
Journal of Artificial Intelligence Research 24 (2005) 81-108 Submitted 12/04; published 07/05

Risk-Sensitive Reinforcement Learning Applied to Control

under Constraints

Peter Geibel pgeibel@uos.de

Institute of Cognitive Science, AI Group

University of Osnabrück, Germany

Fritz Wysotzki wysotzki@cs.tu-berlin.de

Faculty of Electrical Engineering and Computer Science, AI Group

TU Berlin, Germany

Abstract

In this paper, we consider Markov Decision Processes (MDPs) with error states. Error
states are those states entering which is undesirable or dangerous. We define the risk
with respect to a policy as the probability of entering such a state when the policy is
pursued. We consider the problem of finding good policies whose risk is smaller than
some user-specified threshold, and formalize it as a constrained MDP with two criteria.
The first criterion corresponds to the value function originally given. We will show that
the risk can be formulated as a second criterion function based on a cumulative return,
whose definition is independent of the original value function. We present a model free,
heuristic reinforcement learning algorithm that aims at finding good deterministic policies.
It is based on weighting the original value function and the risk. The weight parameter is
adapted in order to find a feasible solution for the constrained problem that has a good
performance with respect to the value function. The algorithm was successfully applied
to the control of a feed tank with stochastic inflows that lies upstream of a distillation
column. This control task was originally formulated as an optimal control problem with
chance constraints, and it was solved under certain assumptions on the model to obtain an
optimal solution. The power of our learning algorithm is that it can be used even when
some of these restrictive assumptions are relaxed.

1. Introduction

Reinforcement Learning, as a research area, provides a range of techniques that are ap-
plicable to difficult nonlinear or stochastic control problems (see e.g. Sutton & Barto, 1998;
Bertsekas & Tsitsiklis, 1996). In reinforcement learning (RL) an agent is considered that
learns to control a process. The agent is able to perceive the state of the process, and
it acts in order to maximize the cumulative return that is based on a real valued reward
signal. Often, experiences with the process are used to improve the agent’s policy instead
of a previously given analytical model.

The notion of risk in RL is related to the fact, that even an optimal policy may perform
poorly in some cases due to the stochastic nature of the problem. Most risk-sensitive RL
approaches are concerned with the variance of the return, or with its worst outcomes,
(e.g. Coraluppi & Marcus, 1999; Heger, 1994; Neuneier & Mihatsch, 1999), see also the
discussion in section 3. We take the alternative view of risk defined by Geibel (2001) that
is not concerned with the variability of the return, but with the occurrence of errors or

c©2005 AI Access Foundation. All rights reserved.

Geibel & Wysotzki

undesirable states in the underlying Markov Decision Process (MDP). This means that we
address a different class of problems compared to approaches referring to the variability of
the return.

In this paper, we consider constrained MDPs with two criteria – the usual value func-
tion and the risk as a second value function. The value is to be optimized while the risk
must remain below some specified threshold. We describe a heuristic algorithm based on a
weighted formulation that finds a feasible policy for the original constrained problem.

In order to offer some insight in the behavior of the algorithm, we investigate the appli-
cation of the algorithm to a simple grid world problem with a discounted criterion function.
We then apply the algorithm to a stochastic optimal control problem with continuous states,
where the set of feasible solutions is restricted by a constraint that is required to hold with
a certain probability, thus demonstrating the practical applicability of our approach. We
consider the control of a feed tank that lies upstream of a distillation column with respect
to two objectives: (1) the outflow of the tank is required to stay close to a specified value in
order to ensure the optimal operation of the distillation column, and (2) the tank level and
substance concentrations are required to remain within specified intervals, with a certain
admissible chance of constraint violation.

Li, Wendt, Arellano-Garcia, and Wozny (2002) formulate the problem as a quadratic
program with chance constraints1 (e.g. Kall & Wallace, 1994), which is relaxed to a nonlinear
program for the case of Gaussian distributions for the random input variables and systems
whose dynamics is given by linear equations. The nonlinear program is solved through
sequential quadratic programming.

Note that the approach of Li et al. involves the simulation based estimation of the
gradients of the chance constraints (Li et al., 2002, p. 1201). Like Q-learning (Watkins,
1989; Watkins & Dayan, 1992; Sutton & Barto, 1998), our learning algorithm is based on
simulating episodes and estimating value and risk of states, which for the tank control task
correspond to a measure for the deviation from the optimal outflow and the probability of
constraint violation, respectively.

In contrast to the approach of Li et al. (2002), our RL algorithm is applicable to systems
with continuous state spaces, whose system dynamics is governed by nonlinear equations
and involve randomization or noise with arbitrary distributions for the random variables,
for it makes no prior assumptions of either aspect. This it not a special property of our
learning algorithm, and also holds true for e.g. Q-learning and other RL algorithms. The
convergence of Q-learning combined with function approximation techniques necessary for
continuous state spaces cannot be guaranteed in general (e.g. Sutton & Barto, 1998). The
same holds true for our algorithm. Nevertheless, RL algorithms were successfully applied
to many difficult problems with continuous state spaces and nonlinear dynamics (see e.g.
Sutton & Barto, 1998; Crites & Barto, 1998; Smart & Kaelbling, 2002; Stephan, Debes,
Gross, Wintrich, & Wintrich, 2001).

1. A constraint can be seen as a relation on the domains of variables restricting their possible values. If
the variables in a constraint C = C(x1, . . . , xn) are random, the constraint will hold with a certain
probability. Chance constrained programming is a particular approach to stochastic programming that
considers constrained optimization problems containing random variables for which so-called chance
constraints of the form P(C) ≥ p with p ∈ [0, 1] are formulated.

82

Risk-Sensitive Reinforcement Learning

This article is organized as follows. In section 2, the RL framework is described. Sec-
tion 3 reviews related work on risk-sensitive approaches. Section 4 describes our approach
to risk-sensitive RL. In section 5, we elucidate a heuristic learning algorithm for solving the
constrained problem using a weighted formulation. In section 6, we describe its application
to a grid world problem. The tank control task is described in section 7. In section 8,
experiments with the feed tank control are described. Section 9 concludes with a short
summary and an outlook.

2. The RL Framework

In RL one considers an agent that interacts with a process that is to be controlled. At
each discrete time-step, the agent observes the state x and takes an action u that in general
depends on x. The action of the agent causes the environment to change its state to x′

according to the probability px,u(x′). Until section 7, we will consider the set of states, X,
to be a finite set.

The action set of the agent is assumed to be finite, and it is allowed to depend on the
current state. In each state x, the agent uses an action from the set U(x) of possible actions.
After taking action u ∈ U(x), the agent receives a real valued reinforcement signal rx,u(x′)
that depends on the action taken and the successor state x′. In the case of a random reward
signal, rx,u(x′) corresponds to its expected value. The Markov property of an MDP requires
that the probability distribution on the successor states and the one on the rewards depend
on the current state and action only. The distributions do not change when additional
information on past states, actions and rewards is considered, i.e. they are independent of
the path leading to the current state.

The aim of the agent is to find a policy π for selecting actions that maximizes the
cumulative reward, called the return. The return is defined as

R =
∞∑

t=0

γtrt , (1)

where the random variable rt denotes the reward occurring in the t-th time step when the
agent uses policy π. Let x0, x1, x2, . . . denote the corresponding probabilistic sequence of
states, and ui the sequence of actions chosen according to policy π.

The constant γ∈ [0, 1] is a discount factor that allows to control the influence of future
rewards. The expectation of the return,

V π(x) = E
[

R |x0 = x
]

, (2)

is defined as the value of x with respect to π. It is well-known that there exist stationary
deterministic policies π∗ for which V π∗

(x) is optimal (maximal) for every state x. A station-
ary deterministic policy is a function that maps states to actions and is particularly defined
as being independent of time and Markovian (independent of history). In this work, we will
use the term of maximum-value policies instead of optimal policies just to distinguish them
from minimum-risk policies that are also optimal in some sense, see section 4.1.

As usual, we define the state/action value function

Qπ(x, u) = E
[

r0 + γV π(x1)
∣
∣
∣ x0 = x, u0 = u

]

. (3)

83

Geibel & Wysotzki

Qπ(x, u) is the expected return when the agent first chooses action u, and acts according to
π in subsequent time steps. From the optimal Q-function Q∗, optimal policies π∗ and the
unique optimal values V ∗ are derived by π∗(x)∈argmaxuQ∗(x, u) and V ∗(x) = Q∗(x, π∗(x)).
Q∗ can be computed by using Watkin’s Q-learning algorithm.

In RL one in general distinguishes episodic and continuing tasks that can be treated
in the same framework (see e.g. Sutton & Barto, 1998). In episodic tasks, the agent may
reach some terminal or absorbing state at same time t′. After reaching the absorbing state,
the agent stays there and executes some dummy action. The reward is defined by rt = 0
for t ≥ t′. During learning the agent is “restarted” according to some distribution on the
initial states after it has reached the absorbing state.

3. Related Work

The random variable R =
∑∞

t=0 γtrt (return) used to define the value of a state possesses
a certain variance. Most risk-averse approaches in dynamic programming (DP) and rein-
forcement learning are concerned with the variance of R, or with its worst outcomes. An
example of such an approach is worst case control (e.g. Coraluppi & Marcus, 1999; Heger,
1994), where the worst possible outcome of R is to be optimized. In risk-sensitive con-
trol based on the use of exponential utility functions (e.g. Liu, Goodwin, & Koenig, 2003a;
Koenig & Simmons, 1994; Liu, Goodwin, & Koenig, 2003b; Borkar, 2002), the return R

is transformed so as to reflect a subjective measure of utility. Instead of maximizing the
expected value of R, now the objective is to maximize e.g. U = β−1 log E(eβR), where β is
a parameter and R is the usual return. It can be shown that depending on the parameter
β, policies with a high variance V(R) are penalized (β < 0) or enforced (β > 0). The α-
value-criterion introduced by Heger (1994) can be seen as an extension of worst case control
where bad outcomes of a policy that occur with a probability less than α are neglected.

Neuneier and Mihatsch (1999) give a model- free RL algorithm which is based on a
parameterized transformation of the temporal difference errors occurring (see also Mihatsch
& Neuneier, 2002). The parameter of the transformation allows to “switch” between risk-
averse and risk-seeking policies. The influence of the parameter on the value function cannot
be expressed explicitly.

Our view of risk is not concerned with the variance of the return or its worst possible
outcomes, but instead with the fact that processes generally possess dangerous or unde-
sirable states. Think of a chemical plant where temperature or pressure exceeding some
threshold may cause the plant to explode. When controlling such a plant, the return cor-
responds to the plant’s yield. But it seems inappropriate to let the return also reflect the
cost of the explosion, e.g. when human lives are affected.

In this work, we consider processes that have such undesirable terminal states. A seem-
ingly straightforward way to handle these error states of the system is to provide high
negative rewards when the systems enters an error state. An optimal policy will then avoid
the error states in general. A drawback of the approach is the fact that it is unknown how
large the risk (probability) of entering an error state is. Moreover, we may want to provide
a threshold ω for the probability of entering an error state that must not be exceeded by
the agent’s policy. In general, it is impossible to completely avoid error states, but the risk
should be controllable to some extend. More precisely, if the agent is placed in some state

84

Risk-Sensitive Reinforcement Learning

x, then it should follow a policy whose risk is constrained by ω. The parameter ω ∈ [0, 1]
reflects the agent’s risk-averseness. That is, our goal is not the minimization of the risk,
but the maximization of V π while the risk is kept below the threshold ω.

Markowitz (1952) considers the combination of different criteria with equal discount
factors in the context of portfolio selection. The risk of the selected portfolio is related to
the variance of the combined (weighted) criteria. Markowitz introduces the notion of the
(E, V)-space. Our notion of risk is not related to the variance of V , but depends on the
occurrence of error states in the MDP. Therefore the risk is conceptually independent of V ,
see e.g. the tank control problem described in section 7.

The idea of weighting return and risk (Markowitz, 1959; Freund, 1956; Heger, 1994) leads
to the expected-value-minus-variance-criterion, E(R)− kV(R), where k is a parameter. We
use this idea for computing a feasible policy for the problem of finding a good policy that
has a constrained risk (in regard to the probability of entering an error state): value and
risk are weighted using a weight ξ for the value and weight −1 for the risk. The value of
ξ is increased, giving the value more weight compared to the risk, until the risk of a state
becomes larger than the user-specified threshold ω.

In considering an ordering relation for tuples of values, our learning algorithm for a
fixed value of ξ is also related to the ARTDP approach by Gabor, Kalmar, and Szepesvari
(1998). In their article, Gabor et al. additionally propose a recursive formulation for an
MDP with constraints that may produce suboptimal solutions. It is not applicable in our
case because their approach requires a nonnegative reward function.

It should be noted that the aforementioned approaches based on the variability of the
return are not suited for problems like the grid world problem discussed in section 6, or the
tank control task in section 7 where risk is related to the parameters (variables) of the state
description. For example, in the grid world problem, all policies have the same worst case
outcome. In regard to approaches based on the variance, we found that a policy leading to
the error states as fast as possible does not have a higher variance than one that reaches the
goal states as fast as possible. A policy with a small variance can therefore have a large risk
(with respect to the probability of entering an error state), which means that we address a
different class of control problems. We underpin this claim in section 8.1.3.

Fulkerson, Littman, and Keim (1998) sketch an approach in the framework of prob-
abilistic planning that is similar to ours although based on the complementary notion of
safety. Fulkerson et al. define safety as the probability of reaching a goal state (see also
the BURIDAN system of Kushmerick, Hanks, & Weld, 1994). Fulkerson et al. discuss the
problem of finding a plan with minimum cost subject to a constraint on the safety (see
also Blythe, 1999). For an episodic MDP with goal states, the safety is 1 minus risk. For
continuing tasks or if there are absorbing states that are neither goal nor error states, the
safety may correspond to a smaller value. Fulkerson et al. (1998) manipulate (scale) the
(uniform) step reward of the undiscounted cost model in order to enforce the agent to reach
the goal more quickly (see also Koenig & Simmons, 1994). In contrast, we also consider
discounted MDPs, and neither require the existence of goal states. Although we do not
change the original reward function, our algorithm in section 5 can be seen as a systematic
approach for dealing with the idea of Fulkerson et al. that consists in modification of the
relative importance of the original objective (reaching the goal) and the safety. In contrast
to the aforementioned approaches belonging to the field of probabilistic planning, which

85

Geibel & Wysotzki

operate on an previously known finite MDP, we have designed an online learning algorithm
that uses simulated or actual experiences with the process. By the use of neural network
techniques the algorithm can also be applied to continuous-state processes.

Dolgov and Durfee (2004) describe an approach that computes policies that have a
constrained probability for violating given resource constraints. Their notion of risk is
similar to that described by Geibel (2001). The algorithm given by Dolgov and Durfee
(2004) computes suboptimal policies using linear programming techniques that require a
previously known model and, in contrast to our approach, cannot be easily extended to
continuous state spaces. Dolgov and Durfee included a discussion on DP approaches for
constrained MDPs (e.g. Altman, 1999) that also do not generalize to continuous state
spaces (as in the tank control task) and require a known model. The algorithm described
by Feinberg and Shwartz (1999) for constrained problems with two criteria is not applicable
in our case, because it requires both discount factors to be strictly smaller than 1, and
because it is limited to finite MDPs.

“Downside risk” is a common notion in finance that refers to the likelihood of a security
or other investment declining in price, or the amount of loss that could result from such
potential decline. The scientific literature on downside risk (e.g. Bawas, 1975; Fishburn,
1977; Markowitz, 1959; Roy, 1952) investigates risk-measures that particularly consider the
case in which a return lower than its mean value, or below some target value is encountered.
In contrast, our notion of risk is not coupled with the return R, but with the fact that a state
x is an error state, for example, because some parameters describing the state lie outside
their permissible ranges, or because the state lies inside an obstacle which may occur in
robotics applications.

4. Risk

To define our notion of risk more precisely, we consider a set

Φ ⊆ X (4)

of error states. Error states are terminal states. This means that the control of the agent
ends when it reaches a state in Φ. We allow an additional set of non-error terminal states
Γ with Γ ∩ Φ = ∅.

Now, we define the risk of x with respect to π as the probability that the state sequence
(xi)i≥0 with x0 = x, which is generated by executing policy π, terminates in an error state
x′∈Φ.

Definition 4.1 (Risk) Let π be a policy, and let x be some state. The risk is defined as

ρπ(x) = P
(

∃i xi ∈ Φ |x0 = x
)

. (5)

By definition, ρπ(x) = 1 holds if x∈Φ. If x∈Γ, then ρπ(x) = 0 because of Φ ∩ Γ = ∅. For
states 6∈Φ ∪ Γ, the risk depends on the action choices of the policy π.

In the following subsection, we will consider the computation of minimum-risk policies
analogous to the computation of maximum-value policies.

86

Risk-Sensitive Reinforcement Learning

4.1 Risk Minimization

The risk ρπ can be considered a value function defined for a cost signal r̄. To see this, we
augment the state space of the MDP with an additional absorbing state η to which the
agent is transfered after reaching a state from Φ∪Γ. The state η is introduced for technical
reasons.

If the agent reaches η from a state in Γ, both the reward signals r and r̄ become zero.
We set r = 0 and r̄ = 1, if the agent reaches η from an error state. Then the states in Φ∪Γ
are no longer absorbing states. The new cost function r̄ is defined by

r̄x,u(x′) =

{

1 if x∈Φ and x′ = η

0 else.
(6)

With this construction of the cost function r̄, an episode of states, actions and costs
starting at some initial state x contains exactly once the cost of r̄ = 1 if an error state
occurs in it. If the process does not enter an error state, the sequence of r̄-costs contains
zeros only. Therefore, the probability defining the risk can be expressed as the expectation
of a cumulative return.

Proposition 4.1 It holds

ρπ(x) = E

[
∞∑

i=0

γ̄ir̄i

∣
∣
∣ x0 = x

]

(7)

with the “discount” factor γ̄ = 1.

Proof: r̄0, r̄1, . . . is the probabilistic sequence of the costs related to the risk. As stated
above, it holds that R̄ =def

∑∞
i=0 γ̄ir̄i = 1 if the trajectory leads to an error state; otherwise

∑∞
i=0 γ̄ir̄i = 0. This means that the return R̄ is a Bernoulli random variable, and the

probability q of R̄ = 1 corresponds to the risk of x with respect to π. For a Bernoulli random
variable it holds that ER̄ = q (see e.g. Ross, 2000). Notice that the introduction of η together
with the fact that r̄ = 1 occurs during the transition from an error state to η, and not when

entering the respective error state, ensures the correct value of E
[
∑∞

i=0 γ̄ir̄i

∣
∣
∣ x0 = x

]

also

for error states x. q.e.d.

Similar to the Q-function we define the state/action risk as

Q̄π(x, u) = E
[

r̄0 + γ̄ρπ(x1) | x0 = x, u0 = u
]

(8)

=
∑

x′

px,u(x′)
(

r̄x,u(x′) + γ̄ρπ(x′)
)

. (9)

Minimum-risk policies can be obtained with a variant of the Q-learning algorithm (Geibel,
2001).

4.2 Maximized Value, Constrained Risk

In general, one is not interested in policies with minimum risk. Instead, we want to provide
a parameter ω that specifies the risk we are willing to accept. Let X ′ ⊆ X be the set of
states we are interested in, e.g. X ′ = X − (Φ ∪ {η}) or X ′ = {x0} for a distinguished

87

Geibel & Wysotzki

starting state x0. For a state x ∈ X ′, let px be the probability for selecting it as a starting
state. The value of

Vπ =def

∑

x∈X′

pxV π(x) (10)

corresponds to the performance on the states in X ′. We consider the constrained problem

max
π
Vπ (11)

subject to
for all x∈X ′ : ρπ(x) ≤ ω . (12)

A policy that fulfills (12) will be called feasible. Depending on ω, the set of feasible policies
may be empty. Optimal policies generally depend on the starting state, and are non-
stationary and randomized (Feinberg & Shwartz, 1999; Gabor et al., 1998; Geibel, 2001). If
we restrict the considered policy class to stationary deterministic policies, the constrained
problem is generally only well defined if X ′ is a singleton, because there need not be a
stationary deterministic policy being optimal for all states in X ′. Feinberg and Shwartz
(1999) have shown for the case of two unequal discount factors smaller than 1 that there
exist optimal policies that are randomized Markovian until some time step n (i.e. they do
not depend on the history, but may be non-stationary and randomized), and are stationary
deterministic (particularly Markovian) from time step n onwards. Feinberg and Shwartz
(1999) give a DP algorithm for this case (cp. Feinberg & Shwartz, 1994). This cannot be
applied in our case because γ̄ = 1, and also because it does not generalize to continuous state
spaces. In the case of equal discount factors, it is shown by Feinberg and Shwartz (1996) that
(for a fixed starting state) there also exist optimal stationary randomized policies that in
the case of one constraint consider at most one action more than a stationary deterministic
policy, i.e. there is at most one state where the policy chooses randomly between two
actions.

5. The Learning Algorithm

For reasons of efficiency and predictability of the agent’s behavior and because of what
has been said at the end of the last section, we will restrict our consideration to station-
ary deterministic policies. In the following we present a heuristic algorithm that aims at
computing a good policy. We assume that the reader is familiar with Watkin’s Q-learning
algorithm (Watkins, 1989; Watkins & Dayan, 1992; Sutton & Barto, 1998).

5.1 Weighting Risk and Value

We define a new (third) value function V π
ξ and a state/action value function Qπ

ξ that is the
weighted sum of the risk and the value with

V π
ξ (x) = ξV π(x)− ρπ(x) (13)

Qπ
ξ (x, u) = ξQπ(x, u)− Q̄π(x, u) . (14)

The parameter ξ ≥ 0 determines the influence of the V π-values (Qπ-values) compared to the
ρπ-values (Q̄π-values). For ξ = 0, V π

ξ corresponds to the negative of ρπ. This means that

88

Risk-Sensitive Reinforcement Learning

the maximization of V π
0 will lead to a minimization of ρπ. For ξ →∞, the maximization of

V π
ξ leads to a lexicographically optimal policy for the unconstrained, unweighted 2-criteria

problem. If one compares the performance of two policies lexicographically, the criteria are
ordered. For large values of ξ, the original value function multiplied by ξ dominates the
weighted criterion.

The weight is successively adapted starting with ξ = 0, see section 5.3. Before adaptation
of ξ, we will discuss how learning for a fixed ξ proceeds.

5.2 Learning for a fixed ξ

For a fixed value of ξ, the learning algorithm computes an optimal policy π∗
ξ using an

algorithm that resembles Q-Learning and is also based on the ARTDP approach by Gabor
et al. (1998).

During learning, the agent has estimates Qt, Q̄t for time t ≥ 0, and thus an estimate
Qt

ξ for the performance of its current greedy policy, which is the policy that selects the best

action with respect to the current estimate Qt
ξ. These values are updated using example

state transitions: let x be the current state, u the chosen action, and x′ the observed
successor state. The reward and the risk signal of this example state transition are given by
r and r̄ respectively. In x′, the greedy action is defined in the following manner: an action
u is preferable to u′ if Qt

ξ(x
′, u) > Qt

ξ(x
′, u′) holds. If the equality holds, the action with

the higher Qt-value is preferred. We write u � u′, if u is preferable to u′.

Let u∗ be the greedy action in x′ with respect to the ordering �. Then the agent’s
estimates are updated according to

Qt+1(x, u) = (1− αt)Q
t(x, u) + αt(r + γQt(x′, u∗)) (15)

Q̄t+1(x, u) = (1− αt)Q̄
t(x, u) + αt(r̄ + γ̄Q̄t(x′, u∗)) (16)

Qt+1
ξ (x, u) = ξQt+1(x, u)− Q̄t+1(x, u) (17)

Every time a new ξ is chosen, the learning rate αt is set to 1. Afterwards αt decreases over
time (cp. Sutton & Barto, 1998).

For a fixed ξ, the algorithm aims at computing a good stationary deterministic policy π∗
ξ

for the weighted formulation that is feasible for the original constrained problem. Existence
of an optimal stationary deterministic policy for the weighted problem and convergence of
the learning algorithm can be guaranteed if both criteria have the same discount factor, i.e.
γ = γ̄, even when γ̄ < 1. In the case γ = γ̄, Qξ forms a standard criterion function with
rewards ξr− r̄. Because we consider the risk as the second criterion function, γ = γ̄ implies
that γ = γ̄ = 1. To ensure convergence in this case it is also required that either (a) there
exists at least one proper policy (defined as a policy that reaches an absorbing state with
probability one), and improper policies yield infinite costs (see Tsitsiklis, 1994), or (b), all
policies are proper. This is the case in our application example. We conjecture that in the
case γ < γ̄ convergence to a possibly suboptimal policy can be guaranteed if the MDP forms
a directed acyclic graph (DAG). In other cases oscillations and non-convergence may occur,
because optimal policies for the weighted problem are generally not found in the considered
policy class of stationary deterministic policies (as for the constrained problem).

89

Geibel & Wysotzki

5.3 Adaptation of ξ

When learning starts, the agent chooses ξ = 0 and performs learning steps that will lead,
after some time, to an approximated minimum-risk policy π∗

0. This policy allows the agent
to determine if the constrained problem is feasible.

Afterwards the value of ξ is increased step by step until the risk in a state in X ′ becomes
larger than ω. Increasing ξ by some ǫ increases the influence of the Q-values compared to
the Q̄-values. This may cause the agent to select actions that result in a higher value,
but perhaps also in a higher risk. After increasing ξ, the agent again performs learning
steps until the greedy policy is sufficiently stable. This is aimed at producing an optimal
deterministic policy π∗

ξ . The computed Q- and Q̄-values for the old ξ (i.e. estimates for

Q
π∗

ξ and Q̄
π∗

ξ) are used as the initialization for computing π∗
ξ+ǫ.

The aim of increasing ξ is to give the value function V the maximum influence possible.
This means that the value of ξ is to be maximized, and needs not be chosen by the user.
The adaptation of ξ provides a means for searching the space of feasible policies.

5.4 Using a Discounted Risk

In order to prevent oscillations of the algorithm in section 5.2 for the case γ < γ̄, it may be
advisable to set γ̄ = γ corresponding to using a discounted risk defined as

ρπ
γ (x) = E

[
∞∑

i=0

γir̄i

∣
∣
∣ x0 = x

]

. (18)

Because the values of the r̄i are all positive, it holds ρπ
γ (x) ≤ ρπ(x) for all states x. The dis-

counted risk ρπ
γ (x) gives more weight to error states occurring in the near future, depending

on the value of γ.

For a finite MDP and a fixed ξ, the convergence of the algorithm to an optimal stationary
policy for the weighted formulation can now be guaranteed because Qξ (using ρπ

γ (x)) forms
a standard criterion function with rewards ξr − r̄. For terminating the adaptation of ξ in
the case that the risk of a state in X ′ becomes larger than ω, one might still use the original
(undiscounted) risk ρπ(x) while learning is done with its discounted version ρπ

γ (x), i.e. the
learning algorithm has to maintain two risk estimates for every state, which is not a major
problem. Notice that in the case of γ = γ̄, the effect of considering the weighted criterion
ξV π − ρπ

γ corresponds to modifying the unscaled original reward function r by adding a

negative reward of −1
ξ

when the agent enters an error state: the set of optimal stationary
deterministic policies is equal in both cases (where the added absorbing state η with its
single dummy action can be neglected).

In section 6, experiments for the case of γ < 1 = γ̄, X ′ = X − (Φ ∪ {η}), and a finite
state space can be found. In the sections 7 and 8 we will consider an application example
with infinite state space, X ′ = {x0}, and γ = γ̄ = 1.

6. Grid World Experiment

In the following we will study the behaviour of the learning algorithm for a finite MDP
with a discounted criterion. In contrast to the continuous-state case discussed in the next

90

Risk-Sensitive Reinforcement Learning

a)

E G

E

E

E

E G

E E E E E E

b)

E → → → → G

E → → → ↑ ↑

E → → ↑ ↑ ↑

E ↓ → ↑ ↑ ↑

E G ← ↑ ↑ ↑

E E E E E E

c)

E → → → → G

E ↓ → → ↑ ↑

E ↓ ↓ → ↑ ↑

E ↓ ↓ ← ↑ ↑

E G ← ← ← ↑

E E E E E E

d)

E → → → → G

E → → → → ↑

E ↓ → → ↑ ↑

E ↓ ↓ ↑ ↑ ↑

E G ← ← ↑ ↑

E E E E E E

Figure 1: a) An example grid world, x : horizontal, y : vertical. For further explanation see
text. b) Minimum risk policy (ξ = 0) with 11 unsafe states. c) Maximum value
policy (ξ = 4.0) with 13 unsafe states. d) Result of algorithm: policy for ξ = 0.64
with 11 unsafe states.

section, no function approximation with neural networks is needed because both the value
function and the risk can be stored in a table. For the grid world, we have chosen γ <

1 = γ̄, X ′ = X − Φ, and a state graph that is not a DAG. This implies that there is no
stationary policy which is optimal for every state in X ′. Although oscillations can therefore
be expected, we have found that the algorithm stabilizes at a feasible policy because the
learning rate αt tends to zero. We also investigated the use of the discounted risk that
prevents an oscillatory behaviour.

We consider the 6×6 grid world that is depicted in Figure 1(a). An empty field denotes
some state, Es denote error states, and the two Gs denote two goal states. We describe
states as pairs (x, y) where x, y∈{1, 2, 3, 4, 5, 6}. I.e. Γ = {(2, 2), (6, 6)}, Φ = {(1, 1), (1,

2), (1, 3), (1, 4), (1, 5), (1, 6), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1)}. The additional absorbing
state η is not depicted.

We have chosen the error states as if the lower, i.e. extremal values of x and y were
dangerous. One of the goal states is placed next to the error states, the other in a safer
part of the state space.

The agent has the actions U = {→,←, ↑, ↓}. An action u ∈ U takes the agent in the
denoted direction if possible. With a probability of 0.21, the agent is not transported to
the desired direction but to one of the three remaining directions.

The agent receives a reward of 1 if it enters a goal state. The agent receives a reward of
0 in every other case. It should be noted that there is no explicit punishment for entering an
error state, but there is an implicit one: if the agent enters an error state, then the current
episode ends. This means that the agent will never receive a positive reward after it has
reached an error state. Therefore, it will try to reach one of the goal states, and because
γ < 1, it will try to do this as fast as possible.

91

Geibel & Wysotzki

We have chosen X ′ = X − (Φ ∪ {η}), γ = 0.9, and equal probabilities px for all states.
Although the convergence of the algorithm cannot be guaranteed in this case, the experi-
mental results show that the algorithm yields a feasible policy.

We have selected ω = 0.13. In order to illustrate the behaviour of the algorithm we
have also computed the minimum-risk and maximum-value policy. Figure 1(b) shows the
minimum risk policy. Though the reward function r defined above plays no role for the
minimum risk policy, the agent tries to reach one of the two goal states. This is so because
from a goal state the probability of reaching an error state is 0. Clearly, with respect to the
value function V , the policy in Figure 1(b) is not optimal: e.g. from state (3, 3) the agent
tries to reach the more distant goal, which causes higher discounting of the goal reward.
The minimum risk policy in Figure 1(b) has 25 safe states, defined as states for which the
risk is below ω. The minimum risk policy has an estimated mean value of Vπ = 0.442.

In Figure 1(c) the maximum-value policy is shown. The maximum-value policy that
optimizes the value without considering the risk has an estimated value of Vπ = 0.46.
Thus, it performs better than the minimum-risk policy in Figure 1(b), but the risk in (5, 2)
and (2, 5) has become greater than ω. Our algorithm starts with ξ = 0 and computes the
minimum-risk policy in Figure 1(b). ξ is increased step by step until the risk for a state
changes from a value lower than ω to a value > ω. Our algorithm stops at ξ = 0.64. The
policy computed is shown in Figure 1(d). Obviously, it lies “in between” the minimum risk
policy in Figure 1(b) and the maximum-value policy in Figure 1(c).

We also applied the algorithm with the discounted version of the risk, ρπ
γ , to the grid

world problem. The discounted risk was used for learning, whereas the original risk, ρπ,
was used for selecting the best weight ξ. For the parameters described above, the modified
algorithm also produced the policy depicted in figure 1(d). Seemingly, in the grid world
example, oscillations do not present a major problem.

For the tank control task described in the next section, it holds that ρπ
γ = ρπ because

γ = γ̄.

7. Stochastic Optimal Control with Chance Constraints

In this section, we consider the solution of a stochastic optimal control problem with chance
constraints (Li et al., 2002) by applying our risk-sensitive learning method.

7.1 Description of the Control Problem

In the following, we consider the plant depicted in Figure 2. The task is to control the
outflow of the tank that lies upstream of a distillation column in order to fulfill several
objectives that are described below. The purpose of the distillation column is the separation
of two substances 1 and 2. We consider a finite number of time steps 0, . . . , N . The outflow
of the tank, i.e. the feedstream of the distillation column, is characterized by a flowrate
F (t) which is controlled by the agent, and the substance concentrations c1(t) and c2(t) (for
0 ≤ t ≤ N).

The purpose of the control to be designed is to keep the outflow rate F (t) near a specified
optimal flow rate Fspec in order to guarantee optimal operation of the distillation column.

92

Risk-Sensitive Reinforcement Learning

F1 F2

ymax

ymin

Fspec

tank

distillation column

F

y, h, c1, c2

c1min, c1max
c2min, c2max

c11
c12

c21
c22

Figure 2: The plant. See text for description.

Using a quadratic objective function, this goal is specified by

min
F (0),...,F (N−1)

N−1∑

t=0

(F (t)− Fspec)
2 , (19)

where the values obey

for 0 ≤ t ≤ N − 1 : Fmin ≤ F (t) ≤ Fmax . (20)

The tank is characterized by its tank level y(t) and its holdup h(t), where y = A−1h with
some constant A for the footprint of the tank. The tank level y(t) and the concentrations
c1(t) and c2(t) depend on the two stochastic inflow streams characterized by the flowrates
F1(t) and F2(t), and the inflow concentrations c1,j(t) and c2,j(t) for substances j ∈ {1, 2}.
The linear dynamics of the tank level is given by

y(t + 1) = y(t) + A−1∆t ·
(∑

j=1,2

Fj(t)− F (t)
)

. (21)

The dynamics of the concentrations is given by

for i = 1, 2 : ci(t + 1) = ci(t) +
A−1∆t

y(t)
(

∑

j=1,2

Fj(t)(cj,i(t)− ci(t))
)

(22)

The initial state of the system is characterized by

y(0) = y0, c1(0) = c0
1, c2(0) = c0

2 . (23)

The tank level is required to fulfill the constraint ymin ≤ y(t) ≤ ymax. The concen-
trations inside the tank correspond to the concentrations of the outflow. The substance
concentrations c1(t) and c2(t) are required to remain in the intervals [c1,min, c1,max] and

93

Geibel & Wysotzki

[c2,min, c2,max], respectively. We assume that the inflows Fi(t) and inflow concentrations
ci,j(t) are random, and that they are governed by a probability distribution. Li et al. (2002)
assume a multivariate Gaussian distribution. Because of the randomness of the variables,
the tank level and the feedstream concentrations may violate the given constraints. We
therefore formulate the stochastic constraint

P
(

ymin ≤ y(t) ≤ ymax, ci,min ≤ ci(t) ≤ ci,max, 1 ≤ t ≤ N, i = 1, 2
)

≥ p (24)

The expression in (24) is called a (joint) chance constraint, and 1− p corresponds to the
permissible probability of constraint violation. The value of p is given by the user.

The stochastic optimization problem SOP-YC is defined by the quadratic objective func-
tion (19) describing the sum of the quadratic differences of the outflow rates and Fspec, the
linear dynamics of the tank level in (21), the nonlinear dynamics of the concentrations in
(22), the initial state given in (23), and the chance constraint in (24).

Li et al. describe a simpler problem SOP-Y where the concentrations are not considered;
see Figure 3. For SOP-Y we use the cumulative inflow FΣ = F1 + F2 in the description
of the tank level dynamics, see (27). SOP-Y describes the dynamics of a linear system.
Li et al. solve SOP-Y by relaxing it to a nonlinear program that is solved by sequential
quadratic programming. This relaxation is possible because SOP-Y is a linear system, and
a multivariate Gaussian distribution is assumed. Solving of nonlinear systems like SOP-YC

and non-Gaussian distributions is difficult (e.g. Wendt, Li, & Wozny, 2002), but can be
achieved with our RL approach.

min
F (0),...,F (N−1)

N−1∑

t=0

(F (t)− Fspec)
2 (25)

subject to

for 0 ≤ t ≤ N − 1 : Fmin ≤ F (t) ≤ Fmax (26)

y(t + 1) = y(t) + A−1∆t ·
(

FΣ(t)− F (t)
)

(27)

y(0) = y0 (28)

P
(

ymin ≤ y(t) ≤ ymax, 1 ≤ t ≤ N
)

≥ p (29)

Figure 3: The problem SOP-Y.

Note that the control F (t) in the optimization problems only depends on the time step
t. This means that the solutions of SOP-YC and SOP-Y yield open loop controls. Because of
the dependence on the initial condition in (23), a moving horizon approach can be taken to
design a closed loop control. We will not discuss this issue, as it goes beyond the scope of
the paper.

94

Risk-Sensitive Reinforcement Learning

7.2 Formulation as a Reinforcement Learning Problem

Using RL instead of an analytical approach has the advantage that the probability distribu-
tion doesn’t have to be Gaussian and it can be unknown. The state equations also need not
be known, and they can be nonlinear. But the learning agent must have access to simulated
or empirical data, i.e. samples of at least some of the random variables.

Independent of the chosen state representation, the immediate reward is defined by

rx,u(x′) = −(u− Fspec)
2 , (30)

where u is a chosen action – the minus is required because the RL value function is to be
maximized. The reward signal only depends on the action chosen, not on the current and
the successor state.

In this work we only consider finite (discretized) action sets, although our approach can
also be extended to continuous action sets, e.g. by using an actor-critic method (Sutton &
Barto, 1998). In the following, we assume that the interval [Fmin, Fmax] is discretized in an
appropriate manner.

The process reaches an error state if one of the constraints in (24) (or in (29), respec-
tively) is violated. The process is then artificially terminated by transferring the agent to
the additional absorbing state η giving a risk signal of r̄ = 1. The V ∗-value of error states
is set to zero, because the controller could choose the action Fspec after the first constraint
violation, as subsequent constraint violations do not make things worse with respect to the
chance constraints (24) and (29), respectively.

7.3 Definition of the State Space

In the following we consider the design of appropriate state spaces that result either in an
open loop control (OLC) or a closed loop control (CLC).

7.3.1 Open Loop Control

We note that SOP-YC and SOP-Y are time-dependent finite horizon problems where the
control F (xt) = F (t) depends on t only. This means that there is no state feedback and
the resulting controller is open-looped. With respect to the state definition xt = (t), the
Markov property defined in section 2 clearly holds for the probabilities and rewards defining
V π. But the Markov property does not hold for the rewards defining ρπ. Using xt = (t)
implies that the agent has no information about the state of the process. By including
information about the history in the form of its past action, the agent gets an “idea” about
the current state of the process. Therefore, the inclusion of history information changes the
probability for r̄ = 1, and the Markov property is violated. Including the past actions in
the state description ensures the Markov property for r̄. The Markov property is therefore
recovered by considering the augmented state definition

xt = (t, ut−1, . . . , u0) , (31)

with past actions (ut−1, . . . , u0). The first action u0 depends on the fixed initial tank level y0

and the fixed initial concentrations only. The second action depends on the first action, i.e.
also on the initial tank level and the initial concentrations and so on. Therefore, learning

95

Geibel & Wysotzki

with states (31) results in an open loop control, as in the original problems SOP-YC and
SOP-Y.

It should be noted that for an MDP, the risk does not depend on past actions, but
on future actions only. For the choice xt = (t), there is hidden state information, and we
do not have an MDP because the Markov property is violated. Therefore the probability
of entering an error state conditioned on the time step, i.e. P (r̄0 = 1|t), changes if it is
additionally conditioned on the past actions yielding the value P (r̄0 = 1|t, ut−1, . . . , u0)
(corresponding to an agent that remembers its past actions). For example, if the agent
remembers that in the past time steps of the current learning episode it has always used
action F = 0 corresponding to a zero outflow, it can conclude that there is an increased
probability that the tank level exceeds ymax, i.e. it can have knowledge of an increased risk.
If, on the other hand, it does not remember its past actions, it cannot know of an increased
risk because it only knows the index of the current time step, which carries less information
about the current state.

It is well-known that the Markov property can generally be recovered by including the
complete state history into the state description. For xt = (t), the state history contains
the past time indices, actions and r̄-costs. For the tank control task, the action history is
the relevant part of the state history because all previous r̄-costs are necessarily zero, and
the indices of the past time steps are already given with the actual time t that is known
to the agent. Therefore, the past rewards and the indices of the past time steps need not
be included into the expanded state. Although still not the complete state information is
known to the agent, knowledge of past actions suffices to recover the Markov property.

With respect to the state choice (31) and the reward signal (30), the expectation from
the definition of the value function is not needed, cp. eq. (2). This means that

V π(x) = E
[

R |x0 = x
]

= −
N−1∑

t=0

(F (t)− Fspec)
2

holds, i.e. there is a direct correspondence between the value function and the objective
function of SOP-YC and SOP-Y.

7.3.2 Closed Loop Control

We will now define an alternative state space, where the expectation is needed. We have
decided to use the state definition

xt = (t, y(t), c1(t), c2(t)) (32)

for the problem SOP-YC and

xt = (t, y(t)) (33)

for the simpler problem SOP-Y. The result of learning is a state and time-dependent closed
loop controller, which can achieve a better regulation behavior than the open loop controller,
because it reacts on the actual tank level and concentrations, whereas an open loop control
does not. If the agent has access to the inflow rates or concentrations, they too can be
included in the state vector, yielding improved performance of the controller.

96

Risk-Sensitive Reinforcement Learning

Table 1: Parameter settings
Parameter Value Explanation

N 16 number of time steps
y0 0.4 initial tank level
[ymin, ymax] [0.25, 0.75] admissible interval for tank level
A−1∆t 0.1 constant, see (22)
Fspec 0.8 optimal action value
[Fmin, Fmax] [0.55, 1.05] interval for actions, 21 discrete values

only RL-YC-CLC:

c0
1 0.2 initial concentration subst. 1

c0
2 0.8 initial concentration subst. 2

[c1,min, c1,max] [0.1, 0.4] interval for concentration 1
[c2,min, c2,max] [0.6, 0.9] interval for concentration 2

7.4 The RL Problems

With the above definitions, the optimization problem is defined via (11) and (12) with
ω = 1−p (see (24) and (29)). The set X ′ (see (10) and (12)) is defined to contain the unique
starting state, i.e X ′ = {x0}. In our experiments we consider the following instantiations
of the RL problem:

• RL-Y-CLC Reduced problem SOP-Y using states xt = (t, y(t)), with x0 = (0, y0) result-
ing in a closed loop controller (CLC).

• RL-Y-OLC Open loop controller (OLC) for reduced problem SOP-Y. The state space is
defined by the action history and time, see eq. (31). The starting state is x0 = (0).

• RL-YC-CLC Closed loop controller for full problem SOP-YC using states xt =
(t, y(t), c1(t), c2(t)) with x0 = (0, y0, c

0
1, c

0
1).

Solving the problem RL-Y-OLC yields an action vector. The problems RL-YC-CLC and
RL-Y-CLC result in state dependent controllers. We do not present results for the fourth
natural problem RL-YC-OLC, because they offer no additional insights.

For interpolation between states we used 2 × 16 multilayer perceptrons (MLPs, e.g.
Bishop, 1995) in the case of RL-Y-OLC because of the extremely large state space (15 di-
mensions for t = N − 1). We used radial basis function (RBF) networks in the case of
RL-YC-CLC and RL-Y-CLC, because they produced faster, more stable and robust results
compared to MLPs.

For training the respective networks, we used the “direct method” that corresponds
to performing one gradient descent step for the current state-action pair with the new
estimate as the target value (see e.g. Baird, 1995). The new estimate for Q

π∗

ξ is given

by r + γQt(x′, u∗), and for Q̄
π∗

ξ by r̄ + γ̄Q̄t(x′, u∗) (compare the right sides of the update
equations (15)-(17)).

97

Geibel & Wysotzki

(a)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 2 4 6 8 10 12 14 16

In
fl

o
w

time

(b)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

o
u
tf

lo
w

 r
at

e

time

omega=0.01
0.8

(c)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

o
u
tf

lo
w

 r
at

e

time

omega=0.05
0.8

(d)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14 16

o
u
tf

lo
w

 r
at

e

time

omega=0.1
0.8

Figure 4: RL-Y-CLC: (a) The inflow rates FΣ(t) for 10 runs. (b), (c), (d) Example runs of
policies for ω = 0.01, 0.05, 0.10 (i.e. p = 0.99, 0.95, 0.90). It holds Fspec = 0.8.

8. Experiments

In this section, we examine the experimental results obtained for the tank control task
(γ = γ̄ = 1). In section 8.1 we discuss the linear case and compare the results to those of Li
et al. (2002). For the linear case, we consider the closed loop controller obtained by solving
RL-Y-CLC (sect. 8.1.1) and the open loop controller related to the RL problem RL-Y-OLC

(sect. 8.1.2). For the closed loop controller, we discuss the problem of non-zero covariances
between variables of different time steps. The nonlinear case is discussed in section 8.2.

8.1 The Problems RL-Y-CLC and RL-Y-OLC

We start with the simplified problems, RL-Y-CLC and RL-Y-OLC, derived from SOP-Y that
is discussed by Li et al. (2002). In SOP-Y the concentrations are not considered, and there
is only one inflow rate FΣ(t) = F1(t) + F2(t). The parameter settings in Table 1 (first five
lines) were taken from Li et al. (2002). The minimum and maximum values for the actions
were determined by preliminary experiments.

Li et al. define the inflows (FΣ(0), . . . , FΣ(15))T as having a Gaussian distribution with
the mean vector

(1.8, 1.8, 1.5, 1.5, 0.7, 0.7, 0.5, 0.3, 0.2, 0.2, 0.2, 0.2, 0.2, 0.6, 1.2, 1.2)T . (34)

98

Risk-Sensitive Reinforcement Learning

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 5 10 15 20

xi

risk

value
weighted

Figure 5: RL-Y-CLC: Estimates of the risk ρ
π∗

ξ (x0), the value V
π∗

ξ (x0), and of V
π∗

ξ

ξ (x0) =

ξV
π∗

ξ (x0)− ρ
π∗

ξ (x0) for different values of ξ.

The covariance matrix is given by

C =








σ2
0 σ0σ1r01 · · · σ0σN−1r0(N−1)

σ0σ1r01

· · · · · · · · · · · ·
σ0σN−1r0(N−1) · · · · · · σ2

N−1








(35)

with σi = 0.05. The correlation of the inflows of time i and j is defined by

rij = rji = 1− 0.05(j − i) (36)

for 0 ≤ i ≤ N − 1, i < j ≤ N − 1 (from Li et al., 2002). The inflow rates for ten example
runs are depicted in Figure 4(a).

8.1.1 The Problem RL-Y-CLC (Constraints for Tank Level)

We start with the presentation of the results for the problem RL-Y-CLC, where the control
(i.e. the outflow F) depends only on the time t and the tank level. Because X ′ = {x0} the
overall performance of the policy as defined in (10) corresponds to its performance for x0,

Vπ∗

ξ = V
π∗

ξ (x0) .

It holds that x0 = (0, y0). V
π∗

ξ (x0) is the value with respect to the policy π∗
ξ learned for the

weighted criterion function V π
ξ , see also (13). The respective risk is

ρ
π∗

ξ (x0) .

In Figure 5 the estimated2 risk ρ
π∗

ξ (x0) and the estimated value V
π∗

ξ (x0) are depicted

for different values of ξ. Both the estimate for the risk ρ
π∗

ξ (x0) and that for value V
π∗

ξ (x0)

2. All values and policies presented in the following were estimated by the learning algorithm. Note that
in order to enhance the readability, we have also denoted the learned policy as π∗

ξ .

99

Geibel & Wysotzki

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

xi

Figure 6: RL-Y-CLC: Difference between the weighted criteria. For an explanation see text.

increase with ξ. Given a fixed value p for the admissible probability of constraint violation,
the appropriate ξ = ξ(p) can be obtained as the value for which the risk ρ

π∗

ξ (x0) is lower

than ω = 1−p and has the maximum V
π∗

ξ (x0). Due to the variation of the performance (see
Fig. 5) we found that this works better than just selecting the maximum ξ. The estimate

of the weighted criterion V
π∗

ξ

ξ (x0) = ξV
π∗

ξ (x0)− ρ
π∗

ξ (x0) is also shown in Figure 5.

The outflow rate F (control variable) for different values of ω can be found in Figure 4(b-
c). Note that the rates have a certain variance since they depend on the probabilistic tank
level. We randomly picked one example run for each value of ω. It is found that the control
values F (t) tend to approach Fspec with increasing values of ω (i.e. decreasing values of p).

Correlations The definition of the covariance matrix in (35) and (36) reveals a high
correlation of the inflow rates in neighboring time steps. In order to better account for this,
it is possible to include information on past time steps in the state description at time t.
Because the level y changes according to the inflow rate FΣ, we investigated the inclusion
of past values of y. If the inflow rates were measured, they too could be included in the
state vector. Former rewards need not be included because they depend on the past tank
levels, i.e. they represent redundant information.

We have compared the performance of the algorithm for the augmented state space
defined by x̃t = (t, y(t), y(t − 1), y(t − 2)) (depth 2 history) and the normal state space
xt = (t, y(t)) (no history). Fig. 6 shows

V
π̃∗

ξ

(

(0, y0, 0, 0)
︸ ︷︷ ︸

x̃0

)

− V
π∗

ξ

(

(0, y0)
︸ ︷︷ ︸

x0

)

,

i.e. the difference in the weighted criteria for the starting state with respect to the learned
policies π̃∗

ξ (history) and π∗
ξ (no history). Note that for the starting state x̃0, the past values

have been defined as 0. The curve in Figure 6 runs mainly above 0. This means that using
the augmented state space results in a better performance for many values of ξ. Note that

100

Risk-Sensitive Reinforcement Learning

(a)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 2 4 6 8 10 12 14

xi

Risk

Value

(b)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 2 4 6 8 10 12 14

o
u
tf

lo
w

 r
at

e

time

Figure 7: RL-Y-OLC: (a) Estimates of the risk ρ
π∗

ξ (x0) and the value V
π∗

ξ (x0) for increasing

values of ξ. (b) Learned policy π∗
ξ with ρ

π∗

ξ (x0) ≈ 0.098 and V
π∗

ξ (x0) ≈ −0.055

for larger values of ξ the original value function overweights the risk so that in both cases
the policy that always chooses the outflow Fspec is approximated. This means that the
difference in performance tends to zero.

A similar, but not quite pronounced effect can be observed when using a history of
length 1 only. In principle, we assume that it is possible to achieve even better performance
by including the full history of tank levels in the state description, but there is a trade-
off between this objective and the difficulty of network training caused by the number of
additional dimensions.

8.1.2 RL-Y-OLC (History of Control Actions)

The RL problem RL-Y-OLC comprises state descriptions consisting of an action history
together with the time, see eq. (31). The starting state has an empty history, i.e. x0 = (0).
The result of learning is a time-dependent policy with an implicit dependence on y0. The
learned policy π∗

ξ is therefore a fixed vector of actions F (0), . . . , F (15) that forms a feasible,
but in general suboptimal solution to the problem SOP-Y in Figure 3.

The progression of the risk estimate, i.e. of ρ
π∗

ξ (x0), and that for the value, V
π∗

ξ (x0),
for different values of ξ can be found in Figure 7. The results are not as good as the ones
for RL-Y-CLC in Figure 5: the estimated minimum risk is 0.021, and the risk ρ

π∗

ξ (x0) grows
much faster than the RL-Y-CLC-risk in Figure 5.

A policy having a risk ρ
π∗

ξ (x0) ≈ 0.098 is depicted in Figure 7(b). In contrast to the
policies for RL-Y-CLC (see Figure 4(b-c)), the control values do not change in different runs.

8.1.3 Comparison

In Table 2, we have compared the performance of the approach of Li et al. with RL-Y-CLC

and RL-Y-OLC for p = 0.8 and p = 0.9. For both RL-Y-CLC and RL-Y-OLC we performed 10
learning runs. For the respective learned policy π, the risk ρπ(x0) and value V π(x0) were
estimated during 1000 test runs. For RL-Y-CLC and RL-Y-OLC, the table shows the mean
performance averaged over this 10 runs together with the standard deviation in parentheses.

101

Geibel & Wysotzki

Table 2: Comparison of est. squared deviation to Fspec (i.e. −V π(x0)) for results of Li et
al. with results for RL-Y-CLC and RL-Y-OLC for p = 0.8 (ω = 0.2) and p = 0.9
(ω = 0.1). Smaller values are better.

approach p = 0.8 p = 0.9

Li et al. (2002) 0.0123 0.0484
RL-Y-CLC 0.00758 (0.00190) 0.02 (0.00484)
RL-Y-OLC 0.0104 (0.000302) 0.0622 (0.0047)

It is found that, in average, the policy determined for RL-Y-CLC performs better than that
obtained through the approach of Li et al. (2002) (with respect to the estimated squared
deviation to the desired outflow Fspec, i.e. with respect to −V π(x0).) The policy obtained
for RL-Y-OLC performs better for p = 0.8 and worse for p = 0.9. The maximal achievable
probability for holding constraints was 1.0 (sd 0.0) for RL-Y-CLC, and and 0.99 (sd 0.0073)
for RL-Y-OLC. Li et al. report p = 0.999 for their approach.

The approach of Neuneier and Mihatsch (1999) considers the worst-case outcomes of a
policy, i.e. risk is related to the variability of the return. Neuneier and Mihatsch show that
the learning algorithm interpolates between risk-neutral and the worst-case criterion and
has the same limiting behavior as the exponential utility approach.

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

-1 -0.5 0 0.5 1

kappa

risk

value

risk
value

Figure 8: Risk and value for several values of κ

The learning algorithm of Neuneier and Mihatsch has a parameter κ ∈ (−1.0, 1.0) that
allows to switch between risk-averse behavior (κ → 1), risk-neutral behavior (κ = 0), and
risk-seeking behavior (κ → −1). If the agent is risk-seeking, it prefers policies with a
good best-case outcome. Figure 8 shows risk (probability of constraint violation) and value
for the starting state in regard to the policy computed with the algorithm of Neuneier and
Mihatsch. Obviously, the algorithm is able to find the maximum-value policy yielding a zero
deviation of Fspec, corresponding to choosing F = Fspec = 0.8 in all states, but the learning
result is not sensitive to the risk parameter κ. The reason for this is that the worst-case and
the best-case returns for the policy that always chooses the outflow 0.8 also correspond to

102

Risk-Sensitive Reinforcement Learning

(a)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14

In
fl

o
w

Time

mu(t)-0.04

mu(t)+0.04

(b)

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16

Time

y
ymax

ymin

c1min

c1max

c1

Figure 9: RL-YC-CLC: (a) µ(t) + 0.04 and µ(t) − 0.04 (profiles of the two mode means).
(b) The tank level y(t) and the concentration c1(t) for 10 example runs using the
minimum risk policy.

0, which is the best return possible (implying a zero variance of the return). The approach
of Neuneier and Mihatsch and variance-based approaches are therefore unsuited for the
problem at hand.

8.2 The Problem RL-YC-CLC (Constraints for Tank Level and Concentrations)

In the following we will consider the full problem RL-YC-CLC. The two inflows F1 and F2 are
assumed to have equal Gaussian distributions such that the distribution of the cumulative
inflow FΣ(t) = F1(t) + F2(t) is described by the covariance matrix in (35) and the mean
vector µ in (34); see also Figure 4(a).

In order to demonstrate the applicability of our approach to non-Gaussian distributions,
we have chosen bimodal distributions for the inflow concentrations c1 and c2. The underlying
assumption is that the upstream plants either all have an increased output, or all have a
lower output, e.g. due to different hours or weekdays.

The distribution of the inflow concentration ci,1(t) is characterized by two Gaussian
distributions with means

µ(t) + (−1)k0.04 ,

where k = 1, 2 and σ2 = 0.0025. The value of k ∈ {0, 1} is chosen at the beginning of
each run with equal probability for each outcome. This means that the overall mean value
of ci,1(t) is given by µ(t). The profiles of the mean values of the modes can be found in
Figure 9(a). ci,2 is given as ci,2(t) = 1.0 − ci,1(t). The minimum and maximum values for
the concentrations ci(t) can be found in Table 1, and also in Figure 9(b). Note that the
concentrations have to be controlled indirectly by choosing an appropriate outflow F .

The developing of the risk and the value of the starting state is shown in Figure 10.
The resulting curves behave similar to that for the problem RL-Y-CLC depicted in Figure 5:
both value and risk increase with ξ. It can be seen that the algorithm covers a relatively
broad range of policies with different value-risk combinations.

103

Geibel & Wysotzki

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15 20 25 30 35 40 45 50

xi

risk

value

Figure 10: RL-YC-CLC: Estimated risk ρ
π∗

ξ (x0), value V
π∗

ξ (x0), and V
π∗

ξ

ξ (x0) = ξV
π∗

ξ (x0)−

ρ
π∗

ξ (x0) for different values of ξ.

For the minimum risk policy, the curves of the tank level y and the concentration
c1 can be found in Figure 9(b). The bimodal characteristics of the substance 1 inflow
concentrations are reflected by c1(t) (it holds c2(t) = 1 − c1(t)). The attainable minimum
risk is 0.062. Increasing the weight ξ leads to curves similar to that shown in the Figures 5
and 7. We assume that the minimum achievable risk can be decreased by the inclusion of
additional variables, e.g. inflow rates and concentrations, and/or by the inclusion of past
values as discussed in section 8.1.1. The treatment of a version with an action history is
analogous to section 8.1.2. We therefore conclude presentation of the experiments at this
point.

9. Conclusion

In this paper, we presented an approach for learning optimal policies with constrained risk
for MDPs with error states. In contrast to other RL and DP approaches that consider risk
as a matter of the variance of the return or of its worst outcomes, we defined risk as the
probability of entering an error state.

We presented a heuristic algorithm that aims at learning good stationary policies that is
based on a weighted formulation of the problem. The weight of the original value function
is increased in order to maximize the return while the risk is required to stay below the
given threshold. For a fixed weight and a finite state space, the algorithm converges to an
optimal policy in the case of an undiscounted value function. For the case that the state
space is finite, contains no cycles, and that γ < 1 holds, we conjecture the convergence of
the learning algorithm to a policy, but assume that it can be suboptimal for the weighted
formulation. If an optimal stationary policy exists for the weighted formulation, it is a
feasible, but generally suboptimal solution for the constrained problem.

104

Risk-Sensitive Reinforcement Learning

The weighted approach that is combined with an adaptation of ξ is a heuristic for search-
ing the space of feasible stationary policies of the original constrained problem, which to
us seems relatively intuitive. We conjecture that better policies could be found by allowing
state-dependent weights ξ(x) with a modified adaptation strategy, and by extending the
considered policy class.

We have successfully applied the algorithm to the control of the outflow of a feed tank
that lies upstream of a distillation column. We started with a formulation as a stochastic
optimal control problem with chance constraints, and mapped it to a risk-sensitive learning
problem with error states (that correspond to constraint violation). The latter problem was
solved using the weighted RL algorithm.

The crucial point in reformulation as an RL problem was the design of the state space.
We found that the algorithm consistently performed better when state information was
provided to the learner. Using the time and the action history resulted in very large state
spaces, and a poorer learning performance. RBF networks together with sufficient state
information facilitated excellent results.

It must be mentioned that the use of RL together with MLP or RBF network based
function approximation suffers from the usual flaws: non-optimality of the learned network,
potential divergence of the learning process, and long learning times. In contrast to an
exact method, no a priori performance guarantee can be given, but of course an a posteriori
estimate of the performance of the learned policy can be made. The main advantage of the
RL method lies in its broad applicability. For the tank control task, we achieved very good
results compared to those obtained through a (mostly) analytical approach.

For the cases |X| > 1 or γ < 1 further theoretical investigations of the convergence and
more experiments are required. Preliminary experiments have shown that oscillations may
occur in our algorithm, but the behavior tends to oscillate between sensible policies without
getting too bad in-between although the convergence and usefulness of the policies remains
an open issue.

Oscillations can be prevented by using a discounted risk that leads to an underestimation
of the actual risk. The existence of an optimal policy and convergence of the learning
algorithm for a fixed ξ can be guaranteed in the case of a finite MDP. A probabilistic
interpretation of the discounted risk can be given by considering 1− γ as the probability of
exiting from the control of the MDP (Bertsekas, 1995). The investigation of the discounted
risk may be worthwhile in its own right. For example, if the task has long episodes, or if
it is continuing, i.e. non-episodic, it can be more natural to give a larger weight to error
states occurring closer to the current state.

We have designed our learning algorithm as an online algorithm. This means that learn-
ing is accomplished using empirical data obtained through interaction with a simulated or
real process. The use of neural networks allows to apply the algorithm to processes with
continuous state spaces. In contrast, the algorithm described by Dolgov and Durfee (2004)
can only be applied in the case of a known finite MDP. Such a model can be obtained
in the case of a continuous-state process by finding an appropriate discretization and es-
timating the state transition probabilities together with the reward function. Although
such discretization prevents the application of Dolgov and Durfee’s algorithm to RL-Y-OLC,
where a 15-dimensional state space is encountered, it can probably be applied in the case
of RL-Y-OLC. We plan to investigate this point in future experiments.

105

Geibel & Wysotzki

The question arises as to whether our approach can also be applied to stochastic optimal
control problems with other types of chance constraints. Consider a conjunction of chance
constraints

P(C0) ≥ p1, . . . ,P(CN−1) ≥ pN−1 , (37)

where each Ct is a constraint system containing only variables at time t, and pt is the
respective probability threshold. (37) requires an alternative RL formulation where the risk
of a state only depends on the next reward, and where each time-step has its own ωt. The
solution with a modified version of the RL algorithm is not difficult.

If each of the Ct in (37) is allowed to be a constraint system over state variables de-
pending on t′ ≥ t, things get more involved because several risk functions are needed for
each state. We plan investigating these cases in the future.

Acknowledgments We thank Dr. Pu Li for providing the application example and for his
helpful comments. We thank Önder Gencaslan for conducting first experiments during his
master’s thesis.

References

Altman, E. (1999). Constrained Markov Decision Processes. Chapman and Hall/CRC.

Baird, L. (1995). Residual algorithms: reinforcement learning with function approxima-
tion. In Proc. 12th International Conference on Machine Learning, pp. 30–37. Morgan
Kaufmann.

Bawas, V. S. (1975). Optimal rules for ordering uncertain prospects. Journal of Finance,
2 (1), 1975.

Bertsekas, D. P. (1995). Dynamic Programming and Optimal Control. Athena Scientific,
Belmont, Massachusetts. Volumes 1 and 2.

Bertsekas, D. P., & Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA.

Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
Oxford.

Blythe, J. (1999). Decision-theoretic planning. AI Magazine, 20 (2), 37–54.

Borkar, V. (2002). Q-learning for risk-sensitive control. Mathematics of Operations Research,
27 (2), 294–311.

Coraluppi, S., & Marcus, S. (1999). Risk-sensitive and minimax control of discrete-time,
finite-state Markov decision processes. Automatica, 35, 301–309.

Crites, R. H., & Barto, A. G. (1998). Elevator group control using multiple reinforcement
learning agents. Machine Learning, 33 (2/3), 235–262.

Dolgov, D., & Durfee, E. (2004). Approximating optimal policies for agents with limited
execution resources. In Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, pp. 1107–1112. AAAI Press.

106

Risk-Sensitive Reinforcement Learning

Feinberg, E., & Shwartz, A. (1994). Markov decision models with weighted discounted
criteria. Math. of Operations Research, 19, 152–168.

Feinberg, E., & Shwartz, A. (1996). Constrained discounted dynamic programming. Math.
of Operations Research, 21, 922–945.

Feinberg, E., & Shwartz, A. (1999). Constrained dynamic programming with two discount
factors: Applications and an algorithm. IEEE Transactions on Automatic Control,
44, 628–630.

Fishburn, P. C. (1977). Mean-risk analysis with risk associated with below-target returns.
American Economics Review, 67 (2), 116–126.

Freund, R. (1956). The introduction of risk into a programming model. Econometrica, 21,
253–263.

Fulkerson, M. S., Littman, M. L., & Keim, G. A. (1998). Speeding safely: Multi-criteria
optimization in probabilistic planning. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence, p. 831. AAAI Press/MIT Press.

Gabor, Z., Kalmar, Z., & Szepesvari, C. (1998). Multi-criteria reinforcement learning. In
Proc. 15th International Conf. on Machine Learning, pp. 197–205. Morgan Kaufmann,
San Francisco, CA.

Geibel, P. (2001). Reinforcement learning with bounded risk. In Brodley, E., & Danyluk,
A. P. (Eds.), Machine Learning - Proceedings of the Eighteenth International Confer-
ence (ICML01), pp. 162–169. Morgan Kaufmann Publishers.

Heger, M. (1994). Consideration of risk in reinforcement learning. In Proc. 11th Interna-
tional Conference on Machine Learning, pp. 105–111. Morgan Kaufmann.

Kall, P., & Wallace, S. W. (1994). Stochastic Programming. Wiley, New York.

Koenig, S., & Simmons, R. G. (1994). Risk-sensitive planning with probabilistic decision
graphs. In Doyle, J., Sandewall, E., & Torasso, P. (Eds.), KR’94: Principles of Knowl-
edge Representation and Reasoning, pp. 363–373, San Francisco, California. Morgan
Kaufmann.

Kushmerick, N., Hanks, S., & Weld, D. S. (1994). An algorithm for probabilistic least-
commitment planning.. In AAAI, pp. 1073–1078.

Li, P., Wendt, M., Arellano-Garcia, & Wozny, G. (2002). Optimal operation of distillation
processes under uncertain inflows accumulated in a feed tank. AIChe Journal, 48,
1198–1211.

Liu, Y., Goodwin, R., & Koenig, S. (2003a). Risk-averse auction agents. In Rosenschein, J.,
Sandholm, T., & Wooldridge, M. Yokoo, M. (Eds.), Proceedings of the Second Inter-
national Joint Conference on Autonomous Agents and MultiAgent Systems (AAMAS-
03), pp. 353–360. ACM Press.

Liu, Y., Goodwin, R., & Koenig, S. (2003b). Risk-averse auction agents.. In AAMAS, pp.
353–360.

Markowitz, H. M. (1952). Portfolio selection. The Journal of Finance, 7 (1), 77–91.

Markowitz, H. M. (1959). Portfolio Selection. John Wiley and Sons, New York.

107

Geibel & Wysotzki

Mihatsch, O., & Neuneier, R. (2002). Risk-sensitive reinforcement learning. Machine Learn-
ing, 49 (2-3), 267–290.

Neuneier, R., & Mihatsch, O. (1999). Risk-sensitive reinforcement learning. In Michael
S. Kearns, Sara A. Solla, D. A. C. (Ed.), Advances in Neural Information Processing
Systems, Vol. 11. MIT Press.

Ross, S. M. (2000). Introduction to Probability Models. Academic Press, New York.

Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20 (3), 431–449.

Smart, W. D., & Kaelbling, L. P. (2002). Effective reinforcement learning for mobile ro-
bots. In Proceedings of the 2002 IEEE International Conference on Robotics and
Automation (ICRA 2002).

Stephan, V., Debes, K., Gross, H.-M., Wintrich, F., & Wintrich, H. (2001). A new control
scheme for combustion processes using reinforcement learning based on neural net-
works. International Journal of Computational Intelligence and Applications, 1 (2),
121–136.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning – An Introduction. MIT
Press.

Tsitsiklis, J. N. (1994). Asynchronous stochastic approximation and Q-learning. Machine
Learning, 16 (3), 185–202.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, King’s College,
Oxford.

Watkins, C. J. C. H., & Dayan, P. (1992). Q-learning. Machine Learning, 8 (3/4). Special
Issue on Reinforcement Learning.

Wendt, M., Li, P., & Wozny, G. (2002). Non-linear chance constrained process optimization
under uncertainty. Ind. Eng. Chem. Res., 21, 3621–3629.

108

