
Journal of Artificial Intelligence Research 23 (2005) 441-531 Submitted 11/04; published 4/05

Generalizing Boolean Satisfiability III: Implementation

Heidi E. Dixon dixon@otsys.com
Matthew L. Ginsberg ginsberg@otsys.com
On Time Systems, Inc.
1850 Millrace, Suite 1
Eugene, OR 97403 USA

David Hofer hofer@cs.uoregon.edu
Eugene M. Luks luks@cs.uoregon.edu
Computer and Information Science
University of Oregon
Eugene, OR 97403 USA

Andrew J. Parkes parkes@cirl.uoregon.edu

CIRL
1269 University of Oregon
Eugene, OR 97403 USA

Abstract

This is the third of three papers describing zap, a satisfiability engine that substantially
generalizes existing tools while retaining the performance characteristics of modern high-
performance solvers. The fundamental idea underlying zap is that many problems passed to
such engines contain rich internal structure that is obscured by the Boolean representation
used; our goal has been to define a representation in which this structure is apparent and
can be exploited to improve computational performance. The first paper surveyed existing
work that (knowingly or not) exploited problem structure to improve the performance of
satisfiability engines, and the second paper showed that this structure could be understood
in terms of groups of permutations acting on individual clauses in any particular Boolean
theory. We conclude the series by discussing the techniques needed to implement our ideas,
and by reporting on their performance on a variety of problem instances.

1. Introduction

This is the third of a series of three papers describing zap, a satisfiability engine that
substantially generalizes existing tools while retaining the performance characteristics of
modern high-performance solvers such as zChaff (Moskewicz, Madigan, Zhao, Zhang, &
Malik, 2001). In the first two papers in this series, we made arguments to the effect that:

• Many Boolean satisfiability problems incorporate a rich structure that reflects prop-
erties of the domain from which the problems arise, and recent improvements in the
performance of satisfiability engines can be understood in terms of their ability to
exploit this structure (Dixon, Ginsberg, & Parkes, 2004b, to which we will refer as
zap1).

• The structure itself can be understood in terms of groups (in the algebraic sense) of
permutations acting on individual clauses (Dixon, Ginsberg, Luks, & Parkes, 2004a,
to which we will refer as zap2).

c©2005 AI Access Foundation. All rights reserved.

Dixon, Ginsberg, Hofer, Luks & Parkes

We showed that an implementation based on these ideas could be expected to combine
the attractive computational properties of a variety of recent ideas, including efficient imple-
mentations of unit propagation (Zhang & Stickel, 2000) and extensions of the Boolean lan-
guage to include cardinality or pseudo-Boolean constraints (Barth, 1995; Dixon & Ginsberg,
2000; Hooker, 1988), parity problems (Tseitin, 1970), or a limited form of quantification
known as qprop (Ginsberg & Parkes, 2000). In this paper, we discuss the implementation
of a prover based on these ideas, and describe its performance on pigeonhole, parity and
clique coloring problems. These classes of problems are known to be exponentially difficult
for conventional Boolean satisfiability engines, and their formalization also highlights the
group-based nature of the reasoning involved.

From a technical point of view, this is the most difficult of the three zap papers; we need
to draw on the algorithms and theoretical constructions from zap2 and on results from com-
putational group theory (GAP Group, 2004; Seress, 2003) regarding their implementation.
Our overall plan for describing the implementation is as follows:

1. Section 2 is a review of material from zap2. We begin in Section 2.1 by presenting both
the Boolean satisfiability algorithms that we hope to generalize and the basic algebraic
ideas underlying zap. Section 2.2 describes the group-theoretic computations required
by the zap implementation.

2. Section 3 gives a brief – and necessarily incomplete – introduction to some of the ideas
in computational group theory that we use.

3. Sections 4 and 5 describe the implementations of the computations discussed in Sec-
tion 2. For each basic construction, we describe the algorithm used and give an
example of the computation in action. If there is an existing implementation of some-
thing in the public domain system gap (2004), we only provide a pointer to that
implementation; for concepts that we needed to implement from scratch, additional
detail is provided.

4. Section 6 extends the basic algorithms of Section 5 to deal with unit propagation,
where we want to compute not a single unit clause instance, but a list of all of the
unit consequences of an augmented clause.

5. Section 7 discusses the implementation of Zhang and Stickel’s (2000) watched literal
idea in our setting.

6. Section 8 describes a technique that can be used to select among the possible resolvents
of two augmented clauses. This is functionality with no analog in a conventional
prover, where there is only a single ground reason for the truth or falsity of any given
variable. If the reasons are augmented clauses, there may be a variety of ways in
which ground instances of those clauses can be combined.

7. After describing the algorithms, we present experimental results regarding perfor-
mance in Sections 9 and 10. Section 9 reports on the performance of zap’s individual
algorithmic components, while Section 10 contrasts zap’s overall performance to that
of its cnf-based predecessors.1 Since our focus in this paper is on the algorithms

1. A description of zap’s input language is contained in Appendix B.

442

ZAP 3: Implementation

needed by zap, we report performance only for relatively theoretical examples that
clearly involve group-based reasoning. Performance on a wider range of problem
classes will be reported elsewhere.

8. Concluding remarks appear in Section 11.

Except for Section 3, proofs are generally deferred to Appendix A in the interests of main-
taining the continuity of our exposition. Given the importance of computational group
theory to the ideas that we will be presenting, we strongly suggest that the reader work
through the proofs in Section 3 of the paper.

This is a long and complex paper; we make no apologies. Zap is an attempt to synthesize
two very different fields, each complex in its own right: computational group theory and
implementations of Boolean satisfiability engines. Computational group theory, in addition
to its inherent complexity, is likely to be foreign to an AI audience. Work on complete
algorithms for Boolean satisfiability has also become increasingly sophisticated over the
past decade or so, with the introduction of substantial and nonintuitive modifications to the
original dpll algorithm such as relevance-bounded learning (Bayardo & Miranker, 1996;
Bayardo & Schrag, 1997; Ginsberg, 1993) and watched literals (Zhang & Stickel, 2000).
As we bring these two fields together, we will see that a wide range of techniques from
computational group theory is relevant to the problems of interest to us; our goal is also
not simply to translate dpll to the new setting, but to show that all of the recent work
on Boolean satisfiability can be moved across. In at least one case (Lemma 5.26), we also
need to extend existing computational group theory results. And finally, there are new
satisfiability techniques and possibilities that arise only because of the synthesis that we are
proposing (Section 8), and we will describe some of those as well.

This paper is not intended to be self-contained. We assume throughout that the reader
is familiar with the material that we presented in zap2; some of the results from that paper
are repeated here for convenience, but the accompanying text is not intended to stand alone.

Finally – and in spite of the disclaimers of the previous two paragraphs – this paper is
not intended to be complete. Our goal is to present a practical minimum of what is required
to implement an effective group-based reasoning system. The results that we have obtained,
both theoretical as described in zap2 and practical as described here, excite us. But we are
just as excited by the number of issues that we have not yet explored. Our primary goal is
to present the foundation needed if other interested researchers are to explore these ideas
with us.

2. ZAP Fundamentals and Basic Structure

Our overview of zap involves summarizing work from two distinct areas: existing Boolean
satisfiability engines, and the group-theoretic elements underlying zap.

2.1 Boolean Satisfiability

We begin with a description of the architecture of modern Boolean satisfiability engines.
We start with the unit propagation procedure, which we describe as follows:

443

Dixon, Ginsberg, Hofer, Luks & Parkes

Definition 2.1 Given a Boolean satisfiability problem described in terms of a set C of
clauses, a partial assignment is an assignment of values (true or false) to some subset
of the variables appearing in C. We represent a partial assignment P as a sequence of
consistent literals P = 〈li〉 where the appearance of vi in the sequence means that vi has
been set to true, and the appearance of ¬vi means that vi has been set to false.

An annotated partial assignment is a sequence P = 〈(li, ci)〉 where ci is the reason for
the associated choice li. If ci = true, it means that the variable was set as the result of a
branching decision; otherwise, ci is a clause that entails li by virtue of the choices of the
previous lj for j < i. An annotated partial assignment will be called sound with respect to
a set of constraints C if C |= ci for each reason ci. (See zap2 for additional details.)

Given a (possibly annotated) partial assignment P , we denote by S(P) the literals that
are satisfied by P , and by U(P) the set of literals that are unvalued by P .

Procedure 2.2 (Unit propagation) To compute Unit-Propagate(C,P) for a set C of
clauses and an annotated partial assignment P = 〈(l1, c1), . . . , (ln, cn)〉:

1 while there is a c ∈ C with c ∩ S(P) = Ø and |c ∩ U(P)| ≤ 1
2 do if c ∩ U(P) = Ø
3 then li ← the literal in c with the highest index in P
4 return 〈true, resolve(c, ci)〉
5 else l← the literal in c unassigned by P
6 P ← 〈P, (l, c)〉
7 return 〈false, P 〉

The result returned depends on whether or not a contradiction was encountered during
the propagation, with the first result returned being true if a contradiction was found and
false if none was found. In the former case, where the clause c has no unvalued literals
(line 2), li is the last literal set in c, and ci is the reason that li was set in a way that caused
c to be unsatisfiable. We resolve c with ci and return the result as a new nogood for the
problem in question. Otherwise, we eventually return the partial assignment, augmented
to include the variables that were set during the propagation process.

Given unit propagation, the overall inference procedure is the following:

Procedure 2.3 (Relevance-bounded learning, rbl) Given a sat problem C, a set of
learned nogoods D and an annotated partial assignment P , to compute rbl(C,D,P):

444

ZAP 3: Implementation

1 〈x, y〉 ← unit-propagate(C ∪D,P)
2 if x = true
3 then c← y
4 if c is empty
5 then return failure
6 else remove successive elements from P so that c is unit
7 D ← learn(D,P, c)
8 return rbl(C,D,P)
9 else P ← y

10 if P is a solution to C
11 then return P
12 else l← a literal not assigned a value by P
13 return rbl(C,D, 〈P, (l, true)〉)

As might be expected, the procedure is recursive. If at any point unit propagation pro-
duces a contradiction c, we use the (currently unspecified) learn procedure to incorporate c
into the solver’s current state, and then recurse. If c is empty, it means that we have derived
a contradiction and the procedure fails. In the backtracking step (line 6), we backtrack not
just until c is satisfiable, but until it enables a unit propagation. This technique is used in
zChaff (Moskewicz et al., 2001). It leads to increased flexibility in the choice of variable
to be assigned after the backtrack is complete, and generally improves performance.

If unit propagation does not indicate the presence of a contradiction or produce a solution
to the problem in question, we pick an unvalued literal, set it to true, and recurse again.
Note that we don’t need to set the literal l to true or false; if we eventually need to backtrack
and set l to false, that will be handled by the modification to P in line 6.

Finally, we need to present the procedure used to incorporate a new nogood into the
clausal database C. In order to do that, we make the following definition:

Definition 2.4 Let ∨ili be a clause, which we will denote by c, and let P be a partial
assignment. We will say that the possible value of c under P is given by

poss(c, P) = |{i|¬li 6∈ P}| − 1

If no ambiguity is possible, we will write simply poss(c) instead of poss(c, P). In other
words, poss(c) is the number of literals that are either already satisfied or not valued by P ,
reduced by one (since the clause requires at least one true literal).

Note that poss(c, P) = |c ∩ [U(P) ∪ S(P)]| − 1, since each expression is one less than the
number of potentially satisfied literals in c.

The possible value of a clause is essentially a measure of what other authors have called
its irrelevance (Bayardo & Miranker, 1996; Bayardo & Schrag, 1997; Ginsberg, 1993). An
unsatisfied clause c with poss(c, P) = 0 can be used for unit propagation; we will say that
such a clause is unit. If poss(c, P) = 1, it means that a change to a single variable can
lead to a unit propagation, and so on. The notion of learning used in relevance-bounded
inference is now captured by:

445

Dixon, Ginsberg, Hofer, Luks & Parkes

Procedure 2.5 Given a set of clauses C and an annotated partial assignment P , to com-
pute learn(C,P, c), the result of adding to C a clause c and removing irrelevant clauses:

1 remove from C any d ∈ C with poss(d, P) > k
2 return C ∪ {c}

We hope that all of this is familiar; if not, please refer to zap2 or to the other papers
that we have cited for fuller explanations.

In zap, we continue to work with these procedures in approximately their current form,
but replace the idea of a clause (a disjunction of literals) with that of an augmented clause:

Definition 2.6 An augmented clause in an n-variable Boolean satisfiability problem is a
pair (c,G) where c is a Boolean clause and G is a group such that G ≤ Wn. A (nonaug-
mented) clause c′ is an instance of an augmented clause (c,G) if there is some g ∈ G such
that c′ = cg.2 The clause c itself will be called the base instance of (c,G).

Roughly speaking, an augmented clause consists of a conventional clause and a group G
of permutations of the literals in the theory; the intent is that we can act on the clause with
any element of the group and still get a clause that is “part” of the original theory. The
group G is required to be a subgroup of the group of “permutations and complementations”
(Harrison, 1989) Wn = S2 o Sn, where each permutation g ∈ G can permute the variables
in the problem and flip the signs of an arbitrary subset as well. We showed in zap2 that
suitably chosen groups correspond to cardinality constraints, parity constraints (the group
flips the signs of any even number of variables), and universal quantification over finite
domains.

We must now lift the previous three procedures to an augmented setting. In unit
propagation, for example, instead of checking to see if any clause c ∈ C is unit given the
assignments in P , we now check to see if any augmented clause (c,G) has a unit instance.
Other than that, the procedure is essentially unchanged from Procedure 2.2:

Procedure 2.7 (Unit propagation) To compute Unit-Propagate(C,P) for a set of
clauses C and an annotated partial assignment P = 〈(l1, c1), . . . , (ln, cn)〉:

1 while there is a (c,G) ∈ C and g ∈ G with cg ∩ S(P) = Ø and |cg ∩ U(P)| ≤ 1
2 do if cg ∩ U(P) = Ø
3 then li ← the literal in cg with the highest index in P
4 return 〈true, resolve((cg, G), ci)〉
5 else l← the literal in cg unassigned by P
6 P ← 〈P, (l, (cg, G))〉
7 return 〈false, P 〉

The basic inference procedure itself is also virtually unchanged:

2. As in zap2 and as used by the computational group theory community, we denote the image of a clause
c under a group element g by cg instead of the possibly more familiar g(c). As explained in zap2, this
reflects the fact that the composition fg of two permutations acts with f first and with g second.

446

ZAP 3: Implementation

Procedure 2.8 (Relevance-bounded learning, rbl) Given a sat problem C, a set of
learned clauses D, and an annotated partial assignment P , to compute rbl(C,D,P):

1 〈x, y〉 ← unit-propagate(C ∪D,P)
2 if x = true
3 then (c,G)← y
4 if c is empty
5 then return failure
6 else remove successive elements from P so that c is unit
7 D ← learn(D,P, (c,G))
8 return rbl(C,D,P)
9 else P ← y

10 if P is a solution to C
11 then return P
12 else l← a literal not assigned a value by P
13 return rbl(C,D, 〈P, (l, true)〉)

In line 3, although unit propagation returns an augmented clause (c,G), the base instance
c is still the reason for the backtrack by virtue of line 6 of Procedure 2.7. It follows that
line 6 of Procedure 2.8 is unchanged from the Boolean version.

To lift Procedure 2.5 to our setting, we need an augmented version of Definition 2.4:

Definition 2.9 Let (c,G) be an augmented clause, and P a partial assignment. Then by
poss((c,G), P) we will mean the minimum possible value of an instance of (c,G), so that

poss((c,G), P) = min
g∈G

poss(cg, P)

Procedure 2.5 can now be used unchanged, with d being an augmented clause instead of a
simple one. The effect of Definition 2.9 is to cause us to remove only augmented clauses for
which every instance is irrelevant. Presumably, it will be useful to retain the clause as long
as it has some relevant instance.

In zap2, we showed that a proof engine built around the above three procedures would
have the following properties:

• Since the number of generators of a group can be made logarithmic in the group size,
it would achieve exponential improvements in basic representational efficiency.

• Since only k-relevant nogoods are retained as the search proceeds, the memory re-
quirements remain polynomial in the size of the problem being solved.

• It can produce polynomially sized proofs of the pigeonhole and clique coloring prob-
lems, and any parity problem.

• It generalizes first-order inference provided that all quantifiers are universal and all
domains of quantification are finite.

We stated without proof (and will show in this paper) that the unit propagation proce-
dure 2.7 can be implemented in a way that generalizes both subsearch (Ginsberg & Parkes,
2000) and Zhang and Stickel’s (2000) watched literal idea.

447

Dixon, Ginsberg, Hofer, Luks & Parkes

2.2 Group-Theoretic Elements

Examining the above three procedures, the elements that are new relative to Boolean engines
are the following:

1. In line 1 of the unit propagation procedure 2.7, we need to find unit instances of an
augmented clause (c,G).

2. In line 4 of the same procedure 2.7, we need to compute the resolvent of two augmented
clauses.

3. In line 1 of the learning procedure 2.5, we need to determine if an augmented clause
has any relevant instances.

The first and third of these needs are different from the second. For resolution, we need
the following definitions:

Definition 2.10 For a permutation p and set S with Sp = S, by p|S we will mean the
restriction of p to the given set, and we will say that p is a lifting of p|S back to the original
set on which p acts.

Definition 2.11 For a set Ω, we will denote by Sym(Ω) the group of permutations of Ω.
If G ≤ Sym(Ω) is a subgroup of this group and S ≤ Ω, we will say that G acts on S.3

Definition 2.12 Suppose that G acts on a set S. Then for any x ∈ S, the orbit of x in G,
to be denoted by xG, is given by xG = {xg|g ∈ G}. If T ⊆ S, then the G-closure of T , to be
denoted TG, is the set

TG = {tg|t ∈ T and g ∈ G}

Definition 2.13 For K1, . . . ,Kn ⊆ Ω and G1, . . . , Gn ≤ Sym(Ω), we will say that a per-
mutation ω ∈ Sym(Ω) is a stable extension of G1, . . . , Gn for K1, . . . ,Kn if there are gi ∈ Gi

such that for all i, ω|
K

Gi
i

= gi|KGi
i

. We will denote the set of stable extensions of G1, . . . , Gn

for K1, . . . ,Kn by stab(Ki, Gi).

The set of stable extensions stab(Ki, Gi) is closed under composition, and is therefore a
subgroup of Sym(Ω).

Definition 2.14 Suppose that (c1, G1) and (c2, G2) are augmented clauses. Then the re-
sult of resolving (c1, G1) and (c2, G2), to be denoted by resolve((c1, G1), (c2, G2)), is the
augmented clause (resolve(c1, c2), stab(ci, Gi) ∩Wn).

It follows from the above definitions that computing the resolvent of two augmented
clauses as required by Procedure 2.7 is essentially a matter of computing the set of stable
extensions of the groups in question. We will return to this problem in Section 4.

The other two problems can both be viewed as instances of the following:

3. For convenience, we depart from standard usage and permit G to map points in S to images outside
of S.

448

ZAP 3: Implementation

Definition 2.15 Let c be a clause, viewed as a set of literals, and G a group of permutations
acting on c. Now fix sets of literals S and U , and an integer k. We will say that the k-
transporter problem is that of finding a g ∈ G such that cg ∩ S = Ø and |cg ∩ U | ≤ k, or
reporting that no such g exists.

To find a unit instance of (c,G), we set S to be the set of satisfied literals and U the
set of unvalued literals. Taking k = 1 implies that we are searching for an instance with no
satisfied and at most one unvalued literal.

To find a relevant instance, we set S = Ø and U to be the set of all satisfied or unvalued
literals. Taking k to be the relevance bound corresponds to a search for a relevant instance.

The remainder of the theoretical material in this paper is therefore focused on these two
problems: computing the stable extensions of a pair of groups, and solving the k-transporter
problem. Before we discuss the techniques used to solve these two problems, we present a
brief overview of computational group theory generally.

3. Computational Group Theory

Both group theory at large and computational group theory specifically (the study of ef-
fective computational algorithms that solve group-theoretic problems) are far too broad
to allow detailed presentations in a single journal paper. We ourselves generally refer to
Rotman’s An Introduction to the Theory of Groups (1994) for general information, and
to Seress’ Permutation Group Algorithms (2003) for computational group theory specifi-
cally, although there are many excellent texts in both areas. There is also an abbreviated
introduction to group theory in zap2.

If we cannot substitute for these other references, our goal here is to provide enough
general understanding of computational group theory that it will be possible to work through
some examples in what follows. With that in mind, there are three basic ideas that we hope
to convey:

1. Stabilizer chains. These underlie the fundamental technique whereby large groups are
represented efficiently. They also underlie many of the subsequent computations done
using those groups.

2. Group decompositions. Given a group G and a subgroup H < G, H can be used in
a natural way to partition G. Each of the partitions can itself be partitioned using a
subgroup of H, and so on; this gradual refinement underpins many of the search-based
group algorithms that have been developed.

3. Lex-leader search. In general, it is possible to establish a lexicographic ordering on the
elements of a permutation group; if we are searching for an element of the group having
a particular property (as in the k-transporter problem), we can assume without loss
of generality that we are looking for an element that is minimal under this ordering.
This often allows the search to be pruned, since any portion of the search that can be
shown not to contain such a minimal element can be eliminated.

449

Dixon, Ginsberg, Hofer, Luks & Parkes

3.1 Stabilizer Chains

While the fact that a group G can be described in terms of an exponentially smaller number
of generators is attractive from a representational point of view, there are many issues that
arise if a large set of clauses is represented in this way. Perhaps the most fundamental
is that of simple membership: How can we tell if a fixed clause c′ is an instance of the
augmented clause (c,G)?

In general, this is an instance of the 0-transporter problem; we need some g ∈ G for
which cg, the image of c under g, does not intersect the complement of c′. A simpler but
clearly related problem assumes that we have a fixed permutation g such that cg = c′; is
g ∈ G or not? Given a representation of G in terms simply of its generators, it is not
obvious how this can be determined quickly.

Of course, if G is represented via a list of all of its elements, we could sort the elements
lexicographically and use a binary search to determine if g were included. Virtually any
problem of interest to us can be solved in time polynomial in the size of the groups involved,
but we would like to do better, solving the problems in time polynomial in the total size
of the generators, and therefore generally polynomial in the logarithm of the size of the
groups (and so polylog in the size of the original clausal database). We will call a procedure
polynomial only if it is indeed polytime in the number of generators of G and in the size of
the set of literals on which G acts. It is only for such polynomial procedures that we can
be assured that zap’s representational efficiencies will mature into computational gains.4

For the membership problem, that of determining if g ∈ G given a representation of G
in terms of its generators, we need to have a coherent way of understanding the structure
of the group G itself. We suppose that G is a subgroup of the group Sym(Ω) of symmetries
of some set Ω, and we enumerate the elements of Ω as Ω = {l1, . . . , ln}.

There will now be some subset G[2] ⊆ G that fixes l1 in that for any h ∈ G[2], we have
lh1 = l1. It is easy to see that G[2] is closed under composition, since if any two elements fix
l1, then so does their composition. It follows that G[2] is a subgroup of G. In fact, we have:

Definition 3.1 Given a group G acting on a set Ω and a subset L ⊆ Ω, the point stabilizer
of L is the subgroup GL ≤ G of all g ∈ G such that lg = l for every l ∈ L. The set stabilizer
of L is that subgroup G{L} ≤ G of all g ∈ G such that Lg = L.

Having defined G[2] as the point stabilizer of l1, we can go on to define G[3] as the
point stabilizer of l2 within G[2], so that G[3] is in fact the point stabilizer of {l1, l2} in G.
Similarly, we define G[i+1] to be the point stabilizer of li in G[i] and thereby construct a
chain of stabilizers

G = G[1] ≥ G[2] ≥ · · · ≥ G[n] = 1

where the last group is necessarily trivial because once n− 1 points of Ω are stabilized, the
last point must be also.

If we want to describe G in terms of its generators, we will now assume that we describe
all of the G[i] in terms of generators, and furthermore, that the generators for G[i] are a
superset of the generators for G[i+1]. We can do this because G[i+1] is a subgroup of G[i].

4. The development of computationally efficient procedures for solving permutation group problems appears
to have begun with Sims’ (1970) pioneering work on stabilizer chains.

450

ZAP 3: Implementation

Definition 3.2 A strong generating set S for a group G ≤ Sym(l1, . . . , ln) is a set of
generators for G with the property that

〈S ∩G[i]〉 = G[i]

for i = 1, . . . , n.

As usual, 〈gi〉 denotes the group generated by the gi.
It is easy to see that a generating set is strong just in case it has the property discussed

above, in that each G[i] can be generated incrementally from G[i+1] and the generators that
are in fact elements of G[i] −G[i+1].

As an example, suppose that G = S4, the symmetric group on 4 elements (which we
denote 1, 2, 3, 4). Now it is not hard to see that S4 is generated by the 4-cycle (1, 2, 3, 4)
and the transposition (3, 4), but this is not a strong generating set. G[2] is the subgroup of
S4 that stabilizes 1 (and is therefore isomorphic to S3, since it can randomly permute the
remaining three points) but

〈S ∩G[2]〉 = 〈(3, 4)〉 = G[3] 6= G[2] (1)

If we want a strong generating set, we need to add (2, 3, 4) or a similar permutation to the
generating set, so that (1) becomes

〈S ∩G[2]〉 = 〈(2, 3, 4), (3, 4)〉 = G[2]

Here is a slightly more interesting example. Given a permutation, it is always possible
to write that permutation as a composition of transpositions. One possible construction
maps 1 where it is supposed to go, then ignores it for the rest of the construction, and so
on. Thus we have for example

(1, 2, 3, 4) = (1, 2)(1, 3)(1, 4) (2)

where the order of composition is from left to right, so that 1 maps to 2 by virtue of the
first transposition and is then left unaffected by the other two, and so on.

While the representation of a permutation in terms of transpositions is not unique, the
parity of the number of transpositions is; a permutation can always be represented as a
product of an even or an odd number of transpositions, but not both. Furthermore, the
product of two transposition products of lengths l1 and l2 can obviously be represented as
a product of length l1 + l2, and it follows that the product of two “even” permutations is
itself even, and we have:

Definition 3.3 The alternating group of order n, to be denoted by An, is the subgroup of
even permutations of Sn.

What about a strong generating set for An? If we fix the first n − 2 points, then the
transposition (n − 1, n) is obviously odd, so we must have A

[n−1]
n = 1, the trivial group.

For any smaller i, we can get a subset of An by taking the generators for S
[i]
n and operating

on each as necessary with the transposition (n − 1, n) to make it even. It is not hard to

451

Dixon, Ginsberg, Hofer, Luks & Parkes

see that an n-cycle is odd if and only if n is even (consider (2) above), so given the strong
generating set

{(n− 1, n), (n− 2, n− 1, n), . . . , (2, 3, . . . , n), (1, 2, . . . , n)}

for Sn, a strong generating set for An if n is odd is

{(n− 2, n− 1, n), (n− 1, n)(n− 3, n− 2, n− 1, n), . . . , (n− 1, n)(2, 3, . . . , n), (1, 2, . . . , n)}

and if n is even is

{(n− 2, n− 1, n), (n− 1, n)(n− 3, n− 2, n− 1, n), . . . , (2, 3, . . . , n), (n− 1, n)(1, 2, . . . , n)}

We can simplify these expressions slightly to get

{(n− 2, n− 1, n), (n− 3, n− 2, n− 1), . . . , (2, 3, . . . , n− 1), (1, 2, . . . , n)}

if n is odd and

{(n− 2, n− 1, n), (n− 3, n− 2, n− 1), . . . , (2, 3, . . . , n), (1, 2, . . . , n− 1)}

if n is even.
Given a strong generating set, it is easy to compute the size of the original group G. To

do this, we need the following well known definition and result:

Definition 3.4 Given groups H ≤ G and g ∈ G, we define Hg to be the set of all hg for
h ∈ H. For any such g, we will say that Hg is a (right) coset of H in G.

Proposition 3.5 Let Hg1 and Hg2 be two cosets of H in G. Then |Hg1| = |Hg2| and the
cosets are either identical or disjoint.

In other words, given a subgroup H of a group G, the cosets of H partition G. This
leads to:

Definition 3.6 For groups H ≤ G, the index of H in G, denoted [G : H], is the number
of distinct cosets of H in G.

Corollary 3.7 For a finite group G, [G : H] = |G|
|H| .

Given that the cosets partition the original group G, it is natural to think of them as
defining an equivalence relation on G, where x ≈ y if and only if x and y belong to the
same coset of H. We have:

Proposition 3.8 x ≈ y if and only if xy−1 ∈ H.

Proof. If xy−1 = h ∈ H and x is in a coset Hg so that x = h′g for some h′ ∈ H, then
y = h−1x = h−1h′g is in the same coset. Conversely, if x = hg and y = h′g are in the same
coset, then xy−1 = hgg−1h′−1 = hh′−1 ∈ H.

Many equivalence relations on groups are of this form. Indeed, if ≈ is any right invariant
equivalence relation on the elements of a group G (so that if x ≈ y, then xz ≈ yz for any
z ∈ G), then there is some H ≤ G such that the cosets of H define the equivalence relation.

Returning to stabilizer chains, recall that we denote by lG
[i]

i the orbit of li under G[i]

(i.e, the set of all points to which G[i] maps li). We now have:

452

ZAP 3: Implementation

Proposition 3.9 Given a group G acting on a set {l1, . . . , ln} and associated stabilizer
chain G[1] ≥ · · · ≥ G[n],

|G| =
∏

i

|lG[i]

i | (3)

Proof. We know that
|G| = |G|

|G[2]|
|G[2]| = [G : G[2]]|G[2]|

or inductively that
|G| =

∏
i

[G[i] : G[i+1]]

But it is easy to see that the distinct cosets of G[i+1] in G[i] correspond exactly to the points
to which G[i] maps li, so that

[G[i] : G[i+1]] = |lG[i]

i |

and the result follows.
Note that the expression in (3) is easy to compute given a strong generating set. As an

example, given the strong generating set {(1, 2, 3, 4), (2, 3, 4), (3, 4)} for S4, it is clear that
S

[3]
4 = 〈(3, 4)〉 and the orbit of 3 is of size 2. The orbit of 2 in S

[2]
4 = 〈(2, 3, 4), (3, 4)〉 is of

size 3, and the orbit of 1 in S
[1]
4 is of size 4. So the total size of the group is 4! = 24, hardly

a surprise.
For A4, a strong generating set is {(3, 4)(1, 2, 3, 4), (2, 3, 4)} = {(1, 2, 3), (2, 3, 4)}. The

orbit of 2 in A
[2]
4 = 〈(2, 3, 4)〉 is clearly of size 3, and the orbit of 1 in A

[1]
4 = A4 is of

size 4. So |A4| = 12. In general, of course, there are exactly two cosets of the alternating
group because all of the odd permutations can be constructed by multiplying the even
permutations in An by a fixed transposition t. Thus |An| = n!/2.

We can evaluate the size of An using strong generators by realizing that the orbit of 1
is of size n, that of 2 is of size n − 1, and so on, until the orbit of n − 2 is of size 3. The
orbit of n − 1 is of size 1, however, since the transposition (n − 1, n) is not in An. Thus
|An| = n!/2 as before.

We can also use the strong generating set to test membership in the following way.
Suppose that we have a group G described in terms of its strong generating set (and therefore
its stabilizer chain G[1] ≥ · · · ≥ G[n]), and a specific permutation ω. Now if ω(1) = k, there
are two possibilities:

1. If k is not in the orbit of 1 in G = G[1], then clearly ω 6∈ G.

2. If k is in the orbit of 1 in G[1], select g1 ∈ G[1] with 1g1 = g1(1) = k. Now we construct
ω1 = ωg−1

1 , which fixes 1, and we determine recursively if ω1 ∈ G[2].

At the end of the process, we will have stabilized all of the elements moved by G, and
should have ωn+1 = 1. If so, the original ω ∈ G; if not, ω 6∈ G. This procedure is known as
sifting.

Continuing with our example, let us see if the 4-cycle ω = (1, 2, 3, 4) is in S4 and in A4.
For the former, we see that ω(1) = 2 and (1, 2, 3, 4) ∈ S

[1]
4 . This produces ω1 = 1, and we

can stop and conclude that ω ∈ S4 (once again, hardly a surprise).

453

Dixon, Ginsberg, Hofer, Luks & Parkes

For the second, we know that (1, 2, 3) ∈ A
[1]
4 and we get ω1 = (1, 2, 3, 4)(1, 2, 3)−1 =

(3, 4). Now we could actually stop, since (3, 4) is obviously odd, but let us continue with
the procedure. Since 2 is fixed by ω1, we have ω2 = ω1. Now 3 is moved to 4 by ω2, but
A

[3]
4 is the trivial group, so we conclude correctly that (1, 2, 3, 4) 6∈ A4.

3.2 Coset Decomposition

Some of the group problems that we will be considering (e.g., the k-transporter problem)
subsume what was described in zap1 as subsearch (Dixon et al., 2004b; Ginsberg & Parkes,
2000). Subsearch is known to be NP-hard, so it follows that k-transporter must be as well.
That suggests that the group-theoretic methods for solving it will involve search in some
way.

The search involves a potential examination of all of the instances of some augmented
clause (c,G), or, in group theoretic terms, a potential examination of each member of the
group G. The computational group theory community often approaches such a search
problem by gradually decomposing G into smaller and smaller cosets. What we will call a
coset decomposition tree is produced, where the root of the tree is the entire group G and
the leaf nodes are individual elements of G:

Definition 3.10 Let G be a group, and G[1] ≥ · · · ≥ G[n] a stabilizer chain for it. A coset
decomposition tree for G is a tree whose vertices at the ith level are the cosets of G[i] and
for which the parent of a particular G[i]g is that coset of G[i−1] that contains it.

At any particular level i, the cosets correspond to the points to which the sequence 〈l1, . . . , li〉
can be mapped, with the points in the image of li identifying the children of any particular
node at level i− 1.

As an example, suppose that we consider the augmented clause

(a ∨ b, Sym(a, b, c, d)) (4)

corresponding to the collection of ground clauses

a ∨ b

a ∨ c

a ∨ d

b ∨ c

b ∨ d

c ∨ d

Suppose also that we are working with an assignment for which a and b are true and c
and d are false, and are trying to determine if any instance of (4) is unsatisfied. Assuming
that we take l1 to be a through l4 = d, the coset decomposition tree associated with S4 is
the following:

454

ZAP 3: Implementation

s

s s s s

s s s s s s s s s s s s

s s

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��A

A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

�����������������

�
�

�
�

��@
@

@
@

@@

PPPPPPPPPPPPPPPPP

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��E

E
E
E
EE

E
E
E
E
EE

E
E
E
E
EE

E
E
E
E
EE

B
B
B
B
BB

B
B
B
B
BB

B
B
B
B
BB

B
B
B
B
BB

Sym(a, b, c, d)

Sym(b, c, d) (ab) (ac) (ad)

Sym(c, d) 1 1 1(bc) (bc) (bc) (bc)(bd) (bd) (bd) (bd)

1 1 1 1 1 1 1 1 1 1 1 1(cd) (cd) (cd) (cd) (cd) (cd) (cd) (cd) (cd) (cd) (cd) (cd)
* *

An explanation of the notation here is surely in order. The nodes on the lefthand
edge are labeled by the associated groups; for example, the node at level 2 is labeled with
Sym(b, c, d) because this is the point at which we have fixed a but b, c and d are still allowed
to vary.

As we move across the row, we find representatives of the cosets that are being consid-
ered. So moving across the second row, the first entry (ab) means that we are taking the
coset of the basic group Sym(b, c, d) that is obtained by multiplying each element by (ab)
on the right. This is the coset that maps a uniformly to b.

On the lower rows, we multiply the coset representatives associated with the nodes
leading to the root. So the third node in the third row, labeled with (bd), corresponds to
the coset Sym(c, d) · (bd).5 The two elements of this coset are (bd) and (cd)(bd) = (bdc).
The point b is uniformly mapped to d, a is fixed, and c can either be fixed or mapped to b.

The fourth point on this row corresponds to the coset

Sym(c, d) · (ab) = {(ab), (cd)(ab)}

The point a is uniformly mapped to b, and b is uniformly mapped to a. c and d can be
swapped or not.

The fifth point is the coset

Sym(c, d) · (bc)(ab) = Sym(c, d) · (abc) = {(abc), (abcd)} (5)

a is still uniformly mapped to b, and b is now uniformly mapped to c. c can be mapped
either to a or to d.

For the fourth line, the basic group is trivial and the single member of the coset can be
obtained by multiplying the coset representatives on the path to the root. Thus the ninth
and tenth nodes (marked with asterisks in the tree) correspond to the permutations (abc)
and (abcd) respectively, and do indeed partition the coset of (5).

5. As here, we will occasionally denote the group multiplication operator explicitly by · to improve the
clarity of the typesetting.

455

Dixon, Ginsberg, Hofer, Luks & Parkes

Understanding how this structure is used in search is straightforward. At the root, the
original augmented clause (4) may indeed have unsatisfiable instances. But when we move
to the first child, we know that the image of a is a, so that the instance of the clause in
question is a ∨ x for some x. Since a is true for the assignment in question, it follows that
the clause must be satisfied. In a similar way, mapping a to b also must produce a satisfied
clause. The search space is already reduced to:

s

s s s s

s s s s s s

s s s s s s s s s s s s

�
�
�
�
��

�
�
�
�
��A

A
A
A
AA

A
A
A
A
AA

�����������������

�
�

�
�

��@
@

@
@

@@

PPPPPPPPPPPPPPPPP

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��E

E
E
E
EE

E
E
E
E
EE

B
B
B
B
BB

B
B
B
B
BB

Sym(a, b, c, d)

Sym(b, c, d) (ab) (ac) (ad)

1 1(bc) (bc)(bd) (bd)

1 1 1 1 1 1(cd) (cd) (cd) (cd) (cd) (cd)

If we map a to c, then the first point on the next row corresponds to mapping b to b,
producing a satisfiable clause. If we map b to a (the next node; b is mapped to c at this
node but then c is mapped to a by the permutation (ac) labeling the parent), we also get a
satisfiable clause. If we map b to d, we will eventually get an unsatisfiable clause, although
it is not clear how to recognize that without expanding the two children. The case where a
is mapped to d is similar, and the final search tree is:

s

s s s s

s s s s s s

s s s s

�
�
�
�
��

�
�
�
�
��A

A
A
A
AA

A
A
A
A
AA

�����������������

�
�

�
�

��@
@

@
@

@@

PPPPPPPPPPPPPPPPP

�
�
�
�
��E
E
E
E
EE

B
B
B
B
BB

Sym(a, b, c, d)

Sym(b, c, d) (ab) (ac) (ad)

1 1(bc) (bc)(bd) (bd)

1 1(cd) (cd)

456

ZAP 3: Implementation

Instead of the six clauses that might need to be examined as instances of the original
(4), only four leaf nodes need to be considered. The internal nodes that were pruned above
can be pruned without generation, since the only values that need to be considered for a are
necessarily c and d (the unsatisfied literals in the theory). At some level, then, the above
search space becomes:

s

s s

s s

s s s s

A
A
A
A
AA

@
@

@
@

@@

PPPPPPPPPPPPPPPPP

�
�
�
�
��E
E
E
E
EE

B
B
B
B
BB

Sym(a, b, c, d)

(ac) (ad)

(bc)(bd)

1 1(cd) (cd)

3.3 Lex Leaders

Although the remaining search space in this example already examines fewer leaf nodes
than the original, there still appears to be some redundancy. To understand one possible
simplification, recall that we are searching for a group element g for which cg is unsatisfied
given the current assignment. Since any such group element suffices, we can (if we wish)
search for that group element that is smallest under the lexicographic ordering of the group
itself:

Definition 3.11 Let G ≤ Sym(Ω) be a group, and Ω = ω1, . . . , ωn an ordering of the
elements of Ω. For g1, g2 ∈ G, we will write g1 < g2 if there is some i with ωg1

j = ωg2
j for

all j < i and ωg1
i < ωg2

i .

Since the ordering defined by Definition 3.11 is a total order, we immediately have:

Lemma 3.12 If S ⊆ Sym(Ω) for some ordered set Ω, then S has a unique minimal
element.

The minimal element of S is typically called a lexicographic leader or lex leader of S.
In our example, imagine that there were a solution (i.e., a group element corresponding

to an unsatisfied instance) under the right hand node at depth three. Now there would
necessarily also have been an analogous solution under the preceding node at depth three,
since the two search spaces are in some sense identical. The two hypothetical group elements
would be identical except the images of a and b would be swapped. Since the group elements
under the left hand node precede those under the right hand node in the lexicographic

457

Dixon, Ginsberg, Hofer, Luks & Parkes

ordering, it follows that the lexicographically least element (which is all that we’re looking
for) is not under the right hand node, which can therefore be pruned. The search space
becomes:

s

s s

s

s s

A
A
A
A
AA

@
@

@
@

@@

PPPPPPPPPPPPPPPPP

B
B
B
B
BB

Sym(a, b, c, d)

(ac) (ad)

(bd)

1 (cd)

This particular technique is quite general: whenever we are searching for a group ele-
ment with a particular property, we can restrict our search to lex leaders of the set of all
such elements and prune the search space on that basis. Seress (2003) provides a more
complete discussion in the context of the problems typically considered by computational
group theory; an example in the context of the k-transporter problem specifically can be
found in Section 5.5.

Finally, we note that the two remaining leaf nodes are equivalent, since they refer to the
same instance – once we know the images of a and of b, the overall instance is fixed and no
further choices are relevant. So assuming that the variables in the problem are ordered so
that those in the clause are considered first, we can finally prune the search below depth
three to get:

s

s s

s
A
A
A
A
AA

@
@

@
@

@@

PPPPPPPPPPPPPPPPP

Sym(a, b, c, d)

(ac) (ad)

(bd)

Only a single leaf node need be considered.
Before we return to the application of these ideas in zap, we should stress that we have

only scratched the surface of computational group theory as a whole. The field is broad

458

ZAP 3: Implementation

and developing rapidly, and the implementation in zap is based on ideas that appear in
Seress and in the gap code. Indeed, the name was chosen to reflect zap’s heritage as an
outgrowth of both zChaff and Gap.6

4. Augmented Resolution

We now turn to our zap-specific requirements. First, we have the definition of augmented
resolution, which involves computing the group of stable extensions of the groups appearing
in the resolvents. Specifically, we have augmented clauses (c1, G1) and (c2, G2) and need to
compute the group G of stable extensions of G1 and G2. Recalling Definition 2.13, this is
the group of all permutations ω with the property that there is some g1 ∈ G1 such that

ω|
c
G1
1

= g1|cG1
1

and similarly for g2, G2 and c2. We are viewing the clauses ci as sets, with cGi
i being the

closure of ci under Gi (recall Definition 2.12).
As an example, consider the two clauses

(c1, G1) = (a ∨ b, 〈(ad), (be), (bf)〉)

and
(c2, G2) = (c ∨ b, 〈(be), (bg)〉)

The closure of c1 under G1 is {a, b, d, e, f} and cG2
2 = {b, c, e, g}. We therefore need to

find a permutation ω such that when ω is restricted to {a, b, d, e, f}, it is an element of
〈(ad), (be), (bf)〉, and when restricted to {b, c, e, g} is an element of 〈(be), (bg)〉.

From the second condition, we know that c cannot be moved by ω, and any permutation
of b, e and g is acceptable because (be) and (bg) generate the symmetric group Sym(b, e, g).
This second restriction does not impact the image of a, d or f under ω.

From the first condition, we know that a and d can be swapped or left unchanged, and
any permutation of b, e and f is acceptable. But recall from the second condition that we
must also permute b, e and g. These conditions combine to imply that we cannot move f
or g, since to move either would break the condition on the other. We can swap b and e
or not, so the group of stable extensions is 〈(ad), (be)〉, and that is what our construction
should return.

Procedure 4.1 Given augmented clauses (c1, G1) and (c2, G2), to compute stab(ci, Gi):

6. The authors of zChaff are Moskewicz, Madigan, Zhao, Zhang and Malik; our selection of only Z to
include in our acronym is surely unfair to Moskewicz, Madigan and Malik. Zmap didn’t have quite the
same ring to it, however, and we hope that the implicitly excluded authors will accept our apologies for
our choice.

459

Dixon, Ginsberg, Hofer, Luks & Parkes

1 c closure1 ← cG1
1 , c closure2 ← cG2

2

2 g restrict1 ← G1|c closure1 , g restrict2 ← G2|c closure2

3 C∩ ← c closure1 ∩ c closure2

4 g stab1 ← g restrict1{C∩}, g stab2 ← g restrict2{C∩}
5 g int← g stab1|C∩ ∩ g stab2|C∩

6 {gi} ← {generators of g int}
7 {l1i} ← {gi, lifted to g stab1}, {l2i} ← {gi, lifted to g stab2}
8 {l′2i} ← {l2i|c closure2−C∩}
9 return 〈g restrict1C∩ , g restrict2C∩ , {l1i · l′2i}〉

Proposition 4.2 The result returned by Procedure 4.1 is stab(ci, Gi).

The proof is in Appendix A; here, we present an example of the computation in use and
discuss the computational issues surrounding Procedure 4.1. The example we will use is
that with which we began this section, but we modify G1 to be 〈(ad), (be), (bf), (xy)〉 instead
of the earlier 〈(ad), (be), (bf)〉. The new points x and y don’t affect the set of instances in
any way, and thus should not affect the resolution computation, either.

1. c closurei ← cG1
1 . This amounts to computing the closures of the ci under the Gi; as

described earlier, we have c closure1 = {a, b, d, e, f} and c closure2 = {b, c, e, g}.

2. g restricti ← Gi|c closurei . Here, we restrict each group to act only on the cor-
responding c closurei. In this example, g restrict2 = G2 but g restrict1 =
〈(ad), (be), (bf)〉 as the irrelevant points x and y are removed.

Note that it is not always possible to restrict a group to an arbitrary set; one cannot
restrict the permutation (xy) to the set {x} because you need to add y as well. But
in this case, it is possible to restrict Gi to c closurei, since this latter set is closed
under the action of the group.

3. C∩ ← c closure1 ∩ c closure2. The construction itself works by considering three
separate sets – the intersection of the closures of the two original clauses (where
the computation is interesting because the various ω must agree), and the points in
only the closure of c1 or only the closure of c2. The analysis on these latter sets is
straightforward; we just need ω to agree with any element of G1 or G2 on the set in
question.

In this step, we compute the intersection region C∩. In our example, C∩ = {b, e}.

4. g stabi ← g restricti{C∩}. We find the subgroup of g restricti that set stabilizes
C∩, in this case the subgroup that set stabilizes the pair {b, e}. For g restrict1 =
〈(ad), (be), (bf)〉, this is 〈(ad), (be)〉 because we can no longer swap b and f , while for
g restrict2 = 〈(be), (bg)〉, we get g stab2 = 〈(be)〉.

5. g int ← g stab1|C∩ ∩ g stab2|C∩ . Since ω must simultaneously agree with both
G1 and G2 when restricted to C∩ (and thus with g restrict1 and g restrict2 as
well), the restriction of ω to C∩ must lie within this intersection. In our example,
g int = 〈(be)〉.

460

ZAP 3: Implementation

6. {gi} ← {generators of g int}. Any element of g int will lead to an element of the
group of stable extensions provided that we extend it appropriately from C∩ back to
the full set cG1

1 ∪ cG2
2 ; this step begins the process of building up these extensions. It

suffices to work with just the generators of g int, and we construct those generators
here. We have {gi} = {(be)}.

7. {lki} ← {gi, lifted to g stabk}. Our goal is now to build up a permutation on
c closure1 ∪ c closure2 that, when restricted to C∩, matches the generator gi. We
do this by lifting gi separately to c closure1 and to c closure2. Any such lifting
suffices, so we can take (for example)

l11 = (be)(ad)

and
l21 = (be)

In the first case, the inclusion of the swap of a and d is neither precluded nor required;
we could just as well have used l11 = (be).

8. {l′2i} ← {l2i|c closure2−C∩}. We cannot simply compose l11 and l21 to get the desired
permutation on c closure1∪c closure2 because the part of the permutations acting
on the intersection c closure1 ∩ c closure2 will have acted twice. In this case, we
would get l11 · l21 = (ad) which no longer captures our freedom to exchange b and e.

We deal with this by restricting l21 away from C∩ and only then combining with l11. In
the example, restricting (be) away from C∩ = {b, e} produces the trivial permutation
l′21 = ().

9. Return 〈g restrict1C∩ , g restrict2C∩ , {l1i ·l′2i}〉. We now compute the final answer
from three sources: The combined l1i·l′2i that we have been working to construct, along
with elements of g restrict1 that fix every point in the closure of c2 and elements of
g restrict2 that fix every point in the closure of c1. These latter two sets obviously
consist of stable extensions. An element of g restrict1 point stabilizes the closure
of c2 if and only if it point stabilizes the points that are in both the closure of c1 (to
which g restrict1 has been restricted) and the closure of c2; in other words, if and
only if it point stabilizes C∩.

In our example, we have

g restrict1C∩ = 〈(ad)〉
g restrict2C∩ = 1

{l1i · l′2i} = {(be)(ad)}

so that the final group returned is

〈(ad), (be)(ad)〉

This group is identical to the “obvious”

〈(ad), (be)〉

461

Dixon, Ginsberg, Hofer, Luks & Parkes

We can swap either the (a, d) pair or the (b, e) pair, as we see fit. The first swap (ad)
is sanctioned for the first “resolvent” (c1, G1) = (a∨ b, 〈(ad), (be), (bf)〉) and does not
mention any relevant variable in the second (c2, G2) = (c∨ b, 〈(be), (bg)〉). The second
swap (be) is sanctioned in both cases.

Computational issues We conclude this section by discussing some of the computational
issues that arise when we implement Procedure 4.1, including the complexity of the various
operations required.

1. c closurei ← cGi
i . Efficient algorithms exist for computing the closure of a set under

a group. The basic method is to use a flood-fill like approach, adding and marking the
result of acting on the set with a single generator, and recurring until no new points
are added.

2. g restricti ← Gi|c closurei . A group can be restricted to a set that it stabilizes by
restricting the generating permutations individually.

3. C∩ ← c closure1 ∩ c closure2. Set intersection is straightforward.

4. g stabi ← g restricti{C∩}. Set stabilizer is not straightforward, and is not known
to be polynomial in the total size of the generators of the group being considered
(Seress, 2003).7 The most effective implementations work with a coset decomposition
as described in Section 3.2; in computing G{S} for some set S, a node can be pruned
when it maps a point inside of S out of S or vice versa. Gap implements this (but
see our comments at the end of Section 10.2).

5. g int ← g stab1|C∩ ∩ g stab2|C∩ . Group intersection is also not known to be poly-
nomial in the total size of the generators; once again, a coset decomposition is used.
Coset decompositions are constructed for each of the groups being combined, and the
search spaces are pruned appropriately. Gap implements this as well.

6. {gi} ← {generators of g int}. Groups are typically represented in terms of their
generators, so reconstructing a list of those generators is trivial. Even if the generators
are not known, constructing a strong generating set is known to be polynomial in the
number of generators constructed.

7. {lki} ← {gi, lifted to g stabk}. Suppose that we have a group G acting on a set T ,
a subset V ⊆ T and a permutation h acting on V such that we know that h is the
restriction to V of some g ∈ G, so that h = g|V . To find such a g, we first construct
a stabilizer chain for G using an ordering that puts the elements of T − V first. Now
we are basically looking for a g ∈ G such that the sifting procedure of Section 3.1
produces h at the point that the points in T − V have all been fixed. We can find
such a g in polynomial time by inverting the sifting procedure itself.

8. {l′2i} ← {l2i|c closure2−C∩}. As in line 2, restriction is still easy.

7. Unlike the k-transporter problem, which was mentioned at the beginning of Section 3.2 to be NP-hard,
neither set stabilizer nor group intersection (see step 5) is likely to be NP-hard (Babai & Moran, 1988).

462

ZAP 3: Implementation

9. Return 〈g restrict1C∩ , g restrict2C∩ , {l1i · l′2i}〉. Since groups are typically rep-
resented by their generators, we need simply take the union of the generators for the
three arguments. Point stabilizers (needed for the first two arguments) are straight-
forward to compute using stabilizer chains.

5. Unit Propagation and the (Ir)relevance Test

As we have remarked, the other main computational requirement of an augmented satisfia-
bility engine is the ability to solve the k-transporter problem: Given an augmented clause
(c,G) where c is once again viewed as a set of literals, and sets S and U of literals and an
integer k, we want to find a g ∈ G such that cg ∩S = Ø and |cg ∩U | ≤ k, if such a g exists.

5.1 A Warmup

We begin with a somewhat simpler problem, assuming that U = Ø so we are simply looking
for a g such that cg ∩ S = Ø.

We need the following definitions:

Definition 5.1 Let H ≤ G be groups. A transversal of H in G is any subset of G that
contains one element of each coset of H. We will denote such a transversal by (G : H).

Note that since H itself is one of the cosets, the transversal must contain a (unique) element
of H. We will generally assume that the identity is this unique element.

Definition 5.2 Suppose that G acts on a set Ω and that c ⊆ Ω. By cG we will denote the
elements of c that are fixed by G.

As the search proceeds, we will gradually fix more and more points of the clause in question.
The notation of Definition 5.2 will let us refer easily to the points that have been fixed thus
far.

Procedure 5.3 Given groups H ≤ G, an element t ∈ G, sets c and S, to find a group
element g = map(G, H, t, c, S) with g ∈ H and cgt ∩ S = Ø:

1 if ct
H ∩ S 6= Ø

2 then return failure
3 if c = cH

4 then return 1
5 α← an element of c− cH

6 for each t′ in (H : Hα)
7 do r ← map(G, Hα, t′t, c, S)
8 if r 6= failure
9 then return rt′

10 return failure

463

Dixon, Ginsberg, Hofer, Luks & Parkes

This is essentially a codification of the example that was presented in Section 3.2. We
terminate the search when the clause is fixed by the remaining group H, but have not
yet included any analog to the lex-leader pruning that we discussed in Section 3.3. In the
recursive call in line 7, we retain the original group, for which we will have use in subsequent
versions of the procedure.

A more precise description of the procedure would state explicitly that G acts on c and
S, so that G ≤ Sym(Ω) with c, S ⊆ Ω. Here and elsewhere, we believe that these conditions
are obvious from context and have elected not to clutter the procedural descriptions with
them.

Proposition 5.4 map(G, G, 1, c, S) returns an element g ∈ G for which cg ∩S = Ø, if such
an element exists, and returns failure otherwise.

Proof. The proof in the Appendix A shows the slightly stronger result that map(G, H, t, c, S)
returns an element g ∈ H for which cgt ∩ S = Ø if such an element exists.

Given that the procedure terminates the search when all elements of c are stabilized
by G but does not include lex-leader considerations, the search space examined in the
example from Section 3.2 is the following, where we have replaced the variables a, b, c, d
with x1, x2, x3, x4 to avoid confusion with our current use of c to represent the clause in
question.

s

s s

s s
A
A
A
A
AA

@
@

@
@

@@

PPPPPPPPPPPPPPPPP

Sym(x1, x2, x3, x4)

(x1x3) (x1x4)

(x2x3)(x2x4)

It is still important to prune the node in the lower right, since for a larger problem, this node
may be expanded into a significant search subtree. We discuss this pruning in Section 5.5.

In the interests of clarity, let us go through the example explicitly. Recall that the clause
c = x1 ∨ x2, G = Sym(x1, x2, x3, x4) permutes the xi arbitrarily, and that S = {x1, x2}.

On the initial pass through the procedure, cH = Ø; suppose that we select x1 to stabilize
first. Line 6 now selects the point to which x1 should be mapped; if we select x1 or x2, then
x1 itself will be mapped into S and the recursive call will fail on line 2. So suppose we pick
x3 as the image of x1.

Now cH = {x1}, and we need to fix the image of another point; x2 is all that’s left in
the original clause c. As before, selecting x1 or x2 as the image of x2 leads to failure. x3

is already taken (it’s the image of x1), so we have to map x2 into x4. Now every element
of c is fixed, and the next recursive call returns the trivial permutation on line 4. This is
combined with (x2x4) on line 9 in the caller as we fix x4 as the image of x2. The original
invocation then combines with (x1x3) to produce the final answer of (x2x4)(x1x3).

464

ZAP 3: Implementation

5.2 The k-Transporter Problem

Extending the above algorithm to solve the k-transporter problem is straightforward; in
addition to requiring that ct

H ∩ S = Ø in line 2, we also need to keep track of the number
of points that have been (or will be) mapped into the set U and make sure that we won’t
be forced to exceed the limit k.

To understand this, suppose that we are examining a node in the coset decomposition
tree labeled with a permutation t, so that the node corresponds to permutations gt for
various g in the subgroup being considered at this level. We want to ensure that there is
some g for which |cgt ∩ U | ≤ k. Since cgt is assumed to avoid the set S completely, we can
replace this with the slightly stronger

|cgt ∩ (S ∪ U)| ≤ k (6)

This is in turn equivalent to
|cg ∩ (S ∪ U)t−1 | ≤ k (7)

since the set in (7) is simply the result of operating on the set in (6) with the permutation
t−1.

We will present a variety of ways in which the bound of (7) can be approximated; for
the moment, we simply introduce an auxiliary function overlap(H, c, V), which we assume
computes a lower bound on |ch ∩ V | for all h ∈ H. Procedure 5.3 becomes:

Procedure 5.5 Given groups H ≤ G, an element t ∈ G, sets c, S and U and an integer
k, to find a group element g = transport(G, H, t, c, S, U, k) with g ∈ H, cgt ∩ S = Ø and
|cgt ∩ U | ≤ k:

1 if ct
H ∩ S 6= Ø

2 then return failure

3 if overlap(H, c, (S ∪ U)t−1
) > k

4 then return failure
5 if c = cH

6 then return 1
7 α← an element of c− cH

8 for each t′ in (H : Hα)
9 do r ← transport(G, Hα, t′t, c, S, U, k)

10 if r 6= failure
11 then return rt′

12 return failure

For convenience, we will denote transport(G, G, 1, c, S, U, k) by transport(G, c, S, U, k).
This is the “top level” function corresponding to the original invocation of Procedure 5.5.

Proposition 5.6 Provided that |ch ∩ V | ≥ overlap(H, c, V) ≥ |cH ∩ V | for all h ∈ H,
transport(G, c, S, U, k) as computed by Procedure 5.5 returns an element g ∈ G for which
cg ∩ S = Ø and |cg ∩ U | ≤ k, if such an element exists, and returns failure otherwise.

465

Dixon, Ginsberg, Hofer, Luks & Parkes

The second condition on overlap (that overlap(H, c, V) ≥ |cH ∩ V |) is needed to ensure
that the procedure terminates on line 4 once the overlap limit is reached, rather than
succeeding on line 6.

Procedure 5.5 is simplified significantly by the fact that we only need to return a single g
with the desired properties, as opposed to all such g. In the examples arising in (ir)relevance
calculations, a single answer suffices. But if we want to compute the unit consequences of
a given literal, we need all of the unit instances of the clause in question. There are other
considerations at work in this case, however, and we defer discussion of this topic until
Section 6.

Our initial version of overlap is:

Procedure 5.7 Given a group H, and two sets c, V , to compute overlap(H, c, V), a lower
bound on the overlap of ch and V for any h ∈ H:

1 return |cH ∩ V |

Having defined overlap, we may as well use it to replace the test in line 1 of Proce-
dure 5.5 with a check to see if overlap(H, c, St−1

) > 0, indicating that for any h ∈ H,
|ch∩St−1 | > 0 or, equivalently, that cht∩S 6= Ø . For the simple version of overlap defined
above, there is no difference between the two procedures. But as overlap matures, this
change will lead to additional pruning in some cases.

5.3 Orbit Pruning

There are two general ways in which nodes can be pruned in the k-transporter problem.
Lexicographic pruning is a bit more difficult, so we defer it until Section 5.5. To understand
the other, we begin with the following example.

Consider the clause c = x1 ∨ x2 ∨ x3 and the group G that permutes the variables
{x1, x2, x3, x4, x5, x6} arbitrarily. If S = {x1, x2, x3, x4}, is there a g ∈ G with cg ∩ S = Ø?

Clearly not; there isn’t enough “room” because the image of c will be of size three,
and there is no way that this 3-element set can avoid the 4-element set S in the 6-element
universe {x1, x2, x3, x4, x5, x6}.

We can do a bit better in many cases. Suppose that our group G is 〈(x1x4), (x2x5), (x3x6)〉
so that we can swap x1 with x4 (or not), x2 with x5, or x3 with x6. Now if S = {x1, x4},
can we find a g ∈ G with cg ∩ S = Ø?

Once again, the answer is clearly no. The orbit of x1 in G is {x1, x4} and since {x1, x4} ⊆
S, x1’s image cannot avoid the set S.

In the general case appearing in Procedure 5.5, consider the initial call, where t is the
identity permutation. Given the group G, consider the orbits of the points in c. If there is
any such orbit W for which |W ∩ c| > |W −S|, we can prune the search. The reason is that
each of the points in W ∩ c must remain in W when acted on by any element of G; that
is what the definition of an orbit requires. But there are too many points in W ∩ c to stay
away from S, so we will not manage to have cg ∩ S = Ø.

What about the more general case, where t 6= 1 necessarily? For a fixed α in our clause c,
we will construct the image αgt, acting on α first with g and then with t. We are interested

466

ZAP 3: Implementation

in whether αgt ∈ S or, equivalently, if αg ∈ St−1
. Now αg is necessarily in the same orbit

as α, so we can prune if
|W ∩ c| > |W − St−1 |

For similar reasons, we can also prune if

|W ∩ c| > |W − U t−1 |+ k

In fact, we can prune if
|W ∩ c| > |W − (S ∪ U)t−1 |+ k

because there still is not enough space to fit the image without either intersecting S or
putting at least k points into U .

We can do better still. As we have seen, for any particular orbit, the number of points
that will eventually be mapped into U is at least

|W ∩ c| − |W − (S ∪ U)t−1 |

In some cases, this expression will be negative; the number of points that will be mapped
into U is therefore at least

max(|W ∩ c| − |W − (S ∪ U)t−1 |, 0)

and we can prune any node for which∑
W

max(|W ∩ c| − |W − (S ∪ U)t−1 |, 0) > k (8)

where the sum is over the orbits of the group.
It will be somewhat more convenient to rewrite this using the fact that

|W ∩ c|+ |W − c| = |W | = |W ∩ (S ∪ U)t−1 |+ |W − (S ∪ U)t−1 |

so that (8) becomes ∑
W

max(|W ∩ (S ∪ U)t−1 | − |W − c|, 0) > k (9)

Incorporating this type of analysis into Procedure 5.7 gives:

Procedure 5.8 Given a group H, and two sets c, V , to compute overlap(H, c, V), a lower
bound on the overlap of ch and V for any h ∈ H:

1 m← 0
2 for each orbit W of H
3 do m← m + max(|W ∩ V | − |W − c|, 0)
4 return m

Proposition 5.9 Let H be a group and c, V sets acted on by H. Then for any h ∈ H,
|ch ∩ V | ≥ overlap(H, c, V) ≥ |cH ∩ V | where overlap is computed by Procedure 5.8.

467

Dixon, Ginsberg, Hofer, Luks & Parkes

5.4 Block Pruning

The pruning described in the previous section can be improved further. To see why, consider
the following example, which might arise in solving an instance of the pigeonhole problem.
We have the two cardinality constraints:

x1 + x2 + x3 + x4 ≥ 2 (10)
x5 + x6 + x7 + x8 ≥ 2 (11)

presumably saying that at least two of four pigeons are not in hole m and at least two
are not in hole n for some m and n.8 Rewriting the individual cardinality constraints as
augmented clauses produces

(x1 ∨ x2 ∨ x3,Sym(x1, x2, x3, x4))
(x5 ∨ x6 ∨ x7,Sym(x5, x6, x7, x8))

or, in terms of generators,

(x1 ∨ x2 ∨ x3, 〈(x1x2), (x2x3x4)〉) (12)
(x5 ∨ x6 ∨ x7, 〈(x5x6), (x6x7x8)〉) (13)

What we would really like to do, however, is to capture the full symmetry in a single axiom.
We can do this by realizing that we can obtain (13) from (12) by switching x1 and x5,

x2 and x6, and x3 and x7 (in which case we want to switch x4 and x8 as well). So we add
the generator (x1x5)(x2x6)(x3x7)(x4x8) to the overall group, and modify the permutations
(x1x2) and (x2x3x4) (which generate Sym(x1, x2, x3, x4)) so that they permute x5, x6, x7, x8

appropriately as well. The single augmented clause that we obtain is

(x1 ∨ x2 ∨ x3, 〈(x1x2)(x5x6), (x2x3x4)(x6x7x8), (x1x5)(x2x6)(x3x7)(x4x8)〉) (14)

and it is not hard to see that this does indeed capture both (12) and (13).
Now suppose that x1 and x5 are false, and the other variables are unvalued. Does (14)

have a unit instance?
With regard to the pruning condition in the previous section, the group has a single

orbit, and the condition (with t = 1) is

|W ∩ (S ∪ U)| − |W − c| > 1 (15)

But

W = {x1, x2, x3, x4, x5, x6, x7, x8}
S = Ø
U = {x2, x3, x4, x6, x7, x8}
c = {x1, x2, x3}

8. In an actual pigeonhole instance, all of the variables would be negated. We have dropped the negations
for convenience.

468

ZAP 3: Implementation

so that |W ∩ (S ∪ U)| = 6, |W − c| = 5 and (15) fails.
But it should be possible to conclude immediately that there are no unit instances

of (14). After all, there are no unit instances of (10) or (11) because only one variable in
each clause has been set, and three unvalued variables remain. Equivalently, there is no
unit instance of (12) because only one of {x1, x2, x3, x4} has been valued, and two need to
be valued to make x1 ∨x2 ∨x3 or another instance unit. Similarly, there is no unit instance
of (13). What went wrong?

What went wrong is that the pruning heuristic thinks that both x1 and x5 can be
mapped to the same clause instance, in which case it is indeed possible that the instance
in question be unit. The heuristic doesn’t realize that x1 and x5 are in separate “blocks”
under the action of the group in question.

To formalize this, let us first make the following definition:

Definition 5.10 Suppose G acts on a set T . We will say that G acts transitively on T if
T is an orbit of G.

Put somewhat differently, G acts transitively on T just in case for any x, y ∈ T there is
some g ∈ G such that xg = y.

Definition 5.11 Suppose that a group G acts transitively on a set T . Then a block system
for G is a partitioning of T into sets B1, . . . , Bn such that G permutes the Bi.

In other words, for each g ∈ G and each block Bi, Bg
i = Bj for some j. If j = i, then

the image of Bi under g is Bi itself. If j 6= i, then the image of Bi under g is disjoint from
Bi, since the blocks partition T .

Every group acting transitively and nontrivially on a set T has at least two block systems:

Definition 5.12 For a group G acting transitively on a set T , a block system B1, . . . , Bn

will be called trivial if either n = 1 or n = |T |.

In the former case, there is a single block consisting of the entire set T (which obviously
is a block system). If n = |T |, each point is in its own block; since G permutes the points,
it obviously permutes the blocks.

Lemma 5.13 All of the blocks in a block system are of identical size.

In the example we have been considering, B1 = {x1, x2, x3, x4} and B2 = {x5, x6, x7, x8}
is also a block system for the action of the group on the set T = {x1, x2, x3, x4, x5, x6, x7, x8}.
And while it is conceivable that a clause image is unit within the overall set T , it is impossible
for it to have fewer than two unvalued literals within each particular block. Instead of
looking at the overall expression

|W ∩ (S ∪ U)| − |W − c| > 1 (16)

we can work with individual blocks.

469

Dixon, Ginsberg, Hofer, Luks & Parkes

The clause x1∨x2∨x3 is in a single block in this block system, and will therefore remain
in a single block after being acted on with any g ∈ G. If the clause winds up in block Bi,
then the condition (16) can be replaced with

|Bi ∩ (S ∪ U)| − |Bi − c| > 1

or, in this case,
|Bi ∩ (S ∪ U)| > |Bi − c|+ 1 = 2

so that we can prune if there are more than two unvalued literals in the block in question.
After all, if there are three or more unvalued literals, there must be at least two in the
clause instance being considered, and it cannot be unit.

Of course, we don’t know exactly which block will eventually contain the image of c,
but we can still prune if

min(|Bi ∩ (S ∪ U)|) > 2

since in this case any target block will generate a prune. And in the example that we have
been considering,

|Bi ∩ (S ∪ U)| = 3

for each block in the block system.
Generalizing this idea is straightforward. For notational convenience, we introduce:

Definition 5.14 Let T = {T1, . . . , Tk} be sets, and suppose that Ti1 , . . . , Tin are the n
elements of T of smallest size. Then we will denote

∑n
j=1 |Tij | by Σmin

i≤n Ti.

Proposition 5.15 Let G be a group acting transitively on a set T , and let c, V ⊆ T .
Suppose also that {B1, . . . , Bk} is a block system for G and that c ∩ Bi 6= Ø for n of the
blocks in {B1, . . . , Bk}. Then if b is the size of an individual block Bi and g ∈ G,

|cg ∩ V | ≥ |c|+ Σmin
i≤n (Bi ∩ V)− nb (17)

Proposition 5.16 If the block system is trivial (in either sense), (17) is equivalent to

|cg ∩ V | ≥ |T ∩ V | − |T − c| (18)

Proposition 5.17 Let {B1, . . . , Bk} be a block system for a group G acting transitively on
a set T . Then (17) is never weaker than (18).

In any event, we have shown that we can strengthen Procedure 5.8 to:

Procedure 5.18 Given a group H, and two sets c, V , to compute overlap(H, c, V), a
lower bound on the overlap of ch and V for any h ∈ H:

470

ZAP 3: Implementation

1 m← 0
2 for each orbit W of H
3 do {B1, . . . , Bk} ← a block system for W under H
4 n = |{i|Bi ∩ c 6= Ø}|
5 m← m + max(|c ∩W |+ Σmin

i≤n (Bi ∩ V)− n|B1|, 0)
6 return m

Which block system should we use in line 3 of the procedure? There seems to be no
general best answer to this question, although we have seen from Proposition 5.17 that any
block system is better than one of the trivial ones. In practice, the best choice appears to be
a minimal block system (i.e., one with blocks of the smallest size) for which c is contained
within a single block. Now Procedure 5.18 becomes:

Procedure 5.19 Given a group H, and two sets c, V , to compute overlap(H, c, V), a
lower bound on the overlap of ch and V for any h ∈ H:

1 m← 0
2 for each orbit W of H
3 do {B1, . . . , Bk} ← a minimal block system for W under H for which

c ∩W ⊆ Bi for some i
4 m← m + max(|c ∩W |+ min(Bi ∩ V)− |B1|, 0)
5 return m

Proposition 5.20 Let H be a group and c, V sets acted on by H. Then for any h ∈ H,
|ch∩V | ≥ overlap(H, c, V) ≥ |cH ∩V | where overlap is computed by Procedure 5.19.

Note that the block system being used depends only on the group H and the original
clause c. This means that in an implementation it is possible to compute these block
systems once and then use them even if there are changes in the sets S and U of satisfied
and unvalued literals respectively.

Gap includes algorithms for finding minimal block systems for which a given set of
elements (called a “seed” in gap) is contained within a single block. The basic idea is to
form an initial block “system” where the points in the seed are in one block and each point
outside of the seed is in a block of its own. The algorithm then repeatedly runs through
the generators of the group, seeing if any generator g maps elements x, y in one block to
xg and yg that are in different blocks. If this happens, the blocks containing xg and yg are
merged. This continues until every generator respects the candidate block system, at which
point the procedure is complete.9

5.5 Lexicographic Pruning

Block pruning will not help us with the example at the end of Section 5.1. The final space
being searched is:

9. A faster implementation makes use of the procedure designed for testing equivalence of finite au-
tomata (Aho, Hopcroft, & Ullman, 1974, chapter 4) and takes O(snA(n)) time, where s is the size
of the generating set and A(n) is the inverse Ackerman function.

471

Dixon, Ginsberg, Hofer, Luks & Parkes

s

s s

s s
A
A
A
A
AA

@
@

@
@

@@

PPPPPPPPPPPPPPPPP

Sym(a, b, c, d)

(ac) (ad)

(bc)(bd)

As we have remarked, the first leaf node (where a is mapped to c and b to d) is essentially
identical to the second (where a is mapped to d and b to c). It is important not to expand
both since more complicated examples may involve a substantial amount of search below
the nodes that are leaf nodes in the above figure.

This is the sort of situation in which lexicographic pruning can generally be applied.
We want to identify the two leaf nodes as equivalent in some way, and then expand only
the lexicographically least member of each equivalence class. For any particular node n,
we need a computationally effective way of determining if n is the lexicographically least
member of its equivalence class.

We begin by identifying conditions under which two nodes are equivalent. To understand
this, recall that we are interested in the image of the clause c under a particular group
element g. That means that we don’t care about where any particular literal l is mapped,
because we care only about the image of the entire clause c. We also don’t care about the
image of any literal that isn’t in c.

From a formal point of view, we begin by extending our set stabilizer notation somewhat:

Definition 5.21 For a permutation group G and sets S1, . . . , Sk acted on by G, by G{S1,...,Sk}
we will mean that subgroup of G that simultaneously set stabilizes each of the Si; equiva-
lently, G{S1,...,Sk} = ∩iG{Si}.

In computing a multiset stabilizer G{S1,...,Sk} = ∩iG{Si}, we need not compute the indi-
vidual set stabilizers and then take their intersection. Instead, recall that the set stabilizers
themselves are computed using coset decomposition; if any stabilized point is moved either
into or out of the set in question, the given node can be pruned in the set stabilizer compu-
tation. It is straightforward to modify the set stabilizer algorithm so that if any stabilized
point is moved into or out of any of the Si, the node in question is pruned. This allows
G{S1,...,Sk} to be computed in a single traversal of G’s decomposition tree.

Now suppose that j is a permutation in G that stabilizes the set c. If cg satisfies the
conditions of the transporter problem, then so will cjg. After all, acting with j first doesn’t
affect the set corresponding to c, and the image of the clause under jg is therefore identical
to its image under g. This means that two permutations g and h are “equivalent” if h = jg
for some j ∈ G{c}, the set stabilizer of c in G. Alternatively, the permutation g is equivalent
to any element of the coset Jg, where J = G{c}.

On the other hand, suppose that k is a permutation that simultaneously stabilizes the
sets S and U of satisfied and unvalued literals respectively. Now it is possible to show that

472

ZAP 3: Implementation

if we operate with k after operating successfully with g, we also don’t impact the question
of whether or not cg is a solution to the transporter problem. The upshot of this is the
following:

Definition 5.22 Let G be a group with J ≤ G and K ≤ G, and let g ∈ G. Then the double
coset JgK is the set of all elements of G of the form jgk for j ∈ J and k ∈ K.

Proposition 5.23 Let G be a group of permutations, and c a set acted on by G. Suppose
also that S and U are sets acted on by G. Then for any instance I of the k-transporter
problem and any g ∈G, either every element of G{c}gG{S,U} is a solution of I, or none is.

To understand why this is important, imagine that we prune the overall search tree so
that the only permutations g remaining are ones that are minimal in their double cosets
JgK, where J = G{c} and K = G{S,U} as above. Will this impact the solubility of any
instance of the k-transporter problem?

It will not. If a particular instance has no solutions, pruning the tree obviously will not
introduce any. If the particular instance has a solution g, then every element of JgK is
also a solution, so specifically the minimal element of JgK is a solution, and this minimal
element will not be pruned under our assumptions.

We see, then, that we can prune any node n for which we can show that every permu-
tation g underneath n is not minimal in its double coset JgK. To state precise conditions
under which this lets us prune the node n, suppose that we have some coset decomposition
of a group G, and that xj is the point fixed at depth j of the tree. Now if n is a node at
depth i in the tree, we know that n corresponds to a coset Ht of G, where H stabilizes each
xj for j ≤ i. We will denote the image of xj under t by zj . If there is no g ∈ Ht that is
minimal in its double coset JgK for J = G{c} and K = G{S,U} as in Proposition 5.23, then
the node n corresponding to Ht can be pruned.

Lemma 5.24 (Leon, 1991) If xl ∈ x
Jx1,...,xk−1

k for some k ≤ l and zk > min(z
Kz1,z2,...,zk−1

l),
then no g ∈ Ht is the first element of JgK.

Lemma 5.25 (reported by Seress, 2003) Let s be the length of the orbit x
Jx1,...,xl−1

l . If
zl is among the last s − 1 elements of its orbit in Gz1,z2,...,zl−1

, then no g ∈ Ht is the first
element of JgK.

Both of these results give conditions under which a node in the coset decomposition can
be pruned when searching for a solution to an instance of the k-transporter problem. Let
us consider an example of each.

We begin with Lemma 5.24. If we return to our example from the end of Section 5.1,
we have G = Sym(a, b, c, d), c = {a, b} = S, and U = Ø. Thus J = K = G{a,b} =
Sym(a, b)× Sym(c, d) = 〈(ab), (cd)〉.

Consider the node that we have repeatedly remarked can be pruned at depth 1, where
we fix the image of a to be d. In this case, x1 = a and z1 = d. If we take k = l in the
statement of the lemma, xl ∈ x

Jx1,...,xl−1

l since 1 ∈ Jx1,...,xl−1
. Thus we can prune if

zl > min(z
Kz1,z2,...,zl−1

l)

473

Dixon, Ginsberg, Hofer, Luks & Parkes

Further restricting to l = 1 gives us

z1 > min(zK
1) (19)

In this example, z1 = d, so zK
1 = {c, d} and (19) holds (assuming that d > c in our ordering).

The node can be pruned, and we finally get the reduced search space:

s

s s

s
A
A
A
A
AA

@
@

@
@

@@

PPPPPPPPPPPPPPPPP

Sym(a, b, c, d)

(ac) (ad)

(bd)

as desired.
This node can be pruned by Lemma 5.25 as well. The conditions of the lemma require

that we take s to be the length of the orbit of a under J (since l = 1 here), so s = |{a, b}| = 2.
Thus the image of a cannot be among the last 2− 1 = 1 points in a’s orbit under G. Since
the orbit of a under G is {a, b, c, d}, we can once again prune this node. (The previous
node, which maps a to c, cannot be pruned, of course.)

This particular example is simple. The nodes being examined are at depth one, and
there is significant overlap in the groups in question. While the same node is pruned by
either lemma here, the lemmas prune different nodes in more complex cases. Note also that
the groups J = G{c} and K = G{S,U} can be computed at the root of the tree, and the
group J is independent of the sets S and U and can therefore be cached with the augmented
clause (c,G).

Lemmas 5.24 and 5.25 are both well known results in the computational group theory
community. We will also have use of the following:

Lemma 5.26 Suppose that t is the permutation labeling some node Ht of a coset decom-
position tree at depth k, so that xt

i = zi for i ≤ k and H = Gx1,...,xk
is the residual group at

this level. Let M be the set of points moved by Gx1,...,xk
. Now if zi > min

(
x

JM,x1,...,xi−1
t

i

)
for any i ≤ k, then no g ∈ Ht is the first element of JgK.

As an example, consider the cardinality constraint

x1 + · · ·+ xm ≥ n

corresponding to the augmented clause (c,G) with

c = x1 ∨ · · · ∨ xm−n+1

and G = Sym(X), where X is the set of all of the xi.

474

ZAP 3: Implementation

Suppose that we fix the images of the xi in order, and that we are considering a node
where the image of x1 is fixed to z1 and the image of x2 is fixed to z2, with z2 < z1. Now
J = G{c} = Sym(x1, . . . , xm−n+1) × Sym(xm−n+2, . . . , xm), so taking i = 1 and k = 2 in
Lemma 5.26 gives us Jxk+1,...,xm = Sym(x1, x2) since we need to fix all of the xj after x2.

But x
Jxk+1,...,xm t

1 = {z1, z2}, and since z1 is not the smallest element of this set, this is
enough to prune this node. See the proof of Proposition 6.9 for another example.

We will refer to Lemmas 5.24–5.26 as the pruning lemmas.
Adding lexicographic pruning to our k-transporter procedure gives us:

Procedure 5.27 Given groups H ≤ G, an element t ∈ G, sets c, S and U and an integer
k, to find a group element g = transport(G, H, t, c, S, U, k) with g ∈ H, cgt ∩ S = Ø and
|cgt ∩ U | ≤ k:

1 if overlap(H, c, St−1
) > 0

2 then return failure

3 if overlap(H, c, (S ∪ U)t−1
) > k

4 then return failure
5 if c = cH

6 then return 1
7 if a pruning lemma can be applied
8 then return failure
9 α← an element of c− cH

10 for each t′ in (H : Hα)
11 do r ← transport(G, Hα, t′t, c, S, U, k)
12 if r 6= failure
13 then return rt′

14 return failure

Note that the test in line 7 requires access to the groups J and K, and therefore to the
original group G with which the procedure was called. This is why we retain a copy of this
group in the recursive call on line 11.

It might seem that we have brought too much mathematical power to bear on the
k-transporter problem specifically, but we disagree; recall Figure 1, repeated from zap1.
High-performance satisfiability engines, running on difficult problems, spend in excess of
90% of their CPU time in unit propagation, which we have seen to be an instance of the
k-transporter problem. Effort spent on improving the efficiency of Procedure 5.27 (and
its predecessors) can be expected to lead to substantial performance improvements in any
practical application. See also Figure 8 and the experimental results in Section 9.2.

We do, however, note that while lexicographic pruning is important, it is also expensive.
This is why we defer it to line 7 of Procedure 5.27. An earlier lexicographic prune would
be independent of the S and U sets, but the count-based pruning is so much faster that we
defer the lexicographic check to the extent possible.

475

Dixon, Ginsberg, Hofer, Luks & Parkes

70

75

80

85

90

95

100

0 10 20 30 40 50 60 70 80 90

%
 o

f t
im

e
sp

en
t i

n
U

P

total CPU time (sec)

ZCHAFF data

Figure 1: Fraction of CPU time spent in unit propagation

6. Unit Propagation

Procedure 5.27 was designed around the need to find a single permutation g ∈ G satisfying
the conditions of the k-transporter problem, and this technically suffices for zap’s needs.
In unit propagation, however, it is useful to collect all of the unit consequences of an
augmented clause (c,G) at once, as opposed to collecting them via repeated traversals of
G’s coset decomposition tree.

As we work through the consequences of this observation, it will help to have an example
that illustrates the points we are going to be making. To this end, we will consider the
augmented clause

(a ∨ b ∨ e,Sym(a, b, c, d)× Sym(e, f)) (20)

in a situation where a, b and c are false and d, e and f are unvalued. The group in (20)
allows arbitrary permutations of {a, b, c, d} and of {e, f}, so that both e and f are unit
consequences of instances of the given augmented clause.

Note that we cannot simply collect all the group elements associated with each unit
instance, since many group elements may correspond to the same clause instance cg or to
the same unit literal cg ∩ U . In the above example, both () and (ab) correspond to the
identical clause a ∨ b ∨ e, and both this clause and a ∨ c ∨ e lead to the same conclusion e
given the current partial assignment.

Our goal will therefore be to compute not a set of permutations, but the associated set
of all unit conclusions:

Definition 6.1 Let (c,G) be an augmented clause, and P a partial assignment. The unit
consequences of (c,G) given P is the set of all literals l such that there is a g ∈ G with
cg ∩S(P) = Ø and cg ∩U(P) = {l}. For a fixed literal w, the unit w-consequences of (c,G)
given P is the set of all literals l such that there is a g ∈ G with w ∈ cg, cg ∩S(P) = Ø and
cg ∩ U(P) = {l}.

476

ZAP 3: Implementation

The unit w-consequences involve an additional requirement that the literal w appear in the
clause instance in question. This will be useful when we discuss watched literals in the next
section.

In our example, the unit consequences of (20) are e and f . The unit c-consequences are
the same, although we can no longer use the identity permutation (), since the needed c is
not in the base instance of (20). There are no unit d-consequences of (20).

If the partial assignment is to be annotated, we will need not just the unit consequences,
but the reasons as well:

Definition 6.2 Let X be a set of pairs 〈l, g〉, where g ∈ G and l is a literal for each pair.
If X = {〈l1, g1〉, . . . , 〈ln, gn〉}, we will denote {l1, . . . , ln} by L(X).

If (c,G) is an augmented clause and P a partial assignment, X will be called an anno-
tated set of unit consequences of (c,G) given P if:

1. cg ∩ S(P) = Ø and cg ∩ U(P) = {l} for every 〈l, g〉 ∈ X and

2. L(X) is the set of unit consequences of (c,G) given P .

Once again returning to our example, 〈e, ()〉 is an annotated consequence, as is 〈e, (abc)〉.
So are 〈f, (ef)〉 and 〈f, (abc)(ef)〉. The set {〈e, (abc)〉, 〈f, (ef)〉} is an annotated set of unit
consequences, as is {〈e, (abc)〉, 〈f, (ef)〉, 〈f, (abc)(ef)〉}. But {〈f, (ef)〉, 〈f, (abc)(ef)〉} is not
an annotated set of unit consequences, since e does not appear as a consequence.

We now modify our k-transporter procedure so that we search the entire tree while
accumulating an annotated set of unit consequences. We need to be careful, however,
because the pruning lemmas may prune a node because it includes a permutation g that is
not minimal in its double coset JgK. This is a problem because g and the minimal element
of JgK may correspond to distinct unit consequences. In our running example, it may well
be that none of the minimal elements of JgK supports f as a conclusion; if we accumulate
only all of the minimal elements, we will not get a full set of unit consequences as a result.

Given a successful g that is minimal in its double coset, reconstructing the relevant
orbits under J and K is easy, so we begin by introducing some definitions that cater to this.
The basic idea is that we want the minimal g to “entail”, in some sense, the conclusions
that can be drawn from other permutations in the double coset JgK.

In our example, the subgroup of G that simultaneously stabilizes S and U is G{S,U} =
Sym(a, b, c) × Sym(e, f). Once we have a permutation g1 that allows us to conclude e, we
can operate with g1 · (ef) ∈ g1G{S,U} to conclude f as well. We formalize this as follows:

Definition 6.3 Given a group G, we will say that 〈l1, g1〉 G-entails 〈l2, g2〉, to be denoted
〈l1, g1〉 |=G 〈l2, g2〉, if there is some g ∈ G such that l2 = lg1 and g2 = g1g. We will say that a
set of pairs X G-entails a set of pairs Y , writing X |=G Y , if every pair in Y is G-entailed
by some pair in X.

A skeletal set of unit consequences of (c,G) given P is any set X of unit consequences
that G{S(P),U(P)}-entails an annotated set of unit consequences of (c,G) given P .

In our running example, we have l1 = e and g = (ef) in the first paragraph, allowing
(for example) 〈e, ()〉 to G{S,U}-entail 〈f, (ef)〉. Thus we see that {〈e, ()〉} is a skeletal set
of unit consequences of (20) given the partial assignment {¬a,¬b,¬c}.

477

Dixon, Ginsberg, Hofer, Luks & Parkes

Lemma 6.4 If X |=G Y , then L(Y) ⊆ L(X)G.

Proof. Every pair in Y is of the form 〈lg1, g1g〉 for 〈l1, g1〉 ∈ X and g ∈ G. Thus the
associated literal is in L(X)G.

To construct a full set of unit consequences from a skeletal set, we repeatedly find new
unit conclusions until no more are possible:

Procedure 6.5 Given a set X of pairs 〈l, g〉 and a group G, to compute complete(X, G),
where X |=G complete(X, G) and L(complete(X, G)) = L(X)G:

1 Y ← Ø
2 for each 〈l, g〉 ∈ X
3 do for each l′ ∈ lG − L(Y)
4 do select h ∈ G such that lh = l′

5 Y ← Y ∪ 〈l′, gh〉
6 return Y

Proposition 6.6 X |=G complete(X, G) and L(complete(X, G)) = L(X)G.

Now we can apply the pruning lemmas as the search proceeds, eventually returning a
skeletal set of unit consequences for the clause in question. In addition, if there is a unit
instance that is in fact unsatisfiable, we should return a failure marker of some sort. We
handle this by returning two values. The first indicates whether or not a contradiction was
found, and the second is the skeletal set of unit consequences.

Procedure 6.7 Given groups H ≤ G, an element t ∈ G, sets c, S and U , to find
Transport(G, H, t, c, S, U), a skeletal set of unit consequences for (c,G) given P :

1 if overlap(H, c, St−1
) > 0

2 then return 〈false,Ø〉
3 if overlap(H, c, (S ∪ U)t−1

) > 1
4 then return 〈false,Ø〉
5 if c = cH

6 then if ct ∩ U = Ø
7 then return 〈true, 1〉
8 else return 〈false, 〈ct ∩ U, 1〉〉
9 if a pruning lemma can be applied

10 then return 〈false,Ø〉
11 Y ← Ø
12 α← an element of c− cH

13 for each t′ in (H : Hα)
14 do 〈u, V 〉 ← Transport(G, Hα, t′t, c, S, U)
15 if u = true
16 then return 〈true, V t′〉
17 else Y ← Y ∪ {〈l, gt′〉|〈l, g〉 ∈ V }
18 return 〈false, Y 〉

478

ZAP 3: Implementation

Proposition 6.8 Assume that |ch ∩ V | ≥ overlap(H, c, V) ≥ |cH ∩ V | for all h ∈ H, and
let Transport(G, c, S, U) be computed by Procedure 6.7. Then if there is a g ∈ G such that
cg ∩ S = cg ∩ U = Ø, Transport(G, c, S, U) = 〈true, g〉 for such a g. If there is no such
g, Transport(G, c, S, U) = 〈false, Z〉, where Z is a skeletal set of unit consequences for
(c,G) given P .

As an application of the pruning lemmas, we have:

Proposition 6.9 Let (c,G) be an augmented clause corresponding to a cardinality con-
straint. Then for any sets S and U , Procedure 6.7 will expand at most a linear number of
nodes in finding a skeletal set of unit consequences of (c,G).

In the original formulation of cardinality constraints (as in zap1), determining if a
particular constraint is unit (and finding the implied literals if so) takes time linear in
the length of the constraint, since it involves a simple walk along the constraint itself. It
therefore seems appropriate for a linear number of nodes to be expanded in this case.

7. Watched Literals

There is one pruning technique that we have not yet considered, and that is the possibility
of finding an analog in our setting to Zhang and Stickel’s (2000) watched literal idea.

To understand the basic idea, suppose that we are checking to see if the clause a∨ b∨ c
is unit in a situation where a and b are unvalued. It follows that the clause cannot be unit,
independent of the value assigned to c.

At this point, we can watch the literals a and b; as long as they remain unvalued, the
clause cannot be unit. In practice, the data structures representing a and b include a pointer
to the clause in question, and the unit test needs only be performed for clauses pointed to
by literals that are changing value.

As we continue to discuss these ideas, it will be useful to distinguish among three different
types of clauses: those that are satisfied given the current partial assignment, those that
are unit, and those that are neither:

Definition 7.1 Let C be a clause, and P a (possibly annotated) partial assignment. We
will say that C is settled by P if it is either satisfied or unit; otherwise it is unsettled.

We now have:

Definition 7.2 Let C be a clause, and P a (possibly annotated) partial assignment. If C
is unsettled by P , then a watching set for C under P is any set of literals W such that
|W ∩ C ∩ U(P)| > 1.

In other words, W contains at least two unvalued literals in C if C is unsettled by the
current partial assignment.

What about if C is satisfied or unit? What should the watching set be in this case?
In some sense, it doesn’t matter. Assuming that we notice when a clause changes from

unsettled to unit (so that we can either unit propagate or detect a potential contradiction),

479

Dixon, Ginsberg, Hofer, Luks & Parkes

settled clauses are uninteresting from this perspective, since they can never generate a
second unit propagation. So we can watch a settled clause or not, as we see fit.

In another sense, however, it does matter. One of the properties that we would like the
watching sets to have is that they remain valid during a backtrack. That means that if
a settled clause C becomes unsettled during a backtrack, there must be two watched and
unvalued variables after that backtrack.

In order to discuss backtracking in a formal way, we introduce:

Definition 7.3 Let P be a partial assignment for a set T of (possibly augmented) clauses.
We will say that P is T -closed if no clause C ∈ T has a unit consequence given P . A
T -closure of P is any minimal, sound and T -closed extension of P , and will be denoted by
either PT or by simply P if T is clear from context.

The definition of closure makes sense because the intersection of two closed partial
assignments is closed as well. To compute the closure, we simply add unit consequences
one at a time until no more are available. Note that there is still some ambiguity; if there
is more than one unit consequence that can be added at some point, we can add the unit
consequences in any order.

Definition 7.4 Let P = 〈l1, . . . , ln〉 be a partial assignment. A subassignment of P is any
initial subsequence 〈l1, . . . , lj〉 for j ≤ n. We will say that a subassignment P ′ of P is a
backtrack point for P if either P ′ = P or P ′ = P ′. We will denote by P− the largest
backtrack point for P that is not P itself.

If C is a clause, we will say that the P -retraction of C, to be denoted P¬C , is the largest
backtrack point for P for which C is unsettled.

Note that we require a backtrack to the point that C is unsettled, as opposed to simply
unsatisfied. If P is closed, there is no difference because Definition 7.4 does not permit a
backtrack to a point where C is unit. But if C is unit under P , we can only “retract” C
by reverting to a point before C became unit. Otherwise, C will simply be reasserted when
unit propagation computes P .

Since P itself is a backtrack point for P , we immediately have:

Lemma 7.5 If C is unsettled by P , then P¬C = P .

As an example, suppose that we have the following annotated partial assignment P :

literal reason
a true
¬b true
c ¬a ∨ b ∨ c
d true
e b ∨ ¬d ∨ e

If our clause C is b∨ e∨f , the P -retraction of C is 〈a,¬b, c〉. Removing e is sufficient to
make C unsettled, but 〈a,¬b, c, d〉 is not closed and is therefore not a legal backtrack point.
If b ∨ e is in our theory, the retraction is in fact 〈a〉 because 〈a,¬b, c〉 is not a backtrack
point because the unit conclusion e has not been drawn.

We can now generalize Definition 7.2 to include settled clauses:

480

ZAP 3: Implementation

Definition 7.6 Let C be a clause, and P an annotated partial assignment. A watching set
for C under P is any set of literals W such that |W ∩ C ∩ U(P¬C)| > 1.

In other words, W will contain at least two unvalued literals in C if we replace P with the
P -retraction of C. As discussed earlier, this is the first point to which we could backtrack so
that C was no longer satisfied or unit. Continuing our earlier example, {e, f} is a watching
set for b ∨ e ∨ f , and {¬b, e} is a watching set for ¬b ∨ e. A watching set for b ∨ e is {b, e};
recall that the definition forces us to backtrack all the way to 〈a〉.

Lemma 7.7 If W is a watching set for C under P , then so is any superset of W .

In order for watching sets to be useful, of course, we must maintain them as the search
proceeds. Ideally, this maintenance would involve modifying the watching sets as infre-
quently as possible, so that we could adjust them only as required when variables take new
values, and not during backtracking at all. Recall the example at the beginning of this
section, where a and b are unvalued and constitute a watching set for the clause a∨ b∨ c. If
a or b becomes satisfied, we need do nothing since the clause is now satisfied and {a, b} is
still a watching set. Note that if a (for example) becomes satisfied, we can’t remove b from
the watching set, since we would then need to replace it if we backtrack to the point that
a is unvalued once again. Leaving b in the watching set is required to satisfy Definition 7.6
and needed to ensure that the sets need not be adjusted after a backtrack.

On the other hand, if a (for example) becomes unsatisfied, we need to check the clause
to see whether or not it has become unit. If the clause is unit, then b should be set to true
by unit propagation, so no maintenance is required. If the clause is unsettled, then c must
be unvalued, so we can replace a with c in the set of literals watching the clause. Finally,
if the clause is already satisfied, then a will be unvalued in the P -retraction of the clause
and the watching set need not be modified.

In general, we have:

Proposition 7.8 Suppose that W is a watching set for C under P and l is a literal. Then:

1. W is a watching set for C under any backtrack point for P .

2. If C is settled by 〈P, l〉, then W is a watching set for C under 〈P, l〉.

3. If C is settled by 〈P, l〉, and |(W − {¬l}) ∩ C ∩ U(P¬C)| > 1, then W − {¬l} is a
watching set for C under 〈P, l〉.

4. If ¬l 6∈W ∩ C, then W is a watching set for C under 〈P, l〉.

The proposition tells us how to modify the watching sets as the search proceeds. No
modification is required during a backtrack (claim 1). No modification is required if the
clause is satisfied or unit (claim 2), and we can also remove a newly valued literal from a
watching set if enough other unvalued variables are present (claim 3). No modification is
required unless we add the negation of an already watched literal (claim 4).

In sum, modification to the watching sets is only required when we add the negation of a
watched literal to our partial assignment and the watched clause is not settled; in this case,

481

Dixon, Ginsberg, Hofer, Luks & Parkes

we have to add one of the remaining unvalued literals to the watching set. In addition, we
can remove literals from the watching set if enough unvalued literals are already in it. Since
this last possibility is not used in zChaff or other ground systems, here is an example of
it.

Suppose that we are, as usual, watching a and b in a ∨ b ∨ c. At some point, a becomes
true. We can either leave the watching set alone by virtue of condition 4, or we can extend
the watching set to include c (extending a watching set is always admissible, by virtue of
Lemma 7.7), and then remove a from the watching set. This change is unneeded in a ground
prover, but will be useful in the augmented version 7.10 of the proposition below.

To lift these ideas to an augmented setting, we begin by modifying Definition 7.6 in the
obvious way to get:

Definition 7.9 Let (c,G) be an augmented clause, and P an annotated partial assignment.
A watching set for (c,G) under P is any set of literals W that is a watching set for every
instance cg of (c,G) under P .

This leads to the following augmented analog of Proposition 7.8. (Although there are
four clauses in Proposition 7.8 and four in the following proposition, there is no clause-for-
clause correspondence between the two results.)

Proposition 7.10 Suppose that W is a watching set for (c,G) under P and l is a literal.
Then:

1. W is a watching set for (c,G) under any backtrack point for P .

2. If ¬l 6∈W ∩ cG, then W is a watching set for (c,G) under 〈P, l〉.

3. If |(W ∪ V) ∩ cg ∩ U(〈P, l〉)| > 1 for every g ∈ G such that cg is unsettled by 〈P, l〉,
then W ∪ V is a watching set for (c,G) under 〈P, l〉.

4. If |(W ∪V)∩cg∩ [U(〈P, l〉)∪(S(P)−S(P−))]| > 1 for every g ∈ G, then W ∪V −{¬l}
is a watching set for (c,G) under 〈P, l〉.

As an example, suppose that we return to the augmented clause we considered in the
previous section, (a∨b∨e,Sym(a, b, c, d)×Sym(e, f)). Suppose that we are initially watching
a, b, c and d, and that e is false, and now imagine that a becomes false as well.

We need to augment W so that |W ∩ cg ∩ U(P)| > 1 for every unsettled instance cg of
(c,G) that contains a. Those instances are a∨ b∨ f , a∨ c∨ f and a∨ d∨ f . Since b, c and
d are already in W , we need to add f . If f had been in the watching set but not b, c and
d, we would have had to add those three points instead.

In this case, since the clause has a unit instance (a ∨ b ∨ e, for example), we cannot
remove a from the watching set. The reason is that if we do so and later backtrack past
this point, we are in danger of watching only b for this unsatisfied clause.

Suppose, however, that e had been unvalued when a became false. Now we would have
to add both e and f to the watching set and we would be free to remove a. This is sanctioned
by Proposition 7.10, since (c,G) has no settled instances and if cg ∩S(P) = Ø for all g ∈ G
as well, the conditions of claims three and four are equivalent.

482

ZAP 3: Implementation

What if e, instead of being false or unvalued, had been true? Now we add f to the
watching set, but can we remove a from the new watching set {a, b, c, d, f}? We cannot:
the instance a ∨ b ∨ e would have only one watched literal if we did.

In some cases, however, we can remove the literal that just became false from the
watching set. We can surely do so if every clause instance still has two unvalued literals in
the watching set. This would correspond to the requirement that

|(W ∪ V) ∩ cg ∩ U(〈P, l〉)| > 1

for every instance. The stronger condition in claim four of the proposition allows us to do
slightly better in cases where the satisfied literal in the clause became satisfied sufficiently
recently that we know that any backtrack will unvalue it.

The fourth conclusion in Proposition 7.10 is essential to the effective functioning of our
overall prover; when we replace a watched literal l that has become false with a new and
unvalued literal, it is important that we stop watching the original watched literal l. It
is the last claim in the proposition that allows us to do this in most (although not all)
practical cases. Without this fourth conclusion, the watching sets would only get larger as
the search proceeded. Eventually, every literal in every clause would be watched and the
computational power of the idea would be lost.

We can now use the watching sets to reduce the number of clauses that must be ex-
amined in line 1 of the unit propagation procedure 2.7. Each augmented clause needs to
be associated with a watching set that is initialized and updated as sanctioned by Propo-
sition 7.10.

Initialization is straightforward; for any clause (c,G) with c of length at least two, we
need to define an associated watching set W with the property that |W ∩ cg| > 1 for every
g ∈ G. In fact, we take W to be simply cG, the union of all of the instances cg, and
rely on subsequent unit tests to gradually reduce the size of W . (Once again, using the
fourth clause of Proposition 7.10.) The challenge is to modify Procedure 6.7 in a way that
facilitates the maintenance of the watching sets.

Before doing this, let us understand in a bit more detail how the watching sets are used
in searching for unit instances of a particular augmented clause. Consider the augmented
clause corresponding to the quantified clause

∀xy . [q(x) ∧ r(y)→ s]

If Q is the set of instances of q(x) and R the set of instances of r(y), this becomes the
augmented clause

(¬q(0) ∨ ¬r(0) ∨ s,Sym(Q)× Sym(R)) (21)

where q(0) and r(0) are elements of Q and R respectively.
Now suppose that r(y) is true for all y, but q(x) is unvalued, as is s, so that the clause

(21) has no unit instances. Suppose also that we search for unit instances of (21) by first
stabilizing the image of r and then of q (s is stabilized by the group Sym(Q) × Sym(R)
itself). If there are four possible bindings for y (which we will denote 0, 1, 2, 3) and three
for x (0, 1, 2), the search space looks like this:

483

Dixon, Ginsberg, Hofer, Luks & Parkes

s

s s s s

s s s s s s s s s s s s�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��A

A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

�����������������

�
�

�
�

��@
@

@
@

@@

PPPPPPPPPPPPPPPPP

Sym(Q) × Sym(R)

Sym(Q) (r0r1) (r0r2) (r0r3)

1 1 1 1

(q0q1) (q0q1) (q0q1) (q0q1)

(q0q2) (q0q2) (q0q2) (q0q2)

In the interests of conserving space, we have written qi instead of q(i) and similarly for rj .
Each of the leaf nodes fails because both s and the relevant instance of q(x) are unvalued,

and we now construct a new watching set for the entire clause (21) that watches s and all
of the q(x).

Note that this causes us to lose significant amounts of information regarding portions
of the search space that need not be reexamined. In this example, the responsible literals
at each leaf node are as follows:

s

s s s s

s s s s s s s s s s s s�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��A

A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

�����������������

�
�

�
�

��@
@

@
@

@@

PPPPPPPPPPPPPPPPP

q0, s q0, s q0, s q0, s

q1, s q1, s q1, s q1, s

q2, s q2, s q2, s q2, s

When we simply accumulate these literals at the root of the search tree, we conclude that
the reason for the failure is the watching set {q0, q1, q2, s}. If any of these watched literals
changes value, we potentially have to reexamine the entire search tree.

We can address this by changing the order of variable stabilization, replacing the search
space depicted above with the following one:

s

s s s

s s s s s s s s s s s s�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��

�
�
�
�
��E

E
E
E
EE

E
E
E
E
EE

E
E
E
E
EE

A
A
A
A
AA

A
A
A
A
AA

A
A
A
A
AA

�����������������PPPPPPPPPPPPPPPPP

Sym(Q) × Sym(R)

Sym(R) (q0q1) (q0q2)

1 1 1

(r0r1) (r0r1) (r0r1)(r0r2) (r0r2) (r0r2)

(r0r3) (r0r3) (r0r3)

484

ZAP 3: Implementation

Now only the center node needs reexpansion if the value of q1 changes, since it is only
at this node that q1 appears. The search space becomes simply:

s

s

s s s s�
�
�
�
��

�
�
�
�
��E
E
E
E
EE

A
A
A
A
AA

Sym(Q) × Sym(R)

(q0q1)

1

(r0r1) (r0r2)

(r0r3)

which is what one would expect if q1 changes value.
The upshot of this is that while we collect a new watching set for the original augmented

clause corresponding to (21), we also need to modify our unit propagation procedure so that
we first stabilize points that can be mapped to a specific watched literal that has become
unsatisfied.

To see how to keep the watching set updated, consider Proposition 7.10. When searching
for the unit instances of an augmented clause (c,G), we need to compute some set W such
that |W ∩cg∩U(P)| > 1 for every unsettled instance cg of (c,G) that contains a fixed literal
w. How are we to do this?

The solution lies in Procedure 6.7, which describes our search for unit instances. If all
of the remaining clause instances below some particular search node are determined to be
nonunit in the test on line 3, instead of simply recognizing that every instance under this
node is nonunit, we need to be able to identify a set of unvalued literals that meets every
unsettled instance of cg at least twice. We modify the overlap procedure 5.19 to become:

Procedure 7.11 Given a group H, two sets c, V acted on by H, and a bound k ≥ 0, to
compute overlap(H, c, V, k), a collection of elements of V sufficient to guarantee that for
any h ∈ H, |ch ∩ V | > k, or Ø if no such collection exists:

1 m← 0
2 W ← Ø
3 for each orbit X of H
4 do {B1, . . . , Bk} ← a minimal block system for W under H for which

c ∩W ⊆ Bi for some i
5 ∆ = |c ∩X|+ min(Bi ∩ V)− |B1|
6 if ∆ > 0
7 then m← m + ∆
8 W ←W ∪ (X ∩ V)
9 if m > k

10 then return W
11 return Ø

485

Dixon, Ginsberg, Hofer, Luks & Parkes

Proposition 7.12 Procedure 7.11 returns a nonempty set W if and only if Procedure 5.19
returns a value in excess of k. In this case, |ch ∩W | > k for every h ∈ H.

We are finally in a position to replace Procedure 6.7 with a version that uses watched
literals:

Procedure 7.13 Given groups H ≤ G, an element t ∈ G, sets c, S and U , and op-
tionally a watched element w, to find Transport(G, H, t, c, S, U, w), a skeletal set of unit
w-consequences for (c,G) given P :

1 if w is supplied and wt−1 6∈ cH

2 then return 〈false,Ø,Ø〉
3 V ← overlap(H, c, St−1

, 0)
4 if V 6= Ø
5 then return 〈false,Ø,Ø〉
6 V ← overlap(H, c, (S ∪ U)t−1

, 1)
7 if V 6= Ø
8 then return 〈false,Ø, V t〉
9 if c = cH

10 then if ct ∩ U = Ø
11 then return 〈true, 1,Ø〉
12 else return 〈false, 〈ct ∩ U, 1〉,Ø〉
13 if a pruning lemma can be applied
14 then return 〈false,Ø,Ø〉
15 α← an element of c− cH . If w is supplied and w 6∈ ct

H , choose α so that wt−1 ∈ αH .
16 Y ← Ø
17 W ← Ø
18 for each t′ in (H : Hα)
19 do 〈u, V,X〉 ← Transport(G, Hα, t′t, c, S, U, w)
20 if u = true
21 then return 〈true, V t′,Ø〉
22 else W ←W ∪X
23 Y ← Y ∪ {〈l, gt′〉|〈l, g〉 ∈ V }
24 return 〈false, Y,W 〉

In the application of the pruning lemmas in line 13, we need to use the restricted group
G{S,U,{w}}, so that we do not prune a group element g with w ∈ cg on the basis of another
group element jgk for which w 6∈ cjgk, since jgk might itself then be pruned on line 2.

Proposition 7.14 Suppose that overlap(H, c, V, k) is computed using Procedure 7.11, or
otherwise satisfies the conclusion of Proposition 7.12. Then if there is a g ∈ G such that
w ∈ cg and cg ∩ S = cg ∩ U = Ø, Transport(G, c, S, U, w) as computed by Procedure 7.13
returns 〈true, g, Ø〉 for such a g. If there is no such g, Procedure 7.13 returns 〈false, Z,W 〉,
where Z is a skeletal set of unit w-consequences of (c,G) given P , and W is such that
|WG{S,U,{w}} ∩ ch ∩ U | > 1 for every h ∈ H such that w ∈ ch and ch is unsettled by P .

486

ZAP 3: Implementation

Note that the pruning lemmas are applied relatively late in the procedure (line 13) even
though a successful application prunes the space without increasing the size of the watching
set. It might seem that the pruning lemmas should be applied earlier.

This appears not to be the case. As discussed at the end of Section 5, the pruning lemmas
are relatively complex to check; moving the test earlier (to precede line 6, presumably)
actually slows the unit propagation procedure by a factor of approximately two, primarily
due to the need to compute the set stabilizer G{S,U} even in cases where a simple counting
argument suffices. In addition, the absolute impact on the watching sets can be expected
to be quite small.

To understand why, suppose that we are executing the procedure for an instance where
it will eventually fail. Now if n is a node that can be pruned either by a counting argument
(with the new contribution Wn to the set of watched literals) or by a lexicographic argument
using another node n′, then since the node n′ will eventually fail, it will contribute its own
watching set Wn′ to the eventually returned value. While it is possible that Wn 6= Wn′

(different elements can be selected by the overlap function in line 6, for example), we
expect that in the vast majority of cases we will have Wn = Wn′ and the non-lexicographic
prune will have no impact on the eventual watching set computed.

Proposition 7.14 implies that the watching set returned by Procedure 7.13 can be used
to update the watching set as in the third claim of Proposition 7.10. For the fourth claim,
where we hope to remove ¬l from the new watching set, we need to check to see if

|W ∩ cg ∩ [U(〈P, l〉) ∪ (S(P)− S(P−))]| > 1

for each g ∈ G, where W is the new watching set. This can be determined by a single call
to transport; if there is no g ∈ G for which

|cg ∩ [W ∩ (U(〈P, l〉) ∪ (S(P)− S(P−)))]| ≤ 1 (22)

we can remove ¬l from W . In some cases, we can save the call to transport by exploiting
the fact (as shown in the proof of Proposition 7.10) that (22) cannot be satisfied if 〈P, l〉
has a unit consequence.

We are finally in a position to describe watched literals in an augmented setting. As a
start, we have:

Definition 7.15 A watched augmented clause is a pair 〈(c,G),W 〉 where (c,G) is an aug-
mented clause and W is a watching set for (c,G).

Procedure 7.16 (Unit propagation) To compute Unit-Propagate(C,P, L) where C
is a set of watched augmented clauses, P is an annotated partial assignment, and L is a set
of pairs 〈l, r〉 of literals l and reasons r:

487

Dixon, Ginsberg, Hofer, Luks & Parkes

1 while L 6= Ø
2 do 〈l, r〉 ← an element of L
3 L← L− 〈l, r〉
4 P ← 〈P, 〈l, r〉〉
5 for each 〈(c,G),W 〉 ∈ C
6 do if ¬l ∈W
7 then 〈r, H, V 〉 ← Transport(G, c, S(P), U(P),¬l)
8 if r = true
9 then li ← the literal in cH with the highest index in P

10 return 〈true, resolve((cH , G), ci)〉
11 H ′ ← complete(H,G{S(P),U(P),{l}})
12 for each h ∈ H ′

13 do z ← the literal in ch unassigned by P
14 if there is no 〈z, r′〉 in L
15 then L← L ∪ 〈z, ch〉
16 W ←W ∪ (U(P) ∩ V G{S(P),U(P),{l}})
17 U ← U(P) ∪ (S(P)− S(P−))
18 if H = Ø ∧ transport(G, c, Ø,W ∩ U, 1,¬l) = failure
19 then W ←W − {¬l}
20 return 〈false, P 〉

On line 18, we invoke a version of the transport function that accepts as an addi-
tional argument a literal that is required to be included in the clause instance being sought.
This modification is similar to the introduction of such a literal w in the Transport proce-
dure 7.13.

Proposition 7.17 Let P be an annotated partial assignment, and C a set of watched aug-
mented clauses, where for every 〈(c,G),W 〉 ∈ C, W is a watching set for (c,G) under P .
Let L be the set of unit consequences of clauses in C. If Unit-Propagate(C,P, L) returns
〈true, c〉 for an augmented clause c, then c is a nogood for P , and any modified watching
sets in C are still watching sets under P . Otherwise, the value returned is 〈false, P 〉 and
the watching sets in C will all have been replaced with watching sets under P .

Procedure 7.16 can be modified and incorporated in a fairly obvious way into Proce-
dure 2.8, where the literal most recently added to the partial assignment is added to L and
thereby passed into the unit propagation procedure.

8. Resolution Revisited

There is one additional theoretical point that we need to discuss before turning our attention
to experimental matters.

The goal in augmented resolution is to produce many (if not all) of the resolvents
sanctioned by instances of the augmented clauses being resolved. As we showed in zap2,
however, it is not always possible to produce all such resolvents. Here is another example
of that phenomenon.

488

ZAP 3: Implementation

Suppose that we are resolving the two clauses

(a ∨ c, (ab)) (23)

and
(b ∨ ¬c, (ab)) (24)

The result is10

(a ∨ b, (ab)) (25)

But consider the example. The instances of (23) are a∨c and b∨c; those of (24) are b∨¬c
and a∨¬c. Surely it is better to have the resolvent be (a, (ab)) instead of (25). In general,
we never want to conclude (c,G) when it is possible to conclude (c′, G) for c′ ⊂ c where the
set inclusion is proper. The resolvent with c′ is properly stronger than that with c.

There is an additional consideration as well. Suppose that we are resolving two aug-
mented clauses, and can choose instances of the resolving clauses so that the resolvent is
(a∨ c,G) or (b∨ c,G), where a and b are literals and the two possible resolvents are distinct
because (ab) 6∈ G. Which should we select?

We know of no general answer, but a reasonable heuristic is to make the choice based on
the order in which literals were added to the current partial assignment. Assuming that the
resolvent is a nogood, presumably a and b are both false for the current partial assignment
P . We should select the resolvent that allows a larger backjump; in this case, the resolvent
involving the literal that was added to P first.

All of these considerations have no direct analog in a conventional Boolean satisfiability
engine. For any particular literal l, the resolvent of the reasons for l and for ¬l is just that;
there is no flexibility possible.11

Definition 8.1 Let (α, G) and (β, H) be two augmented clauses resolving on a literal l, so
that l ∈ α and ¬l ∈ β. An l-resolvent for (α, G) and (β, H) will be any clause obtained by
resolving αg and βh for g ∈ G and h ∈ H such that l ∈ αg and ¬l ∈ βh.

Note that the group Z in the resolvent clause (resolve(αg, βh), Z) is independent of
the resolvent selected, so we can focus our attention strictly on the syntactic properties of
the resolvent.

We next formalize the fact that the partial assignment P induces a natural lexicographic
ordering on the set of nogoods for a given theory:

Definition 8.2 Let P be a partial assignment, and c a ground clause. If l is the literal in
c whose negation has maximal index in P , we will say that the falsification depth of c is the
position in P of the literal ¬l. The falsification depth is zero if there is no such literal in c;
in any event, the falsification depth of c will be denoted by c?P .

If c1 and c2 are two nogoods, we will say that c1 is falsified earlier than c2 by P , writing
c1 <P c2, if either c?P

1 < c?P
2 , or c?P

1 = c?P
2 and c1 − ¬lc?P

1
<P c2 − ¬lc?P

2
.

10. The result can be obtained by direct computation or by applying the resolution stability property dis-
cussed in zap2, since the groups are identical.

11. A weak analog is present in zChaff, which can replace one nogood n with another n′ if n′ leads to a
greater backjump than n does. This functionality is part of the zChaff code but does not appear to
have been documented.

489

Dixon, Ginsberg, Hofer, Luks & Parkes

As an example, suppose that P is 〈a, b, c, d, e〉. The falsification depth of ¬a ∨ ¬c is
three, since c is the third variable assigned in P . The falsification depth of ¬b ∨ ¬d is four.
Thus ¬a∨¬c <P ¬b∨¬d; we would rather learn ¬a∨¬c because it allows us to backjump
to c instead of to d. Similarly ¬a ∨ ¬c ∨ ¬e <P ¬b ∨ ¬d ∨ ¬e; once the common element
¬e is eliminated, we would still rather backtrack to c than to d. In general, our goal when
resolving two augmented clauses is to select a resolvent that is minimal under <P . Note
that we have:

Lemma 8.3 If c1 ⊂ c2 are two nogoods for P , then c1 <P c2.

Procedure 8.4 Suppose we are given two augmented clauses (α, G) and (β, H) that are
unit for a partial assignment P = 〈l1, . . . , ln〉, with l ∈ α and ¬l ∈ β. To find a <P -minimal
l-resolvent of (α, G) and (β, H):

1 U ← {l,¬l} � literals you can’t avoid
2 αf ← α
3 βf ← β
4 p← [(α ∪ β)− U]?P

5 while p > 0
6 do g ← transport(G, α, {¬lp, . . . ,¬ln} − U,Ø, 0, l)
7 h← transport(H,β, {¬lp, . . . ,¬ln} − U,Ø, 0,¬l)
8 if g = failure ∨ h = failure
9 then U ← U ∪ {¬lp}

10 else αf ← αg

11 βf ← βh

12 p← [(αf ∪ βf)− U]?P

13 return resolve(αf , βf)

The basic idea is that we gradually force the two clause instances away from the end of
the partial assignment; as we back up, we keep track of literals that are unavoidable because
an associated call to transport failed. The unavoidable literals are accumulated in the set
U above, and as we continue to call the transporter function, we have no objection if one or
both of the clause instances includes elements of U . At each point, we refocus our attention
on the deepest variable that is not yet known to be either avoidable or unavoidable; when
we reach the root of the partial assignment, we return the instances found.

Here is an example. Suppose that P = 〈a, b, c, d, e〉 as before, and that (α, G) has
instances ¬c ∨ ¬d ∨ l and ¬a ∨ ¬e ∨ l. The second clause (β, H) has the single instance
¬b ∨ ¬e ∨ ¬l.

If we resolve the <P -minimal instances of the two augmented clauses, we will resolve
¬c∨¬d∨ l with ¬b∨¬e∨¬l to get ¬b∨¬c∨¬d∨¬e. We do better if we resolve ¬a∨¬e∨ l
and ¬b ∨ ¬e ∨ ¬l instead to get ¬a ∨ ¬b ∨ ¬e. The literals ¬b and ¬e appear in any case,
but we’re better off with ¬a than with ¬c ∨ ¬d.

Suppose that we follow this example through the procedure, with U initially set to
{l,¬l} and (say) α and therefore αf set to ¬c∨¬d∨ l. Both β and βf are set to ¬b∨¬e∨¬l,
since this is the only instance of (β, H). The initial value for p is five, since the last literal
in α ∪ β − U = {¬b,¬c,¬d,¬e} is ¬e.

490

ZAP 3: Implementation

We now try to find a way to avoid having ¬e appear in the final resolvent. We do this
by looking for an instance of (α, G) that includes l (the literal on which we’re resolving)
and avoids ¬e (and any subsequent literal, but there aren’t any). Such an instance is given
by α itself. But there is no instance of (β, H) that avoids ¬e, so the call in line 7 fails. We
therefore add ¬e to U and leave the clauses αf and βf unchanged. We decrement p to four,
since ¬e is no longer in (αf ∪ βf)− U .

On the next pass through the loop, we are looking for clause instances that avoid
{¬d,¬e} −U = {¬d}. We know that we’ll be forced to include ¬e in the final result, so we
don’t worry about it. All we hope to do at this point is to exclude ¬d.

Here, we are successful in finding such instances. The existing instance β suffices, as
does the other instance ¬a∨¬e∨ l of (α, G). This becomes the new αf and p gets reduced
to two, since we now have (αf ∪ βf)− U = {¬a,¬b}.

The next pass through the loop tries to avoid ¬b while continuing to avoid ¬c and ¬d
(which we know we can avoid because the current αf and βf do so). This turns out to be
impossible, so ¬b is added to U and p is decremented to one. Avoiding ¬a is impossible as
well, so p is decremented to zero and the procedure correctly returns ¬a ∨ ¬b ∨ ¬e.

Proposition 8.5 Suppose that we are given two augmented clauses (α, G) and (β, H) such
that α and β are unit for a partial assignment P , with l ∈ α and ¬l ∈ β. Then the value
returned by Procedure 8.4 is a <P -minimal l-resolvent of (α, G) and (β, H).

The procedure can be implemented somewhat more efficiently than described above; if
αf , for example, already satisfies the condition implicit in line 6, there is no need to reinvoke
the transport function for g.

More important than this relatively slender improvement, however, is the fact that
resolution now involves repeated calls to the transport function. In general, Boolean
satisfiability engines need not worry about the time used by the resolution function, since
unit propagation dominates the running time. A naive implementation of Procedure 8.4,
however, involves more calls to transport than does the unit propagation procedure, so
that resolution comes to dominate zap’s overall runtime.

To correct this, remember the point of Procedure 8.4. The procedure is not needed for
correctness; it is only needed to find improved resolution instances. The amount of time
spent looking for such instances should be less than the computational savings achieved by
having them. Put slightly differently, there is no requirement that we produce a resolvent
that is absolutely minimal under the <P ordering. A resolvent that is nearly minimal will
suffice, especially if producing the truly minimal instance involves large computational cost.

We achieve this goal by working with a modified transport function on lines 6 and 7
of Procedure 8.4. Instead of expanding the coset decomposition tree completely, a limited
number of nodes are examined. Zap’s current implementation prunes the transporter search
after 100 nodes have been examined; in solving the pigeonhole problem, for example, this
turns out to be sufficient to ensure that the resulting proof length is the same as it would
have been had strictly <P -minimal resolvents been found. We also modify the pruning
computation, pruning with K = GS∪U instead of the more difficult to compute G{S,U}.
Since GS∪U ≤ G{S,U} (stabilizing every element of a set surely stabilizes the set itself), this
approximation saves time but reduces the amount of possible pruning. This is appropriate

491

Dixon, Ginsberg, Hofer, Luks & Parkes

 1e-04

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20

se
cs

pigeons

CPU time
1.65e-06 n**4.6

Figure 2: CPU time for a resolution in the pigeonhole problem

given the artificially reduced size of the overall search tree and the need to produce an
answer quickly.

9. Experimental Results: Components

We are finally in a position to describe the experimental performance of the algorithms that
we have presented. As remarked in the introduction, we begin by describing the performance
of zap’s algorithmic components, its resolution and unit propagation algorithms. Perfor-
mance results for a complete inference tool build using our ideas are in the next section.
All experiments were performed on a 2GHz Pentium-M with 1GB of main memory.

9.1 Resolution

We have implemented the resolution procedure described in Section 4, and the results for
the pigeonhole problem are shown in Figure 2. This particular example involves resolving
the two basic axioms in a pigeonhole problem containing n pigeons and n− 1 holes:

(p11 ∨ · · · ∨ p1,n−1, G)
(¬p11 ∨ ¬p12, G)

492

ZAP 3: Implementation

The first axiom says that pigeon 1 must be in some hole; the second, that the first two
pigeons cannot both be in the first hole. The group G corresponds to a global symmetry
group where pigeons and holes can be interchanged freely.

The resolvent of the above two axioms can in fact be computed without any group-
theoretic computation at all, using the result from zap2 that the group of stable extensions
of (c1, G) and (c2, G) is always a superset of the group G. The algorithm in Section 4 for
computing augmented resolvents does not include a check to see if the groups are identical,
but the implementation does include such a check. This test was disabled to produce the
data in Figure 2.

We plot the observed time (in seconds) for the resolution as a function of the number
of pigeons involved, with time plotted on a log scale. Memory usage was typically approx-
imately 5MB; the CPU usage was dominated by the need to compute stabilizer chains for
the groups in question. The algorithms used for doing so take time O(d5) where d is the
size of the domain on which the group is operating (Furst, Hopcroft, & Luks, 1980; Knuth,
1991). In this case, the symmetries over pigeons and over holes can be stabilized indepen-
dently and we therefore expect the stabilizer chain computation to take time O(n5), where
n is the number of pigeons. We fit the data to the curve axb, with the best fit occurring for
b ≈ 4.6. This is consistent with the stabilizer chain computation dominating the runtime.

If we reinsert the check to see if the groups are the same, the running times are reduced
uniformly by approximately 35%. Testing group equality involves checking to see if each
generator of G1 is a member of G2 and vice versa, and therefore still involves computing
stabilizer chains for the groups in question. Once again, the need to compute the stabilizer
chains dominates the computation.

9.2 Unit Propagation

In Figure 3 we give data showing the average time needed for a unit test in the pigeonhole
problem. These are the “naturally occurring” unit tests that arise in a run of the prover
on the problem in question. The memory used by the program remained far less than the
1GB available; as an example, maximum usage was approximately 20MB for 13 pigeons.12

Since the unit test is NP-complete, it is customary to give both mean and median
running times; we present only means in Figure 3 because the mean running times appear
to be growing polynomially (compare the two lines of best fit in the figure), and because
the medians appear to be only modestly smaller than the means. This is shown in Figure 4,
where it appears that the ratio of the mean to median running times is growing only linearly
with problem size.

The earlier figure 3 also shows the average CPU time for “failed” tests (where the clause
in question has no unit instances) and “successful” tests (where unit instances exist); as
can be seen, failed unit tests generally complete far more quickly than their successful
counterparts of similar size as the various pruning heuristics come into play. In both cases,
however, the scaling continues to appear to be polynomial in the problem size.

12. Accurately measuring peak memory usage is difficult because the group operations regularly allocate
and free relatively large blocks of memory. We measured the usage by simply starting a system monitor
and observing it, which was not practical for problem instances that took extended amounts of time to
complete. This is the reason that we report memory usage only approximately, and only for one problem
instance.

493

Dixon, Ginsberg, Hofer, Luks & Parkes

 1e-04

 0.001

 0.01

 0.1

 1

 10

 4 6 8 10 12 14 16 18 20

se
cs

pigeons

average
fail

succeed
polynomial fit

exponential fit

Figure 3: CPU time for a unit test in the pigeonhole problem

10. Experimental Results: ZAP

We conclude our discussion of zap’s experimental performance with results on problem
instances in their entirety, as opposed to the performance of individual algorithmic com-
ponents. Before presenting the results, however, let us describe both the domains being
considered and our expectations with regard to performance of both zap and of existing
systems in these areas.

We will be examining performance in three domains:

1. In a pigeonhole problem, the goal is to show that you cannot put n + 1 pigeons into n
holes if each pigeon is to get its own hole.

2. In a parity problem, the goal is to show that
∑

i∈I xi +
∑

i∈J xi cannot be odd if the
sets I and J are equal (Tseitin, 1970).

3. In a clique-coloring problem, the goal is to show that a map containing an m-clique
cannot be colored in n colors if n < m.

The reasons that we have chosen these particular problem classes are as follows:

1. They all should be easy. It’s “obvious” that you can’t put n + 1 pigeons into n holes,
and that

∑
i∈I xi +

∑
i∈J xi is even if each xi appears exactly twice. It’s also obvious

that you can’t color a graph containing an m-clique user fewer than m colors.

494

ZAP 3: Implementation

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 4 6 8 10 12 14 16 18 20

m
ea

n/
m

ed
ia

n
ra

tio

pigeons

ratio

Figure 4: Mean vs. median CPU time for a unit test in the pigeonhole problem

In this last case especially, note that we are solving an easy problem. It is not the
case that we are trying to color a specific graph containing an m-clique; the goal is
to show that any graph containing an m-clique anywhere cannot be colored. This is
very different from graph coloring generally.

Put somewhat differently, all of the problems that we will be examining are in P.
Given suitable representations, they should all be easy.

2. All of the problems are known to be exponentially difficult for resolution-based meth-
ods. This was shown for pigeonhole problems by Haken (1985) and for parity problems
by Tseitin (1970). Clique-coloring problems are known to be exponentially difficult
not only for resolution, but for linear programming methods as well (Pudlak, 1997).
In fact, we know of no implemented system that scales polynomially on this class of
problem.

3. Finally, all of these problems involve structure that can be captured in a group-based
setting.

The data that we will present compares zap’s performance to that of zChaff; Sec-
tion 10.4 discusses the performance of some other Boolean tools on the problem classes
that we will be discussing. We chose zChaff for comparison partly because it has been
discussed throughout this series of papers, and partly because it appears to have the best

495

Dixon, Ginsberg, Hofer, Luks & Parkes

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 4 6 8 10 12 14 16 18 20

se
cs

pigeons

zap
zchaff

Figure 5: CPU time for pigeonhole instances, zap and zChaff

overall performance on the three problem classes that we will be considering. (Once again,
see Section 10.4 for additional details.)

ZAP expectations Before proceeding, let us point out that on a theoretical basis, it is
known that short group-based proofs exist for all of these problems. We showed in zap2 that
group-based pigeonhole proofs can be expected to be short, and also that all parity problems
have short group-based proofs that mimic Gaussian elimination. We also showed that short
group-based proofs existed for clique coloring, although the proof was fairly intricate. Our
goal here is to determine whether an implementation of our ideas can discover these short
proofs in practice, or whether the control of group-based inference will require additional
theoretical ideas that we do not yet understand.

Please understand that our goal at this point is not to test zap on standard NP-complete
search problems in Boolean form, such as graph coloring or quasigroup completion prob-
lems (Gomes & Selman, 1997). Doing so involves a significant effort in ensuring that zap’s
constant factors and data structures are comparable to those of other systems; while pre-
liminary indications are that this will be possible with only modest impact on performance
(approximately a factor of two), the work is not yet complete and will be reported elsewhere.

496

ZAP 3: Implementation

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 4 6 8 10 12 14 16 18 20

se
cs

pigeons

zap
exponential fit
polynomial fit

Figure 6: zap scaling for pigeonhole instances

10.1 Pigeonhole Results

Figure 5 shows running times for both zap and for zChaff on pigeonhole instances. Fig-
ure 6 repeats the zap data, also including best exponential and polynomial fits for the time
spent. The overall running time appears to be polynomial, varying as approximately n8.1

where n is the number of pigeons. In very rough terms, there is a factor of O(n5) needed for
the stabilizer chain constructions. If we branch only on positive literals, we know (see zap2)
that there will be O(n) resolutions needed to solve the problem, and each resolution will
lead to O(n2) unit propagations. The total time can thus be expected to be approximately
O(n8), assuming that each unit propagation involves only stabilizer chain computations and
no actual search. Our observed performance is close to this theoretical value.

In practice, zap branches not on positive literals, but on negative ones. The reason is
that the negative literals appear in far more clauses than the positive ones (O(n) clauses
for each negative literal as opposed to a single clause for a positive literal), and the usual
branching heuristic in the Boolean satisfiability community initially assigns to a variable
the value that satisfies as many clauses as possible.

The number of nodes expanded by zap in solving any particular instance of the pi-
geonhole problem is shown in Figure 7, which also presents similar data for zChaff. The
number of nodes expanded by zap is in fact exactly n2 − 3n + 1; curiously, this is also the
depth of the zChaff search for the next smaller instance with n − 1 pigeons. We do not

497

Dixon, Ginsberg, Hofer, Luks & Parkes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 6 8 10 12 14 16 18 20

no
de

s

pigeons

zap
zchaff

Figure 7: Nodes expanded in the pigeonhole problem

know if the small size of the pigeonhole proofs found by zap is the result of the effectiveness
of the use of <P -optimal resolvents, or if some fundamental argument can be made that all
zap proofs of the pigeonhole problem will be short.

Before moving on to parity problems, allow us to comment on the importance of the
various algorithmic techniques that we have described. We recognize that many of the
algorithms we have presented are quite involved, and it is important to demonstrate that
the associated algorithmic complexity leads to legitimate computational gains.

Figure 8 shows the time needed to solve pigeonhole instances if we either abandon the
pruning lemmas or avoid the search for <P -optimal resolvents. As should be clear from the
data, both of these techniques are essential to obtaining the overall performance exhibited
by the system.

If we abandon the search for <P -optimal resolvents, the proof lengths increase signifi-
cantly but appear to remain polynomial in n. The length increase in the learned axioms
leads to increased running times for unit propagation, and this appears to be the primary
reason for the performance degradation in the figure. The overall running times scale ex-
ponentially.

Abandoning the pruning lemmas also leads to exponential running times. This is to be
expected at some level; there are still exponentially many learned ground axioms and if we
cannot prune the search for unit instances, exponential behavior is to be expected.

498

ZAP 3: Implementation

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 4 6 8 10 12 14 16 18 20

se
cs

pigeons

zap
no pruning

no resolution instances

Figure 8: Improvement due to pruning lemmas and <P -optimal resolution instances. The
circles mark zap’s performance. The x’s indicate performance with the pruning
lemmas disabled during unit propagation, and the boxes give performance if res-
olutions use the original base instances of the clauses being resolved, as opposed
to searching for and resolving <P -optimal instances.

There were other ways that we could have reduced zap’s algorithmic complexity as
well. We could, for example, have removed watched literals and the computational ma-
chinery needed to maintain them. As it turns out, this change has virtually no impact on
zap’s pigeonhole performance because the prover’s behavior here is typically backtrack-free
(Dixon et al., 2004a). In general, however, watched literals can be expected to play as
important a role in zap as they do in any other dpll-style prover. Our overall focus in this
series of papers has been to show that group-based augmentations could be implemented
without sacrificing the ability to use any of the recent techniques that have made Boolean
satisfiability engines so effective in practice, and watched literals can certainly be numbered
amongst those techniques.

We also did not evaluate the possibility of not learning augmented clauses at all, perhaps
learning instead only their ground versions. This would avoid the need to implement Pro-
cedure 4.1, but would also avoid all of the computational gains to which zap theoretically
has access. It is only by learning augmented clauses that theoretical reductions in proof

499

Dixon, Ginsberg, Hofer, Luks & Parkes

size can be obtained; otherwise, the proof itself would necessarily be unchanged from any
other dpll-style approach.

10.2 Tseitin Results

The next problem class for which we present experimental data is one due to Tseitin (1970)
that was shown by Urquhart (1987) to require resolution proofs of exponential length. Each
problem is based on a graph G. We associate a Boolean variable with each edge in G, and
every vertex v in G has an associated charge of 0 or 1 that is equal to the sum mod 2 of the
variables adjacent to v. The charge of the entire graph G is the sum mod 2 of the charges
of its vertices. If we require that a connected graph G have a charge of one, then the set
of constraints associated with its vertices is unsatisfiable (Tseitin, 1970). Here is the graph
for a problem of size four, together with its associated constraints:

u u

u u
@

@
@

@
@

@
@

@�
�

�
�

�
�

�
�

1

0 0

0a

f

c d
b e

a + b + c ≡ 1
d + e + a ≡ 0
f + b + d ≡ 0
c + e + f ≡ 0

In the language of zap (see Appendix B), we have

a b c %2= 1 ;
d e a %2= 0 ;
f b d %2= 0 ;
c e f %2= 0 ;

The axiom set is unsatisfiable because adding all of the above axioms gives us

2a + 2b + 2c + 2d + 2e + 2f ≡ 1

These problems are known to be exponentially difficult for resolution-based methods (Urquhart,
1987).

Times to solution for zap and zChaff are shown in Figure 9. ZChaff is clearly scaling
exponentially; the best fit for the zap times is 0.00043n1.60 log(n), where n is the problem
size.

500

ZAP 3: Implementation

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 5 10 15 20

se
cs

size

zap
zchaff

Figure 9: CPU time for Tseitin instances, zap and zChaff. ZChaff is scaling exponen-
tially; zap is scaling as O(n1.6 log(n)).

Figure 10 shows the number of nodes expanded by the two systems. The number
of search nodes expanded by zap appears to be growing polynomially with the size of the
problem (O(n2.6), give or take), in keeping with a result from zap2 showing that zap proofs
of polynomial length always exist for parity problems. As with the pigeonhole instances,
we see that short proofs exist not only in theory, but apparently in practice as well.

Given that a polynomial number of nodes are expanded but a super-polynomial amount
of time is consumed, it seems likely that the unit propagation procedure is the culprit,
taking a super-polynomial amount of time per unit propagation. As shown in Figure 11,
this is in fact the case. But the unit test should be easy here – after all, the groups are all
simply those that flip an even number of the variables in question. If we want to know if an
augmented clause has a unit instance, we find the unvalued variables it contains. If more
than one, the clause is not unit. If exactly one, the clause is always unit – the variable must
be valued so as the make the parity of the sum take the desired value. So there seems to
be no reason for the unit tests to be scaling as nlog(n).

The nlog(n) scaling itself appears to be a consequence of the multiset stabilizer computa-
tion that underlies the k-transporter pruning. Here, too, the scaling should be polynomial,
since we can show that polytime (O(n3)) methods exist for set stabilizer for the groups

501

Dixon, Ginsberg, Hofer, Luks & Parkes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 5 10 15 20

no
de

s

size

zap
zchaff

Figure 10: Nodes expanded in the Tseitin problems. ZChaff is scaling exponentially; zap
is scaling polynomially as O(n2.6).

in question.13 The general methods implemented by gap and by zap do not exploit the
Abelian nature of the parity groups, however, and the scaling is as shown. An obvious ex-
tension of the existing implementation would include more efficient set stabilizer algorithms
for these groups.

10.3 Clique Coloring

The final problem class for which we present experimental data is that of clique coloring.
This class of problems is related to the pigeonhole problem but far more difficult.

As mentioned previously, the domain is that of graph coloring, where two nodes con-
nected by an edge must be assigned different colors. If the graph is a clique of size m, then
it is obvious that the graph cannot be colored in m − 1 colors. This is equivalent to an
instance of the pigeonhole problem. But in the clique coloring problem, we are not told
that the graph is a clique of size m, only that it contains a clique of size m. The fact that
we do not know the exact location of the clique widens the search considerably.

13. The argument can be made either from the fact that the groups are Abelian, or from the fact that the
group orbits are all of size two, and the set stabilizer problem can thus be converted to one of linear
algebra over Z2.

502

ZAP 3: Implementation

 1e-04

 0.001

 0.01

 0.1

 1

 5 10 15 20

se
cs

size

average
3.21e-05 x**log x

Figure 11: CPU time for a unit test in the Tseitin problems. Zap is scaling as approximately
O(nlog(n)).

We know of no (other) automated proof system that scales polynomially on problems
in this class; both resolution and linear programming methods inevitably scale exponen-
tially (Pudlak, 1997). We showed in zap2 that zap could produce polynomial-length proofs
in theory, but no suggestions were made that such proofs would be easy to find in practice.

Before we present the details of zap’s performance on this problem class, let us reiterate
our observation that clique-coloring problems should not be thought of as unsatisfiable
instances of graph-coloring problems generally. A particular instance of this problem class
does not describe a specific graph that needs to be colored; it says only that the graph
contains an m-clique and needs to be colored in m− 1 colors.

An axiomatization of this problem is as follows. We use eij to describe the graph, cij to
describe the coloring of the graph, and qij to describe the embedding of the clique into the
graph. The graph has m nodes, the clique is of size n + 1, and there are n colors available.

ci1 ∨ · · · ∨ cin for i = 1, . . . ,m (26)
qi1 ∨ · · · ∨ qim for i = 1, . . . , n + 1 (27)

¬eij ∨ ¬cil ∨ ¬cjl for 1 ≤ i < j ≤ m, l = 1, . . . , n (28)
¬qij ∨ ¬qkj for 1 ≤ i < k ≤ n + 1, j = 1, . . . ,m (29)

503

Dixon, Ginsberg, Hofer, Luks & Parkes

eij ∨ ¬qki ∨ ¬qlj for 1 ≤ i < j ≤ m, 1 ≤ k 6= l ≤ n + 1 (30)

Here eij means that there is an edge between graph nodes i and j, cij means that graph
node i is colored with the jth color, and qij means that the ith element of the clique is
mapped to graph node j. Thus the first axiom (26) says that every graph node has a color.
(27) says that every element of the clique appears in the graph. (28) says that two of the m
nodes in the graph cannot be the same color (of the n colors available) if they are connected
by an edge. (29) says that no two elements of the clique map to the same node in the graph.
Finally, (30) says that the clique is indeed a clique – no two clique elements can map to
disconnected nodes in the graph.

The encoding passed to zap was group-based, as follows:

SORT color 2 ;
SORT node 4 ;
SORT clique 3 ;

PREDICATE edge(node node) ;
PREDICATE color(node color) ;
PREDICATE clique(clique node) ;

GROUP COLOR <
((color[1 1] color[1 2])
(color[2 1] color[2 2])
(color[3 1] color[3 2])
(color[4 1] color[4 2]))
> ;
GROUP CLIQUE <
((clique[1 1] clique[2 1])
(clique[1 2] clique[2 2])
(clique[1 3] clique[2 3])
(clique[1 4] clique[2 4]))
((clique[2 1] clique[3 1])
(clique[2 2] clique[3 2])
(clique[2 3] clique[3 3])
(clique[2 4] clique[3 4]))
> ;
GROUP NODES <
((edge[1 3] edge[2 3])
(edge[1 4] edge[2 4])
(color[1 1] color[2 1])
(color[1 2] color[2 2])
(clique[1 1] clique[1 2])
(clique[2 1] clique[2 2])
(clique[3 1] clique[3 2]))
((color[2 1] color[3 1] color[4 1])
(color[2 2] color[3 2] color[4 2])
(edge[1 2] edge[1 3] edge[1 4])
(edge[2 3] edge[3 4] edge[2 4])
(clique[1 2] clique[1 3] clique[1 4])
(clique[2 2] clique[2 3] clique[2 4])
(clique[3 2] clique[3 3] clique[3 4]))

504

ZAP 3: Implementation

 1e-06

 1e-04

 0.01

 1

 100

 10000

 1e+06

 4 6 8 10 12 14 16 18

se
cs

graph size (clique size one less)

zap
zchaff

Figure 12: CPU time for clique instances, zap and zChaff

> ;

color[1 1] color[1 2] GROUP NODES ;
clique[1 1] clique[1 2] clique[1 3] GROUP CLIQUE ;
-edge[1 2] -color[1 1] -color[2 1] GROUP NODES COLOR ;
-clique[1 1] -clique[2 1] GROUP NODES CLIQUE ;
-clique[1 1] -clique[2 2] edge[1 2] GROUP NODES CLIQUE ;

This is the version where there is a 3-clique in a graph of size four, and we are trying to
use just two colors. The first group is the symmetry over colors alone, the second that over
the elements of the clique, and the third the symmetry over nodes. The axiomatization is
identical to that presented earlier. Note that although there is a common symmetry in this
problem, the axiomatization obscures that in some sense, since we have only included the
relevant symmetry or symmetries in any particular axiom.

Times to solution for zap and zChaff are shown in Figure 12. As might be expected,
zChaff is scaling exponentially; zap appears to be scaling as n8.5. In order to allow the
data to be presented along a single axis, these problem instances were selected so that the
clique size was one smaller than the graph size.

Figure 13 shows the number of nodes expanded by the two systems. Once again, the
number of nodes expanded by zChaff is growing exponentially with problem size, while
the number expanded by zap is growing polynomially. As with the pigeonhole problem,

505

Dixon, Ginsberg, Hofer, Luks & Parkes

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 4 6 8 10 12 14 16 18

no
de

s

graph size (clique size one less)

zap
zchaff

Figure 13: Nodes expanded in the clique problems

we see that the short proofs whose existence is guaranteed by the theory can be found in
practice.

Figures 14 and 15 display zap’s performance on a somewhat wider range of problem
instances where the clique and graph sizes are allowed to vary independently. The number
of nodes expanded was in general

(c + g)2 − 13c− g + 14
2

where c is the size of the clique and g the size of the graph. There were a handful of outliers,
most notably the c = 11, g = 13 instance which expanded a larger number of nodes. The
other exceptions all expanded fewer nodes.

With regard to total CPU time (Figure 15), the time appears to be scaling as (cg)3.89.
Once again, c = 11, g = 13 is an outlier but polynomial performance is observed generally.
To the best of our knowledge, zap is the first system to exhibit polynomial performance on
this problem class; as we have remarked, most other approaches have been proven to scale
exponentially.

10.4 Related Work

Finally, we compare our experimental results to those obtained using other systems that
attempt to exploit problem structure to improve the performance of satisfiability solvers.

506

ZAP 3: Implementation

4 6 8 10 12
 4

 12

 10

 100

 1000

nodes

zap

0.075 (x+y)**2.52

clique size

 graph size

Figure 14: Nodes expanded in the clique problems

This section provides a high-level summary of experimental results for a number of these
efforts and compares these results with zap on the benchmark problems described in the
previous sections.

Recall that our benchmark problems are all highly structured, but each has a very dif-
ferent type of structure. Theoretically, these problems all allow polynomial-time solutions,
but they are provably hard for conventional solvers. A solver that solves all of these prob-
lems efficiently has the ability to exploit a range of different types of problem structure
and automates a strong proof system. Of course, to be interesting, a solver must also be a
practical general purpose solver. For example, Tseitin problems can be solved in polynomial
time by a form of Gaussian elimination (Schaefer, 1978), and pigeonhole problems can be
solved in polynomial time by a linear programming method such as the simplex method.
However, neither of these solutions constitutes a practical general purpose solver.

We ran a number of solvers on the benchmark problems, obtaining the following results:

507

Dixon, Ginsberg, Hofer, Luks & Parkes

4 6 8 10 12
 4

 12

 0.01

 0.1

 1

 10

 100

 1000

 10000

secs

zap

3.54e-06 (xy)**3.89

clique size

graph size

Figure 15: CPU time expended in the clique problems

pigeonhole Tseitin clique coloring
zap P nlog n P
zChaff E E E
pbchaff P E E
eqsatz E E E
march eq E E (P) E
resolution E E (?) E
cutting-planes or
integer programming

P ? E

Rather than presenting numerous graphs, we summarize our results above, simply re-
porting the overall scaling of each solver on each problem class. Polynomial-time scaling is
indicated with a P and exponential-time scaling with an E. Scaling is shown for the three
problem classes we have discussed, with two separate encodings considered for the Tseitin
problems. The first encoding is the Booleanization of the encoding of Section 10.2; the
second involves the introduction of new variables to reduce clause length and is described
below. If the performance is improved by this introduction, the new scaling is given par-
enthetically. The final two rows give known proof complexity results for the resolution
and cutting-planes proof systems and thus provide lower bounds on the corresponding rows
above them.

508

ZAP 3: Implementation

Reducing performance results to exponential or polynomial scaling omits valuable in-
formation. Clearly the difference between n100 and n2 scaling is something we care about,
although both are polynomial. The details of specific scaling factors will be included in the
discussion that follows; our goal in the table is merely to summarize the strength of each
solver’s underlying proof system.

Details of the solvers appearing in the table are as follows:

• pbchaff is a pseudo-Boolean version of the dpll algorithm. It represents problems
in pseudo-Boolean form and automates a cutting-planes proof system. The cutting-
planes proof system allows polynomial-length proofs of the pigeonhole problem and
pbchaff is able to solve these problems efficiently. Scaling for pbchaff on pigeonhole
instances was as n4.8, where n is the number of pigeons. This is an improvement over
the n8.1 scaling seen for zap. However, the performance of pbchaff on Tseitin and
clique coloring problems is exponential, since cutting-planes inference is not able to
capture and exploit the structure of these problems.

• eqsatz (Li, 2000) and march eq (Heule & van Maaren, 2004) are dpll-based solvers
that have been modified to incorporate equivalence reasoning, which should enable
them to solve parity problems efficiently. As expected, both eqsatz and march eq
exhibited exponential scaling on pigeonhole and clique coloring problems, since these
solvers are not designed to recognize the structure of these problems. More surprising
was the exponential scaling observed for both eqsatz and march eq on our initial
encoding of the Tseitin problems.

Eqsatz scales exponentially because it does not recognize the structure present in
our encoding of the parity problems.14 This performance can be improved by mod-
ifying the cnf encoding to reduce its size and make the structure more apparent to
the solver. Doing so involves the introduction of a significant number of new aux-
iliary variables, and experimental results for this new encoding are discussed below.
March eq does recognize the structure in our original encoding, and solves it during
a preprocessing phase. The exponential scaling here is due simply to the fact that the
size of the Boolean encoding is growing exponentially as a function of graph size (see
Section 10.2).

Any parity constraint can be rewritten as a set of parity constraints, each of length at
most three (Li, 2000). A parity constraint of the form

x1 + x2 + . . . + xn ≡ k (31)

is equivalent to the set of parity constraints

x1 + A1 ≡ k
A1 + x2 + A2 ≡ 0
A2 + x3 + A3 ≡ 0

...
An−2 + xn−1 + An−1 ≡ 0

An−1 + xn ≡ 0

14. Li, personal communication (2005).

509

Dixon, Ginsberg, Hofer, Luks & Parkes

Summing over this set of parity constraints gives

2A1 + 2A2 + · · ·+ 2An−1 + x1 + · · ·+ xn ≡ k

which is equivalent to (31). If the Tseitin encoding from Section 10.2 is translated into
parity constraints in this way and then converted to cnf, the exponential blowup in the
size of our existing cnf encoding can be avoided. (It is not clear, however, if resolution can
then produce a polynomially sized proof of the unsatisfiability of the resulting theory.)

Eqsatz, march eq and zap all exhibit improved performance if this new encoding is
used; these results are shown parenthetically in the Tseitin column of the table. March eq
solves this encoding of the Tseitin problems virtually instantaneously. Eqsatz now sub-
stantially outperforms zChaff, as reported by Li (2003). The running times for eqsatz,
however, remain exponential and the system is unable to solve the instance of size ten
within 10,000 seconds. The performance of zap is improved as well, but the overall scaling
is unchanged.

The introduction of new variables is accepted practice for reducing the size of cnf
encodings, and also has the potential to reduce the length of proofs constructed by solvers.
Indeed, there are no classes of problems known to be hard for extended resolution, a version
of resolution in which the introduction of new variables is permitted. In general, however,
introducing new variables in order to reduce proof length is considered “cheating” from a
proof complexity perspective; once new variables are introduced, most proof systems are
essentially equivalent. In addition, no general method for introducing variables is known and
we know of no implemented system that does so. One advantage of zap is that group-based
annotations avoid the need for syntactic reworkings of this sort.

Another approach to solving highly symmetric problems is seen in the solver sSatz (Li,
Jurkowiak, & Purdom, Jr., 2002). This solver is also based on the dpll algorithm, and
accepts as input both a problem in cnf and a set of matrices describing a global symmetry on
the variables. The global symmetry is then used to partition the set of variable assignments
into equivalence classes. In addition to the normal pruning techniques used in dpll, search
can now also be pruned by eliminating any partial assignment that is not minimal under the
equivalence corresponding to the global symmetry. sSatz scales polynomially on pigeonhole
problems; however, the class of input symmetry groups allowed by sSatz is currently too
limited to be applied to Tseitin or clique coloring problems. It is not clear whether this is
a limitation that can be overcome as the work matures, which is why we have not included
sSatz in our table.

Of all the solvers tested, zap is the only solver to provide efficient solutions on all the test
problems, and it is the only solver that scales polynomially on clique coloring. Pbchaff
has better scaling on pigeonhole problems, and march eq has better scaling on Tseitin
problems; however, both solvers exploit a narrowly defined type of problem structure and
therefore perform poorly in the other domains. The performance of zap is also likely to
improve as the basic group primitives underlying zap’s procedures are optimized.

11. Conclusion and Future Work

Zap represents what appears to be a new synthesis between two very distant fields: compu-
tational group theory and Boolean satisfiability. From an algorithmic point of view, each of

510

ZAP 3: Implementation

these fields is fairly mature and complex, and our synthesis inherits significant algorithmic
complexity as a result. Our goal in this paper has been to present initial versions of the
algorithms that a group-based theorem prover will need, and to describe the performance
of a prototype implementation of these ideas. As we have seen, zap easily outperforms
its conventional counterparts on difficult problem instances where there is group structure
concealed by the Boolean axiomatization.

That said, it is important to realize that our results only scratch the surface of what
zap’s underlying representational shift allows. On the Tseitin problems, for example, it
seems likely that incorporation of more sophisticated set stabilizer algorithms will allow us
to improve zap’s performance; the fact that only polynomially many nodes are expanded
in solving these problems bodes well for the eventual performance of the system.

Other improvements are also possible. In the pigeonhole and clique coloring problems,
computational performance is dominated by the O(n5) stabilizer chain computations on the
groups in question; these groups are products of full symmetry groups. It is well known
that full symmetry groups are extremely difficult for the usual stabilizer chain algorithms,
but in cases such as these it is possible to produce the stabilizer chains directly, taking time
O(n3) or even O(n2) if the stabilizer chain data structure is modified (Jerrum, 1986). Such
modifications can be expected to improve zap’s performance significantly in this domain.

There is simply too much to do. The above extensions are only the beginning; we also
obviously need to experiment with zap on a wide range of other problem instances. There
are also two general points that we would like to make regarding future work in this area.

First, we have left unmentioned the problem of discovering group structure in existing
clausal databases. The practical impact here would be substantial, for several reasons. It
would make it possible to apply zap directly to problems that have already been encoded
using Boolean axioms, and it would also make it possible to discover “emergent” group
structure that only appears after search has begun. As an example, perhaps a symmetry
exists for a particular problem but is hidden by the existing axiomatization; after a few
inferences, the symmetry may become apparent but still needs to be noticed.

Second, and perhaps most important, zap provides us with a very broad stage on which
to work. Progress in computational group theory can be expected to lead to performance
improvements in inference; dually, applying zap to a wide range of reasoning problems
should provide a new set of examples that the computational group theorists can use to
test their ideas. Lifting heuristics from one area of AI to a group-based setting may make
analogs of those heuristics available in other, more practical domains. As with all new
syntheses, it seems reasonable to hope that zap will allow ideas from Boolean satisfiability,
computational group theory and search-based AI to be combined, leading to new insights
and levels of performance in all of these areas.

Acknowledgments

We would like to thank the members of cirl and the technical staff of On Time Systems
for their assistance with the ideas in this series of papers. We would also like to thank the
implementers and maintainers of gap; many elements of the zap implementation are based
directly on either the implementations that appear in gap or the descriptions in Seress’
book (2003). Finally, we would especially like to thank the anonymous reviewers of all of

511

Dixon, Ginsberg, Hofer, Luks & Parkes

the zap papers for the care and effort they put into reviewing a series of papers that span
some 200 journal pages in their entirety. All three of the papers were substantially improved
through their efforts.

This work was sponsored in part by grants from the Air Force Office of Scientific Re-
search (afosr) number F49620-92-J-0384, the Air Force Research Laboratory (afrl) num-
ber F30602-97-0294, Small Business Technology Transfer Research, Advanced Technology
Institute (sttr-ati) number 20000766, the Office of Naval Research (onr) number N00014-
00-C-0233, the Defense Advanced Research Projects Agency (darpa) and the Air Force Re-
search Laboratory, Rome, NY, under agreements numbered F30602-95-1-0023, F30602-97-
1-0294, F30602-98-2-0181, F30602-00-2-0534, and F33615-02-C-4032, and by darpa under
agreement number HR0011-05-C-0039. The views expressed are those of the authors.

Appendix A. Proofs

Procedure 4.1 Given augmented clauses (c1, G1) and (c2, G2), to compute stab(ci, Gi):

1 c closure1 ← cG1
1 , c closure2 ← cG2

2

2 g restrict1 ← G1|c closure1 , g restrict2 ← G2|c closure2

3 C∩ ← c closure1 ∩ c closure2

4 g stab1 ← g restrict1{C∩}, g stab2 ← g restrict2{C∩}
5 g int← g stab1|C∩ ∩ g stab2|C∩

6 {gi} ← {generators of g int}
7 {l1i} ← {gi, lifted to g stab1}, {l2i} ← {gi, lifted to g stab2}
8 {l′2i} ← {l2i|c closure2−C∩}
9 return 〈g restrict1C∩ , g restrict2C∩ , {l1i · l′2i}〉

Proposition 4.2 The result returned by Procedure 4.1 is stab(ci, Gi).
Proof. We show that every element of the group returned is a stable extension by showing
that the generators in line 9 are all stable extensions; recall that the set of stable extensions
is a subgroup. We show that every stable extension is returned by showing that they can
all be constructed via the above procedure.

For the first claim, we argued in the main text that the elements of g restrictiC∩ are
stable; we must only show that the elements of {l1i · l′2i} are as well. For such an element
ω, however, note that ω|

c
G1
1

= l1i|cG1
1

= gi and similarly for ω|
c
G2
2

, since ω agrees with

l1i = l2i = gi on C∩ and with l2i outside of C∩. Thus l1i · l′2i is stable.
For the second claim, suppose that we have a stable extension ω; consider its restriction

to cG1
1 ∪ cG2

2 . Now on the intersection cG1
1 ∩ cG2

2 , ω must agree with elements of both G1

and G2; call the elements with which it agrees l1 and l2. Restricting l2 away from the
intersection to get l′2, we see that there will be some element l of the group generated by
{l1i · l′2i} that matches ω on cG1

1 ∩ cG2
2 .

Now consider ω · l−1. This is the identity on cG1
1 ∩ cG2

2 . Restricting to either cG1
1 or cG2

2

we get an element of G1 or G2 that point stabilizes cG1
1 ∩ cG2

2 , and all such elements are
included directly in line 9 of the resolution procedure. It follows that ω · l−1 is an element
of 〈g restrict1C∩ , g restrict2C∩〉, so that

ω ∈ 〈g restrict1C∩ , g restrict2C∩ , {l1i · l′2i}〉

512

ZAP 3: Implementation

Procedure 5.3 Given groups H ≤ G, an element t ∈ G, sets c and S, to find a group
element g = map(G, H, t, c, S) with g ∈ H and cgt ∩ S = Ø:

1 if ct
H ∩ S 6= Ø

2 then return failure
3 if c = cH

4 then return 1
5 α← an element of c− cH

6 for each t′ in (H : Hα)
7 do r ← map(G, Hα, t′t, c, S)
8 if r 6= failure
9 then return rt′

10 return failure

Proposition 5.4 map(G, G, 1, c, S) returns an element g ∈ G for which cg ∩S = Ø, if such
an element exists, and returns failure otherwise.
Proof. As we remarked in the main text, we will prove the slightly stronger result that
map(G, H, t, c, S) returns an element g ∈ H for which cgt ∩ S = Ø if such an element exists.
The proposition as stated is then the special case t = 1.

The proof proceeds by induction on the number of elements of c that are moved by
H. If none are, then either ct ∩ S 6= Ø and the procedure will return failure on line 2, or
ct ∩ S = Ø and it will return 1 on line 4.

For the inductive step, assume that H moves at least one point in c. Lines 1–4 don’t
affect the correctness of the procedure at this point, other than to allow an early termination
if some already fixed point is moved inside of S by t. In the interesting case, we form a
transversal at line 6. Every element of H can be represented as gt′ for some g ∈ Hα and
t′ in the transversal. If some such gt′ should be returned as a solution, we know by the
inductive hypothesis that g will be found by the recursive call in line 7.
Procedure 5.5 Given groups H ≤ G, an element t ∈ G, sets c, S and U and an integer
k, to find a group element g = transport(G, H, t, c, S, U, k) with g ∈ H, cgt ∩ S = Ø and
|cgt ∩ U | ≤ k:

1 if ct
H ∩ S 6= Ø

2 then return failure

3 if overlap(H, c, (S ∪ U)t−1
) > k

4 then return failure
5 if c = cH

6 then return 1
7 α← an element of c− cH

8 for each t′ in (H : Hα)
9 do r ← transport(G, Hα, t′t, c, S, U, k)

10 if r 6= failure
11 then return rt′

12 return failure

513

Dixon, Ginsberg, Hofer, Luks & Parkes

Proposition 5.6 Provided that |ch ∩ V | ≥ overlap(H, c, V) ≥ |cH ∩ V | for all h ∈ H,
transport(G, c, S, U, k) as computed by Procedure 5.5 returns an element g ∈ G for which
cg ∩ S = Ø and |cg ∩ U | ≤ k, if such an element exists, and returns failure otherwise.
Proof. As remarked in the main text, |c ∩ (S ∪ U)t−1 | = |ct ∩ (S ∪ U)|. But since ct ∩ S is
required to be empty, |ct∩(S∪U)| = |ct∩U |. The proof now proceeds essentially unchanged
from that of Proposition 5.4.

The two conditions on the overlap function are both necessary. We need to know that
|ch ∩ V | ≥ overlap(H, c, V) in order to avoid terminating the search early on line 3. We
need overlap(H, c, V) ≥ |cH ∩ V | to ensure that once we have fixed every element of c,
line 3 will identify a failure if |ct ∩ U | > k so that we don’t return successfully on line 6 in
this case.
Procedure 5.8 Given a group H, and two sets c, V , to compute overlap(H, c, V), a lower
bound on the overlap of ch and V for any h ∈ H:

1 m← 0
2 for each orbit W of H
3 do m← m + max(|W ∩ V | − |W − c|, 0)
4 return m

Proposition 5.9 Let H be a group and c, V sets acted on by H. Then for any h ∈ H,
|ch ∩ V | ≥ overlap(H, c, V) ≥ |cH ∩ V | where overlap is computed by Procedure 5.8.
Proof. The only subtlety involves the contribution that the fixed points in the clause make
to the sum. But since each fixed point is in its own orbit, the fixed points contribute either
1 or 0 to the sum depending on whether or not they are already in V .
Proposition 5.15 Let G be a group acting transitively on a set T , and let c, V ⊆ T .
Suppose also that {B1, . . . , Bk} is a block system for G and that c ∩ Bi 6= Ø for n of the
blocks in {B1, . . . , Bk}. Then if b is the size of an individual block Bi and g ∈ G,

|cg ∩ V | ≥ |c|+ Σmin
i≤n (Bi ∩ V)− nb (32)

Proof. For any g ∈ G, there will be a set of n blocks that collectively contain the image cg.
We can therefore use the usual counting argument. Within those n blocks, c will contain
|c| points, and the set V will contain at least Σmin

i≤n (Bi ∩ V) points. But there are only nb
points available, so the result follows.
Proposition 5.16 If the block system is trivial (in either sense), (32) is equivalent to

|cg ∩ V | ≥ |T ∩ V | − |T − c| (33)

Proof. Suppose first that there is a single block. Now n = 1, b = |T | and there is only one
set over which to take the minimum in (32), which therefore becomes

|cg ∩ V | ≥ |c|+ |T ∩ V | − |T |
= |T ∩ V | − |T − c|

514

ZAP 3: Implementation

If, on the other hand, the block system is trivial in that each point is in its own block,
then n = |c|, b = 1 and

Σmin
i≤n (Bi ∩ V)

is the smallest number of points in V that must be in a set of size n, so

Σmin
i≤n (Bi ∩ V) = n + |T ∩ V | − |T |

Now (32) becomes

|cg ∩ V | ≥ |c|+ |c|+ |T ∩ V | − |T | − |c|
= |c|+ |T ∩ V | − |T |
= |T ∩ V | − |T − c|

Proposition 5.17 Let {B1, . . . , Bk} be a block system for a group G acting transitively on
a set T . Then (32) is never weaker than (33).
Proof. Comparing (32) and (33), we see that we are trying to show that

|c|+ Σmin
i≤n (Bi ∩ V)− nb ≥ |T ∩ V | − |T − c|

= |c|+ |T ∩ V | − |T |

or
Σmin

i≤n (Bi ∩ V)− nb ≥ |T ∩ V | − |T |

If there are q blocks in the block system, then this is equivalent to

Σmin
i≤n (Bi ∩ V)− nb ≥ Σmin

i≤q (Bi ∩ V)− bq

or
bq − nb ≥ Σmin

i≤q (Bi ∩ V)− Σmin
i≤n (Bi ∩ V) (34)

But the lefthand side of (34) is the total amount of space in the q− b blocks not included in
Σmin

i≤n (Bi ∩ V), and the righthand side is the amount of space used by V within these q − b
blocks. Thus (34) follows and the result is proved.

Lemma A.1 Let G be a group of permutations, and c a set acted on by G. Suppose also
that S and U are sets acted on by G. Now if j ∈ G{c} and g ∈ G is any permutation in G,
then

|cg ∩ S| = |cjg ∩ S|

and
|cg ∩ U | = |cjg ∩ U |

Proof. This is immediate, since cj = c.

515

Dixon, Ginsberg, Hofer, Luks & Parkes

Lemma A.2 Let G be a group of permutations, and c a set acted on by G. Suppose also
that S and U are sets acted on by G. Now if k ∈ G{S,U} and g ∈ G is any permutation in
G, then

|cg ∩ S| = |cgk ∩ S|
and

|cg ∩ U | = |cgk ∩ U |

Proof. It clearly suffices to show the result for S; U is equivalent. But

|cgk ∩ S| = |cg ∩ Sk−1 |
= |cg ∩ S|

where Sk−1
= S because k is in the set stabilizer of S and therefore k−1 is as well (because

the set stabilizer of S is a group).
Proposition 5.23 Let G be a group of permutations, and c a set acted on by G. Suppose
also that S and U are sets acted on by G. Then for any instance I of the k-transporter
problem and any g ∈G, either every element of G{c}gG{S,U} is a solution of I, or none is.
Proof. Combine lemmas A.1 and A.2.

Lemma A.3 Let G, J ≤ Sym(Ω) where Ω is the (ordered) set {x1, . . . , xn} and suppose
t ∈ Sym(Ω) satisfies xt

l = zl for 1 ≤ l ≤ k where k ≤ n. Suppose that we have fixed i with
i ≤ k and set Z = J{xi,...,xk}. Suppose finally that

zi > min
(
x

Zx1,...,xi−1 t

i

)
Then no h ∈ Gx1,...,xk

t is the first element of Jh.

Proof. We are given the existence of j ∈ Zx1,...,xi−1 such that zi > xjt
i . Consider any h = gt

with g ∈ Gx1,...,xk
. Since j ∈ Z, j stabilizes the set {xi, . . . , xk}. Since g stabilizes every

point in this set, it fixes both xi and xj
i . Thus xgt

i = xt
i and xjgt

i = xjt
i , and

xgt
i = xt

i = zi > xjt
i = xjgt

i

On the other hand, for l < i, both g and j fix xl, so that xgt
l = xjgt

l . Since jgt thus precedes
gt, gt is not minimal in Jgt.
Lemma 5.26 Suppose that t is the permutation labeling some node Ht of a coset decom-
position tree at depth k, so that xt

i = zi for i ≤ k and H = Gx1,...,xk
is the residual group at

this level. Let M be the set of points moved by Gx1,...,xk
. Now if zi > min

(
x

JM,x1,...,xi−1
t

i

)
for any i ≤ k, then no g ∈ Ht is the first element of JgK.
Proof. This is a direct consequence of Lemma A.3. Let ρ be a permutation in JM,x1,...,xi−1 .
Since ρ fixes every point moved by Gx1,...,xk

, and ρ also fixes x1, . . . , xi−1, it follows that ρ
must only permute the remaining points xi, . . . , xk. Thus JM,x1,...,xi−1 ≤ Zx1,...,xi−1 where
Z is the set stabilizer in the statement of Lemma A.3, and therefore no g ∈ T is the first
element of Jg. Since Jg ⊆ JgK, the result follows.
Procedure 6.5 Given a set X of pairs 〈l, g〉 and a group G, to compute complete(X, G),
where X |=G complete(X, G) and L(complete(X, G)) = L(X)G:

516

ZAP 3: Implementation

1 Y ← Ø
2 for each 〈l, g〉 ∈ X
3 do for each l′ ∈ lG − L(Y)
4 do select h ∈ G such that lh = l′

5 Y ← Y ∪ 〈l′, gh〉
6 return Y

Proposition 6.6 X |=G complete(X, G) and L(complete(X, G)) = L(X)G.
Proof. X |=G complete(X, G) because every entry added to Y is clearly G-entailed by
X. L(complete(X, G)) = L(X)G because the entire image of L(X) under G is eventually
added.
Procedure 6.7 Given groups H ≤ G, an element t ∈ G, sets c, S and U , to find
Transport(G, H, t, c, S, U), a skeletal set of unit consequences for (c,G) given P :

1 if overlap(H, c, St−1
) > 0

2 then return 〈false,Ø〉
3 if overlap(H, c, (S ∪ U)t−1

) > 1
4 then return 〈false,Ø〉
5 if c = cH

6 then if ct ∩ U = Ø
7 then return 〈true, 1〉
8 else return 〈false, 〈ct ∩ U, 1〉〉
9 if a pruning lemma can be applied

10 then return 〈false,Ø〉
11 Y ← Ø
12 α← an element of c− cH

13 for each t′ in (H : Hα)
14 do 〈u, V 〉 ← Transport(G, Hα, t′t, c, S, U)
15 if u = true
16 then return 〈true, V t′〉
17 else Y ← Y ∪ {〈l, gt′〉|〈l, g〉 ∈ V }
18 return 〈false, Y 〉

Proposition 6.8 Assume that |ch ∩ V | ≥ overlap(H, c, V) ≥ |cH ∩ V | for all h ∈ H, and
let Transport(G, c, S, U) be computed by Procedure 6.7. Then if there is a g ∈ G such that
cg ∩ S = cg ∩ U = Ø, Transport(G, c, S, U) = 〈true, g〉 for such a g. If there is no such
g, Transport(G, c, S, U) = 〈false, Z〉, where Z is a skeletal set of unit consequences for
(c,G) given P .
Proof. Procedure 6.7 is identical to Procedure 5.27 with k = 1 except for the value re-
turned. If there is a g with cg ∩ S = Ø and cg ∩ U = Ø as well, 〈true, g〉 will be returned
on line 7, and this will cause 〈true, gt′〉 to be returned from the recursive call(s) on line 16
also.

If there is no g with cg ∩ S = cg ∩ U = Ø, then the argument proceeds as usual by
induction on the number of points of c moved by H. If none, we know that the correct
answer is returned on line 8 for the usual reasons; it remains to consider the recursive case

517

Dixon, Ginsberg, Hofer, Luks & Parkes

on line 18. We know that for every g such that cg is unit, we will accumulate a result from
that g′ that is minimal in JgK where J = G{c} and K = G{S,U} as usual. We only need to
show that the set of 〈l, g〉 collected is indeed a skeletal set of unit consequences.

To see this, suppose that 〈l, g〉 is any annotated unit consequence. Then there is some
minimal jgk that will be accumulated when the set of pairs is accumulated on line 17, with
the associated literal l′ = cjgk ∩ U . But since j ∈ G{c} set stabilizes the clause c, cj = c

and l′ = cgk ∩ U . Thus taking the given k ∈ G{S,U} produces the given unit consequence
from the element of the proposed skeleton, and Y as returned by Procedure 6.7 is indeed a
skeletal set of unit consequences.
Proposition 6.9 Let (c,G) be an augmented clause corresponding to a cardinality con-
straint. Then for any sets S and U , Procedure 6.7 will expand at most a linear number of
nodes in finding a skeletal set of unit consequences of (c,G).
Proof. If the original cardinality constraint was

x1 + · · ·+ xm ≥ n

then G will be Sym(X) where X is the set of xi and c will be

x1 ∨ · · · ∨ xm−n+1

We will first show that Leon’s pruning lemma 5.24 suffices to reduce the search to
quadratic size. The basic idea of this part of the proof is as follows.

Suppose that we are expanding a particular node, corresponding to the selection of
an image for a point xi in c. If the image of xi is selected to be in S, we can prune
immediately. If the image is selected to be in either U or X −S−U , the image will have to
be the smallest available point in the set in question for lexicographic reasons. In addition,
the original symmetry on the literals in c can be used to require that the literals that are
neither satisfied nor unvalued are selected “in order” during the expansion.

To make this argument formally, note first that J = G{c} = Sym(c)× Sym(X − c) and
K = G{S,U} = Sym(S)×Sym(U)×Sym(X −S−U). We assume without loss of generality
that the points fixed in the coset decomposition tree are the xi in order for i ≤ m− n + 1,
and will continue to denote the fixed image of xi at any particular search node by zi. We
denote by Γ the sequence of all zi for i less than the depth of the node in question, so Γ is
the fixed part of the image of the clause c. We also set l = |X − S − U |, the total number
of points that are valued but unsatisfied.

We can now prune any node for which:

1. Γ ∩ S 6= Ø. These nodes can be pruned because the image of c meets the set S of
satisfied literals.

2. |Γ∩U| > 1. As above, these nodes will be pruned because the image of c includes two
or more unsatisfied literals.

3. Γ = 〈y1, ...,yj,u〉, where each yi ∈ X −U − S, and u ∈ U is not minimal in U.
Leon’s lemma 5.24 with k = l requires that u = zj+1 ≤ min(uKy1,...,yj). But since all of
the yi are outside of U , Ky1,...,yj ≥ Sym(U) and uKy1,...,yj is all of U . Since u is assumed
nonminimal in U , the node can be pruned.

518

ZAP 3: Implementation

4. Γ ∩ (X − S − U) = 〈y1, . . . ,yj〉, where y1, . . . ,yj−1 are the first j − 1 elements
of X − U − S and are in order, but yj ∈ X − U − S is not the next element of
X −U − S. An argument identical to that in the previous paragraph can be used, since
Ky1,...,yj−1 includes the full symmetry group on the remaining elements of X − U − S.

It follows from this that the only unpruned nodes in the search are those for which either
Γ = 〈y1, . . . , yk〉 for k ≤ min(l,m− n + 1), or

Γ = 〈y1, . . . , yj , u, yj+1, . . . , yk〉 (35)

for k ≤ min(l, m − n), u the minimal element of U , and the yi the smallest elements of
X − U − S in order. We need k ≤ l because there are only that many possible y values,
and k ≤ m − n + 1 or k ≤ m − n because that is the depth of the tree when the clause c
has been completely instantiated. There is a linear number of nodes of the first type but a
quadratic number of nodes of the second.

To reduce the total number of nodes being searched to linear, we repeat the argument
used in the discussion of the example following Lemma 5.26. There, we considered a node
where the image of x1 was z1 and that of x2 was z2, with z1 > z2. Here, we consider a
slightly more general case, where Γ = 〈z1, . . . , zk−1, zk〉, with all of the zi in sequence except
zk−1 > zk.

In Lemma 5.26, Gx1,...,xk
will be the full symmetry group on the remaining xi, so that

M = {xk+1, . . . , xm}. We also have J = Sym(x1, . . . , xm−n+1) × Sym(xm−n+2, . . . , xm).
Now since k ≤ m− n + 1, taking i = k − 1 in the statement of the lemma gives us

JM,x1,...,xi−1 = JM,x1,...,xk−2
≥ Sym(xk−1, xk)

As a result,
zk−1 > x

(xk−1xk)·t
k−1 = xt

k = zk

and the node can be pruned.
This fixes u’s position in the list to be at the point where it is in sequence among the

yi and thus reduces the number of search nodes to linear.
Proposition 7.8 Suppose that W is a watching set for C under P and l is a literal. Then:

1. W is a watching set for C under any backtrack point for P .

2. If C is settled by 〈P, l〉, then W is a watching set for C under 〈P, l〉.

3. If C is settled by 〈P, l〉, and |(W − {¬l}) ∩ C ∩ U(P¬C)| > 1, then W − {¬l} is a
watching set for C under 〈P, l〉.

4. If ¬l 6∈W ∩ C, then W is a watching set for C under 〈P, l〉.

Proof. None of these is hard. First, note that if P ′ is a backtrack point for P , then P ′
¬c

will be a subassignment of P¬c, so a watching set for C under P will also be a watching set
for C under P ′.

For the second claim, if C is settled by 〈P, l〉, there are two possibilities:

519

Dixon, Ginsberg, Hofer, Luks & Parkes

1. If C is unsettled by P (so that the addition of l to P caused C to be settled), then
〈P, l〉¬C is a subassignment of P (the subassignment will be proper if P 6= P). Since
C is unsettled by P , P¬C = P . Thus U(〈P, l〉¬C) ⊇ U(P¬C), and W is still a watching
set.

2. If C is settled by P , then 〈P, l〉¬C = P¬C , and W is once again still a watching set.

The third claim follows from the second, since W − {¬l} is assumed to be a watching
set for C under P .

For the fourth claim, suppose that l 6∈ C and ¬l 6∈ C. Now C ∩ U(P) = C ∩ U(〈P, l〉),
and W remains a watching set. If l ∈ C, then C will be satisfied (and therefore settled)
after l is added to P . So W continues to be a watching set by virtue of the second claim.

In the remaining case, ¬l ∈ C and C ∩ U is potentially smaller because ¬l is removed
after l is adjoined to P . But this can only impact the intersection with W if ¬l is itself in
W ; otherwise, W will still be a watching set. So W is still a watching set unless ¬l is in
both C and W , which proves the final claim.
Proposition 7.10 Suppose that W is a watching set for (c,G) under P and l is a literal.
Then:

1. W is a watching set for (c,G) under any backtrack point for P .

2. If ¬l 6∈W ∩ cG, then W is a watching set for (c,G) under 〈P, l〉.

3. If |(W ∪ V) ∩ cg ∩ U(〈P, l〉)| > 1 for every g ∈ G such that cg is unsettled by 〈P, l〉,
then W ∪ V is a watching set for (c,G) under 〈P, l〉.

4. If |(W ∪V)∩cg∩ [U(〈P, l〉)∪(S(P)−S(P−))]| > 1 for every g ∈ G, then W ∪V −{¬l}
is a watching set for (c,G) under 〈P, l〉.

Proof. We know that W is a watching set for every instance of (c,G) under P , and use
Proposition 7.8 to show that each of the above claims follows.

First, Proposition 7.8 states directly that W is a watching set for every instance of (c,G)
under a backtrack point for P .

Second, if ¬l 6∈ W ∩ cG, then for any g ∈ G, ¬l 6∈ W ∩ cg. The second claim here thus
follows from the fourth claim in Proposition 7.8.

The remaining two claims are more interesting. For the third, suppose that cg is some
instance of (c,G). Now if cg is settled by 〈P, l〉, then we know that W will still be a watching
set for it under 〈P, l〉. Therefore W ∪ V will also be a watching set for cg under 〈P, l〉. If cg

is unsettled by 〈P, l〉, the condition of this claim says that |(W ∪ V) ∩ cg ∩ U(〈P, l〉)| > 1,
so that W ∪ V is a watching set for cg under 〈P, l〉. This completes the proof of the third
claim.

For the fourth and final claim, there are three cases.

1. If cg is unsettled by 〈P, l〉, note first that cg ∩ S(P) = Ø, so that

(W ∪ V) ∩ cg ∩ [U(〈P, l〉) ∪ (S(P)− S(P−))] = (W ∪ V) ∩ cg ∩ U(〈P, l〉)

and W ∪ V is a watching set for cg under 〈P, l〉. Since ¬l 6∈ U(〈P, l〉),

(W ∪ V) ∩ cg ∩ U(〈P, l〉) = (W ∪ V − {¬l}) ∩ cg ∩ U(〈P, l〉)

520

ZAP 3: Implementation

and W ∪ V − {¬l} is a watching set as well.

2. If cg is unit under 〈P, l〉, consider:

(a) If ¬l 6∈ cg, then we know from the fourth claim of Proposition 7.8 that W is a
watching set for cg under 〈P, l〉. It follows that W − {¬l} must be as well, since
¬l 6∈ cg. Thus so is W ∪ V − {¬l}.

(b) If ¬l ∈ cg, cg must be of the form

cg = x1 ∨ · · · ∨ xk ∨ ¬l ∨ u

for the new unit consequence u, where no xi ∈ S(P). Note also that ¬l cannot
be in either U(〈P, l〉) or S(P). Thus

cg ∩ [U(〈P, l〉) ∪ (S(P)− S(P−))] = {u}

in violation of the premise of the claim.

3. Finally, if cg is satisfied by 〈P, l〉, we know that W (and therefore W ∪V) is a watching
set for cg under 〈P, l〉; the trick is to show that we can remove ¬l from W ∪ V safely.
If ¬l 6∈ cg, then we can obviously do so.

If ¬l ∈ cg, we need to show that the third claim of Proposition 7.8 can be applied, so
we need to show that

|(W ∪ V − {¬l}) ∩ cg ∩ U(P¬cg)| > 1 (36)

Given the assumption that

|(W ∪ V) ∩ cg ∩ [U(〈P, l〉) ∪ (S(P)− S(P−))]| > 1 (37)

note first that since ¬l 6∈ U(〈P, l〉) ∪ (S(P) − S(P−)), ¬l is not in the intersection of
(37), which is therefore equivalent to

|(W ∪ V − {¬l}) ∩ cg ∩ [U(〈P, l〉) ∪ (S(P)− S(P−))]| > 1

It follows that (36) will follow if we can show that

U(P¬cg) ⊇ U(〈P, l〉) ∪ (S(P)− S(P−)) (38)

But
U(P¬cg) ⊇ U(〈P, l〉) (39)

because P¬cg is a (proper) subassignment of 〈P, l〉. And we also have

U(P¬cg) ⊇ U(P−) ⊇ S(P)− S(P−) (40)

The first inclusion holds because since ¬l ∈ cg and cg is satisfied by 〈P, l〉, cg must have
been satisfied by P as well. Thus P¬c involves a backtrack from P , and since P− is the
last backtrack point before P , P¬cg is a subassignment of P− and U(P¬cg) ⊇ U(P−).
The second inclusion in (40) holds because the literals that are satisfied in P but not
in P− must necessarily have been unvalued in P−. Combining (39) and (40) gives us
(38), and the result is proved.

521

Dixon, Ginsberg, Hofer, Luks & Parkes

Procedure 7.11 Given a group H, two sets c, V acted on by H, and a bound k ≥ 0, to
compute overlap(H, c, V, k), a collection of elements of V sufficient to guarantee that for
any h ∈ H, |ch ∩ V | > k, or Ø if no such collection exists:

1 m← 0
2 W ← Ø
3 for each orbit X of H
4 do {B1, . . . , Bk} ← a minimal block system for W under H for which

c ∩W ⊆ Bi for some i
5 ∆ = |c ∩X|+ min(Bi ∩ V)− |B1|
6 if ∆ > 0
7 then m← m + ∆
8 W ←W ∪ (X ∩ V)
9 if m > k

10 then return W
11 return Ø

Proposition 7.12 Procedure 7.11 returns a nonempty set W if and only if Procedure 5.19
returns a value in excess of k. In this case, |ch ∩W | > k for every h ∈ H.
Proof. For the first claim, we examine the two procedures. It is clear that Procedure 7.11
returns as soon as Procedure 5.19 concludes that the minimum overlap is greater than k;
we need simply argue that W will be nonempty. But each increment to W in line 8 must
be nonempty, since if X ∩ V = Ø, ∆ will be zero on line 6.

For the second part, imagine replacing V in the procedure with the set W returned.
The computation will be unchanged at every step, so the conclusion follows.
Procedure 7.13 Given groups H ≤ G, an element t ∈ G, sets c, S and U , and op-
tionally a watched element w, to find Transport(G, H, t, c, S, U, w), a skeletal set of unit
w-consequences for (c,G) given P :

522

ZAP 3: Implementation

1 if w is supplied and wt−1 6∈ cH

2 then return 〈false,Ø,Ø〉
3 V ← overlap(H, c, St−1

, 0)
4 if V 6= Ø
5 then return 〈false,Ø,Ø〉
6 V ← overlap(H, c, (S ∪ U)t−1

, 1)
7 if V 6= Ø
8 then return 〈false,Ø, V t〉
9 if c = cH

10 then if ct ∩ U = Ø
11 then return 〈true, 1,Ø〉
12 else return 〈false, 〈ct ∩ U, 1〉,Ø〉
13 if a pruning lemma can be applied
14 then return 〈false,Ø,Ø〉
15 α← an element of c− cH . If w is supplied and w 6∈ ct

H , choose α so that wt−1 ∈ αH .
16 Y ← Ø
17 W ← Ø
18 for each t′ in (H : Hα)
19 do 〈u, V,X〉 ← Transport(G, Hα, t′t, c, S, U, w)
20 if u = true
21 then return 〈true, V t′,Ø〉
22 else W ←W ∪X
23 Y ← Y ∪ {〈l, gt′〉|〈l, g〉 ∈ V }
24 return 〈false, Y,W 〉

Proposition 7.14 Suppose that overlap(H, c, V, k) is computed using Procedure 7.11, or
otherwise satisfies the conclusion of Proposition 7.12. Then if there is a g ∈ G such that
w ∈ cg and cg ∩ S = cg ∩ U = Ø, Transport(G, c, S, U, w) as computed by Procedure 7.13
returns 〈true, g, Ø〉 for such a g. If there is no such g, Procedure 7.13 returns 〈false, Z,W 〉,
where Z is a skeletal set of unit w-consequences of (c,G) given P , and W is such that
|WG{S,U,{w}} ∩ ch ∩ U | > 1 for every h ∈ H such that w ∈ ch and ch is unsettled by P .
Proof. The restriction to permutations g for which w ∈ cg is enforced by the first two
lines of the procedure; note that if a contradiction is found on line 11, all of the points
in c will have been fixed, so w ∈ cg for certain. Note that we can prune on this basis
without affecting the overall correctness of the procedure, since the pruning lemmas have
been restricted to the group K = G{S,U,{w}}, which leaves the watched literal w intact.

The only other difference between Procedure 7.14 and Procedure 6.7 involves the com-
putation of the set W of watched literals. When this set is produced on line 8, we know
from Proposition 7.12 that the set W is sufficient to guarantee that |W ∩ cht ∩ U | > 1 for
every cht in the current residual search tree. We must therefore show than any h satisfying
the conditions in the proposition is covered by WG{S,U,{w}} . To see this, we consider every
point at which a node is pruned in the procedure, and show that all such points are covered
by the exclusions in the statement of the proposition:

1. A prune at line 2 will only occur if w 6∈ cht for any h ∈ H.

523

Dixon, Ginsberg, Hofer, Luks & Parkes

2. A prune at line 5 will only occur if cht ∩ S 6= Ø for every h ∈ H, so that cht is settled
by P .

3. If a pruning lemma is applied, it must be because an eventual solution g can be shown
not to be minimal in the usual double coset G{c}gG{S,U,{w}}. But in this case, the
watching set itself is operated on with G{S,U,{w}} in the statement of the proposition
itself.

Procedure 7.16 (Unit propagation) To compute Unit-Propagate(C,P, L) where C
is a set of watched augmented clauses, P is an annotated partial assignment, and L is a set
of pairs 〈l, r〉 of literals l and reasons r:

1 while L 6= Ø
2 do 〈l, r〉 ← an element of L
3 L← L− 〈l, r〉
4 P ← 〈P, 〈l, r〉〉
5 for each 〈(c,G),W 〉 ∈ C
6 do if ¬l ∈W
7 then 〈r, H, V 〉 ← Transport(G, c, S(P), U(P),¬l)
8 if r = true
9 then li ← the literal in cH with the highest index in P

10 return 〈true, resolve((cH , G), ci)〉
11 H ′ ← complete(H,G{S(P),U(P),{l}})
12 for each h ∈ H ′

13 do z ← the literal in ch unassigned by P
14 if there is no 〈z, r′〉 in L
15 then L← L ∪ 〈z, ch〉
16 W ←W ∪ (U(P) ∩ V G{S(P),U(P),{l}})
17 U ← U(P) ∪ (S(P)− S(P−))
18 if H = Ø ∧ transport(G, c, Ø,W ∩ U, 1,¬l) = failure
19 then W ←W − {¬l}
20 return 〈false, P 〉

Proposition 7.17 Let P be an annotated partial assignment, and C a set of watched
augmented clauses, where for every 〈(c,G),W 〉 ∈ C, W is a watching set for (c,G) under P .
Let L be the set of unit consequences of clauses in C. If Unit-Propagate(C,P, L) returns
〈true, c〉 for an augmented clause c, then c is a nogood for P , and any modified watching
sets in C are still watching sets under P . Otherwise, the value returned is 〈false, P 〉 and
the watching sets in C will all have been replaced with watching sets under P .
Proof. This is really just a matter of assembling the pieces. Procedure 7.16 is essentially
a loop through the literals in L, much like the original procedure 2.7. For each such literal
l, we find all the unit clauses that contain l by an appropriate call to Transport for each
clause where l is watched. If the Transport call reveals the presence of a contradiction, we
return the resolvent of the reasons for l and for ¬l as usual. If no contradiction is found,
we adjust the partial assignment as in Procedure 2.7, add the new unit consequences to

524

ZAP 3: Implementation

the list of what remains to be analyzed, and update the watching set in accordance with
Propositions 7.10 and 7.14.

The only remaining issue is the removal of ¬l from the watching set W in line 19 of
Procedure 7.16. We do this precisely when the fourth claim in Proposition 7.10 can be
applied. Note that in the call to transport, we use U(P) instead of U(〈P, l〉), since l has
already been added to P in line 4. We also require that ¬l be in the instance cg, since
otherwise the intersection with cg will obviously be unaffected by the removal of ¬l.
Lemma 8.3 If c1 ⊂ c2 are two nogoods for P , then c1 <P c2.
Proof. This is immediate. As soon as the last literal in c2 is not in c1 (which must happen
eventually as literals are removed in Definition 8.2), the falsification depth of c2 will exceed
that of c1.
Procedure 8.4 Suppose we are given two augmented clauses (α, G) and (β, H) that are
unit for a partial assignment P = 〈l1, . . . , ln〉, with l ∈ α and ¬l ∈ β. To find a <P -minimal
l-resolvent of (α, G) and (β, H):

1 U ← {l,¬l} � literals you can’t avoid
2 αf ← α
3 βf ← β
4 p← [(α ∪ β)− U]?P

5 while p > 0
6 do g ← transport(G, α, {¬lp, . . . ,¬ln} − U,Ø, 0, l)
7 h← transport(H,β, {¬lp, . . . ,¬ln} − U,Ø, 0,¬l)
8 if g = failure ∨ h = failure
9 then U ← U ∪ {¬lp}

10 else αf ← αg

11 βf ← βh

12 p← [(αf ∪ βf)− U]?P

13 return resolve(αf , βf)

Proposition 8.5 Suppose that we are given two augmented clauses (α, G) and (β, H) such
that α and β are unit for a partial assignment P , with l ∈ α and ¬l ∈ β. Then the value
returned by Procedure 8.4 is a <P -minimal l-resolvent of (α, G) and (β, H).
Proof. We need to show that the procedure terminates, that it returns an l-resolvent, and
that the result is <P -minimal.

To show that Procedure 8.4 terminates, we show that p is reduced on every iteration of
the main loop. At the beginning of each iteration, we know that

¬lp ∈ (αf ∪ βf)− U (41)

At the end of the iteration, if line 9 is selected, then αf and βf are unchanged but ¬lp is
added to U . This means that (41) will no longer be satisfied, but will still be satisfied for
¬li with i > p. Thus p is reduced on line 12.

If, on the other hand, lines 10 and 11 are selected, we know from the definition of g and
h on lines 6 and 7 that for any literal with ¬l ∈ {¬lp, . . . ,¬ln}−U , we have ¬l 6∈ (αf ∪βf).
In other words, if ¬l ∈ {¬lp, . . . ,¬ln}, then ¬l 6∈ (αf ∪ βf) − U . Thus p is once again
reduced, and the procedure therefore terminates. That it returns a resolvent is clear.

525

Dixon, Ginsberg, Hofer, Luks & Parkes

To see that the value returned is <P -minimal, suppose that gm and hm are such that
αgm ∨ βhm <P αf ∨ βf . We will show that αf and βf cannot be the permutations returned
on line 13.

Set z = [(αf ∨ βf) − (αgm ∨ βhm)]?P ; this is the last point included in the f images
produced by the procedure but not in the m images provided by the hypothetical coun-
terexample. Since αgm ∨ βhm <P αf ∨ βf , the two sets agree for literals with index greater
than z.

Since ¬lz ∈ (αf ∨ βf), the initial value for p set in line 4 will be at least z; since the
procedure terminates when p < 0, the final value will be less than z.

Consider the point in the procedure at which p changes from a value no less than z to one
that is less than z. If the change is because ¬lp is added to U , then one of the transport calls
must have failed, so that it is impossible (say) for the image of α to avoid {¬lp, . . . ,¬ln}−U .
But we know that αf avoids {¬lp+1, . . . ,¬ln} − U . Thus αgm avoids {¬lp+1, . . . ,¬ln} − U ,
but we are assuming that ¬lp 6∈ αgm , so transport(Gl,¬l, α, {¬lp, . . . ,¬ln}−U,Ø, 0) should
have succeeded after all.

It follows that the change in p must have been in lines 10 and 11. But this is also
impossible, since the fact that we have successfully managed to avoid ¬lz contradicts the
assumption that z = [(αf ∨ βf)− (αgm ∨ βhm)]?P so that ¬lz ∈ αf ∨ βf .

Appendix B. ZAP Problem Format

Historically, Boolean satisfiability problems are typically in a format where variables cor-
respond to positive integers, literals are nonzero integers (negative integers are negated
literals), and clauses are terminated with zeroes. The dimacs format precedes the actual
clauses in the problem with a single line such as p cnf 220 1122 indicating that there are
220 variables appearing in 1,122 clauses in this problem.

This numerical format makes it impossible to exploit any existing understanding that
the user might have of the problem in question; this may not be a problem for a conventional
Boolean tool (since the problem structure will have been obscured by the Boolean encoding
in any event), but was felt to be inappropriate when building an augmented solver. We felt
that it was important for the user to be able to:

1. Specify numerical constraints such as appear in cardinality or parity constraints,

2. Quantify axioms over finite domains, and

3. Provide group augmentations explicitly if the above mechanisms were insufficient.

Before discussing the specific provisions zap makes in each of these areas, we remark
that each zap input file begins with a list of domain specifications, giving the names and
sizes of each domain used in the theory. This is followed by predicate specifications, giving
the arity of each predicate and the domain type of each argument. After the predicates
and domains have been defined, it is possible to refer to predicate instances directly (e.g.,
in[1 3] indicating that the first pigeon is in the third hole) or in a nonground fashion (e.g.,
in[x y]).

526

ZAP 3: Implementation

Group definition When a group is specified directly, it is assigned a symbolic designator
that can then be used in an augmented clause. The group syntax is the conventional one,
with a group being described in terms of generators, each of which is a permutation. Each
permutation is a list of cycles, and each cycle is a space-separated list of literals.

An augmented clause that uses a previously defined group is of the form

clause GROUP group1 · · · groupn

where the (ground) clause is essentially a sequence of literals and each groupi is the
designator for a group to be used. The group in the augmented clause is then the group
collectively generated by the groupi’s.

As an example, here is the group-based encoding of the pigeonhole instance involving
four pigeons and three holes:

// domain specs
SORT pigeon 4 ;
SORT hole 3 ;

// predicate specs
PREDICATE in(pigeon hole) ;

// group specs
GROUP G < ((in[1 1] in[2 1]) (in[1 2] in[2 2]) (in[1 3] in[2 3]))

((in[1 1] in[3 1] in[4 1]) (in[1 2] in[3 2] in [4 2])
(in[1 3] in[3 3] in [4 3])) // permute pigeons

((in[1 1] in[1 2]) (in[2 1] in[2 2]) (in[3 1] in[3 2])
(in[4 1] in[4 2])) // permute holes

((in[1 1] in[1 3]) (in[2 1] in[2 3]) (in[3 1] in[3 3])
(in[4 1] in[4 3])) > ;

// group-based encoding
-in[1 1] -in[2 1] GROUP G ;
in[1 1] in[1 2] in[1 3] GROUP G ;

There are two types of domain variables, pigeons (of which there are four) and holes (of
which there are three). There is a single predicate indicating that a given pigeon is in a
particular hole. There is a single group, which corresponds to symmetries over both holes
and pigeons.

To generate the group, we use four generators. The first two correspond to the symmetry
over pigeons, with the first generator swapping the first two pigeons and the second generator
rotating pigeons one, three and four. (Recall that the permutations (1, 2) and (1, 3, 4)
generate the symmetry group S4 over the pigeons.)

The second pair of generators generate the symmetry over holes similarly, with the first
generator swapping the first two holes and the second generator swapping holes one and
three. (Once again, (1, 2) and (1, 3) generate S3.)

Turning to the axioms, the first says that the first hole cannot contain both of the first
two pigeons, and therefore that no hole can contain two distinct pigeons by virtue of the
group action. The second axiom says that the first pigeon has to be in some hole, and
therefore that every pigeon does.

527

Dixon, Ginsberg, Hofer, Luks & Parkes

Cardinality and parity constraints If the group is not specified directly, the general
form of a zap axiom is

quantifiers clause result

where the quantifiers are described below. The result includes information about the
desired “right hand side” of the axiom, and can be any of the following:

• A simple terminator, indicating that the clause is Boolean,

• A comparison operator (>, <=, =, etc.) followed by an integer, indicating that the
clause is a cardinality constraint, or

• A mod-2 operator (%2=) followed by an integer m, indicating that the sum of the
values of the literals is required to be congruent to m mod 2.

Quantification The quantifiers are of the form

∀(x1, . . . , xk)

or
∃(x1, . . . , xk)

where each of the xi are variables that can then appear in future predicate instances. In
addition to the two classical quantifiers above, we also introduce

∀(x1, . . . , xk)

where the ∀ quantifier means that the variables can take any values that do not cause any of
the quantified predicate’s instances to become identical. As an example, the axiom saying
that only one pigeon can be in each hole now becomes

∀(p1, p2, h) . ¬in(p1, h) ∨ ¬in(p2, h) (42)

Contrast this with the conventional

∀(p1, p2, h) . ¬in(p1, h) ∨ ¬in(p2, h) (43)

For any specific pigeon p and hole h,

¬in(p, h) ∨ ¬in(p, h) (44)

is an instance of (43) but not of (42). Since (44) is equivalent to ¬in(p, h), it is inappropriate
for inclusion in a pigeonhole formulation.

The introduction of the new quantifier should be understood in the light of the discussion
of Section 6.1 of zap2, where we argued that in many cases, the quantification given by ∀
is in fact more natural than that provided by ∀. The ∀ quantification is also far easier to
represent using augmented clauses, and avoids in many cases the need to introduce or to
reason about equality. In any event, zap supports both forms of universal quantification.

Here is the quantifier-based encoding of the pigeonhole problem:

528

ZAP 3: Implementation

SORT pigeon 9;
SORT hole 8;
PREDICATE in(pigeon hole);

// quantification-based encoding
NOTEQ (x y z) -in[x z] -in[y z] ;
FORALL(z) EXISTS(h) in[z h] ;

This is the nine pigeon instance. The two axioms say directly that no hole z can contain
two distinct pigeons x and y (note the use of the NOTEQ or ∀), and every pigeon z has to be
in some hole h. This encoding is presumably more intuitive than the previous one.

References

Aho, A. V., Hopcroft, J. E., & Ullman, J. D. (1974). The Design and Analysis of Computer
Algorithms. Addison-Wesley.

Babai, L., & Moran, S. (1988). Arthur-Merlin games: A randomized proof system, and a
hierarchy of complexity classes. J. Comput. System Sci., 36, 254–276.

Barth, P. (1995). A Davis-Putnam based enumeration algorithm for linear pseudo-
boolean optimization. Tech. rep. MPI-I-95-2-003, Max Planck Institut für Informatik,
Saarbrücken, Germany.

Bayardo, R. J., & Miranker, D. P. (1996). A complexity analysis of space-bounded learning
algorithms for the constraint satisfaction problem. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pp. 298–304.

Bayardo, R. J., & Schrag, R. C. (1997). Using CSP look-back techniques to solve real-world
SAT instances. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, pp. 203–208.

Dixon, H. E., & Ginsberg, M. L. (2000). Combining satisfiability techniques from AI and
OR. Knowledge Engrg. Rev., 15, 31–45.

Dixon, H. E., Ginsberg, M. L., Luks, E. M., & Parkes, A. J. (2004a). Generalizing Boolean
satisfiability II: Theory. Journal of Artificial Intelligence Research, 22, 481–534.

Dixon, H. E., Ginsberg, M. L., & Parkes, A. J. (2004b). Generalizing Boolean satisfiability
I: Background and survey of existing work. Journal of Artificial Intelligence Research,
21, 193–243.

Furst, M., Hopcroft, J., & Luks, E. (1980). Polynomial time algorithsm for permutation
groups. In Proceedings 21st Annual IEEE Symp. on Foundations of Computer Science
(FOCS-80), pp. 36–41. IEEE.

GAP Group (2004). GAP – Groups, Algorithms and Programming, Version 4.4.
http://www.gap-system.org.

Ginsberg, M. L. (1993). Dynamic backtracking. Journal of Artificial Intelligence Research,
1, 25–46.

Ginsberg, M. L., & Parkes, A. J. (2000). Search, subsearch and QPROP. In Proceedings of
the Seventh International Conference on Principles of Knowledge Representation and
Reasoning, Breckenridge, Colorado.

529

Dixon, Ginsberg, Hofer, Luks & Parkes

Gomes, C. P., & Selman, B. (1997). Problem structure in the presence of perturbations.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, pp.
221–226, Providence, RI.

Haken, A. (1985). The intractability of resolution. Theoretical Computer Science, 39, 297–
308.

Harrison, M. A. (1989). Introduction to Switching and Automata Theory. McGraw-Hill.

Heule, M., & van Maaren, H. (2004). Aligning CNF- and equivalence-reasoning. In The
Seventh International Conference on Theory and Applications of Satisfiability Testing,
pp. 174–180. Also available as http://www.satisfiability.org/SAT04/programme/72.pdf.

Hooker, J. N. (1988). Generalized resolution and cutting planes. Annals of Operations
Research, 12, 217–239.

Jerrum, M. (1986). A compact representation for permutation groups. J. Algorithms, 7,
60–78.

Knuth, D. E. (1991). Notes on efficient representation of permutation groups. Combinator-
ica, 11, 57–68.

Leon, J. (1991). Permutation group algorithms based on partitions I: Theory and algorithms.
J. Symbolic Comput., 12, 533–583.

Li, C. M. (2000). Integrating equivalency reasoning into Davis-Putnam procedure. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 291–
296.

Li, C. M. (2003). Equivalent literal propagation in Davis-Putnam procedure. Discrete App.
Math., 130 (2), 251–276.

Li, C. M., Jurkowiak, B., & Purdom, Jr., P. W. (2002). Integrating symmetry breaking into
a DLL procedure. In Fifth International Symposium on the Theory and Applications
of Satisfiability Testing (SAT2002), pp. 149–155.

Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., & Malik, S. (2001). Chaff: Engineering
an efficient SAT solver. In 39th Design Automation Conference.

Pudlak, P. (1997). Lower bounds for resolution and cutting planes proofs and monotone
computations. J. Symbolic Logic, 62 (3), 981–998.

Rotman, J. J. (1994). An Introduction to the Theory of Groups. Springer.

Schaefer, T. J. (1978). The complexity of satisfiability problems. In Proceedings of the
Tenth Annual ACM Symposium on the Theory of Computing, pp. 216–226.

Seress, A. (2003). Permutation Group Algorithms, Vol. 152 of Cambridge Tracts in Mathe-
matics. Cambridge University Press, Cambridge, UK.

Sims, C. C. (1970). Computational methods in the study of permutation groups. In Leech, J.
(Ed.), Computational Problems in Abstract Algebra, Proc. Conf. Oxford, 1967. Perg-
amon Press.

Tseitin, G. (1970). On the complexity of derivation in propositional calculus. In Slisenko,
A. (Ed.), Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp.
466–483. Consultants Bureau.

530

ZAP 3: Implementation

Urquhart, A. (1987). Hard examples for resolution. JACM, 34, 209–219.

Zhang, H., & Stickel, M. E. (2000). Implementing the Davis-Putnam method. Journal of
Automated Reasoning, 24 (1/2), 277–296.

531

