Journal of Artificial Intelligence Research 25 (2006) 233-267 Submitted 09/05; published 02/06

Improving Heuristics Through Relaxed Search
— An Analysis of TP4 and HSP} in the 2004 Planning Competition

Patrik Haslum PAHASQIDA.LIU.SE
Linkopings Universitet
Linkdping, Sweden

Abstract

The h™ admissible heuristics for (sequential and temporal) regression planning are de-
fined by a parameterized relaxation of the optimal cost function in the regression search
space, where the parameter m offers a trade-off between the accuracy and computational
cost of the heuristic. Existing methods for computing the h™ heuristic require time ex-
ponential in m, limiting them to small values (m < 2). The A™ heuristic can also be
viewed as the optimal cost function in a relaxation of the search space: this paper presents
relazed search, a method for computing this function partially by searching in the relaxed
space. The relaxed search method, because it computes h™ only partially, is computation-
ally cheaper and therefore usable for higher values of m. The (complete) h? heuristic is
combined with partial A™ heuristics, for m = 3, ..., computed by relaxed search, resulting
in a more accurate heuristic.

This use of the relaxed search method to improve on the h? heuristic is evaluated by
comparing two optimal temporal planners: TP4, which does not use it, and HSP}, which
uses it but is otherwise identical to TP4. The comparison is made on the domains used in
the 2004 International Planning Competition, in which both planners participated. Relaxed
search is found to be cost effective in some of these domains, but not all. Analysis reveals a
characterization of the domains in which relaxed search can be expected to be cost effective,
in terms of two measures on the original and relaxed search spaces. In the domains where
relaxed search is cost effective, expanding small states is computationally cheaper than
expanding large states and small states tend to have small successor states.

1. Introduction

In the 2004 International Planning Competition, I entered two planners: TP4 and HSP}.
TP4, which also participated in the 2002 competition, is a temporal STRIPS planner,
optimal w.r.t. makespan. It is based on temporal regression search with an admissible
heuristic called h2. The temporal h? heuristic is an instance of the general ™ (m = 1,2, ...)
family of heuristics, which is defined by a parameterized relaxation of the optimal cost
function over the search space. HSP} is identical to TP4 except that it uses a recently
developed method, called relazed search!, to improve the h? heuristic (Haslum, 2004a).
Regression planners carry out a search over sets of goals, starting from the goal given in
the planning problem. The relaxation that leads to the A" heuristics is to assume that the
cost of any set of more than m goals equals the cost of the most costly subset of size m. The
heuristic can underestimate the cost of a goal set, if there are interactions involving more

1. Haslum (2004a) called the method “approximate search”, an unfortunate choice of name as it evokes the
wrong connotations. The term relaxed search, which better corresponds to the intuition underlying the
method, will be used in this paper.

©2006 AT Access Foundation. All rights reserved.

HAsLuUM

than m goals, but it can never overestimate. In the TP4 and HSP} temporal planners, the
cost of a set of goals is the minimum total execution time, or makespan, of any plan that
achieves the goals, but the same relaxation can be used to derive heuristics for regression
planning with different plan structures and cost measures, e.g., sequential plans with sum
of action costs (Haslum, Bonet, & Geffner, 2005), or to estimate resource consumption
(Haslum & Geffner, 2001). Formally, the A™ heuristic, for any m, can be defined as the
solution to a relaxation of the optimal cost equation (known as the Bellman equation) which
characterizes the optimal cost function over the search space. A complete solution to the
relaxed equation is computed explicitly, by solving a generalized shortest path problem,
prior to search and stored in a table which is used to calculate heuristic values of states
during search.

The parameter m offers a trade-off between the accuracy of the heuristic and its com-
putational cost: the higher m, the more subgoal interactions are taken into account and
the closer the heuristic is to the true cost of all goals in a state, while on the other hand,
computing the solution to the relaxed cost equation is polynomial in the size of the problem
(the number of atoms) but exponential in m. Because the current method for comput-
ing the heuristic computes a complete solution to the relaxed cost equation, the heuristic
exhibits for most planning problems a “diminishing marginal gain”: once m goes over a
certain threshold (typically, m = 2) the improvement brought by the use of At over h™
becomes smaller for increasing m. This combines to make the method cost effective, in the
sense that the heuristic reduces search time more than the time required to compute it, only
for small values of m (typically, m < 2). However, the h? heuristic is often too weak. The
question addressed here is if a more accurate — and cost effective — heuristic can be derived
in the A™ framework. The idea of relaxed search is to compute h™ (for higher m) only
partially to avoid the exponential increase in computational cost. The alternative would of
course be to abandon the A" framework and look at other approaches to deriving admissi-
ble heuristics for optimal temporal planning, but there are not many to be found: existing
makespan-optimal temporal planners either use the temporal h? heuristic (e.g., CPT, Vidal
& Geflner, 2004) or obtain estimates from a temporal planning graph (e.g., TGP, Smith &
Weld, 1999, and TPSys, Garrido, Onaindia, & Barber, 2001), which also encodes the h?
heuristic though computed in a different fashion. The domain-independent heuristics used
in other temporal planners, such as LPGP (Long & Fox, 2003) or IxTeT (Trinquart, 2003),
are used to estimate the distance to the nearest solution in the search space, rather than
the cost (i.e., makespan) of that solution.

The relaxation underlying the hA™ heuristics can be explained in terms of the search
space, rather than in terms of solution cost: any set of more than m goals is “split” into
problems of m goals each, which are solved independently (the split is not a partitioning,
since all subsets of size m are solved). The relaxed cost equation is also the optimal cost
equation for this relaxed search space, which I'll call the m-regression space. The relaxed
search method consists in solving the planning problem (i.e., searching from the top level
goals) in the m-regression space. During the search, parts of the solution to the relaxed cost
equation are discovered, and these are stored in a table for later use, just as in the previous
approach. Because the relaxed search only visits part of the m-regression search space, it can
be expected to be able to do so more quickly than methods that build a solution to the cost
equation for the entire m-regression space. Consequently, it can be applied for higher values

234

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

of m. Since the relaxed search is done from the goals of the planning problem, the part of
the A™ solution that is computed is also likely be the most relevant part. The complete
and partial A" heuristics computed for different m by the two methods can be combined
by maximization, resulting in a more accurate final heuristic, hopefully at a computational
cost that is not greater than its value.

This paper makes two main contributions: First, it provides a detailed presentation
of the relaxed search method and how this method is applied to classical and temporal
regression planning. Although the method is presented in the context of planning, it is
quite general and may be applicable to other search problems as well. Indeed, similar
techniques have been applied to planning and other single agent search problems (Prieditis,
1993; Junghanns & Schaeffer, 2001) and to constraint optimization (Ginsberg & Harvey,
1992; Verfaillie, Lemaitre, & Schiex, 1996). The relation to these ideas and techniques is also
discussed. Second, it preseunts the results of an extended analysis of the relative performance
of TP4 and HSP} in the domains of the planning competition. The picture that emerges
from this analysis is somewhat different from that given by the competition results. In part
this is due to the time-per-problem limit imposed in the competition, since the advantage
of HSP} over TP4 is mainly on “hard” problems, which require a lot of time to solve for
both planners. In part, it is also because the version of HSP} used in the competition was
buggy. The main result of the analysis, however, is a characterization of the domains in
which relaxed search can be expected to be cost effective: in such domains, expanding small
states is computationally cheaper than expanding large states, and small states tend to have
small successor states. It is also shown that these criteria can be (weakly) quantified by two
measures, involving the relative regression branching factors and the size of states generated
by regression, in the original and relaxed search spaces.

2. Background

The TP4 planner finds temporal plans for STRIPS problems with durative actions. The
plans found are optimal w.r.t. makespan, i.e., the total execution time of the plan?, and the
planner is also able to ensure that plans do not violate certain kinds of resource constraints.

The main working principles of TP4 are a formulation of a regression search space for
temporal planning and the A™ family of admissible heuristics, brought together through
the IDA* search algorithm. These, and the overall architecture of the planner, are briefly
described in this section; more details on the planner can be found in earlier papers (Haslum
& Geffner, 2000, 2001; Haslum, 2004b). To provide background for a clearer description
of relaxed search in the next section, search space and heuristics are explained first for the
simpler case of sequential planning, followed by their adaption to the temporal case. Also,
certain technical details that appear important in explaining the behaviour of HSP} relative
to TP4 in the competition domains will be highlighted.

2. It should be noted, however, that the plan makespan is optimal with respect to the semantics that
TP4 assumes for temporal planning, which differs somewhat from that specified for PDDL2.1 (see Sec-
tion 2.2.1). To make plans acceptable to the PDDL2.1 plan validator it is necessary to insert some
“whitespace” into the plan, increasing the makespan slightly.

235

HAsLuUM

2.1 Regression Planning: Sequential Case

We assume the standard propositional STRIPS model of planning. A planning problem (P)
consists of a set of atoms, a set of actions and two subsets of atoms: those true in the initial
state (I) and those required to be true in the goal state (G). Each action a is described
by a set of precondition atoms (pre(a)), which have to hold in a state for the action to
be executable, and sets of atoms made true (add(a)) and false (del(a)) by the action. A
solution plan is an executable sequence or schedule of actions ending in a state where all
goal atoms hold. The exact plan form depends on the measure optimized: in the sequential
case, a cost is associated to each action (cost(a) > 0), a plan is a sequence of actions, and
the sum of their costs is the cost of the plan.

Regression is a planning method in which the search for a plan is made in the space
of “plan tails”, partial plans that achieve the goals provided that the preconditions of
the partial plan are met. Search ends when a plan tail whose preconditions are already
satisfied by the initial state is found. For sequential planning, the preconditions provide
a sufficient summary of the plan tail. Thus, a sequential regression state is a set, s, of
atoms, representing subgoals to be achieved. An action a can be used to regress a state s
iff del(a) Ns = 0, and the result of regressing s through a is s = (s —add(a)) Upre(a). The
search starts from the set of goals G and ends when a state s C [is reached.

2.2 Regression Planning: Temporal Case

In the case of temporal planning, each action has a duration (dur(a) > 0). The plan is
a schedule, where actions may execute in parallel (subject to resource and compatibility
constraints), and the objective to minimize is the total execution time, or makespan. When
action durations are all equal to 1, the special case of parallel planning results.

2.2.1 A NoTE ON PDDL2.2 COMPLIANCE

TP4 and HSP}, do not support any of the new features introduced in PDDL2.2, the problem
specification language for the 2004 competition (Edelkamp & Hoffmann, 2004). The plan-
ners support durative actions, obviously, but these are interpreted in a manner that differs
from the PDDL2.1 specification (Fox & Long, 2003). For practical purposes, TP4 and
HSP} accept the PDDL2.1 syntax. Numeric state variables (called “fluents” in PDDL2.1)
are supported only in certain forms of use.

The semantics that TP4 and HSP} assume for durative actions are essentially those in-
troduced by Smith and Weld (1999) for the TGP planner. For an action a to be executable
over a time interval [¢,¢ + dur(a)], atoms in pre(a) must be true at ¢, and persistent pre-
conditions (atoms in per(a) = pre(a) — del(a)) must remain true over the entire interval.
Effects of the action take place at some point in the interior of the interval, and can be
relied on to hold at the end point. Two actions, a and a’, are assumed to be compatible, in
the sense that they can be executed in overlapping intervals without interfering with each
other iff neither action deletes an atom that is a precondition of or added by the other, i.e.,
iff del(a) Npre(a’) = del(a) Nadd(a’) = B and vice versa.

This interpretation of durative actions respects the “no moving target” rule of PDDIL2.1,
but in a different way: instead of requiring plans to explicitly separate an action depending
on a condition from the effect that establishes the condition, the semantics requires that

236

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

trm Al |ct Al |aeem Al |:rrc Al |:rab Al |aeeiAibsAI.
trm A2 lct 42 Jacem A2 [rrc A2 [rab A2 lacei 42 [bs| a2
0 1250 500

Figure 1: A temporal plan (the solution to problem p06 from the umts domain). The plan
also contains two actions (am A1) and (am A2), which are not visible because
they have zero duration. Actions (trm A1) and (trm A2) are separated because
of a resource conflict. The makespan of the plan is 582.

change takes place in a time interval. This makes durative actions strictly less expressive
than in PDDL2.1, where effects can be specified to take place exactly at the start or end of
an action. In particular, it does not support actions that make a condition true only during
their execution (i.e., add an atom at the start of the action and delete it again at the end),
which prevented TP4 and HSP} from solving the compiled versions of problems with timed
initial literals.

In principle, it is certainly possible to devise a temporal regression search space for the
PDDL2.1 interpretation of durative actions, although states in this space would be far more
complex structures, due to the need to retain more of the plan tail in the state (enough to
include the end point of all on-going actions). The LPGP (Long & Fox, 2003) and TPSys
(Garrido, Fox, & Long, 2002) planners both use the PDDL2.1 semantics, and are both
Graphplan derivatives and thus carry out a search resembling regression in their solution
extraction phase (though both planners embody modifications to the purely back-chaining
solution extraction used in Graphplan). However, in the planning domains that have been
used in the two planning competitions since the introduction of temporal planning into
PDDL, and also in most of the example domains that have appeared in the literature,
the main use of the stronger PDDL2.1 semantics of durative actions has been to encode
certain features, such as the timed initial literals used in some domain versions in the last
competition, or “non-inert” facts (i.e., facts that do not persist over time unless maintained
by an action). It may very well be easier to add some of these features directly to the
temporal regression formulation used by the TP4 and HSP} planners, though this has yet
to be put to the test.

Numeric state variables that are used (by actions) in certain specific ways are interpreted
as resources (or cost measures, in sequential planning) and supported by the planners,
though with some restrictions. The unrestricted use of numeric state variables allowed by
PDDL2.1 is not supported. A more detailed discussion can be found in the paper on TP4
and HSP} in the competition booklet (Haslum, 2004b).

2.2.2 TEMPORAL REGRESSION

Temporal regression, just like sequential regression, is a search in the space of plan tails.
However, in the temporal case the set of precondition atoms is no longer sufficient to sum-
marize a plan tail: states have to be be extended with actions concurrent with the subgoals
and the timing of those actions relative to the subgoals. Consider the example plan in
Figure 1, specifically the “state” at time 250: since this is the starting point of action (rrc

237

HAsLuUM

A1), its preconditions must be goals to be achieved at this point. But the actions (including
no-ops) establishing those conditions must be compatible with the action (rrc A2), which
starts 13 units of time earlier and whose execution spans across this point.

Thus, a temporal regression search state is a pair s = (F, F'), where E is a set of atoms
and F' = {(a1,61),...,(an,dy)} is a set of actions a; with time increments ¢;. This represents
a partial plan (tail) where the atoms in E must hold and each action (a;,d;) in F' has been
started J; time units earlier. Put another way, an executable plan (schedule) achieves state
s = (E,F) at time t iff the plan makes all atoms in E true at ¢t and schedules action a; at
time ¢t — ¢; for each (a;,0;) € F.

When expanding a state s = (E, F), successor states s’ = (E’, F') are constructed by
choosing (non-deterministically) for each atom p € E an establisher (i.e., a regular action
or no-op a with p € add(a)), such that chosen actions are compatible (as defined in Section
2.2.1) with each other and with all actions in F, and advancing time to the next point
where an action starts (since this is a regression search, “advancing” and “next” are in the
direction of the beginning of the developing plan). Preconditions of all actions and no-
ops starting at this point become E’ while remaining actions (with their time increments
adjusted) become F’'. A state s = (E,F) is final if F = () and E C I.

The exact details of the temporal regression search are not important for the rest of this
paper and have been described elsewhere (Haslum & Geffner, 2001).

2.2.3 RIGHT-SHIFT CUTS

In a temporal plan there is usually some “slack”, i.e., some actions can be shifted forward or
backward in time without changing the structure or makespan of the plan. A right-shifted
plan is one in which all such movable actions are scheduled as late as possible. Non-right-
shifted plans can be excluded from consideration without endangering optimality. Doing
this eliminates redundant branches in the search space, which often speeds up planning
significantly?.

This can be achieved by applying the following rule: When expanding a state s’ =
(E', F') with predecessor s = (E, F'), an action a compatible with all actions in F' may not
be used to establish an atom in s’ when all the atoms in E’ that a adds have been obtained
from s by no-ops. The reason is that a could have been used to support the same atoms in
E, and thus could have been shifted to the right (delayed).

Again, details can be found elsewhere and are not important. What is important to
note is that the right-shifting rule refers to the predecessor of the state being expanded.
This means that when the rule is applied, the possible successors to, and therefore the
optimal cost of, a regression state may be different depending on the path through which
the state was reached. Thus, the lower bound on the cost of a state obtained when the
state is expanded but not solved (as it will be in an TDA* search) may be invalid as a lower
bound for the same state when reached via a different path.

3. From an execution point of view, it may be preferable to place actions whose execution time in the plan
is not precisely constrained as early as possible (i.e., left-shifted) rather than at the latest possible time.
From a search point of view what matters is that of the many possible, but structurally equivalent,
positions in time for an action, only one is considered. The reason why right-shifting is used instead
of left-shifting is that in a regression search, a left-shift rule will trigger later (i.e., deeper in the search
tree) and thus provide less efficient pruning.

238

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

2.3 Admissible Heuristics: Sequential Case

Let h*(s) denote the optimal cost function, i.e., the function that assigns to each state s in
the search space the minimal cost of any path from s to a final state (a state s’ C I, in the
regression planning space). The function h*(s) is characterized by the Bellman equation
(Bellman, 1957):
. 0 ifsC1I

h (S) - { mins’Esucc(s) h*(sl) + 6(57 SI) (1)
where succ(s) is the set of successor states to s, i.e., the set of states that can be constructed
from s by regression, and d(s, s’) is the “delta cost”, i.e., the increase in accumulated cost
between s and s’. In the sequential setting, this equals the cost of the action used to regress
from s to s’. Equation 1 characterizes h*(s) only on states s that are reachable: the cost of
an unreachable state is defined to be infinite.

Because achieving a regression state (i.e., set of goals) s implies achieving all atoms in
s, and therefore any subset of s, the optimal cost function satisfies the inequality

h*(s) > max h*(s) (2)

s'Csyls’|<m

for any m. Assuming that this inequality is actually an equality is the relaxation that gives
the h™ heuristics: rewriting equation (1) using (2) as an equality results in

0 ifsC1I
h™(s) = ¢ milgesyce(s ()+ d(s,8") if |s| <m (3)
maxg Cs,|s! |<m (S)

A complete solution to this equation, in the form of an explicit table of h™(s) for all sets with
|s| < m, can be computed by solving a generalized single-source-all-targets shortest path
problem. A variety of algorithms (all variations of dynamic programming or generalized
shortest path) can be used to solve this problem, as described by, e.g., Liu et al. (2002). TP4
and HSP} use a variation of the Generalized Bellman-Ford (GBF) algorithm. Computing
a complete solution to equation (3) is polynomial in the number of atoms but exponential
in m, simply because the number of subsets of size m or less grows exponentially with m.
This limits the complete solution approach to small values of m (in practice, m < 2).

2.3.1 ON-LINE EVALUATION AND THE HEURISTIC TABLE

The solution to equation (3) is stored in a table (which will be referred to as the heuristic
table). The stored solution, however, comprises only values of h™(s) for sets s such that
|s| < m. To obtain the heuristic value of an arbitrary state, the last clause of equation (3)
is evaluated “on-line”, and during this evaluation the value of h™(s') for any s’ such that
|s'| < m is obtained by looking it up in the table.

In fact, the heuristic table implemented in TP4 and HSP} is a general mapping from sets
of atoms to their associated value, and the heuristic value of a state s is the maximal value of
any subset of s that is stored in the table. In other words, if T'(s) denotes the value stored for
s, the heuristic value of a state s is given by h(s) = max {T'(s')| s’ C s,T(s") exists}. When

239

HAsLuUM

s |
s |
=

@ lw | prea)

as | pre(az) | pre(az)
(a) (b) ()

Figure 2: Relaxation of temporal regression states.

all and only sets of size m or less are stored in the table (as is the case when A™ is computed
completely) this coincides with evaluating the last clause of equation (3). However, the use
of a general heuristic table implies that as soon as a value for any atom set s is stored in the
table, it becomes immediately included in all subsequent evaluations of states containing
s. In particular, by storing parts of the solution to R™ | for some higher m/, in the form of
updates of the values of some size m’ atom sets, the heuristic evaluation implicitly computes
the maximum of A™ and the partially computed B

The heuristic table is implemented as a Trie (see e.g. Aho, Hopcroft, & Ullman, 1983)
so that the evaluation of an atom set s can be done in time linear in the number of subsets
of s that exist in the table?. Even so, there is some overhead compared to a table and
evaluation procedure designed for a fixed maximal subset size.

2.4 Admissible Heuristics: Temporal Case

To define A™ for temporal regression planning, one needs only to define a suitable measure
of size for temporal regression states and then proceed as in the sequential case. Recall
that a temporal regression state consists of two components, s = (£, F'), where E is a set
of atoms and F' a set of scheduled actions with time increments. The obvious candidate
is to define |s| = |E| + |F|, and indeed, using this measure in equation (3) above results
in a characterization of a lower bound function on the temporal regression space. In this
case, however, due to the presence of a time increment § in each (6,a) € F, the set of states
with |s| < m is potentially infinite, and therefore the solution to this equation can not be
computed explicitly.

To obtain a usable cost equation, a further relaxation is needed: since a plan that
achieves the state s = (E, F), for F = {(a1,d1),...,(an,0pn)}, at time ¢ must achieve the
preconditions of each action a; at time ¢ — §;, and these must remain true until ¢ unless

4. The claim of linear time evaluation holds only under the assumption of a certain regularity of entries
stored in the table: The Trie data structure stores mappings indexed by strings, and the implementation
of the heuristic table treats atom sets as strings in which atoms appear in a fixed lexical order. When
an atom set s is stored in the table, every set that is a prefix of s viewed as a string in this way must
also be stored, with value 0 if no better value is available. Due to the way heuristic values are computed
(by complete solution of the h"™ equation or by relaxed search), this does not present a problem since
whenever a set is stored, all its subsets (including the subsets corresponding to lexical prefixes) have
already been stored. However, this is the reason why the heuristic table, in its current form, is not a
substitute for the transposition table used in IDA* search.

240

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

deleted by a;, the optimal cost function satisfies®

W' (E,F) > max [h(U pre(ai),a))wk] (4)

ay,0)EF
(k) (a,0;)€F,0; >0y

W (E,F) > h*(lELJ U ;ne(aa,w). (5)

(ai,(si)EF

An example may clarify the principle: Consider the state s = ({p},{(a1,1), (a2,2)}), de-
picted in Figure 2(a). A plan achieving this state at time ¢ must achieve the preconditions of
as at t—2, so h*(s) must be at least h*(pre(asz),) +2. If action ay is “left out”, as in Figure
2(b), it can be seen that the same plan also achieves the joint preconditions of actions a; and
as at t—1, so h*(s) must be at least h*(pre(a;)Upre(az),)+ 1. Finally, if both actions are
left out (Figure 2(c)), it is clear that the plan also achieves simultaneously the preconditions
of the two actions and atom p, so h*(s) must be at least h*({p} U pre(ai) Upre(as),).

By treating inequalities (4) — (5) as equalities, a temporal regression state is relaxed
to a set of states in which F = (), i.e., states containing only goals and no concurrent
actions. To each such state, relaxation (2) can be applied, resulting in an equation defining
temporal A", similar to (3). This equation has a finite explicit solution, containing all states
s = (E, () with |E| < m. Again, more details can be found elsewhere (Haslum & Geffner,
2001).

2.5 IDA*

IDA* is a well known admissible heuristic search algorithm (see e.g. Korf, 1985, 1999). The
algorithm works by a series of cost-bounded depth-first searches. The cost returned by the
last completed depth-first search is a lower bound on the cost of any solution. Therefore,
the algorithm can easily be modified to take an upper limit on solution cost, and to exit
with failure once it has proven that no solution with a cost within this limit exists.

An extension of the IDA* algorithm for searching AND/OR graphs is the main tool by
which the relaxed search method is implemented. The extended algorithm is presented in
Section 3.2.

IDA* is a so-called linear space algorithm: it stores only the path to the current node.
The algorithm can be speeded up by using memory in the form of a transposition table,
which records updated estimated costs of nodes that have been expanded but not solved
(Reinfeld & Marsland, 1994). The table is of a fixed limited size, so not all expanded
unsolved nodes are stored®. Whenever the search reaches a node that is in the table the
updated cost estimate for the node (discovered when the node was previously expanded) is

5. Note that one set of parentheses has been simplified away from h*(E, F): since a state s = (E, F) is
a pair, it should in fact be written “h*((E, F))”. Thus, the empty set in the right hand side of both
inequalities is the second part of the state, i.e., the set of concurrent actions F'. This simplified form,
with only a single pair of parentheses; is used throughout this paper.

6. This does not affect completeness or optimality of the search, since states that are not stored (due to
collisions) are simply re-expanded if encountered again. In TP4 and HSP;, the table is implemented as
a closed hashtable, i.e., states are stored only at the position corresponding to their hash values (thus
lookup consists only in a single hash function computation, plus a state equality test to verify that the
stored state is indeed the same as the one being looked up). In case of collisions, preference is given to
storing nodes closer to the root of the search tree (Reinfeld & Marsland, 1994).

241

HAsLuUM

used instead of its heuristic value, allowing the algorithm to avoid re-searching nodes that
are reachable via several paths during the same iteration.

2.6 TP4

The TP4 planner precomputes the temporal A% heuristic as described above and uses it in
an IDA* search in the temporal regression space. Right-shift cuts are used to eliminate
redundant paths from the search space, and a transposition table is used to speed up search
(Haslum & Geffner, 2001). The main steps of the planner are outlined in Figure 6 (on page
248), mainly to illustrate similarity and difference w.r.¢. the HSP} planner.

3. Improving Heuristics Through Search

For many planning problems the h? heuristic is too weak. A more accurate heuristic can be
obtained by considering higher values of the m parameter, but any method for computing
a complete solution to the A™ equation scales exponentially in m, making it impractical
for m > 2. A complete solution is useful because it helps detect unreachable states (in
particular, h? detects a significant part of the static mutex relations in a planning problem),
but also wasteful because often many of the atom sets are not relevant for evaluating states
actually encountered while searching for a solution to the planning problem at hand. Recall
that the heuristic evaluation of a state (a set of goals) makes use of the estimated cost of
any subset of the state that is known (stored in the heuristic table). As larger atom sets
are considered, i.e., as m increases, they become both more numerous and more specific,
and thus the fraction of the complete solution that is actually useful decreases.

To use A" for higher m, clearly a way is needed to compute the heuristic at a cost
proportionate to the value of the improvement. Relaxed search aims to achieve this by
computing only a part of the h™ solution, and a part that is likely to be relevant for solving
the given planning problem.

3.1 Relaxed Search: Sequential Case

As explained earlier, the h™ heuristic can be seen as the optimal cost function in the m-
regression space, a relaxed search space where sets of more than m goals are split into
problems of m goals, each of which is solved independently. Thus, the rn-regression space
is an AND/OR graph: states with m or fewer atoms are OR-nodes and are expanded
by normal regression, while states with more than m atoms are AND-nodes, which are
expanded by solving each subset of size m. The cost of an OR-node is minimized over all
its successors, while the cost of an AND-node is maximized. Examples of (part of) this
graph, for a 2-regression space, are shown in Figures 4 and 5 (the example is described in
detail in Section 3.2.1). As can be seen, the graph is not strictly layered, in that OR-nodes
may sometimes have successors that are also OR-nodes.

The different algorithms used to obtain complete solutions to the h™ equation can all be
seen as variations of a “bottom-up” labeling of the nodes of this graph, starting from nodes
with cost zero and propagating costs to parent nodes according to this min/max principle.
The propagation is complete, i.e., proceeds until every (solvable) node in the graph has
been labeled with its optimal cost (although in some of the algorithms, including the GBF

242

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

implementation used by TP4 and HSP}, only the costs of OR-nodes are actually stored).
Relaxed search explores the m-regression space in a more focused fashion, with the aim of
discovering the optimal cost (or an improved lower bound) of states relevant to the search
for a solution to the goals of the given planning problem. This is achieved by searching the
m-regression space for an optimal solution to a particular state: the cost of this solution is
the A™ heuristic value of that state. The algorithm described in the next section (IDAO*)
carries out this search “top-down”, starting from the state corresponding to the goals of the
planning problem.

Heuristics derived by searching in an abstraction of the search space have been studied
extensively in Al (see e.g. Gaschnig, 1979; Prieditis, 1993; Culberson & Schaeffer, 1996). In
particular, it has been shown that such heuristics can only be cost effective under certain
conditions: the generalized theorem of Valtorta states that in the course of an A* search
guided by a heuristic derived by searching blindly in some abstraction of the search space,
every state that would be expanded by a blind search in the original search space must
be expanded either in the abstract space or by the A* search in the original space (Holte,
Perez, Zimmer, & MacDonald, 1996). This implies that if the abstraction is an embedding
(the set of states in the abstract space is the same as in the original search space), such a
heuristic can never be cost effective (Valtorta, 1984). The m-relaxation of the regression
planning search space is an embedding, since every state in the normal regression space
corresponds to exactly one state (containing the same set of subgoal atoms) in the m-
regression space. In spite of this, there are reasons to believe that relaxed search can be
cost effective: The algorithm used to search the m-regression space discovers (and stores in
the heuristic table) the true h™ value, or a lower bound on this value greater than that given
by the current heuristic table, for every OR-node expanded during the course of the relaxed
search. The AND/OR structure of the m-regression space, and the fact that the “on-line”
heuristic makes use of all relevant information present in the heuristic table, implies that
an improvement of the estimated cost of an OR-node may yield immediately an improved
estimate of the cost of many AND-nodes (all states that are supersets of the improved
state), without any additional search effort. Finally, because OR-nodes in the m-regression
space are states of limited size, each node expansion in the m-regression space is likely to be
computationally cheaper than the average in the normal regression space, since the number
of successors generated when regressing a state generally increases with the number of goal
atoms in the state.

3.2 IDAO*

To search the relaxed regression space, HSP; uses an algorithm called IDAO*. As the name
suggests, it is an adaption of IDA* to searching AND/OR graphs, i.e., it carries out a
depth-first, iterative deepening search. TDAO* is admissible, in the sense that if guided by
an admissible heuristic, it returns the optimal solution cost of the starting state. In fact, it
finds the optimal cost of every OR-node that is solved in the course of the search. However,
it does not keep enough information for the optimal solution itself to be extracted, so it
can not be used to find solutions to AND/OR search problems. It works for the purpose of
improving the heuristic, however, since for this only the optimal cost needs to be known.

243

HAsLuUM

(1) IDAD*(s, b) {
(2) solved = false;

(€)) current = h(s);
(4) while (current < b and not solved) {
(5) current = IDAO_DFS(s, current);
}
(6) return current;
}

(7) IDAO_DFS(s, b) {
(8) if final(s) {

(9) solved = true;
(10) return O;
}
(11 if (s stored in SolvedTable) {
(12) solved = true;
(13) return stored solution cost;
}
(14) if (Is| >m) { // AND-node
(15) for (each subset s’ of s such that [s’| <= m) {
(16) new cost of s’ = IDAO*(s’, b); // call IDAO* with cost limit b
“an) if (new cost of s’ > b) { // s’ not solved
(18) return new cost of s’;
}
}
(19) solved = (all subsets solved);
(20) new cost of s = max over all s’ [new cost of s’];
(21) if (solved) {
(22) store (s, new cost of s) in SolvedTable;
}
(23) return new cost of s;
}
(24) else { // OR-node
(25) for (each s’ in succ(s)) {
(26) if (delta(s,s’) + h(s’) <=b) {
27) new cost through s’ = delta(s,s’) + IDAO_DFS(s’, b - delta(s,s’));
(28) if (solved) {
(29) new cost of s = new cost through s’;
(30) store (s, new cost of s) in SolvedTable;
(31) return new cost of s;
}
}
(32) else {
(33) new cost through s’ = delta(s,s’) + h(s’);
}
}
(34) new cost of s = min over all s’ [new cost through s’];
(35) store (s, new cost of s) in HeuristicTable;
(36) return new cost of s;
}
}

Figure 3: The IDAO* algorithm (with solved table).

244

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

The algorithm is sketched in Figure 3. The main difference from IDA* is in the DF'S sub-
routine: when expanding an AND-node, it recursively invokes the main procedure IDAO*,
rather than the DFS function. Thus, for each successor to an AND-node, the algorithm
performs a series of searches with increasing cost bound, starting from the heuristic estimate
of the successor node (which for some successors may be smaller than that of the AND-
node itself) and finishing when a solution is found or the cost bound of the predecessor
AND-node is exceeded. This ensures that the cost returned is always a lower bound on the
optimal cost of the expanded node, and equal to the optimal cost if the node is solved. By
storing updated costs of OR-nodes in the heuristic table, the search computes a part of the
h™ heuristic as a side effect and, as noted earlier, the values stored in the table become
immediately available for use in subsequent heuristic evaluations. IDAO* stops searching
the successors of an AND-node as soon as one is found to have a cost greater than the
current bound, since this implies the cost of the AND-node is also greater than the bound.
However, since the algorithm performs repeated depth-first searches with increasing bounds,
remaining successors of the AND-node will eventually also be solved. When an m-solution
has been found, all successors to every AND-node appearing in the solution tree have been
searched, and their updated costs stored. This ensures that the resulting heuristic, i.e.,
that defined by the heuristic table after the relaxed search is finished, is still consistent.

Because the successor nodes of AND-nodes are subsets, IDAO* frequently encounters
the same state (set of goals) more than once during search. The algorithm can be speeded
up, significantly, by storing solved nodes (both AND-nodes and OR-nodes) together with
their optimal cost and short-cutting the search when it reaches a node that has already
been solved”. In difference to the lower bounds stored in the heuristic table, which are
valid also in the m/-regression search space for any m' > m as well as in the original search
space, the information in the solved table is valid only for the current m-regression search
(since states of size m’, for m' > m are relaxed in the m-regression space but not in the
m’-regression space).

Note that a standard transposition table, which records updated cost estimates of un-
solved nodes, is of no use in IDAO* since updated estimates of OR-nodes are stored in
the heuristic table, while the heuristic estimate of an AND-node is always given by the
maximum of its size m successors.

3.2.1 AN EXAMPLE

For an illustration of the use of relaxed search to improve heuristic values, consider the
following simple problem from the STRIPS version of the Satellite domain, introduced in
the 2002 planning competition®. The problem concerns a satellite whose goal is to acquire
images of different astronomical targets (represented by the predicate (img ?d)). To do so,
its instrument must first be powered on ((on)) and calibrated ((cal)), and the satellite must
turn so that it is pointing in the desired direction ((point ?d)). Instrument calibration
requires the satellite to be pointing at a specific calibration target (in this example, direction

7. The solved table, like the transposition table, is implemented as a closed hashtable. In case of collisions,
the previously stored node is simply overwritten. This means that some searches may be repeated, but
does not affect correctness of the algorithm.

8. The domain used in this example is somewhat simplified. The full (temporal) domain is discussed in
Section 4.3.

245

HAsLuUM

| ((mg d4).(img d5).(img d6)): 4 3) |

STl

e Y i N T : AN
Ctmganimg a6)):3 > Ci(img a5),img d6): 3

{(img d4),(img d5)}: 4 (3)

(tk_img d4) (tk_img d5)

{(point d4),(on),(cal),(img d5)}: 3 + 1 | | {(point d5),(on),(cal),(img d4)}: 3 + 1 |

Figure 4: Part of the 2-Regression tree (expanded to a cost bound of 3) for the example
Satellite problem. AND-nodes are depicted by rectangles, OR-nodes by ellipses.
The cost of each node is written as “estimated + accumulated”. For nodes whose
estimated cost has been updated after expansion, the (h') estimate before expan-
sion is given in parenthesis.

d2). Since this is the STRIPS version of the domain, all actions are assumed to have unit
cost.

To keep size of the example manageable, let’s assume a complete solution has been
computed only for h' and that relaxed search is used to compute a partial h? solution.
Figures 4 and 5 show (part of) the 2-relaxed space explored by the first and second iteration,
respectively, of an IDAO* search starting from the problem goals.

In the first iteration (Figure 4) IDAO-DFS is called with a cost bound of 3, as this
is the estimated cost of the starting state given by the precomputed h' heuristic. The
root node is an AND-node, so when it is expanded IDAO* is called for each size 2 subset
(lines (15) — (18) in Figure 3). The first such subset to be generated is {(img d4), (img
d5) }. This state also has an estimated cost of 3, so IDAO-DFS is called with this bound in
the first iteration, but the two possible regressions of this state both lead to states with a
higher cost estimate (an estimated cost of 3 plus an accumulated cost of 1). The new cost
is propagated back to the parent state, where the improved cost estimate (4) of the atom
set {(img d4), (img d5)} is stored in the heuristic table and returned (lines (35) — (36)
in Figure 3). Since this puts the estimated cost of the state now above the bound of the
IDAO* call (line (4) in Figure 3) no more iterations are done. The new cost is returned to
the IDAO-DFS procedure expanding the root node, which also returns since the root node
is an AND-node and it now has an unsolved successor (lines (17) — (18) in Figure 3). This
finishes the first iteration.

In the second iteration (Figure 5) IDAO-DFS is called with a bound of 4. It proceeds
like the first, but now the estimated cost of the AND-node { (point d4), (on), (cal), (img
d5) } is within the bound, so this node is expanded. The first size 2 subset for which IDAO*
is called is {(point d4), (on)}, with an initial estimated cost of 1. The first iteration fails
to find a solution for this state, but since the new cost of 2 is still within the bound imposed
by the parent AND-node, a second iteration is done which finds a solution. The new cost
of the atom set {(point d4), (on)} is stored in the heuristic table and in addition, the
solved states (along with their optimal solution cost) are all stored in the solved table (lines

246

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

[(g d4)img d5).img d6)):5 ()|

{(img d4),(img d5)}: 5 (4)

(tk_img d4)

- i N T e N
\((lmgﬁ),(lmﬂ&)ﬂ/ \((lmgﬁ),(lmﬂﬁ)},.@/

(tk_img d5)

{(point d4),(on),(cal),(img d5)}: 4 (3) + 1] [{(point d5),(on),(cal),(img d4)}: 4 (3) + 1

{(point d4),(on)}: 2 (1)
{(point d0),(img d5)}: 3 + 1

v

{(point d4),(img d5)): 4 (3)

(turn d0 d4) | (turn d1 d4)

{(point d1),(img d5)}: 3 + 1

(tk_img d5)

[((point d4).(point d5).(om)(cal)}: 3 (2) + 1

{(point d4),(off)}: 1 (1) + 1

(turn d6 d4)

{(point d6),(off)}: 0 + 2

Figure 5: Part of the 2-Regression tree (expanded to a cost bound of 4) for the example
Satellite problem. AND-nodes are depicted by rectangles, OR-nodes by ellipses.
The cost of each node is written as “estimated + accumulated”. Note that the
accumulated cost is only along the path from the nearest ancestor AND-node.
For nodes whose estimated cost has been updated after expansion, the estimate
before expansion is given in parenthesis: this estimate includes updates made in
the previous iteration (shown in Figure 4).

(28) — (31) in Figure 3). Since the first successor of the AND-node was solved expansion
continues with the next subset, { (point d4),(img d5)}. This state has several possible
regressions, some of which lead to OR-nodes but some to AND-nodes. All, however, return
a minimum (estimated + accumulated) cost of 4, so an improved cost (for the atom set
{(point d4), (img d5)}) is stored in the heuristic table and the parent AND-node remains
unsolved. A similar process happens when its sibling node, { (point d5), (on), (cal), (img
d4) }, is expanded, and the cost of the atom set { (img d4) , (img d5) } is updated once more,
to 5.

The process continues through a few more iterations, until all the size 2 subsets of the
top-level goal set have been solved, the most costly at a cost of 7. At this point, updated
estimates of 65 size 2 atom sets have been stored in the heuristic table, slightly less than
half the number that would have been stored if a complete h? solution had been computed.

3.3 Relaxed Search: Temporal Case

As was the case with the A™ heuristic itself, adapting relaxed search to the temporal case is
simple in principle, but somewhat complicated in practice. First, the relaxation introduced
by equations (4) — (5) approximates a temporal regression state s = (E, F) by a set of states
without actions, i.e., of the form (E’,()). To keep matters simple, only equation (5) is used

247

HAsLuUM

TP4(problem) { HSP#a(problem) {
solve h”2 by GBF, store in HeuristicTable; solve h™2 by GBF, store in HeuristicTable;
opt = IDA*(problem.goals); m = 3;

} while (not <stopping conditiomn>) {

IDAO* (problem.goals, infinity);
if (m-relaxed problem not solved) {
fail; // original problem unsolvable

}
m=m+ 1;
}
opt = IDA#*(problem.goals);

Figure 6: The TP4 and HSP} planning procedures.

in the relaxed search: that is, the size of a state is defined as

|<E,F)|=\Eu U pre(a)
(a,0)€F

: (6)

Second, even so a state of size less than m may still have a non-empty F' component, and
such a state can not be stored in the heuristic table (which maps only atom sets to associated
costs). Neither can the optimal cost or lower bound found for such a state be stored as the
cost of the corresponding atom set (right hand side of equation (6)), since the optimal cost
of achieving this atom set may be lower. However, a plan that achieves EUJ, 5)cp pre(a)
at t also achieves the state (E, F') at most max, s)cp 0 time units later, through inertia,
i.e.,

h*(E,F) < h* <EU U pre(a), w) - <(max 5) (7)

§)EF
(a,0)€F ad)€

Thus, to maintain the admissibility of the heuristic function defined by the contents of the
heuristic table, the largest 4 among all actions in F' is subtracted from the cost before it is
stored.

Unfortunately, both of these simplifications weaken the heuristic values found by relaxed
search. What is worse, since a cost under-approximation is applied when storing states
containing concurrent actions, but not during the search, the heuristic defined by the table
after relaxed search can be inconsistent. Also, right-shift cuts can not be used in the
relaxed search. As mentioned earlier, in the search space pruned by right-shift cuts, the
possible successors to a state, and therefore the cost returned when the state is expanded
(regressed) but not solved, may be different depending on the path through which it was
reached. Again, this can not be stored in the heuristic table, and it can not be ignored since
this could violate the admissibility of the heuristic.

248

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

3.4 Hsp;

The HSP} planning procedure (shown in Figure 6) consists of three main steps: the first is to
precompute the temporal h? heuristic, the second to perform a series of m-relaxed searches,
for m = 3,..., in order to improve the heuristic, and the final is an IDA* search in the
temporal regression space, guided by the computed heuristic. Note that the first and last
of the three steps are identical to those of TP4: the only difference is the intermediate step,
the series of relaxed searches. The purpose of these searches is to discover, and store in the
heuristic table, improved cost estimates of states (i.e., atom sets) of size m. As indicated
in Figure 6, relaxed searches are carried out for m = 3,..., until some stopping condition
is satisfied. There are several reasonable stopping conditions that can be used:

(a) stop when the last m-regression search does not encounter any AND-node (in which
case the relaxed solution is in fact a solution to the original problem);

(b) stop at a fixed a priori given m;

(c¢) stop when the cost of the m-solution found is the same as that of the (m — 1)-solution
(or heuristic estimate);

(d) stop after a certain amount of time, number of expanded nodes, or similar.

HSP; implements the first three. Each results in a different configuration of the planner,
and usually also in a difference in performance. In the competition, a fixed limit at m = 3
was used. Except where it is explicitly stated otherwise, this is the configuration used in
the experiments presented in the next section as well.

4. Results in the Competition Domains

This section presents a comparison of the relative performance of TP4 and HSP} on the do-
mains and problem sets that were used in the 2004 planning competition, and an analysis
of the results. The results presented here are from rerunning both planners on the compe-
tition problem sets, not the actual results from the competition. This is for two reasons:
First, as already mentioned, errors in the HSP} implementation made its performance in the
competition somewhat worse than what it is actually capable of. Second, the repeated runs
were made with a more generous time limit than that imposed during the competition to
obtain more data and enable a better comparison®. Also, some experiments were run with
alternative configurations of the planners. Detailed descriptions of the competition domains
are given by Hoffmann, Edelkamp et al. (2004, 7).

4.1 The pipesworld Domain

The pipesworld domain models transportation of “batches” of petroleum products through
a pipeline network. The main difference from other transportation domains is that the

9. The experiments were made with CPU time limits between 4 and 8 hours for each problem, though
on slightly a slower machine than that used in the competition: a Sun Enterprise 4000 which has 12
processors at 700 MHz and 1024 MB memory in total. The multiple processors offer no advantage to
the planners, since these are of course single-threaded, but are used to run several instances in parallel,
shortening the overall “makespan” of the experiment.

249

HAsLuUM

10000 ' 14|
© ' :
g 1000 . s 1000 H T
o .] H S
[®» ° '
@» <2 Lo}
@ ¢ @ =
g 10 E 100 8 12
= i - . 5
L « @ 2 :
o1 % o ! Sn [| — TP4 (Search)
2 T ' i/ | _.. HSP* (Rel. Search)
’ : / |.... HSP*_(Final Search)
'y 10 . 100 1000 10000 b 10 100 1000 10000 10 100 1000 10000
TP4: Time (seconds) TP4: Time (seconds) Time (seconds)

(a) (b) ()

Figure 7: Solution times for TP4 and HSP} on problems solved in the pipesworld domain
(a) without tankage restriction, and (b) with tankage restrictions. The vertical
line to the right in figure (b) indicates the time-out limit (thus, the three points
on the line correspond to problem instances solved only by HSP}). (¢) Evolution of
the lower bound on solution cost during relaxed and normal (non-relaxed) search
in problem p08 of the pipesworld domain (version without tankage restriction).
Stars indicate where solutions are found. Note that all time scales are logarithmic.

pipelines must be filled at all times, so when one batch enters a pipe (is “pushed”) another
batch must leave the pipe at the other end (be “popped”). The domain comes in two ver-
sions, one with restrictions on “tankage” (space for intermediary storage) and one without
such restrictions.

Although neither TP4 nor HSP} achieve very good results in this domain, it is an example
of a domain where HSP} performs better than TP4. Figures 7(a) and 7(b) compare the
runtimes of the two planners on the set of problems solved by at least one.

Figure 7(c) compares the behaviour of the two planners on one example problem, p08
from the domain version without tankage restriction, in more detail. This provides an
illustrative example of relaxed search when it works as intended. Since both planners use
iterative deepening searches, the best known lower bound on the cost of the problem solution
will be increasing, starting from the initial h? estimate, through a series of (relaxed and
non-relaxed) searches with increasing bound, until a solution is found: the graph plots this
evolution of the solution cost lower bound against time. As can be seen, 3-regression search
reaches a solution (with cost 12) faster than the normal regression search discovers that
there is no solution within the same cost bound. The final (non-relaxed) regression search
in HSP} is also faster than that of TP4 (as indicated by the slope of the curve), due to the
heuristic improvements stored during the relaxed search.

4.2 The promela and psr Domains

Certain kinds of model checking problems, such as the detection of deadlocks and assertion
violations, are essentially questions of reachability (or unreachability) in state-transition
graphs. The promela domain is the result of translating such model checking problems, for
system models expressed in the Promela specification language, into PDDL. The problems

250

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

100001 r
10000F ' !
h

: 84
\
2 g .
o H o Py
S 1000¢ ' 5 [4
o ° ! o 100f ° B

Q ' [0
) ') o
8 H @ N |
[} o ' [} °® H
E 100 ' j= * :
= . ‘ - ¥ '

© ' « []
a H ! o h
Bl . : %) ° '
T) '
(1] :
® l o 1
|
10 ‘100 1000 10000 1 X 100 10000
TP4: Time (seconds) TP4: Time (seconds)

(a) (b)

Figure 8: Solution times for TP4 and HSP} on problems solved in (a) the promela domain
(philosophers subset) and (b) the psr domain (small instance subset). The
vertical line to the right indicates the time-out limit (thus, points on the line
correspond to problem instances solved only by HSP}).

used in the competition are instances of two different deadlock detection problems (the
“dining philosophers” and “optical telegraph” problems) of increasing size.

The psr domain models the problem of reconfiguring a faulty power network to resupply
consumers affected by the fault. Uncertainty concerning the initial state of the problem
(the number and location of faults), unreliable actions and partial, sometimes even false,
observations are important features of the application, but these aspects were simplified
away from the domain used in the competition. The domain did however make significant
use of ADL constructs and the new derived predicates feature of PDDL2.2. The ADL
constructs and derived predicates can be compiled away, but only at an exponential increase
in problem size. Therefore only the smallest instances were available in plain STRIPS
formulation, and because of this they were the only instances that TP4 and HSP} could
attempt to solve.

The promela and psr domains are non-temporal, in the sense that action durations
are not considered, but neither are they strictly sequential, ¢.e., actions can take place
concurrently. Because of this, TP4 and HSP] were run in parallel, rather than temporal,
planning mode on problems in these domains'®. The results of the two planners, shown
in Figure 8, are similar to those exhibited in the pipesworld domain: HSP} is better than
TP4 overall, solving more problems in both domains and solving the harder instances faster,
while TP4 is faster at solving easy instances.

4.3 The satellite Domain

The satellite domain models satellites tasked with making astronomical observations. A
simplified STRIPS version of the domain was described in Section 3.2.1. In the general do-

10. Parallel planning is the special case of temporal planning that results when all actions have unit durations.
Certain optimizations for this case are implemented (identically) in both planners.

251

HAsLuUM

10000¢ | | \O* ‘O | | ¢ 4n "
I I I ‘O;’} I I I 1h’ '
A 2 T ;
1000} | Ox I % 10 | o w
@ R b © !
© | | 10 % | | |
c i i L % 01 | £ o)
oL T S e L T ‘
@ Fole OF T 0 Y L o
e o (0% 0RO, 0T 0w & gl o
| | 0¥ e o | o T
E ° w82 sigy | IR T RS ¢
£ ‘ ‘ 0% 9, L8 ‘

— Bg@@%%o o g‘ P4 (?
Bulioxd Lo ° w
U3 I I I I I 15 3
%%2‘050‘ © % 1| 4 HsP 3
1@@01 | | | o CPT !
p61 p62 p63 p64 p65 po6 p07 p0O8 0'151 s 1‘s 1 m 1h 4‘h

Problem (source of parameters) TP4: Time

(a) (b)

Figure 9: Solution times for TP4 and HSP}; on problems solved in the satellite domain.
Filled (black) points represent instances belonging to the competition problem
set, while remaining points are from the set of additional problems generated.
Each “wide” column in figure (a) represents one problem from the competition
set and shows the solution times for the set of instances generated with the same
parameters (grouped into subcolumns by planner). Only solved instances are
shown, so not all columns have the same number of points. Figure (b) compares
TP4 and HSP}, directly. The vertical line to the right indicates the time-out limit
(thus, points on the line are instances solved by HSP} but not by TP4).

main, there can be more than one satellite, each equipped with more than one instrument,
and different instruments have different imaging capabilities (called “modes”), which may
overlap (between instruments and between satellites). Each goal is to have an image taken
of a specific target, in a specific mode. As in the STRIPS version, taking an image requires
the relevant instrument to be powered on and calibrated, and to calibrate an instrument
the satellite must be pointed towards a calibration target. Turning times between differ-
ent directions vary. As an additional complication, at most one instrument onboard each
satellite can be powered on at any time. Thus, to minimize overall execution time requires
a careful selection of which satellite (and instrument) to use for each observation, and the
order in which each satellite carries out the observations it has been assigned.

This domain is hard for both TP4 and HsSP}, for several reasons: First, as already
mentioned, the core of the domain is a combination an assignment problem and a TSP-like
problem, both of which are hard optimization problems. Also, the h? heuristic tends to be
particularly weak on TSP and related problems (the same weakness has also been noted by
Smith (2004) for the planning graph heuristic, which is essentially the same as h?). Second,
action durations in this domain differ by large amounts and are at the same time specified
with a very high resolution. For example, in problem p02 one action has a duration of
1.204 and another a duration of 82.99. When using IDA* with temporal regression, the
cost bound tends to increase by the gcd (greatest common divisor) of action durations in

252

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

each iteration, except for the first few iterations''. In the satellite domain, the ged of

action durations is typically very small (on the order of ﬁ). Combined with the weakness
of the h? heuristic, which means the difference between the initial heuristic estimate of
the solution cost (makespan) of a problem and the actual optimal cost is often large, this
results in an almost astronomical number of IDA* iterations being required before a solution
is found. To avoid this (somewhat artificial) problem, action durations were rounded up to
the nearest integer in the experiments done in this domain. This increases the makespan of
the plans found, but not very much — on average by 2.9%, and at most by 5.9% (comparison
made on the problems that could be solved with original durations)!2.

Due to the weakness of the h? heuristic in this domain, the effort invested by HSP} in
computing a more accurate heuristic can be expected to pay off, resulting in a better overall
runtime for HSP} compared to TP4. This is indeed the case: although HSP} solves only the
five smallest problems in the set (shown as black points in Figure 9(b)), TP4 solves only
four of those, and is slightly slower on most of them. These results, however, are not quite
representative.

The satellite domain has a large number of problem parameters: the number of goals
and the number of satellites, instruments and the instrument capabilities, etc., which deter-
mine the number of ways to achieve each goal. Problem instances used in the competition
were generated randomly, with varying parameter settings'3. The competition problem set,
which has to offer challenging problems to a wide variety of planners (both optimal and
suboptimal) while for practical reasons not being too large, scales up the different param-
eters quite steeply, and — more importantly — contains only one problem instance for each
set of parameters used. However, the hardness of a problem instance may depend as much
(if not more) on the random elements of the problem generation (which include, e.g., the
turning times between targets and the actual allocation of capabilities and calibration tar-
gets to instruments) as on the settings of the controllable parameters. To investigate the
importance of the random problem elements for problem hardness, and to obtain a broader
basis for the comparison between TP4 and HSP}, ten additional problems were generated
(using the available problem generator) for each of the parameter settings corresponding to
the eight smallest problems in the competition set. The distribution of solution times for
TP4, asp} and CPT (the only optimal temporal planner besides TP4 and HSP} to partici-

11. TP4 and HSP; treat action durations as rationals: by the gcd of two rationals a and b is meant the
greatest rational ¢ such that a = mc and b = nc for integers m and n. Note that the planners do not
compute the ged of action durations and use this to increment the cost bound. The bound is in each
iteration increased to the cost of the least costly node that was not expanded due to having a cost above
the bound in the previous iteration (as per standard IDA* search). That this frequently happens to
be (on the order of) the ged of action durations is an (undesirable) effect of the branching rule used to
generate the search space.

12. Optimality can be restored by a two-stage optimization scheme, in which the makespan of the non-
optimal solution is taken as the initial upper bound in a branch-and-bound search, using the original
action durations (see Haslum, 2004b, for more detail). This was used in the competition for the satellite
domain, where the two search stages combined take less time than a plain IDA* search using original
durations. The two-stage scheme is applicable to any domain, but its effectiveness in general is an open
question.

13. The problem generator can be found at http://planning.cis.strath.ac.uk/competition/. The con-
trollable parameters are the number of satellites, the maximum number of instruments per satellite, the
number of different observation modes, the total number of targets, and the number of observation goals.

253

HAsLuUM

pate in the competition) on each of the resulting problem sets is shown in Figure 9(a). The
instances that were part of the competition problem set are shown by filled (black) points.
Clearly, the variation in problem hardness is considerable and of the problems in the com-
petition set some are very easy and some are very hard, relative to the set of problems
generated with the same parameters.

Figure 9(b) compares TP4 and HSP}; on the extended problem set. HSP} solves 59% of
this set, while TP4 solves 51% (a subset of those solved by HSP}). However, as can be seen
in the figure, the relative performance of the two planners is also highly varied, much more
so than the results on the competition problem set suggests.

4.4 The airport Domain

The airport domain models the movements of aircraft on the ground at an airport. The
goal is to guide arriving aircraft to parking positions and departing aircraft to a suitable
runway for takeoff, along the airport network of taxiways. The main complication is to keep
the aircraft safely separated: at most one aircraft can occupy a runway or taxiway segment
at any time, and depending on the size of the aircraft and the layout of the airport nearby
segments may be blocked as well.

TP4 solves only 13 out of the 50 problem instances in this domain. For the instances
solved by TP4, the number of nodes expanded in search is very small relative to the solution
depth (though for the larger instances, node expansion is very slow, resulting in a poor
runtime overall). This implies that for these problem instances the h? heuristic is very
accurate, and thus they are in a sense “easy”; for such instances, HSP} can not be expected
to be better, since the search effort it invests into computing a more accurate heuristic is
largely wasted, but it also indicates that a more accurate heuristic is needed to solve “hard”
problem instances.

However, HSP} solves only 7 problems, a subset of those solved by TP4, and takes far
more time for each. Figure 10(a) shows the time HSP} spends in 3-regression search and in
the final (non-relaxed) search for each of the airport instances it solves. For reference, the
search time for TP4 is also included. Clearly, the relaxed search consumes a lot of time in
this domain, and offers very little in the way of heuristic improvement in return. That the
heuristic improvement is small (close to non-existent) is easily explained, since, as already
observed, the h? heuristic is already very accurate on these particular problem instances.
The question, then, is why the relaxed search is so time consuming.

The apparent reason is that in this domain, search in the 3-regression space is more
expensive than search in the normal regression space. This is contrary to the assumption
stated in Section 3.1, that the cost of expanding a state should be smaller in the relaxed
regression space, due to a smaller branching factor. Table 10(b) displays some characteristics
of the normal and 3-regression spaces for airport instance p08 (the smallest instance not
solved by TP4). Data is collected during the first (failed) iteration of IDA*/IDAO*. States
in the normal regression space contain, on average, a large number of subgoals, while in
the 3-regression space, states corresponding to OR-nodes are by definition limited in size.
Consequently, the branching factor of OR-nodes in 3-regression is smaller (since the choice
of establisher for each subgoal is a potential branch point), but not by much: the many
subgoals in the normal regression interact, resulting in relatively few consistent choices.

254

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

10000 : : : : | | | Normal | 3-Regression
HSP*_ (Rel. Search)
@l HSP", (Final Search) OR AND
10004] TP4 (Search)
|s| 88.7 3.0
1001
2 10
£ |s"/|s] 1.03 | 2.79
[

branching 1.37 1.09 70.8
factor

0.1F

0.01

pO1 p02 p03 p04 p05 p10 pit

(a) (b)

Figure 10: (a) Time spent in 3-regression search and in final (non-relaxed) search on
airport instances solved by HSP;. The search time for TP4 is also shown for
comparison. Note the logarithmic time scale: search times for HSP}; and TP4 are
nearly identical, while the 3-regression search consumes several orders of mag-
nitude more time. (b) Characteristics of the normal and 3-regression spaces for
airport instance p08: |s| is the average state size; |s'|/|s'| the average ratio of
successor state size to the size of the predecessor state. Data is collected during
the first (failed) iteration of IDA*/IDAO*.

Also, the right-shift cut rule, which eliminates some redundant branches, is used in the
normal regression space, but not when expanding OR-nodes in 3-regression. However,
regression tends to make states “grow”, i.e., successor states generally contain more subgoals
than their predecessors, and while this effect is quite moderate in normal regression, where
successors have, on average, 3% more subgoals, it is much more pronounced for the smaller
states corresponding to OR-nodes in the 3-regression space, whose successors are on average
2.79 times larger. As a result, successors to OR-nodes are all AND-nodes, with an average
of about 8.3 subgoals and 70.8 successors (subsets of size 3).

To summarize, each expanded OR-node in 3-regression results (via an intermediate
“layer” of AND-nodes) in an average of 77.2 new OR-nodes. Even though most of them
(74.2%) are found in the IDAO* solved table, and therefore don’t have to be searched, those
that remain yield an effective “OR-to-OR” branching factor of 19.9 (25.8% of 77.2), to be
compared with the branching factor of 1.37 for normal regression. Again, the problem is
not the high branching factor in itself: it is that the branching factor in the relaxed search
space is far higher than it is for normal regression, and that search in the 3-regression space
is consequently more expensive than search in the normal regression space, rather than less.

255

HAsLuUM

O Typel
’(;;mm o Typell £3 ’a\uoon % * ,(’Tmoon <>K % *
° * Typelll ° H ° H
5 * § * §
Q 1000 & 1000] * & 1000] * * Q%-
L))
Q (o} (o}
€ 0 S S
i: ': 100 ': 100
* * *
» 1 w 1 w 1
I
11 10 100 1000 10000 ‘I 10 100 1000 10000 * ‘I 10 100 1000 10000 *
TP4: Time (seconds) TP4: Time (seconds) TP4: Time (seconds)

(a) (b) (c)

Figure 11: Solution times for TP4 and three different configurations of HSP} on problems
solved in the umts domain: (a) HSP; with m-regression limited to m = 3 ouly;
(b) “unlimited” HSP} (performs m-regressions for increasing m until either a
non-relaxed solution is found, or the estimated cost of the top level goals does
not increase); (c) “3-4” Hsp} (always performs 3- and 4-regression). The lines
to the right and top in figures (b) and (c) indicate the time-out limit. “Type I
— IIT” refers to the classification of the problem instances described in Section
4.5 (page 257).

4.5 The umts Domain

The umts domain models the UMTS call set-up procedure for data applications in mobile
telephones. The domain is actually a scheduling problem, similar to flowshop. The call
set-up procedure consists in eight discrete steps for each application, ordered by precedence
constraints. The duration of a step depends on the type of step as well as the application.
When several applications are being set up, steps pertaining to different applications can
be executed in parallel, subject to resource availability: there are 15 numeric resources, and
each step uses a certain amount, which depends on the application, of some subset of re-
sources during execution (only 3 of the 15 resources are actually oversubscribed). Resources
are “reusable”, i.e., the amount used becomes available again once the step has finished.

At first glance, this appears to be a perfect domain for HSP}: The presence of reusable
resource limitations makes it more likely that there are higher-order mutual exclusions
between actions (i.e., there may be enough of a resource to carry out two actions using
the resource concurrently, but not three, or three but not four, etc). This suggests the
h™ heuristics are more likely to improve with increasing m, since h" considers at most m
subgoals and therefore at most m concurrent actions. At the same time, due to the simple
structure of precedence constraints, the “growing” states and the resulting branching factor
blow-up in relaxed search that occurred in the airport domain, are unlikely.

Results, however, disagree: TP4 and HSP} solve the same set of problem instances (39
out of 50), in times as shown in Figure 11(a). TP4 is faster than HSP} in a majority of
cases, though the difference is relatively small, while in the cases where HSP} is the fastest
of the two, the difference is greater. To see why, the problem instances can be divided into
the following three types:

256

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

Type I. Instances in which all contested resources are available in sufficient quantity. This
means there is no resource conflict at all, and thus that h* = h'. There are 18 instances of
this type among those solved, and they are indicated by “o” in Figure 11.

Type II: Instances in which h® = h? but h* > h?, i.c., there are resource conflicts, but
these involve more than three concurrent actions and are therefore not detected by h®.
There are 10 instances of this type among those solved, and they are indicated by “&” in
Figure 11.

Type III: Instances in which A® > h%. There are 11 instances of this type among those

solved, and they are indicated by “«” in Figure 11.

On type I instances, HSP clearly pays an overhead for computing an unnecessarily strong
heuristic, though it is relatively small. Note that these account for a third of the instances
in the problem set (18 out of 50), and nearly half of the solved instances. On instances
of types II and III, HSP} expands fewer nodes in the final (non-relaxed) search than TP4
does during its search, as much as 34% fewer on average. This shows that the heuristic
improvement resulting from 3-regression is at least of some value, though in roughly %rd of
the instances not enough to compensate for the cost of performing the relaxed search.

Recall that the HSP} planner in the competition, and in the experiments presented here
so far, was restricted to performing only 3-regression search. A possible explanation for
the relatively weak results the planner produces on type II and III instances is that this
restriction prevents relaxed search from being fully exploited. However, this theory does
not hold. Figures 11(b) and 11(c) show results for two alternative configurations of HSP}: in
11(b) an “unlimited” configuration, which carries out m-regression searches for m = 3,...
until either a non-relaxed solution is found, or the optimal m-solution cost is found to be the
same as the (m—1)-solution cost, and in 11(c) a “3-4” configuration, which always performs
3- and 4-regression searches. As can be seen in the figures, both alternative configurations
incur a larger overhead for the relaxed searches (unlimited HSP} even times out on two
instances while doing 5-regression search). Also, the gain from the additional heuristic
information is quite small: comparing again the number of nodes expanded in the final
(non-relaxed) regression search to the number of nodes expanded by TP4, the unlimited
and 3-4 configurations expand on average 41.4% and 41% fewer nodes, respectively (to
be compared to the 34% average saving in expanded nodes obtained by HSP} restricted to
3-regression search only).

Another possible explanation is that the transposition table, which also stores updates
of estimated cost, though for whole states rather than subsets of goals, to some extent
compensates for the weaker heuristic used by TP4. Again, however, the explanation turns
out not to hold: with the transposition table disabled in both planners, the savings in
number of nodes expanded in the final search by HSP} compared to the number of nodes
expanded by TP4 on type II and III instances is actually less than whend transposition
tables are used, averaging only 18% (though HSP} in this experiment solves two problems
that TP4 fails to solve), and the difference also becomes much more varied.

Recall that a number of simplifications were introduced in the formulation of temporal
m-regression, in order to enable complete solutions to the relaxed cost equation to be
computed and stored in the heuristic table. Thus, a remaining possible explanation for the

257

HAsLuUM

small value of the improvement of the heuristic in the final search is these simplifications,
since they lower the estimates stored in the heuristic table.

Concerning the time overhead for relaxed search, in particular for the higher m-regression
searches, the explanation appears again to be a higher branching factor in the relaxed search
space, though the situation is somewhat different than in the airport domain. The ratio
between the size of successor states and their predecessors is low, averaging 0.97 in normal
regression and 0.91 for OR-nodes in 3-regression (and stays roughly the same also in the
4- and 5-regression spaces) so AND-nodes are relatively scarce. But the average branching
factor for OR-nodes in 3-regression is 2.4 (increasing to 4.98 and 8.27 in 4- and 5-regression,
respectively) compared to an average of 1.85 in normal regression. The reason in the umts
domain is the right-shift cuts: recall that these eliminate redundant branches from the
search space, thus reducing the branching factor, but can not be used when regressing
OR-nodes in relaxed search since this might cause the computed heuristic to become inad-
missible. The branching factor for normal regression search without right-shift cuts is 2.69.
The difference may seem small, but it has a great effect: TP4 without right-shift cuts fails
to solve all but two type II and III instances (in many cases not even finishing the first DFS
iteration).

4.6 Analysis and Conclusions

In several of the competition domains, HSP} does achieve better results than TP4, indicating
that relaxed search can be an efficient method of computing a more accurate heuristic while
staying in the A" framework. In the domains where it fails — the airport and umts
domains — it does so because relaxed search yields a relatively small improvement over the
h? heuristic, at a disproportionately large computational cost.

In the airport domain, the two problems are tightly connected: the heuristic improve-
ment is negligible simply because relaxed search is so expensive that the only problem
instances on which it finishes within the time limit are those very simple instance for which
the h? heuristic is already close to perfect. In the umts domain, the reason for the poor
heuristic improvement is still somewhat of a mystery: a number of hypotheses were tested,
and refuted. A remaining plausible explanation is that the simplifications introduced in
formulation of temporal m-regression are particularly damaging in this domain.

In both domains, however, the explanation for the relatively large overhead for relaxed
search appears to be that it suffers from a higher branching factor than the normal regression
search, which causes expansion of OR-nodes in the relaxed search to be computationally
more expensive than node expansion in the normal search (even if many of the generated
successors are not searched). Figure 12 summarizes some search space characteristics for all
the competition domains. In the domains where relaxed search is expensive, this is because
states tend to grow when regressed, i.e., |s|/|s| is large and as a result there are many
AND-nodes with many successors (airport), or because OR-nodes in the relaxed regression
space have a higher branching factor than in the normal regression space, and are therefore
computationally more expensive to expand (umts). In the domains where relaxed search
is successful, on the other hand, |s'|/|s| is typically close to 1, i.e., small states stay small
when regressed, and regression of OR-nodes in the relaxed space is computationally cheaper
than node expansion in the normal regression space, as indicated by a lower (or roughly

258

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

Normal Regression | 3-Regression
OR AND
airport
|s] 88.7 3.0
|s"]/1s] 1.03 2.79
branching factor 1.37 1.09 708
pipesworld
|s] 6.76 2.99
|s'|/]s] 1.21 1.35
branching factor 15.1 5.13 5.2
promela (philosophers)
|s] 14.9 2.99
|s"/1s] 1.17 2.17
branching factor 21.2 3.30 30.6
psr
|s] 9.05 2.99
|s"|/|s] 1.08 1.42
branching factor 24.5 151 7.75
satellite
|s] 6.88 2.99
|s"/1s] 1.04 1.06
branching factor 6.98 5.01 733
umts
|s] 8.10 2.52
|s"|/|s] 0.97 0.91
branching factor 1.85 240 6.36

Figure 12: Some characteristics of the normal regression and 3-regression search spaces in
the domains considered: the average state size (|s|), the average ratio of successor
state size to the size of the predecessor state (|s’|/|s|) and the branching factor.
For the pipesworld, promela, psr and satellite domains, the numbers shown
are the averages over solved problem instances. For the umts domain, the average
is over solved type II and IIT instances only (see Section 4.5). For the airport
domain, data is from a single (failed) iteration on a single problem instance

(p08).

259

HAsLuUM

equal) branching factor. Of course, these (averaged) numbers are not perfect predictors
of performance: in the promela domain, for example, the |s'|/|s| ratio is quite large but
HSP} outperforms TP4 anyway (as shown in Figure 8(a)).

It is instructive to look more closely at the states in the airport domain, and why they
grow when regressed. For example, the “state” of each aircraft is (in each world state)
described by three components: one tells where the aircraft is positioned in the network of
airport runways and taxiways, one which direction it is facing, and one whether it is parked,
being pushed or moving under its own power'*. Almost every operator that changes one
of these has an effect or precondition on the other two as well. For example, any instance
of the move operator, which changes the position of an aircraft, requires the aircraft to be
moving and facing a particular direction, and may also change the facing. Thus, regressing
a state containing only a goal atom belonging to one of the components in most cases results
in a state containing goal atoms belonging to all three. A conclusion one may draw is that
splitting large states (AND-nodes) into smaller states (OR-nodes) based only on the number
on atoms is not always the right choice. An alternative would be to divide atoms in the
planning problem into groups of “related” atoms and take the number of groups represented
in a state to be its size.

Another observation that can be made is that the bulk of time spent in relaxed search
is spent in the final search iteration, when a solution exists within the current cost bound.
This iteration is not only the most expensive, but also the least useful, since relatively
few heuristic improvements are discovered in it. This also relates to the branching factor,
specifically the fact that AND-nodes have many more successors than OR-nodes: for an
AND-node to be solved all its successors must be solved, so in the final iteration, all suc-
cessors of every AND-node are searched. However, the purpose of relaxed search is not to
find a solution in the m-regression space, but to find size m states (OR-nodes) whose cost
is underestimated by the heuristic, and more accurate cost estimates for these. Therefore
it may not actually be necessary to search all the successors to every AND-node. An alter-
native would be a (m, k)-regression search in which only the & most “promising” successors
to every AND-node are considered, yielding another dimension for iteratively refining the
heuristic (this is discussed further in the next section).

Finally, it should be pointed out that even though HSP} is, on average, better than
TP4, results of both planners on the competition domains still appear rather poor. The
only other optimal temporal planner to participate in the competition was CPT (Vidal &
Geffner, 2004), which, in most domains, achieved much better results than TP4 (the results
on the extended satellite problem set, and an informal comparison between data from
the competition and the results presented here, indicate that it outperforms HSP} as well).
In the non-temporal promela and psr domains, other optimal planners also outperform
HSP} (competition results are presented by Hoffmann and Edelkamp, 7). CPT also uses the
temporal h? heuristic, but searches a CSP formulation of partial order planning: heuristic
estimates and the current cost bound are formulated as constraints, and cost bound viola-
tions are inferred by constraint propagation, avoiding the need to explicitly evaluate states
and enabling earlier detection. The partial order branching and the use of efficient propa-

14. These “components” are sets of propositions with the property that exactly one proposition in the set is
true in any reachable world state, i.e., invariants. Thus, in any state exactly one (at-segment aircraft
?segment) is true for each aircraft, and so on (the case when the aircraft is airborne is special)

260

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

gation are both important for the efficiency of the CPT planner, but it would probably also
benefit from a more accurate heuristic. Thus, the search scheme of CPT and the idea of
improving heuristics through search are complementary, and may be possible to combine.

5. Related Ideas

The idea of using search to derive or improve heuristics is not new. This section reviews
a selection of related methods. With the exception of the discussion of pattern database
heuristics, the focus in this section is on how these (or similar) methods can be adapted
and exploited to improve relaxed search.

5.1 Search-Based Heuristics

Deriving heuristics by solving an abstracted, or relaxed, version of the search problem is
not a new idea, and neither is the idea of using search to solved the abstract problem (see
e.g. Gaschnig, 1979; Pearl, 1984; Prieditis, 1993).

A recent, and successful, variant on this theme is pattern database heuristics (Culberson
& Schaeffer, 1996; Hernadvolgyi & Holte, 2000). These are defined by abstracting away
part of the problem and solving only the part that remains (the “pattern”). The abstraction
implicitly defines a projection from the problem search space into a smaller search space:
optimal solution cost in this abstract space is a lower bound on optimal solution cost in
the original search space, and by making this space small enough the optimal cost of every
state in the abstract problem space can found by blind search, and stored in a table so that
state evaluation can be done by a simple table lookup (hence the name pattern database).
Heuristic estimates from multiple abstractions can be combined by taking their maximum
(in some cases their sum; see Felner, Korf, & Hanan, 2004). Pattern database heuristics
have been successfully applied to a number of standard search problems (Culberson &
Schaeffer, 1996; Felner et al., 2004), and also to sequential STRIPS planning (Edelkamp,
2001). The idea of pattern databases may appear very similar to relaxed search (indeed,
to the definition of the A™ heuristics in general) in that the problem is “split” into simpler
problems which are solved independently, and the solution costs for these used as a heuristic
estimate for the complete problem. There is, however, a crucial difference, in that the
h™ relaxation performs this split recursively, to every state of size more than m, while
the abstraction that defines the pattern in a pattern database heuristic is fixed (also, the
abstraction that defines a PDB is in general a projection, i.e., a many-to-one mapping, while
the h™ relaxation is an embedding, i.e., each state in the original regression search space
corresponds to a single state in the relaxed search space). Even if estimates from multiple
pattern databases (abstractions) are combined, the combination of values (by maximizing
or summing) occurs only at the root, i.e., the state being evaluated, and not along the
solution paths from this state in the different abstractions. This difference means that
in some problems, the A" heuristic can be more accurate than any pattern database of
reasonable size (Haslum, Bonet & Geffner, 2005, provide an example). On the other hand,
the possibility of admissibly summing values from multiple pattern databases means that
in some problems, a collection of additive pattern databases can form a heuristic more
accurate than A™, for any reasonable value of m (again, Haslum, Bonet & Geffner, 2005,
give an example).

261

HAsLuUM

In some ways, relaxed search has more in common with the idea of pattern searches,
developed in the context of the Sokoban puzzle, which are more dynamic (Junghanns &
Schaeffer, 2001). Like in a pattern database heuristic, a pattern search abstracts away part
of the problem and solves the remaining (small) problem to obtain an improved lower bound,
but the pattern (i.e., the part of the problem that is kept by the abstraction) is selected
whenever a particular state expansion (“move”) is considered. Patterns that have been
searched are stored, along with their updated cost, and taken into account in the heuristic
evaluation (by maximization) of any new state that contains the same pattern, encountered
by the search. The patterns explored by pattern searches are found through an incremental
process: The first pattern consists of only the part of the problem (“stone”) that is directly
affected by the move under consideration. The next pattern extends the previous with
stones that in the current state conflict with the solution found in the preceding pattern
search, and this is repeated until no more conflicts are found.

As mentioned in the previous section, the high computational cost of the m-regression
search is often due to the fact that AND-nodes have many successors, and most of the time
it is not actually necessary to search them all for every AND-node: an alternative is to
search only the most “promising” successors, where a promising successor is an OR-node
whose cost is likely to be underestimated by the current heuristic, and therefore likely to
increase when the node is expanded. Limiting the number of successors searched for every
AND-node uniformly to at most k results in an (m, k)-regression space, and a series of
(m, k)-regression searches with increasing m and k can be organized in different ways: for
example, the planner could perform (m,1)-regression searches for m = 3,... until some
suitable stopping condition is met, then (m, 2)-regression searches for m = 3, ..., etc. This
is very similar to iterative broadening search (Ginsberg & Harvey, 1992). An alternative is
to limit the expansion of AND-nodes non-uniformly, for example, to search all successors
satisfying some criterion for being promising, similar to the iterative widening strategy used
in the context of game-tree search (Cazenave, 2001).

The conflict-directed strategy used to find patterns in pattern searches demonstrates a
way to distinguish promising successors. Consider sequential planning where an AND-node
is simply a set of more than m (subgoal) atoms, and the successors are all size m subsets
of this set: subsets more likely to have a higher cost than the estimate given by A™ ! can
be identified by solving each size m — 1 subset and examining the solution for conflicts with
remaining atoms in the state (a conflict being for example an action that deletes the atom,
or actions incompatible with an action needed to establish the atom). In fact, this method
has been used in the context of a different method for improving the A™ heuristics through
limited search (Haslum, 2004a). Some care must be taken to ensure that the searches needed
to find the promising sets are not more expensive than searching every set, but if the A1
value was also computed by relaxed search, the size m — 1 subsets (or at least some of them)
have already been searched, and conflicts found during previous searches can be saved.

5.2 IDAO* vs. SCOUT’s Test and Other Algorithms for AND/OR Graph
Search

The SCOUT AND/OR tree search algorithm, developed mainly for searching game trees,
tries to reduce the number of nodes evaluated by first testing for each node if it can affect the

262

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

value of its parent before evaluating the node exactly (Pearl, 1984). The test is performed
by a procedure, called simply “Test”, which takes as arguments a node and a threshold
value, and determines if the value of the node is greater (or equal) than the threshold, by
recursively testing the node’s successors (to a specified depth), but only until the inequality
is proven. The procedure can easily be modified to return a greater value for the node when
such a value is found, though this may still be less than the nodes actual value, and it has
been shown that the Test procedure, enhanced with memory in the form of a transposition
table, can be used iteratively to give an efficient algorithm that determines the exact value
of a node (Plaat, Schaeffer, Pijls, & A., 1996).

The DFS subroutine of IDAO* is very similar to a depth-unbounded version of the Test
procedure, and thus the IDAO* algorithm is similar to such an iterative application of Test.
The main difference lies in that IDAO-DF'S applies iterative deepening (by calling IDAO¥)
to the successors of AND-nodes, whereas Test calls itself recursively with the same cost
bound. As a result, IDAO* finds the optimal cost of any solved OR-node, which Test does
not (though the higher cost returned by (modified) Test when the cost of a node is proven
to exceed the threshold is still a lower bound on the nodes optimal cost).

Recently, Bonet and Geffner (2004) presented a general depth-first search algorithm
for AND/OR-graphs, called LDFS, which is also very similar to IDAO*. Like IDAO*, it
finds the optimal cost of every solved node, and improved lower bounds on nodes that are
explored but not solved. LDFS, however, stops searching the successors of an AND-node
as soon as one of them is found to have a cost greater than the current estimate for that
node, whereas IDAO* performs iterative deepening searches until the node is solved or
shown to have a cost greater than the current estimated cost of the predecessor AND-node.
Experiments with an Iterative Test algorithm for m-regression search have shown that it
is not more efficient than IDAO*. An experimental comparison between IDAO* and the
LDFS algorithm remains to be done.

IDAO*, Tterative Test and LDFS all perform top-down, depth-first iterative deepening
searches, but none of these characteristics of the algorithms are essential for the their
use in computing an improved heuristic. Any AND/OR search algorithm can be used to
carry out the relaxed search, as long as it discovers the optimal cost (or a greater lower
bound) of every expanded OR-node. For example, standard AO* (Nilsson, 1968) and the
Generalized Djikstra algorithm by Martelli and Montanari (1973) both do this, and both
offer a possibility of trading greater memory requirements for less search time (though the
results of Bonet and Geffner, 2004, indicate that this may not be the case).

AND/OR search has been mostly investigated in the AI area of game playing. The
AND/OR (or Min-Max) search spaces representing two-player games are somewhat different
from the m-regression space: there is no concept of solution cost, other than the won/lost
distinction, and for most games it is infeasible to search for a complete solution, rather
the search aims to improve the accuracy of a heuristic estimate of the usefulness of a move
or position in the game. Thus, game-tree searches are depth-bounded, rather than cost-
bounded, and values at the leaf nodes of the tree are given by a static heuristic function.
m-regression can be formulated in this way, by taking the sum of accumulated and estimated
cost as the static heuristic function. A depth-bounded search with a standard game-tree
search algorithm (Pearl, 1984; Plaat et al., 1996) can be used to improve the accuracy
of the estimated cost of the root node. This, however, fails to achieve the main objective

263

HAsLuUM

of relaxed search, which is to discover (and store) improved cost estimates for the size m
states encountered during the search, so this method would have to be used in a different
way, e.g., as a depth-bounded look-ahead to improve the accuracy of heuristic evaluations
of states in the normal regression search. On the other hand, since the improved heuristic
value is in this mode of use not stored but only used for the state from which the look-ahead
search originates, it is not necessary to simplify the m-regression space, and a potentially
more powerful relaxation can be used.

6. Conclusions (Reprise)

The two planners I entered in the 2004 International Planning Competition, TP4 and HSP},
are very similar: the only difference is that HSP} invests some effort into computing a more
accurate heuristic, through a series of searches in relaxed regression spaces (the m-regression
spaces) which are derived from the same relaxation as the h? heuristic used by TP4. In-
deed, the motivation for entering both planners was to make use of the competition as an
experimental evaluation of the relaxed search technique, as well as comparing both plan-
ners to other state-of-the-art optimal temporal planners. For several reasons however, the
competition results did not provide the complete picture of the relation between HSP} and
TPA4.

As demonstrated here, HSP} can produce better results than TP4 in some of the com-
petition domains, though in no domain does HSP} completely dominate over TP4. It is
mainly on problems that are hard, for both planners, that the heuristic improvement re-
sulting from relaxed search yields an advantage. In some domains, the improvement over the
h? heuristic is not enough to compensate for the time spent computing it. A more detailed
analysis resulted in a (weak) characterization of the domains in which relaxed search can be
expected to be cost effective: in such domains, expanding small states is computationally
cheaper than expanding large states, and small states tend to have small successor states.
In the domains where it is too expensive, on the other hand, the central problem is that
the branching factor of m-regression is higher than that of normal regression search, so that
searching in the relaxed space is computationally more expensive (quite contrary to the
idea of obtaining a heuristic estimate by solving a “simplified” problem). Two measures,
viz. the branching factor of OR-nodes in relaxed search relative to branching factor in the
original search space and the relative size of the successors of OR-nodes in relaxed search,
where found to be good indicators of how well HSP} performed, compared to TP4, in a given
domain. In the experiments, these measures were taken by exploring the search spaces, but
it may also be possible to estimate them (if not to calculate them exactly) from the domain
description.

The analysis of the domains in which relaxed search fails to be effective also points out
possibilities for improvement, and several ideas for potential improvements to the method
can be found in related “incremental” search schemes in the literature. These include
limiting search to a smaller fraction of the relaxed space, using conflicts to direct search
to the states more likely to be have their heuristic values improved, and alternative search
algorithms for AND/OR graphs. This is one direction for future developments.

Finally, results clearly demonstrate that although improving the heuristic improves per-
formance in some domains, alone it is not enough to achieve good performance reliably

264

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

across all the competition domains. CPT (Vidal & Geffner, 2004), the only other optimal
temporal planner to participate in the competition, appears to yield better results in most
competition domains (though no precise comparison has been made). CPT, like TP4, uses
the temporal h? heuristic, but performs a non-directional search, and uses constraint rep-
resentation and propagation techniques to infer cost bound violations. The inefficiency of
directional search in temporal planning has been noted before: thus CPT and HSP} can
be said to improve on two different weaknesses of TP4. Combining these improvements is
another challenge for the future.

Acknowledgments

Héctor Geffner has had an important part in the development of relaxed search since its
inception and through numerous discussions. Jonas Kvarnstrom, Per Nyblom, JAIR asso-
ciate editor Maria Fox and the anonymous reviewers all provided very helpful comments on
drafts of the paper. All faults are of course mine.

References

Aho, A., Hopcroft, J., & Ullman, J. (1983). Data Structures and Algorithms. Addison-
Wesley.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bonet, B., & Geffner, H. (2004). An algorithm better than AO*?. In Proc. 20th National
Conference on AI (AAAI’05), pp. 1343 — 1347.

Cazenave, T. (2001). Iterative widening. In Proc. 17th International Conference on Artificial
Intelligence (IJCAI’01), pp. 523 — 528.

Culberson, J., & Schaeffer, J. (1996). Searching with pattern databases. In Canadian
Conference on Al Vol. 1081 of LNCS, pp. 402 — 416. Springer.

Edelkamp, S. (2001). Planning with pattern databases. In Proc. 6th European Conference
on Planning (ECP’01), pp. 13 — 24.

Edelkamp, S., & Hoffmann, J. (2004). PDDL2.2: the language for the classical part of
IPC-4. In 4th International Planning Competition Booklet, pp. 2 — 6. Available at
http://ipc.icaps-conference.org/.

Felner, A., Korf, R., & Hanan, S. (2004). Additive pattern database heuristics. Journal of
AT Research, 22, 279 — 318.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to PDDL for expressing temporal
planning domains. Journal of AI Research, 20, 61 — 124.

Garrido, A., Fox, M., & Long, D. (2002). A temporal planning system for durative actions
of PDDL2.1. In Proc of the 15th Eureopean Conference on Artificial Intelligence,
(ECATI’02), pp. 586 — 590.

Garrido, A., Onaindia, E., & Barber, F. (2001). Time-optimal planning in temporal prob-
lems. In Proc. 6th European Conference on Planning (ECP’01), pp. 397 — 402.

265

HAsLuUM

Gaschnig, J. (1979). A problem similarity approach to devising heuristics: First results.
In Proc. 6th International Joint Conference on Artificial Intelligence (IJCAI’79), pp.

301 — 307.
Ginsberg, M., & Harvey, W. (1992). Iterative broadening. Artificial Intelligence, 55(2-3),
367 — 383.

Haslum, P. (2004a). Improving heuristics through search. In Proc. European Conference on
Al (ECATI’04), pp. 1031 — 1032.

Haslum, P. (2004b). TP4’04 and HSP}. In 4th International Planning Competition Booklet,
pp. 38 — 40. Available at http://ipc.icaps-conference.org/.

Haslum, P., Bonet, B., & Geffner, H. (2005). New admissible heuristics for domain-
independent planning. In Proc. 20th National Conference on AI (AAAI’05), pp. 1163
— 1168.

Haslum, P., & Geffner, H. (2000). Admissible heuristics for optimal planning. In
Proc. 5th International Conference on Artificial Intelligence Planning and Schedul-
ing (AIPS’00), pp. 140 — 149. AAAI Press.

Haslum, P., & Geffner, H. (2001). Heuristic planning with time and resources. In Proc. 6th
European Conference on Planning (ECP’01), pp. 121 — 132.

Hernadvolgyi, I., & Holte, R. (2000). Experiments with automatically created memory-
based heuristics. In In Proc. Abstraction, Reformulation, and Approximation, 4th
International Symposium (SARA 2000), pp. 281 — 290.

Hoffmann, J., & Edelkamp, S. (2005). The classical part of IPC-4: An overview. To appear
in the Journal of AI Research (this Special Track).

Hoffmann, J., Edelkamp, S., Englert, R., Liporace, F. Thiébaux, S., & Triig, S. (2004).
Towards realistic benchmarks for planning: The domains used in the classical part of
IPC-4. In 4th International Planning Competition Booklet, pp. 7 — 14. Available at
http://ipc.icaps-conference.org/.

Holte, R., Perez, M. B., Zimmer, R. M., & MacDonald, A. J. (1996). Hierarchical A*:
Searching abstraction hierarchies efficiently. In Proc. 13th National Conference on
Artificial Intelligence (AAAI’96), pp. 530 — 535.

Junghanns, A., & Schaeffer, J. (2001). Sokoban: Enhancing general single-agent search
methods using domain knowledge. Artificial Intelligence, 129(1-2), 219 — 251.

Korf, R. (1985). Depth-first iterative-deepening: An optimal admissible tree search. Artifi-
cial Intelligence, 27(1), 97 — 109.

Korf, R. (1999). Artificial intelligence search algorithms. In Handbook of Algorithms and
Theory of Computation, chap. 36. CRC Press.

Liu, Y., Koenig, S., & Furcy, D. (2002). Speeding up the calculation of heuristics for heuristic
search-based planning. In Proc. 18th National Conference on Artificial Intelligence
(AAAT’02), pp. 484 — 491.

Long, D., & Fox, M. (2003). Exploiting a graphplan framework in temporal planning. In
13th International Conference on Automated Planning and Scheduling (ICAPS’03),
pp. 51 — 62.

266

IMPROVING HEURISTICS THROUGH RELAXED SEARCH

Martelli, A., & Montanari, U. (1973). Additive AND/OR graphs. In Proc. 3rd International
Joint Conference on Artificial Intelligence (IJCAI’73), pp. 1 — 11.

Nilsson, N. J. (1968). Searching problem-solving and game-playing trees for minimal cost
solutions. In Proc. IFIP Congress, pp. 125 — 130.

Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley.

Plaat, A., Schaeffer, J., Pijls, W., & A., d. (1996). Best-first fixed-depth minimax algorithms.
Artificial Intelligence, 87(1-2), 255 — 293.

Prieditis, A. E. (1993). Machine discovery of effective admissible heuristics. Machine Learn-
g, 12, 117 — 141.

Reinfeld, A., & Marsland, T. (1994). Enhanced iterative-deepening search. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16(7), 701 — 710.

Smith, D. (2004). Choosing objectives in over-subscription planning. In Proc. 14th In-
ternational Conference on Automated Planning & Scheduling (ICAPS’04), pp. 393 —
401.

Smith, D., & Weld, D. (1999). Temporal planning with mutual exclusion reasoning. In
Proc. 16th International Joint Conference on Artificial Intelligence (IJCAI’99), pp.
326 — 333.

Trinquart, R. (2003). Analyzing reachability within plan space. In ICAPS’03 Doctoral
Consortium, pp. 122 — 126.

Valtorta, M. (1984). A result on the computational complexity of heuristic estimates for
the A* algorithm. Information Sciences, 34, 48 — 59.

Verfaillie, G., Lemaitre, M., & Schiex, T. (1996). Russian doll search for solving constraint
optimization problems. In Proc. 13th National Conference on Artifical Intelligence
(AAAT’96), pp. 181 — 187.

Vidal, V., & Geffner, H. (2004). Branching and pruning: An optimal temporal POCL
planner based on constraint programming. In Proc. 19th National Conference on
Artificial Intelligence (AAAI’04), pp. 570 — 577.

267

