILOSOPHER 0.554  0.370
PROMELA-PHILOSOPHER-DP 0.855  0.576
PROMELA-PHILOSOPHER-FL 0822  0.507
PSR-SMALL 0897  0.489
PSR-MIDDLE 0.896  0.504
PSR-MIDDLE-CO 0.882  0.478
PSR-LARGE 0.902  0.665
SATELLITE-STRIPS 0.689  0.288
SATELLITE-TIME 0.686  0.289 .
SATELLITE-TIME-TIMEWINDOWS 0.648  0.114
SATELLITE-TIME-TIMEWINDOWS-CO 0.633  0.307
SATELLITE-NUMERIC 0.288  0.305
SATELLITE-COMPLEX 0.642  0.282
SATELLITE-COMPLEX-TIMEWINDOWS 0.633  0.124 0.041
SATELLITE-COMPLEX-TIMEWINDOWS-CO 0.698  0.153 0.042
SETTLERS 0549 0.451 0.100
UMTS-TEMP 0463  0.157 0.006
UMTS-TEMP-TIMEWINDOWS 0437 0.126 0.008
UMTS-TEMP-TIMEWINDOWS-CO 0.407  [0.098)  [0.008]
UMTS-FLAW-TEMP 0459  0.136 0.006
UMTS-FLAW-TEMP-TIMEWINDOWS 0.428  0.110 0.008
UMTS-FLAW-TEMP-TIMEWINDOWS-CO 0.414  0.086 0.007
DEPOTS-STRIPS 0.537  0.418 0.231
DEPOTS-SIMPLETIME 0572  0.304 0.167
DEPOTS-NUMERIC 0491  0.354 0.188
DEPOTS-TIME 0.448  0.237 0.197
BLOCKSWORLD 0549  0.314 0.254
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under constraint partitioning by subgoals, and Ngcfl be the number of initial active global
constraints under constraint partitioning by subgoals. We then compute the following ratios:

T
Tor —9_ . fraction of global constraints under constraint partitioning by time;
(&
G
Too = 9_ . fraction of global constraints under constraint partitioning by subgoals;
(&
G
Toac = 9% . fraction of initial active global constraints under subgoal partitioning.

[

With respect to instances in the IPC4 domains, the results show that constraint parti-
tioning by subgoals leads to a lower r_ ., thanr ., that the fractions do not vary significantly,
and that r_, . is small for most instances. Except for PSR-SMALL and SETTLERS, r_,
is consistently less than 0.1. This behavior is important because only active constraints will
need to be resolved during planning, and the number of such constraints should decrease
as planning progresses. We describe in Section 4.2 two strategies for reducing the number
active global constraints in planning.

The behavior is worse for the instances in the Blocksworld domain and the Depots do-
main variants. In these two domains, r . . is consistently high (over 20%) when constraints
are partitioned by subgoals. The reason is that the actions in different subgoals of each
instance are highly related, making it more difficult to cluster the constraints and leading
to a larger fraction of global constraints. We evaluate the performance of our approach on
these two domains in Section 7.

3. Constraint Partitioning using Penalty Formulations

Given a constrained formulation of a planning problem, we summarize in this section our
theory of extended saddle points in mixed space (Wah & Chen, 2006) that the design of
our planners is based upon.

3.1 The Extended Saddle-Point Condition
Consider the following MINLP with variable z = (z,y), = € R” and y € D*:

(Pm) : min  f(2), 3)

z

subject to  h(z) =0 and g¢g(z) <0,

where f is continuous and differentiable with respect to x, and g = (g1,...,9,)" and h =
(h1,...,hy,)T are general functions that are not necessarily continuous and differentiable.
These assumptions are important because the constraints in our planners are procedural
functions not in closed form. We further assume that f is lower bounded, while g and h
can be unbounded.

The goal of solving P, is to find a constrained local minimum z* = (z*,y*) with
respect to N, (2*), the mixed neighborhood of z*. Because the results have been published
earlier (Wah & Chen, 2006), we only summarize some high-level concepts without the
precise formalism.
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Definition 6. A mixed neighborhood N;,(2), z = (z,y), in mixed space R x D" is:

M) ={ @) | e Neta)} u {(a) |/ € Mt} (1)

where N (z) = {2’ : |2’ — z|| < e and € — 0} is the continuous neighborhood of z, and the
discrete neighborhood Ny(y) is a finite user-defined set of points {y/ € D¥}.

Definition 7. Point z* is a CLM,,, a constrained local minimum of P,, with respect to
points in N, (2%), if 2* is feasible and f(z*) < f(z) for all feasible z € N, (2%).

Definition 8. The penalty function of P, with penalty vectors a € R™ and # € R" is:

Lin(z,a, 8) = f(2) +a” [h(2)] + 7 max(0, g(2)). (5)

Next, we define informally a constraint-qualification condition needed in the main the-
orem (Wah & Chen, 2006). Consider a feasible point 2’ = (2/,4') and a neighboring point
2" = (2/ 4+ p,y’) under an infinitely small perturbation along direction p € X in the z sub-
space. When the constraint-qualification condition is satisfied at 2/, it means that there is
no p such that the rates of change of all equality and active inequality constraints between
2" and 2’ are zero. To see why this is necessary, assume that f(z) at 2’ decreases along p and
that all equality and active inequality constraints at 2’ have zero rates of change between z”
and 2. In this case, it is not possible to find some finite penalty values for the constraints
at 2 in such a way that leads to a local minimum of the penalty function at 2z’ with respect
to 2”. Hence, if the above scenario were true for some p at 2/, then it is not possible to
have a local minimum of the penalty function at z’. In short, constraint qualification at
2’ requires at least one equality or active inequality constraint to have a non-zero rate of
change along each direction p at 2z’ in the x subspace.

Theorem 1. Necessary and sufficient ESPC on CLM,, of P,, (Wah & Chen, 2006).
Assuming z* € RY x DY of P, satisfies the constraint-qualification condition, then z* is a
CLM,, of P,, iff there exist finite o > 0 and #* > 0 that satisfies the following extended
saddle-point condition (ESPC):

L(2",0,8) < L (25,0, 37) < L (2,07, 57) (6)

for any o™ > o* and ** > * and for all z € N,,,(2*), « € R™, and € R".

Note that (6) can be satisfied under rather loose conditions because it only requires
any o™ and §** that are larger than some critical o® and 8*. The theorem is important
because it establishes a one-to-one correspondence between a C'LM,, z* of P,, and an ESP
(extended saddle point) of the corresponding unconstrained penalty function in (5) when the
penalties are sufficiently large. The theorem also leads to an easy way for finding C' LM,,.
Since an ESP is a local minimum of (5) (but not the converse), z* can be found by gradually
increasing the penalties of those violated constraints in (5) and by repeatedly finding the
local minima of (5) until a feasible solution to P, is obtained. This is possible because
there exist many algorithms for locating the local minima of unconstrained functions.
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3.2 The Partitioned Extended Saddle-Point Condition

An important feature of the ESPC in Theorem 1 is that the condition can be partitioned
in such a way that each subproblem implementing a partitioned condition can be solved by
looking for any o** and 8** that are larger than o™ and 3*.

Consider P;, a version of P, whose constraints can be partitioned into N subproblems:

(P) : min  J(2)
subject to AW (z(1)) =0, ¢W(2(t)) <0 (local constraints) (7)
and  H(z)=0, G(2) <0 (global constraints).

Subproblem ¢, t = 1,...,N, of P, has local state vector z(t) = (z1(t),..., 24, (t))T of u
mixed variables, where UY , 2(t) = 2. Here, 2(t) includes all variables that appear in any of

the my; local equality constraint functions ) = (hgt), . ,h%)t)T and the r; local inequal-
ity constraint functions g(t) = (ggt)7 e gg))T. Since the partitioning is by constraints,

2(1),...,2(N) may overlap with each other. H = (Hy,...,Hy)" and G = (Gy,..., G,)T
are global-constraint functions of z. We assume that J is continuous and differentiable with
respect to its continuous variables, that f is lower bounded, and that g, h, G, and H are
general functions that can be discontinuous, non-differentiable, and unbounded.

We first define N, (z), the mixed neighborhood of z for P;, and decompose the ESPC
in (6) into a set of necessary conditions that collectively are sufficient. Each partitioned
condition is then satisfied by finding the local ESP of a subproblem, and any violated global
constraints are resolved by using appropriate penalties.

Definition 9. N, (z), the mized neighborhood of z for a partitioned problem, is:

N N
U = U~
t=1

t=1

Z(t) € Np(2(t)) and 2, = 2; Vz; ¢ z(t)}, (8)
where N, (z(t)) is the mixed neighborhood of z(t).

Intuitively, N, (z) is separated into N neighborhoods, where the ' neighborhood per-
turbs only the variables in z(¢) while leaving those variables in z\z(t) unchanged.

Without showing the details, we can consider P, as a MINLP and apply Theorem 1 to
derive the ESPC of P;,. We then decompose the ESPC into N necessary conditions, one for
each subproblem, and an overall necessary condition on the global constraints across the
subproblems. We first define the penalty function for Subproblem t.

Definition 10. Let ®(z,v,7) =77 |H(2)|+n’ max(0, G(2)) be the sum of the transformed
global constraint functions weighted by their penalties, where v = (71, ... ,7p)T € R’ and
n=nm,... ,nq)T € R” are the penalty vectors for the global constraints. Then the penalty
function for P, in (7) and the corresponding penalty function in Subproblem ¢ are defined
as follows:

Lon(z 0. B,7.1) +Z{ O RO (=(1)) +ﬁ(t)TmaX(O,g(t)(Z(t))}Jr@(z,%n), ©)
Do alt), B(0),7,m) = J(2) + a(®)T RO 0)] + B(0)T max(0, g (=(6))) + B(z,7,m), (10)
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where a(t) = (ai(t),..., am, ()7 € R™ and B(t) = (Bi(t),..., B, (t))T € R are the
penalty vectors for the local constraints in Subproblem t.

Theorem 2. Partitioned necessary and sufficient ESPC on C LM, of P, (Wah & Chen,
2006). Given N,(z), the ESPC in (6) can be rewritten into N + 1 necessary conditions that,
collectively, are sufficient:

(2%, a(t), B(8), 7™ n™) < D", o)™, B()™, 7™ ™) < Dinlz, ()™, B0, ™, 0n™), (11)
Lm(2*7a**75**777n) S Lm(Z*aa**a/B**7"Y**77]**)7(12)

for any a(t)* > a(t)* > 0, B(t)™ > B(t)* > 0, v** > +* > 0, and n** > n* > 0, and for all
z GN;,St)(z*), at) eR™, pt)eR", yeR",neR", andt=1,...,N.

Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into IV neces-
sary conditions in (11) and an overall necessary condition in (12) on the global constraints
across the subproblems. The partitioned condition in Subproblem ¢ can be satisfied by
finding the ESPs in that subproblem. Because finding an ESP is equivalent to solving a
MINLP, we can reformulate the search in Subproblem ¢ as the solution of the following
optimization problem:

(A7) min  J(2) 49 1H(E)| + o max(0, G(2)) (13)

subject to AW (2(t)) =0 and ¢¥(2(t)) <0.

The weighted sum of global constraint functions in the objective of Pt(t) is important because
it leads to points that minimize the violations of global constraints. When 77" and 1’ are
large enough, solving Pt(t) will lead to points, if they exist, that satisfy the global constraints.

In short, finding solutions of P, that satisfy (6) can be reduced to solving multiple
subproblems, where (13) can be solved by an existing solver with some modifications of the
objective function to be optimized, and to the reweighting of violated global constraints
defined by (12).

3.3 Formulation of Partitioned Planning Subproblems in PDDL2.2

For a PDDL2.2 planning problem solved in this paper, a solution plan is specified by the
start time and the end time of each action a € O. Hence, its variable vector is z =
{s(a),e(a) where a € O}; its objective function J(z) optimized depends on the makespan
(or the number of actions for propositional domains) of plan z; and its constraints are the
mutex constraints defined in Section 2.1:

h(a;,aj) = mutem(s(ai),e(ai),s(aj),e(aj)> =0, Va;,aj € O. (14)
Here, mutez is a binary procedure for checking whether a; and a; satisfy the mutex condi-
tions defined in Section 2.1. It returns one if the conditions are satisfied and zero otherwise.

When the constraints are partitioned by their subgoals into N subproblems G1, - -+ , Gy,
variable z is partitioned into N subsets z(1),--- ,z(N), where z(t) includes the start time
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Lin(z,a, B,7,m)7, , to find v** and 0™

(Ptl) : e o o <Pt(N) :
subject to A (2(1)) = 0 and g™ (2(1)) < 0

min,(y) J(2) + 77 H(2)| + 0" max(0, G()) min,(y) J(2) + 971 H(2)| + 1" max(0, G(2))

subject to A (2(N)) = 0 and g™ (2(N)) < 0

a) Partitioned search to look for points that satisfy (11) and (12)

1. procedure partition_and_resolve(P;)
2. v — 0; 7 — 0;
3. repeat
// increase the penalties of violated global constraints until maximum bounds ¥; and 7; //
4. for i =1 to p do if (H;(z) # 0 and v; < 7;) then increase 7; by § end_if end_for;
5. for j =1 to ¢ do if (G,(z) £ 0 and 7; < 7};) then increase n; by ¢ end_if end_for;
// inner loop for solving the N subproblems //
6. for t =1 to N do apply an existing solver to solve (13) end_for;
7. until ((y; > 4; for all H;(z) # 0 and n; > 7; for all G;(z) £ 0) or (a CLM,, of P, is found))
8. end_procedure

b) Implementation for finding a C' LM, of P, that satisfies (11) and (12)

Figure 7: The partition-and-resolve procedure to look for a C'LM,, of P;.

and the end time of those actions of GG;. The local constraints are those mutex constraints
that relate the actions within a subproblem, and the global constraints are those that relate
the actions across subproblems.

For Pt(t) defined for Gy, the objective is to find a feasible plan z(¢) that satisfies the
constraints for Gy, while minimizing an objective function biased by the violated global
constraints:

N
t .
(Pt( )> : min - J(z) +;%,k o (15)
kAt
subject to h® (ai,aj) =0 Va;,a; € z(t),

where J(z) is defined later in Section 5.3. Here, m,, is the number of global constraints
between the actions in z(t) and those in z(k):

m,, = Y, hlarap). (16)
ar€z(t)
ar€z(k)
k#t

To limit the number of penalties while characterizing the priorities among the subproblems,
we have assigned a single penalty 7, , for each pair of subproblems G and Gy, instead of a
penalty for each global constraint between G; and GYy.
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Figure 8: SGPlany: A planner implementing the partition-and-resolve procedure in Fig-
ure 7.

3.4 The Partition-and-Resolve Procedure

Figure 7 presents the partition-and-resolve procedure for finding points that satisfy the
conditions in Theorem 2. Using fixed ~ and 7 specified in the outer loop, the inner loop
of Subproblem t in Figure 7b solves (13) by an existing solver, which results in an ESP
that satisfies (11). This is possible because (13) is a well-defined MINLP. After solving the
N subproblems, the penalties on the violated global constraints are increased in the outer
loop. The process is repeated until a C'LM,, to P; has been found or when ~ and 7 exceed
their maximum bounds.

The procedure in Figure 7 may generate fixed points of (9) that do not satisfy (11) and
(12). This happens because an ESP is a local minimum of (9) (but not the converse). One
way to escape from such fixed points is to allow periodic decreases of v and 7. The goal of
these decreases is to “lower” the barrier in the penalty function in order for local descents
in the inner loop to escape from an infeasible region. Note that v and 7 should be decreased
gradually in order to help the search escape from such infeasible regions. Once v and 7
reach their minimum thresholds, they can be scaled up, and the search is repeated.
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4. System Architecture of SGPlany

Figure 8 shows the design of SGPlan, that implements the partition-and-resolve procedure.
The procedure alternates between global-level planning and subgoal-level planning. In this
section, we describe those techniques implemented in the global level, while leaving the
discussion of techniques in the subgoal level to the next section.

4.1 The Partition-and-Resolve Process in SGPlany

At the global level, SGPlany partitions a planning problem into NV subproblems, Gy, --- , Gy,
where G corresponds to the t™ subgoal. It then orders the subproblems, evaluates each
using techniques in subgoal-level planning, identifies those violated global constraints, and
updates their penalties in order to bias the search in the next iteration towards resolving
them. In SGPlang, we have adopted an implementation in LPG1.2 (Gerevini & Serina,
2002) for detecting persistent mutexes.

The partition-and-resolve process can be understood as calculating subplans separately
and then merging them into a consistent plan. Its goals are to optimize multiple subplans
and to ensure their consistency after merging. Prior work on plan merging focuses on
merging redundant actions and on finding an optimal composed plan. In particular, Foulser,
Li, and Yang (1992) have developed algorithms for merging feasible classic plans into more
efficient ones. A complete evaluation on plan-merging algorithms for classical domains has
been conducted by Yang (1997). Tsamardinos, Pollack, and Horty (2000) have extended
the concept to domains with temporal constraints. Because plan merging is not a means
for making an infeasible plan feasible, it is different from our approach that aims to resolve
inconsistencies in terms of mutexes among subplans.

An alternative view about our resolution approach is the reuse and modification of
subplans into a consistent plan. Plan-reuse systems adapt existing plans into new ini-
tial states and goals. The approach is demonstrated in SPA (Hanks & Weld, 1995) and
PRIAR (Kambhampati & Hendler, 1992) that show improvements in efficiency in many
domains. The major difference between current plan-reuse approaches and our partition-
and-resolve process is that we generate candidate subproblems based on the partitioning
of mutex constraints, whereas traditional methods reuse plans that are generated by other
means. Since the assumption of conservative plan modification in existing methods is not
always achievable, it may be necessary to replan if a feasible plan candidate cannot be
found. In some cases, it may be more expensive than planning from scratch. This is the
reason why complexity analysis and empirical study cannot prove plan-reuse approaches
to have consistent improvements over planing from scratch (Nebel & Koehler, 1995). In
contrast, our approach augments the search of each subproblem by explicitly penalizing
global inconsistencies and by forcing its solution towards resolving the global constraints.

Our partition-and-resolve approach is different from incremental planning (Koehler &
Hoffmann, 2000) that uses a goal agenda. In incremental planning, a planner maintains
a set of target facts, adds goal states incrementally into the target set, and extends the
solution by using the new target set. Because a goal state must always be satisfied once
it has been achieved, the ordering of goal states is important in order to avoid un-doing
a previously achieved goal state when planning the current goal state. If invalidations do
occur, then the planning task at that point is more complex than just the planning of one
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goal state. In contrast, SGPlan, tries to achieve only one subgoal at a time and allows
other subgoals to be invalidated in the process. Moreover, for each subgoal, we do not need
to start from the ending state of the previous subgoal as in incremental learning, and there
is no need to pre-order the subgoals in order to avoid invalidations. We show in Section 6
that the performance of SGPlany is not sensitive to the order of evaluating the subgoals.

4.2 Resolving Violated Global Constraints

In this section, we present two penalty-update strategies for resolving violated global con-
straints. These constraints are identified after finding a subplan for each subproblem inde-
pendently.

SGPlany first initializes the penalties of all global constraints when it starts. In the first
iteration, SGPlany solves each subproblem individually, without considering their global
constraints. It then combines all the subplans into an integrated plan in order to deter-
mine the initial active global constraints across the subproblems. In subsequent iterations,
SGPlany finds a local feasible plan for each subproblem, while minimizing the global ob-
jective and the weighted sum of violated global constraints. At the end of each iteration,
SGPlany increases the penalty of a violated global constraint in proportion to its violation.
The process ends when all the constraints are satisfied.

We have designed two strategies for updating the penalty of global constraints. The
SGPlany that participated in IPC4 sets very large initial penalty values and updates them
by rate £, whereas SGPlany 1 studied in this paper sets the initial penalty values to zero:

(0) Y0 (fOI‘ SGPlan4) (0 (£—1)
— e —|— . s ﬁ = 1, 2, “ e 17
bk {0 (fOI‘ SGPlan4.1), Wt’k Wt’k g ik ( )

Here, %EQ is the penalty for the global constraints between Gy and Gy in the iteration,

my ), is as defined in (16), o is a large initial value, and & is a parameter for controlling the
rate of penalty updates. In our experiments, we set vy = 100 and & = 0.1.

Figure 9 illustrates the planning process of SGPlany on the AIRPORT-TEMP-14 in-
stance. Given the three subproblems in this instance, SGPlany first evaluates each subprob-
lem once in the first iteration in order to determine the initial active global constraints. The
figure shows, respectively, the subplans and the active global constraints after evaluating
each of the three subproblems in the second iteration. The strategy is effective for reducing
the number of active global constraints quickly from 14 in the beginning to zero in just one
iteration.

The penalty-update strategy in SGPlang may lead to longer makespans because it uses
large initial penalty values in order to reduce the number of violated global constraints
quickly. Hence, the subplans found may have poor temporal concurrency. To address this
issue, we have implemented a new strategy for SGPlany 1 in (17) that sets the initial penalty
values to zero.

Figure 10 illustrates the time-quality trade-offs of SGPlans and SGPlang; when used to
solve nine representative instances of the IPC4, the Blocksworld, and the Depots domains.
Because the number of active global constraints changes after evaluating each subproblem,
we plot the progress on the remaining number of active global constraints with respect
to the total number of subproblems evaluated. The results show that both planners can

fth
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Figure 9: The planning process of the IPC4 version of SGPlan, in the second iteration in
solving the AIRPORT-TEMP-14 instance. Each box corresponds to an action
in a subplan, whereas each arrow corresponds to an active global constraint. By
placing more emphasis on violated global constraints, the number of violated
constraints is quickly reduced at the expense of a longer makespan.

resolve the remaining number of active global constraints in almost a linear fashion, and
that SGPlany is generally faster for resolving the active global constraints but generates
plans of worse quality. In our detailed experimental results in Section 7, we show that
SGPlany ; generally leads to plans of better quality.

Both planners, however, have difficulty when solving the PIPESWORLD-NOTANKAGE-
TEMP-DEADLINE-10 instance (Figure 10c). For this domain, SGPlans cannot solve any
instances, whereas SGPlany ; can solve eight instances (1, 2, 5, 6, 8, 14, 22, and 30). Al-
though the fraction of initial active global constraints out of all constraints is only 3.3%
on average (Table 1), both planners may get stuck at some infeasible solutions and can-
not make progress afterward. The reason is that the basic planner in both SGPlans and
SGPlany 1 does not have enough backtracking to generate new candidate subplans for each
subproblem. Hence, the basic planner keeps generating the same subplan at some point,
regardless of how the violated constraints are penalized.

4.3 Handling Producible Resources

In some planning problems, there may be facts that can be made true and numerical
resources that can be produced anytime when needed. For example, in the Settlers domain,

342



TEMPORAL PLANNING USING SUBGOAL PARTITIONING AND RESOLUTION

25

60

£ "SGPar, (G=70810) £ SGPlat, (QZ6173) 2 [\ SePiang (NA) —— |
g 0h SGPIangz (Q=705.03) —— | g 50 SGPIangz (Q=52.00) —— | g ol | SGPIangz (Q=N/A) —— ]
8 8 40t 8 I
s 15F = = 30°F
g g 30} g 25}
S 10t > S 20t
2 g 20t el
g 5¢ 8 10l g 10
5 5 5 5}
* 0 P S S R * 0 L L — L L * 0 L L L L L L
8 10 12 14 16 18 20 22 24 26 28 8 10 12 14 16 18 20 22 5 10 15 20 25 30 35 40
total # of subproblems evaluated total # of subproblems evaluated total # of subproblems evaluated
a) ATRPORT-TEMP-30 b) PIPESWORLD-NOTANKAGE- c) PIPESWORLD-NOTANKAGE-
NONTEMP-30 TEMP-DEADLINE-10
g 20 "SGPIn, (Q-108.98) —— 2 10 Pt Qf7oa2e) —— | £ jg [ SOPlen,(Q=54400) |
g 200 - SGPIangz (Q=197.34) —— | g 8 [ septangz (Q=645.01) —— | g a5 | SGPIangz (Q=541.00) ——
8 g 704 8 20
g 10| 3 % i B 25
S 100} S S 20
2 S a0t 2 15y
8 50t 8 20t g 10r
5 5 10t 5 Sr
H# 0 . . . H# 0 . . . . . " # 0 T— "
20 30 40 50 60 70 80 40 60 80 100 120 140 160 180 200 15 20 25 30 35 40 45 50 55 60
total # of subproblems evaluated total # of subproblems evaluated total # of subproblems evaluated
d) PROMELA-OPTICAL- ¢) SATELLITE-TIME-20 f) SETTLERS-20
TELEGRAPH-10
g u SGPlan; (Q=223040) g " SGRIan, (Q=56.00) £ fg [ TRsGHan, (QF107.00) —— |
g 12 Plan;, (Q=818.00) —— 1 g 60 SGPIangz (Q=42.00) —»— g 160 | ang, 2(Q=103.00) —~— |
g 0 § 50 5 140
L L 120 f
% 8 % 40 % 100 |
S 6 S 30 S 8|
% 4t % 20| % 60
40 L
5 27 5 1ot s 2!
H* 0 L L H* 0 L L h H#* 0 L X
0 15 20 25 30 3B 15 20 25 30 35 40 10 15 20 25 30 35 40
total # of subproblems evaluated total # of subproblems evaluated total # of subproblems evaluated
g) UMTS-TEMP-50 h) BLOCKSWORLD-17-0 i) DEPOTS-TIME-20

Figure 10: Resolution of active global constraints in nine benchmark instances by the orig-
inal penalty-update strategy in SGPlang and the new penalty-update strategy
in SGPlang ;. The z axis includes the number of subproblems evaluated, each
corresponding to a subgoal, in the first iteration in order to determine the initial
active global constraints.

coal can always be produced in a mine. We define these producible logical and numerical
resources as follows.

a) A fact is producible if it is an add effect of either an action without preconditions or
an action whose preconditions are always producible.

b) A numerical resource is producible if it is increased by either an action without
preconditions or an action whose preconditions are always producible.

The planning tasks will be significantly easier if producible facts and resources can
be detected in the preprocessing phase and be made available during planning. By first
identifying all those facts and resources, SGPlan, derives a relaxed initial state by setting
all producible facts to be true and all producible numerical resources to be large enough.
Every time a producible fact is turned false, it is made true again. After finding a feasible
plan from the relaxed initial state, SGPlany removes the unused numerical resources in the
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initial state and plans again. The process is repeated until there are no redundant initial
resources. At that point, SGPlany inserts the necessary actions at the beginning of the plan
to generate the minimum initial producible resources needed.

For example, suppose timber is detected to be a producible resource as one can always
fell some trees to get more timber. SGPlany will initially set a large number, say 1000 units,
of timber available. After solving the problem, suppose there are 900 units left unused, it
reduces the initial timber to 100 units and plans again. This process is repeated until
either there is no unused timber at the final state or the problem becomes unsolvable after
reducing the initial resource.

Note that the approach may incur some redundant actions for producing unused re-
sources, as the optimal amount of resources needed cannot be predicted ahead of time.

5. Subgoal-Level Planning

At the subgoal level, SGPlany applies landmark analysis to further partition a subproblem,
performs path finding and optimization, carries out subspace-reduction analysis to prune
irrelevant facts and actions in the subproblem, and calls a modified Metric-FF planner to
solve the subproblem.

5.1 Subgoal-Level Decomposition Techniques

a) Landmark analysis. First proposed by Porteous, Sebastia, and Hoffmann (Porteous,
Sebastia, & Hoffmann, 2001), landmark analysis allows a large planning problem to be
decomposed into a series of simpler subproblems. Given the initial state, it aims to find
some intermediate facts that must be true in any feasible plan for reaching the goal state.
For example, assume that object O is to be delivered from A to D, and that the only path
from Ato Dis A— B — C — D. Then AT(O, B) and AT (O, C) are both landmark facts,
since any feasible plan must make them true before reaching goal state AT(O, D).

Because a planning problem is first partitioned by its subgoals into subproblems, we
only apply landmark analysis on each subproblem in order to find the intermediate facts for
reaching the corresponding subgoal. Landmark analysis is important in SGPlany because
it allows each subproblem to be further decomposed into simpler subproblems that can be
solved easily.

In each subproblem, we find landmarks by a relaxed planning approach. Given a plan-
ning subproblem 7 = (O,F,7,G), we first construct a relaxed planning graph from the
initial state Z by ignoring the delete effects of actions. We force each f € F in each level of
the graph to be false (even if it were made true by some actions). As a result, all the actions
preconditioned by f will be pruned. If there exists a goal fact in G that cannot be reached
when f is false, then f is a landmark fact and must be reached in any plan for the relaxed
problem. After finding the partial order of the landmarks, SGPlans builds a sequential
list of subproblems joined by the landmarks found and applies the basic planner to solve
each subproblem in order. Note that because landmark analysis is expensive, SGPlan, only
detects landmarks once at the beginning and not in every iteration.

The landmarks found in the relaxed planning graph are necessary because any solution
plan of the original problem is also a solution plan of the relaxed problem. Hence, any
feasible plan for the original problem must reach each landmark found by the relaxed ap-
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Figure 11: Landmarks and their partial orders for the PIPESWORLD-NOTANKAGE-
NONTEMP-10 instance.

proach at least once. However, the landmarks found are not sufficient because we test goal
reachability by a relaxed approach, and there may exist some undetected landmarks even
when every fact has been tested.

Figure 11 shows all the landmarks found in the IPC4 PIPESWORLD-NOTANKAGE-
NONTEMP-10 instance. When considering the first goal fact ON (B10, A3), LAST(B10, S12)
is not only its landmark but also the landmarks for ON(B10, A1) and FIRST(B10, 513).
This means that LAST (B10, S12) must be ordered before ON(B10, A1) and FIRST(B10, S13).
In this way, we can decompose the subproblem for ON(B10, A3) into 4 smaller tasks that
must be carried out in sequence, namely, LAST(B10, S12), ON(B10, A1), FIRST(B10, S13),
and ON(B10, A3).

b) Landmarks identified by path finding. Landmark analysis may sometimes produce
very few landmark facts for decomposing a subproblem. For example, most of the gates
along a path in an Airport instance will not be identified as landmark facts (that is,
must-visit points) because there are usually multiple paths for the given source and des-
tination. Consider the airport topology in Figure 12a in which the goal is to move Al
from SG1 to SG8. Because there are two alternative paths and none of the facts in
AT(A1,5G2), AT(A1,58G3),--- , AT (A1, SGT) has to be true before reaching SG8, we can-
not detect any landmark facts.

To identify more landmark facts for decomposing a subproblem, we have developed
in SGPlan, a new path-finding technique. The technique is based on the concept of fact
groups that has been used by some existing planners, such as MIPS (Edelkamp, 2002) and
Downward (Helmert & Richter, 2004). A fact group includes a group of mutually exclusive
facts in which only one can be true at any time, and typically involves the multiple possible
states of an object. For the example Airport instance discussed above, a fact group includes
the different locations that Al can be at:

F, = {AT(Al,SGl),AT(Al,SGQ),---,AT(Al,SG?),AT(Al,SGS)}. (18)
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Figure 12: Illustration of the transition graph of Fact Group F, and the path finding algo-
rithm. Shaded nodes in (b) are new landmark facts detected by path finding.

In SGPlany, we have adopted an approach in MIPS based on an analysis of static mutex
groups for finding fact groups of subgoal facts.

We apply path finding on Subproblem G; when none or a few landmarks have been
detected by landmark analysis. Assuming the subgoal to be reached is g,, we first find the
fact group it belongs to. In the previous example, the subgoal is g, = AT(A1, G8), and the
fact group is Fy in (18).

For each fact group with two or more facts, we determine their transition relations by
constructing a directed graph. Given two facts f; and f2 in the fact group, we add an edge
from f1 to fo if there exists an action a such that f; is a precondition of a and f, is an
add effect of a (which implies that f; is a delete effect of a since f; and fo are mutually
exclusive). Figure 12a illustrates the transition graph for the airport example discussed
above.

Last, to find a path, we look for all the facts that are immediate predecessors of g, in
the graph. We arbitrarily select one as a must-visit landmark and disable the others. We
then perform a landmark analysis from the initial fact to g,. This analysis will return more
landmark facts.

In our example airport instance, AT (A1, SG4) and AT (A1, SG7) are the two immediate
predecessor facts of Subgoal g, = AT(A1, SG8). If we disable AT (A1, SG7) in the landmark
analysis, then there will only be one path from AT(A1l,SG1) to g,, and AT (A1, SG?2),
AT(A1,SG3), and AT(A1, SG4) will be detected as landmark facts. Figure 12b illustrates
this process.

c) Path optimization is used to find better landmark facts for problems with timed
initial literals or numerical effects. It is invoked when there is a deadline or when there
is a dynamically changing numerical resource that appears in the preconditions of actions.
These conditions are satisfied in the IPC4 Satellite instances where the technique is found
to be most useful.

The technique works by choosing a path that optimizes the time duration or the usage
of a numerical resource when there are multiple paths of different quality, and by setting
those nodes along the optimal path as landmark facts. Given a subproblem trying to reach
Subgoal ¢,, we construct a transition graph for the fact group of g, and apply Dijkstra’s
algorithm to find the shortest path from the initial fact to g,. The weight on each edge is
either a time duration for problems with time windows, or the usage of a numerical resource
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Figure 13: Generating multiple starting states for Subproblem G3, given the initial state
So and S;,7 = 1,...,6, the state when action a; is finished. SGPlany calls the
basic planner to generate a local subplan from each starting state and picks the
first one that improves the objective in (15).

for problems with numerical preconditions. We then set the facts along the optimal path as
landmark facts and force the planner to choose this path over others. The landmarks along
the optimal path allows us to further decompose the problem into subproblems.

There are two limitations in our current implementation of path optimization. First,
since there needs to be a path from the initial fact to the goal fact in the transition graph,
we cannot apply the technique if the initial and the goals facts are disconnected. Second,
we have studied the case of only one dynamically changing numerical resource that appears
in the preconditions of actions and have not studied the optimization of multiple numerical
resources.

5.2 Subgoal-Level Planning Techniques

a) Evaluating multiple subplans for a subproblem. In finding a local feasible subplan for a
subproblem that improves the objective in (15), SGPlany generates a number of subplans
from multiple starting states. Since no active global constraints exist between two identical
subplans, we generate multiple starting states for a given subproblem by applying all pos-
sible prefix actions from each of the other subproblems. For example, given the six actions
planned in G; and G in Figure 13, there are six possible starting states when developing a
subplan for G3. For each starting state, SGPlan, calls the basic planner to generate a local
feasible subplan and accepts the subplan if it improves the objective in (15). If no better
subplans can be found from all possible starting states, SGPlany leaves the local subplan
unchanged and moves on to the next subproblem.

b) Search-space reduction. Before solving a partitioned subproblem, we can often elimi-
nate in its search space many irrelevant actions that are related to only facts and subgoals
in other subproblems. Such reductions are not useful in planning problems that are not
partitioned because all their actions are generally relevant.
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As an example, consider a transportation domain whose goal is to move packages,
drivers, and trucks to various locations from an initial configuration. Suppose in a prob-
lem instance, the goal set is {AT(D1,S51), AT(T'1,51), AT(P1,50), AT(P2,50)} for two
packages P1 and P2, one driver D1, one truck 7’1, and two locations S1 and S2. With-
out partitioning, all the actions are relevant for resolving the subgoals. In contrast, after
partitioning, the actions for moving P2 around are irrelevant in the subproblem of resolv-
ing AT(P1,50) and can be eliminated. Similarly, those actions for moving P1 or P2 are
irrelevant in the subproblem of resolving AT'(D1, S1).

We have designed a backward relevance analysis to eliminate some irrelevant actions
in a subproblem before solving it by the basic planner. In the analysis, we maintain an
open list of unsupported facts, a close list of relevant facts, and a relevance list of relevant
actions. In the beginning, the open list contains only the subgoal facts of the subproblem,
and the relevance list is empty. In each iteration, for each fact in the open list, we find all
the actions that support the fact and not already in the relevance list. We then add these
actions to the relevance list and add the action preconditions that are not in the close list
to the open list. We move a fact from the open list to the close list when it is processed.
The analysis ends when the open list is empty. At that point, the relevance list will contain
all possible relevant actions. This analysis takes polynomial time.

Note that our relevance analysis is not complete when it stops, since the relevance list
may still contain some irrelevant actions. For example, we can further reduce the relevance
list by a forward analysis and by finding all applicable actions from the initial states before
the backward analysis. However, further analysis may not be cost effective for reducing the
overhead in planning.

Our reduction method belongs to a family of heuristics proposed by Nebel, Dimopoulos
and Koehler (1997). Since we select all possible supporting actions when processing a fact,
our approach is indeed the one that selects the union over all elements in the possibility
set according to their classification. While we conservatively reduce the irrelevant informa-
tion, there are a number of tighter reductions that can approximately minimize the use of
initial facts (Nebel et al., 1997). However, these aggressive heuristics may not be solution
preserving or solution-length preserving.

5.3 Modified Metric-FF Basic Planner

After decomposing a subproblem associated with a subgoal into smaller subproblems bounded
by landmark facts, SGPlany solves each subproblem identified (or the original subproblem
in case no landmark facts have been identified) by a modified Metric-FF planner. Our mod-
ifications consist of two components: the adaptation of the original Metric-FF (Hoffmann,
2003) in order to entertain the new features in PDDL2.2, and the support of planning when
the mutex constraints are partitioned. In fact, a lot of our efforts for embedding Metric-FF
in SGPlang were spent on the first component.

The original Metric-FF can only solve problems in PDDL2.1 with propositional actions
but does not support any temporal features. We have extended the parser of Metric-FF to
support the full PDDL2.2 syntax and the definition of actions from atomic logical to dura-
tional temporal. The planning process has also been extended from sequential propositional
planning to parallel temporal planning. Specifically, we have extended sequential actions of
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Figure 14: Temporal planning in a partitioned search context incorporates in the objective
function in (15) a makespan 7" estimated by an enhanced PERT algorithm and
the heuristic value of the Metric-FF planner.

atomic length in the original Metric-FF to actions with predefined durations that can be
scheduled in parallel.

We have extended Metric-FF to support a new feature called derived predicates intro-
duced in PDDL2.2. Derived predicates define axioms whose facts are derived by a set of
precondition facts. For example, in a domain with boxes, if A is above B and B is above
C, then a derived predicate of A above C' can be generated. Derived predicates can only
appear in preconditions and goals but not in effects. In our modified Metric-FF, we have
implemented a technique proposed in MIPS 2.2 (Edelkamp, 2003) for handling derived
predicates. We encode any derived predicate d as a special action a, where the precondition
facts of a are the preconditions facts of d, the add effects of a are the derived facts of d,
and the delete effect of a is empty. During planning, all the “derived-predicate actions”
are included in the relaxed plan. However, the heuristic function computed in Metric-FF
only counts the number of real actions in the relaxed plan but not the number of “derived-
predicate actions,” and only real actions are considered as candidates for forward expansion
in any state. In any state, we expand the set of true facts by applying all applicable derived
predicates iteratively until we reach a fixed-point state where no more true facts can be
added.

The second component of the modifications in Metric-FF involves the support of a
partitioned search context when solving a subproblem, say G. In this case, Metric-FF needs
to incorporate in its objective an aggregate state of all schedulable actions in G1, -+ , Gy
in the planning of actions in G;. Referring to Figure 14, the aggregate state is represented
by an estimated makespan T of all the actions that is evaluated by an enhanced PERT
algorithm.

PERT was originally developed to generate a parallel plan by scheduling an action
as early as possible until it is blocked by a dependency or a mutex relation. Previous
PERT algorithms detect a propositional conflict between two actions by checking if one
action adds/deletes another’s precondition, and detect a numerical conflict when two actions
modify the same numerical variable. In the latter case, two actions would not be allowed
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to overlap in their execution when they consume the same resource, even when the total
amount required does not exceed the amount available. Obviously, the resulting schedule
will be suboptimal.

We have developed an enhanced PERT algorithm that considers resource constraints
in its schedule. The algorithm assigns an action as early as possible as long as there
are no propositional conflicts or no violations on numerical/resource constraints. Besides
maintaining operator dependency as in the original PERT, we also keep track of changes
on numerical variables. Our algorithm is greedy because it schedules all applicable actions
as early as possible without backtracking.

In general, PERT can schedule a valid sequential plan into a parallel plan without mutex
conflicts. However, our enhanced PERT may generate a parallel plan with mutex conflicts.
The reason is that each subproblem is solved from the initial state and not sequentially
from the state of the previous subproblem. Hence, when actions from multiple subplans are
combined, one action may delete the precondition of another and causes a mutex conflict. As
an example, consider the sequential plans of two subproblems G and G5 that are scheduled
from the initial state in the Blocksworld domain: a) MOVE(A,B) and MOVE (B,C);
and b) MOVE (D, E) and MOVE (E,C), where MOVE (z,y) places = on top of y, with a
precondition CLEAR (y) (y is clear with nothing on it). In this example, PERT cannot
generate a parallel plan with no mutex conflict between MOVE (E,C) and MOVE (B, (),
regardless of how these two actions are scheduled. The conflict occurs because each action
deletes the CLEAR (C') precondition of the other.

The modified Metric-FF planner carries out a search that heuristically looks for plans
to minimize (15) rewritten as follows:

min, ;) (H(z(t)) + Zl]%él yt’kﬁ%k> (for SGPlany)
t

N (19)
minz(t) (H(Z(t)) + 71T + ij:;l ’Yt,kﬁlltyk> (fOI" SGPlan4.1),
t

N
min <J(z) + Z'Yt,jﬁlt,j> =
z(t) =

J#t

where TI(z(t)) is the heuristic value of the original Metric-FF when solving Gy; my, is the
estimated number of active mutexes between the plan for Gy and a relaxed plan for G;
obtained by ignoring the delete effects of unscheduled actions; 1" is the makespan estimated
by the enhanced PERT algorithm after composing the relaxed plan of GG; and the plans of
the other subproblems; v, , is a penalty value dynamically updated in global-level planning;
and 7 is a constant fixed at 0.0001. Although the search does not guarantee optimality, it
can always resolve global mutual-exclusion constraints between, say z(t) and z(k), because
it can move one subplan backward in order to avoid overlapping with another conflicting
subplan when the penalty v, , is large enough.

In our implementation of (19) in the modified Metric-FF planner, we have set 7 in
SGPlany ; to be very small so that the penalty term due to the makespan will not dominate
the other terms. In fact, since 771" is much smaller than one in all the test problems, its main
purpose is to break ties among those states with very close heuristic values. On the other
hand, our implementation of (19) in SGPlany in IPC4 does not include 7" in its objective
function. As a result, it focuses on eliminating mutual-exclusion conflicts and tends to
generate plans of a longer makespan.
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1. procedure SGPlan(problem file)

2 parse problem file and instantiate all facts and actions;

3 detect and encode timed initial literals (TIL);

4. detect and encode derived predicates;

5. detect TIL wrappers and translate them into regular TILs;

6 detect producible resources;

7 if (there are producible resources) then set them to the maximum possible end_if;
8

. repeat
9. for each subgoal fact in the goal list do
10. call search-space reduction to eliminate irrelevant actions;
11. call basic planner (modified Metric-FF) to reach the subgoal;
12. if (the basic planner times out) then
13. perform landmark analysis to generate a list of subproblems;
14. for each subproblem in the list do
15. call basic planner to solve the subproblem;
16. if (solution is not found in the time limit) then
17. if (problem has TIL or numerical fluents) then perform path optimization
18. else perform path finding to further decompose the subproblem end_if;
19. call basic planner to solve each decomposed subproblem;
20. end_if
21. end _for
22. end_if
23. end_for
24. evaluate plan z and update penalty values of violated global constraints;
25. until feasible solution plan has been found or time limit has been exceeded;
26.  if ((new solution found) && (there are unused producible resources)) then
27. reduce the initial producible resources and goto step 8;
28. end_if

29. end_procedure

Figure 15: The high-level pseudo code common for both SGPlangy and SGPlany 1.

In general, embedding a basic planner in our partition-and-resolve framework requires
some modifications to the objective function of the basic planner in order to implement
(15). Hence, it cannot be done without the source code of the basic planner.

5.4 Putting All the Pieces Together

Figure 15 shows the high-level code that is common for both SGPlany and SGPlang . The
preprocessing phase parses the problem file and instantiates all the facts and actions (Line
2), detects and encodes timed initial literals (TIL) and derived predicates, if any (Lines 3
and 4), translates the problem into a regular TIL problem if the problem is a compiled TIL
problem (Line 5), and detects producible resources and sets them to always available (Lines
6 and 7).

The major loop is between Lines 8 and 28. For each subgoal, SGPlan, uses search-space
reduction to eliminate irrelevant actions (Line 10) and solves it using the basic planner
(Line 11). If the basic planner fails to find a feasible plan within a time limit (3000 node
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Table 2: Summary of useful techniques for each domain variant. A check mark indicates
that a technique is found to be useful for a domain variant or a class of domain
variants.

Domain Variant [SG LM PF PO TIL TIL-w DP PR

SR |
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SETTLERS

UMTS-TEMP
UMTS-TEMP-TIMEWINDOWS
UMTS-TEMP-TIMEWINDOWS-CO
UMTS-FLAW-TEMP
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Keys SG: subgoal partitioning LM: landmark analysis PF: path finding

PO: path optimization TIL: timed initial literals handling TIL-w: TIL wrapper detection

DP: derived predicates handling PR: producible resources SR: search-space reduction

expansions in Metric-FF), SGPlany aborts the run of Metric-FF and tries to decompose the
problem further. It first applies landmark analysis to decompose and solve the subproblem
(Lines 13-15). If it is unsuccessful in solving the subproblem, it tries path optimization for
numerical and TIL problems (Line 17) or path finding (Line 18) to further partition the
subproblem. After all the subgoals have been evaluated, it composes the solution, evaluates
the global constraints, and updates the penalty values (Line 24). Finally, if a new solution
has been found and there are unused producible resources, it reduces the initial producible
resources (Lines 26-28) and repeats the major loop again.

6. Sensitivity Analysis of Techniques in SGPlany

In this section we describe our ablation study of the various techniques in SGPlany in order
to test their effectiveness. Table 2 lists the techniques that are most useful for each IPC4
domain variant. We defer the discussion on the performance improvement of SGPlang
over SGPlany to Section 7.
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For all the Airport variants, the useful techniques include subgoal partitioning, land-
mark analysis, and path finding. In addition, TIL wrapper detection is needed for the
TIMEWINDOWS-CO variant. As an ablation study, we applied SGPlan, with subgoal
partitioning alone. In this case, SGPlans can solve 107 out of the 200 (53.5%) instances
and cannot solve those numbered higher than 28 (namely, P29, P30, etc.). The reason
is that those subproblems without landmark analysis and path finding are so large that
Metric-FF has difficulty in solving them. In contrast, SGPlan, with landmark analysis and
path finding can solve 159 (79.5%) instances.

For all the Pipesworld variants, the useful techniques include subgoal partitioning, land-
mark analysis, path finding, and search-space reduction. Although search-space reduction
can slightly reduce the run time by 5.3% on average, landmark analysis and path finding
has more significant effects on performance. SGPlany without landmark analysis and path
finding can only solve 102 out of the 200 (51%) instances, whereas SGPlans with landmark
analysis and path finding can solve 186 instances (93%). Landmark analysis and path find-
ing also leads to 8% average improvement on run time for those instances that both versions
can solve.

For the Promela domain, only subgoal partitioning is found to be useful, besides applying
derived-predicate handling for the corresponding variants.

For all the PSR variants except PSR-SMALL, search-space reduction is particularly
useful in addition to subgoal partitioning. For these three variants, SGPlan, with search-
space reduction can solve, respectively, 50, 14, and 11 instances; whereas SGPlan, without
search-space reduction can solve, respectively, 47, 8, and 6 instances. In addition, the aver-
age run-time improvements due to search-space reduction are, respectively, 34.1%, 46.9%,
62.5%. For the PSR-SMALL variant, search-space reduction has no significant effects on
both run time and solution quality. Last, derived-predicate handling is important for PSR-
MIDDLE, which is encoded using derived predicates.

In the Satellite domain, only subgoal partitioning is found to be useful for solving the
TIME, STRIPS, and COMPLEX variants. For the NUMERIC, TIME-TIMEWINDOWS,
and TIME-TIMEWINDOWS-CO variants, landmark analysis and path optimization are
also useful. For these three variants, SGPlans can solve, respectively, 25, 25, and, 21
instances, whereas SGPlangy without landmark analysis and path optimization can solve,
respectively, 16, 16, and 13 instances.

For the Settlers domain, subgoal partitioning as well as techniques for handling pro-
ducible resources are important for solving all but one of the instances. (The eighth instance
is infeasible.) Without detecting producible resources, SGPlan, can only solve nine out of
the 20 instances.

For the UMTS domain, only subgoal partitioning is found to be useful, besides applying
TIL handling and TIL wrapper detection for the corresponding variants. Landmark analysis
does not help in this domain and can detect none or very few landmark facts in each of the
300 instances. Also, search-space reduction can only prune a few facts and has little effects
on performance.

We have also studied the effects of subgoal ordering in SGPlans ; on eighteen represen-
tative variants from all IPC4 domains as well as the Depots domain (Figure 16). For each
instance, we test SGPlang; using five random subgoal orders and normalize its run time
(resp. quality) with respect to the corresponding measure when SGPlany; is run using
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Figure 16: Run time-quality distribution of SGPlang; run using different random subgoal
orders on selected IPC4 and the Depots domain variants. The results are normal-
ized with respect to the run time and quality of SGPlang ; run using the default
subgoal order. (Performance values larger than one are better for SGPlany ;.)

the original order in the problem definition. Here we use makespan as our quality measure
for temporal domains and the number of actions for propositional domains (even when an
objective is specified in the problem definition).

The results show that the performance of SGPlany 1 is quite insensitive to subgoal order-
ing for the Airport, Promela, Settlers, and UMTS domains. However, there are significant
variations in run time and quality for the Pipesworld and PSR domains, although there is
no definitive trend that a random subgoal order is better. For the Depots domain, there
exist some smaller variations in both run time and quality. A common feature among the
Pipesworld, PSR, and Depots domains is that they all have intensive subgoal interactions,
which make them more sensitive to the order in which subgoals are evaluated. For example,
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in the PSR-MIDDLE variant, the number of subgoals is large, and different subgoals are
highly related by derived predicates. Last, we note that using the original subgoal order
leads to better run time and quality in the Satellite domain. The reason is that the original
order can avoid unnecessary subgoal invalidations when finding local feasible subplans, since
the starting states are generated by applying prefix subplans of other subgoals.

Because there is no clear advantage of using random subgoal orders over the original
subgoal order, SGPlangy and SGPlang ; use the original subgoal order in their implementa-
tions.

7. Experimental Results

In this section, we experimentally compare the performance of SGPlany, SGPlany; (their
differences are in (17) and (19)) and other planners in solving the IPC3 and IPC4 benchmark
suites as well as the Blocksworld domain from IPC2. Each suite contains multiple domains,
with several variants in each. Those variants in IPC4 address the different features of
PDDL2.2, which include versions on STRIPS, STRIPS with DP (derived predicates), tem-
poral, temporal with TIL (deadlines), numeric, and complex (temporal and numeric). A
complete description of each variant and its problem files can be found at the Web site of
each of the competitions?

All runs were carried out an AMD Athlon MP2800 PC with Redhat Linux AS3 and
2-Gbyte main memory unless otherwise noted. Following the rules of IPC4, all random
planners set a fixed random seed, once and for all, throughout their experiments. Moreover,
all planners must be fully automated, run with the same parameter setting for all the
instances attempted, and execute under a CPU time limit of 30 minutes and a main memory
limit of 1 Gbytes.

Table 3 summarizes the performance of SGPlany, SGPlany 1, Downward (Helmert &
Richter, 2004), LPG-TD-SPEED-1.0 with a seed of 2004, and YAHSP-1.1.> We use makespan
as the quality metric for temporal domains and the number of actions for propositional do-
mains. Since the code for Downward is unavailable, we report its IPC4 results after adjusting
its run times by a factor governed by the difference in speeds between the computer used
in the IPC4 competition and the computer used for SGPlany ;. Likewise, we were unable
to evaluate Downward on the IPC2 and IPC3 benchmarks.

Table 3 does not include results on those domain variants that a target planner cannot
handle. For example, LPG-TD-SPEED cannot solve all the compiled domains and does
not support some grammatical features in PSR-LARGE and the two FLUENTS variants in
the PROMELA domain; and YAHSP cannot handle derived predicates. In contrast, both
SGPlang and SGPlany ; were designed to solve all the variants except the ROVERS-TIME
variant with dynamic durations. Note that since the Satellite and the Settlers domains
exist in both the IPC3 and IPC4 benchmarks, the table does not include those results on

2. The URL for the competitions are http://lsb-www.cs.uni-dortmund.de/~edelkamp/ipc-4/ for
IPC4, http://planning.cis.strath.ac.uk/competition/ for IPC3, and http://www.cs.toronto.
edu/aips2000/ for IPC2.

3. The object code of LPG-TD was downloaded from http://zeus.ing.unibs.it/lpg/register-lpg-td.
html, while the object code of YAHSP-1.1 was downloaded from http://www.cril.univ-artois.fr/
“vidal/Yahsp/yahsp.linux.x86.gz. The object code of Downward was unavailable for testing at the
time when this paper was revised.
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the IPC3 Settlers domain and some variants of the IPC3 Satellite domain that have been
reported for IPC4.

Table 3: Performance comparison between SGPlang; and other planners. In the
table comparing SGPlany; and SGPlang, the four missing variants (PIPESWORLD-
NOTANKAGE-TEMP-DEADLINES-CO, PROMELA-OPTICAL-TELEGRAPH-FLUENTS-DP,
PROMELA-PHILOSOPHERS-FLUENTS-DP, and ROVERS-TIME) cannot be solved by both
planners. In the table comparing SGPlany; and LPG-TD-SPEED, all the missing variants ex-
cept ROVERS-TIME cannot be solved by LPG-TD-SPEED. For the ROVERS-TIME variant,
only LPG-TD-SPEED can solve all the instances but the other planners cannot. In the tables
comparing SGPlang 1, Downward, and YAHSP, all the missing variants cannot be solved by the
target planners compared.

. . Instances Solvable by Both (F3) All Instances
Domain Variant F, F, F Fo, Fut Fu| Fn F, F, DB
| Comparison between SGPlans 1 and SGPlany |
AIRPORT-NONTEMP 0.78 0.00 0.00 0.00 0.10 0.00|0.00 0.00 0.12 0.88
AIRPORT-TEMP 0.60 0.28 0.00 0.00 0.00 0.00|0.00 0.00 0.12 0.88
AIRPORT-TEMP-TIMEWINDOWS 0.48 0.14 0.16 0.06 0.00 0.02|0.00 0.02 0.12 0.86
AIRPORT-TEMP-TIMEWINDOWS-CO 0.28 0.00 0.00 0.00 0.16 0.00|0.02 0.04 0.50 0.44
PIPESWORLD-NOTANKAGE-NONTEMP 0.16 0.10 0.00 0.00 0.74 0.00|0.00 0.00 0.00 1.00
PIPESWORLD-NOTANKAGE-TEMP 0.72 0.28 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
PIPESWORLD-TANKAGE-NONTEMP 0.12 0.00 0.00 0.00 0.54 0.00|0.00 0.00 0.34 0.66
PIPESWORLD-TANKAGE-TEMP 0.52 0.14 0.00 0.00 0.00 0.00|0.00 0.00 0.34 0.66
PIPESWORLD-NOTANKAGE-TEMP-DEAD 0.00 0.00 0.00 0.00 0.00 0.00|0.27 0.00 0.73 0.00
PROMELA-OPTICAL-TELEGRAPH 0.19 0.00 0.00 0.00 0.10 0.00|0.00 0.00 0.71 0.29
PROMELA-OPTICAL-TELEGRAPH-DP 0.40 0.00 0.00 0.00 0.00 0.00|0.00 0.00 0.60 0.40
PROMELA-OPTICAL-TELEGRAPH-FLUENTS || 0.06 0.00 0.00 0.00 0.13 0.00|0.00 0.00 0.81 0.19
PROMELA-PHILOSOPHERS 0.58 0.00 0.00 0.00 0.02 0.00|0.00 0.00 0.40 0.60
PROMELA-PHILOSOPHERS-DP 0.94 0.00 0.00 0.00 0.06 0.00|0.00 0.00 0.00 1.00
PROMELA-PHILOSOPHERS-FLUENTS 0.02 0.00 0.00 0.00 0.19 0.00|0.00 0.79 0.00 0.21
PSR-SMALL 0.24 0.00 0.00 0.00 0.70 0.00|0.00 0.00 0.06 0.94
PSR-MIDDLE 0.98 0.02 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
PSR-MIDDLE-CO 0.26 0.00 0.00 0.00 0.02 0.00|0.00 0.00 0.72 0.28
PSR-LARGE 0.16 0.00 0.00 0.00 0.06 0.00|0.00 0.00 0.78 0.22
SATELLITE-STRIPS 0.53 0.06 0.00 0.00 0.25 0.00|0.00 0.00 0.17 0.83
SATELLITE-TIME 0.39 0.44 0.00 0.00 0.00 0.00|0.00 0.00 0.17 0.83
SATELLITE-TIME-TIMEWINDOWS 0.58 0.00 0.00 0.00 0.08 0.00|0.00 0.00 0.33 0.67
SATELLITE-TIME-TIMEWINDOWS-CO 0.53 0.03 0.00 0.00 0.11 0.00|0.00 0.00 0.33 0.67
SATELLITE-NUMERIC 0.44 0.00 0.00 0.00 0.11 0.00|0.00 0.03 0.42 0.55
SATELLITE-COMPLEX 0.36 0.22 0.00 0.08 0.08 0.03|0.00 0.06 0.17 0.77
SATELLITE-COMPLEX-TIMEWINDOWS 0.50 0.14 0.00 0.00 0.03 0.00|0.00 0.00 0.33 0.67
SATELLITE-COMPLEX-TIMEWINDOWS-CO 0.56 0.03 0.00 0.00 0.08 0.00|0.00 0.00 0.33 0.67
SETTLERS 0.10 0.00 0.00 0.00 0.85 0.00|0.00 0.00 0.05 0.95
UMTS-TEMP 0.96 0.04 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
UMTS-TEMP-TIMEWINDOWS 0.88 0.12 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
UMTS-TEMP-TIMEWINDOWS-CO 0.76 0.00 0.00 0.00 0.24 0.00|0.00 0.00 0.00 1.00
UMTS-FLAW-TEMP 0.02 0.88 0.00 0.00 0.10 0.00|0.00 0.00 0.00 1.00
UMTS-FLAW-TEMP-TIMEWINDOWS 0.00 0.44 0.00 0.00 0.10 0.00|0.46 0.00 0.00 0.54
UMTS-FLAW-TEMP-TIMEWINDOWS-CO 0.54 0.00 0.00 0.00 0.00 0.00|0.46 0.00 0.00 0.54
DEPOTS-STRIPS 0.27 0.27 0.05 0.00 0.41 0.00|0.00 0.00 0.00 1.00
Continued ...
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Table 3: (continued)

. . Instances Solvable by Both (F3) All Instances

Domain Variant T 7, i Fo Fui Fug | Fn F, F. I
DEPOTS-SIMPLETIME 0.23 0.68 0.05 0.00 0.00 0.00|0.00 0.05 0.00 0.95
DEPOTS-TIME 0.27 0.59 0.05 0.05 0.00 0.00|0.00 0.05 0.00 0.95
DEPOTS-NUMERIC 0.18 0.27 0.05 0.00 0.41 0.00|0.00 0.09 0.00 0.91
DRIVERLOG-STRIPS 0.70 0.10 0.00 0.00 0.00 0.00|0.00 0.10 0.10 0.80
DRIVERLOG-SIMPLETIME 0.60 0.20 0.00 0.00 0.00 0.00|0.00 0.10 0.10 0.80
DRIVERLOG-TIME 0.45 0.35 0.00 0.00 0.00 0.00|0.00 0.05 0.15 0.80
DRIVERLOG-NUMERIC 0.60 0.15 0.00 0.00 0.05 0.00|0.00 0.05 0.15 0.80
DRIVERLOG-HARDNUMERIC 0.55 0.20 0.00 0.00 0.05 0.00|0.00 0.05 0.15 0.80
FREECELL-STRIPS 0.05 0.10 0.00 0.05 0.70 0.00 | 0.00 0.10 0.00 0.90
ROVERS-STRIPS 0.70 0.00 0.00 0.00 0.30 0.00|0.00 0.00 0.00 1.00
ROVERS-SIMPLETIME 0.55 0.45 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
ROVERS-NUMERIC 0.45 0.05 0.00 0.00 0.10 0.00|0.00 0.25 0.15 0.60
SATELLITE-SIMPLETIME 0.75 0.00 0.00 0.00 0.25 0.00|0.00 0.00 0.00 1.00
SATELLITE-HARDNUMERIC 0.50 0.00 0.00 0.00 0.20 0.00|0.00 0.00 0.30 0.70
ZENOTRAVEL-STRIPS 0.85 0.00 0.00 0.00 0.15 0.00|0.00 0.00 0.00 1.00
ZENOTRAVEL-SIMPLETIME 0.80 0.20 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
ZENOTRAVEL-TIME 0.45 0.55 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
ZENOTRAVEL-NUMERIC 0.65 0.00 0.00 0.00 0.35 0.00|0.00 0.00 0.00 1.00
BLOCKSWORLD 0.57 0.29 0.06 0.03 0.06 0.00|0.00 0.00 0.00 1.00

| Comparison between SGPlans.; and LPG-TD-SPEED
AIRPORT-NONTEMP 0.16 0.14 0.00 0.10 0.48 0.00|0.00 0.02 0.10 0.88
AIRPORT-TEMP 0.14 0.20 0.02 0.28 0.22 0.00 | 0.02 0.02 0.10 0.86
AIRPORT-TEMP-TIMEWINDOWS 0.08 0.22 0.00 0.30 0.26 0.00|0.00 0.04 0.10 0.86
PIPESWORLD-NOTANKAGE-NONTEMP 0.30 0.06 0.26 0.16 0.02 0.04 |0.16 0.00 0.00 0.84
PIPESWORLD-NOTANKAGE-TEMP 0.44 0.00 0.36 0.02 0.00 0.00|0.18 0.00 0.00 0.82
PIPESWORLD-TANKAGE-NONTEMP 0.22 0.12 0.10 0.00 0.02 0.00|0.20 0.08 0.26 0.46
PIPESWORLD-TANKAGE-TEMP 0.24 0.06 0.12 0.02 0.00 0.00|0.22 0.06 0.28 0.44
PIPESWORLD-NOTANKAGE-TEMP-DEAD 0.07 0.03 0.03 0.07 0.03 0.00|0.03 0.53 0.20 0.24
PROMELA-OPTICAL-TELEGRAPH 0.29 0.00 0.00 0.00 0.00 0.00|0.00 0.00 0.71 0.29
PROMELA-OPTICAL-TELEGRAPH-DP 0.25 0.00 0.00 0.00 0.00 0.00|0.15 0.00 0.60 0.25
PROMELA-PHILOSOPHERS 0.19 0.00 0.00 0.00 0.00 0.00|0.42 0.00 0.40 0.18
PROMELA-PHILOSOPHERS-DP 1.00 0.00 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
PSR-SMALL 0.40 0.54 0.00 0.00 0.00 0.00|0.00 0.04 0.02 0.94
PSR-MIDDLE 0.14 0.64 0.00 0.06 0.16 0.00|0.00 0.00 0.00 1.00
SATELLITE-STRIPS 0.42 0.36 0.03 0.00 0.03 0.00|0.00 0.17 0.00 0.83
SATELLITE-TIME 0.19 0.33 0.17 0.08 0.03 0.03]0.00 0.06 0.11 0.83
SATELLITE-TIME-TIMEWINDOWS 0.47 0.00 0.00 0.00 0.00 0.00|0.19 0.06 0.28 0.47
SATELLITE-NUMERIC 0.11 0.00 0.33 0.06 0.00 0.00|0.06 0.08 0.36 0.50
SATELLITE-COMPLEX 0.36 0.17 0.17 0.08 0.00 0.00|0.00 0.06 0.17 0.77
SATELLITE-COMPLEX-TIMEWINDOWS 0.44 0.00 0.03 0.00 0.00 0.00|0.19 0.06 0.28 0.53
SETTLERS 0.10 0.00 0.55 0.00 0.00 0.00|0.30 0.00 0.05 0.65
UMTS-TEMP 0.82 0.00 0.18 0.00 0.00 0.00|0.00 0.00 0.00 1.00
UMTS-TEMP-TIMEWINDOWS 1.00 0.00 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
UMTS-FLAW-TEMP 0.00 0.48 0.00 0.12 0.40 0.00|0.00 0.00 0.00 1.00
UMTS-FLAW-TEMP-TIMEWINDOWS 0.00 0.00 0.00 0.00 1.00 0.00|0.00 0.00 0.00 1.00
DEPOTS-STRIPS 0.32 0.36 0.05 0.18 0.09 0.00|0.00 0.00 0.00 1.00
DEPOTS-SIMPLETIME 0.09 0.09 0.27 0.50 0.00 0.00|0.00 0.05 0.00 0.95
DEPOTS-TIME 0.09 0.09 0.09 0.68 0.00 0.00|0.00 0.05 0.00 0.95
DEPOTS-NUMERIC 0.32 0.27 0.05 0.27 0.00 0.00|0.00 0.05 0.05 0.90
DRIVERLOG-STRIPS 0.65 0.15 0.00 0.00 0.00 0.00|0.00 0.20 0.00 0.80
Continued ...
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Table 3: (continued)

. . Instances Solvable by Both (F3) All Instances

Domain Variant 7 T, . Fo Fao Fug | Bn F, F. 7
DRIVERLOG-SIMPLETIME 0.65 0.10 0.05 0.00 0.00 0.00|0.00 0.20 0.00 0.80
DRIVERLOG-TIME 0.65 0.10 0.05 0.00 0.00 0.00|0.00 0.20 0.00 0.80
DRIVERLOG-NUMERIC 0.60 0.20 0.00 0.00 0.00 0.00|0.00 0.15 0.05 0.80
DRIVERLOG-HARDNUMERIC 0.45 0.25 0.10 0.00 0.00 0.00|0.00 0.20 0.00 0.80
FREECELL-STRIPS 0.50 0.00 0.35 0.00 0.00 0.00|0.05 0.10 0.00 0.85
ROVERS-STRIPS 0.70 0.25 0.05 0.00 0.00 0.00|0.00 0.00 0.00 1.00
ROVERS-SIMPLETIME 0.75 0.20 0.05 0.00 0.00 0.00|0.00 0.00 0.00 1.00
ROVERS-NUMERIC 0.50 0.00 0.00 0.10 0.00 0.00|0.00 0.40 0.00 0.60
SATELLITE-SIMPLETIME 0.00 0.00 0.70 0.25 0.00 0.05]0.00 0.00 0.00 1.00
SATELLITE-HARDNUMERIC 0.15 0.00 0.55 0.00 0.00 0.00|0.00 0.00 0.30 0.70
ZENOTRAVEL-STRIPS 0.80 0.20 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
ZENOTRAVEL-SIMPLETIME 0.60 0.15 0.15 0.05 0.00 0.05]|0.00 0.00 0.00 1.00
ZENOTRAVEL-TIME 0.65 0.00 0.30 0.05 0.00 0.00|0.00 0.00 0.00 1.00
ZENOTRAVEL-NUMERIC 1.00 0.00 0.00 0.00 0.00 0.00{0.00 0.00 0.00 1.00
BLOCKSWORLD 0.46 0.46 0.03 0.03 0.00 0.03|0.00 0.00 0.00 1.00

| Comparison between SGPlans.; and Downward
AIRPORT-NONTEMP 0.52 0.00 0.02 0.16 0.18 0.00|0.00 0.12 0.00 0.88
PIPESWORLD-NOTANKAGE-NONTEMP 0.14 0.02 0.20 0.02 0.00 0.00 |0.00 0.02 0.00 0.98
PIPESWORLD-TANKAGE-NONTEMP 0.16 0.00 0.16 0.00 0.02 0.00]0.32 0.06 0.28 0.34
PROMELA-OPTICAL-TELEGRAPH 0.00 0.00 0.00 0.00 0.00 0.00]0.29 0.00 0.71 0.00
PROMELA-OPTICAL-TELEGRAPH-DP 0.35 0.00 0.00 0.00 0.00 0.00|0.04 0.38 0.23 0.35
PROMELA-PHILOSOPHERS 0.00 0.00 0.00 0.00 0.00 0.00|0.60 0.00 0.40 0.00
PROMELA-PHILOSOPHERS-DP 1.00 0.00 0.00 0.00 0.00 0.00|0.00 0.00 0.00 1.00
PSR-SMALL 0.42 0.04 0.00 0.00 0.48 0.00|0.00 0.06 0.00 0.94
PSR-MIDDLE 0.32 0.38 0.02 0.06 0.22 0.00|0.00 0.00 0.00 1.00
PSR-LARGE 0.12 0.04 0.00 0.04 0.02 0.00|0.00 0.40 0.38 0.22
SATELLITE-STRIPS 0.69 0.08 0.03 0.03 0.00 0.00|0.00 0.17 0.00 0.83
| Comparison between SGPlans.; and YAHSP

AIRPORT-NONTEMP 0.24 0.22 0.02 0.10 0.12 0.00|0.18 0.02 0.10 0.70
PIPESWORLD-NOTANKAGE-NONTEMP 0.14 0.52 0.00 0.28 0.00 0.06 |0.00 0.00 0.00 1.00
PIPESWORLD-TANKAGE-NONTEMP 0.22 0.32 0.02 0.02 0.04 0.00]0.04 0.24 0.10 0.62
PROMELA-OPTICAL-TELEGRAPH 0.27 0.00 0.00 0.00 0.00 0.00|0.02 0.00 0.71 0.27
PROMELA-PHILOSOPHERS 0.13 0.00 0.00 0.00 0.48 0.00|0.00 0.00 0.40 0.60
PSR-SMALL 0.36 0.02 0.00 0.02 0.54 0.00|0.00 0.02 0.04 0.94
SATELLITE-STRIPS 0.25 0.53 0.00 0.00 0.03 0.03]|0.00 0.17 0.00 0.83
DEPOTS-STRIPS 0.50 0.32 0.05 0.00 0.00 0.00|0.14 0.00 0.00 0.86
DRIVERLOG-STRIPS 0.50 0.30 0.00 0.00 0.00 0.00|0.00 0.20 0.00 0.80
FREECELL-STRIPS 0.10 0.80 0.00 0.00 0.00 0.00|0.00 0.05 0.05 0.90
ROVERS-STRIPS 0.35 0.25 0.00 0.00 0.00 0.00|0.40 0.00 0.00 0.60
ZENOTRAVEL-STRIPS 0.30 0.65 0.00 0.00 0.00 0.05]0.00 0.00 0.00 1.00
BLOCKSWORLD 0.46 0.31 0.09 0.06 0.03 0.06|0.00 0.00 0.00 1.00
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Keys: (tn, ¢n) (run time, quality) of SGPlang.q
(tg, qg)  (run time, quality) of the target planner compared
Fy Fraction solved by both SGPlans.; and the target planner
(Fb:Fi+Fq+Ft+Fw+Fwt+qu:1_Fn_Fg_Fu)

F; Fraction that ¢, <ty and gn < g4 (SGPlana.1 has better or the same run time and quality)
Fy Fraction that ¢, > t4 and g, < g4 (SGPlans.; has worse run time but better quality)
F; Fraction that ¢, < t4 and g, > ¢4 (SGPlans.1 has worse quality but better run time)
F,, Fraction that ¢, > t4 and g, > ¢4 (SGPlans.1 has worse run time and worse quality)
F.: Fraction that ¢, > ¢4 and ¢, = ¢4 (SGPlans.;1 has worse run time but the same quality)
F.q Fraction that ¢, =ty and ¢, > ¢4 (SGPlans.; has worse quality but the same run time)

Fr Fraction solved by SGPlans.; but not by the target planner
F, Fraction solved by the target planner but not by SGPlana 1
Fy Fraction unsolved by both SGPlans.; and the target planner

Figures 17-20 further plot the time-quality trade-offs when the run time (resp. quality) of
the target planner is normalized with respect to the corresponding measure of SGPlany 1 for
all instances solvable by both planners. In each graph, we also list six percentages computed
by normalizing F;, Fy, Fy, F\y, Fy, and Fy,, with respect to F}, (defined in Table 3) for all
the domains evaluated.

In the Airport domain, SGPlang ; improves over or has the same performance as SGPlany
in terms of run time and quality for a majority (69.9%) of the instances (Figure 17a). In
the NONTEMP variant, the solution files (not shown) show that SGPlang; cannot solve
six (Fy + F,, = 0.12 in Table 3) of the seven largest instances (number 44 to 50); whereas
Downward, the leading planner for this variant, can solve all 50 instances. SGPlang; has
difficulty with these instances because the partitioned subproblems are too large to be eval-
uated by the embedded Metric-FF planner. This is also the reason for SGPlang; to be
worse than Downward and LPG in terms of run time on the larger instances. An obvious
solution is to employ a more efficient basic planner when it becomes available. In fact,
this is one of the strengths of our partition-and-resolve approach. Another solution is to
partition the subproblems further and to reduce their complexity to an extent that they can
be handled by our modified Metric-FF planner. The design of such partitioning methods is
still open at this time.

In the Pipesworld domain, SGPlany; has significant improvements over SGPlany in
terms of makespan on the NOTANKAGE-TEMP and TANKAGE-TEMP variants (Fig-
ure 17b). These improvements are due to the minimization of the estimated makespan
(T) in (19). However, no improvements were found on the NOTANKAGE-NONTEMP and
TANKAGE-NONTEMP variants because (19) does not have a term that corresponds to the
number of actions for the non-temporal variants. With respect to other planners, SGPlany 1
can solve more instances in the NOTANKAGE-NONTEMP, NOTANKAGE-TEMP, and
TANKAGE-TEMP variants (F,, — F; > 0 for all the corresponding rows in Table 3), and
has consistently the shortest solution time in the NOTANKAGE-TEMP and TANKAGE-
TEMP variants. For the NOTANKAGE-NONTEMP and TANKAGE-NONTEMP vari-
ants, YAHSP, however, can solve the most number of instances and has the shortest solu-
tion time in most cases, although it tends to produce longer plans. Last, as is discussed
in Section 4.2, SGPlang 1 is not competitive in the PIPESWORLD-NOTANKAGE-TEMP-
DEADLINE variant because it can only solve eight of the 30 instances.
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Figure 17: Run time-quality of SGPlany on each instance normalized with respect to the

corresponding run time-quality of SGPlanys; on the same instance for all in-

stances solvable by both planners.
better for SGPlang ;.)
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Figure 18: Run time-quality of LPG-TD-SPEED on each instance normalized with respect
to the corresponding run time-quality of SGPlan, ; on the same instance for all
instances solvable by both planners. (Performance values larger than one are
better for SGPlang ;).
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Figure 19: Run time-quality of Downward on each instance normalized with respect to
the corresponding run time-quality of SGPlang; on the same instance for all
instances solvable by both planners. (Performance values larger than one are

In the Promela domain, SGPlany 1 has no improvements over SGPlan, in terms of quality
but improves in terms of run time on instances that both can solve for four of the six variants

(worse in the OPTICAL-TELEGRAPH-FLUENTS and PHILOSOPHERS-FLUENTS vari-
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Figure 20: Run time-quality of YAHSP on each instance normalized with respect to the cor-
responding run time-quality of SGPlany ; on the same instance for all instances
solvable by both planners. (Performance values larger than one are better for

SGPlang ;.)

ants). SGPlany; can solve the most number of instances in the OPTICAL-TELEGRAPH-
FLUENTS, PHILOSOPHERS, PHILOSOPHERS-DP, and PHILOSOPHERS-FLUENTS
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variants when compared to LPG-TD-SPEED, Downward, and YAHSP. Further, it is the
fastest planner in three of the variants but is slightly slower than YAHSP in the PHILOSO-
PHERS variant (Figures 18c, 19¢, and 20c). In the OPTICAL-TELEGRAPH and OPTICAL-
TELEGRAPH-DP variants, the organizer of IPC4 provided two versions, one written in
pure STRIPS and another in ADL. However, there are only 14 (resp., 19) instances in
STRIPS and 48 (resp., 48) instances in ADL for the OPTICAL-TELEGRAPH (resp.,
OPTICAL-TELEGRAPH-DP) variant. There are more instances available in ADL be-
cause ADL is space-efficient in its problem representation, whereas instances in STRIPS
require large files. (For example, the file size of OPTICAL-TELEGRAPH-14 is 38 Kbytes
in ADL and 8.3 Mbytes in STRIPS.) Since SGPlany; and SGPlans cannot handle ADL at
this time, they only solved those instances in pure STRIPS in these two variants. They were
able to solve all the instances available in STRIPS and were the fastest in all these instances.
However, Downward can handle instances in ADL and was able to solve more instances in
these two variants. We plan to extend SGPlang; to directly support ADL in the future.
Note that both SGPlany; and SGPlan, always find plans of the same or better quality
for the instances solved in the OPTICAL-TELEGRAPH, OPTICAL-TELEGRAPH-DP,
PHILOSOPHERS, and PHILOSOPHERS-DP variants when compared to the other three
planners (Edelkamp & Hoffmann, 2004).

SGPlang 1 is the only planner that can solve some instances of all four variants of the
PSR domain. Since PSR is a pure propositional domain, SGPlan, ; is unable to improve the
solution quality over SGPlan,. Nevertheless, the quality of SGPlang 1 is consistently better
than all the other three planners (F;+Fy+Fye > Fy+F,,+ Fy,q for all the corresponding rows
in Table 3). In the SMALL variant, SGPlany ; and LPG have comparable run times and
cannot solve the few largest instances. Like the AIRPORT domain, SGPlang 1 has difficulty
with the few largest instances because its basic planner cannot handle the partitioned
subproblems. In the MIDDLE variant, SGPlans i, LPG, and Downward can solve all 50
instances. The situation in the MIDDLE-CO and LARGE variants are similar to that in the
OPTICAL-TELEGRAPH and the OPTICAL-TELEGRAPH-DP variants of the Promela
domain. In these variants, Downward can handle directly the ADL format, but SGPlany 1
must expand the ADL syntax to pure STRIPS and exhausted its memory when evaluating
the larger instances. We plan to address this issue in the future.

In the Satellite domain, SGPlany ; has significant improvements in quality over SGPlany.
In fact, SGPlany ; generates solutions of better quality than all the other planners for most
instances and can solve the most number of instances in seven variants. In the eighth
variant (TIME), it was not able to solve the few largest instances because its memory
usage exceeded 1 Gbytes. In all the variants except STRIPS, SGPlang ; is faster than the
other three planners. In the STRIPS variant, YAHSP is the fastest because it can generate
multiple actions instead of a single action in each search step. However, it finds slightly
longer plans when compared to those of SGPlany ;.

In the Settlers domain, SGPlany ; does not improve the solution quality over SGPlany
because, as discussed earlier, (19) does not have a term that corresponds to the number of
actions for non-temporal variants. SGPlany 1 can solve all the instances except the eighth
instance, which we learned from the IPC4 organizers that it is an infeasible instance. It
is also the fastest among all the planners, but generates longer plans than those of LPG-
TD-SPEED. This is due to its iterative scheme for reducing producible resources. Because
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Table 4: Summary on number of instances solved by the five planners compared (‘?” means
that it is not clear whether the domain can be solved because the object code was
not available for testing, and ‘—’ means that the planner does not support the
language features in the benchmark.)

\ Domain | SGPlang; SGPlany; LPG-TD-SPEED Downward YAHSP |
Airport 154 156 134 50 36
Pipesworld 174 166 158 60 93
Promela 129 167 83 83 42

PSR 122 122 99 131 48
IPCL ) gatellite 204 207 157 36 36
Settlers 19 19 13 — —
UMTS 300 254 200 — —
Total 1102 1091 844 360 219
Depots 84 88 87 ? 19
DriverLog 80 87 99 ? 20
FreeCell 18 20 19 ? 19
1PC3 Rovers 52 57 80 ? 12
Satellite 34 34 34 — —
ZenoTravel 80 80 80 ? 20
Total 348 366 399 ? 90
| IPC2 | Blocksworld [| 35 35 35 ? 35 |
\ Overall | 1485 1492 1243 360 344 |

the optimal amount of resources cannot be found ahead of time, SGPlan, ; may incur some
redundant actions for producing unused resources.

In the UMTS domain, SGPlans 1 can solve all the instances in all the six variants and
is the fastest in four of them. Moreover, its makespans are greatly improved over those of
SGPlany by incorporating T in the modified heuristic function of Metric-FF, although its
improvements in makespan over LPG-TD-SPEED are small for all the variants. SGPlany 1,
however, is slower than LPG-TD-SPEED in the FLAW and FLAW-TIL variants. Its per-
formance degradation in these variants is attributed to the flawed actions that can lead to
overly optimistic heuristic values for relaxed-plan-based planners (Edelkamp & Hoffmann,
2004) like Metric-FF.

For the IPC3 Depots domain, SGPlany 1 has better quality than LPG-TD-SPEED and
YAHSP in the STRIPS and NUMERIC variants, whereas the makespan of SGPlang is
worse than that of LPG-TD-SPEED for a majority of the instances in the TIME and
SIMPLETIME variants. LPG-TD-SPEED is also faster than SGPlans; for a majority of
the instances (F, + F, + Fyr > F; + Fy + Fyq for all the corresponding rows in Table 3).
Due to the large fraction of initial active global constraints, the performance of subgoal
partitioning in SGPlany ; is unsatisfactory in this domain.

For the remaining TPC3 domains, SGPlang; generally improves SGPlany in quality
besides the Freecell domain which is in STRIPS. Except for the Satellite domain where
LPG-TD-SPEED performs better, SGPlang; generates solutions with better quality for
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most of the instances. Further, SGPlang is faster than LPG-TD-SPEED for more than
half of the instances, although the difference in run times among the planners on these
relatively easy instances is usually insignificant.

In the Blocksworld domain, SGPlany 1 generally finds solutions with a smaller number of
actions than those of SGPlany, LPG-TD-SPEED, and YAHSP. However, SGPlany ; is much
slower than LPG-TD-SPEED on many instances because it needs more time for resolving
the large fraction of initial active global constraints (Figure 18h).

8. Conclusions and Future Work

We have presented in this paper the partition-and-resolve approach and its application in
SGPlany, a planner that won the first prize in the Suboptimal Temporal Metric Track and
the second prize in the Suboptimal Propositional Track in IPC4. Table 4 summarizes the
number of instances solved by the top planners in IPC4 as well as SGPlang ;. The results
show that constraint partitioning employed by our planners is effective for solving a majority
of the problems in the two competitions.

Our approach is based on the observation that the fraction of active mutex constraints
across subgoals for a majority of the instances in IPC3 and IPC4 is very small. This obser-
vation allows us to partition the search into largely independent subproblems and to limit
the amount of backtracking when resolving those violated global constraints across sub-
problems. The improvements are also attributed to a combination of techniques introduced
for reducing the search space and for handling the new features in PDDL2.2.

In the future, we plan to study other partitioning techniques that can better exploit the
constraint structure of planning domains. In particular, we will study fine-grain partitioning
in order to address cases with a larger fraction of global constraints, and develop search
strategies for solving problems with difficult-to-satisfy global constraints and deadlines.
We also plan to extend our method to planning under uncertainty and to support more
expressive modeling language features.
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