
Journal of Artificial Intelligence Research 24 (2005) 799-849 Submitted 08/04; published 12/05

Probabilistic Hybrid Action Models
for Predicting Concurrent Percept-driven Robot Behavior

Michael Beetz BEETZ@IN.TUM.DE

Department of Computer Science IX, Technische Universität München,
Boltzmannstr. 3, D-81667 Garching, Germany,
Henrik Grosskreutz GROSSKREUTZ@CS.RWTH-AACHEN.DE

Department of Computer Science, Aachen University of Technology
D-52056 Aachen, Germany

Abstract
This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model

for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent
aspects of robot behavior that cannot be represented by most action models used in AI planning: the
temporal structure of continuous control processes, their non-deterministic effects, several modes
of their interferences, and the achievement of triggering conditions in closed-loop robot plans.

The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven
behavior, its formalization, and proofs that the model generates probably, qualitatively accurate
predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections
from probabilistic action models and state descriptions. We show how PHAMs can be applied
to planning the course of action of an autonomous robot office courier based on analytical and
experimental results.

1. Introduction

Most autonomous robots are equipped with restricted, unreliable, and inaccurate sensors and effec-
tors and operate in complex and dynamic environments. A successful approach to deal with the
resulting uncertainty is the use of controllers that prescribe the robots’ behavior in terms of con-
current reactive plans (CRPs) — plans that specify how the robots are to react to sensory input
in order to accomplish their jobs reliably (e.g., McDermott, 1992a; Beetz, 1999). Reactive plans
are successfully used to produce situation specific behavior, to detect problems and recover from
them automatically, and to recognize and exploit opportunities (Beetz et al., 2001). These kinds
of behaviors are particularly important for autonomous robots that have only uncertain information
about the world, act in dynamically changing environments, and are to accomplish complex tasks
efficiently.

Besides reliability and flexibility, foresight is another important capability of competent au-
tonomous robots (McDermott, 1992a). Temporal projection, the computational process of predict-
ing what will happen when a robot executes its plan, is essential for the robots to plan their intended
courses of action successfully. To be able to project their plans, robots must have causal models
that represent the effects of their actions. Most robot action planners use representations that in-
clude discrete action models and plans that define partial orders on actions. Therefore, they cannot
automatically generate, reason about, and revise modern reactive plans. This has two important
drawbacks. First, the planners cannot accurately predict and diagnose the behavior generated by
their plans because they abstract away from important aspects of reactive plans. Second, the plan-

c©2005 AI Access Foundation. All rights reserved.

BEETZ & GROSSKREUTZ

ners cannot exploit the control structures provided by reactive plan languages to make plans more
flexible and reliable.

In this article we develop PHAMs (Probabilistic Hybrid Action Models), action models that
have the expressiveness for the accurate prediction of behavior generated by concurrent reactive
plans. To the best of our knowledge, PHAMs are the only action representation used in action
planning that provides programmers with means for describing the interference of simultaneous,
concurrent effects, probabilistic state and action models, as well as exogenous events. PHAMs have
been successfully applied by an autonomous robot office courier and a museum tour-guide robot to
make predictions of full-size robot plans during the execution of these plans (Beetz, 2001).

This article makes several important contributions to the area of decision-theoretic robot action
planning. First, we describe PHAMs, formal action models that allow for the prediction of the
qualitative behavior generated by concurrent reactive plans. Second, we show how PHAMs can be
implemented in a resource efficient way such that predictions based on PHAMs can be performed
by robots while executing their plans. Third, we apply the plan projection method to probabilistic
prediction-based schedule debugging and analyze it in the context of a robot office courier (Beetz,
2001).

Before starting with the technical part of the article we would like to make several remarks. In
this article we restrict ourselves to navigation actions and model them exactly as they are imple-
mented in one of the most successful autonomous robot navigation systems (Burgard et al., 2000).
The reason is that we want to close the gap between action models used in AI planning systems and
the control programs that are used by autonomous robots and the behavior they produce. The control
programs that we model have proven themselves to achieve reliable, high performance navigation
behavior. In the Minerva experiment, they controlled the navigation in a crowded museum for more
than 93 hours. During their execution, the navigation plans have been revised by a planning module
about 3200 times without causing any deadlocks between interacting, concurrent control processes
(Beetz, 2002a; Beetz et al., 2001). In robot office courier experiments, we have applied plan revision
methods that enabled the robot to plan ahead for about 15-25 minutes. We consider this to be a time
scale sufficient for improving the robot’s performance through planning. However, the performance
gains that can in principle be achieved through navigation planning are often small compared to
those that can be achieved by planning manipulation tasks.

Although we use navigation as our only example, the same modeling techniques apply to other
mechanisms of autonomous robots, such as vision (Beetz et al., 1998), communication (Beetz &
Peters, 1998), and manipulation (Beetz, 2000) equally well. The reasons that we do not cover
these kinds of actions in this article are that they require additional reasoning capabilities and at the
moment these models can only be validated with respect to robot simulations. The additional robot
capabilities that would have to be modeled include symbol grounding/object recognition (Beetz,
2000), changing states of objects, and more thorough models of the belief states of robots (Schmitt
et al., 2002). Addressing these issues is well beyond the scope of this article.

In the remainder of the article we introduce the basic conceptualization underlying PHAMs and
describe two realizations of them: one for studying their formal properties and another one tar-
geted at their efficient implementation. We also show how PHAMs are employed in the context of
transformational robot planning.

The article is organized as follows. Section 2 describes everyday activity as our primary class
of application problems. We introduce concurrent reactive plans (CRPs) as means for producing
characteristic patterns of everyday activity and identify technical problems in the prediction of the

800

PROBABILISTIC HYBRID ACTION MODELS

physical robot behavior that CRPs generate. Section 3 explains how the execution of CRPs and
the physical and computational effects of plan execution can be modeled using PHAMs. PHAMs
describe the behavior of the robot as a sequence of control modes where in each mode the continuous
behavior is specified by a control law. Mode transitions are triggered by the controlled system
satisfying specified mode transition conditions. We then introduce a set of predicates that we use
to represent our conceptualization formally. Section 4 and 5 describe two different approaches to
predicting the behavior produced by concurrent reactive plans in the context of PHAMs. In the
first one the behavior is approximated by discretizing time into a sequence of clock ticks that can
be made arbitrarily dense. This model is used to derive formal properties for the projection of
concurrent reactive plans. The second approach, described in Section 5, describes a much more
efficient approach to the projection of CRPs. In this approach only those time ticks are explicitly
considered and represented where discrete events may occur. At all other time instances the system
state can be inferred through interpolation using the control laws of the respective modes. This is
the projection mechanism that is used at execution time on board the robots. We show how this
implementation of PHAMs is employed for prediction-based tour scheduling for an autonomous
robot office courier. We conclude with an evaluation and a discussion of related work.

2. Structured Reactive Controllers and the Projection of Delivery Tour Plans

Plan-based robot control has been successfully applied to tasks such as the control of space probes
(Muscettola et al., 1998b), disaster management and surveillance (Doherty et al., 2000), and the
control of mobile robots for office delivery (Simmons et al., 1997; Beetz et al., 2001) and tourguide
scenarios (Alami et al., 2000; Thrun et al., 2000). A class of tasks that has received little attention is
the plan-based robot control for everyday activity in human living and working environments, tasks
that people are usually very good at.

To get a better intuition of the activity patterns to be produced in everyday activity, let us con-
sider the chores of a hypothetical household robot. Household chores entail complex routine jobs
such as cooking dinner, cleaning the kitchen, loading the dish washer, etc. The routine jobs are
typically performed in parallel. A household robot might have to clean up the living room while the
soup is cooking on the stove. While cleaning up, the phone might ring and the robot has to inter-
rupt cleaning in order to go and answer the phone. After having completed the telephone call the
robot has to continue cleaning right where it stopped. Thus, the robot’s activity must be concurrent,
percept-driven, interruptible, flexible, and robust, and it requires foresight.

The fact that people manage and execute their daily tasks effectively suggests, in our view,
that the nature of everyday activity should permit agents to make assumptions that simplify the
computational tasks required for competent activity. As Horswill (1996) puts it, everyday life must
provide us with some loopholes, structures and constraints that make activity tractable.

We believe that in many applications of robotic agents that are to perform everyday activities, the
following assumptions are valid and allow us to simplify the computational problems of controlling
a robot competently:

1. Robotic agents are familiar with the activities for satisfying individual tasks and the situations
that typically occur while performing them. They carry out everyday activities over and over
again and are confronted with the same kinds of situations many times. As a consequence,
conducting individual everyday activities can be learned from experience and is simple in the
sense that it does not require a lot of plan generation from first principles.

801

BEETZ & GROSSKREUTZ

2. Appropriate plans for satisfying multiple, possibly interfering, tasks can be determined in a
greedy manner. The robot can first determine a default plan performing the individual tasks
concurrently with some additional ordering constraints through simple and fast heuristic plan
combination methods. The robot can then avoid the remaining interferences between its sub-
activities by predicting and forestalling them.

3. Robotic agents can monitor the execution of their activities and thereby detect situations in
which their intended course of action might fail to produce the desired effects. If such situa-
tions are detected, the robots can adapt their intended course of action to the specific situations
they encounter, if necessary based on foresight.

In our previous research we have proposed Structured Reactive Controllers (SRCs) as a compu-
tational model for the plan-based control of everyday activity. SRCs are collections of concurrent
reactive control routines that adapt themselves to changing circumstances during their execution by
means of planning. SRCs are based upon the following computational principles:

1. SRCs are equipped with a library of plan schemata for routine tasks in common situations.
These plan schemata are — for now — provided by programmers and designed to have high
expected utility at the cost of not having to deal with all conceivable problems. We know
from our AI courses that plans that check the tailpipes every time before starting a car have
typically lower expected utility than the ones that do not check them, even though having no
bananas stuck in the tailpipe is a necessary precondition for starting a car successfully.

The robustness, flexibility, and reactivity of plan schemata is achieved by implementing them
as concurrent percept-driven plans — even at the highest level of abstraction. The plans em-
ploy control structures including conditionals, loops, program variables, processes, and sub-
routines. They also make use of high-level constructs (interrupts, monitors) to synchronize
parallel actions and make plans reactive and robust by incorporating sensing and monitor-
ing actions and reactions triggered by observed events. Goals of sub-plans are represented
explicitly as annotations such that planning algorithms can infer the purpose of sub-plans
automatically.

2. SRCs have fast heuristic methods for putting plans together from routine activities. They are
able to predict problems that are likely to occur and revise their course of action to avoid
them. Predictive plan debugging requires the SRC to reason through, and predict the effects
of, highly conditional and flexible plans — the subject of this article.

3. SRCs perform execution time plan management. They run processes that monitor the beliefs
of the robot and are triggered by certain belief changes. These processes revise plans while
they are executed.

Structured reactive controllers work as follows. When given a set of requests, structured re-
active controllers retrieve routine plans for individual requests and execute the plans concurrently.
These routine plans are general and flexible — they work for standard situations and when exe-
cuted concurrently with other routine plans. Routine plans can cope well with partly unknown and
changing environments, run concurrently, handle interrupts, and control robots without assistance
over extended periods. For standard situations, the execution of these routine plans causes the robot

802

PROBABILISTIC HYBRID ACTION MODELS

to exhibit an appropriate behavior in achieving their purpose. While they execute routine plans,
the robot controllers also try to determine whether their routines might interfere with each other
and watch out for exceptional situations. If they encounter exceptional situations they will try to
anticipate and forestall behavior flaws by predicting how their routine plans might work in this kind
of situation. If necessary, they revise their routines to make them robust for the respective kinds
of situations. Finally, they integrate the proposed revisions smoothly into their ongoing course of
actions.

2.1 Plan-based Control for a Robot Office Courier

Before we describe our approach to predicting concurrent percept-driven robot behavior we first
give a comprehensive example of a plan-based robot office courier performing a delivery tour and
exhibiting aspects of everyday activity. The description of the example includes the presentation of
key plan schemata used by the robot, a sketch of the heuristic plan combination method, the pre-
diction of behavior flaws, and the revision of delivery plans. This example run has been performed
with the mobile robot RHINO acting as a robot office courier (Beetz, 2001; Beetz, Bennewitz, &
Grosskreutz, 1999).

2.1.1 PLANS AND PLAN SCHEMATA OF THE ROBOT COURIER

The robot courier is equipped with a library of plan schemata for its standard tasks including de-
livering items, picking up items, and navigating from one place to another. The presentation of the
plans and plan schemata proceeds bottom up. We start with the low-level plans for navigation and
end with the comprehensive object delivery plans.

A low-level navigation plan specifies how the robot is to navigate from one location in its en-
vironment, typically its current position, to another one, its destination. Figure 1 depicts such a
low-level navigation plan for going from a location in room A-117 to the location 5 in room A-111.
The plan consists of two components: a sequence of intermediate target points (the locations in-
dexed by the numbers 1 to 5 in Figure 1) to be sequentially visited by the robot and a specification
of when and how the robot is to adapt its travel modes as it follows the navigation path. In many
environments it is advantageous to adapt the travel mode to the surroundings: to drive carefully (and
therefore slowly) within offices because offices are cluttered, to switch off the sonars when driving
through doorways (to avoid sonar crosstalk), and to drive quickly in the hallways. The second part
of the plan is depicted through regions with different textures for the different travel modes “office”,
“hallway,” and “doorway.” Whenever the robot crosses the boundaries between regions it adapts the
parameterization of the navigation system. Thus, low-level navigation plans start and terminate nav-
igation processes and change the parameterization of the navigation system through control mode
switches (SET-NAVIGATION-MODE) and adding and deleting intermediate target points (MOVE-TO).

We specify reactive plans in RPL (McDermott, 1991; Beetz & McDermott, 1992), a plan lan-
guage that provides high-level control structures for specifying concurrent, event-driven robot be-
havior. The pseudo code in Figure 2 sketches the initial part of the plan depicted in Figure 1. The
plan for leaving an office consists of two concurrent sub-plans: one for following the (initial part of
the) prescribed path and one for adapting the travel mode. The second sub-plan adapts the naviga-
tion mode of the robot dynamically. Initially, the navigation mode is set to “office”. Upon entering
and leaving the doorway the navigation mode is adapted. The plan uses fluents, conditions that

803

BEETZ & GROSSKREUTZ

���
���
���
���
���

���
���
���
���
���

���

��

��

��

3

4

5

2

1A-121
A-120

Dieter’s
Desk

A-121

A-110

A-111

A-113

A-117

Legend
doorway travelmode

office travelmode

hallway travelmode

Navigation Plan
waypoint waypoint coordinates

1 〈2300, 800〉
2 〈2300, 900〉
3 〈1200, 1100〉
4 〈1200, 1200〉
5 〈1250, 1400〉

Figure 1: Graphical representation of a navigation plan. Topological navigation plan for navigating
from room A-117 to A-111 with regions indicating different travel modes and small black
circles indicating additional navigation path constraints.

are updated asynchronously based on new sensor readings. Fluents can trigger (whenever) and
terminate (wait for) plan steps.

execute concurrently
execute-in-order

MOVE-TO (1); wait for (go-to-completed?);
MOVE-TO (2); wait for (go-to-completed?);

with local fluents distance-to-doorway
← fluent-network (| 〈x, y〉 − 〈xdw, ydw〉 |)

entering-dw?-fl← distance-to-doorway < 1m
entering-hw?-fl← distance-to-doorway > 1m

execute-in-order
SET-NAVIGATION-MODE(office); wait for (entering-dw?-fl);
SET-NAVIGATION-MODE(doorway); wait for (entering-hw?-fl);
SET-NAVIGATION-MODE(hallway)

Figure 2: The plan sketches the specification of a navigation process for leaving an office. The two
components following the prescribed path and adapting the travel mode are implemented
as concurrent sub-plans. The second component uses a fluent to measure the distance
to the center of the doorway and two dependent fluents that signal the robot’s entering
and leaving the doorway. Initially, the travel mode is set to “office”. Upon entering and
leaving the doorway the travel mode is adapted.

The low-level navigation plan instances are used by higher-level navigation plans that make the
navigation processes flexible, robust, and embeddable into concurrent task contexts. The higher-
level plans generate the low-level plans based on the robot’s map of its environment (GENERATE-
NAV-PLAN). A slightly simplified version of this high-level plan is listed below.

804

PROBABILISTIC HYBRID ACTION MODELS

highlevel-plan ACHIEVE(loc(rhino, 〈x, y〉))
1 with cleanup routine ABORT-NAVIGATION-PROCESS

2 do with valve wheels
3 do loop
4 try in parallel
5 wait for navigation-interrupted?
6 with local vars NAV-PLAN ← GENERATE-NAV-PLAN(c,d)
7 do swap-plan (NAV-PLAN,NAV-STEP)
8 named subplan NAV-STEP

9 do DUMMY

10 until IS-CLOSE?(〈x, y〉)

We explain the plan going from the inner parts, which generate the robot behavior, to the outer
ones, which modify the behavior. Lines 6 to 8 make the navigation plan independent of its starting
position and thereby more general: given a destination d, the plan piece computes a low-level
navigation plan from the robot’s current location c to d using the map of the environment and
executes it (Beetz & McDermott, 1996).

In order to run navigation plans in less constrained task contexts we must prevent other —
concurrent — routines from directing the robot to different locations while the navigation plan
is executed. We accomplish this by using semaphores or “valves”, which can be requested and
released. Any plan asking the robot to move or stand still must request the valve wheels, perform its
actions only after it has received wheels, and release wheels after it is done. This is accomplished
by the statement with valve in line 2.

In many cases processes with higher priorities must move the robot urgently. In this case,
blocked valves are simply pre-empted. To make our plan interruptible, robust against such inter-
rupts, the plan has to do two things. First, it has to detect when it gets interrupted and second,
it has to handle such interrupts appropriately. This is done by a loop that generates and executes
navigation plans for the navigation task until the robot is at its destination. We make the routine
cognizant of interrupts by using the fluent navigation-interrupted?. Interrupts are handled by ter-
minating the current iteration of the loop and starting the next iteration, in which a new navigation
plan starting from the robot’s new position is generated and executed. Thus, the lines 3-5 make the
plan interruptible.

To make the navigation plan transparent we name the routine plan ACHIEVE(loc(rhino,〈x,y〉))
and thereby enable the planning system to infer the purpose of the sub-plan syntactically. Interrupt-
ible and embeddable plans can be used in task contexts with higher priority concurrent sub-plans.
For instance, a monitoring plan used by our controller estimates the opening angles of doors when-
ever the robot passes one. Another monitoring plan localizes the robot actively whenever it has lost
track of its position.

To facilitate online rescheduling we have modularized the plans with respect to the locations
where sub-plans are to be executed using the at location plan schema. The at location 〈x,y〉 p plan
schema specifies that plan p is to be performed at location 〈x,y〉. Here is a simplified version of the
plan schema for at location .

805

BEETZ & GROSSKREUTZ

named subplan Ni

do at location 〈x, y〉pby
with valve wheels
do with local vars DONE? ← FALSE

do loop
try in parallel
wait for Task-Interrupted?(Ni)
sequentially
do NAVIGATE-TO〈x, y〉

p
DONE? ← TRUE

until DONE? = TRUE

The plan schema accomplishes the performance of plan p at location 〈x,y〉 by navigating to the
location 〈x,y〉, performing sub-plan p, and signalling that p has been completed (the inner sequence).
The with valve statement obtains the semaphore wheels that must be owned by any process changing
the location of the robot. The loop makes the execution of p at 〈x,y〉 robust against interrupts from
higher priority processes. Finally, the named sub-plan statement gives the sub-plan a symbolic name
that can be used for addressing the sub-plan for scheduling purposes and in plan revisions. Using
the at location plan schema, a plan for delivering an object o from location p to location d can be
roughly specified as a plan that carries out pickup(o) at location p and put-down(o) at location d with
the additional constraint that pickup(o) is to be carried out before putdown(o). If every sub-plan p
that is to be performed at a particular location l has the form at location 〈x,y〉 p, then a scheduler
can traverse the plan recursively and collect the at location sub-plans and install additional ordering
constraints on these sub-plans to maximize the plan’s expected utility.

To allow for smooth integration of revisions into ongoing scheduled activities, we designed the
plans such that each sub-plan keeps a record of its execution state and, if started anew, skips those
parts of the plan that no longer have to be executed (Beetz & McDermott, 1996). We made the plans
for single deliveries restartable by equipping the plan p with a variable storing the execution state
of p that is used as a guard to determine whether or not a sub-plan is to be executed. The variable
has three possible values: to-be-acquired denoting that the object must still be acquired; loaded
denoting that the object is loaded; and delivered denoting that the delivery is completed. The plan
schema for the delivery of a single object consists of two fairly independent plan steps: the pick-up
and the put-down step.

if EXECUTION-STATE(p, to-be-acquired)
then AT-LOCATION L PICK-UP(o)

if EXECUTION-STATE(p, loaded)
then AT-LOCATION D PUT-DOWN(o)

2.1.2 GENERATING DEFAULT DELIVERY PLANS

The heuristic plan generator for delivery tours is simple: it inserts the pick-up and put-down sub-
plans of all delivery requests into the overall plan and determines an appropriate order on the
at location sub-plans. The ordering is determined by a heuristic that performs a simple topological

806

PROBABILISTIC HYBRID ACTION MODELS

sort on the sub-plans based on the locations where the sub-plans are to be executed. The heuris-
tic considers additional constraints such as executing pick-up steps always before the respective
put-down plan-steps.

2.1.3 PREDICTION-BASED PLAN DEBUGGING BY THE ROBOT OFFICE COURIER

Let us now contemplate a specific scenario in which the robot office courier RHINO performs an of-
fice delivery that requires the prediction and forestalling of plan failures at execution time. Consider
the following situation in the environment pictured in Figure 3. A robot office courier is to deliver
a letter in a yellow envelope from room A-111 to A-117 (cmd-1) and another letter for which the
envelope’s color is unknown from A-113 to A-120 (cmd-2). The robot has already tried to accom-
plish cmd-2 but because it has recognized room A-113 as closed (using its range sensors) it revises
its intended course of action into achieving cmd-2 opportunistically. That is, if it later detects that
A-113 is open it will interrupt its current activity and reconsider its intended course of action under
the premise that the steps for accomplishing cmd-2 are executable.

To perform its tasks quickly the robot schedules the pick-up and delivery actions to minimize
execution time and assure that letters are picked up before they are delivered. To ensure that the
schedules will work, the robot has to take into account how its own state and the world changes as it
carries out the scheduled activities. Aspects of states that the robot has to consider when scheduling
its activities are the locations of the letters. Constraints on the state variables that schedules have to
satisfy are that they only ask the robot to pick up letters that are currently at the robot’s location and
that the robot does not carry two letters in envelopes with the same color.

���������
�
�

���

�
�
� � � � � � � �

�
�
�(136) (DONE GOTO (2300.0 600.0))

(136) (DO UNLOAD-LETTER y-letter)

(58) (DONE GOTO (1000.0 1600.0))
(58) (DO LOAD-LETTER y-letter)
(62) (ACTIVATE GOTO (2300.0 600.0))

(2) (ACTIVATE GOTO (1000.0 1600.0))

A-117

A-111

Figure 3: A possible projected execution scenario for the initial plan. The opportunity of loading
the letter of the unknown color is ignored.

Suppose our robot is standing in front of room A-117. The belief state of the robot contains
probabilities for the colors of letters on the desk in A-113. The robot also has received some evi-
dence that A-113 has been opened in the meantime. Therefore its belief state assigns probability p
for the value true of random variable open-A113.

807

BEETZ & GROSSKREUTZ

This update of the belief state requires the robot to reevaluate its options for accomplishing
its jobs with respect to its changed belief state. Executing its current plan without modifications
might yield mix ups because the robot might carry two letters in envelopes with the same color.
The different options are: (1) to skip the opportunity, (2) to ask immediately for the letter from
A-113 to be put into an envelope that is not yellow (to exclude mix ups when taking the opportunity
later); (3) to constrain later parts of the schedule such that no two yellow letters will be carried even
when the letter in A-113 turns out to be yellow; and (4) to keep picking up the letter in A-113 as an
opportunistic sub-plan. Which option the robot should take depends on its belief state with respect
to the states of doors and locations of letters. To find out which schedules will probably work, in
particular, which ones might result in mixing up letters, the robot must apply a model of the world
dynamics to the state variables.

With respect to this belief state, different scenarios are possible. The first one, in which A-113
is closed, is pictured in Figure 3. Points on the trajectories represent predicted events. The events
without labels are actions in which the robot changes its heading (on an approximated trajectory) or
events representing sensor updates generated by passive sensing processes. For example, a passive
sensor update event is generated when the robot passes a door. In this scenario no intervention by
prediction-based debugging is necessary and no flaw is projected.

������ � �
�
��� �
���������

�

��

(95) (DONE GOTO (1000.0 1600.0))
(95) (DO LOAD-LETTER Y-LETTER)
(95) (FAILURE SAME-COLOR LETTER)

(33) (DONE GOTO (1850.0 1350.0))
(33) (DO LOAD-LETTER OPP)
(34) (ACTIVATE GOTO (1000.0 1600.0))

(12) (RECOGNIZE LOAD-LETTER OPP)
(13) (ACTIVATE GOTO (1850.0 1350.0))

(2)
(ACTIVATE GOTO (1000.0 1600.0))

A-117

A-111

A-120

A-113

							 	 	
	
			 	
								

	

			

	
		
		
	

		

	
		
	 	�	 	�	 	�		

	
	

(248) (DONE GOTO (2300.0 600.0))
(248) (DO UNLOAD-LETTER Y-LETTER)

(174) (DONE GOTO (1100.0 400.0))
(174) UNLOAD-LETTER OPP)
(175) GOTO (2300.0 600.0))

(102) GOTO (1000.0 1600.0))
(102) LOAD-LETTER Y-LETTER)
(103) GOTO (1100.0 400.0))

(30) GOTO (1850.0 1350.0))
(30) LOAD-LETTER OPP)
(31) GOTO (1000.0 1600.0))

(11) (RECOGNIZE LOAD-LETTER OPP)
(12) (ACTIVATE GOTO (1850.0 1350.0))

(2) (ACTIVATE GOTO (1000.0 1600.0))

A-117

A-111

A-120

A-113

(a) (b)

Figure 4: Two possible predicted scenarios for the opportunity being taken. In scenario (a) the letter
turns out to have the same color as the one that is to be loaded afterwards. Therefore, the
second loading fails. In scenario (b) the letter turns out to have a different color than the
one that is to be loaded afterwards. Therefore, the second loading succeeds.

In the scenarios in which office A-113 is open the controller is projected to recognize the oppor-
tunity and to reschedule its enabled plan steps as described above.1 The resulting schedule asks the
robot to enter A-113 first, and pickup the letter for cmd-2, then enter A-111 and pick up the letter
for cmd-1, then deliver the letter for cmd-2 in A-120, and the last one in A-117. This category of
scenarios can be further divided into two categories. In the first sub-category shown in Figure 4(a)
the letter to be picked up is yellow. Performing the pickup thus would result in the robot carrying

1. Another category of scenarios is characterized by A-113 becoming open after the robot has left A-111. This may also
result in an execution failure if the letter loaded in A-113 is yellow, but is not discussed here any further.

808

PROBABILISTIC HYBRID ACTION MODELS

(200) (DONE GOTO (1000.0 1600.0))
(202) (DO LOAD-LETTER Y-LETTER)
(211) (ACTIVATE GOTO (2300.0 600.0))

(147) (DONE GOTO (1100.0 400.0))
(162) (DO UNLOAD-LETTER OPP)
(178) (ACTIVATE GOTO (1000.0 1600.0))

(39) (DONE GOTO (1850.0 1450.0))
(39) (DO LOAD-LETTER NIL)
(70) (ACTIVATE GOTO (1100.0 400.0))

(19) (USE OPPORTUNITY)

(2) (ACTIVATE GOTO
(1850.0 1450.0))

(263) (DONE GOTO (2300.0 600.0))
(263) (DO UNLOAD-LETTER Y)

A-117

A-111

A-120

A-113

Figure 5: Projected scenario for a plan suggested by the plan debugger. The letter with the unknown
color is picked up and also delivered first. This plan is a little less efficient but avoids the
risk of not being able to load the second letter.

two yellow letters and therefore an execution failure is signalled. In the second sub-category shown
in Figure 4(b) the letter has a different color and therefore the robot is projected to succeed by tak-
ing the same course of action for all these scenarios. Note that the possible flaw is introduced by
the reactive rescheduling because the rescheduler does not consider how the state of the robot will
change in the course of action, in particular that a state may be caused in which the robot is to carry
two letters with the same color.

In this case, the plan-based controller will probably detect the flaw if it is likely with respect to
the robot’s belief state. This enables the debugger to forestall the flaw, for instance, by introducing
an additional ordering constraint, or by sending an email that increases the probability that the letter
will be put into a particular envelope. These are the revision rules introduced in the last section.
Figure 5 shows a projection of a plan that has been revised by adding the ordering constraint that
the letter for A-120 is delivered before entering A-111.

Figure 6(a) shows the event trace generated by the initial plan and executed with the RHINO

control system (Thrun et al., 1998) for the critical scenario without prediction based schedule de-
bugging; Figure 6(b) shows the one with the debugger adding the additional ordering constraint.
This scenario shows that reasoning about the future execution of plans enables the robot to improve
its behavior.

In this article, we describe the probabilistic models of reactive robot behavior that are neces-
sary to predict scenarios such as the one described above for the purpose of prediction-based plan
debugging.

2.2 The Projection of Low-level Navigation Plans

Now that we know what the robot plans look like we can turn to the question of how to predict the
effects of executing a delivery plan. The input data for plan projection are the probabilistic beliefs

809

BEETZ & GROSSKREUTZ

� ��� � ��� � ��� ������� ������ "!
#���#$� � �%� ��& �'� �%� ��& �%((

� ��� �%���)*�+� ,� -�.#+!+/�� 01 "2�#.�+3.4 25 5�.�� -,6#+7-7�(� ��� �%���)*�+� �.���.� ���-�� "!
#���#8� � 9%:%��& �;� � :%��& �%((

� ��� ���%� � <�� 2�#.�+3=25 5�.�� -,�(� ��� ���%� � <�� �����.� �����. >!
#��.#8� � � �%��& ��� � �%��& �%((

� ��� �%<�� �%��� 2�#.�+3625 5�.�. �,�(� ��� �%<�� �%��� ? ��� 21@+,� "A��+BC �4 �.#+2�#+,=25 5�.�� -,�(

DDDDDDDDDDDDDDDDDDD
D EEEEEEE E
E EEEE E E E E E E EF F
FFF FFFF FF
FFFF
FFFFFG GGGG
GGGGG G G G G G G G G G GHHHHHHHHHHHHHHHHHHHH IIIIIIIIIIIIIIIIIIII JJJJJ J J J J J J J JJ J J J JJJKKKKKKKKKKKKKKKKKKKK LLLLL

L L L L L
L L LL L L LLL LM M
M M MM
MM MMMMM
MMMMMMM NN
NN NN
NN N N
N N NN N N N
N N NO O
O O O O
OOOO
OOOOO OOOOOPPPP P P P P P P P PPP PPPPPPQQQQQQQQQQ QQQ QQ QQQQ Q R RR R R R R R R R R R R R R R R R R RS S S S S S S S S

S S S S S S S S S S ST T T T T T T T T T TTT TTTT TT TUU UU

21:09:38 GOING TO (1850.0 1450.0)

21:09:50 INSTALL NEW SCHEDULE

TO AVOID

CARRYING SAME COLOR

21:10:13 ARRIVED AT (1850.0 1450.0)
21:10:37 LOADING BLUE LETTER
21:10:37 GOING TO (1100.0 400.0)

21:11:24 ARRIVED AT (1100.0 400.0)
21:11:59 UNLOADING BLUE LETTER
21:11:59 GOING TO (1000.0 1600.0)

21:12:31 ARRIVED AT (1000.0 1600.0)
21:13:06 LOADING BLUE LETTER
21:13:06 GOING TO (2300.0 600.0)

21:14:26 ARRIVED AT (2300.0 600.0)
21:14:58 UNLOADING BLUE LETTER

A-117

A-111

A-120

A-113

(a) (b)

Figure 6: The trajectory without prediction-based plan revision (Sub-figure (a)) fails because the
courier did not foresee the possible complications with loading the second letter. Sub-
figure (b) shows a trajectory where the possible flaw is forestalled by the planning mech-
anism.

of the robot with respect to the current state of the world, probabilistic models of exogenous events
that are assumed to be Poisson distributed, probabilistic models of low-level plans, and probabilistic
rules for guessing missing pieces of information. The output of the projection process is a sequence
of dated events along with the estimated state at the time of each event.

Plan projection is identical to plan execution with two exceptions. First, whenever the plan
projector interprets a wait for or whenever it records the corresponding fluents as active triggering
conditions. This way, the plan projection mechanism can automatically generate percepts when con-
tinuous control processes or exogenous events make the triggering conditions true. For example,
when the navigation plan is waiting for the robot to enter the hallway the plan projector probabilisti-
cally guesses when the robot motion causes the respective triggering condition to become true. For
this time instant, the plan projector generates a sensor input event with the corresponding sensor
reading.

Plan projection also differs from plan interpretation in that whenever the robot interacts with
the real world, the projected robot must interact with the symbolic representations of the world.
The places where this happens are the low-level plans. Thus instead of executing a low-level plan
the projector guesses the results of executing these plans and asserts their effects in the form of
propositions to the timeline. There are three kinds of effects that are generated by the interpretation
of low-level plans: (1) physical changes, such as the robot changing its position, (2) the low-level
plan changing the dynamical state of the robot, such as the direction the robot is heading to, and
(3) computational effects, such as changing the values of program variables or signalling the success
and failure of control routines. Thus the model of a low-level plan used for plan projection is a
probability distribution over the sequence of events that it generates and the delays between the
subsequent events.

Thinking procedurally, the plan projector works as follows. It iteratively infers the occurrence
of the next event until the given plan is completely interpreted. The next event can either be the next

810

PROBABILISTIC HYBRID ACTION MODELS

event that the low-level plan generates if the computational state of the controller does not change,
or a sensor input event if an active triggering condition is predicted to become true, or an exogenous
event if one is predicted to occur. The next predicted event is the earliest of these events.

We will now consider a particular instance of low-level plans: the low-level navigation plans
used in the example of the previous section. Navigation is a key action of autonomous mobile
robots. While predicting the path that a robot will take it is necessary to predict where the robot
will be, which is a prerequisite for predicting what the robot will be able to perceive. For example,
whether the robot will perceive that a door is open depends on the robot taking a path that passes
by the door, executing the door angle estimation routine while passing the door and the door being
within sensor range. Passing the door is perceived based on the robot’s position estimate and the
environment map. Consequently, if the robot executes a plan step only if a door is open, then in the
end the execution of this plan step depends on the actual path the robot will take. This implies that
an action planning process must be capable of predicting the trajectory accurately enough to predict
the global course of action correctly.

Navigation actions are representative for a large subset of physical robot actions: they are move-
ments controlled by motors. Physical movements have a number of typical characteristics. First,
they are often inaccurate and unreliable. Second, they cause continuous (and sometimes discon-
tinuous) change of the respective part of the robot’s state. Third, the interference of concurrent
movements can often be described as the superposition of the individual movements.

To discuss the issues raised by the projection of concurrent reactive plans, we sketch a delivery
tour plan that specifies how a robot is to deliver mail to the rooms A-113, A-111, and A-120 in
Figure 1 (Beetz, 2001). The mail for room A-120 has to be delivered by 10:30 (a strict deadline).
Initially, the planner asks the robot to perform the deliveries in the order A-113, A-111, and A-
120. As the room A-113 is closed the corresponding delivery cannot be completed. Therefore, the
planning system revises the overall plan such that the robot is to accomplish the delivery for A-113
as an opportunity. In other words, the robot will interrupt its current delivery to deliver the mail to
A-113 (see Figure 7) if the delivery can be completed.

with policy as long as in-hallway?
whenever passing-a-door?

ESTIMATE-DOOR-ANGLE()
with policy seq wait for open?(A-113)

DELIVER-MAIL-TO(DIETER)
1. GO-TO(A-111)
2. GO-TO(A-120) before 10:30

Figure 7: Delivery tour plan with a concurrent monitoring process triggered by the continuous ef-
fects of a navigation plan (passing a door) and an opportunistic step. This concurrent
reactive plans serve as an example for discussing the requirements that the causal models
must satisfy.

The plan contains constraining sub-plans such as “whenever the robot passes a door it estimates
the opening angle of the door using its laser range finders” and opportunities such as “complete

811

BEETZ & GROSSKREUTZ

the delivery to room A-113 as soon as you learn the office is open”. These sub-plans are triggered
or completed by the continuous effects of the navigation plans. For example, the event passing a
door occurs when the robot traverses a rectangular region in front of the door. We call these events
endogenous events.

VW

VW VW VW VW VW

VW

begin(low-level-nav-plan(...))

end(low-level-nav-plan(...))

entering

doorway

leaving
doorway

leaving

doorway

entering
doorway

leaving
hallway

entering

hallway

A-117

A-111

A-120

A-113

Figure 8: Visualization of a projected execution scenario. The following types of events are de-
picted by specific symbols: change travel mode event by rhombuses, start/stop passing
doorway by small circles, start/stop low-level navigation plan by double circles, and en-
tering doorway/hallway by boxes.

Figure 8 shows a projected execution scenario for a low-level navigation plan embedded in the
plan depicted in Figure 7. The behavior generated by low-level navigation plans is modeled as
a sequence of events that either cause qualitative behavior changes (e.g. adaptations of the travel
mode) or trigger conditions that the plan is reacting to (e.g. entering the hallway or passing a door).
The events depicted by rhomboids denote events where the CRP changes the direction and the target
velocity of the robot. The squares denote the events entering and leaving offices. The small circles
denote the events starting and finishing passing a door, which are predicted because a concurrent
monitoring process estimates the opening angles of doors while the robot is passing them.

Such projected execution scenarios have been used for prediction-based debugging of delivery
tours of an autonomous robot office courier. Beetz et al. (1999) have shown that a controller em-
ploying predictive plan scheduling using the causal models described in this article can perform
better than it possibly could without predictive capabilities (see also Section 6.1).

812

PROBABILISTIC HYBRID ACTION MODELS

2.3 Peculiarities of Projecting Concurrent Reactive Plans

There are several peculiarities in the projection of concurrent reactive plans that we want to point
out here.
Continuous Change. Concurrent reactive plans activate and deactivate control processes and
thereby cause continuous change of states such as the robot’s position. Continuous change must
be represented explicitly because CRPs employ sensing processes that continually measure relevant
states (for example, the robot’s position) and promptly react to conditions caused by the continuous
effects (for example, entering an office).
Reactive Control Processes. Because of the reactive nature of robot plans, the events that have to
be predicted for a continuous navigation process depend not only on the process itself but also on
the monitoring processes that are simultaneously active and wait for conditions that the continuous
effects of the navigation process might cause. Suppose the robot controller is running a monitoring
process that stops the robot as soon as it passes an open door. In this case the planner must predict
“robot passes door” events for each door the robot passes during a continuous navigation action.
These events then trigger a sensing action that estimates the door angle, and if the predicted per-
cept is an “open door detected” then the navigation process is deactivated. Other discrete events
that might have to be predicted based on the continuous effects of navigation include entering and
leaving a room, having come within one meter of the destination, etc.
Interference between continuous effects. For the control processes that set voltages for the robot’s
motors, the possible modes of interference between control processes are limited. If they generate
signals for the same motors the combined effects are determined by the so-called task arbitration
scheme (Arkin, 1998). The most common task arbitration schemes are (1) behavior blending (where
the motor signal is a weighted sum of the current input signals) (Konolige, Myers, Ruspini, &
Saffiotti, 1997); (2) prioritized control signals (where the motor signal is the signal of the process
with the highest priority) (Brooks, 1986); and (3) exclusion of concurrent control signals through
the use of semaphores. In our plans, we exclude multiple control signals to the same motors but
they can be easily incorporated in the prediction mechanism. Thus the only remaining type of
interference is the superposition of movements such as turning the camera while moving.
Uncertainty. There are various kinds of uncertainty and non-determinism in the robot’s actions that
a causal model should represent. It is often necessary to specify a probability distribution over the
average speed and the displacements of points on the paths to enable models to predict the range of
spatio-temporal behavior that a navigation plan can generate. Another important issue is to model
probability distributions over the occurrence of exogenous events. In most dynamic environments
exogenous events such as opening and closing doors might occur at any time.

3. Modeling Reactive Control Processes and Continuous Change

Let us now conceptualize the behavior generated by modern robot plans and the interaction between
behavior and the interpretation of reactive plans. We base our conceptualization on the vocabulary
of hybrid systems. Hybrid systems have been developed to design, implement, and verify embedded
systems, collections of computer programs that interact with each other and an analog environment
(Alur, Henzinger, & Wong-Toi, 1997; Alur, Henzinger, & Ho, 1996).

The advantage of a hybrid system based conceptualization over state-based ones is that hybrid
systems are designed to represent concurrent processes with interfering continuous effects. They
also allow for discrete changes in process parameterization, which we need to model the activation,

813

BEETZ & GROSSKREUTZ

deactivation, and reparameterization of control processes through reactive plans. In addition, hy-
brid system based conceptualizations can model the procedural meaning of wait for and whenever
statements.

As pictured in Figure 9, we consider the robot and its operating environment as two interact-
ing processes: the environment including the robot hardware, which is also called the controlled
process, and the concurrent reactive plan, which is the controlling process. The state of the envi-
ronment is represented by state variables including the variables x and y, the robot’s real position
and door-anglei representing the opening angle of door i. The robot controller uses fluents to store
the robot’s measurements of these state variables (robot-x, robot-y, door-a120, etc.). The fluents
are continually updated by the self-localization process and a model-based estimator for estimating
the opening angles of doors. The control inputs of the plan for the environment process is a vector
that includes the travel mode, the parameterization of the navigation processes and the current target
point to be reached by the robot.

Concurrent Reactive Plan

robot-x

robot-y

door-i

Delivery Plan
 from Figure 1

Environment

State Variables:

X Y
DOOR-
ANGLEi

Control Inputs
- Travel Mode
- Target Point

Sensing Process
- self localization
- door angle estimation

Exogenous Events
going-for-lunch(person)

Figure 9: The figure shows our conceptualization of the execution of navigation plans. The relevant
state variables are the x and y coordinates of the robot’s position and opening angles of the
doors. The fluents that estimate these state variables are robot-x, robot-y, and door-a120.

3.1 A Hybrid System Model for Reactive Robot Behavior

We will now model the controlled process as a hybrid system (Alur et al., 1997, 1996). Hybrid
systems are continuous variable, continuous time systems with a phased operation. Within each
phase, called control mode, the system evolves continuously according to the dynamical law of
that mode, called continuous flow. Thus the state of the hybrid system can be thought of as a
pair — the control mode and the continuous state. The control mode identifies a flow, and the

814

PROBABILISTIC HYBRID ACTION MODELS

continuous flow identifies a position in it. Also associated with each control mode are so-called
jump conditions, specifying the conditions that the discrete state and the continuous state together
must satisfy to enable a transition to another control mode. The transitions can cause abrupt changes
of the discrete as well as the continuous state. The jump relation specifies the valid settings of the
system variables that might occur during a jump. Then, until the next transition, the continuous state
evolves according to the flow identified by the new control mode.

When considering the interpretation of concurrent reactive plans as a hybrid system the control
mode is determined by the set of active control processes and their parameterization. The continuous
state is characterized by the system variables x, y, and o that represent the robot’s position and
orientation. The continuous flow describes how these state variables change as a result of the active
control processes. This change is represented by the component velocities ẋ, ẏ, and ȯ. Thus for
each control mode the robot’s velocity is constant. Linear flow conditions are sufficient because
the robot’s paths can be approximated accurately enough using polylines (Beetz & Grosskreutz,
1998). They are also computationally much easier and faster to handle. The jump conditions are the
conditions that are monitored by constraining control processes which activate and deactivate other
control processes.

Thus the interpretation of a navigation plan according to the hybrid systems model works as
follows. The hybrid system starts at some initial state 〈cm0, x0〉. The state trajectory evolves with
the control mode remaining constant and the continuous state x evolving according to the flow
condition of cm. When the (estimated) continuous state satisfies the transition condition of an edge
from mode cm to a mode cm′ a jump must be made to mode cm′, where the mode might be chosen
probabilistically. During the jump the continuous state may get initialized to a new value x′. The
new state is the pair 〈cm′, x′〉. The continuous state x′ evolves according to the flow condition of
cm′.

The construction of the hybrid system for a given concurrent plan is straightforward. We start
at the current plan execution state. For every concurrent active statement of the form wait for cond
and whenever cond we add cond as a jump condition to the current control mode. In addition we
have one additional jump condition for the completion of the plan step.

Figure 10 depicts the interpretation of the first part of the navigation plan shown in Figure 2.
The interpretation is represented as a tree where the nodes represent the control modes of the cor-
responding hybrid system and the node labels the continuous flow. The edges are the control mode
transitions labeled with the jump conditions. The robot starts executing the plan in room A-117.
The initial control mode of the hybrid system is the root of the state tree depicted in Figure 10. The
initial state represents the state of computation where the first control processes of the two parallel
branches are active, that is the processes for going to the intermediate target point 1 and maintain-
ing the “office mode” as the robot’s travel mode. The flow specifies that while the robot is in the
initial control mode the absolute value of the derivative of the robot’s position is a function of the
robot’s navigation mode (office, doorway, or hallway) and the next intermediate target point. The
hybrid system makes a transition into one of the subsequent states when either the first target point is
reached or when the distance to the doorway becomes less than one meter. The transition condition
for the upper edge is that the robot has come sufficiently close to the doorway, for the lower edge
that it has reached the first target point. For the lower edge, the hybrid system goes into the state
where the robot goes to the target point 2 while still keeping the office mode as its current travel
mode. In the other transition the robot changes its travel mode to doorway and keeps approaching
the first target point. The only variables that are changed through the control mode transitions are

815

BEETZ & GROSSKREUTZ

control mode: cm3

ẋ = f1(hallway, 〈2300, 800〉)
ẏ = f2(hallway, 〈2300, 800〉)

control mode: cm1

ẋ = f1(doorway, 〈2300, 800〉)
ẏ = f2(doorway, 〈2300, 800〉)

control mode: cm4

ẋ = f1(doorway, 〈2300, 900〉)
ẏ = f2(doorway, 〈2300, 900〉)

control mode: cm0

x0=2400, y0=600
ẋ = f1(office, 〈2300, 800〉)
ẏ = f2(office, 〈2300, 800〉)

control mode: cm5

ẋ = f1(office, 〈1200, 1100〉)
ẏ = f2(office, 〈1200, 1100〉)

control mode: cm2

ẋ = f1(office, 〈2300, 900〉)
ẏ = f2(office, 〈2300, 900〉)

control mode: cm6

ẋ = f1(doorway, 〈2300, 900〉)
ẏ = f2(doorway, 〈2300, 900〉)

e1 : dist(〈x, y〉, 〈xdw, ydw〉) < 100

e3 : dist(〈x, y〉, 〈xdw, ydw〉) > 100

e4 : x = 2300 ∧ y = 800

e2 : x = 2300 ∧ y = 800

e5 : x = 2300 ∧ y = 900

e6 : dist(〈x, y〉, 〈xdw, ydw〉) < 100

Figure 10: The figure shows the hybrid automaton for the interpretation of the navigation plan in
Figure 2. The possible control modes with the continuous flow equations are depicted
as nodes and the mode transitions as edges. The edges are labeled with jump conditions:
entering doorway (e1, e6), leaving doorway (e3), reaching first waypoint (e2, e4), and
reaching second waypoint (e5).

the velocity of the robot and its orientation. Both settings are implied by the flow condition of the
respective successor states.

There is one issue that we have not yet addressed in our conceptualization: uncertainty. We
model uncertainty with respect to the continuous effects and the achievement of jump conditions
using multiple alternative successor modes with varying flows and jump conditions. We associate
a probability of occurrence with each mode transition. This way we can, for example, represent
rotational inaccuracies of navigation actions that are typical for mobile robots.

816

PROBABILISTIC HYBRID ACTION MODELS

3.2 Representation of the Hybrid System Model

Let us now formalize our hybrid system conceptualization using a logical notation. To do so, we
are going to use the following predicates to describe the evolution of the system states: jump-
Condition(cm,e,c), jumpSuccessor(e,cm’,probRange), jumpRelation(cm’, ~vals, ~flows), and prob-
Range(e,max). jumpCondition(cm,e,c) represents mode cm being left along edge e when condition
c becomes true. jumpSuccessor(e,cm’,probRange) defines the non-deterministic successor states
cm’ and the probability ProbRange with which they are entered if the system makes a transition
along e. jumpRelation(cm’, ~vals, ~flows) defines the initial values of the state variables and the flow
conditions upon entering state cm’. A jump e causes the automaton to transit probabilistically into
a successor mode.

For each possible successor we define a probability range probRange. For reasons that are ex-
plained below we represent the probability ranges such that they are non-overlapping, their relative
sizes are proportional to the probability they represent (the sum of the ranges is 1) and that their
boundaries have the form i

2n , where i and n are integers. The predicate probRange(e,2n) defines the
sum of the ranges. A possible transition with a probability range [i

2n , j
2n] is represented as jumpSuc-

cessor(e,cm’,[i,j]). The predicate jumpRelation(cm’, ~vals, ~flows) means that upon entering control
mode cm’ the system variables and flows are initialized as specified by ~vals and ~flows.

Using the predicates introduced above, we can state a probabilistic hybrid automaton (Figure 10)
for the interpretation of our navigation plan using the following facts.

jumpRelation(cm0,〈2400,600〉, 〈f1(office, 〈2300, 800〉), f2(office, 〈2300, 800〉)〉)
jumpCondition(cm0,e1,dist(〈x, y〉, 〈xdw, ydw〉) < 100)
jumpCondition(cm0,e2,x = 2300 ∧ y = 800)

jumpSuccessor(e1,cm1,[1,1])
probRange(e1,1)

jumpRelation(cm1,〈 〉,〈f1(doorway, 〈2300, 800〉), f2(doorway, 〈2300, 800〉)〉)
jumpRelation(cm2,〈 〉,〈f1(office, 〈2300, 900〉), f2(office, 〈2300, 900〉)〉)
...

The robot starts at position 〈2400, 600〉 in control mode cm0 in which the robot leaves the
lower office on the right. In this control mode the robot moves with 〈f1(office, 〈2300, 800〉),
f2(office, 〈2300, 800〉)〉. The navigation system leaves control mode cm0 when coming close to
the door (dist(〈x, y〉, 〈xdw, ydw〉) < 100) by performing the transition e1. If the system performs
the transition e1 then the control flow changes because the low-level navigation plan switches into
the navigation mode doorway. In our example, this transition is deterministic.

To account for uncertainty in control we make these transitions probabilistically. Thus we can
substitute the control mode cm1 by multiple control modes, say cm′

1 and cm′′
1 where the control

flows of the modes are sampled from a probability distribution. We can then state for example that
with a probability of 75% (12

16) the system transits into control mode cm′
1 and with 25% (4

16) into the
mode cm′′

1 by defining the effects of the transition e1 as follows:

jumpCondition(cm0,e1,dist(〈x, y〉, 〈xdw, ydw〉) < 100)
jumpSuccessor(e1,cm′

1,[1,12])
jumpSuccessor(e1,cm′′

1 ,),[13,16])
probRange(e1,16)

817

BEETZ & GROSSKREUTZ

To represent the state of a hybrid automaton we use the predicates mode(cm) and startTime(cm,t)
to represent that the current control mode is cm and that cm started at time t. We use flow(~flow) and
valuesAt(ti, ~vali) to assert the flows and values of system variables for given time points. Further,
the values of system variables can be inferred for arbitrary time points through interpolation on the
basis of the current flow and the last instances of valuesAt(ti, ~vali). This is done using the predicate
stateVarsVals:

stateVarVals(~vals) ≡ valuesAt(t0, ~vals0) ∧ now(t)
∧flow(~flow) ∧ ~vals = ~vals0 + (t− t0) ~flow

where now(t) specifies that t is the current time. Note, in this conceptualization we represent the dis-
crete state changes explicitly and the states within a mode using the mode’s initial state and its flow.
A particular state within a mode can be derived on demand using the predicate stateVarVals. Inter-
ferences between different movements of the robot issued in different control threads are modeled
through the mode’s flow.

Figure 11 depicts an execution scenario, a possible evolution of the hybrid system representing
how the execution of a robot controller might go. An execution scenario is a consistent set of jumps
and values from the hybrid model over time. From this we can extract event histories that can be
used to simulate plan execution and look for flaws.

An execution scenario consists of a timeline, a linear sequence of events and their results. Time-
lines represent the effects of plan execution in terms of time instants, occasions, and co-occurring
events. This implies that several events can occur at the same time instant but only one of them,
the primary one, changes the state of the world. Time instants are points in time at which the world
changes due to an action of the robot or an exogenous event. Each time instant has a date which
holds the time on the global clock at which the time instant occurred. An occasion is a stretch of
time over which a world state P holds and is specified by a proposition, which describes P, and the
time interval for which the proposition is true.

We deal with other kinds of uncertainty by representing our model using McDermott’s rule
language for probabilistic, totally-ordered temporal projection (McDermott, 1994). Using this lan-
guage we can represent Poisson distributed exogenous events, probability distributions over the
current world state, and probabilistic sensor and action models in a way that is consistent with our
model presented so far.

3.3 Discussion of the Model

Let us now discuss how our hybrid system model addresses the issues raised in Section 2.3. There
are two inference tasks concerning the issue of continuous change caused by concurrent reactive
plans that are supported by our model. The first one is inferring the state at a particular time instant.
For example, if the projection mechanism predicts the occurrence of an exogenous event, such as an
object falling out of the robot’s gripper, then the projection mechanism has to infer where the robot
is at this time instant to assert the position of the object after falling down. This can be done using
the initial state and the flow condition of the active control mode. The second important inference
task is the prediction of control mode jumps caused by the continuous effects of low-level plans,
such as the robot entering the hallway. This can be inferred using the jump conditions of the active
control mode in addition to the initial state and the flow condition.

818

PROBABILISTIC HYBRID ACTION MODELS

t5t1

clock-tick(t1) clock-tick(t5)

valuesAt(t3,<2360,850>)

jump(e1)

t2

clock-tick(t2)

t4

clock-tick(t3)

t3

clock-tick(t4)

mode(cm0)

initialValues(cm0,<2400,600>)

startTime(cm0,0)

flow(<f1(office,<2300,900>),f2(office,<2300,900>)>)

mode(cm1)

initialValues(cm1,

startTime(cm1,5)

flow(<f1(off...

clock-tick(t6)

t6

Figure 11: Part of a timeline that represents a projected execution scenario for a low-level naviga-
tion plan. Time instants are depicted as circles, events as rectangles, and occasions as
rectangles with round corners.

The second issue that we have raised in Section 2.3 is the prediction of the robot’s reactions to
instantaneous events, such as dropping an object. Typically, a reactive plan for carrying an object
contains sub-plans that ask the robot to stop and pick up the object again as soon as the sensed force
in the gripper drops. These kinds of reactions are handled by checking all active jump conditions
immediately after an instantaneous event has occurred.

The third issue in projecting concurrent reactive plans is the interference between simultaneous
continuous effects. In our model, interference is modelled by describing the effects of control mode
jumps on the flow condition of the subsequent control mode. The programmer must specify rules
describing the physics of the domain for specifying the flow condition of the next mode. Thus, when
a sub-plan for moving the robot’s arm is started while the robot is moving, then the rule describing
the effects of the corresponding control mode jump asserts the flow condition specifying that the
world coordinates of the gripper are determined by the gripper position at the mode jump and the
transposition of the two motions in the successor mode.

Our last issue is that of uncertainty. One aspect of uncertainty that our model supports are
inaccuracies in the physical behavior of the robot. This is modelled by specifying probability distri-
butions over the successor modes when a control mode jump occurs. Other aspects of uncertainty
including probabilistic sensor models, uncertainty of instantaneous physical effects, uncertainty
about the state of the world, and Poisson distributed exogenous events are handled by the rule lan-
guage that we describe in the next section. In particular, we will give examples of exogenous events
and passive sensors in Section 5.3 and a detailed probabilistic model of a complex sensing action in
Section 5.4.

819

BEETZ & GROSSKREUTZ

Our approach does not explicitly reason about the belief state. We assume that the belief state is
computed by probabilistic state estimators (Thrun et al., 2000). Such state estimators not only return
the most likely state but also infer additional properties of the belief state such as its ambiguity and
the expected accuracy of its global maximum. The plan-based controller interrupts delivery tours as
soon as the position estimate is ambiguous or too inaccurate. Details of this mechanism as well as
motivations for it can be found in the work of Beetz, Burgard, Fox, and Cremers (1998).

4. Probabilistic, Totally-Ordered Temporal Projection

In the last section we have seen how hybrid systems and execution scenarios are represented. In
this section, we will see how we can predict execution scenarios from the specification of a hy-
brid system. For this purpose we use McDermott’s rule language for probabilistic, totally-ordered
temporal projection (McDermott, 1994). This rule language has the expressiveness needed for our
purpose: we can specify the probabilities of event effects depending on the respective situation,
Poisson distributed events, and probability distributions over the delays between subsequent plan
generated events. Uncertainty about the current state of the world can be specified in the form of
probabilistic effect rules of the distinct start event.

This rule language is an excellent basis for formalizing our model introduced in the last section.
A set of rules that satisfies certain conditions implies a unique distribution of dated event sequences
that satisfies the probabilistic conditions of the individual rules (see Definition 2 in Section 4.1).
Thus if we give probabilistic formalizations of the behavior within control modes and mode jumps
in McDermott’s rule language then we define a unique probability distribution over the state tra-
jectories of the hybrid automaton that satisfies our probabilistic constraints. Moreover, McDermott
has developed a provably correct projection algorithm that samples dated event sequences from this
unique distribution.

In the remainder of this section we will proceed as follows. We start by presenting McDermott’s
rule language for probabilistic, totally-ordered temporal projection and summarize the main prop-
erties of this language. We will then represent our hybrid system model using this rule language.
Based on this representation we can, loosely speaking, show that when applying McDermott’s pro-
jection algorithm to the representation of the hybrid system, the algorithm returns dated event se-
quences drawn from the unique distribution implied by our rules with arbitrarily high probability.

Note, to obtain these results we will use a discretized model of time with clock tick events that
can be spaced arbitrarily close together resulting in higher accuracy of the projection algorithm.
This makes the use of this representation infeasible in practice. Therefore, we eliminate the need
for clock tick events in Section 5 by making use of McDermott’s persist effects.

4.1 McDermott’s Rule Language for Probabilistic, Totally-ordered Temporal Projection

The different kinds of rules provided by this language are projection rules, effect rules, and exoge-
nous event rules. Projection rules specify the sequence of dated events caused by low-level plans,
effect rules specify causal models of sensing processes and actions, and exogenous event rules are
used to specify the occurrence of events not under the control of the robot. We will describe these
kinds of rules below.

• Projection rules can be used to specify the sequence of events caused by the interpretation of
a low-level plan. Projection rules have the form

820

PROBABILISTIC HYBRID ACTION MODELS

project rule name(args)
if cond
with a delay of δ1 occurs ev1

...
with a delay of δn occurs evn

and specify that if low-level plan name(args) is executed and condition cond holds then the
low-level plan generates the events ev1, ..., evn with relative delays δ1, ..., δn, respectively.
Thus, projection rules generate a sequence of dated events.

Uncertain models can be represented by sampling the δi from a probability distribution over
durations and by specifying conditions that are satisfied only with a certain probability.

• Effect rules are used to specify conditional probabilistic effects of events. They have the form

e→p rule name
if cond
then with probability θ event ev causes effs

and specify that whenever event ev occurs and cond holds, then with probability θ create and
clip states as specified in effs. The effects of the e→p rule rules have the form A, causing the
occasion A to hold, clip A, causing A to cease to hold, and persist t A, causing A to hold for t
time units.

• Exogenous event rules are used to specify the conditional occurrence of exogenous events.
The rule

p→e rule name
while cond with an avg spacing of τ occurs ev

specifies that over any interval in which cond is true, exogenous events ev are generated
Poisson-distributed with an average spacing of τ time units.

Before proving properties of our model we must first introduce McDermott’s semantics of pos-
sible worlds. To do so, we define the key notions of the underlying conceptualization in Definition 1.
The evolution of the world is described as a sequence of dated instantaneous events where an oc-
currence e@t specifies that event e occurs at time instant t. In addition, we have a function mapping
time instants into world states. More precisely these notions are defined as follows (see McDermott,
1994).

Definition 1 A world state is a function from propositions to {T,F,⊥} and is extended to boolean
formulas in the usual way. An occurrence e@t is a pair c = (e, t), where e is an event and t a
time (t ∈ <+). An occurrence sequence is a finite sequence of occurrences, ordered by date. Its
duration is the date of the last occurrence. A world of duration L, where L ∈ <+, is a complete
history of duration L, that is, it is a pair (C, H), where C is an occurrence sequence with duration
≤ L, and H is a function from [0, L] to world states. In H(0) all propositions are mapped to F, and
if t1 < t2 and H(t1) 6= H(t2) then there must be an occurrence e@t with t1≤t≤t2.

821

BEETZ & GROSSKREUTZ

We use the following abbreviations: (A ↓ t)(W), “A after t in execution scenario W”, to mean
that there is some δ > 0 such that ∀t′ : t < t′ < t + δ ⇒ H(t′)(A) = T . (A ↑ t)(W), “A before t
in W” is similarly defined, but the upper bound for t′ includes t.

After we have described how we represent the change in the world, we state the conditions
under which worlds of duration are consistent with a given set of event effects and exogenous event
rules. To do so, we have to state the constraints that the rules, the local probabilistic models, impose
on state evolution. For this definition we take the plan generated events that are typically specified
through project rules, as given.

Definition 2 If T is a set of rules as defined above, Exog is an occurrence sequence2, P is the set
of propositions, and L is a real number ≥ duration(Exog), then an L-Model of T and Exog is a
pair (U, M), where U is a set of worlds of duration L such that ∀(C, H) ∈ U : Exog ⊂ C, and
M is a probability measure on U that obeys the following restrictions: (A↓t), (A↑t) and e@t are
considered as random variables. A is the “annihilation” of a conjunction A, that is the conjunction
of the negations of the conjuncts of A.

1. Initial blank state: ∀A ∈ P : M(A ↑ 0) = 0.

2. Event-effect rules: If T contains a rule instance

e→p rule name if A then with probability r event e causes B,

then for every date t, require that, for all nonempty conjunctions C of literals from B:
M(C↓t|e@t ∧A↑t ∧B↑t) = r.

3. Event-effect rules when the events don’t occur: Suppose B is an atomic formula, and let
R = {Ri} be the set of all instances of e→p rules whose consequents contain B or ¬B. If
e→p rule Ri = if Ai then with probability pi event Ei causes Ci, then let Di = Ai ∧ Ci,
Then M(B↓t|B↑t ∧ N) = 1 and M(B↓t|¬B↑t ∧ N) = 0 where N = (¬E1@t ∨ ¬D1) ∧
(¬E2@t ∨ ¬D2) ∧

4. Event-occurrence rules: For every time point t such that no occurrence with date t is in
Exog and every event E, such that there is exactly one instance

p→e rule name while A with an avg spacing of d occurs E

with M(a↑t) > 0 require

limdt→0
M(occ. of class E between t and t+dt|A↑t)

dt
= 1/d

limdt→0
M(occ. of class E between t and t+dt|¬A↑t)

dt
= 0

2. Exog is an occurrence sequence, which represents the events generated by the interpretation of the robot’s plan and
modeled using projection rules.

822

PROBABILISTIC HYBRID ACTION MODELS

if there exists no so such rule, require

limdt→0
M(occ. of class E between t and t+dt)

dt
= 0

5. Conditional independence: If one of the previous clauses defines a conditional probability
M(α|β), which mentions times t, then α is conditionally independent, given β, of all other
random variables mentioning times on or before t. That is, for arbitrary γ mentioning times
on or before t, M(α|β) = M(α|β ∧ γ).

McDermott (1994) shows that this definition yields a unique probability distribution M . He also
gives a proof that his projection algorithm draws random execution scenarios sampled from this
unique probability distribution implied by the given probabilistic models.

4.2 Probabilistic Temporal Rules for PHAMs

In order to predict the evolution of a hybrid system, we specify rules in McDermott’s rule language
that, given the state of the system and a time t, predict the successor state at t. To predict the
successor state, we must distinguish three cases: first, a control mode transition occurs; second, an
exogenous event occurs; and third, the system changes according to the flow of the current mode.

We will start with the rules for predicting control mode jumps. To ensure that mode transitions
are generated as specified by the probability distributions over the successor modes, we will use
the predicate randomlySampledSuccessorMode(e,cm) and realize a random number generator using
McDermott’s rule language.

randomlySampledSuccessorMode(e,cm) ≡
probRange(e, max) ∧ randomNumber(n, max)
∧jumpSuccessor(e, cm, range) ∧ n ∈ range

In order to sample values from probability distributions we have to axiomatize a random number
generator that asserts instances of the predicate randomNumber(n,max) used above (see Beetz &
Grosskreutz, 2000). We do this by formalizing a randomize event. McDermott (1994) discusses the
usefulness of, and the difficulties in, realizing nondeterministic exclusive outcomes. Therefore in
his implementation he escapes to Lisp and uses a function that returns a random element.

Lemma 1 At any time point randomNumber has exactly one extension randomNumber(r,max) where
r is an unbiased random between 0 and max.

Proof: Let max∗ be the largest probRange extension and randomBit(i,value) the i-th random bit.
The start event that causes the initial state timeline causes randomBit(i,0) ∀0 ≤ i ≤ log max∗.
Thereafter, a randomize event is used to sample their value:

e→p rule RANDOMIZE

if randomBit(i,val) ∧ negation(val,neg)
then with probability 0.5

event randomize
causes randomBit(i,neg) ∧ clip randomBit(i,val)

823

BEETZ & GROSSKREUTZ

Rule MODE-JUMP causes a control mode transition as soon as the jump condition cond becomes
true. The rule says that in any interval in which cm is the current control mode and in which the
jump condition cond for leaving cm following edge edge a jump along edge will occur with an
average delay of τ time units.

p→e rule MODE-JUMP

while mode(cm) ∧ jumpCondition(cm,cond,edge)
∧ stateVarsVal(~vals) ∧ satisfies(vals,cond)

with an average spacing of τ time units
occurs jump(edge)

Rule JUMP-EFFECTS specifies the effects of an jump event on the control mode, system vari-
ables, and the flow. If cm is a control mode randomly sampled from the probability distribution
over successor nodes for jumps along edge then the jump along edge has the following effects. The
values of the state variables and the flow condition of the previous control mode cmold are retracted
and the ones for the new control mode cm are asserted.

e→p rule JUMP-EFFECTS

if randomlySampledSuccessorMode(edge,cm)
∧ initialValues(cm, ~val) ∧ flowCond(cm, ~flow) ∧ now(t)
∧ mode(cmold) ∧ flow(flowold) ∧ valuesAt(told,valold)

then with probability 1.0
event jump(edge)
causes mode(cm) ∧ flow(~flow) ∧ valuesAt(transTime, ~val)

∧ clip mode(cmold) ∧ clip flow(flowold) ∧ clip valuesAt(told,valold)

Time is advanced using clock-tick events. With every CLOCK-TICK(?t) event the now predicate
is updated by clipping the previous time and asserting the new one. Note, the time differs at most
dtclocktime units from the actual time.

e→p rule CLOCK-RULE

if now(to)
then with probability 1.0

event clock-tick(t)
causes now(t) ∧ clip now(to)

Exogenous events are modeled using rules of the following structure. When the navigation
process is in the control mode cm and the values ~vals of the state variables satisfy the condition for
the occurrence of the exogenous event ev, then the event ev occurs with average spacing of τ time
units.

p→e rule CAUSE-EXO-EVENT

while mode(cm) ∧ exoEventCond(cm,cond,ev)
∧ stateVarsVal(~vals) ∧ satisfies(vals,cond)

with an average spacing of τ time units
occurs exoEvent(ev)

824

PROBABILISTIC HYBRID ACTION MODELS

The effects of exogenous event rules are specified by rules of the following form. The exoge-
nous event exoEvent(ev) with effect specification exoEffect(ev, ~val)) causes the values of the state
variables to change from ~valo to ~val.

e→p rule EXO-EVENT-EFFECT

if exoEffect(ev, ~val)) ∧ valuesAt(to,valo) ∧ now(t)
then with probability 1.0

event exoEvent(ev)
causes valuesAt(t, ~val) ∧ clip valuesAt(to, ~valo)

4.3 Properties of PHAMs

We have seen in the last section that a PHAM consists of the rules above and a set of facts that
constitute the hybrid automata representation of a given CRP. In this section we investigate whether
PHAMs make the “right” predictions.

There are essentially three properties of predicted execution scenarios that we want to ensure.
First, predicted control mode sequences are consistent with the specified hybrid system. Second,
mode jumps are predicted according to the specified probability distribution over successor modes.
Third, between two successive events, the behavior is predicted according to the flow of the respec-
tive control mode.

As McDermott’s formalism does not allow for modeling instantaneous state transitions we can
only show that control mode sequences in execution scenarios are probably approximately accurate.
In our view, this is a low price for the expressiveness we gain through the availability of Poisson
distributed exogenous events.

The subsequent lemma 2 states that control mode jumps can be predicted with arbitrary accuracy
and arbitrarily high probability by decreasing the time between successive clock ticks.

Lemma 2 For each probability ε and delay δ, there exists a τ (average delay of the occurrence of
an event after the triggering condition has become true) and a dtclock (time between two subsequent
clock ticks) such that whenever a jump condition becomes satisfied, then with probability ≥ 1− ε a
jump event will occur within δ time units.

Proof: Let t be the time where the jump condition is fulfilled. If τ ≤ δ/(2 log(1/ε)) and dtclock≤
δ/2 then at most δ/2 time units after t the antecedent of rule MODE-JUMP is fulfilled. The probabil-
ity that no event of class jump(cm′) occurs between t+δ/2 and t+δ is≤ e−δ/(2τ) = e−log(1/ε) = ε,
so with probability ≥ 1− ε such an event will occur at most δ time units after t.

�

This implies that there is always a non-zero chance that control mode sequences are predicted
incorrectly. It happens only when two jump conditions become true and the jump triggered by the
later condition occurred before the other one. However, the probability of such incorrect predictions
can be made arbitrarily small by the choice of τ and dtclock.

The basic framework of hybrid systems does not take the possibility of exogenous events into
account and thereby allows for proving strong system properties such as the reachability of goal
states from arbitrary initial conditions or safety conditions for the system behavior (Alur et al.,

825

BEETZ & GROSSKREUTZ

1997, 1996). For the prediction of robot behavior in dynamic environments these assumptions,
however, are unrealistic. Therefore, we only have a weaker property, namely the correspondence
between the predicted behavior and the flows specified by the hybrid system between immediate
subsequent events.

Lemma 3 Let W be an execution scenario, e1@t1 and e2@t2 be two immediate subsequent events
of type jump or exoEvent, and cm be the control mode after t1 in W . Then, for every occurrence
e@t with t1 < t ≤ t2 W(t)(stateVarVals(~vals)) is unique. Further, ~vals = ~vals1 + (t - t1) *
flow(cm), where ~vals1 are the values of the state variables at t1.

Proof: There are only two classes of rules that affect the value of valuesAt and flow: rule JUMP-
EFFECTS, and rule EXO-EVENT-EFFECT. These rules always clip and set exactly one extension of
the predicates, thus together with the fact that the initial event asserts exactly one such predicate,
the determined value is unique.

During the interval between t1 and t2 the extension of stateVarVals evolves according to the flow
condition of mode cm due to the fact that flow is not changed by rule EXO-EVENT-EFFECT. Thus
it remains as initially set by rule JUMP-EFFECTS, which asserts exactly the flow corresponding to
cm. The proposition then follows from the assumption of a correct axiomatization of addition and
scalar-vector multiplication.

�

Another important property of our representation is that jumps are predicted according to the
probability distributions specified for the hybrid automaton.

Lemma 4 Whenever a jump along an edge e occurs, the successor state is chosen according to the
probability distribution implied by probRange and jumpSuccessor.

Proof: This follows from the properties of the randomize event and Rule Jump-Effects.

�

Using the lemmata we can state and show the central properties of PHAMs: (1) the predicted
control mode transitions correspond to those specified by the hybrid automaton; and (2) the same
holds for the continuous predicted behavior between exogenous events; (3) Exogenous events are
generated according to their probabilities over a continuous domain (this is shown in McDermott,
1994).

Theorem 1 Every sequence of mode(cm) occasions follows a branch (cmi), ..., (cmj) of the hy-
brid automaton.

Proof: Each occasion mode(cm) must be asserted by rule JUMP-EFFECTS. Therefore there must
have been a jump(e) event. Consequently, there must have been a jumpCondition from the previous
control mode to cm.

�

826

PROBABILISTIC HYBRID ACTION MODELS

Because jump events are modeled as Poisson distributed events there is always the chance of
predicting control mode sequences that are not valid with respect to the original hybrid system. So
next we will bound the probability of predicting such mode sequences by choosing the parameteri-
zation of the jump event and clock tick event rules appropriately.

Theorem 2 For every probability ε there exists an average delay of a mode jump event τ and a
delay dtclock with which the satisfaction of jump conditions is realized such that with probability
≥ 1 − ε the ~vals of stateVarVals occasions between two immediate subsequent exogenous events
follow a state trajectory of the hybrid automaton.

Proof: The proof is based on the property that jumps occur in their correct order with an arbitrarily
high probability. In particular, we can choose δ as a function of the minimal delay between jump
conditions becoming true. Then, the jumps to successor modes occur with arbitrarily high proba-
bility (Lemma 2). Finally, according to Lemma 3 the trajectory of stateVarVals between transitions
is accurate.

�

5. The Implementation of PHAMs

We have now shown that PHAMs define probability distributions over possible execution scenarios
with respect to a given belief state. The problem of using PHAMs is obvious. Nontrivial CRPs for
controlling robots reliably require hundreds of lines of code. There are typically several control
processes active, many more are dormant, waiting for conditions that trigger their execution. The
hybrid automata for such CRPs are huge, the branching factors for mode transitions are immense.
Let alone the distribution of execution scenarios that they might generate. The accurate computation
of this probability distribution is prohibitively expensive in terms of computational resources.

There is a second source of inefficiency in the realization of PHAMs. In PHAMs we have used
clock tick rules, Poisson distributed events, that generate clock ticks with an average spacing of
τ time units. We have done so, in order to formalize the operation of CRPs in a single concise
framework. The problem with this approach is that in order to predict control mode jumps accurately
we must choose τ to be very small. This, however, increases the number of clock tick events
drastically and makes the approach infeasible for all but the most simple scenarios.

In order to draw sample execution scenarios from the distribution implied by the causal model
and the initial state description we use an extension of the XFRM projector (McDermott, 1992b) that
employs the RPL interpreter (McDermott, 1991) together with McDermott’s algorithm for proba-
bilistic temporal projection (McDermott, 1994). The projector takes as its input a CRP, rules for
generating exogenous events, a set of probabilistic rules describing the effects of events and actions,
and a (probabilistic) initial state description. To predict the effects of low-level plans the projec-
tor samples effects from the probabilistic causal models of the low-level plans and asserts them as
propositions to the timeline. Similarly, when the plan activates a sensor, the projector makes use of
a model of the sensor and the state of the world as described by the timeline to predict the sensor
reading.

In this section we investigate how we can make effective and informative predictions on the basis
of PHAMs that can be performed at a speed sufficient for prediction-based online plan revision.
To achieve effectiveness we use two means. First, we realize weaker inference mechanisms that

827

BEETZ & GROSSKREUTZ

are based on sampling execution scenarios from the distribution implied by the causal models and
the initial state description. Second, we replace the clock tick event mechanism with a different
mechanism that infers the occurrence of control mode jumps and uses the persist effect to generate
the respective delay. We will detail these two mechanisms in the remainder of this section.

5.1 Projection with Adaptive Causal Models

Let us first turn to the issue of eliminating the inefficiencies caused by the clock tick mechanism.
We will do so by replacing clock tick rules with a mechanism for tailoring causal models on the fly
and using the persist effects of the probabilistic rule language.

For efficiency reasons the process of projecting a continuous process p is divided into two
phases. The first phase estimates a schedule for endogenous events caused by p while consider-
ing possible effects of p on other processes but not the effects of the other processes on p. This
schedule is transformed into a context-specific causal model tailored for the plan which is to be
projected. The second phase projects the plan p using the model of endogenous events constructed
in the first phase. This phase takes into account the interferences with concurrent events and re-
vises the causal model if situations arise in which the assumptions of the precomputed schedule are
violated.

The projection module uses a model of the dynamic system that specifies for each continuous
control process the state variables it changes and for each state variable the fluents that measure that
state variable. For example, consider the low-level navigation plans that steadily change the robot’s
position (that is the variables x and y). The estimated position of the robot is stored in the fluents
robot-x and robot-y:

changes(low-level-navigation-plan, x)
changes(low-level-navigation-plan, y)
measures(robot-x, x)
measures(robot-y, y)

Extracting relevant conditions. When the projector starts projecting a low-level navigation plan
it computes the set of pending conditions that depend on robot-x and robot-y, which are the fluents
that measure the state variables of the dynamic system and are changed by the low-level navigation
plan. These conditions are implemented as fluent networks.

Fluent networks are digital circuits where the components of the circuit are fluents. Figure 12
shows a fluent network where the output fluent is true, if and only if the robot is in room A-120. The
inputs of the circuit are the fluents robot-x and robot-y and the circuit is updated whenever robot-x
and robot-y change.

Our reactive plans are set up such that the fluent networks that compute conditions for which
the plan is waiting can be determined automatically using (PROLOG-like) relational queries:

setof ?fl-net (fluent(?fl) ∧ status(?fl,pending)
∧ changes(low-level-nav-plan, ?state-var)
∧ measures(?state-var-fl, ?state-var)
∧ depends-on(?fl, ?state-var-fl)
∧ fluent-network(?fl, ?fl-net))

?pending-fl-nets

828

PROBABILISTIC HYBRID ACTION MODELS

robot-x

860.0

1265.0

robot-y

817.0

IN-A-120?

<

>

<

AND

Figure 12: Fluent network for being in room A-120. The robot believes it is in room A-120 if its
estimated x-coordinate is between 860 and 1265 and the y-coordinate is smaller than
817, where the hallway begins.

This query determines ?pending-fl-nets, the set of fluent networks ?fl-net such that ?fl-net is a net-
work with output fluent ?fl. ?fl causes a plan thread to pend and depends on a fluent measuring
a state variable ?state-var changed by the low-level navigation plan. The extraction of these con-
ditions is done automatically. The automatic extraction requires the conditions be in a particular
form and the effects of low-level plans on state variables and the sensing of state variables to be
represented explicitly.

To predict when the fluent IN-A-120? will become true or false, we have to compute the region
in the state space that corresponds to the fluent and compute the intersections of the robot’s state
trajectories with this region.

Endogenous event schedules. For each class of continuous processes we have to provide an en-
dogenous event scheduler that takes the initial conditions and the parameterization of the process,
and the fluent networks that might be triggered and computes the endogenous event schedule. The
endogenous event scheduler for the low-level navigation plans is described in the next section. Given
the kind of process (e.g., low-level navigation plan), the process parameters (e.g., the destination of
the robot), and the pending fluent networks, the scheduler returns a sequence of composite endoge-
nous events. Composite events are represented as triples of the form (∆t, 〈sv1, ..., svn〉, {ev1, ...,
evm}). ∆t is the delay between the ith and the i+1st event in the schedule, 〈sv1, ..., svn〉 the values
of the state variables, and {ev1, ..., evm} the atomic events that are to take place.

If a state for which the plan is waiting, becomes true at a time instance t, then at t a passive-
sensor-update event is triggered. passive-sensor-update is an event model that takes a set of fluents
as its parameters, retrieves the values of the state variables measured by these fluents, applies the
sensor model to these values, and then sets the fluents accordingly.

A causal model of low-level navigation plans. Projecting the initiation of the execution of a
navigation plan causes two events: the start event and a hypothetical completion event after an
infinite number of time units. This is shown in the following projection rule.

829

BEETZ & GROSSKREUTZ

project rule LOW-LEVEL-NAVIGATION-PLAN

if true
with a delay of 0
occurs begin(low-level-nav-plan(?dest-descr, ?id, ?fluent)
with a delay of ∞
occurs end(low-level-nav-plan(?dest-descr, ?id, ?fluent)

The effect rule of the start event of the low-level navigation plan computes the endogenous event
schedule and asserts the next endogenous navigation event into the timeline.

e→p rule ENDOGENOUS-EVENTS

if endogenous-event-schedule(low-level-nav-plan(?dest-descr, ?schedule))
then with probability 1.0

event begin(low-level-nav-plan(?dest-descr, ?id, ?fluent))
causes predicted-events(?id, ?schedule)

∧ running(robot-goto(?descr, ?id))
∧ next-nav-event(?id))

The occasion next-nav-event(?id) triggers the next endogenous event begin(follow-path(?here
〈?x,?y〉) ?dt ?id)). The remaining two conditions determine the parameters of the follow-path event:
the next scheduled event and the robot’s position.

p→e rule CAUSE-EXO-EVENT

while next-nav-event(?id)
∧ predicted-events(?id, ((?dt 〈?x,?y〉 ?evs) !?remaining-evs)
∧ robot-loc(?here)

with an average spacing of 0.0001
occurs begin(follow-path(?here, 〈?x,?y〉, ?dt, ?id))

The effect rule of the begin(follow-path (...)) event specifies among other things that the next
endogenous event will occur after ?dt time units (persist ?dt sleeping(?id)).

e→p rule FOLLOW-PATH

if robot-loc(?coords)
then with probability 1.0

event begin(follow-path(?from, ?to, ?dt, ?id))
causes running(follow-path(?from, ?to, ?dt, ?id))

∧ clip robot-loc(?coords)
∧ clip next-nav-event(?id)
∧ persist ?dt sleeping(?id)

If a running follow path event has finished sleeping the end (follow-path (...)) event occurs.

p→e rule TERMINATE-FOLLOW-PATH

while not sleeping(?id)
∧ running(follow-path(?from, ?to, ?time, ?id))

with an average spacing of 0.0001
occurs end(follow-path(?from, ?to, ?time, ?id))

830

PROBABILISTIC HYBRID ACTION MODELS

Our model of low-level navigation plan presented so far suffices as long as nothing important
happens while carrying out the plan. However, suppose that an exogenous event that causes an
object to slip out of the robot’s hand is projected at time instant t while the robot is in motion. To
predict the new location of the object the projector predicts the location l of the robot at the time t
using the control flow and asserts it in the timeline.

Qualitative changes in the behavior of the robot caused by adaptations of the travel mode
are described through e→p -rules. The following e→p -rule describes the effects of the event
nav-event(set-travel-mode(?n)), which represents the low-level navigation plan resetting the travel
mode:

e→p rule SET-DOORWAY-MODE

if travel-mode(?m)
then with probability 1.0

event nav-event(set-travel-mode(doorway))
causes clip travel-mode(?m)

∧ clip obstacle-avoidance-with(sonar)
∧ travel-mode(doorway)

The rule specifies that if at a time instant at which an event nav-event(set-travel-mode(?n))
occurs the state travel-mode(?m) holds for some ?m, then the states travel-mode(?m) and obstacle-
avoidance-with(sonar) will (with a probability of 1.0) not persist after the event has occurred, i.e.,
they are clipped by the event. The event causes the state travel-mode(doorway) to hold until it is
adapted next time.

The rules listed above are hand-coded and plan-specific. An investigation of whether the plans
can be coded such that the rule specification can be automated is on our agenda for future research.

5.2 Endogenous Event Scheduler

We have just shown how events are projected from a given endogenous event schedule, but we
have not shown how the schedule is constructed. Thus, this section describes the endogenous event
scheduler for low-level navigation plans. The scheduler predicts the effects of the low-level nav-
igation plan on the state variables x and y. The endogenous event scheduler assumes the robot is
following a straight path between locations 1 to 5. As we have pointed out earlier, there are two
kinds of events that need to be predicted: the ones causing qualitative physical change and the ones
causing the trigger conditions that the plan is waiting for.

The qualitative events caused by the low-level navigation plan pictured in Figure 13 are the
ones that occur when the robot arrives at the locations 1, 2, 3, 4, and 5 in which the robot either
changes its travel mode or arrives at its destination. For each of these time instants the occurrence
of a set-travel-mode-event is predicted.

The scheduler for triggering events works in two phases: (1) it transforms the fluent network
into a condition that it is able to predict and (2) it applies an algorithm for computing when these
events occur. The conditions that are caused by the low-level navigation plan can be represented
as regions in the environment such that the condition is true if and only if the robot is within this
region. The elementary conditions are numeric constraints on the robot’s position or the distance of
the robot to a given target point. The scheduler assumes that robot-x and robot-y are the only fluents

831

BEETZ & GROSSKREUTZ

in these networks that change their value during the execution of the plan. More complex networks
can be constructed as conjunctions and disjunctions of the elementary conditions.

A−117

A−111

6

XYX
XYX
XYX
XYX
XYX
XYX

ZYZ
ZYZ
ZYZ
ZYZ
ZYZ
ZYZ

1

2
3

4

5

Figure 13: Initially predicted endogenous events.

In the next step the endogenous event scheduler overlays the straight line path through the in-
termediate goal points of the topological navigation path (see Figure 7) with the regions computed
in the previous step. It then computes a schedule for the endogenous events by following the nav-
igation path and collecting the intersections with the regions (see Figure 13). The result of the
scheduling step is a sequence of triples of the form (∆ti, 〈xi, yi〉, {ev1, ..., evn}).
Rescheduling endogenous events. One problem that our temporal projector has to deal with is that
a wait for step might be executed while a low-level navigation plan is projected. For example, when
the robot enters the hallway, the policy that looks for the opening angles of doors when passing them
is triggered. Therefore, the causal model that was computed by the endogenous event scheduler is
no longer sufficient. It fails to predict the “passing a door” events.

These problems are handled by modifying the endogenous event schedule: whenever the robot
starts waiting for a condition that is a function of the robot’s position, it interrupts the projection of
the low-level navigation plan, adapts the causal model of the low-level navigation plan, and contin-
ues with the projection. In the case of entering the hallway, a new endogenous event schedule that
contains endogenous events for passing doorways is computed. This updated schedule of endoge-
nous events is pictured in Figure 14.

5.3 Projecting Exogenous Events, Passive Sensors and Obstacle Avoidance

One type of exogenous event is an event for which we have additional information about its time
of occurrence, such as the event that Dieter will be back from lunch around 12:25. These kinds of
events are represented by a p→e rule together with an e→p rule. The e→p rule specifies that the

832

PROBABILISTIC HYBRID ACTION MODELS

[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[
[Y[Y[Y[Y[Y[Y[

\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\
\Y\Y\Y\Y\Y\

]Y]Y]Y]
]Y]Y]Y]
]Y]Y]Y]
]Y]Y]Y]
]Y]Y]Y]

^Y^Y^Y^
^Y^Y^Y^
^Y^Y^Y^
^Y^Y^Y^
^Y^Y^Y^

_Y_Y_Y_
_Y_Y_Y_
_Y_Y_Y_
_Y_Y_Y_
_Y_Y_Y_

`Y`Y`Y`
`Y`Y`Y`
`Y`Y`Y`
`Y`Y`Y`
`Y`Y`Y`

aYaYa
aYaYa
aYaYa
aYaYa
aYaYa

bYbYb
bYbYb
bYbYb
bYbYb
bYbYb

cYcYc
cYcYc
cYcYc
cYcYc
cYcYc

dYdYd
dYdYd
dYdYd
dYdYd
dYdYd

eYeYeYe
eYeYeYe
eYeYeYe
eYeYeYe
eYeYeYe

fYfYfYf
fYfYfYf
fYfYfYf
fYfYfYf
fYfYfYf

1235
6

7

8

1

4

A−117

A−111

Figure 14: Modified endogenous event schedule.

start event causes the state before-dieters-door-opens() to hold and persist for ?time time units. The
event dieters-door-opens() is triggered as soon as before-the-door-opens() no longer holds.

e→p rule BACK-FROM-LUNCH

if about(?time, 12:25) ∧ difference(?time, *now*, ?wait-for))
then with probability 1.0

event start
causes persist ?wait-for before-the-door-opens

p→e rule DOOR-OPENS

while thnot before-the-door-opens
with an average spacing of 0.0001
occurs dieters-door-is-opened

In order to predict the occurrence of exogenous events, the plan projector does the following.
It first computes the time when the robot will cause the next event enext. Let us assume that this
event occurs t time units after the last event elast and that c is the strongest condition that holds
from elast until enext.3 The following algorithm predicts the occurrence of the next exogenous
event accurately. First, for every p→e rule ri whose enabling condition is satisfied by c randomly
decide whether ei will occur between elast and enext based on the average temporal spacing of
ei events in situations where c holds. If ei is predicted to occur, select its occurrence time by
randomly selecting a time instant in the time interval between elast and enext (the exogenous events

3. The cases where enabling conditions of exogenous events are caused by the continuous effects between elast and
enext are handled analogously to the achievement of triggering conditions.

833

BEETZ & GROSSKREUTZ

are Poisson distributed). Select the exogenous event that is predicted to occur the earliest, assert it
to the timeline, and continue the projection after the occurrence of this event.

The last two components we need to describe are passive sensors, which are steadily updated
and do not change the configuration of the robot and the behavior of the collision avoidance routines.

Readings of passive sensors only need to be projected if the measured state variables change
significantly or if the state variables traverse values that satisfy conditions for which the robot is
waiting. For each of these situations there is an update-passive-sensors event.

Collision avoidance is not modeled except in situations in which the robot is told about objects
that are moved around. In this case the endogenous event scheduler adds a region corresponding to
the object. If the region blocks the way to the destination — that is the robot cannot move around
the region — then a possible-bump-event is generated. The effect rule for a possible bump event
specifies that, if the robot has activated sensors that can detect the object, the low-level navigation
plan fails with a failure description “path blocked.” Otherwise a bump event is generated. For
example, since sonar sensors are the only sensors placed at table height, the collision avoidance
module can avoid a collision with a table only if the sonar sensors are active. Thus, to predict a
bump, the projector has to determine how long the sonar sensors have been switched off before the
possible bump event occurs.

5.4 Models of Complex Sensing Actions

To understand how other types of uncertainty can be modeled and how the causal models interact
with the plan interpretation let us look at a more complex sensing action realized through a low-level
plan look-for. The sub-plan is called with a visual description (?pl) of objects it is supposed to look
for.

Typically, in order to model a low-level plan we need a set of projection rules that probabilis-
tically describe the possible event sequences and outcomes when activating a behavior module. In
each situation exactly one projection rule is applied (although the decision about which one might
be probabilistic).

One of these projection rules for look-for is listed below. The model consists of three parts.
The first part (line 1 to 7) specifies the condition under which this rule predicts the behavior of the
look-for correctly. The second part (lines 8 to 11) lists the events that look-for will cause if this
rule is applicable. Finally, the last line specifies how the low-level plan signals the completion of
its interpretation. In our case, the low-level plan succeeds and returns a list of object descriptions
(?desigs) as its value.

The condition of the projection rule determines where the robot is (1), probabilistically decides
whether the look-for is “normal” based on the camera used and the specifics of the location (2), and
infers what objects are located there (3). This inference is performed based on the robot’s proba-
bilistic belief about the state of the world and the predicted exogenous events. The condition then
uses the sensor model for the camera in order to decide probabilistically how the robot perceives
each object. For each object that is perceived as matching the perceptual description ?pl a local
designator ?desig is created and collected in the variable desigs. The last condition (7) estimates
the time ?dt after which the look-for behavior completes. Upon completion of the look-for behavior
the projected interpretation process sends a success signal with the return value ?desigs as its argu-
ment. The projected behavior consists of three events: two that change the world begin(look-for(?pl,
?cam)) and end(look-for(?pl, ?cam)), which occurs ?dt later. The third event changes the compu-

834

PROBABILISTIC HYBRID ACTION MODELS

project rule look-for(?pl, ?cam)
(1) if (loc(robot, 〈?x,?y〉)
(2) ∧ normal-look-for-behavior(?cam, ?loc)
(3) ∧ setof ?ob loc(?ob, 〈?x,?y〉) ?obs-here
(4) ∧ sensor-model(?cam, ?sensor-model)
(5) ∧ features(?pl,?features)
(6) ∧ setof ?desig

(member(?ob,?obs-here)
∧ obj-seen(?ob, ?sensor-model)
∧ perceived-properties(?ob, ?features, ?sensor-model, ?pl)
∧ local-desig(?desig,?ob,?pl,?x,?y))

?desigs
(7) ∧ look-time(〈?x,?y〉, ?features, ?dt))
(8) with a delay of 0 occurs mode transition begin(look-for(?pl, ?cam))
(9) with a delay of ?dt occurs mode transition end(look-for(?pl, ?cam))
(10) with a delay of 0 occurs trigger fluent visual-inputs-fluent(?cam)
(11) with a delay of 0 occurs set fluent obs-pos-fluent← ?seen)
(12) with a delay of 0 occurs succeed ?desigs

Figure 15: A projection rule describing the behavior module look-for.

tational state of the structured reactive controller after passing ?dt time units. This event pulses the
fluent visual-inputs-fluent(?cam) and sets the fluent obs-pos-fluent(?cam).

Besides asserting the events that take place during the execution of a plan we have to specify
how these events change the world. This is done by using effect rules. One of them is shown in
Figure! 16. The rule specifies that if at a time instant at which an event end(look-for(?pl, ?cam))
occurs the state visual-track(?desig, ?ob) holds for some ?desig and ?ob, then the states visual-
track(?desig, ?ob) will not (with a probability of 1.0) persist after the event has occurred, i.e., they
are clipped by the event.

e→p rule VISUAL-TRACKING

if visual-track(?desig, ?ob)
then with probability 0.9

event end(look-for(?pl, ?cam))
causes clip visual-track(?desig, ?ob))

Figure 16: An e→p rule describing the effects of the event end(look-for(?pl, ?cam)).

5.5 Probabilistic Sampling-based Projection

So far we have looked at the issue of efficiently predicting an individual execution scenario. We
will now investigate the issue of drawing inferences that are useful for planning based on sampled
execution scenarios.

835

BEETZ & GROSSKREUTZ

Recently, probabilistic sampling-based inference methods have been proposed to infer informa-
tion from complex distributions quickly and with bounded risk (Fox, Burgard, Dellaert, & Thrun,
1999; Thrun, 2000). We will now discuss how we can use sampling-based projection for anticipat-
ing likely flaws with high probability.

Advantages of applying probabilistic sampling-based projection to the prediction of the effects
of CRPs are that it works independently of the branching factor of the modes of the hybrid automaton
and that it only constructs a small part of the complete PHAM.

But what kinds of prediction-based inferences can be drawn from samples of projected exe-
cution scenarios? The inference that we found most valuable for online revisions of robot plans
is: do projected execution scenarios drawn from this distribution satisfy a given property p with a
probability greater than θ? A robot action planner can use this type of inference to decide whether
or not it should revise a plan to eliminate a particular kind of flaw: it should revise the plan if it
believes that the flaw’s likelihood exceeds some threshold and ignore it otherwise. Of course, such
inferences can be drawn based on samples only with a certain risk of being wrong. Suppose we want
the planner to classify any flaw with probability greater than θ as to be eliminated and to ignore any
flaw less likely than τ . We assume that flaws with probability between τ and θ have no large impact
on the robot’s performance. How many execution scenarios should the plan revision module project
in order to classify flaws correctly with a probability greater than 95%?

A main factor that determines the performance of sample-based predictive flaw detection is the
flaw detector. A flaw detector classifies a flaw as to be eliminated if the probability of the flaw with
respect to the robot’s belief state is greater than a given threshold probability θ. A flaw detector
classifies a flaw as hallucinated if the probability of the flaw with respect to the robot’s belief state
is smaller than a given threshold τ . So far we do not consider the severity of flaws, which is an
obvious extension. Typically, we choose θ starting at 50% and τ smaller than 5%.

Specific flaw detectors can be realized that differ with respect to (1) the time resources they
require; (2) the reliability with which they detect flaws that should be eliminated; and (3) the prob-
ability that they hallucinate flaws. That is, they signal a flaw that is so unlikely that eliminating the
flaw would decrease the expected utility.

To be more precise consider a flaw f that occurs in the distribution of execution scenarios of
a given scheduled plan with respect to the agent’s belief state with probability p. Further, let Xi(f)
represent the event that behavior flaw f occurs in the ith execution scenario: Xi(f) = 1, if f occurs
in the ith projection and 0 otherwise.

The random variable Y(f,n) =
∑n

i=1Xi(f) represents the number of occurrences of the flaw f in
n execution scenarios. Define a probable schedule flaw detector DET such that DET(f,n,k) = true
iff Y(f,n) ≥ k, which means that the detector classifies a flaw f as to be eliminated if and only if f
occurs in at least k of n randomly sampled execution scenarios. Thus DET(f,n,k) works as follows.
It first projects n execution scenarios. Then it counts the number of occurrences of the flaw f in the
n execution scenarios. If it is greater or equal to k then the DET(f,n,k) returns true, false otherwise.

Now that we have defined the schedule flaw detector, we can characterize it. Since the occur-
rence of schedule flaws in randomly sampled execution scenarios are independent from each other,
the value of Y(f) can be described by the binomial distribution b(n,p). Using b(n,p) we can compute
the likelihood of overlooking a probable schedule flaw f with probability p in n execution scenarios:

P (Y (f) < j) =

j−1
∑

k=0

(

n
k

)

∗ pk ∗ (1− p)n−k

836

PROBABILISTIC HYBRID ACTION MODELS

Prob. of Flaw θ

50% 60% 70% 80% 90%
DET(f,3,2) 50.0 64.8 78.4 89.6 97.2
DET(f,4,2) 68.8 81.2 91.6 97.3 99.6
DET(f,5,2) 81.2 91.3 96.9 99.3 99.9

Figure 17: The table shows the probability of the flaw detectors DET(f,i,2) detecting flaws that have
the probability θ = 50%, 60%, 70%, 80%, and 90%.

Figure 17 shows the probability that the flaw detector DET(f,n,2) for n = 3,...,5 will detect a
schedule flaw with probability θ. The probability that the detectors classify flaws less likely than τ
as to be eliminated is smaller than 2.3% (for all n≤5).

When using the prediction-based scheduling as a component in the controller of the robot office
courier we typically use DET(f,3,2), DET(f,4,2), and DET(f,5,2) for the different experiments, which
means a detected flaw is classified as probable if it occurs at least twice in three, four, or five
detection readings.

Figure 18 shows the number of necessary projections to achieve β = 95% accuracy. For a
detailed discussion see the work of Beetz et al. (1999).

θ

1% 10% 20% 40% 60% 80%
τ =.1% 1331 100 44 17 8 3
τ =1% ⊥ 121 49 17 8 3
τ =5% ⊥ 392 78 22 9 3

Figure 18: The table lists the number of randomly sampled projections needed to differentiate fail-
ures with an occurrence probability lower than τ from those that have a probability
higher than θ with an accuracy of 95%.

The probabilistic sampling-based projection mechanism becomes extremely useful for improv-
ing robot plans during their execution once the execution scenarios can be sampled fast enough. At
the moment a projection takes a couple of seconds. The overhead is mainly caused by recording
the interpretation of RPL plans in a manner that is far too detailed for our purposes. Through a
simplification of the models we expect an immediate speed up of up to one order of magnitude. It
seems that with a projection frequency of about 100 Hz one could start tackling a number of realistic
problems that occur at execution time continually.

6. Evaluation

We have validated our causal model of low-level navigation plans and their role in office deliv-
ery plans with respect to computational resources and qualitative prediction results in a series of
experiments.

837

BEETZ & GROSSKREUTZ

6.1 Generality

PHAMs are capable of predicting the behavior generated by flexible plans written in plan execution
languages such as RAP (Firby, 1987) and PRS (Myers, 1996). To do so, we code the control
structures provided by these languages as RPL macros. To the best of our knowledge PHAMs are
the first realistic symbolic models of the sequencing layer of 3T architectures, the most commonly
used software architectures for controlling intelligent autonomous robots (Bonasso et al., 1997).
These architectures run planning and execution at different software layers and different time scales
where a sequencing layer synchronizes between both layers. Each layer uses a different form of
plan or behavior specification language. The planning layer typically uses a problem space plan,
the execution layer employs feedback control routines that can be activated and deactivated. The
intermediate layer typically uses a reactive plan language. The use of PHAMs enables 3T planning
systems to make more realistic predictions of the robot behavior that is generated from their abstract
plans. PHAMs are also capable of modeling different arbitration schemes and superpositions of the
effects of concurrent control processes.

The causal models proposed here complement those introduced by Beetz (2000). He describes
sophisticated models of object recognition and manipulation that allow for the prediction of plan
failures including those that are caused by the robot overlooking or confusing objects, objects chang-
ing their location and appearance, and faulty operation of effectors. These models, however, were
given for a simulated robot acting in a grid world. In this article, we have restricted ourselves to the
prediction of behavior generated by modern autonomous robot controllers. Unfortunately, object
recognition and manipulation skills of current autonomous service robots are not advanced enough
for action planning. On the other hand, it is clear that action planning capabilities pay off much
better if robots manipulate their environments and there is a risk of manipulating the wrong objects.

6.2 Assumptions and Restrictions

The control problem for autonomous robots is to generate effective and goal-directed control sig-
nals for the robot’s perceptual and effector apparatus within a feedback loop. Plan-based robot
control is a specialization of this control problem, in which the robot generates the control signals
by maintaining and executing a plan that is effective and has a high expected utility with respect to
the robot’s dynamically changing belief state. This problem is so general that we cannot hope to
solve it in this form.

In Computer Science it is common to characterize the computational problems a program can
solve through the language in which the input for the program is specified. For example, we dis-
tinguish compilers for regular and context-free programming languages. The same is true for plan-
based control of agents. Typically, planning problems are described in terms of an initial state
description, a description of the actions available for the agents, their applicability conditions and
effects, and a description of the goal state.

The three components of planning problems are typically expressed in some formal language.
The problem solving power of the planning systems is characterized by the expressiveness of the
languages for the three inputs. Some classes of planning problems are entirely formulated in propo-
sitional logic while others are formulated in first order logic. We further classify the planning
problems with respect to the expressiveness of the action representations that they use; whether
they allow for disjunctive preconditions, conditional effects, quantified effects, and model resource

838

PROBABILISTIC HYBRID ACTION MODELS

consumption. Some planning systems even solve planning problems that involve different kinds of
uncertainty.

In contrast, SRCs use methods that make strong assumptions about plans to simplify the compu-
tational problems. As a consequence, SRCs can apply reliable and fast algorithms for the construc-
tion and installment of sub-plans, the diagnosis of plan failures, and for editing sub-plans during
their execution. Making assumptions about plans is attractive because planning algorithms con-
struct and revise the plans and can thereby enforce that the assumptions hold.

In a nutshell, the set of plans that an SRC generates is the reflexive, transitive closure of the
routine plans with respect to the application of plan revision rules. Thus, to enforce that all plans
have a property Q it is sufficient that the routine plans satisfy Q and that the revision rules preserve Q.
These properties make it particularly easy to reason about the plans while the plans can still specify
the same range of concurrent percept-driven behavior that RPL can. The properties of plans that play
an important role in this article are their generality, flexibility, and reliability. These properties are
achieved through careful design and hand-coding. As a consequence plan generation and revision
can be performed by programmed heuristic rules. We believe, however, that such plans and rules
can be learned from experience.

We make two other important assumptions. First, we assume that the tasks and the environment
is benign and therefore behavior flaws do not result in disasters. This is important, because robots
must make errors in order to learn the competent performance of tasks from experience. And only
if the planner is allowed occasionally to propose worse plans we can apply fast planning methods
based on Monte Carlo methods to improve the average performance of the robot.

Another design decision is that we do not explicitly represent the belief state of the robot, that is
the probability distributions over the values of the state variables. This, however, does not need to
imply that we cannot reason about inaccuracies and uncertainties of the robot’s estimate of the world
state. Beetz et al. (1998) describe how to couple plan-based high-level control with probabilistic
state estimation. In this article the state estimator automatically computes and signals properties of
the belief state such as the ambiguity and inaccuracy of state estimates to the plan-based controller.
The plan-based controller, on the other hand, uses these signals in order to decide when to interrupt
its missions to re-localize the robot.

6.3 Scaling Up

The causal models that we have described in Section 5 have been used for execution time planning
for a robot office courier. The plans that have been projected were the original plans for this applica-
tion and typically several hundreds of code lines long. The projected execution scenarios contained
hundreds of events. Because the projection of single execution scenarios can cost up to a second,
robots must revise plans based on very few samples. Thus, the robot can only detect probable flaws
with high reliability.

The computational resources are mainly consumed by bookkeeping mechanisms that record
the computational state of the robot at any time instant represented in the execution scenario and
not by the mechanisms proposed in this article. The recorded computational state is used by the
planning mechanisms in order to diagnose behavior flaws that are caused by discrepancies between
the computational state of the robot and the state of the environment. The ability to reconstruct
regularly updated fluent values is computationally very costly. We intend to provide programming

839

BEETZ & GROSSKREUTZ

constructs that let programmers declare the parts of the computational state that are irrelevant for
planning and do not need to be recorded.

Even with this severe limitation we were able to show that with this preliminary implemen-
tation the robot can outperform controllers that lack predictive capabilities. The main source of
inefficiency is the bookkeeping needed to reconstruct the entire computational state of the plan
for any predicted time instant, an issue that we have not addressed in this article. Using a more
parsimonious representation of the computational state we expect drastic performance gains.

6.4 Qualitatively Accurate Predictions

Projecting the plan listed in Figure 7 generates a timeline that is about 300 events long. Many of
these events are generated through rescheduling the endogenous events (21 times). Figure 19 shows
the predicted endogenous events (denoted by the numbered circles) and the behavior generated by
the navigation plan in 50 runs using the robot simulator (we assume that the execution is interrupted
in room A-111 because the robot realizes that the deadline can not be achieved). The qualitative
predictions of behavior relevant for plan debugging are perfect. The projector predicts correctly that
the robot will exploit the opportunity to go to location 5 while going from location 1 to 9.

A−111

A−118

A−117
1

2

4

5

6

9

3

7

8

Figure 19: The figure shows the trajectories of multiple executions of the navigation plan and the
events that are predicted by the symbolic plan projector.

6.5 Prediction-based Plan Debugging

Beetz (2002a and 2000) describes experiments showing that prediction-based plan debugging can
improve the performance of robot controllers substantially.

840

PROBABILISTIC HYBRID ACTION MODELS

7. Related Work

PHAMs represent external events, probabilistic action models, action models with rich temporal
structure, concurrent interacting actions, and sensing actions in the domain of autonomous mobile
robot control. There are many research efforts that formalize and analyze extended action repre-
sentations and develop prediction and planning techniques for them. We know, however, only of
approaches that address subsets of the aspects addressed by our representation. Related work com-
prises research on reasoning about action and change, probabilistic planning, numerical simulation,
and qualitative reasoning.

Reasoning about action and change. Allen and Ferguson (1994) give an excellent and detailed
discussion of important issues in the representation of temporally complex and concurrent actions
and events. One important point that they make is that if actions have interfering effects then, in the
worst case, causal models for all possible combinations of actions must be provided. In this paper,
we have restricted ourselves to one kind of interference between actions: the transposition of move-
ments which is the dominant kind of interference in physical robot behavior. In their article they do
not address the issues of reasoning under uncertainty and efficiency with respect to computational
resources.

A substantial amount of work has been done to extend the situation calculus (McCarthy, 1963)
to deal with time and continuous change (Pinto, 1994; Grosskreutz & Lakemeyer, 2000a), exoge-
nous (natural) actions (Reiter, 1996), complex robot actions (plans) (Levesque et al., 1997; Gia-
como et al., 1997) using sensing to determine which action to execute next (Levesque, 1996; Lake-
meyer, 1999) as well as probabilistic state descriptions and probabilistic action outcomes (Bacchus,
Halpern, & Levesque, 1999; Grosskreutz & Lakemeyer, 2000b). The main difference to our work is
that their representation is more limited with respect to the kinds of events and interactions between
concurrent actions they allow. In particular, we know of no effort to integrate all of these aspects.

Some of the most advanced approaches in this area are formalizations of various variants of
the high-level robot control language GOLOG, in particular CONGOLOG (Giacomo et al., 1997).
Boutilier, Reiter, Soutchanski, and Thrun (2000) have applied decision theoretic means for opti-
mally completing a partially specified GOLOG program. A key difference is that in the GOLOG

approach the formalization includes the operation of the plan language whereas in our approach a
procedural semantics realized through the high-level projector is used.

Hanks, Madigan, and Gavrin (1995) present a very interesting and expressive framework for rep-
resenting probabilistic information, and exogenous and endogenous events for medical prediction
problems. Because of their application domain they do not have to address issues of sophisticated
percept-driven behavior as is done in this article.

Extensions to Classical Action Planning Systems. Planning algorithms, such as SNLP (McAllester
& Rosenblitt, 1991), have been extended in various ways to handle more expressive action mod-
els and different kinds of uncertainty (about the initial state and the occurrence and outcome of
events) (Kushmerick, Hanks, & Weld, 1995; Draper, Hanks, & Weld, 1994; Hanks, 1990). These
planning algorithms compute bounds for the probabilities of plan outcomes and are computation-
ally very expensive. In addition, decision-theoretic action planning systems (see Blythe, 1999, for
a comprehensive overview) have been proposed in order to determine plans with the highest, or
at least, sufficiently high expected utility (Haddawy & Rendell, 1990; Haddawy & Hanks, 1992;

841

BEETZ & GROSSKREUTZ

Williamson & Hanks, 1994). These approaches abstract away from the rich temporal structure of
events by assuming discrete atomic actions and ignore various kinds of uncertainty.

Planning with action models that have rich temporal structure has also been investigated inten-
sively (Allen, Kautz, Pelavin, & Tenenberg, 1990; Dean, Firby, & Miller, 1988). IxTeT (Ghallab
& Laruelle, 1994) is a planning system that has been applied to robot control and reasons about
the temporal structure of plans to identify interferences between plan steps and resource conflicts.
The planner/scheduler of the Remote Agent (Muscettola et al., 1998b) plans space maneuvers and
experiments based on rich temporal causal models (Muscettola et al., 1998a; Pell et al., 1997). A
good overview of the integration of action planning and scheduling technology can be found in an
overview article by Smith, Frank, and Jonsson (2000). So far they have considered uncertainty only
with respect to the durations of actions.

Kabanza, Barbeau, and St-Denis (1997) model actions and behaviors as state transition systems
and synthesize control rules for reactive robots from these descriptions. Their approach can be used
to generate plans that satisfy complex time, safety, and liveness constraints. These approaches too
are limited with respect to the temporal structure of the (primitive) actions being modeled and the
kinds of interferences between concurrent actions that can be considered.

MDP-based planning approaches. In recent years MDP (Markov decision process) planning has
become a very active research field (Boutilier, Dean, & Hanks, 1998; Kaelbling, Cassandra, &
Kurien, 1996). In the MDP approach robot behavior is modeled as a finite state automaton in which
discrete actions cause stochastic state transitions. The robot is rewarded for reaching its goals
quickly and reliably. A solution for such problems is a policy, a mapping from discretized robot
states into, often fine-grained, actions.

MDPs form an attractive framework for action planning because they use a uniform mechanism
for action selection and a parsimonious problem encoding. The action policies computed by MDPs
aim at robustness and optimizing the average performance. A number of researchers have success-
fully considered navigation as an instance of Markov decision problems (MDPs) (Burgard et al.,
2000; Kaelbling et al., 1996).

One of the main problems in the application of MDP planning techniques is to keep the problem
encoding small enough so that the MDPs are still solvable. A number of techniques for complexity
reduction can be found in the article written by Boutilier et al. (1998). Yet, it is still very difficult
to solve big planning problems in the MDP framework unless the state and action spaces are well
structured.

Besides reducing the complexity of specifying models for, and solving MDP problems, extend-
ing the expressiveness of MDP formalisms is a very active research area. Semi Markov decision
problems (Bradtke & Duff, 1995; Sutton, Precup, & Singh, 1999) add a notion of continuous time
to the discrete model of change used in MDPs: transitions from one state to another one no longer
occur immediately, but according to a probability distribution. Others investigate mechanisms for
hierarchically structuring MDPs (Parr & Russell, 1998), decomposing MDPs into loosely coupled
sub-problems (Parr, 1998), and making them programmable (Andre & Russell, 2001). Rohani-
manesh and Mahadevan (2001) propose an approach for extending MDP-based planning to con-
current temporally extended actions. All these efforts are steps towards the kind of functionality
provided in the PHAM framework. Another relationship between the research reported here and the
MDP research is that the navigation routines that are modeled with PHAMs are implemented on top

842

PROBABILISTIC HYBRID ACTION MODELS

of MDP navigation planning. Belker, Beetz, and Cremers (2002) use the MDP framework to learn
action models for the improved execution of navigation plans.

The application of MDP based planning to reasoning about concurrent reactive plans is com-
plicated by the fact that, in general, any activation and termination of a concurrent sub-plan might
require a respective modification of the state and action space of the MDP.

Weaver (Blythe, 1995, 1996) is another probabilistic plan debugger capable of reasoning about
exogenous events. Weaver uses Markov decision processes as its underlying model of planning.
Weaver provides much of the expressiveness of PHAMs. Unlike Weaver, PHAMs are designed for
reasoning about the physical behavior of autonomous mobile robots. Therefore, PHAMs add to
Weaver’s expressiveness in that they extensively support reasoning about concurrent reactive plans.
For example, PHAMs can predict when the continuous effects of actions will trigger a concurrent
monitoring process. PHAMs have built-in capabilities to infer the combined effects of two continu-
ous motions of the robot.

Qualitative reasoning about physical processes. Work in qualitative reasoning has researched
issues in the quantization of continuous processes and focussed among other things on quantizations
that are relevant to the kind of reasoning performed. Hendrix (1973) points out the limitations
of discrete event representations and introduces a very limited notion of continuous process as a
representation of change. He does not consider the influence of multiple processes on state variables.
Hayes (1985) represents events as histories, spatially bounded, but temporally extended, pieces in
time space, and proposes that histories which do not intersect do not interact. In Forbus’ Qualitative
Process Theory (Forbus, 1984) a technique called limit analysis is applied to predict qualitative state
transitions caused by continuous events. Also, work on simulation often addresses the adequacy of
causal models for a given range of prediction queries, an issue that is neglected in most models
used for AI planning. Planners that predict qualitative state transitions caused by continuous events
include EXCALIBUR (Drabble, 1993).

Planning as model checking. Planning as model checking (Bertoli, Cimatti, & Roveri, 2001;
Cimatti & Roveri, 2000) represents domains as finite-state systems. Planning problems are solved
by searching through the state space, checking for the existence of a plan that satisfies the goals.
Goals are formalized as logical requirements about the desired behavior for plans. Unlike planning
as model checking we consider continuous control processes, plan interpretation as well as the
physical effects of actions, and concurrency. This extended representational power comes at the
cost of probably finding behavior flaws rather than proving their absence.

Design and verification of embedded systems based on hybrid automata. The formalization
of embedded software systems (Alur et al., 1997, 1996) using hybrid automata aims at proving
critical aspects of the software rather than the physical effects of running this software. In our
approach we have used the ideas of this research field as the basis of our conceptualization but
added additional mechanisms to model the effects of actions and sensing mechanisms. Again, the
additional complexity of our model is compensated by solving more restrictive inference problems:
the detection of probable behavior flaws with high probability rather than safety of the system and
the reachability of goals.

843

BEETZ & GROSSKREUTZ

8. Conclusion

The successful application of AI planning to autonomous mobile robot control requires the plan-
ning systems to have more realistic models of the operation of modern robot control systems and
the physical effects caused by their execution. In this article we have presented probabilistic hybrid
action models (PHAMs), which are capable of representing the temporal structure of continuous
feedback control processes, their non-deterministic effects, several modes of their interferences,
and exogenous events. We have shown that PHAMs allow for predictions that are, with high proba-
bility, qualitatively correct. We have also shown that powerful prediction-based inferences such as
deciding whether a plan is likely to cause a flaw with a probability exceeding a given threshold can
be drawn fast and with bounded risk.

We believe that equipping autonomous robot controllers with concurrent reactive plans and
prediction-based online plan revision based on PHAMs is a promising way to improve the perfor-
mance of autonomous service robots through AI planning both significantly and substantially.

The rules that we have used for projecting navigation behavior were hand-coded and plan and
possibly even environment specific. On our research agenda is the development of transformational
mechanisms for learning high performance and task specific plans. After having learned the plans
the robot should then learn the projection rules by applying data mining techniques to the plan
execution traces. To enable this approach we must invent novel representational mechanisms for
the plans that allow for the automatic extraction of the rules. Initial steps into this direction can be
found in the work of Belker et al. (2002), Beetz and Belker (2000), Beetz (2002b).

References

Alami, R., Chatila, R., Fleury, S., Ingrand, M. H. F., Khatib, M., Morisset, B., Moutarlier, P., &
Simeon, T. (2000). Around the lab in 40 days In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA 2000), pp. 88–94.

Allen, J., & Ferguson, G. (1994). Actions and events in interval temporal logic. Journal of Logic
and Computation, 4(5), 531–579.

Allen, J., Kautz, H., Pelavin, R., & Tenenberg, J. (Eds.). (1990). Reasoning about Plans. Morgan
Kaufmann.

Alur, R., Henzinger, T., & Ho, P. (1996). Automatic symbolic verification of embedded systems.
IEEE Transactions on Software Engineering, 22(3), 181–201.

Alur, R., Henzinger, T., & Wong-Toi, H. (1997). Symbolic analysis of hybrid systems. In Pro-
ceedings of the Thirtyssixth IEEE Conference on Decision and Control (CDC), pp. 702–707.
IEEE Press.

Andre, D., & Russell, S. (2001). Programmable reinforcement learning agents. In Advances in Neu-
ral Information Processing Systems 13, Papers from Neural Information Processing Systems
(NIPS) 2000, pp. 1019–1025. MIT Press.

Arkin, R. (1998). Behavior based Robotics. MIT Press.

Bacchus, F., Halpern, J., & Levesque, H. (1999). Reasoning about noisy sensors and effectors in the
situation calculus. Artificial Intelligence 111(1-2).

844

PROBABILISTIC HYBRID ACTION MODELS

Beetz, M. (1999). Structured Reactive Controllers — a computational model of everyday activ-
ity. In Etzioni, O., Müller, J., & Bradshaw, J. (Eds.), Proceedings of the Third International
Conference on Autonomous Agents, pp. 228–235.

Beetz, M. (2000). Concurrent Reactive Plans: Anticipating and forestalling execution failures, Vol.
LNAI 1772 of Lecture Notes in Artificial Intelligence. Springer Publishers.

Beetz, M. (2001). Structured Reactive Controllers. Journal of Autonomous Agents and Multi-Agent
Systems. Special Issue: Best Papers of the International Conference on Autonomous Agents
’99, 4, 25–55.

Beetz, M. (2002a). Plan-based Control of Robotic Agents, Vol. LNAI 2554 of Lecture Notes in
Artificial Intelligence. Springer Publishers.

Beetz, M. (2002b). Plan representation for robotic agents. In Proceedings of the Sixth International
Conference on AI Planning and Scheduling, pp. 223–232.

Beetz, M., Arbuckle, T., Bennewitz, M., Burgard, W., Cremers, A., Fox, D., Grosskreutz, H.,
Hähnel, D., & Schulz, D. (2001). Integrated plan-based control of autonomous service robots
in human environments. IEEE Intelligent Systems, 16(5), 56–65.

Beetz, M., Arbuckle, T., Cremers, A., & Mann, M. (1998). Transparent, flexible, and resource-
adaptive image processing for autonomous service robots. In Prade, H. (Ed.), Proceedings of
the Thirteenth European Conference on Artificial Intelligence (ECAI-98), pp. 632–636.

Beetz, M., & Belker, T. (2000). Environment and task adaptation for robotic agents. In Horn, W.
(Ed.), Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI-
2000), pp. 648–652.

Beetz, M., Bennewitz, M., & Grosskreutz, H. (1999). Probabilistic, prediction-based schedule de-
bugging for autonomous robot office couriers. In Proceedings of the Twentythird German
Conference on Artificial Intelligence (KI 99), Bonn, Germany, pp. 243–254. Springer Pub-
lishers.

Beetz, M., Burgard, W., Fox, D., & Cremers, A. (1998). Integrating active localization into high-
level control systems. Robotics and Autonomous Systems, 23, 205–220.

Beetz, M., & Grosskreutz, H. (1998). Causal models of mobile service robot behavior. In Simmons,
R., Veloso, M., & Smith, S. (Eds.), Proceedings of the Fourth International Conference on AI
Planning Systems, pp. 163–170, Morgan Kaufmann.

Beetz, M., & Grosskreutz, H. (2000). Probabilistic hybrid action models for predicting concurrent
percept-driven robot behavior. In Proceedings of the Sixth International Conference on AI
Planning Systems, Toulouse, France. AAAI Press.

Beetz, M., & McDermott, D. (1992). Declarative goals in reactive plans. In Hendler, J. (Ed.),
Proceedings of the First International Conference on AI Planning Systems, pp. 3–12, Morgan
Kaufmann.

Beetz, M., & McDermott, D. (1996). Local planning of ongoing activities. In Drabble, B. (Ed.), Pro-
ceedings of the Third International Conference on AI Planning Systems, pp. 19–26, Morgan
Kaufmann.

Beetz, M., & Peters, H. (1998). Structured reactive communication plans — integrating conver-
sational actions into high-level robot control systems. In Proceedings of the Twentysecond

845

BEETZ & GROSSKREUTZ

German Conference on Artificial Intelligence (KI 98), Bremen, Germany. Springer Publish-
ers.

Belker, T., Beetz, M., & Cremers, A. (2002). Learning action models for the improved execution of
navigation plans. Robotics and Autonomous Systems, 38(3-4), 137–148.

Bertoli, P., Cimatti, A., & Roveri, M. (2001). Planning in nondeterministic domains under partial
observability via symbolic model checking. In Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI-01). AAAI Press.

Blythe, J. (1995). AI planning in dynamic, uncertain domains. In Extending Theories of Action:
Formal Theory & Practical Applications: Papers from the 1995 AAAI Spring Symposium, pp.
28–32. AAAI Press, Menlo Park, CA.

Blythe, J. (1996). Decompositions of Markov chains for reasoning about external change in plan-
ners. In Drabble, B. (Ed.), Proceedings of the 3rd International Conference on Artificial
Intelligence Planning Systems (AIPS-96), pp. 27–34. AAAI Press.

Blythe, J. (1999). Decision-theoretic planning. AI Magazine, 20(2), 37–54.

Bonasso, P., Firby, J., Gat, E., Kortenkamp, D., Miller, D., & Slack, M. (1997). Experiences with an
architecture for intelligent, reactive agents. Journal of Experimental and Theoretical Artificial
Intelligence, 9(1).

Boutilier, C., Dean, T., & Hanks, S. (1998). Decision theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

Boutilier, C., Reiter, R., Soutchanski, M., & Thrun, S. (2000). Decision-theoretic, high-level robot
programming in the situation calculus. In Proceedings of the Seventeenth AAAI National
Conference on Artificial Intelligence, pp. 355–362, Austin, TX.

Bradtke, S., & Duff, M. (1995). Reinforcement learning methods for continuous-time Markov
decision problems. In Tesauro, G., Touretzky, D., & Leen, T. (Eds.), Advances in Neural
Information Processing Systems, Vol. 7, pp. 393–400. MIT Press.

Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics
and Automation, 2(1), 14–23.

Burgard, W., Cremers, A., Fox, D., Hähnel, D., Lakemeyer, G., Schulz, D., Steiner, W., & Thrun,
S. (2000). Experiences with an interactive museum tour-guide robot. Artificial Intelligence,
114(1-2), 3–55.

Cimatti, A., & Roveri, M. (2000). Conformant planning via symbolic model checking. Journal of
Artificial Intelligence Research (JAIR), 13, 305–338.

Dean, T., Firby, J., & Miller, D. (1988). Hierarchical planning involving deadlines, travel time and
resources. Computational Intelligence, 4(4), 381–398.

Doherty, P., Granlund, G., Krzysztof, G., Sandewall, E., Nordberg, K., Skarman, E., & Wiklund,
J. (2000). The WITAS unmanned aerial vehicle project. In Proceedings of the Fourteenth
European Conference on Artificial Intelligence (ECAI-00), pp. 747–755, Berlin, Germany.

Drabble, B. (1993). Excalibur: a program for planning and reasoning with processes. Artificial
Intelligence, 62, 1–40.

846

PROBABILISTIC HYBRID ACTION MODELS

Draper, D., Hanks, S., & Weld, D. (1994). Probabilistic planning with information gathering and
contingent execution. In Proceedings of the Second International Conference on AI Planning
Systems, p. 31.

Firby, J. (1987). An investigation into reactive planning in complex domains. In Proceedings of the
Sixth National Conference on Artificial Intelligence, pp. 202–206, Seattle, WA.

Forbus, K. (1984). Qualitative process theory. Artificial Intelligence, 24, 85–168.

Fox, D., Burgard, W., Dellaert, F., & Thrun, S. (1999). Monte Carlo localization: Efficient posi-
tion estimation for mobile robots. In Proceedings of the Sixteenth National Conference on
Artificial Intelligence, Orlando, FL.

Ghallab, M., & Laruelle, H. (1994). Representation and control in IxTeT, a temporal planner. In
Hammond, K. (Ed.), Proceedings of the Second International Conference on AI Planning
Systems, pp. 61–67, Morgan Kaufmann.

Giacomo, G. D., Lesperance, Y., & Levesque, H. (1997). Reasoning about concurrent execution,
prioritized interrupts, and exogene ous actions in the situation calculus. In Proceedings of the
Fifteenth International Joint Conference on Artificial Intelligence, Nagoya, Japan.

Grosskreutz, H., & Lakemeyer, G. (2000a). cc-Golog: Towards more realistic logic-based robot
controllers. In Proceedings of the Seventeenth National Conference on Artificial Intelligence.

Grosskreutz, H., & Lakemeyer, G. (2000b). Turning high-level plans into robot programs in un-
certain domains. In Proceedings of the Fourteenth European Conference on Artificial Intelli-
gence (ECAI-00), pp. 548–552.

Haddawy, P., & Hanks, S. (1992). Representations for decision-theoretic planning: Utility functions
for deadline goals. In Nebel, B., Rich, C., & Swartout, W. (Eds.), Proceedings of the Third
International Conference on Principles of Knowledge Representation and Reasoning, pp. 71–
82, Cambridge, MA. Morgan Kaufmann.

Haddawy, P., & Rendell, L. (1990). Planning and decision theory. The Knowledge Engineering
Review, 5, 15–33.

Hanks, S. (1990). Practical temporal projection. In Proceedings of the Eighth National Conference
on Artificial Intelligence (AAAI-90), pp. 158–163.

Hanks, S., Madigan, D., & Gavrin, J. (1995). Probabilistic temporal reasoning with endogenous
change. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,
pp. 245–254. Morgan Kaufmann.

Hayes, P. (1985). The second naive physics manifesto. In Hobbs, J. R., & Moore, R. C. (Eds.),
Formal Theories of the Commonsense World, pp. 1–36. Ablex, Norwood, NJ.

Hendrix, G. (1973). Modeling simultaneous actions and continuous processes. Artificial Intelli-
gence, 4, 145–180.

Horswill, I. (1996). Integrated systems and naturalistic tasks. In: Strategic Directions in Computing
Research, AI Working Group.

Kabanza, F., Barbeau, M., & St-Denis, R. (1997). Planning control rules for reactive agents. Artifi-
cial Intelligence, 95, 67–113.

847

BEETZ & GROSSKREUTZ

Kaelbling, L., Cassandra, A., & Kurien, J. (1996). Acting under uncertainty: Discrete Bayesian
models for mobile-robot navigation. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems.

Konolige, K., Myers, K., Ruspini, E., & Saffiotti, A. (1997). The Saphira architecture: A design for
autonomy. Journal of Experimental and Theoretical Artificial Intelligence, 9(2).

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithm for probabilistic planning. Artificial
Intelligence, 76, 239–286.

Lakemeyer, G. (1999). On sensing and off-line interpreting in golog. In Levesque, H., & Pirri, F.
(Eds.), Logical Foundations for Cognitive Agents. Springer Publishers.

Levesque, H., Reiter, R., Lesperance, Y., Lin, F., & Scherl, R. (1997). Golog: A logic programming
language for dynamic domains. Journal of Logic Programming, 31, 59–84.

Levesque, H. J. (1996). What is planning in the presence of sensing. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 1139–1146, Portland, OR.

McAllester, D., & Rosenblitt, D. (1991). Systematic nonlinear planning. In Proceedings of the
Ninth National Conference on Artificial Intelligence, pp. 634–639, Anaheim, CA.

McCarthy, J. (1963). Situations, actions and causal laws. Tech. rep., Stanford University. Reprinted
1968 in Semantic Information Processing (M. Minsky ed.).

McDermott, D. (1991). A Reactive Plan Language. Research Report YALEU/DCS/RR-864, Yale
University.

McDermott, D. (1992a). Robot planning. AI Magazine, 13(2), 55–79.

McDermott, D. (1992b). Transformational planning of reactive behavior. Research Report
YALEU/DCS/RR-941, Yale University.

McDermott, D. (1994). An algorithm for probabilistic, totally-ordered temporal projection. Re-
search Report YALEU/DCS/RR-941, Yale University.

Muscettola, N., Morris, P., Pell, B., & Smith, B. (1998a). Issues in temporal reasoning for au-
tonomous control systems. In Sycara, K., & Wooldridge, M. (Eds.), Proceedings of the
Second International Conference on Autonomous Agents (AGENTS-98), pp. 362–368. ACM
Press.

Muscettola, N., Nayak, P., Pell, B., & Williams, B. (1998b). Remote Agent: to boldly go where no
AI system has gone before. Artificial Intelligence, 103(1–2), 5–47.

Myers, K. (1996). A procedural knowledge approach to task-level control. In Drabble, B. (Ed.),
Proceedings of the Third International Conference on AI Planning Systems, pp. 158–165,
Edinburgh, GB. AAAI Press.

Parr, R. (1998). Flexible decomposition algorithms for weakly coupled Markov decision problems.
In Cooper, G. F., & Moral, S. (Eds.), Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence (UAI-98), pp. 422–430, San Francisco. Morgan Kaufmann.

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. In Jordan,
M. I., Kearns, M. J., & Solla, S. A. (Eds.), Advances in Neural Information Processing Sys-
tems, Vol. 10. MIT Press.

848

PROBABILISTIC HYBRID ACTION MODELS

Pell, B., Gat, E., Keesing, R., Muscettola, N., & Smith, B. (1997). Robust periodic planning and ex-
ecution for autonomous spacecraft. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), pp. 1234–1239, San Francisco. Morgan Kaufmann.

Pinto, J. (1994). Temporal Reasoning in the Situation Calculus. Ph.D. thesis, Department of Com-
puter Science, University of Toronto, Toronto, Ontario, Canada.

Reiter, R. (1996). Natural actions, concurrency and continuous time in the situation calculus. In
Proceedings of the Fifth International Conference on Principles of Knowledge Representation
and Reasoning (KR-96), pp. 2–13.

Rohanimanesh, K., & Mahadevan, S. (2001). Decision-theoretic planning with concurrent tem-
porally extended actions. In Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence (UAI), pp. 472–479.

Schmitt, T., Hanek, R., Beetz, M., Buck, S., & Radig, B. (2002). Cooperative probabilistic state
estimation for vision-based autonomous mobile robots. IEEE Transactions on Robotics and
Automation, 18(5), 670–684.

Simmons, R., Goodwin, R., Haigh, K., Koenig, S., & O’Sullivan, J. (1997). A modular archi-
tecture for office delivery robots. In Proceedings of the First International Conference on
Autonomous Agents, pp. 245–252.

Smith, D., Frank, J., & Jonsson, A. (2000). Bridging the gap between planning and scheduling. The
Knowledge Engineering Review, 15(1), 47–83.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112(1-2), 181–211.

Thrun, S. (2000). Monte Carlo POMDPs. In Advances in Neural Information Processing Systems
12, pp. 1064–1070. MIT Press.

Thrun, S., Beetz, M., Bennewitz, M., Cremers, A., Dellaert, F., Fox, D., Hähnel, D., Rosenberg, C.,
Roy, N., Schulte, J., & Schulz, D. (2000). Probabilistic algorithms and the interactive museum
tour-guide robot Minerva. International Journal of Robotics Research, 19(11), 972–999.

Thrun, S., Bücken, A., Burgard, W., Fox, D., Fröhlinghaus, T., Hennig, D., Hofmann, T., Krell, M.,
& Schmidt, T. (1998). Map learning and high-speed navigation in RHINO. In Kortenkamp,
D., Bonasso, R., & Murphy, R. (Eds.), AI-based Mobile Robots: Case studies of successful
robot systems, pp. 21 – 52. MIT Press.

Williamson, M., & Hanks, S. (1994). Utility-directed planning. In Proceedings of the Twelfth
National Conference on Artificial Intelligence, p. 1498, Seattle, WA.

849

