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Abstract

We examine properties of a model of resource allocation in which several agents ex-
change resources in order to optimise their individual holdings. The schemes discussed re-
late to well-known negotiation protocols proposed in earlier work and we consider a number
of alternative notions of “rationality” covering both quantitative measures, e.g. cooperative
and individual rationality and more qualitative forms, e.g. Pigou-Dalton transfers. While
it is known that imposing particular rationality and structural restrictions may result in
some reallocations of the resource set becoming unrealisable, in this paper we address the
issue of the number of restricted rational deals that may be required to implement a par-
ticular reallocation when it is possible to do so. We construct examples showing that this
number may be exponential (in the number of resources m), even when all of the agent
utility functions are monotonic. We further show that k agents may achieve in a single
deal a reallocation requiring exponentially many rational deals if at most k − 1 agents can
participate, this same reallocation being unrealisable by any sequences of rational deals in
which at most k − 2 agents are involved.

1. Introduction

Mechanisms for negotiating allocation of resources within a group of agents form an im-
portant body of work within the study of multiagent systems. Typical abstract models
derive from game-theoretic perspectives in economics and among the issues that have been
addressed are strategies that agents use to obtain a particular subset of the resources avail-
able, e.g. (Kraus, 2001; Rosenschein & Zlotkin, 1994; Sandholm, 1999), and protocols by
which the process of settling upon some allocation of resources among the agents involved is
agreed, e.g. (Dignum & Greaves, 2000; Dunne, 2003; Dunne & McBurney, 2003; McBurney
et al., 2002).

The setting we are concerned with is encapsulated in the following definition.

Definition 1 A resource allocation setting is defined by a triple 〈A,R,U〉 where

A = {A1,A2, . . . ,An} ; R = {r1, r2, . . . , rm}

are, respectively, a set of (at least two) agents and a collection of (non-shareable) resources.
A utility function, u, is a mapping from subsets of R to rational values. Each agent Ai ∈ A
has associated with it a particular utility function ui , so that U is 〈u1, u2, . . . , un〉. An
allocation P of R to A is a partition 〈P1,P2, . . . ,Pn〉 of R. The value ui(Pi) is called
the utility of the resources assigned to Ai . A utility function, u, is monotone if whenever
S ⊆ T it holds that u(S ) ≤ u(T ), i.e. the value assigned by u to any set of resources, T ,
is never less than the value u attaches to any subset, S of T .
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Two major applications in which the abstract view of Definition 1 has been exploited are
e-commerce and distributed task realisation. In the first R represents some collection of
commodities offered for sale and individual agents seek to acquire a subset of these, the
“value” an agent attaches to a specific set being described by that agent’s utility function.
In task planning, the “resource” set describes a collection of sub-tasks to be performed in
order to realise some complex task, e.g. the “complex task” may be to transport goods
from a central warehouse to some set of cities. In this example R describes the locations
to which goods must be dispatched and a given allocation defines those places to which an
agent must arrange deliveries. The utility functions in such cases model the cost an agent
associates with carrying out its alloted sub-tasks.

Within the very general context of Definition 1, a number of issues arise stemming from
the observation that it is unlikely that some initial allocation will be seen as satisfactory
either with respect to the views of all agents in the system or with respect to divers global
considerations. Thus, by proposing changes to the initial assignment individual agents
seek to obtain a “better” allocation. This scenario raises two immediate questions: how to
evaluate a given partition and thus have a basis for forming improved or optimal allocations;
and, the issue underlying the main results of this paper, what restrictions should be imposed
on the form that proposed deals may take.

We shall subsequently review some of the more widely studied approaches to defining
conditions under which some allocations are seen as “better” than others. For the purposes
of this introduction we simply observe that such criteria may be either quantitative or
qualitative in nature. As an example of the former we have the approach wherein the
“value” of an allocation P is simply the sum of the values given by the agents’ utility
functions to the subsets of R they have been apportioned within P , i.e.

∑n
i=1 ui(Pi): this

is the so-called utilitarian social welfare, which to avoid repetition we will denote by σu(P).
A natural aim for agents within a commodity trading context is to seek an allocation under
which σu is maximised. One example of a qualitative criterion is “envy freeness”: informally,
an allocation, P , is envy-free if no agent assigns greater utility to the resource set (Pj ) held
by another agent than it does with respect to the resource set (Pi) it has actually been
allocated, i.e. for each distinct pair 〈i , j 〉, ui(Pi) ≥ ui(Pj ).

In very general terms there are two approaches that have been considered in treating the
question of how a finite collection of resources might be distributed among a set of agents
in order to optimise some criterion of interest: “contract-net” based methods, e.g. (Dunne
et al., 2003; Endriss et al., 2003; Endriss & Maudet, 2004b; Sandholm, 1998, 1999) deriving
from the work of Smith (1980); and “combinatorial auctions”, e.g. (Parkes & Ungar, 2000a,
2000b; Sandholm et al., 2001; Sandholm, 2002; Sandholm & Suri, 2003; Tennenholz, 2000;
Yokoo et al., 2004, amongst others). The significant difference between these is in the extent
to which a centralized controlling agent determines the eventual distribution of resources
among agents.

One may view the strategy underlying combinatorial auctions as investing the computa-
tional effort into a “pre-processing” stage following which a given allocation is determined.
Thus a controlling agent (the “auctioneer”) is supplied with a set of bids – pairs 〈Sj , pj 〉
wherein Sj is some subset of the available resources and pj the price agent Aj is prepared
to pay in order to acquire Sj . The problem faced by the auctioneer is to decide which bids
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to accept in order to maximise the overall profit subject to the constraint that each item
can be obtained by at most one agent.

What we shall refer to as “contract-net schemes” typically eschew the precomputation
stage and subordination to a controlling arbiter employed in auction mechanisms, seeking
instead to realise a suitable allocation by an agreed sequence of deals. The contract-net (in
its most general instantiation) for scenarios of m resources distributed among n agents is
the complete directed graph with nm vertices (each of which is associated with a distinct
allocation). In this way a possible deal 〈P ,Q〉 is represented as an edge directed from the
vertex labelled with P to that labelled Q . Viewed thus, identifying a sequence of deals can
be interpreted as a search process which, in principle, individual agents may conduct in an
autonomous fashion.

Centralized schemes can be effective in contexts where the participants cooperate (in
the sense of accepting the auctioneer’s arbritration). In environments within which agents
are highly self-interested to the extent that their aims conflict with the auction process or
in which there is a high degree of “uncertainty” about the outcome, in working towards a
final allocation, the agents involved may only be prepared to proceed “cautiously”: that is,
an agent will only accept a proposed reallocation if satisfied that such would result in an
immediate improvement from its own perspective. In such cases, the process of moving from
the initial allocation, Pinit , to the eventual reallocation Pfin is by a sequence of local rational
deals, e.g. an agent might refuse to accept deals which reduced σu because of the possibility
that it suffers an uncompensated loss in utility. A key issue here is the following: if the deal
protocol allows only moves in which at each stage some agent Aj offers a single resource to
another agent Aj then the rational reallocation 〈Pinit ,Pfin〉 can always be implemented; if,
however, every single move must be “rational” then 〈Pinit ,Pfin〉 may not be realisable.

We may, informally, regard the view of such agents as “myopic”, in the sense that they
are unwilling to accept a “short-term loss” (a deal 〈P ,Q〉 under they might incur a loss of
utility) despite the prospect of a “long-term gain” (assuming σu(Pfin) > σu(Pinit) holds).

There are a number of reasons why an agent may adopt such views, e.g. consider the
following simple protocol for agreeing a reallocation.

A reallocation of resources is agreed over a sequence of stages, each of which
involves communication between two agents, Ai and Aj . This communication
consists of Ai issuing a proposal to Aj of the form (buy , r , p), offering to purchase
r from Aj for a payment of p; or (sell , r , p), offering to transfer r to Aj in return
for a payment p. The response from Aj is simply accept (following which the
deal is implemented) or reject .

This, of course, is a very simple negotiation structure, however consider its operation within
a two agent setting in which one agent, A1 say, wishes to bring about an allocation Pfin

(and thus can devise a plan – sequence of deals – to realise this from an initial allocation
Pinit) while the other agent, A2, does not know Pfin . In addition, assume that A1 is the only
agent that makes proposals and that a final allocation is fixed either when A1 is “satisfied”
or as soon as A2 rejects any offer.

While A2 could be better off if Pfin is realised, it may be the case that the only proposals
A2 will accept are those under which it does not lose, e.g. some agents may be sceptical
about the bona fides of others and will accept only deals from which they can perceive an
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immediate benefit. There are several reasons why an agent may embrace such attitudes
within the schema outlined: once a deal has been implemented A2 may lose utility but no
further proposals are made by A1 so that the loss is “permanent”. We note that even if we
enrich the basic protocol so that A1 can describe Pfin , A2 may still reject offers under which
it suffers a loss, since it is unwilling to rely on the subsequent deals that would ameliorate
its loss actually being proposed. Although the position taken by A2 in the setting just
described may appear unduly cautious, we would claim that it does reflect “real” behaviour
in certain contexts. Outside the arena of automated allocation and negotiation in multiagent
systems, there are many examples of actions by individuals where promised long-term gains
are insufficient to engender the acceptance of short term loss. Consider “chain letter”
schemes (or their more subtle manifestation as “pyramid selling” enterprises): such have
a natural lifetime bounded by the size of the population in which they circulate, but may
break down before this is reached. Faced with a request to “send $10 to the five names at
the head of the list and forward the letter to ten others after adding your name” despite the
possibility of significant gain after a temporary loss of $50, to ignore such blandishments is
not seen as overly sceptical and cautious: there may be reluctance to accept that one will
eventually receive sufficient recompense in return and suspicion that the name order has
been manipulated.

In summary, we can identify two important influences that lead to contexts in which
agents prefer to move towards a reallocation via a sequence of “rational” deals. Firstly,
the agents are self-interested but operating in an unstable environment, e.g. in the “chain
letter” setting, an agent cannot reliably predict the exact point at which the chain will fail.
The second factor is that computational restrictions may limit the decisions an individual
agent can make about whether or not to accept a proposed deal. For example in settings
where all deals involve one resource at a time, A2 may reject a proposal to accept some
resource, r , since r is only “useful” following a further sequence of deals: if this number
of further deals is “small” then A2 could decide to accept the proposed deal since it has
sufficient computational power to determine that there is a context in which r is of value;
if this number is “large” however, then A2 may lack sufficient power to scan the search
space of future possibilities that would allow it to accept r . Notice that in the extreme
case, A2 makes its decision solely on whether r is of immediate use, i.e. A2 is myopic. A
more powerful A2 may be able to consider whether r is useful should up to k further deals
take place: in this case, A2 could still refuse to accept r since, although of use, A2 cannot
determine this with a bounded look ahead.

In total for the scenario we have described, if A1 wishes to bring about an allocation Pfin

then faced with the view adopted by A2 and the limitations imposed by the deal protocol,
the only “effective plan” that A1 could adopt is to find a sequence of rational deals to
propose to A2.

Our aim in this article is to show that combining “structural” restrictions (e.g. only one
resource at a time is involved in a local reallocation) with rationality restrictions can result
in settings in which any sequence to realise a reallocation 〈P ,Q〉 must involve exponentially
many (in |R|) separate stages. We refine these ideas in the next sub-section.
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1.1 Preliminary Definitions

To begin, we first formalise the concepts of deal and contract path.

Definition 2 Let 〈A,R,U〉 be a resource allocation setting. A deal is a pair 〈P ,Q〉 where
P = 〈P1, . . . ,Pn〉 and Q = 〈Q1, . . . ,Qn〉 are distinct partitions of R. The effect of imple-
menting the deal 〈P ,Q〉 is that the allocation of resources specified by P is replaced with that
specified by Q. Following the notation of (Endriss & Maudet, 2004b) for a deal δ = 〈P ,Q〉,
we use Aδ to indicate the subset of A involved, i.e. Ak ∈ Aδ if and only if Pk 6= Qk .

Let δ = 〈P ,Q〉 be a deal. A contract path realising δ is a sequence of allocations

∆ = 〈P (1), P (2) , . . . , P (t−1), P (t)〉

in which P = P (1) and P (t) = Q. The length of ∆, denoted |∆| is t − 1, i.e. the number of
deals in ∆.

There are two methods which we can use to reduce the number of deals that a single
agent may have to consider in seeking to move from some allocation to another, thereby
avoiding the need to choose from exponentially many alternatives: structural and rationality
constraints. Structural constraints limit the permitted deals to those which bound the
number of resources and/or the number of agents involved, but take no consideration of the
view any agent may have as to whether its allocation has improved. In contrast, rationality
constraints restrict deals 〈P ,Q〉 to those in which Q “improves” upon P according to
particular criteria. In this article we consider two classes of structural constraint: O-
contracts, defined and considered in (Sandholm, 1998), and what we shall refer to as M (k)-
contracts.

Definition 3 Let δ = 〈P ,Q〉 be a deal involving a reallocation of R among A.

a. δ is a one contract (O-contract) if

O1. Aδ = {i , j}.
O2. There is a unique resource r ∈ Pi ∪Pj for which Qi = Pi ∪{r} and Qj = Pj \{r}

(with r ∈ Pj ) or Qj = Pj ∪ {r} and Qi = Pi \ {r} (with r ∈ Pi)

b. For a value k ≥ 2, the deal δ = 〈P ,Q〉 is an M (k)-contract if 2 ≤ |Aδ| ≤ k and
∪i∈Aδ Qi = ∪i∈Aδ Pi .

Thus, O-contracts involve the transfer of exactly one resource from a particular agent to
another, resulting in the number of deals compatible with any given allocation being exactly
(n − 1)m: each of the m resources can be reassigned from its current owner to any of the
other n − 1 agents.

Rationality constraints arise in a number of different ways. For example, from the
standpoint of an individual agent Ai a given deal 〈P ,Q〉 may have three different outcomes:
ui(Pi) < ui(Qi), i.e. Ai values the allocation Qi as superior to Pi ; ui(Pi) = ui(Qi), i.e.
Ai is indifferent between Pi and Qi ; and ui(Pi) > ui(Qi), i.e. Ai is worse off after the
deal. When global optima such as utilitarian social welfare are to be maximised, there is
the question of what incentive there is for any agent to accept a deal 〈P ,Q〉 under which it
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is left with a less valuable resource holding. The standard approach to this latter question
is to introduce the notion of a pay-off function, i.e. in order for Ai to accept a deal under
which it suffers a reduction in utility, Ai receives some payment sufficient to compensate
for its loss. Of course such compensation must be made by other agents in the system who
in providing it do not wish to pay in excess of any gain. In defining notions of pay-off the
interpretation is that in any transaction each agent Ai makes a payment, πi : if πi < 0
then Ai is given −πi in return for accepting a deal; if πi > 0 then Ai contributes πi to the
amount to be distributed among those agents whose pay-off is negative.

This notion of “sensible transfer” is captured by the concept of individual rationality,
and is often defined in terms of an appropriate pay-off vector existing. It is not difficult,
however, to show that such definitions are equivalent to the following.

Definition 4 A deal 〈P ,Q〉 is individually rational (IR) if and only if σu(Q) > σu(P).

We shall consider alternative bases for rationality constraints later: these are primarily of
interest within so-called money free settings (so that compensatory payment for a loss in
utility is not an option).

The central issue of interest in this paper concerns the properties of the contract-net
graph when the allowed deals must satisfy both a structural and a rationality constraint.
Thus, if we consider arbitrary predicates Φ on deals 〈P ,Q〉 – where the cases of interest are
Φ combining a structural and rationality condition – we have,

Definition 5 For Φ a predicate over distinct pairs of allocations, a contract path

〈P (1), P (2) , . . . , P (t−1), P (t)〉

realising 〈P ,Q〉 is a Φ-path if for each 1 ≤ i < t, 〈P (i),P (i+1)〉 is a Φ-deal, that is
Φ(P (i),P (i+1)) holds. We say that Φ is complete if any deal δ may be realised by a Φ-path.
We, further, say that Φ is complete with respect to Ψ-deals (where Ψ is a predicate over
distinct pairs of allocations) if any deal δ for which Ψ(δ) holds may be realised by a Φ-path.

The main interest in earlier studies of these ideas has been in areas such as identifying
necessary and/or sufficient conditions on deals to be complete with respect to particular
criteria, e.g. (Sandholm, 1998); and in establishing “convergence” and termination proper-
ties, e.g. Endriss et al. (2003), Endriss and Maudet (2004b) consider deal types, Φ, such
that every maximal1 Φ-path ends in a Pareto optimal allocation, i.e. one in which any
reallocation under which some agent improves its utility will lead to another agent suffering
a loss. Sandholm (1998) examines how restrictions e.g. with Φ(P ,Q) = > if and only if
〈P ,Q〉 is an O-contract, may affect the existence of contract paths to realise deals. Of
particular interest, from the viewpoint of heuristics for exploring the contract-net graph,
are cases where Φ(P ,Q) = > if and only if the deal 〈P ,Q〉 is individually rational. For the
case of O-contracts the following are known:

Theorem 1

a. O-contracts are complete.

1. “Maximal” in the sense that if 〈P (1), . . . ,P (t)〉 is such a path, then for every allocation, Q , Φ(P (t),Q)
does not hold.
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b. IR O-contracts are not complete with respect to IR deals.

In the consideration of algorithmic and complexity issues presented in (Dunne et al., 2003)
one difficulty with attempting to formulate reallocation plans by rational O-contracts is
already apparent, that is:

Theorem 2 Even in the case n = 2 and with monotone utility functions the problem of
deciding if an IR O-contract path exists to realise the IR deal 〈P ,Q〉 is np–hard.

Thus deciding if any rational plan is possible is already computationally hard. In this
article we demonstrate that, even if an appropriate rational plan exists, in extreme cases,
there may be significant problems: the number of deals required could be exponential in
the number of resources, so affecting both the time it will take for the schema outlined to
conclude and the space that an agent will have to dedicate to storing it. Thus in his proof
of Theorem 1 (b), Sandholm observes that when an IR O-contract path exists for a given
IR deal, it may be the case that its length exceeds m, i.e. some agent passes a resource to
another and then accepts the same resource at a later stage.

The typical form of the results that we derive can be summarised as:

For Φ a structural constraint (O-contract or M (k)-contract) and Ψ a rationality
constraint, e.g. Ψ(P ,Q) holds if 〈P ,Q〉 is individually rational, there are re-
source allocation settings 〈An ,Rm ,U〉 in which there is a deal 〈P ,Q〉 satisfying
all of the following.

a. 〈P ,Q〉 is a Ψ-deal.
b. 〈P ,Q〉 can be realised by a contract path on which every deal satisfies the

structural constraint Φ and the rationality constraint Ψ.
c. Every such contract path has length at least g(m).

For example, we show that there are instances for which the shortest IR O-contract path has
length exponential in m.2 In the next section we will be interested in lower bounds on the
values of the following functions: we introduce these in general terms to avoid unnecessary
subsequent repetition.

Definition 6 Let 〈A,R,U〉 be a resource allocation setting. Additionally let Φ and Ψ be
two predicates on deals. For a deal δ = 〈P ,Q〉 the partial function Lopt(δ, 〈A,R,U〉,Φ)
is the length of the shortest Φ-contract path realising 〈P ,Q〉 if such a path exists (and is
undefined if no such path is possible). The partial function Lmax(〈A,R,U〉,Φ,Ψ) is

Lmax(〈A,R,U〉,Φ,Ψ) = max
Ψ-deals δ

Lopt(δ, 〈A,R,U〉,Φ)

Finally, the partial function ρmax(n,m,Φ,Ψ) is

ρmax(n,m,Φ,Ψ) = max
U=〈u1,u2,...,un 〉

Lmax(〈An ,Rm ,U〉,Φ,Ψ)

where consideration is restricted to those Ψ-deals δ = 〈P ,Q〉 for which a realising Φ-path
exists.

2. Sandholm (1998) gives an upper bound on the length of such paths which is also exponential in m, but
does not explicitly state any lower bound other than that already referred to.
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The three measures, Lopt, Lmax and ρmax distinguish different aspects regarding the length
of contract-paths. The function Lopt is concerned with Φ-paths realising a single deal 〈P ,Q〉
in a given resource allocation setting 〈A,R,U〉: the property of interest being the number
of deals in the shortest, i.e. optimal length, Φ-path. We stress that Lopt is a partial function
whose value is undefined in the event that 〈P ,Q〉 cannot be realised by a Φ-path in the
setting 〈A,R,U〉. The function Lmax is defined in terms of Lopt, again in the context of
a specific resource allocation setting. The behaviour of interest for Lmax, however, is not
simply the length of Φ-paths realising a specific 〈P ,Q〉 but the “worst-case” value of Lopt

for deals which are Ψ-deals. We note the qualification that Lmax is defined only for Ψ-deals
that are capable of being realised by Φ-paths, and thus do not consider cases for which no
appropriate contract path exists. Thus, if it should be the case that no Ψ-deal in the setting
〈A,R,U〉 can be realised by a Φ-path then the value Lmax(〈A,R,U〉,Φ,Ψ) is undefined, i.e.
Lmax is also a partial function. We may interpret any upper bound on Lmax in the following
terms: if Lmax(〈A,R,U〉,Φ,Ψ) ≤ K then any Ψ-deal for which a Φ-path exists can be
realised by a Φ-path of length at most K .

Our main interest will centre on ρmax which is concerned with the behaviour of Lmax as
a function of n and m and ranges over all n-tuples of utility functions 〈u : 2R → Q〉n . Our
approach to obtaining lower bounds for this function is constructive, i.e. for each 〈Φ,Ψ〉
that is considered, we show how the utility functions U may be defined in a setting with m
resources so as to yield a lower bound on ρmax(n,m,Φ,Ψ). In contrast to the measures Lopt

and Lmax, the function ρmax is not described in terms of a single fixed resource allocation
setting. It is, however, still a partial function: depending on 〈n,m,Φ,Ψ〉 it may be the case
that in every n agent, m resource allocation setting, regardless of which choice of utility
functions is made, there is no Ψ-deal, 〈P ,Q〉 capable of being realised by Φ-path, and for
such cases the value of ρmax(n,m,Φ,Ψ) will be undefined.3

It is noted, at this point, that the definition of ρmax allows arbitrary utility functions
to be employed in constructing “worst-case” instances. While this is reasonable in terms
of general lower bound results, as will be apparent from the given constructions the utility
functions actually employed are highly artificial (and unlikely to feature in “real” application
settings). We shall attempt to address this objection by further considering bounds on the
following variant of ρmax:

ρmax
mono(n,m,Φ,Ψ) = max

U=〈u1,u2,...,un 〉 : each ui is monotone
Lmax(〈An ,Rm ,U〉,Φ,Ψ)

Thus, ρmax
mono deals with resource allocation settings within which all of the utility functions

must satisfy a monotonicity constraint.
The main results of this article are presented in the next sections. We consider two

general classes of contract path: O-contract paths under various rationality conditions in

3. In recognising the possibility that ρmax(n,m, Φ, Ψ) could be undefined, we are not claiming that such
behaviour arises with any of the instantiations of 〈Φ, Ψ〉 considered subsequently: in fact it will be
clear from the constructions that, denoting by ρmax

Φ,Ψ(n,m) the function ρmax(n,m, Φ, Ψ) for a fixed
instantiation of 〈Φ, Ψ〉, with the restricted deal types and rationality conditions examined, the function
ρmax
Φ,Ψ(n,m) is a total function. Whether it is possible to formulate “sensible” choices of 〈Φ, Ψ〉 with

which ρmax
Φ,Ψ(n,m) is undefined for some values of 〈n,m〉 (and, if so, demonstrating examples of such) is,

primarily, only a question of combinatorial interest, whose development is not central to the concerns of
the current article.
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Section 2; and, similarly, M (k)-contract paths for arbitrary values of k ≥ 2 in Section 3.
Our results are concerned with the construction of resource allocation settings 〈A,Rm ,U〉
for which given some rationality requirement, e.g. that deals be individually rational, there
is some deal 〈P ,Q〉 that satisfies the rationality condition, can be realised by a rational
O-contract path (respectively, M (k)-contract path), but with the number of deals required
by such paths being exponential in m. We additionally obtain slightly weaker (but still
exponential) lower bounds for rational O-contract paths within settings of monotone utility
functions, i.e. for the measure ρmax

mono, outlining how similar results may be derived for
M (k)-contract paths.

In the resource allocation settings constructed for demonstrating these properties with
M (k)-contract paths, the constructed deal 〈P ,Q〉 is realisable with a single M (k + 1)-
contract but unrealisable by any rational M (k −1)-contract path. We discuss related work,
in particular the recent study of (Endriss & Maudet, 2004a) that addresses similar issues
to those considered in the present article, in Section 4. Conclusions and some directions for
further work are presented in the final section.

2. Lower Bounds on Path Length – O-contracts

In this section we consider the issue of contract path length when the structural restriction
requires individual deals to be O-contracts. We first give an overview of the construction
method, with the following subsections analysing the cases of unrestricted utility functions
and, subsequently, monotone utility functions.

2.1 Overview

The strategy employed in proving our results involves two parts: for a given class of re-
stricted contract paths we proceed as follows in obtaining lower bounds on ρmax(n,m,Φ,Ψ).

a. For the contract-net graph partitioning m resources among n agents, construct a
path, ∆m = 〈P (1), P (2) , . . . , P (t)〉 realising a deal 〈P (1),P (t)〉. For the structural
constraint, Φ′ influencing Φ it is then proved that:

a1. The contract path ∆m is a Φ′-path, i.e. for each 1 ≤ i < t , the deal 〈P (i),P (i+1〉
satisfies the structural constraint Φ′.

a2. For any pair of allocations P (i) and P (i+j ) occurring in ∆m , if j ≥ 2 then the
deal 〈P (i),P (i+j )〉 is not a Φ′-deal.

Thus (a1) ensures that ∆m is a suitable contract path, while (a2) will guarantee that
there is exactly one allocation, P (i+1), that can be reached within ∆m from any given
allocation P (i) in ∆m by means of a Φ′-deal.

b. Define utility functions Un = 〈u1, . . . , un〉 with the following properties

b1. The deal 〈P (1),P (t)〉 is a Ψ-deal.

b2. For the rationality constraint, Φ′′ influencing Φ, every deal 〈P (i),P (i+1)〉 is a
Φ′′-deal.
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b3. For every allocation P (i) in the contract path ∆ and every allocation Q other
than P (i+1) the deal 〈P (i),Q〉 is not a Φ-deal, i.e. it violates either the stuctural
constraint Φ′ or the rationality constraint Φ′′.

Thus, (a1) and (b2) ensure that 〈P (1),P (t)〉 has a defined value with respect to the
function Lopt for the Ψ-deal 〈P (1),P (t)〉, i.e. a Φ-path realising the deal is possible.
The properties given by (a2) and (b3) indicate that (within the constructed resource
allocation setting) the path ∆m is the unique Φ-path realising 〈P (1),P (t)〉. It follows
that t −1, the length of this path, gives a lower bound on the value of Lmax and hence
a lower bound on ρmax(n,m,Φ,Ψ).

Before continuing it will be useful to fix some notational details.
We useHm to denote the m-dimensional hypercube. Interpreted as a directed graph, Hm

has 2m vertices each of which is identified with a distinct m-bit label. Using α = a1a2 . . . am

to denote an arbitrary such label, the edges of Hm are formed by

{ 〈α, β〉 : α and β differ in exactly one bit position}

We identify m-bit labels α = a1a2 . . . am with subsets Sα of Rm , via ri ∈ Sα if and only if
ai = 1. Similarly, any subset S of R can be described by a binary word, β(S ), of length m,
i.e. β(S ) = b1b2 . . . bm with bi = 1 if and only if ri ∈ S . For a label α we use |α| to denote
the number of bits with value 1, so that |α| is the size of the subset Sα. If α and β are m-bit
labels, then αβ is a 2m-bit label, so that if Rm and Tm are disjoint sets, then αβ describes
the union of the subset Sα of Rm with the subset Sβ of Tm . Finally if α = a1a2 . . . am

is an m-bit label then α denotes the label formed by changing all 0 values in α to 1 and
vice versa. In this way, if Sα is the subset of Rm described by α then α describes the set
Rm \ Sα. To avoid an excess of superscripts we will, where no ambiguity arises, use α both
to denote the m-bit label and the subset of Rm described by it, e.g. we write α ⊂ β rather
than Sα ⊂ Sβ.

For n = 2 the contract-net graph induced by O-contracts can be viewed as the m-
dimensional hypercube Hm : the m-bit label, α associated with a vertex of Hm describing
the allocation 〈α, α〉 to 〈A1,A2〉. In this way the set of IR O-contracts define a subgraph,
Gm of Hm with any directed path from β(P) to β(Q) in Gm corresponding to a possible IR
O-contract path from the allocation 〈P ,R \ P〉 to the allocation 〈Q ,R \Q〉.

2.2 O-contract Paths – Unrestricted Utility Functions

Our first result clarifies one issue in the presentation of (Sandholm, 1998, Proposition 2):
in this an upper bound that is exponential in m is proved on the length of IR O-contract
paths, i.e. in terms of our notation, (Sandholm, 1998, Proposition 2) establishes an upper
bound on ρmax(n,m,Φ,Ψ). We now prove a similar order lower bound.

Theorem 3 Let Φ(P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR O-contract
and Ψ(P ,Q) that which holds whenever 〈P ,Q〉 is IR. For m ≥ 7

ρmax(2,m,Φ,Ψ) ≥
(

77
256

)
2m − 2
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Proof. Consider a path C = 〈α1, α2, . . . , αt〉 in Hm , with the following property4

∀ 1 ≤ i < j ≤ t (j ≥ i + 2) ⇒ (αi and αj differ in at least 2 positions) (SC)

e.g. if m = 4 then

∅, {r1}, {r1, r3}, {r1, r2, r3}, {r2, r3}, {r2, r3, r4}, {r2, r4}, {r1, r2, r4}

is such a path as it corresponds to the sequence 〈0000, 1000, 1010, 1110, 0110, 0111, 0101, 1101〉.
Choose C(m) to be a longest such path with this property that could be formed in Hm ,

letting ∆m = 〈P (1),P (2), . . . ,P (t)〉 be the sequence of allocations with P (i) = 〈αi , αi〉. We
now define the utility functions u1 and u2 so that for γ ⊆ Rm ,

u1(γ) + u2(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, α2, . . . , αt}

With this choice, the contract path ∆m describes the unique IR O-contract path realising
the IR deal 〈P (1),P (t)〉: that ∆m is an IR O-contract path is immediate, since

σu(P (i+1)) = i + 1 > i = σu(P (i))

That it is unique follows from the fact that for all 1 ≤ i ≤ t and i + 2 ≤ j ≤ t , the deal
〈P (i),P (j )〉 is not an O-contract (hence there are no “short-cuts” possible), and for each
P (i) there is exactly one IR O-contract that can follow it, i.e. P (i+1).5

From the preceding argument it follows that any lower bound on the length of C(m),
i.e. a sequence satisfying the condition (SC), is a lower bound on ρmax(2,m,Φ,Ψ). These
paths in Hm were originally studied by Kautz (1958) in the context of coding theory and
the lower bound on their length of (77/256)2m − 2 established in (Abbott & Katchalski,
1991). 2

Example 1 Using the path

C(4) = 〈0000, 1000, 1010, 1110, 0110, 0111, 0101, 1101〉
= 〈α1, α2, α3, α4, α5, α6, α7, α8〉

in the resource allocation setting 〈{a1, a2}, {r1, r2, r3, r4}, 〈u1, u2〉〉, if the utility functions
are specified as in Table 1 below then σu(〈α1, α1〉) = 1 and σu(〈α8, α8〉) = 8. Furthermore,
C(4) describes the unique IR O-contract path realising the reallocation 〈〈α1, α1〉, 〈α8, α8〉〉

There are a number of alternative formulations of “rationality” which can also be considered.
For example

Definition 7 Let δ = 〈P ,Q〉 be a deal.

4. This defines the so-called “snake-in-the-box” codes introduced in (Kautz, 1958).
5. In our example with m = 4, the sequence 〈0000, 1000, 1001, 1101〉, although defining an O-contract path

gives rise to a deal which is not IR, namely that corresponding to 〈1000, 1001〉.
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S R \ S u1(S ) u2(R \ S ) σu S R \ S u1(S ) u2(R \ S ) σu

0000 1111 1 0 1 α1 1000 0111 1 1 2 α2

0001 1110 0 0 0 1001 0110 0 0 0
0010 1101 0 0 0 1010 0101 2 1 3 α3

0011 1100 0 0 0 1011 0100 0 0 0
0100 1011 0 0 0 1100 0011 0 0 0
0101 1010 4 3 7 α7 1101 0010 4 4 8 α8

0110 1001 3 2 5 α5 1110 0001 2 2 4 α4

0111 1000 3 3 6 α6 1111 0000 0 0 0

Table 1: Utility function definitions for m = 4 example.

a. δ is cooperatively rational if for every agent, Ai , ui(Qi) ≥ ui(Pi) and there is at least
one agent, Aj , for whom uj (Qj ) > uj (Pj ).

b. δ is equitable if mini∈Aδ ui(Qi) > mini∈Aδ ui(Pi).

c. δ is a Pigou-Dalton deal if Aδ = {i , j}, ui(Pi) + uj (Pj ) = ui(Qi) + uj (Qj ) and
|ui(Qi)− uj (Qj )| < |ui(Pi)− uj (Pj )| (where | . . . | is absolute value).

There are a number of views we can take concerning the rationality conditions given in Def-
inition 7. One shared feature is that, unlike the concept of individual rationality for which
some provision to compensate agents who suffer a loss in utility is needed, i.e. individual
rationality presumes a “money-based” system, the forms defined in Definition 7 allow con-
cepts of “rationality” to be given in “money-free” enviroments. Thus, in a cooperatively
rational deal, no agent involved suffers a loss in utility and at least one is better off. It may
be noted that given the characterisation of Definition 4 it is immediate that any coopera-
tively rational deal is perforce also individually rational; the converse, however, clearly does
not hold in general. In some settings, an equitable deal may be neither cooperatively nor
individually rational. One may interpret such deals as one method of reducing inequality
between the values agents place on their allocations: for those involved in an equitable deal,
it is ensured that the agent who places least value on their current allocation will obtain a
resource set which is valued more highly. It may, of course, be the case that some agents
suffer a loss of utility: the condition for a deal to be equitable limits how great such a loss
could be. Finally the concept of Pigou-Dalton deal originates from and has been studied in
depth within the theory of exchange economies. This is one of many approaches that have
been proposed, again in order to describe deals which reduce inequality between members
of an agent society, e.g. (Endriss & Maudet, 2004b). In terms of the definition given,
such deals encapsulate the so-called Pigou-Dalton principle in economic theory: that any
transfer of income from a wealthy individual to a poorer one should reduce the disparity
between them. We note that, in principle, we could define related rationality concepts
based on several extensions of this principle that have been suggested, e.g. (Atkinson, 1970;
Chateauneaf et al., 2002; Kolm, 1976).

Using the same O-contract path constructed in Theorem 3, we need only vary the
definitions of the utility functions employed in order to obtain,

Corollary 1 For each of the cases below,
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a. Φ(δ) holds if and only if δ is a cooperatively rational O-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φ(δ) holds if and only if δ is an equitable O-contract.
Ψ(δ) holds if and only if δ is equitable.

c. Φ(δ) holds if and only if δ is a Pigou-Dalton O-contract.
Ψ(δ) holds if and only if δ is a Pigou-Dalton deal.

ρmax(2,m,Φ,Ψ) ≥
(

77
256

)
2m − 2

Proof. We employ exactly the same sequence of allocations ∆m described in the proof of
Theorem 3 but modify the utility functions 〈u1, u2〉 for each case.

a. Choose 〈u1, u2〉 with u2(γ) = 0 for all γ ⊆ R and

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}

The resulting O-contract path is cooperatively rational: the utility enjoyed by A2 re-
mains constant while that enjoyed by A1 increases by 1 with each deal. Any deviation
from this contract path (employing an alternative O-contract) will result in a loss of
utility for A1.

b. Choose 〈u1, u2〉 with u2(γ) = u1(γ) and

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}

The O-contract path is equitable: both A1 and A2 increase their respective utility
values by 1 with each deal. Again, any O-contract deviating from this will result in
both agents losing some utility.

c. Choose 〈u1, u2〉 as

u1(γ) =

{
k if γ = αk

0 if γ 6∈ {α1, . . . , αt}
; u2(γ) =

{
2m − k if γ = αk

2m if γ 6∈ {α1, . . . , αt}

To see that the O-contract path consists of Pigou-Dalton deals, it suffices to note that
u1(αi) + u2(αi) = 2m for each 1 ≤ i ≤ t . In addition, |u2(αi+1)− u1(αi+1)| = 2m − 2i − 2
which is strictly less than |u2(αi)−u1(αi)| = 2m−2i . Finally, any O-contract 〈P ,Q〉 which
deviates from this sequence will not be a Pigou-Dalton deal since

|u2(Q2)− u1(Q1)| = 2m > |u2(P2)− u1(P1)|

which violates one of the conditions required of Pigou-Dalton deals. 2

The construction for two agent settings, easily extends to larger numbers.
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Corollary 2 For each of the choices of 〈Φ,Ψ〉 considered in Theorem 3 and Corollary 1,
and all n ≥ 2,

ρmax(n,m,Φ,Ψ) ≥
(

77
256

)
2m − 2

Proof. Fix allocations in which A1 is given α1, A2 allocated α1, and Aj assigned ∅ for each
3 ≤ j ≤ n. Using identical utility functions 〈u1, u2〉 as in each of the previous cases, we
employ for uj : uj (∅) = 1, uj (S ) = 0 whenever S 6= ∅ (〈Φ,Ψ〉 as in Theorem 3); uj (S ) = 0 for
all S (Corollary 1(a)); uj (∅) = 2m , uj (S ) = 0 whenever S 6= ∅ (Corollary 1(b)); and, finally,
uj (S ) = 2m for all S , (Corollary 1(c)). Considering a realisation of the Ψ-deal 〈P (1),P (t)〉
the only Φ-contract path admissible is the path ∆m defined in the related proofs. This gives
the lower bound stated. 2

We note, at this point, some other consequences of Corollary 1 with respect to (Endriss &
Maudet, 2004b, Theorems 1, 3), which state

Fact 1 We recall that a Φ-path, 〈P (1), . . . ,P (t)〉 is maximal if for each allocation Q, 〈P (t),Q〉
is not a Φ-deal.

a. If 〈P (1), . . . ,P (t)〉 is any maximal path of cooperatively rational deals then P (t) is
Pareto optimal.

b. If 〈P (1), . . . ,P (t)〉 is any maximal path of equitable deals then P (t) maximises the
value σe(P) = min1≤i≤n ui(Pi), i.e. the so-called egalitarian social welfare.

The sequence of cooperatively rational deals in Corollary 1(a) terminates in the Pareto
optimal allocation P (t): the allocation for A2 always has utility 0 and there is no allocation
to A1 whose utility can exceed t . Similarly, the sequence of equitable deals in Corollary 1(b)
terminates in the allocation P (t), for which σe(P (t)) = t the maximum that can be attained
for the instance defined. In both cases, however, the optima are reached by sequences of
exponentially many (in m) deals: thus, although Fact 1 guarantees convergence of particular
deal sequences to optimal states it may be the case, as illustrated in Corollary 1(a–b), that
the process of convergence takes considerable time.

2.3 O-contract Paths – Monotone Utility Functions

We conclude our results concerning O-contracts by presenting a lower bound on ρmax
mono, i.e.

the length of paths when the utility functions are required to be monotone.
In principle one could attempt to construct appropriate monotone utility functions that

would have the desired properties with respect to the path used in Theorem 3. It is, however,
far from clear whether such a construction is possible. We do not attempt to resolve this
question here. Whether an exact translation could be accomplished is, ultimately, a question
of purely combinatorial interest: since our aim is to demonstrate that exponential length
contract paths are needed with monotone utility functions we are not, primarily, concerned
with obtaining an optimal bound.
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Theorem 4 With Φ(P ,Q) and Ψ(P ,Q) be defined as in Theorem 3 and m ≥ 14

ρmax
mono(2,m,Φ,Ψ) ≥


(

77
128

)
2m/2 − 3 if m is even

(
77
128

)
2(m−1)/2 − 3 if m is odd

Proof. We describe the details only for the case of m being even: the result when m is
odd is obtained by a simple modification which we shall merely provide in outline.
Let m = 2s with s ≥ 7. For any path

∆s = 〈α1, α2, . . . , αt〉

in Hs (where αi describes a subset of Rs by an s-bit label), the path double(∆s) in H2s is
defined by

double(∆s) = 〈 α1α1, α2α2 , . . . , αiαi , αi+1αi+1 , . . . , αtαt 〉
= 〈β1, β3, . . . , β2i−1, β2i+1, . . . , β2t−1〉

(The reason for successive indices of β increasing by 2 will become clear subsequently)
Of course, double(∆s) does not describe an O-contract path6: it is, however, not difficult

to interpolate appropriate allocations, β2i , in order to convert it to such a path. Consider
the subsets β2i (with 1 ≤ i < t) defined as follows:

β2i =

{
αi+1αi if αi ⊂ αi+1

αiαi+1 if αi ⊃ αi+1

If we now consider the path, ext(∆s), within H2s given by

ext(∆s) = 〈β1, β2, β3 , . . . , β2(t−1), β2t−1〉

then this satisfies,

a. If ∆s has property (SC) of Theorem 3 in Hs then ext(∆s) has property (SC) in H2s .

b. If j is odd then |βj | = s.

c. If j is even then |βj | = s + 1.

From (a) and the bounds proved in (Abbott & Katchalski, 1991) we deduce that ext(∆s)
can be chosen so that with P (i) denoting the allocation 〈βi , βi〉

d. ext(∆s) describes an O-contract path from P (1) to P (2t−1).

e. For each pair 〈i , j 〉 with j ≥ i + 2, the deal 〈P (i),P (j )〉 is not an O-contract.

f. If ∆s is chosen as in the proof of Theorem 3 then the number of deals in ext(∆s) is
as given in the statement of the present theorem.

6. In terms of the classification described by Sandholm (1998), it contains only swap deals (S -contracts):
each deal swaps exactly one item in β2i−1 with an item in β2i−1 in order to give β2i+1.
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We therefore fix ∆s as the path from Theorem 3 so that in order to complete the proof
we need to construct utility functions 〈u1, u2〉 that are monotone and with which ext(∆s)
defines the unique IR O-contract path realising the reallocation 〈P (1),P (2t−1)〉.

The choice for u2 is relatively simple. Given S ⊆ R2s ,

u2(S ) =


0 if |S | ≤ s − 2
2t + 1 if |S | = s − 1
2t + 2 if |S | ≥ s

In this t is the number of allocations in ∆s . The behaviour of u2 is clearly monotone.
The construction for u1 is rather more complicated. Its main idea is to make use of

the fact that the size of each set βi occurring in ext(∆s) is very tightly constrained: |βi |
is either s or s + 1 according to whether i is odd or even. We first demonstrate that each
set of size s + 1 can have at most two strict subsets (of size s) occurring within ext(∆s):
thus, every S of size s + 1 has exactly 2 or 1 or 0 subsets of size s on ext(∆s). To see this
suppose the contrary. Let γ, β2i−1, β2j−1, and β2k−1 be such that |γ| = s + 1 with

β2i−1 ⊂ γ ; β2j−1 ⊂ γ ; β2k−1 ⊂ γ

Noting that β2i−1 = αiαi and that ∆s has the property (SC) it must be the case that (at
least) two of the s-bit labels from {αi , αj , αk} differ in at least two positions. Without loss
of generality suppose this is true of αi and αk . As a result we deduce that the sets β2i−1

and β2k−1 have at most s−2 elements in common, i.e. |β2i−1∩β2k−1| ≤ s−2: β2i−1 = αiαi

and β2k−1 = αkαk so in any position at which αi differs from αk , αi differs from αk at
exactly the same position. In total |β2i−1 \β2k−1| ≥ 2, i.e. there are (at least) two elements
of β2i−1 that do not occur in β2k−1; and in the same way |β2k−1 \ β2i−1| ≥ 2, i.e. there are
(at least) two elements of β2k−1 that do not occur in β2i−1. The set γ, however, has only
s + 1 members and so cannot have both β2i−1 and β2k−1 as subsets: this would require

β2i−1 ∩ β2k−1 ∪ β2i−1 \ β2k−1 ∪ β2k−1 \ β2i−1 ⊆ γ

but, as we have just seen,

| β2i−1 ∩ β2k−1 ∪ β2i−1 \ β2k−1 ∪ β2k−1 \ β2i−1 | ≥ s + 2

One immediate consequence of the argument just given is that for any set γ of size s+1 there
are exactly two strict subsets of γ occurring on ext(∆s) if and only if γ = β2i−1∪β2i+1 = β2i

for some value of i with 1 ≤ i < t . We can now characterise each subset of R2s of size s +1
as falling into one of three categories.

C1. Good sets, given by {γ : γ = β2i}.

C2. Digressions, consisting of

{ γ : β2i−1 ⊂ γ, γ 6= β2i and i < t}

C3. Inaccessible sets, consisting of

{ γ : γ is neither Good nor a Digression}
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Good sets are those describing allocations to A1 within the path defined by ext(∆s);
Digressions are the allocations that could be reached using an O-contract from a set of
size s on ext(∆s), i.e. β2i−1, but differ from the set that actually occurs in ext(∆s), i.e.
β2i . Finally, Inaccessible sets are those that do not occur on ext(∆s) and cannot be reached
via an O-contract from any set on ext(∆s). We note that we view any set of size s + 1
that could be reached by an O-contract from β2t−1 as being inaccessible: in principle it is
possible to extend the O-contract path beyond β2t−1, however, we choose not complicate
the construction in this way.

We now define u1 as

u1(γ) =



2i − 1 if γ = β2i−1

2i + 1 if γ = β2i

2i if |γ| = s + 1 and γ is a Digression from β2i−1

0 if |γ| ≤ s − 1
0 if |γ| = s and γ 6∈ ext(∆s)
2t − 1 if γ is Inaccessible or |γ| ≥ s + 2

It remains only to prove for these choices of 〈u1, u2〉 that the O-contract path 〈P (1), . . . ,P (2t−1)〉
defined from ext(∆s) is the unique IR O-contract path realising the IR deal 〈P (1),P (2t−1)〉
and that u1 is monotone.

To show that 〈P (1), . . . ,P (2t−1)〉 is IR we need to demonstrate

∀ 1 ≤ j < 2t − 1 u1(βj ) + u2(βj ) < u1(βj+1) + u2(βj+1)

We have via the definition of 〈u1, u2〉

u1(β2i−1) + u2(β2i−1) = 2(t + i) + 1
< u1(β2i) + u2(β2i)
= 2(t + i) + 2
< u1(β2i+1) + u2(β2i+1)
= 2(t + i) + 3

Thus, via Definition 4, it follows that ext(∆s) gives rise to an IR O-contract path.
To see that this path is the unique IR O-contract path implementing 〈P (1),P (2t−1)〉,

consider any position P (j ) = 〈βj , βj 〉 and allocation Q other than P (j+1) or P (j−1). It may be
assumed that the deal 〈P (j ),Q〉 is an O-contract. If j = 2i−1 then σu(P (2i−1)) = 2(t+i)+1
and |βj | = s. Hence |Q1| ∈ {s−1, s+1}. In the former case, u1(Q1) = 0 and u2(Q2) = 2t+2
from which σu(Q) = 2t + 2 and thus 〈P (j ),Q〉 is not IR. In the latter case u1(Q1) = 2i
since Q1 is a Digression from β2i−1 and u2(Q2) = 2t +1 giving σu(Q) = 2(t + i)+1. Again
〈P (j ),Q〉 fails to be IR since Q fails to give any increase in the value of σu . We are left with
the case j = 2i so that σu(P (2i)) = 2(t + i) + 2 and |βj | = s + 1. Since 〈P (j ),Q〉 is assumed
to be an O-contract this gives |Q1| ∈ {s, s + 2}. For the first possibility Q1 could not be a
set on ext(∆s): β2i−1 and β2i+1 are both subsets of β2i and there can be at most two such
subsets occurring on ext(∆s). It follows, therefore, that u1(Q1) = 0 giving σu(Q) = 2t + 2
so that 〈P (j ),Q〉 is not IR. In the second possibility, u1(Q1) = 2t − 1 but u2(Q2) = 0 as
|Q2| = s − 2 so the deal would result in an overall loss. We deduce that for each P (j ) the
only IR O-contract consistent with it is the deal 〈P (j ),P (j+1)〉.
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The final stage is to prove that the utility function u1 is indeed a monotone function.
Suppose S and T are subsets of R2s with S ⊂ T . We need to show that u1(S ) ≤ u1(T ). We
may assume that |S | = s, that S occurs as some set within ext(∆s), and that |T | = s + 1.
If |S | < s or |S | = s but does not occur on ext(∆s) we have u1(S ) = 0 and the required
inequality holds; if |S | ≥ s + 1 then in order for S ⊂ T to be possible we would need
|T | ≥ s + 2, which would give u1(T ) = 2t − 1 and this is the maximum value that any
subset is assigned by u1. We are left with only |S | = s, |T | = s + 1 and S on ext(∆s) to
consider. It has already been shown that there are at most two subsets of T that can occur
on ext(∆s). Consider the different possibilities:

a. T = β2i so that exactly two subsets of T occur in ext(∆s): β2i−1 and β2i+1. Since
u1(β2i) = 2i + 1 and this is at least max{u1(β2i−1), u1(β2i+1)}, should S be either of
β2i−1 or β2i+1 then u1(S ) ≤ u1(T ) as required.

b. T is a Digression from S = β2i−1, so that u1(T ) = 2i and u1(S ) = 2i − 1 and, again,
u1(S ) ≤ u1(T ).

We deduce that u1 is monotone completing our lower bound proof for ρmax
mono for even values

of m.
We conclude by observing that a similar construction can be used if m = 2s + 1 is odd:

use the path ext(∆s) described above but modifying it so that one resource (rm) is always
held by A2. Only minor modifications to the utility function definitions are needed. 2

Example 2 For s = 3, we can choose ∆3 = 〈000, 001, 101, 111, 110〉 so that t = 5. This
gives double(∆3) as

〈000111, 001110, 101010, 111000, 110001〉

with the O-contract path being defined from ext(∆3) which is

〈000111, 001111, 001110, 101110, 101010, 111010, 111000, 111001, 110001〉
= 〈β1, β2, β3, β4, β5, β6, β7, β8, β9〉

Considering the 15 subsets of size s + 1 = 4, gives

Good = {001111, 101110, 111010, 111001}
Digression = {010111, 100111, 101011, 011110, 111100}
Inaccessible = {011011, 011101, 101101, 110110, 110011, 110101}

Notice that both of the sets in {110011, 110101} are Inaccessible: in principle we could
continue from β9 = 110001 using either, however, in order to simplify the construction the
path is halted at β9.

Following the construction presented in Theorem 4, gives the following utility function
definitions with S ⊆ R = {r1, r2, r3, r4, r5, r6}.

u2(S ) =


0 if |S | ≤ 1
11 if |S | = 2
12 if |S | ≥ 3
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For u1 we obtain

u1(S ) =



0 if |S | ≤ 2
0 if |S | = 3 and S 6∈ {000111, 001110, 101010, 111000, 110001}
1 if S = 000111 (β1)
2 if S = 010111 (digression from β1)
2 if S = 100111 (digression from β1)
3 if S = 001111 (β2)
3 if S = 001110 (β3)
4 if S = 011110 (digression from β3)
5 if S = 101110 (β4)
5 if S = 101010 (β5)
6 if S = 101011 (digression from β5)
7 if S = 111010 (β6)
7 if S = 111000 (β7)
8 if S = 111100 (digression from β7)
9 if S = 111001 (β8)
9 if S = 110001 (β9)
9 if |S | ≥ 5 or S ∈ {011011, 011101, 101101, 110110, 110011, 110101}

The monotone utility functions, 〈u1, u2〉, employed in proving Theorem 4 are defined so that
the path arising from ext(∆s) is IR: in the event of either agent suffering a loss of utility the
gain made by the other is sufficient to provide a compensatory payment. A natural question
that now arises is whether the bound obtained in Theorem 4 can be shown to apply when
the rationality conditions preclude any monetary payment, e.g. for cases where the concept
of rationality is one of those given in Definition 7. Our next result shows that if we set the
rationality condition to enforce cooperatively rational or equitable deals then the bound of
Theorem 4 still holds.

Theorem 5 For each of the cases below and m ≥ 14

a. Φ(δ) holds if and only if δ is a cooperatively rational O-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φ(δ) holds if and only if δ is an equitable O-contract.
Ψ(δ) holds if and only if δ is equitable.

ρmax
mono(2,m,Φ,Ψ) ≥


(

77
128

)
2m/2 − 3 if m is even

(
77
128

)
2(m−1)/2 − 3 if m is odd

Proof. We again illustrate the constructions only for the case of m being even, noting the
modification to deal with odd values of m outlined at the end of the proof of Theorem 4.
The path ext(∆s) is used for both cases.
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For (a), we require 〈u1, u2〉 to be defined as monotone functions with which ext(∆s) will
be the unique cooperatively rational O-contract path to realise the cooperatively rational
deal 〈P (1),P (2t−1)〉 where P (j ) = 〈βj , βj 〉. In this case we set 〈u1, u2〉 to be,

〈u1(γ), u2(γ)〉 =



〈i , i〉 if γ = β2i−1

〈i + 1, i〉 if γ = β2i

〈i , i − 1〉 if |γ| = s + 1 and γ is a Digression from β2i−1

〈0, 2t − 1〉 if |γ| ≤ s − 1
〈0, 2t − 1〉 if |γ| = s and γ 6∈ ext(∆s)
〈2t − 1, 0〉 if γ is Inaccessible or |γ| ≥ s + 2

Since,
〈u1(β2i−1), u2(β2i−1)〉 = 〈i , i〉
〈u1(β2i), u2(β2i)〉 = 〈i + 1, i〉
〈u1(β2i+1), u2(β2i+1)〉 = 〈i + 1, i + 1〉

it is certainly the case that 〈P (1),P (2t−1)〉 and all deals on the O-contract path defined
by ext(∆s) are cooperatively rational. Furthermore if Q = 〈γ, γ〉 is any allocation other
than P (j+1) then the deal 〈P (j ),Q〉 will fail to be a cooperatively rational O-contract.
For suppose the contrary letting 〈P (j ),Q〉 without loss of generality be an O-contract,
with Q 6∈ {P (j−1),P (j+1)} – we can rule out the former case since we have already shown
such an deal is not cooperatively rational. If j = 2i − 1 so that 〈u1(βj ), u2(βj )〉 = 〈i , i〉
then |γ| ∈ {s − 1, s + 1}: the former case leads to a loss in utility for A1; the latter,
(since γ is a Digression from β2i−1) a loss in utility for A2. Similarly, if j = 2i so that
〈u1(βj ), u2(βj )〉 = 〈i +1, i〉 then |γ| ∈ {s, s +2}: for the first γ 6∈ ext(∆s) leading to a loss of
utility for A1; the second results in a loss of utility for A2. It follows that the path defined by
ext(∆s) is the unique cooperatively rational O-contract path that realises 〈P (1),P (2t−1)〉.

It remains only to show that these choices for 〈u1, u2〉 define monotone utility functions.
Consider u1 and suppose S and T are subsets of R2s with S ⊂ T . If |S | ≤ s − 1,

or S does not occur on ext(∆s) then u1(S ) = 0. If |T | ≥ s + 2 or is Inaccessible then
u1(T ) = 2t − 1 which is the maximum value attainable by u1. So we may assume that
|S | = s, occurs on ext(∆s), i.e. S = β2i−1, for some i , and that |T | = s + 1 and is either
a Good set or a Digression. From the definition of u1, u1(S ) = i : if T ∈ {β2i , β2i−2} then
u1(T ) ≥ i = u1(S ); if T is a Digression from β2i−1 then u1(T ) = i = u1(S ). We deduce
that if S ⊆ T then u1(S ) ≤ u1(T ), i.e. the utility function is monotone.

Now consider u2 with S and T subsets of R2s having S ⊂ T . If |T | ≥ s + 1 or
R2s \ T does not occur in ext(∆s) then u2(T ) = 2t − 1 its maximal value. If |S | ≤ s − 2
or R2s \ S is Inaccessible then u2(S ) = 0. Thus we may assume that T = β2i−1 giving
u2(T ) = i and |S | = s − 1, so that R2s \ S is either a Digression or one of the Good sets
{β2i , β2i−2}. If R2s \ S is a Digression then u2(S ) = i − 1; if it is the Good set β2i−2 then
u2(S ) = i − 1 < u2(T ); if it is the Good set β2i then u2(S ) = i = u2(T ). It follows that
u2 is monotone completing the proof of part (a).
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For (b) we use,

〈u1(γ), u2(γ)〉 =



〈2i − 1, 2i〉 if γ = β2i−1

〈2i + 1, 2i〉 if γ = β2i

〈2i , 2i − 1〉 if |γ| = s + 1 and γ is a Digression from β2i−1

〈0, 2t − 1〉 if |γ| ≤ s − 1
〈0, 2t − 1〉 if |γ| = s and γ 6∈ ext(∆s)
〈2t − 1, 0〉 if γ is Inaccessible or |γ| ≥ s + 2

These choices give ext(∆s) as the unique equitable O-contract path to realise the equitable
deal 〈P (1),P (2t−1)〉, since

min{u1(β2i−1), u2(β2i−1)} = 2i − 1
min{u1(β2i), u2(β2i)} = 2i
min{u1(β2i+1), u2(β2i+1)} = 2i + 1

each deal 〈P (j ),P (j+1)〉 is equitable. If Q = 〈γ, γ〉 is any allocation other than P (j+1)

then the deal 〈P (j ),Q〉 is not an equitable O-contract. Assume that 〈P (j ),Q〉 is an O-
contract, and that Q 6∈ {P (j−1),P (j+1)}. If j = 2i − 1, so that P (j ) = 〈β2i−1, β2i−1〉
and min{u1(β2i−1), u2(β2i−1)} = 2i − 1 then |γ| ∈ {s − 1, s + 1}. In the first of these
min{u1(γ), u2(γ)} = 0; in the second min{u1(γ), u2(γ)} = 2i − 1 since γ must be a
Digression. This leaves only j = 2i with P (j ) = 〈β2i , β2i〉 and min{u1(β2i), u2(β2i)} = 2i .
For this, |γ| ∈ {s, s + 2}: if |γ| = s then min{u1(γ), u2(γ)} ≤ 2i − 1 (with equality when
γ = β2i−1); if |γ| = s + 2 then min{u1(γ), u2(γ)} = 0. In total these establish that ext(∆s)
is the unique equitable O-contract path realising the equitable deal 〈P (1),P (2t−1)〉.

That the choices for 〈u1, u2〉 describe monotone utility functions can be shown by a
similar argument to that of part (a). 2

Example 3 For s = 3 using the same O-contract path ext(∆3) as the previous example,
i.e.

〈000111, 001111, 001110, 101110, 101010, 111010, 111000, 111001, 110001〉
= 〈β1, β2, β3, β4, β5, β6, β7, β8, β9〉

For 〈u1, u2〉 in (a) we obtain

〈u1(S), u2(R \ S)〉 =



〈0, 9〉 if |S | ≤ 2
〈0, 9〉 if |S | = 3 and S 6∈ {000111, 001110, 101010, 111000, 110001}
〈1, 1〉 if S = 000111 (β1)
〈1, 0〉 if S = 010111 digression from β1

〈1, 0〉 if S = 100111 digression from β1

〈2, 1〉 if S = 001111 (β2)
〈2, 2〉 if S = 001110 (β3)
〈2, 1〉 if S = 011110 digression from β3

〈3, 2〉 if S = 101110 (β4)
〈3, 3〉 if S = 101010 (β5)
〈3, 2〉 if S = 101011 digression from β5

〈4, 3〉 if S = 111010 (β6)
〈4, 4〉 if S = 111000 (β7)
〈4, 3〉 if S = 111100 digression from β7

〈5, 4〉 if S = 111001 (β8)
〈5, 5〉 if S = 110001 (β9)
〈9, 0〉 if |S | ≥ 5 or S ∈ {011011, 011101, 101101, 110110, 110011, 110101}
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Similarly, in (b)

〈u1(S), u2(R \ S)〉 =



〈0, 9〉 if |S | ≤ 2
〈0, 9〉 if |S | = 3 and S 6∈ {000111, 001110, 101010, 111000, 110001}
〈1, 2〉 if S = 000111 (β1)
〈2, 1〉 if S = 010111 digression from β1

〈2, 1〉 if S = 100111 digression from β1

〈3, 2〉 if S = 001111 (β2)
〈3, 4〉 if S = 001110 (β3)
〈4, 3〉 if S = 011110 digression from β3

〈5, 4〉 if S = 101110 (β4)
〈5, 6〉 if S = 101010 (β5)
〈6, 5〉 if S = 101011 digression from β5

〈7, 6〉 if S = 111010 (β6)
〈7, 8〉 if S = 111000 (β7)
〈8, 7〉 if S = 111100 digression from β7

〈9, 8〉 if S = 111001 (β8)
〈9, 10〉 if S = 110001 (β9)
〈9, 0〉 if |S | ≥ 5 or S ∈ {011011, 011101, 101101, 110110, 110011, 110101}

That we can demonstrate similar extremal behaviours for contract path length with
rationality constraints in both money-based (individual rationality) and money-free (coop-
erative rationality, equitable) settings irrespective of whether monotonicity properties are
assumed, has some interesting parallels with other contexts in which monotonicity is rel-
evant. In particular we can observe that in common with the complexity results already
noted from (Dunne et al., 2003) – deciding if an allocation is Pareto optimal, if an alloca-
tion maximises σu , or if an IR O-contract path exists – requiring utility functions to be
monotone does not result in a setting which is computationally more tractable.

3. M (k)-contract paths

We now turn to similar issues with respect to M (k)-contracts, recalling that in one respect
these offer a form of deal that does not fit into the classification of Sandholm (1998). This
classification defines four forms of contract type: O-contracts, as considered in the previous
section; S -contracts, that involve exactly 2 agents swapping single resources; C -contracts,
in which one agent tranfers at least two of its resources to another; and M -contracts in which
three or more agents reallocate their resource holding amongst themselves. Our definition
of M (k)-contracts permits two agents to exchange resources (thus are not M -contracts in
Sandholm’s (1998) scheme) and the deals permitted are not restricted to O , S , and C -
contracts. In one regard, however, M (k)-contracts are not as general as M -contracts since
a preset bound (k) is specified for the number of agents involved.

Our main result on M (k)-contract paths is the following development of Theorem 3.

Theorem 6 Let Φk (P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR M (k)-
contract. For all k ≥ 3, n ≥ k and m ≥

(
k
2

)
, there is a resource allocation setting

〈A,R,U〉 and an IR deal δ = 〈P ,Q〉 for which,

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2b2m/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)
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Before presenting the proof, we comment about the formulation of the theorem statement
and give an overview of the proof structure.

We first note that the lower bounds (where defined) have been phrased in terms of
the function Lopt as opposed to ρmax used in the various results on O-contract paths in
Section 2.2. It is, of course, the case that the bound claimed for Lopt(δ, 〈A,R,U〉,Φk−1)
will also be a lower bound on ρmax(n,m,Φk−1,Ψ) when n ≥ k and Ψ(P ,Q) holds whenever
the deal 〈P ,Q〉 is IR. The statement of Theorem 6, however, claims rather more than this,
namely that a specific resource allocation setting 〈A,R,U〉 can be defined for each n ≥ k
and each m, together with an IR deal 〈P ,Q〉 in such a way that: 〈P ,Q〉 can be achieved by
a single M (k)-contract and cannot be realised by an IR M (k − 2)-contract path. Recalling
that Lopt is a partial function, the latter property is equivalent to the claim made in part
(c) for the deal 〈P ,Q〉 of the theorem statement. Furthermore, this same deal although
achievable by an IR M (k − 1)-contract path can be so realised only by one whose length is
as given in part (b) of the theorem statement.

Regarding the proof itself, there are a number of notational complexities which we have
attempted to ameliorate by making some simplifying assumptions concerning the relation-
ship between m – the size of the resource set R – and k – the number of agents which are
needed to realise 〈P ,Q〉 in a single IR deal. In particular, we shall assume that m is an
exact multiple of

(
k
2

)
. We observe that by employing a similar device to that used in

the proof of Theorem 4 we can deal with cases for which m does not have this property: if
m = s

(
k
2

)
+ q for integer values s ≥ 1 and 1 ≤ q <

(
k
2

)
, we simply employ exactly the

same construction using m−q resources with the “missing” q resources from Rm being allo-
cated to A1 and never being reallocated within the M (k − 1)-contract path. This approach
accounts for the rounding operation (b. . .c) in the exponent term of the lower bound. We
shall also assume that the number of agents in A is exactly k . Within the proof we use a
running example for which k = 4 and m = 18 = 3× 6 to illustrate specific features.

We first give an outline of its structure.
Given 〈A,R,U〉 a resource allocation setting involving k agents and m resources, our

aim is to define an IR M (k − 1)-contract path

∆ = 〈P (1),P (2), . . . ,P (t)〉

that realises the IR M (k) deal 〈P (1),P (t)〉. We will use d to index particular allocations
within ∆, so that 1 ≤ d ≤ t .

In order to simplify the presentation we employ a setting in which the k agents are
A = {A0,A1, . . . ,Ak−1}. Recalling that m = s

(
k
2

)
, the resource set Rm is formed by

the union of
(

k
2

)
pairwise disjoint sets of size s. Given distinct values i and j with

0 ≤ i < j ≤ k−1, we use Ri ,j to denote one of these subsets with {r{i ,j}1 , r{i ,j}2 , . . . , r{i ,j}s }
the s resources that form R{i ,j}.

There are two main ideas underpinning the structure of each M (k − 1)-contract in ∆.
Firstly, in the initial and subsequent allocations, the resource set R{i ,j} is partitioned

between Ai and Aj and any reallocation of resources between Ai and Aj that takes place
within the deal 〈P (d),P (d+1)〉 will involve only resources in this set. Thus, for every al-
location P (d) and each pair {i , j}, if h 6∈ {i , j} then P (d)

h ∩ R{i ,j} = ∅. Furthermore, for
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δ = 〈P (d),P (d+1)〉 should both Ai and Aj be involved, i.e. {Ai ,Aj } ⊆ Aδ, then this real-
location of R{i ,j} between Ai and Aj will be an O-contract. That is, either exactly one
element of R{i ,j} will be moved from P (d)

i to become a member of the allocation P (d+1)
j or

exactly one element of R{i ,j} will be moved from P (d)
j to become a member of the allocation

P (d+1)
i . In total, every M (k − 1)-contract δ in ∆ consists of a simultaneous implementation

of
(

k − 1
2

)
O-contracts: a single O-contract for each of the distinct pairs {Ai ,Aj } of agents

from the k − 1 agents in Aδ.
The second key idea is to exploit one well-known property of the s-dimensional hyper-

cube network: for every s ≥ 2, Hs contains a Hamiltonian cycle, i.e. a simple directed cycle
formed using only the edges of Hs and containing all 2s vertices.7 Now, suppose

S(v) = v (0), v (1), . . . , v (i), . . . , v (2s−1), v (0)

is a Hamiltonian cycle in the hypercube Hs and

S(w) = w (0),w (1), . . . ,w (i), . . . ,w (2s−1),w (0)

the Hamiltonian cycle in which w (i) is obtained by complementing each bit in v (i). As we
have described in the overview of Section 2.1 we can interpret the s-bit label v = v1v2 . . . vs

as describing a particular subset ofR{i ,j}, i.e. that subset in which r{i ,j}k occurs if and only if
vk = 1. Similarly from any subset of R{i ,j} we may define a unique s-bit word. Now suppose
that P (d)

i is the allocation held by Ai in the allocation P (d) of ∆. The deal δ = 〈P (d),P (d+1)〉
will affect P (d)

i ∩ R{i ,j} in the following way: if i 6∈ Aδ or j 6∈ Aδ then P (d+1)
i ∩ R{i ,j} =

P (d)
i ∩ R{i ,j} and P (d+1)

j ∩ R{i ,j} = P (d)
j ∩ R{i ,j}. Otherwise we have {i , j} ⊆ Aδ and

the (complementary) holdings P (d)
i ∩R{i ,j} and P (d)

j ∩R{i ,j} define (complementary) s-bit
labels of vertices in Hs : if these correspond to places 〈v (h),w (h)〉 in the Hamiltonian cycles,
then in P (d+1)

i and P (d+1)
j the s-bit labels defined from P (d+1)

i ∩R{i ,j} and P (d+1)
j ∩R{i ,j}

produce the s-bit labels v (h+1) and w (h+1), i.e. the vertices that succeed v (h) and w (h) in
the Hamiltonian cycles. In total, for each j , Ai initially holds either the subset of R{i ,j} that
maps to v (0) or that maps to w (0) and, at the conclusion of the M (k − 1)-path, holds the
subset that maps to v (2s−1) (or w (2s−1)). The final detail is that the progression through the
Hamiltonian cycles is conducted over a series of rounds each round comprising k M (k − 1)-
deals.

We have noted that each M (k−1)-contract, 〈P (d),P (d+1)〉 that occurs in this path ∆ can
be interpreted as a set of

(
k − 1

2

)
distinct O-contracts. An important property of the utility

functions employed is that unless p ≥ k − 1 there will be no individually rational M (p)-
contract path that realises the deal 〈P (d),P (d+1)〉, i.e. the

(
k − 1

2

)
O-contract deals must

occur simultaneously in order for the progression from P (d) to P (d+1) to be IR. Although
the required deal could be realised by a sequence of O-contracts (or, more generally, any
suitable M (k − 2)-contract path), such realisations will not describe an IR contract path.

7. This can be shown by an easy inductive argument. For s = 2, the sequence 〈00, 01, 11, 10, 00〉 defines a
Hamiltonian cycle in H2. Inductively assume that 〈α1, α2, . . . , αp , α1〉 (with p = 2s) is such a cycle in
Hs then 〈0α1, 1α1, 1αp , 1αp−1, . . . , 1α2, 0α2 . . . , 0αp , 0α1〉 defines a Hamiltonian cycle in Hs+1.
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The construction of utility functions to guarantee such behaviour provides the principal
component in showing that the IR deal 〈P (1),P (t)〉 cannot be realised with an IR M (k−2)-
contract path: if Q is any allocation for which 〈P (1),Q〉 is an M (k − 2)-contract then
〈P (1),Q〉 is not IR.

We now proceed with the proof of Theorem 6.

Proof. (of Theorem 6) Fix A = {A0,A1, . . . ,Ak−1}. R consists of
(

k
2

)
pairwise disjoint

sets of s resources
R{i ,j} = {r{i ,j}1 , r{i ,j}2 , . . . , r{i ,j}s }

For k = 4 and s = 3 these yield A = {A0,A1,A2,A3} and

R{0,1} = {r{0,1}
1 , r{0,1}

2 , r{0,1}
3 }

R{0,2} = {r{0,2}
1 , r{0,2}

2 , r{0,2}
3 }

R{0,3} = {r{0,3}
1 , r{0,3}

2 , r{0,3}
3 }

R{1,2} = {r{1,2}
1 , r{1,2}

2 , r{1,2}
3 }

R{1,3} = {r{1,3}
1 , r{1,3}

2 , r{1,3}
3 }

R{2,3} = {r{2,3}
1 , r{2,3}

2 , r{2,3}
3 }

We use two ordering structures in defining the M (k − 1)-contract path.
a.

S(v) = v (0), v (1), . . . , v (i), . . . , v (2s−1), v (0)

a Hamiltonian cycle in Hs , where without loss of generality, v (0) = 111 . . . 11.

b.

S(w) = w (0),w (1), . . . ,w (i), . . . ,w (2s−1),w (0)

the complementary Hamiltonian cycle to this, so that w (0) = 000 . . . 00.

Thus for k = 4 and s = 3 we obtain

a. S(v) = 〈111, 110, 010, 011, 001, 000, 100, 101〉
b. S(w) = 〈000, 001, 101, 100, 110, 111, 011, 010〉

We can now describe the M (k − 1)-contract path.

∆ = 〈P (1),P (2), . . . ,P (t)〉

Initial Allocation: P (1).
Define the k × k Boolean matrix, B = [bi ,j ] (with 0 ≤ i , j ≤ k − 1) by

bi ,j =


⊥ if i = j
¬bj ,i if i > j
¬bi ,j−1 if i < j
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We then have for each 1 ≤ i ≤ k ,

P (1)
i =

i−1⋃
j=0

{ R{j ,i} : bi ,j = >} ∪
k−1⋃

j=i+1

{ R{i ,j} : bi ,j = >}

Thus, in our example,

B =


⊥ > ⊥ >
⊥ ⊥ > ⊥
> ⊥ ⊥ >
⊥ > ⊥ ⊥


Yielding the starting allocation

P (1)
0 = R{0,1} ∪R{0,3} = 〈111, 000, 111〉 ⊆ R{0,1} ∪R{0,2} ∪R{0,3}

P (1)
1 = R{1,2} = 〈000, 111, 000〉 ⊆ R{0,1} ∪R{1,2} ∪R{1,3}

P (1)
2 = R{0,2} ∪R{2,3} = 〈111, 000, 111〉 ⊆ R{0,2} ∪R{1,2} ∪R{2,3}

P (1)
3 = R{1,3} = 〈000, 111, 000〉 ⊆ R{0,3} ∪R{1,3} ∪R{2,3}

The third column in P (1)
i indicating the 3-bit labels characterising each of the subsets of

R{i ,j} for the three values that j can assume.

Rounds: The initial allocation is changed over a series of rounds

Q1,Q2, . . . ,Qz

each of which involves exactly k distinct M (k − 1)-contracts. We use Qx ,p to indicate the
allocation resulting after stage p in round x where 0 ≤ p ≤ k − 1. We note the following:

a. The initial allocation, P (1) will be denoted by Q0,k−1.

b. Qx ,0 is obtained using a single M (k − 1)-contract from Qx−1,k−1 (when x ≥ 1).

c. Qx ,p is obtained using a single M (k − 1)-contract from Qx ,p−1 (when 0 < p ≤ k − 1).

Our final item of notation is that of the cube position of i with respect to j in an allocation
P , denoted χ(i , j ,P). Letting u be the s-bit string describing Pi ∩R{i ,j} in some allocation
P , χ(i , j ,P) is the index of u in the Hamiltonian cycle S (v) (when R{i ,j} ⊆ P (1)

i ) or the
Hamiltonian cycle S (w) (when R{i ,j} ⊆ P (1)

j ). When P = Qx ,p for some allocation in the
sequence under construction we employ the notation χ(i , j , x , p), noting that one invariant
of our path will be χ(i , j , x , p) = χ(j , i , x , p), a property that certainly holds true of P (1) =
Q0,k−1 since χ(i , j , 0, k − 1) = χ(j , i , 0, k − 1) = 0.

The sequence of allocations in ∆ is built as follows. Since Q1,0 is the immediate successor
of the initial allocation Q0,k−1, it suffices to describe how Qx ,p is formed from Qx ,p−1 (when
p > 0) and Qx+1,0 from Qx ,k−1. Let Qy,q be the allocation to be formed from Qx ,p . The
deal δ = 〈Qx ,p ,Qy,q〉 will be an M (k − 1) contract in which Aδ = A \ {Aq}. For each pair
{i , j} ⊆ Aδ we have χ(i , j , x , p) = χ(j , i , x , p) in the allocation Qx ,p . In moving to Qy,q

exactly one element of R{i ,j} is reallocated between Ai and Aj in such a way that in Qy,q ,
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χ(i , j , y , q) = χ(i , j , x , p)+1, since Ai and Aj are tracing complementary Hamiltonian cycles
with respect to R{i ,j} this ensures that χ(j , i , y , q) = χ(j , i , x , p) + 1, thereby maintaining
the invariant property.

Noting that for each distinct pair 〈i , j 〉, we either have R{i ,j} allocated to Ai in P (1)

or R{i ,j} allocated to Aj in P (1), the description just outlined indicates that the allocation
P (d) = Qx ,p is completely specified as follows.

The cube position, χ(i , j , x , p), satisfies,

χ(i , j , x , p) =



0 if x = 0 and p = k − 1
1 + χ(i , j , x − 1, k − 1) if x ≥ 1, p = 0, and p 6∈ {i , j}
χ(i , j , x − 1, k − 1) if x ≥ 1, p = 0, and p ∈ {i , j}
1 + χ(i , j , x , p − 1) if 1 ≤ p ≤ k − 1, and p 6∈ {i , j}
χ(i , j , x , p − 1) if 1 ≤ p ≤ k − 1, and p ∈ {i , j}

For each i , the subset of R{i ,j} that is held by Ai in the allocation Qx ,p is,

v (χ(i ,j ,x ,p)) if R{i ,j} ⊆ P (1)
i

w (χ(i ,j ,x ,p)) if R{i ,j} ⊆ P (1)
j

(where we recall that s-bit labels in the hypercube Hs are identified with subsets
of R{i ,j}.)

The tables below illustrates this process for our example.

A0 A1 A2 A3

i j i j i j i j i j i j i j i j i j i j i j i j A〈P(d−1),P(d)〉

d x p 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 3 0 3 1 3 2
1 0 3 111 000 111 000 111 000 111 000 111 000 111 000 –
2 1 0 111 000 111 000 110 001 111 001 110 000 110 001 {A1,A2,A3}
3 1 1 111 001 110 000 110 001 110 001 010 001 110 101 {A0,A2,A3}
4 1 2 110 001 010 001 110 101 110 001 010 101 010 101 {A0,A1,A3}
5 1 3 010 101 010 101 010 101 010 101 010 101 010 101 {A0,A1,A2}
6 2 0 010 101 011 101 011 100 010 100 011 101 011 100 {A1,A2,A3}
7 2 1 010 100 001 101 011 100 011 100 001 100 011 110 {A0,A2,A3}
8 2 2 011 100 001 100 011 110 011 100 001 110 001 110 {A0,A1,A3}
9 2 3 001 110 001 110 001 110 001 110 001 110 001 110 {A0,A1,A2}
...

...
...

...
...

...
...

...
Subsets of R{i,j} held by Ai in Qx ,p (k = 4, s = 3)
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A0 A1 A2 A3

i j i j i j i j i j i j i j i j i j i j i j i j A〈P(d−1),P(d)〉

d x p 0 1 0 2 0 3 1 0 1 2 1 3 2 0 2 1 2 3 3 0 3 1 3 2
1 0 3 0 0 0 0 0 0 0 0 0 0 0 0 –
2 1 0 0 0 0 0 1 1 0 1 1 0 1 1 {A1,A2,A3}
3 1 1 0 1 1 0 1 1 1 1 2 1 1 2 {A0,A2,A3}
4 1 2 1 1 2 1 1 2 1 1 2 2 2 2 {A0,A1,A3}
5 1 3 2 2 2 2 2 2 2 2 2 2 2 2 {A0,A1,A2}
6 2 0 2 2 2 2 3 3 2 3 3 2 3 3 {A1,A2,A3}
7 2 1 2 3 3 2 3 3 3 3 4 3 3 4 {A0,A2,A3}
8 2 2 3 3 4 3 3 4 3 3 4 4 4 4 {A0,A1,A3}
9 2 3 4 4 4 4 4 4 4 4 4 4 4 4 {A0,A1,A2}
...

...
...

...
...

...
...

...
Cube Positions χ(i , j , x , p) (k = 4, s = 3)

It is certainly the case that this process of applying successive rounds of k deals could be
continued, however, we wish to do this only so long as it is not possible to go from some
allocation P (d) in the sequence to another P (d+r) for some r ≥ 2 via an M (k − 1)-contract.

Now if Qx ,p and Qy,q are distinct allocations generated by the process above then the
deal δ = 〈Qx ,p ,Qy,q〉 is an M (k − 1)-contract if and only if for some Ai , Qx ,p

i = Qy,q
i . It

follows that if 〈P (d),P (d+r)〉 is an M (k − 1)-contract for some r > 1, then for some i and
all j 6= i , P (d+r)

i ∩R{i ,j} = P (d)
i ∩R{i ,j}.

To determine the minimum value of r > 1 with which P (d+r)
i = P (d)

i , we observe that
without loss of generality we need consider only the case d = i = 0, i.e. we determine
the minimum number of deals before P (1)

0 reappears. First note that in each round, Qx , if
χ(0, j , x − 1, k − 1) = p then χ(0, j , x , k − 1) = p + k − 2, i.e. each round advances the cube
position k − 2 places: χ(0, j , x − 1, k − 1) = χ(0, j , x , 0) and χ(0, j , x , j ) = χ(0, j , x , j − 1).
We can also observe that P (1)

0 = Q0,k−1
0 6= Qx ,p

0 for any p with 0 < p < k − 1, since

χ(0, 1, x , p) = χ(0, 2, x , p) = . . . = χ(0, k − 1, x , p)

only in the cases p = 0 and p = k − 1. It follows that our value r > 1 must be of the form
qk where q must be such that q(k − 2) is an exact multiple of 2s . From this observation we
see that,

min{ r > 1 : P (1)
0 = P (1+r)

0 } = min{ qk : q(k − 2) is a multiple of 2s}

Now, if k is odd then q = 2s is the minimal such value, so that r = k2s . If k is even then
it may be uniquely written in the form z2l + 2 where z is odd so giving q as 1 (if l ≥ s) or
2s−l (if l ≤ s), so that these give r = k and r = z2s + 2s−l+1, e.g. for k = 4 and s = 3, we
get k = 1 × 21 + 2 so that r = 23 + 23−1+1 = 16 and in our example P (1)

0 = P (17)
0 may be

easily verified. In total,

r ≥


k2s if k is odd
k if k = z2l + 2, z is odd, and l ≥ s
2s if k = z2l + 2, z is odd and l ≤ s
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All of which immediately give r ≥ 2s (in the second case k ≥ 2s , so the inequality holds
trivially), and thus we can continue the chain of M (k − 1) contracts for at least 2s moves.
Recalling that m = s

(
k
2

)
, this gives the length of the M (k − 1)-contract path

∆ = 〈P (1),P (2), . . . ,P (t)〉

written in terms of m and k as at least8

2
m/

(
k
2

)
− 1 = 2

2m
k(k−1) − 1

It remains to define appropriate utility functions U = 〈u0, . . . , uk−1〉 in order to ensure that
∆ is the unique IR M (k − 1)-contract path realising the IR M (k)-deal 〈P (1),P (t)〉. In
defining U it will be convenient to denote ∆ as the path

∆ = 〈Q0,k−1,Q1,0,Q1,1, . . . ,Q1,k−1, . . . ,Qx ,p , . . . ,Qr ,k−1〉

and, since rk ≥ 2s , we may without loss of generality, focus on the first 2s allocations in
this contract path.

Recalling that χ(i , j , x , p) is the index of the s-bit label u corresponding to Qx ,p
i ∩R{i ,j}

in the relevant Hamiltonian cycle – i.e. S(v) if R{i ,j} ⊆ Q0,k
i , S(w) if R{i ,j} ⊆ Q0,k−1

j – we
note the following properties of the sequence of allocations defined by ∆ that hold for each
distinct i and j .

P1. ∀ x , p χ(i , j , x , p) = χ(j , i , x , p)

P2. If Qy,q is the immediate successor of Qx ,p in ∆ then χ(i , j , y , q) ≤ χ(i , j , x , p) + 1
with equality if and only if q 6∈ {i , j}.

P3. ∀ i ′, j ′ with 0 ≤ i ′, j ′ ≤ k − 1, χ(i , j , x , k − 1) = χ(i ′, j ′, x , k − 1).

The first two properties have already been established in our description of ∆. The third
follows from the observation that within each round Qx , each cube position is advanced by
exactly k − 2 in progressing from Qx−1,0 to Qx ,k−1.

The utility function ui is now given, for S ⊆ Rm , by

ui(S ) =

{ ∑
j 6=i χ(i , j , x , p) if S = Qx ,p

i for some 0 ≤ x ≤ r , 0 ≤ p ≤ k − 1
−2km otherwise

We claim that, with these choices,

∆ = 〈Q0,k−1,Q1,0,Q1,1, . . . ,Q1,k−1, . . . ,Qx ,p , . . . ,Qr ,k−1〉

is the unique IR M (k − 1)-contract path realising the IR M (k)-deal 〈Q0,k−1,Qr ,k−1〉. Cer-
tainly, ∆ is an IR M (k − 1)-contract path: each deal δ = 〈Qx ,p ,Qy,q〉 on this path has
|Aδ| = k − 1 and since for each agent Ai in Aδ = A\ {Aq} the utility of Qy,q

i has increased

8. We omit the rounding operation b. . .c in the exponent, which is significant only if m is not an exact

multiple of
(

k
2

)
, in which event the device described in our overview of the proof is applied.
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by exactly k − 2, i.e. each cube position of i with respect to j whenever q 6∈ {i , j} has
increased, it follows that σu(Qy,q) > σu(Qx ,p) and hence 〈Qx ,p ,Qy,q〉 is IR.

We now show that ∆ is the unique IR M (k − 1)-contract path continuation of Q0,k−1

Suppose δ = 〈Qx ,p ,P〉 is a deal that deviates from the contract path ∆ (having followed
it through to the allocation Qx ,p). Certainly both of the following must hold of P : for
each i , Pi ⊆ ∪j 6=iR{i ,j}; and there is a k -tuple of pairs 〈(x0, p0), . . . , (xk−1, pk−1)〉 with
which Pi = Qxi ,pi

i , for if either fail to be the case for some i , then ui(Pi) = −2km with the
consequent effect that σu(P) < 0 and thence not IR. Now, if Qy,q is the allocation that
would succeed Qx ,p in ∆ then P 6= Qy,q , and thus for at least one agent, Qxi ,pi

i 6= Qy,q
i .

It cannot be the case that Qxi ,pi
i corresponds to an allocation occurring strictly later than

Qy,q
i in ∆ since such allocations could not be realised by an M (k−1)-contract. In addition,

since Pi = Qxi ,pi
i it must be the case that |Aδ| = k − 1 since exactly k − 1 cube positions in

the holding of Ai must change. It follows that there are only two possibilities for (yi , pi):
Pi reverts to the allocation immediately preceding Qx ,p

i or advances to the holding Qy,q
i .

It now suffices to observe that a deal in which some agents satisfy the first of these while
the remainder proceed in accordance with the second either does not give rise to a valid
allocation or cannot be realised by an M (k−1)-contract. On the other hand if P corresponds
to the allocation preceding Qx ,p then δ is not IR. We deduce, therefore, that the only IR
M (k − 1) deal that is consistent with Qx ,p is that prescribed by Qy,q .

This completes the analysis needed for the proof of part (b) of the theorem. It is
clear that since the system contains only k agents, any deal 〈P ,Q〉 can be effected with
a single M (k)-contract, thereby establishing part (a). For part (c) – that the IR deal
〈P (1),P (t)〉 cannot be realised using an individually rational M (k − 2)-contract path, it
suffices to observe that since the class of IR M (k − 2)-contracts are a subset of the class
of IR M (k − 1)-contracts, were it the case that an IR M (k − 2)-contract path existed to
implement 〈P (1),P (t)〉, this would imply that ∆ was not the unique IR M (k − 1)-contract
path. We have, however, proved that ∆ is unique, and part (c) of the theorem follows. 2

We obtain a similar development of Corollary 1 in

Corollary 3 For all k ≥ 3, n ≥ k, m ≥
(

k
2

)
and each of the cases below,

a. Φk (δ) holds if and only if δ is a cooperatively rational M (k)-contract.
Ψ(δ) holds if and only if δ is cooperatively rational.

b. Φk (δ) holds if and only if δ is δ is an equitable M (k)-contract.
Ψ(δ) holds if and only if δ is is equitable.

there is a resource allocation setting 〈A,R,U〉 and a Ψ-deal δ = 〈P ,Q〉 for which

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2b2m/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)

Proof. As with the proof of Corollary 1 in relation to Theorem 3, in each case we employ
the contract path from the proof of Theorem 6, varying the definition of U = 〈u1, u2, . . . , uk 〉
in order to establish each result. Thus let

∆m = 〈P (1),P (2), . . . ,P (r), . . . ,P (t)〉
= 〈Q0,k−1,Q1,0, . . . ,Qx ,p , . . . ,Qz ,r 〉
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be the M (k − 1)-contract path realising the M (k)-deal 〈P (1),P (t)〉 described in the proof
of Theorem 6, this path having length t ≥ 2b2m/k(k − 1) − 1.

a. The utility functions U = 〈u0, . . . , uk−1〉 of Theorem 6 ensure that 〈P (1),P (t)〉 is
cooperatively rational and that ∆m is a cooperatively rational M (k − 1)-contract
path realising 〈P (1),P (t)〉: the utility held by Ai never decreases in value and there is
at least one agent (in fact exactly k −1) whose utility increases in value. Furthermore
∆m is the unique cooperatively rational M (k − 1)-contract path realising 〈P (1),P (t)〉
since, by the same argument used in Theorem 6, any deviation will result in some
agent suffering a loss of utility.

b. Set the utility functions U = 〈u0, . . . , uk−1〉 as,

ui(S ) =



−1 if S 6= Qx ,p
i for any Qx ,p ∈ ∆m

xk2 + k − i if S = Qx ,k−1
i

(x − 1)k2 + k + p if S = Qx ,p
0 , p < k − 1 and i = 0

(x − 1)k2 + k − i + p + 1 if S = Qx ,p
i , p < i − 1 and i 6= 0.

xk2 + 1 if S = Qx ,i−1
i = Qx ,i

i and i 6= 0.
xk2 + 1 + p − i if S = Qx ,p

i , p > i and i 6= 0

To see that these choices admit ∆m as an equitable M (k − 1)-contract path realising
the equitable deal 〈Q0,k−1,Qz ,r 〉, we first note that

min
0≤i≤k−1

{ui(Q
z ,r
i )} > 1 = min

0≤i≤k−1
{ui(Q

0,k−1
i )}

thus, 〈Q0,k−1,Qz ,r 〉 is indeed equitable. Consider any deal δ = 〈Qx ,p ,Qy,q〉 occurring
within ∆m . It suffices to show that

min
0≤i≤k−1

{ui(Q
x ,p
i )} 6= uq(Qx ,p

q )

since Aq 6∈ Aδ, and for all other agents ui(Q
y,q
i ) > ui(Q

x ,p
i ). We have two possibilities:

q = 0 (in which case p = k − 1 and y = x + 1); q > 0 (in which case p = q − 1).
Consider the first of these: u0(Q

x ,k−1
0 ) = xk2 + k , however,

min{ui(Q
x ,k−1
i )} = xk2 + 1 = uk−1(Q

x ,k−1
k−1 )

and hence every deal 〈Qx ,k−1,Qx+1,0〉 forming part of ∆m is equitable.

In the remaining case, uq(Qx ,q−1
q ) = xk2 + 1 and

min{ui(Q
x ,q−1
i )} ≤ u0(Q

x ,q−1
0 )

= (x − 1)k2 + k + q − 1
< xk2 − (k2 − 2k + 1)
= xk2 − (k − 1)2

< xk2 + 1
= uq(Qx ,q−1

q )

and thus the remaining deals 〈Qx ,q−1,Qx ,q〉 within ∆m are equitable. By a similar
argument to that employed in Theorem 6 it follows that ∆m is the unique equitable
M (k − 1)-contract path realising 〈Q0,k−1,Qz ,r 〉.

2
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Monotone Utility Functions and M (k)-contract paths

The device used to develop Theorem 3 to obtain the path of Theorem 4 can be applied
to the rather more intricate construction of Theorem 6, thereby allowing exponential lower
bounds on ρmax

mono(n,m,Φk ,Ψ) to be derived. We will merely outline the approach rather than
present a detailed technical exposition. We recall that it became relatively straightforward
to define suitable monotone utility functions once it was ensured that the subset sizes of
interest – i.e. those for allocations arising in the O-contract path – were forced to fall into
a quite restricted range. The main difficulty that arises in applying similar methods to the
path ∆ of Theorem 6 is the following: in the proof of Theorem 4 we consider two agents
so that converting ∆s from a setting with s resources in Theorem 3 to ext(∆s) with 2s
resources in Theorem 4 is achieved by combining “complementary” allocations, i.e. α ⊆ Rs

with α ⊆ Ts . We can exploit two facts, however, to develop a path multi(∆) for which
monotone utility functions could be defined: the resource set Rm in Theorem 6 consists of(

k
2

)
disjoint sets of size s; and any deal δ on the path ∆ involves a reallocation of R{i ,j}

between Ai and Aj when {i , j} ⊆ Aδ. Thus letting Tm be formed by
(

k
2

)
disjoint sets,

T {i ,j} each of size s, suppose that P (d)
i is described by

α
(d)
i ,0 α

(d)
i ,1 · · · α

(d)
i ,i−1 α

(d)
i ,i+1 · · · α

(d)
i ,k−1

with α
(d)
i ,j the s-bit label corresponding to the subset of R{i ,j} that is held by Ai in P (d).

Consider the sequence of allocations,

multi(∆) = 〈C (1),C (2), . . . ,C (t)〉

in a resource allocation setting have k agents and 2m resources – Rm ∪ Tm for which C (d)
i

is characterised by
β

(d)
i ,0 β

(d)
i ,1 · · · β

(d)
i ,i−1 β

(d)
i ,i+1 · · · β

(d)
i ,k−1

In this, β
(d)
i ,j , indicates the subset of R{i ,j} ∪ T {i ,j} described by the 2s-bit label,

β
(d)
i ,j = α

(d)
i ,j α

(d)
i ,j

i.e. α
(d)
i ,j selects a subset of R{i ,j} while α

(d)
i ,j a subset of T {i ,j}.

It is immediate from this construction that for each allocation C (d) in multi(∆) and each
Ai , it is always the case that |C (d)

i | = (k − 1)s. It follows, therefore, that the only subsets
that are relevant to the definition of monotone utility functions with which an analogous
result to Theorem 6 for the path multi(∆) could be derived, are those of size (k − 1)s: if
S ⊆ Rm∪Tm has |S | < (k−1)s, we can fix ui(S ) as a small enough negative value; similarly
if |S | > (k − 1)s then ui(S ) can be set to a large enough positive value.9

Our description in the preceding paragraphs, can be summarised in the following re-
sult, whose proof is omitted: extending the outline given above to a formal lower bound

9. It is worth noting that the “interpolation” stage used in Theorem 4 is not needed in forming multi(∆):
the deal 〈C (d),C (d+1)〉 is an M (k−1)-contract. We recall that in going from ∆s of Theorem 3 to ext(∆s)
the intermediate stage – double(∆s) – was not an O-contract path.

72



Extremal Behaviour in Multiagent Contract Negotiation

proof, is largely a technical exercise employing much of the analysis already introduced, and
since nothing signifcantly new is required for such an analysis we shall not give a detailed
presentation of it.

Theorem 7 Let Φk (P ,Q) be the predicate which holds whenever 〈P ,Q〉 is an IR M (k)-
contract. For all k ≥ 3, n ≥ k and m ≥ 2

(
k
2

)
, there is a resource allocation setting

〈A,R,U〉 in which every u ∈ U is monotone, and an IR deal δ = 〈P ,Q〉 for which,

Lopt(δ, 〈A,R,U〉,Φk ) = 1 (a)
Lopt(δ, 〈A,R,U〉,Φk−1) ≥ 2bm/k(k−1)c − 1 (b)
Lopt(δ, 〈A,R,U〉,Φk−2) is undefined (c)

4. Related Work

The principal focus of this article has considered a property of contract paths realising ratio-
nal reallocations 〈P ,Q〉 when the constituent deals are required to conform to a structural
restriction and satisfy a rationality constraint. In Section 2 the structural restriction limited
deals to those involving a single resource, i.e. O-contracts. For the rationality constraint
forcing deals strictly to improve utilitarian social welfare, i.e. to be individually rational
(IR) we have the following properties.

a. There are resource allocation settings 〈A,R,U〉 within which there are IR reallocations
〈P ,Q〉 that cannot be realised by a sequence of IR O-contracts. (Sandholm, 1998,
Proposition 2)

b. Every IR reallocation, 〈P ,Q〉, that can be realised by an IR O-contract path, can be
realised by an IR O-contract path of length at most nm−(n−1)m. (Sandholm, 1998,
Proposition 2)

c. Given 〈A,R,U〉 together with an IR reallocation 〈P ,Q〉 the problem of deciding if
〈P ,Q〉 can be implemented by an IR O-contract path is np–hard, even if |A| = 2 and
both utility functions are monotone. (Dunne et al., 2003, Theorem 11).

d. There are resource allocation settings 〈A,R,U〉 within which there are IR reallocations
〈P ,Q〉 that can be realised by an IR O-contract path, but with any such path having
length exponential in m. This holds even in the case |A| = 2 and both utility functions
are monotone. (Theorem 3 and Theorem 4 of Section 2)

In a recent article Endriss and Maudet (2004a) analyse contract path length also considering
O-contracts with various rationality constraints. Although the approach is from a rather
different perspective, the central question addressed – “How many rational deals are required
to reach an optimal allocation?”, (Endriss & Maudet, 2004a, Table 1, p. 629) – is closely
related to the issues discussed above. One significant difference in the analysis of rational O-
contracts from Sandholm’s (1998) treatment and the results in Section 2 is that in (Endriss
& Maudet, 2004a) the utility functions are restricted so that every rational reallocation
〈P ,Q〉 can be realised by a rational O-contract path. The two main restrictions examined
are requiring utility functions to be additive, i.e. for every S ⊆ R, u(S ) =

∑
r∈S u(r);
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and, requiring the value returned to be either 0 or 1, so-called 0 − 1 utility functions.
Additive utility functions are considered in the case of IR O-contracts (Endriss & Maudet,
2004a, Theorems 3, 9), whereas 0−1 utility functions for cooperatively rational O-contracts
(Endriss & Maudet, 2004a, Theorems 4, 11). Using ρmax

add (n,m,Φ,Ψ) and ρmax
0−1(n,m,Φ,Ψ)

to denote the functions introduced in Definition 6 where all utility functions are additive
(respectively 0−1), cf. the definition of ρmax

mono, then with Φ1(P ,Q) holding if 〈P ,Q〉 is an IR
O-contract; Φ2(P ,Q) holding if 〈P ,Q〉 is a cooperatively rational O-contract and Ψ(P ,Q)
true when 〈P ,Q〉 is IR, we may formulate Theorems 9 and 11 of (Endriss & Maudet, 2004a)
in terms of the framework used in Definition 6, as

ρmax
add (n,m,Φ1,Ψ) = m (Endriss & Maudet , 2004a,Theorem 9)

ρmax
0−1(n,m,Φ2,Ψ) = m (Endriss & Maudet , 2004a,Theorem 11)

We can, of course, equally couch Theorems 3 and 4 of Section 2 in terms of the “shortest-
path” convention adopted in (Endriss & Maudet, 2004a), provided that the domains of
utility and reallocation instances are restricted to those for which an appropriate O-contract
path exists. Thus, we can obtain the following development of (Endriss & Maudet, 2004a,
Table 1) in the case of O-contracts.

Utility Functions Additive 0-1 Unrestricted Monotone Unrestricted Monotone
Rationality IR CR IR IR CR CR

Shortest Path m m Ω(2m ) Ω(2m/2) Ω(2m ) Ω(2m/2)
Complete Yes Yes No No No No

Table 2: How many O-contract rational deals are required to reach an allocation?
Extension of Table 1 from (Endriss & Maudet, 2004a, p. 629)

5. Conclusions and Further Work

Our aim in this article has been to develop the earlier studies of Sandholm (1998) concerning
the scope and limits of particular “practical” contract forms. While Sandholm (1998) has
established that insisting on individual rationality in addition to the structural restriction
prescribed by O-contracts leads to scenarios which are incomplete (in the sense that there
are individually rational deals that cannot be realised by individually rational O-contracts)
our focus has been with respect to deals which can be realised by restricted contract paths,
with the intention of determining to what extent the combination of structural and rational-
ity conditions increases the number of deals required. We have shown that, using a number
of natural definitions of rationality, for settings involving m resources, rational O-contract
paths of length Ω(2m) are needed, whereas without the rationality restriction on individual
deals, at most m O-contracts suffice to realise any deal. We have also considered a class
of deals – M (k)-contracts – that were not examined in (Sandholm, 1998), establishing for
these cases that, when particular rationality conditions are imposed, M (k − 1)-contract
paths of length Ω(22m/k2

) are needed to realise a deal that can be achieved by a single
M (k)-contract.

We note that our analyses have primarily been focused on worst-case lower bounds
on path length when appropriate paths exist, and as such there are several questions of
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practical interest that merit further discussion. It may be noted that the path structures
and associated utility functions are rather artificial, being directed to attaining a path of a
specific length meeting a given rationality criterion. We have seen, however, in Theorems 4
and 5 as outlined in our discussion concluding Section 3 that the issue of exponential length
contract paths continues to arise even when we require the utility functions to satisfy a
monotonicity condition. We can identify two classes of open question that arise from these
results.

Firstly, focusing on IR O-contract paths, it would be of interest to identify “natural”
restrictions on utility functions which would ensure that, if a deal 〈P ,Q〉 can be implemented
by an IR O-contract path, then it can be realised by one whose length is polynomially
bounded in m, e.g. such as additivity mentioned in the preceding section. We can interpret
Theorem 4, as indicating that monotonicity does not guarantee “short” IR contract paths.
We note, however, that there are some restrictions that suffice. To use a rather trivial
example, if the number of distinct values that σu can assume is at most mp for some
constant p then no IR O-contract path can have length exceeding mp : successive deals
must strictly increase σu and if this can take at most K different values then no IR contract
path can have length exceeding K . As well as being of practical interest, classes of utility
function with the property being considered would also be of some interest regarding one
complexity issue. The result proved in (Dunne et al., 2003) establishing that deciding if an
IR O-contract path exists is np-hard, gives a lower bound on the computational complexity
of this problem. At present, no (non-trivial) upper bound on this problem’s complexity
has been demonstrated. Our results in Theorems 3 and 4 indicate that if this decision
problem is in np (thus its complexity would be np–complete rather than np–hard) then
the required polynomial length existence certificate may have to be something other than
the path itself.10 We note that the proof of np–hardness in (Dunne et al., 2003) constructs
an instance in which σu can take at most O(m) distinct values: thus, from our example of
a restriction ensuring that if such are present then IR O-contract paths are “short”, this
result of (Dunne et al., 2003) indicates that the question of deciding their existence might
remain computationally hard.

Considering restrictions on the form of utility functions is one approach that could be
taken regarding finding “tractable” cases. An alternative would be to gain some insight
into what the “average” path length is likely to be. In attempting to address this question,
however, a number of challenging issues arise. The most immediate of these concerns,
of course, the notion of modeling a distribution on utility function given our definitions
of rationality in terms of the value agents attach to their resource holdings. In principle
an average-case analysis of scenarios involving exactly two agents could be carried out in
purely graph-theoretic terms, i.e. without the complication of considering utility functions
directly. It is unclear, however, whether such a graph-theoretic analysis obviating the need
for consideration of literal utility functions, can be extended beyond settings involving
exactly two agents. One difficulty arising with three or more agents is that our utility

10. The use of “may” rather than “must” is needed because of the convention for representing utility functions
employed in (Dunne et al., 2003).
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functions have no allocative externalities, i.e. given an allocation 〈X ,Y ,Z 〉 to three agents,
u1(X ) is unchanged should Y ∪ Z be redistributed among A2 and A3.11

As one final set of issues that may merit further study we raise the following. In
our constructions, the individual deals on a contract path must satisfy both a structural
condition (be an O-contract or involve at most k agents), and a rationality constraint.
Focusing on O-contracts we have the following extremes: from (Sandholm, 1998), at most
m O-contracts suffice to realise any rational deal; from our results above, Ω(2m) rational
O-contracts are needed to realise some rational deals. There are a number of mechanisms
we can employ to relax the condition that every single deal be an O-contract and be
rational. For example, allow a path to contain some number of deals which are not O-
contracts (but must still be IR) or insist that all deals are O-contracts but allow some to
be irrational. Thus, in the latter case, if we go to the extent of allowing up to m irrational
O-contracts, then any rational deal can be realised efficiently. It would be of some interest
to examine issues such as the effect of allowing a constant number, t , of irrational deals
and questions such as whether there are situations in which t irrational contracts yield
a ‘short’ contract path but t − 1 force one of exponential length. Of particular interest,
from an application viewpoint, is the following: define a (γ(m),O)-path as an O-contract
path containing at most γ(m) O-contracts which are not individually rational. We know
that if γ(m) = 0 then individually rational (0,O)-paths are not complete with respect to
individually rational deals; similarly if γ(m) = m then (m,O)-paths are complete with
respect to individually rational deals. A question of some interest would be to establish
if there is some γ(m) = o(m) for which (γ(m),O)-paths are complete with respect to
individually rational deals and with the maximum length of such a contract path bounded
by a polynomial function of m.
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