
Journal of Artificial Intelligence Research 21 (2004) 287-317 Submitted 06/03; published 03/04

IDL-Expressions:
A Formalism for Representing and Parsing

Finite Languages in Natural Language Processing

Mark-Jan Nederhof markjan@let.rug.nl

Faculty of Arts, University of Groningen
P.O. Box 716
NL-9700 AS Groningen, The Netherlands

Giorgio Satta satta@dei.unipd.it

Dept. of Information Engineering, University of Padua
via Gradenigo, 6/A
I-35131 Padova, Italy

Abstract

We propose a formalism for representation of finite languages, referred to as the class
of IDL-expressions, which combines concepts that were only considered in isolation in
existing formalisms. The suggested applications are in natural language processing, more
specifically in surface natural language generation and in machine translation, where a
sentence is obtained by first generating a large set of candidate sentences, represented in
a compact way, and then filtering such a set through a parser. We study several formal
properties of IDL-expressions and compare this new formalism with more standard ones.
We also present a novel parsing algorithm for IDL-expressions and prove a non-trivial upper
bound on its time complexity.

1. Introduction

In natural language processing, more specifically in applications that involve natural lan-
guage generation, the task of surface generation consists in the process of generating an out-
put sentence in a target language, on the basis of some input representation of the desired
meaning for the output sentence. During the last decade, a number of new approaches for
natural language surface generation have been put forward, called hybrid approaches. Hy-
brid approaches make use of symbolic knowledge in combination with statistical techniques
that have recently been developed for natural language processing. Hybrid approaches
therefore share many advantages with statistical methods for natural language processing,
such as high accuracy, wide coverage, robustness, portability and scalability.

Hybrid approaches are typically based on two processing phases, described in what
follows (Knight & Hatzivassiloglou, 1995; Langkilde & Knight, 1998; Bangalore & Rambow,
2000 report examples of applications of this approach in real world generation systems).
In the first phase one generates a large set of candidate sentences by a relatively simple
process. This is done on the basis of an input sentence in some source language in case
the process is embedded within a machine translation system, or more generally on the
basis of some logical/semantic representation, called conceptual structure, which denotes
the meaning that the output sentence should convey. This first phase involves no or only

c©2004 AI Access Foundation. All rights reserved.

Nederhof & Satta

few intricacies of the target language, and the set of candidate sentences may contain many
that are ungrammatical or that can otherwise be seen as less desirable than others. In the
second phase one or more preferred sentences are selected from the collection of candidates,
exploiting some form of syntactic processing that more heavily relies on properties of the
target language than the first phase. This syntactic processing may involve language models
as simple as bigrams or it may involve more powerful models such as those based on context-
free grammars, which typically perform with higher accuracy on this task (see for instance
work presented by Charniak, 2001 and references therein).

In hybrid approaches, the generation of the candidate set typically involves a symbolic
grammar that has been quickly hand-written, and is quite small and easy to maintain.
Such a grammar cannot therefore account for all of the intricacies of the target language.
For instance, frequency information for synonyms and collocation information in general
is not encoded in the grammar. Similarly, lexico-syntactic and selectional constraints for
the target language might not be fully specified, as is usually the case with small and mid-
sized grammars. Furthermore, there might also be some underspecification stemming from
the input conceptual structure. This is usually the case if the surface generation module
is embedded into a larger architecture for machine translation, and the source language is
underspecified for features such as definiteness, time and number. Since inferring the missing
information from the sentence context is a very difficult task, the surface generation module
usually has to deal with underspecified knowledge.

All of the above-mentioned problems are well-known in the literature on natural language
surface generation, and are usually referred to as “lack of knowledge” of the system or of the
input. As a consequence of these problems, the set of candidate sentences generated in the
first phase may be extremely large. In real world generation systems, candidate sets have
been reported to contain as many as 1012 sentences (Langkilde, 2000). As already explained,
the second processing phase in hybrid approaches is intended to reduce these huge sets to
subsets containing only a few sentences. This is done by exploiting knowledge about the
target language that was not available in the first phase. This additional knowledge can
often be obtained through automatic extraction from corpora, which requires considerably
less effort than the development of hand-written, purely symbolic systems.

Due to the extremely large size of the set of candidate sentences, the feasibility of hybrid
approaches to surface natural language generation relies on

• the compactness of the representation of a set of candidate sentences that in real world
systems might be as large as 1012; and

• the efficiency of syntactic processing of the stored set.

Several solutions have been adopted in existing hybrid systems for the representation
of the set of candidate sentences. These include bags of words (Brown et al., 1990) and
bags of complex lexical representations (Beaven, 1992; Brew, 1992; Whitelock, 1992), word
lattices (Knight & Hatzivassiloglou, 1995; Langkilde & Knight, 1998; Bangalore & Rambow,
2000), and non-recursive context-free grammars (Langkilde, 2000). As will be discussed in
detail in Section 2, word lattices and non-recursive context-free grammars allow encoding
of precedence constraints and choice among different words, but they both lack a primitive
for representing strings that are realized by combining a collection of words in an arbitrary

288

IDL-Expressions: A Formalism for Finite Languages

order. On the other hand, bags of words allow the encoding of free word order, but in
such a representation one cannot directly express precedence constraints and choice among
different words.

In this paper we propose a new representation that combines all of the above-mentioned
primitives. This representation consists of IDL-expressions. In the term IDL-expression,
‘I’ stands for “interleave”, which pertains to phrases that may occur interleaved, allowing
freedom on word order (a precise definition of this notion will be provided in the next
section); ‘D’ stands for “disjunction”, which allows choices of words or phrases; ‘L’ stands
for “lock”, which is used to constrain the application of the interleave operator. We study
some interesting properties of this representation, and argue that the expressivity of the
formalism makes it more suitable than the alternatives discussed above for use within hybrid
architectures for surface natural language generation. We also associate IDL-expressions
with IDL-graphs, an equivalent representation that can be more easily interpreted by a
machine, and develop a dynamic programming algorithm for parsing IDL-graphs using a
context-free grammar. If a set of candidate sentences is represented as an IDL-expression
or IDL-graph, the algorithm can be used to filter out ungrammatical sentences from the
set, or to rank the sentences in the set according to their likelihood, in case the context-free
grammar assigns weights to derivations. While parsing is traditionally defined for input
consisting of a single string, we here conceive parsing as a process that can be carried out
on an input device denoting a language, i.e., a set of strings.

There is a superficial similarity between the problem described above of representing
finite sets in surface generation, and a different research topic, often referred to as discon-
tinuous parsing. In discontinuous parsing one seeks to relax the definition of context-free
grammars in order to represent the syntax of languages that exhibit constructions with un-
certainty on word or constituent order (see for instance work reported by Daniels & Meurers,
2002 and references therein). In fact, some of the operators we use in IDL-expressions have
also been exploited in recent work on discontinuous parsing. However, the parsing problem
for discontinuous grammars and the parsing problem for IDL-expressions are quite differ-
ent: in the former, we are given a grammar with productions that express uncertainty on
constituent order, and need to parse an input string whose symbols are totally ordered; in
the latter problem we are given a grammar with total order on the constituents appear-
ing in each production, and need to parse an input that includes uncertainty on word and
constituent order.

This paper is structured as follows. In Section 2 we give a brief overview of existing
representations of finite languages that have been used in surface generation components.
We then discuss some notational preliminaries in Section 3. In Section 4 we introduce IDL-
expressions and define their semantics. In Section 5 we associate with IDL-expressions an
equivalent but more procedural representation, called IDL-graphs. We also introduce the
important notion of cut of an IDL-graph, which will be exploited later by our algorithm.
In Section 6 we briefly discuss the Earley algorithm, a traditional method for parsing a
string using a context-free grammar, and adapt this algorithm to work on finite languages
encoded by IDL-graphs. In Section 7 we prove a non-trivial upper bound on the number
of cuts in an IDL-graph, and on this basis we investigate the computational complexity of
our parsing algorithm. We also address some implementational issues. We conclude with
some discussion in Section 8.

289

Nederhof & Satta

2. Representations of Finite Languages

In this section we analyze and compare existing representations of finite languages that have
been adopted in surface generation components of natural language systems.

Bags (or multisets) of words have been used in several approaches to surface generation.
They are at the basis of the generation component of the statistical machine translation
models proposed by Brown et al. (1990). Bags of complex lexical signs have also been used
in the machine translation approach described by Beaven (1992) and Whitelock (1992),
called shake-and-bake. As already mentioned, bags are a very succinct representation of
finite languages, since they allow encoding of more than exponentially many strings in the
size of a bag itself. This power comes at a cost, however. Deciding whether some string
encoded by an input bag can be parsed by a CFG is NP-complete (Brew, 1992). It is not
difficult to show that this result still holds in the case of a regular grammar or, equivalently,
a regular expression. An NP-completeness result involving bags has also been presented
by Knight (1999), for a related problem where the parsing grammar is a probabilistic model
based on bigrams.

As far as expressivity is concerned, bags of words have also strict limitations. These
structures lack a primitive for expressing choices among words. As already observed in
the introduction, this is a serious problem in natural language generation, where alterna-
tives in lexical realization must be encoded in the presence of lack of detailed knowledge
of the target language. In addition, bags of words usually do not come with precedence
constraints. However, in natural language applications these constraints are very common,
and are usually derived from knowledge about the target language or, in the case of ma-
chine translation, from the parsing tree of the source string. In order to represent these
constraints, extra machinery must be introduced. For instance, Brown et al. (1990) impose,
for each word in the bag, a probabilistic distribution delimiting its position in the target
string, on the basis of the original position of the source word in the input string to be
translated. In the shake and bake approach, bags are defined over functional structures,
each representing complex lexical information from which constraints can be derived. Then
the parsing algorithm for bags is interleaved with a constraint propagation algorithm to
filter out parses (e.g., as done by Brew, 1992). As a general remark, having different layers
of representation requires the development of more involved parsing algorithms, which we
try to avoid in the new proposal to be described below.

An alternative representation of finite languages is the class of acyclic deterministic fi-
nite automata, also called word lattices. This representation has often been used in hybrid
approaches to surface generation (Knight & Hatzivassiloglou, 1995; Langkilde & Knight,
1998; Bangalore & Rambow, 2000), and more generally in natural language applications
where some form of uncertainty comes with the input, as for instance in speech recogni-
tion (Jurafsky & Martin, 2000, Section 7.4). Word lattices inherit from standard regular
expressions the primitives expressing concatenation and disjunction, and thereby allow the
encoding of precedence constraints and word disjunction in a direct way. Furthermore, word
lattices can be efficiently parsed by means of CFGs, using standard techniques for lattice
parsing (Aust, Oerder, Seide, & Steinbiss, 1995). Lattice parsing requires cubic time in
the number of states of the input finite automaton and linear time in the size of the CFG.
Methods for lattice parsing can all be traced back to Bar-Hillel, Perles, and Shamir (1964),

290

IDL-Expressions: A Formalism for Finite Languages

who prove that the class of context-free languages is closed under intersection with regular
languages.

One limitation of word lattices and finite automata in general is the lack of an operator
for free word order. As we have already discussed in the introduction, this is a severe
limitation for hybrid systems, where free word order in sentence realization is needed in
case the symbolic grammar used in the first phase fails to provide ordering constraints.
To represent strings where a bag of words can occur in every possible order, one has to
encode each string through an individual path within the lattice. In the general case, this
requires an amount of space that is more than exponential in the size of the bag. From
this perspective, the previously mentioned polynomial time result for parsing is to no avail,
since the input structure to the parser might already be of size more than exponential in the
size of the input conceptual structure. The problem of free word order in lattice structures
is partially solved by Langkilde and Knight (1998) by introducing an external recasting
mechanism that preprocesses the input conceptual structure. This has the overall effect
that phrases normally represented by two independent sublattices can now be generated
one embedded into the other, therefore partially mimicking the interleaving of the words in
the two phrases. However, this is not enough to treat free word order in its full generality.

A third representation of finite languages, often found in the literature on compression
theory (Nevill-Manning & Witten, 1997), is the class of non-recursive CFGs. A CFG
is called non-recursive if no nonterminal can be rewritten into a string containing the
nonterminal itself. It is not difficult to see that such grammars can only generate finite
languages. Non-recursive CFGs have recently been exploited in hybrid systems (Langkilde,
2000).1 This representation inherits all the expressivity of word lattices, and thus can
encode precedence constraints as well as disjunctions. In addition, non-recursive CFGs can
achieve much smaller encodings of finite languages than word lattices. This is done by
uniquely encoding certain sets of substrings that occur repeatedly through a nonterminal
that can be reused in several places. This feature turns out to be very useful for natural
language applications, as shown by experimental results reported by Langkilde (2000).

Although non-recursive CFGs can be more compact representations than word lattices,
this representation still lacks a primitive for representing free word order. In fact, a CFG
generating the finite language of all permutations of n symbols must have size at least
exponential in n.2 In addition, the problem of deciding whether some string encoded by
a non-recursive CFG can be parsed by a general CFG is PSPACE-complete (Nederhof &
Satta, 2004).

From the above discussion, one can draw the following conclusions. In considering the
range of possible encodings for finite languages, we are interested in measuring (i) the com-
pactness of the representation, and (ii) the efficiency of parsing the obtained representation
by means of a CFG. At one extreme we have the naive solution of enumerating all strings
in the language, and then independently parsing each individual string using a traditional
string parsing algorithm. This solution is obviously unfeasible, since no compression at all
is achieved and so the overall amount of time required might be exponential in the size of

1. Langkilde (2000) uses the term “forests” for non-recursive CFGs, which is a different name for the same
concept (Billot & Lang, 1989).

2. An unpublished proof of this fact has been personally communicated to the authors by Jeffrey Shallit
and Ming-wei Wang.

291

Nederhof & Satta

the input conceptual structure. Although word lattices are a more compact representation,
when free word order needs to be encoded we may still have representations of exponential
size as input to the parser, as already discussed. At the opposite extreme, we have solutions
like bags of words or non-recursive CFGs, which allow very compact representations, but
are still very demanding in parsing time requirements. Intuitively, this can be explained
by considering that parsing a highly compressed finite language requires additional book-
keeping with respect to the string case. What we then need to explore is some trade-off
between these solutions, offering interesting compression factors at the expense of parsing
time requirements that are provably polynomial in the cases of interest. As we will show in
the sequel of this paper, IDL-expressions have these required properties and are therefore
an interesting solution to the problem.

3. Notation

In this section we briefly recall some basic notions from formal language theory. For more
details we refer the reader to standard textbooks (e.g., Harrison, 1978).

For a set ∆, |∆| denotes the number of elements in ∆; for a string x over some alphabet,
|x| denotes the length of x. For string x and languages (sets of strings) L and L′, we let
x · L = {xy | y ∈ L} and L · L′ = {xy | x ∈ L, y ∈ L′}. We remind the reader that
a string-valued function f over some alphabet Σ can be extended to a homomorphism
over Σ∗ by letting f(ε) = ε and f(ax) = f(a)f(x) for a ∈ Σ and x ∈ Σ∗. We also let
f(L) = {f(x) | x ∈ L}.

We denote a context-free grammar (CFG) by a 4-tuple G = (N , Σ, P, S), where N is a
finite set of nonterminals, Σ is a finite set of terminals, with Σ ∩N = ∅, S ∈ N is a special
symbol called the start symbol, and P is a finite set of productions having the form A→ γ,
with A ∈ N and γ ∈ (Σ∪N)∗. Throughout the paper we assume the following conventions:
A,B,C denote nonterminals, a, b, c denote terminals, α, β, γ, δ denote strings in (Σ ∪ N)∗

and x, y, z denote strings in Σ∗.
The derives relation is denoted ⇒G and its transitive closure ⇒+

G. The language gener-
ated by grammar G is denoted L(G). The size of G is defined as

|G| =
∑

(A→α)∈P

|Aα| . (1)

4. IDL-Expressions

In this section we introduce the class of IDL-expressions and define a mapping from such
expressions to sets of strings. Similarly to regular expressions, IDL-expressions generate sets
of strings, i.e., languages. However, these languages are always finite. Therefore the class of
languages generated by IDL-expressions is a proper subset of the class of regular languages.
As already discussed in the introduction, IDL-expressions combine language operators that
were only considered in isolation in previous representations of finite languages exploited
in surface natural language generation. In addition, some of these operations have been
recently used in the discontinuous parsing literature, for the syntactic description of (infi-
nite) languages with weak linear precedence constraints. IDL-expressions represent choices
among words or phrases and their relative ordering by means of the standard concatenation

292

IDL-Expressions: A Formalism for Finite Languages

operator ‘·’ from regular expressions, along with three additional operators to be discussed
in what follows. All these operators take as arguments one or more IDL-expressions, and
combine the strings generated by these arguments in different ways.

• Operator ‘‖’, called interleave, interleaves strings resulting from its argument ex-
pressions. A string z results from the interleaving of two strings x and y whenever z
is composed of all and only the occurrences of symbols in x and y, and these symbols
appear within z in the same relative order as within x and y. As an example, con-
sider strings abcd and efg. By interleaving these two strings we obtain, among many
others, the strings abecfgd, eabfgcd and efabcdg. In the formal language litera-
ture, this operation has also been called ‘shuffle’, as for instance by Dassow and Păun
(1989). In the discontinuous parsing literature and in the literature on head-driven
phrase-structure grammars (HPSG, Pollard & Sag, 1994) the interleave operation is
also called ‘sequence union’ (Reape, 1989) or ‘domain union’ (Reape, 1994). The
interleave operator also occurs in an XML tool described by van der Vlist (2003).

• Operator ‘∨’, called disjunction, allows a choice between strings resulting from its
argument expressions. This is a standard operator from regular expressions, where it
is more commonly written as ‘+’.

• Operator ‘×’, called lock, takes a single IDL-expression as argument. This operator
states that no additional material can be interleaved with a string resulting from its
argument. The lock operator has been previously used in the discontinuous parsing
literature, as for instance by Daniels and Meurers (2002), Götz and Penn (1997),
Ramsay (1999), Suhre (1999). In that context, the operator was called ‘isolation’.

The interleave, disjunction and lock operators will also be called I, D and L operators,
respectively. As we will see later, the combination of the I and L operators within IDL-
expressions provides much of the power of existing formalisms to represent free word order,
while maintaining computational properties quite close to those of regular expressions or
finite automata.

As an introductory example, we discuss the following IDL-expression, defined over the
word alphabet {piano, play, must, necessarily, we}.

‖(∨(necessarily, must), we · ×(play · piano)). (2)

IDL-expression (2) says that words we, play and piano must appear in that order in any
of the generated strings, as specified by the two occurrences of the concatenation operator.
Furthermore, the use of the lock operator states that no additional words can ever appear
in between play and piano. The disjunction operator expresses the choice between words
necessarily and must. Finally, the interleave operator states that the word resulting from
the first of its arguments must be inserted into the sequence we, play, piano, in any of the
available positions. Notice the interaction with the lock operator, which, as we have seen,
makes unavailable the position in between play and piano. Thus the following sentences,
among others, can be generated by IDL-expression (2):

293

Nederhof & Satta

necessarily we play piano
must we play piano
we must play piano
we play piano necessarily.

However, the following sentences cannot be generated by IDL-expression (2):

we play necessarily piano
necessarily must we play piano.

The first sentence is disallowed through the use of the lock operator, and the second sentence
is impossible because the disjunction operator states that exactly one of the arguments must
appear in the sentence realization. We now provide a formal definition of the class of IDL-
expressions.

Definition 1 Let Σ be some finite alphabet and let E be a symbol not in Σ. An IDL-
expression over Σ is a string π satisfying one of the following conditions:

(i) π = a, with a ∈ Σ ∪ {E};

(ii) π = ×(π′), with π′ an IDL-expression;

(iii) π = ∨(π1, π2, . . . , πn), with n ≥ 2 and πi an IDL-expression for each i, 1 ≤ i ≤ n;

(iv) π = ‖(π1, π2, . . . , πn), with n ≥ 2 and πi an IDL-expression for each i, 1 ≤ i ≤ n;

(v) π = π1 · π2, with π1 and π2 both IDL-expressions.

We take the infix operator ‘·’ to be right associative, although in all of the definitions in
this paper, disambiguation of associativity is not relevant and can be taken arbitrarily. We
say that IDL-expression π′ is a subexpression of π if π′ appears as an argument of some
operator in π.

We now develop a precise semantics for IDL-expressions. The only technical difficulty
in doing so arises with the proper treatment of the lock operator.3 Let x be a string over
Σ. The basic idea below is to use a new symbol �, not already in Σ. An occurrence of �
between two terminals indicates that an additional string can be inserted at that position.
As an example, if x = x′ � x′′x′′′ with x′, x′′ and x′′′ strings over Σ, and if we need to
interleave x with a string y, then we may get as a result string x′yx′′x′′′ but not string
x′ � x′′yx′′′. The lock operator corresponds to the removal of every occurrence of � from a
string.

More precisely, strings in (Σ ∪ {�})∗ will be used to represent sequences of strings over
Σ; symbol � is used to separate the strings in the sequence. Furthermore, we introduce a
string homomorphism lock over (Σ∪{�})∗ by letting lock(a) = a for a ∈ Σ and lock(�) = ε.
An application of lock to an input sequence can be seen as the operation of concatenating
together all of the strings in the sequence.

3. If we were to add the Kleene star, then infinite languages can be specified, and interleave and lock can be
more conveniently defined using derivatives (Brzozowski, 1964), as noted before by van der Vlist (2003).

294

IDL-Expressions: A Formalism for Finite Languages

We can now define the basic operation comb, which plays an important role in the sequel.
This operation composes two sequences x and y of strings, represented as explained above,
into a set of new sequences of strings. This is done by interleaving the two input sequences
in every possible way. Operation comb makes use of an auxiliary operation comb′, which
also constructs interleaved sequences out of input sequences x and y, but always starting
with the first string in its first argument x. As any sequence in comb(x, y) must start with a
string from x or with a string from y, comb(x, y) is the union of comb′(x, y) and comb′(y, x).
In the definition of comb′, we distinguish the case in which x consists of a single string and
the case in which x consists of at least two strings. In the latter case, the tail of an output
sequence can be obtained by applying comb recursively on the tail of sequence x and the
complete sequence y. For x, y ∈ (Σ ∪ {�})∗, we have:

comb(x, y) = comb′(x, y) ∪ comb′(y, x)

comb′(x, y) =

{x � y}, if x ∈ Σ∗;
{x′�} · comb(x′′, y),
if there are x′ ∈ Σ∗ and x′′

such that x = x′ � x′′.

As an example, let Σ = {a, b, c, d, e} and consider the two sequences a � bb � c and d � e.
Then we have

comb(a � bb � c, d � e) =
{a � bb � c � d � e, a � bb � d � c � e, a � bb � d � e � c,
a � d � bb � c � e, a � d � bb � e � c, a � d � e � bb � c,
d � a � bb � c � e, d � a � bb � e � c, d � a � e � bb � c,
d � e � a � bb � c}.

For languages L1, L2 we define comb(L1, L2) = ∪x∈L1,y∈L2 comb(x, y). More generally, for
languages L1, L2, . . . , Ld, d ≥ 2, we define combdi=1 Li = comb(L1, L2) for d = 2, and
combdi=1Li = comb(combd−1

i=1 Li, Ld) for d > 2.

Definition 2 Let Σ be some finite alphabet. Let σ be a function mapping IDL-expressions
over Σ into subsets of (Σ ∪ {�})∗, specified by the following conditions:

(i) σ(a) = {a} for a ∈ Σ, and σ(E) = {ε};

(ii) σ(×(π)) = lock(σ(π));

(iii) σ(∨(π1, π2, . . . , πn)) = ∪ni=1σ(πi);

(iv) σ(‖(π1, π2, . . . , πn)) = combni=1σ(πi);

(v) σ(π · π′) = σ(π) � σ(π′).

The set of strings that satisfy an IDL-expression π, written L(π), is given by L(π) =
lock(σ(π)).

295

Nederhof & Satta

As an example for the above definition, we show how the interleave operator can be
used in an IDL-expression to denote the set of all strings realizing permutations of a given
bag of symbols. Let Σ = {a, b, c}. Consider a bag 〈a, a, b, c, c〉 and IDL-expression

‖(a, a, b, c, c). (3)

By applying Definition 2 to IDL-expression (3), we obtain in the first few steps

σ(a) = {a},
σ(b) = {b},
σ(c) = {c},

σ(‖(a, a)) = comb({a}, {a}) = {a � a},
σ(‖(a, a, b)) = comb({a � a}, {b}) = {b � a � a, a � b � a, a � a � b}.

In the next step we obtain 3 × 4 sequences of length 4, each using all the symbols from
bag 〈a, a, b, c〉. One more application of the comb operator, on this set and set {c}, pro-
vides all possible sequences of singleton strings expressing permutations of symbols in bag
〈a, a, b, c, c〉. After removing symbol � throughout, which conceptually turns sequences of
strings into undivided strings, we obtain the desired language L(‖(a, a, b, c, c)) of permuta-
tions of bag 〈a, a, b, c, c〉.

To conclude this section, we compare the expressivity of IDL-expressions with that of
the formalisms discussed in Section 2. We do this by means of a simple example. In
what follows, we use the alphabet {NP, PP, V}. These symbols denote units standardly
used in syntactic analysis of natural language, and stand for, respectively, noun phrase,
prepositional phrase and verb. Symbols NP, PP and V should be rewritten into actual words
of the language, but we use these as terminal symbols to simplify the presentation. Consider
a language having the subject-verb-object (SVO) order and a sentence having the structure

[S NP1 V NP2],

where NP1 realizes the subject position and NP2 realizes the object position. Let PP1 and
PP2 be phrases that must be inserted in the above sentence as modifiers. Assume that we
know that the language at hand does not allow modifiers to appear in between the verbal
and the object positions. Then we are left with 3 available positions for the realization
of a first modifier, out of the 4 positions in our string. After the first modifier is inserted
within the string, we have 5 positions, but only 4 are available for the realization of a second
modifier, because of our assumption. This results in a total of 3× 4 = 12 possible sentence
realizations.

A bag of words for these sentences is unable to capture the above constraint on the
positioning of modifiers. At the same time, a word lattice for these sentences would contain
12 distinct paths, corresponding to the different realizations of the modifiers in the basic
sentence. Using the IDL formalism, we can easily capture the desired realizations by means
of the IDL-expression:

‖(PP1, PP2, NP1 · ×(V · NP2)).

296

IDL-Expressions: A Formalism for Finite Languages

Again, note the presence of the lock operator, which implements our restriction against
modifiers appearing in between the verbal and the object position, similarly to what we
have done in IDL-expression (2).

Consider now a sentence with a subordinate clause, having the structure

[S NP1 V1 NP2 [S′ NP3 V2 NP4]],

and assume that modifiers PP1 and PP2 apply to the main clause, while modifiers PP3 and
PP4 apply to the subordinate clause. As before, we have 3× 4 possible realizations for the
subordinate sentence. If we allow main clause modifiers to appear in positions before the
subordinate clause as well as after the subordinate clause, we have 4×5 possible realizations
for the main sentence. Overall, this gives a total of 3 × 42 × 5 = 240 possible sentence
realizations.

Again, a bag representation for these sentences is unable to capture the above restric-
tions on word order, and would therefore badly overgenerate. Since the main sentence
modifiers could be placed after the subordinate clause, we need to record for each of the
two modifiers of the main clause whether it has already been seen, while processing the 12
possible realizations of the subordinate clause. This increases the size of the representation
by a factor of 2× 2 = 4. On the other hand, the desired realizations can be easily captured
by means of the IDL-expression:

‖(PP1, PP2, NP1 · ×(V1 · NP2) · ×(‖(PP3, PP4, NP3 · ×(V2 · NP4)))).

Note the use of embedded lock operators (the two rightmost occurrences). The rightmost
and the leftmost occurrences of the lock operator implement our restriction against modi-
fiers appearing in between the verbal and the object position. The occurrence of the lock
operator in the middle of the IDL-expression prevents any of the modifiers PP1 and PP2
from modifying elements appearing within the subordinate clause. Observe that when we
generalize the above examples by embedding n subordinate clauses, the corresponding word
lattice will grow exponentially in n, while the IDL-expression has linear size in n.

5. IDL-Graphs

Although IDL-expressions may be easily composed by linguists, they do not allow a direct
algorithmic interpretation for efficient recognition of strings. We therefore define an equiva-
lent but lower-level representation for IDL-expressions, which we call IDL-graphs. For this
purpose, we exploit a specific kind of edge-labelled acyclic graphs with ranked nodes. We
first introduce our notation, and then define the encoding function from IDL-expressions to
IDL-graphs.

The graphs we use are denoted by tuples (V,E, vs, ve, λ, r), where:

• V and E are finite sets of vertices and edges, respectively;

• vs and ve are special vertices in V called the start and the end vertices, respectively;

• λ is the edge-labelling function, mapping E into the alphabet Σ ∪ {ε,`, a};

• r is the vertex-ranking function, mapping V to N, the set of non-negative integer
numbers.

297

Nederhof & Satta

Label ε indicates that an edge does not consume any input symbols. Edge labels ` and a
have the same meaning, but they additionally encode that we are at the start or end, re-
spectively, of what corresponds to an I operator. More precisely, let π be an IDL-expression
headed by an occurrence of the I operator and let γ(π) be the associated IDL-graph. We
use edges labelled by ` to connect the start vertex of γ(π) with the start vertices of all the
subgraphs encoding the arguments of I. Similarly, we use edges labelled by a to connect
all the end vertices of the subgraphs encoding the arguments of I with the end vertex of
γ(π). Edge labels ` and a are needed in the next section to distinguish occurrences of the
I operator from occurrences of the D and L operators. Finally, the function r ranks each
vertex according to how deeply it is embedded into (the encoding of) expressions headed
by an occurrence of the L operator. As we will see later, this information is necessary for
processing “locked” vertices with the correct priority.

We can now map an IDL-expression into the corresponding IDL-graph.

Definition 3 Let Σ be some finite alphabet, and let j be a non-negative integer number.
Each IDL-expression π over Σ is associated with some graph γj(π) = (V,E, vs, ve, λ, r)
specified as follows:

(i) if π = a, a ∈ Σ ∪ {E}, let vs, ve be new nodes; we have

(a) V = {vs, ve},
(b) E = {(vs, ve)},
(c) λ((vs, ve)) = a for a ∈ Σ and λ((vs, ve)) = ε for a = E,

(d) r(vs) = r(ve) = j;

(ii) if π = ×(π′) with γj+1(π′) = (V ′, E′, v′s, v
′
e, λ
′, r′), let vs, ve be new nodes; we have

(a) V = V ′ ∪ {vs, ve},
(b) E = E′ ∪ {(vs, v′s), (v′e, ve)},
(c) λ(e) = λ′(e) for e ∈ E′, λ((vs, v′s)) = λ((v′e, ve)) = ε,

(d) r(v) = r′(v) for v ∈ V ′, r(vs) = r(ve) = j;

(iii) if π = ∨(π1, π2, . . . , πn) with γj(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), 1 ≤ i ≤ n, let vs, ve be
new nodes; we have

(a) V = ∪ni=1Vi ∪ {vs, ve},
(b) E = ∪ni=1Ei ∪ {(vs, vi,s) | 1 ≤ i ≤ n} ∪ {(vi,e, ve) | 1 ≤ i ≤ n},
(c) λ(e) = λi(e) for e ∈ Ei, λ((vs, vi,s)) = λ((vi,e, ve)) = ε for 1 ≤ i ≤ n,

(d) r(v) = ri(v) for v ∈ Vi, r(vs) = r(ve) = j;

(iv) if π = ‖(π1, π2, . . . , πn) with γj(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), 1 ≤ i ≤ n, let vs, ve be
new nodes; we have

(a) V = ∪ni=1Vi ∪ {vs, ve},
(b) E = ∪ni=1Ei ∪ {(vs, vi,s) | 1 ≤ i ≤ n} ∪ {(vi,e, ve) | 1 ≤ i ≤ n},

298

IDL-Expressions: A Formalism for Finite Languages

playwe piano

necessarily

must

0

00 0 1 1 1 0

0

0

0

00

0

1

0

ε

ε ε ε ε

ε

ε ε

vs ve

v0

v1 v2

v3 v4

v5

v6 v7 v8 v9 v10 v12v11 v13

Figure 1: The IDL-graph associated with the IDL-expression
‖(∨(necessarily, must), we · ×(play · piano)).

(c) λ(e) = λi(e) for e ∈ Ei, λ((vs, vi,s)) = ` and λ((vi,e, ve)) = a for 1 ≤ i ≤ n,

(d) r(v) = ri(v) for v ∈ Vi, r(vs) = r(ve) = j;

(v) if π = π1·π2 with γj(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), i ∈ {1, 2}, let vs = v1,s and ve = v2,e;
we have

(a) V = V1 ∪ V2,

(b) E = E1 ∪ E2 ∪ {(v1,e, v2,s)},
(c) λ(e) = λi(e) for e ∈ Ei for i ∈ {1, 2}, λ((v1,e, v2,s)) = ε,

(d) r(v) = ri(v) for v ∈ Vi, i ∈ {1, 2}.

We let γ(π) = γ0(π). An IDL-graph is a graph that has the form γ(π) for some IDL-
expression π over Σ.

Figure 1 presents the IDL-graph γ(π), where π is IDL-expression (2).
We now introduce the important notion of cut of an IDL-graph. This notion is needed

to define the language described by an IDL-graph, so that we can talk about equivalence
between IDL-expressions and IDL-graphs. At the same time, this notion will play a crucial
role in the specification of our parsing algorithm for IDL-graphs in the next section. Let
us fix some IDL-expression π and let γ(π) = (V,E, vs, ve, λ, r) be the associated IDL-
graph. Intuitively speaking, a cut through γ(π) is a set of vertices that we might reach
simultaneously when traversing γ(π) from the start vertex to the end vertex, following the
different branches as prescribed by the encoded I, D and L operators, and in an attempt to
produce a string of L(π).

In what follows we view V as a finite alphabet, and we define the set V̂ to contain those
strings over V in which each symbol occurs at most once. Therefore V̂ is a finite set and
for each string c ∈ V̂ we have |c| ≤ |V |. If we assume that the outgoing edges of each vertex
in an IDL-graph are linearly ordered, we can represent cuts in a canonical way by means of
strings in V̂ as defined below.

299

Nederhof & Satta

Let r be the ranking function associated with γ(π). We write c[v1 · · · vm] to denote a
string c ∈ V̂ satisfying the following conditions:

• c has the form xv1 · · · vmy with x, y ∈ V̂ and vi ∈ V for 1 ≤ i ≤ m; and

• for each vertex v within c and for each i, 1 ≤ i ≤ m, we have r(v) ≤ r(vi).

In words, c[v1 · · · vm] indicates that vertices v1, . . . , vm occur adjacent in c and have the
maximal rank among all vertices within string c. Let c[v1 · · · vm] = xv1 · · · vmy be a string
defined as above and let v′1 · · · v′m′ ∈ V̂ be a second string such that no symbol v′i, 1 ≤ i ≤ m′,
appears in x or y. We write c[v1 · · · vm := v′1 · · · v′m′] to denote the string xv′1 · · · v′m′y ∈ V̂ .

The reason we distinguish the vertices with maximal rank from those with lower rank is
that the former correspond with subexpressions that are nested deeper within subexpres-
sions headed by the L operator. As a substring originating within the scope of an occurrence
of the lock operator cannot be interleaved with symbols originating outside that scope, we
should terminate the processing of all vertices with higher rank before resuming processing
of those with lower rank.

We now define a relation that plays a crucial role in the definition of the notion of cut,
as well as in the specification of our parsing algorithm.

Definition 4 Let Σ be some finite alphabet, let π be an IDL-expression over Σ, and let
γ(π) = (V,E, vs, ve, λ, r) be its associated IDL-graph. The relation ∆γ(π) ⊆ V̂ ×(Σ∪{ε})×V̂
is the smallest satisfying all of the following conditions:

(i) for each c[v] ∈ V̂ and (v, v′) ∈ E with λ((v, v′)) = X ∈ Σ ∪ {ε}, we have

(c[v], X, c[v := v′]) ∈ ∆γ(π); (4)

(ii) for each c[v] ∈ V̂ with the outgoing edges of v being exactly (v, v1), . . . , (v, vn) ∈ E, in
this order, and with λ((v, vi)) = `, 1 ≤ i ≤ n, we have

(c[v], ε, c[v := v1 · · · vn]) ∈ ∆γ(π); (5)

(iii) for each c[v1 · · · vn] ∈ V̂ with the incoming edges of some v ∈ V being exactly
(v1, v), . . . , (vn, v) ∈ E, in this order, and with λ((vi, v)) = a, 1 ≤ i ≤ n, we have

(c[v1 · · · vn], ε, c[v1 · · · vn := v]) ∈ ∆γ(π). (6)

Henceforth, we will abuse notation by writing ∆π in place of ∆γ(π). Intuitively speaking,
relation ∆π will be used to simulate a one-step move over IDL-graph γ(π). Condition (4)
refers to moves that follow a single edge in the graph, labelled by a symbol from the alphabet
or by the empty string. This move is exploited, e.g., upon visiting a vertex at the start of
a subgraph that encodes an IDL-expression headed by an occurrence of the D operator. In
this case, each outgoing edge represents a possible next move, but at most one edge can be
chosen. Condition (5) refers to moves that simultaneously follow all edges emanating from
the vertex at hand. This is used when processing a vertex at the start of a subgraph that
encodes an IDL-expression headed by an occurrence of the I operator. In fact, in accordance

300

IDL-Expressions: A Formalism for Finite Languages

with the given semantics, all possible argument expressions must be evaluated in parallel
by a single computation. Finally, Condition (6) refers to a move that can be read as the
complement of the previous type of move.

Examples of elements in ∆π in the case of Figure 1 are (vs, ε, v0v6) following
Condition (5) and (v5v13, ε, ve) following Condition (6), which start and end the
evaluation of the occurrence of the I operator. Other elements are (v0v6, ε, v1v6),
(v1v9, play, v1v10) and (v1v13, necessarily, v2v13) following Condition (4). Note that, e.g.,
(v1v10, necessarily, v2v10) is not an element of ∆π, as v9 has higher rank than v1.

We are now ready to define the notion of cut.

Definition 5 Let Σ be some finite alphabet, let π be an IDL-expression over Σ, and let
γ(π) = (V,E, vs, ve, λ, r) be its associated IDL-graph. The set of all cuts of γ(π), written
cut(γ(π)), is the smallest subset of V̂ satisfying the following conditions:

(i) string vs belongs to cut(γ(π));

(ii) for each c ∈ cut(γ(π)) and (c,X, c′) ∈ ∆π, string c′ belongs to cut(γ(π)).

Henceforth, we will abuse notation by writing cut(π) for cut(γ(π)). As already remarked,
we can interpret a cut v1v2 · · · vk ∈ cut(π), vi ∈ V for 1 ≤ i ≤ k, as follows. In the
attempt to generate a string in L(π), we traverse several paths of the IDL-graph γ(π). This
corresponds to the “parallel” evaluation of some of the subexpressions of π, and each vi in
v1v2 · · · vk refers to one such subexpression. Thus, k provides the number of evaluations that
we are carrying out in parallel at the point of the computation represented by the cut. Note
however that, when drawing a straight line across a planar representation of an IDL-graph,
separating the start vertex from the end vertex, the set of vertices that we can identify is
not necessarily a cut.4 In fact, as we have already explained when discussing relation ∆π,
only one path is followed at the start of a subgraph that encodes an IDL-expression headed
by an occurrence of the D operator. Furthermore, even if several arcs are to be followed at
the start of a subgraph that encodes an IDL-expression headed by an occurrence of the I
operator, some combinations of vertices will not satisfy the definition of cut when there are
L operators within those argument expressions. These observations will be more precisely
addressed in Section 7, where we will provide a mathematical analysis of the complexity of
our algorithm.

Examples of cuts in the case of Figure 1 are vs, ve, v0v6, v1v6, v3v6, v0v7, etc. Strings
such as v1v3 are not cuts, as v1 and v3 belong to two disjoint subgraphs with sets of vertices
{v1, v2} and {v3, v4}, respectively, each of which corresponds to a different argument of an
occurrence of the disjunction operator.

Given the notion of cut, we can associate a finite language with each IDL-graph and
talk about equivalence with IDL-expressions. Let π be an IDL-expression over Σ, and let
γ(π) = (V,E, vs, ve, λ, r) be the associated IDL-graph. Let also c, c′ ∈ cut(π) and w ∈ Σ∗.
We write w ∈ L(c, c′) if there exists q ≥ |w|, Xi ∈ Σ ∪ {ε}, 1 ≤ i ≤ q, and ci ∈ cut(π),
0 ≤ i ≤ q, such that X1 · · ·Xq = w, c0 = c, cq = c′ and (ci−1, Xi, ci) ∈ ∆π for 1 ≤ i ≤ q.

4. The pictorial representation mentioned above comes close to a different definition of cut that is standard
in the literature on graph theory and operating research. The reader should be aware that this standard
graph-theoretic notion of “cut” is different from the one introduced in this paper.

301

Nederhof & Satta

We also assume that L(c, c) = {ε}. We can then show that L(vs, ve) = L(π), i.e., the
language generated by the IDL-expression π is the same as the language that we obtain in
a traversal of the IDL-graph γ(π), as described above, starting from cut vs and ending in
cut ve. The proof of this property is rather long and does not add much to the already
provided intuition underlying the definitions in this section; therefore we will omit it.

We close this section with an informal discussion of relation ∆π and the associated notion
of cut. Observe that Definition 4 and Definition 5 implicitly define a nondeterministic finite
automaton. Again, we refer the reader to Harrison (1978) for a definition of finite automata.
The states of the automaton are the cuts in cut(π) and its transitions are given by the
elements of ∆π. The initial state of the automaton is the cut vs, and the final state is the
cut ve. It is not difficult to see that from every state of the automaton one can always reach
the final state. Furthermore, the language recognized by such an automaton is precisely the
language L(vs, ve) defined above. However, we remark here that such an automaton will
never be constructed by our parsing algorithm, as emphasized in the next section.

6. CFG Parsing of IDL-Graphs

We start this section with a brief overview of the Earley algorithm (Earley, 1970), a well-
known tabular method for parsing input strings according to a given CFG. We then refor-
mulate the Earley algorithm in order to parse IDL-graphs. As already mentioned in the
introduction, while parsing is traditionally defined for input consisting of a single string, we
here conceive parsing as a process that can be carried out on an input device representing
a language, i.e., a set of strings.

Let G = (N , Σ, P, S) be a CFG, and let w = a1 · · · an ∈ Σ∗ be an input string to be
parsed. Standard implementations of the Earley algorithm (Graham & Harrison, 1976) use
so called parsing items to record partial results of the parsing process on w. A parsing item
has the form [A→ α • β, i, j], where A→ αβ is a production of G and i and j are indices
identifying a substring ai+1 · · · aj of w. Such a parsing item is constructed by the algorithm
if and only if there exist a string γ ∈ (N ∪Σ)∗ and two derivations in G having the form

S ⇒∗G a1 · · · aiAγ
⇒G a1 · · · aiαβγ;

α ⇒∗G ai+1 · · · aj .

The algorithm accepts w if and only if it can construct an item of the form [S → α •, 0, n], for
some production S → α of G. Figure 2 provides an abstract specification of the algorithm
expressed as a deduction system, following Shieber, Schabes, and Pereira (1995). Inference
rules specify the types of steps that the algorithm can apply in constructing new items.

Rule (7) in Figure 2 serves as an initialization step, constructing all items that can
start analyses for productions with the start symbol S in the right-hand side. Rule (8)
is very similar in purpose: it constructs all items that can start analyses for productions
with nonterminal B in the left-hand side, provided that B is the next nonterminal in some
existing item for which an analysis is to be found. Rule (9) matches a terminal a in an item
with an input symbol, and the new item signifies that a larger part of the right-hand side
has been matched to a larger part of the input. Finally, Rule (10) combines two partial

302

IDL-Expressions: A Formalism for Finite Languages

[S → • α, 0, 0]
{
S → α (7)

[A→ α • Bβ, i, j]
[B → • γ, j, j]

{
B → γ (8)

[A→ α • aβ, i, j]
[A→ αa • β, i, j + 1]

{
a = aj+1 (9)

[A→ α • Bβ, i, j]
[B → γ •, j, k]
[A→ αB • β, i, k]

(10)

Figure 2: Abstract specification of the parsing algorithm of Earley for an input string
a1 · · · an. The algorithm accepts w if and only if it can construct an item of
the form [S → α •, 0, n], for some production S → α of G.

analyses, the second of which represents an analysis for symbol B, by which the analysis
represented by the first item can be extended.

We can now move to our algorithm for IDL-graph parsing using a CFG. The algorithm
makes use of relation ∆π from Definition 4, but this does not mean that the relation is
fully computed before invoking the algorithm. We instead compute elements of ∆π “on-
the-fly” when we first visit a cut, and cache these elements for possible later use. This has
the advantage that, when parsing an input IDL-graph, our algorithm processes only those
portions of the graph that represent prefixes of strings that are generated by the CFG at
hand. In practical cases, the input IDL-graph is never completely unfolded, so that the
compactness of the proposed representation is preserved to a large extent.

An alternative way of viewing our algorithm is this. We have already informally dis-
cussed in Section 5 how relation ∆π implicitly defines a nondeterministic finite automaton
whose states are the elements of cut(π) and whose transitions are the elements of ∆π. We
have also mentioned that such an automaton precisely recognizes the finite language L(π).
From this perspective, our algorithm can be seen as a standard lattice parsing algorithm,
discussed in Section 2. What must be emphasized here is that we do not precompute the
above finite automaton prior to parsing. Our approach consists in a lazy evaluation of the
transitions of the automaton, on the basis of a demand on the part of the parsing process.
In contrast with our approach, full expansion of the finite automaton before parsing has
several disadvantages. Firstly, although a finite automaton generating a finite language

303

Nederhof & Satta

might be considerably smaller than a representation of the language itself consisting of a
list of all its elements, it is easy to see that there are cases in which the finite automaton
might have size exponentially larger than the corresponding IDL-expression (see also the
discussion in Section 2). In such cases, full expansion destroys the compactness of IDL-
expressions, which is the main motivation for the use of our formalism in hybrid surface
generation systems, as discussed in the introduction. Furthermore, full expansion of the
automaton is also computationally unattractive, since it may lead to unfolding of parts of
the input IDL-graph that will never be processed by the parsing algorithm.

Let G = (N , Σ, P, S) be a CFG and let π be some input IDL-expression. The algorithm
uses parsing items of the form [A → α • β, c1, c2], with A → αβ a production in P and
c1, c2 ∈ cut(π). These items have the same meaning as those used in the original Earley
algorithm, but now they refer to strings in the languages L(vs, c1) and L(c1, c2), where vs
is the start vertex of IDL-graph γ(π). (Recall from Section 5 that L(c, c′), c, c′ ∈ cut(π),
is the set of strings whose symbols can be consumed in any traversal of γ(π) starting from
cut c and ending in cut c′.) We also use items of the forms [c1, c2] and [a, c1, c2], a ∈ Σ,
c1, c2 ∈ cut(π). This is done in order to by-pass traversals of γ(π) involving a sequence of zero
or more triples of the form (c1, ε, c2) ∈ ∆π, followed by a triple of the form (c1, a, c2) ∈ ∆π.
Figure 3 presents an abstract specification of the algorithm, again using a set of inference
rules. The issues of control flow and implementation are deferred to the next section.

In what follows, let vs and ve be the start and end vertices of IDL-graph γ(π), respec-
tively. Rules (11), (12) and (15) in Figure 3 closely resemble Rules (7), (8) and (10) of the
original Earley algorithm, as reported in Figure 2. Rules (13), (16) and (17) have been intro-
duced for the purpose of efficiently computing traversals of γ(π) involving a sequence of zero
or more triples of the form (c1, ε, c2) ∈ ∆π, followed by a triple of the form (c1, a, c2) ∈ ∆π,
as already mentioned. Once one such traversal has been computed, the fact is recorded
through some item of the form [a, c1, c2], avoiding later recomputation. Rule (14) closely
resembles Rule (9) of the original Earley algorithm. Finally, by computing traversals of
γ(π) involving triples of the form (c1, ε, c2) ∈ ∆π only, Rule (18) may derive items of the
form [S → α •, vs, ve]; the algorithm accepts the input IDL-graph if and only if any such
item can be derived by the inference rules.

We now turn to the discussion of the correctness of the algorithm in Figure 3. Our
algorithm derives a parsing item [A → α • β, c1, c2] if and only if there exist a string
γ ∈ (N ∪ Σ)∗, integers i, j with 0 ≤ i ≤ j, and a1a2 · · · aj ∈ Σ∗ such that the following
conditions are all satisfied:

• a1 · · · ai ∈ L(vs, c1);

• ai+1 · · · aj ∈ L(c1, c2); and

• there exist two derivations in G of the form

S ⇒∗G a1 · · · aiAγ
⇒G a1 · · · aiαβγ

α ⇒∗G ai+1 · · · aj .

The above statement closely resembles the existential condition previously discussed for the
original Earley algorithm, and can be proved using arguments similar to those presented for

304

IDL-Expressions: A Formalism for Finite Languages

[S → • α, vs, vs]
{
S → α (11)

[A→ α • Bβ, c1, c2]
[B → • γ, c2, c2]

{
B → γ (12)

[A→ α • aβ, c1, c2]
[c2, c2]

(13)

[A→ α • aβ, c1, c2]
[a, c2, c3]
[A→ αa • β, c1, c3]

(14)

[A→ α • Bβ, c1, c2]
[B → γ •, c2, c3]
[A→ αB • β, c1, c3]

(15)

[c1, c2]
[c1, c3]

{
(c2, ε, c3) ∈ ∆π (16)

[c1, c2]
[a, c1, c3]

{
(c2, a, c3) ∈ ∆π,
a ∈ Σ (17)

[S → α •, c0, c1]
[S → α •, c0, c2]

{
(c1, ε, c2) ∈ ∆π (18)

Figure 3: An abstract specification of the parsing algorithm for IDL-graphs. The algorithm
accepts the IDL-graph γ(π) if and only if some item having the form [S → α •
, vs, ve] can be derived by the inference rules, where S → α is a production of G
and vs and ve are the start and end vertices of γ(π), respectively.

305

Nederhof & Satta

instance by Aho and Ullman (1972) and by Graham and Harrison (1976); we will therefore
omit a complete proof here. Note that the correctness of the algorithm in Figure 3 directly
follows from the above statement, by taking item [A → α • β, c1, c2] to be of the form
[S → α •, vs, ve] for some production S → α from G.

7. Complexity and Implementation

In this section we provide a computational analysis of our parsing algorithm for IDL-graphs.
The analysis is based on the development of a tight upper bound on the number of possible
cuts admitted by an IDL-graph. We also discuss two possible implementations for the
parsing algorithm.

We need to introduce some notation. Let π be an IDL-expression and let γ(π) =
(V,E, vs, ve, λ, r) be the associated IDL-graph. A vertex v ∈ V is called L-free in γ(π) if,
for every subexpression π′ of π such that γj(π′) = (V ′, E′, v′s, v

′
e, λ
′, r′) for some j, V ′ ⊆ V ,

E′ ⊆ E, and such that v ∈ V ′, we have that π′ is not of the form ×(π′′). In words, a vertex
is L-free in γ(π) if it does not belong to a subgraph of γ(π) that encodes an IDL-expression
headed by an L operator. When γ(π) is understood from the context, we write L-free in
place of L-free in γ(π). We write 0-cut(π) to denote the set of all cuts in cut(π) that only
contain vertices that are L-free in γ(π). We now introduce two functions that will be used
later in the complexity analysis of our algorithm. For a cut c ∈ cut(π) we write |c| to denote
the length of c, i.e., the number of vertices in the cut.

Definition 6 Let π be an IDL-expression. Functions width and 0-width are specified as
follows:

width(π) = max
c∈cut(π)

|c| ,

0-width(π) = max
c∈0-cut(π)

|c| .

Function width provides the maximum length of a cut through γ(π). This quantity gives
the maximum number of subexpressions of π that need to be evaluated in parallel when
generating a string in L(π). Similarly, function 0-width provides the maximum length of a
cut through γ(π) that only includes L-free nodes.

Despite the fact that cut(π) is always a finite set, a computation of functions width and
0-width through a direct computation of cut(π) and 0-cut(π) is not practical, since these
sets may have exponential size in the number of vertices of γ(π). The next characterization
provides a more efficient way to compute the above functions, and will be used in the proof
of Lemma 2 below.

Lemma 1 Let π be an IDL-expression. The quantities width(π) and 0-width(π) satisfy the
following equations:

(i) if π = a, a ∈ Σ ∪ {E}, we have

width(π) = 1,
0-width(π) = 1;

306

IDL-Expressions: A Formalism for Finite Languages

(ii) if π = ×(π′) we have

width(π) = width(π′),
0-width(π) = 1;

(iii) if π = ∨(π1, π2, . . . , πn) we have

width(π) =
n

max
i=1

width(πi),

0-width(π) =
n

max
i=1

0-width(πi);

(iv) if π = ‖(π1, π2, . . . , πn) we have

width(π) =
n

max
j=1

(width(πj) +
∑

i:1≤i≤n∧i6=j
0-width(πi)),

0-width(π) =
n∑
j=1

0-width(πj);

(v) if π = π1 · π2 we have

width(π) = max {width(π1), width(π2)},
0-width(π) = max {0-width(π1), 0-width(π2)}.

Proof. All of the equations in the statement of the lemma straightforwardly follow from
the definitions of ∆π and cut(π) (Definitions 4 and 5, respectively). Here we develop at
length only two cases and leave the remainder of the proof to the reader. In what follows
we assume that γ(π) = (V,E, vs, ve, λ, r).

In case π = ∨(π1, π2, . . . , πn), let γ(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), 1 ≤ i ≤ n. From
Definition 4 we have (vs, ε, vi,s) ∈ ∆π and (vi,e, ε, ve) ∈ ∆π, for every i, 1 ≤ i ≤ n. Thus
we have cut(π) = ∪ni=1cut(πi) ∪ {vs, ve} and, since both vs and ve are L-free in γ(π),
0-cut(π) = ∪ni=10-cut(πi) ∪ {vs, ve}. This provides the relations in (iii).

In case π = ‖(π1, π2, . . . , πn), let γ(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), 1 ≤ i ≤ n. From
Definition 4 we have (vs, ε, v1,s · · · vn,s) ∈ ∆π and (v1,e · · · vn,e, ε, ve) ∈ ∆π. Thus every
c ∈ cut(π) must belong to {vs, ve} or must have the form c = c1 · · · cn with ci ∈ cut(πi) for
1 ≤ i ≤ n. Since both vs and ve are L-free in γ(π), we immediately derive

0-cut(π) = {vs, ve} ∪ 0-cut(π1) · · · 0-cut(πn),

and hence 0-width(π) =
∑n

j=1 0-width(πj). Now observe that, for each c = c1 · · · cn specified
as above there can never be indices i and j, 1 ≤ i, j ≤ n and i 6= j, and vertices v1 and v2

occurring in ci and cj , respectively, such that neither v1 nor v2 are L-free in γ(π).
We thereby derive

cut(π) = {vs, ve} ∪
cut(π1)0-cut(π2) · · · 0-cut(πn) ∪
0-cut(π1)cut(π2) · · · 0-cut(πn) ∪
...

0-cut(π1)0-cut(π2) · · · cut(πn).

307

Nederhof & Satta

Hence we can write width(π) = maxnj=1 (width(πj) +
∑

i:1≤i≤n∧i6=j 0-width(πi)). �

Now consider quantity |cut(π)|, i.e., the number of different cuts in IDL-graph γ(π).
This quantity is obviously bounded from above by |V |width(π). We now derive a tighter
upper bound on this quantity.

Lemma 2 Let Σ be a finite alphabet, let π be an IDL-expression over Σ, and let γ(π) =
(V,E, vs, ve, λ, r) be its associated IDL-graph. Let also k = width(π). We have

|cut(π)| ≤
(
|V |
k

)k
.

Proof. We use below the following inequality. For any integer h ≥ 2 and real values xi > 0,
1 ≤ i ≤ h, we have

h∏
i=1

xi ≤

(∑h
i=1 xi
h

)h
. (19)

In words, (19) states that the geometric mean is never larger than the arithmetic mean.
We prove (19) in the following equivalent form. For any real values c > 0 and yi,

1 ≤ i ≤ h and h ≥ 2, with yi > −c and
∑h

i=1 yi = 0, we have

h∏
i=1

(c+ yi) ≤ ch. (20)

We start by observing that if the yi are all equal to zero, then we are done. Otherwise there
must be i and j with 1 ≤ i, j ≤ h such that yiyj < 0. Without loss of generality, we assume
i = 1 and j = 2. Since yiyj < 0, we have

(c+ y1)(c+ y2) = c(c+ y1 + y2) + y1y2 < c(c+ y1 + y2). (21)

Since
∏h
i=3 (c+ yi) > 0, we have

(c+ y1)(c+ y2)
h∏
i=3

(c+ yi) < c(c+ y1 + y2)
h∏
i=3

(c+ yi). (22)

We now observe that the right-hand side of (22) has the same form as the left-hand side
of (20), but with fewer yi that are non-zero. We can therefore iterate the above procedure,
until all yi become zero valued. This concludes the proof of (19).

Let us turn to the proof of the statement of the lemma. Recall that each cut c ∈ cut(π)
is a string over V such that no vertex in V has more than one occurrence in c, and c is
canonically represented, i.e., no other permutation of the vertices in c is a possible cut. We
will later prove the following claim.
Claim. Let π, V and k be as in the statement of the lemma. We can partition V into
subsets V [π, j], 1 ≤ j ≤ k, having the following property. For every V [π, j], 1 ≤ j ≤ k, and
every pair of distinct vertices v1, v2 ∈ V [π, j], v1 and v2 do not occur together in any cut
c ∈ cut(π).

308

IDL-Expressions: A Formalism for Finite Languages

We can then write

|cut(π)| ≤
∏k
j=1 |V [π, j]| (by our claim and the canonical

representation of cuts)

≤
(∑k

j=1 |V [π,j]|
k

)k
(by (19))

=
(
|V |
k

)k
.

To complete the proof of the lemma we now need to prove our claim above. We prove
the following statement, which is a slightly stronger version of the claim. We can partition
set V into subsets V [π, j], 1 ≤ j ≤ k = width(π), having the following two properties:

• for every V [π, j], 1 ≤ j ≤ k, and every pair of distinct vertices v1, v2 ∈ V [π, j], v1 and
v2 do not occur together in any cut c ∈ cut(π);

• all vertices in V that are L-free in γ(π) are included in some V [π, j], 1 ≤ j ≤
0-width(π). (In other words, the sets V [π, j], 0-width(π) < j ≤ width(π), can only
contain vertices that are not L-free in γ(π).)

In what follows we use induction on #op(π), the number of operator occurrences (I, D, L
and concatenation) appearing within π.
Base: #op(π) = 0. We have π = a, with a ∈ Σ∪{E}, and V = {vs, vf}. Since width(π) = 1,
we set V [π, 1] = V . This satisfies our claim, since cut(π) = {vs, vf}, all vertices in V are
L-free in γ(π) and we have 0-width(π) = 1.
Induction: #op(π) > 0. We distinguish among three possible cases.
Case 1: π = ∨(π1, π2, . . . , πn). Let γ(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), 1 ≤ i ≤ n. By Lemma 1
we have width(π) = maxni=1 width(πi). For each i, 1 ≤ i ≤ n, let us define V [πi, j] = ∅ for
every j such that width(πi) < j ≤ width(π). We can then set

V [π, 1] = (∪ni=1 V [πi, 1]) ∪ {vs, ve};
V [π, j] = ∪ni=1 V [πi, j], for 2 ≤ j ≤ width(π).

The sets V [π, j] define a partition of V , since V = (∪ni=1 Vi) ∪ {vs, ve} and, for each i, the
sets V [πi, j] define a partition of Vi by the inductive hypothesis. We now show that such a
partition satisfies the two conditions in our statement.

Let v1 and v2 be two distinct vertices in some V [π, j]. We have already established in
the proof of Lemma 1 that cut(π) = (∪ni=1 cut(πi)) ∪ {vs, ve}. If either v1 or v2 belongs
to the set {vs, ve}, then v1 and v2 cannot occur in the same cut in cut(π), since the only
cuts in cut(π) with vertices in the set {vs, ve} are vs and ve. Let us now consider the case
v1, v2 ∈ ∪ni=1 Vi. We can distinguish two subcases. In the first subcase, there exists i such
that v1, v2 ∈ V [πi, j]. The inductive hypothesis states that v1 and v2 cannot occur in the
same cut in cut(πi), and hence cannot occur in the same cut in cut(π). In the second
subcase, v1 ∈ V [πi, j] and v2 ∈ V [πi′ , j] for distinct i and i′. Then v1 and v2 must belong
to different graphs γ(πi) and γ(πi′), and hence cannot occur in the same cut in cut(π).

Furthermore, every vertex in ∪ni=1 Vi that is L-free in some γ(πi) belongs to some
V [πi, j] with 1 ≤ j ≤ 0-width(πi), by the inductive hypothesis. Since 0-width(π) =

309

Nederhof & Satta

maxni=1 0-width(πi) (Lemma 1) we can state that all vertices in V that are L-free in γ(π)
belong to some V [π, j], 1 ≤ j ≤ 0-width(π).
Case 2: π = ×(π′) or π = π1 · π2. The proof is almost identical to that of Case 1, with
n = 1 or n = 2, respectively.
Case 3: π = ‖(π1, π2, . . . , πn). Let γ(πi) = (Vi, Ei, vi,s, vi,e, λi, ri), 1 ≤ i ≤ n. By Lemma 1
we have

0-width(π) =
n∑
j=1

0-width(πj),

width(π) =
n

max
j=1

(width(πj) +
∑

i:1≤i≤n∧i6=j
0-width(πi)).

The latter equation can be rewritten as

width(π) =
n∑
j=1

0-width(πj) +
n

max
j=1

(width(πj)− 0-width(πj)). (23)

For each i with 1 ≤ i ≤ n, let us define V [πi, j] = ∅ for every j with width(πi) < j ≤ width(π).
We can then set

V [π, 1] = V [π1, 1] ∪ {vs, ve};
V [π, j] = V [π1, j], for 2 ≤ j ≤ 0-width(π1);

V [π, 0-width(π1) + j] = V [π2, j], for 1 ≤ j ≤ 0-width(π2);
...

V [π,
∑n−1

i=1 0-width(πi) + j] = V [πn, j], for 1 ≤ j ≤ 0-width(πn);
V [π,

∑n
i=1 0-width(πi) + j] = ∪ni=1V [πi, 0-width(πi) + j],

for 1 ≤ j ≤ maxnj=1(width(πj)− 0-width(πj)).

The sets V [π, j] define a partition of V , since V = (∪ni=1 Vi) ∪ {vs, ve} and, for each i, the
sets V [πi, j] define a partition of Vi by the inductive hypothesis. We now show that such a
partition satisfies both conditions in our statement.

Let v1 and v2 be distinct vertices in some V [π, j], 1 ≤ j ≤ n. We have already established
in the proof of Lemma 1 that a cut c in cut(π) either belongs to {vs, ve} or else must have
the form c = c1 · · · cn with ci ∈ cut(πi) for 1 ≤ i ≤ n. As in Case 1, if either v1 or v2 belongs
to the set {vs, ve}, then v1 and v2 cannot occur in the same cut in cut(π), since the only
cuts in cut(π) with vertices in the set {vs, ve} are vs and ve. Consider now the case in which
v1, v2 ∈ ∪ni=1 Vi. We distinguish two subcases.

In the first subcase, there exists i such that v1, v2 ∈ V [πi, j]. If there exists a cut
c ∈ cut(π) such that v1 and v2 both occur within c, then v1 and v2 must both occur within
some c′ ∈ cut(πi). But this contradicts the inductive hypothesis on πi.

In the second subcase, v1 ∈ V [πi′ , j′] and v2 ∈ V [πi′′ , j′′], for distinct i′ and i′′. Note
that this can only happen if 0-width(π) < j ≤ width(π), 0-width(πi′) < j′ ≤ width(πi′) and
0-width(πi′′) < j′′ ≤ width(πi′′), by our definition of the partition of V and by (23). By the
inductive hypothesis on πi′ and πi′′ , v1 is not L-free in γ(πi′) and v2 is not L-free in γ(πi′′),
which means that both v1 and v2 occur within the scope of some occurrence of the lock

310

IDL-Expressions: A Formalism for Finite Languages

operator. Note however that v1 and v2 cannot occur within the scope of the same occurrence
of the lock operator, since they belong to different subgraphs γ(πi′) and γ(πi′′). Assume
now that there exists a cut c ∈ cut(π) such that v1 and v2 both occur within c. This would
be inconsistent with the definitions of ∆π and cut (Definitions 4 and 5, respectively) since
two vertices that are not L-free and that are not within the scope of the same occurrence
of the lock operator cannot belong to the same cut.

Finally, it directly follows from the definition of our partition on V and from the in-
ductive hypothesis on the πi that all vertices in V that are L-free in γ(π) belong to some
V [π, j] with 1 ≤ j ≤ 0-width(π). This concludes the proof of our statement. �

The upper bound reported in Lemma 2 is tight. As an example, for any i ≥ 1 and k ≥ 2,
let Σi,k = {a1, . . . , ai·k}. Consider now the class of IDL-expressions

πi,k = ‖(a1a2 · · · ai, ai+1ai+2 · · · a2i, . . . , ai·(k−1)+1ai·(k−1)+2 · · · ai·k).

Let also Vi,k be the vertex set of the IDL-graph γ(πi,k). It is not difficult to see that
|Vi,k| = 2 · i · k + 2, width(πi,k) = k and

|cut(πi,k)| = (2 · i)k + 2 ≤ (2 · i+
2
k

)k,

where the inequality results from our upper bound. The coarser upper bound presented
before Lemma 2 would give instead |cut(πi,k)| < (2 · i · k + 2)k.

We can now turn to the discussion of the worst case running time for the algorithm in
Figure 3. To simplify the presentation, let us ignore for the moment any term that solely
depends on the input grammar G.

To store and retrieve items [A → α • β, c1, c2], [a, c1, c2] and [c1, c2] we exploit some
data structure T and access it using cut c1 and cut c2 as indices. In what follows we make
the assumption that each access operation on T can be carried out in an amount of time
O(d(k)), where k = width(π) and d is some function that depends on the implementation
of the data structure itself, to be discussed later. After we access T with some pair c1, c2,
an array is returned of length proportional to |G|. Thus, from such an array we can inquire
in constant time whether a given item has already been constructed.

The worst case time complexity is dominated by the rules in Figure 3 that involve the
maximum number of cuts, namely rules like (15) with three cuts each. The maximum
number of different calls to these rules is then proportional to |cut(π)|3. Considering our
assumptions on T , the total amount of time that is charged to the execution of all these
rules is then O(d(k) |cut(π)|3). As in the case of the standard Earley algorithm, when the
working grammar G is taken into account we must include a factor of |G|2, which can be
reduced to |G| using techniques discussed by Graham, Harrison, and Ruzzo (1980).

We also need to consider the amount of time required by the construction of relation
∆π, which happens on-the-fly, as already discussed. This takes place at Rules (16), (17) and
(18). Recall that elements of relation ∆π have the form (c1, X, c2) with c1, c2 ∈ cut(π) and
X ∈ Σ ∪{ε}. In what follows, we view ∆π as a directed graph whose vertices are cuts, and
thus refer to elements of such a relation as (labelled) arcs. When an arc in ∆π emanating
from a cut c1 with label X is visited for the first time, then we compute this arc and the
reached cut, and cache them for possible later use. However, in case the reached cut c2

already exists because we had previously visited an arc (c′1, X
′, c2), then we only cache the

311

Nederhof & Satta

new arc. For each arc in ∆π, all the above can be easily carried out in time O(k), where
k = width(π). Then the total time required by the on-the-fly construction of relation ∆π is
O(k |∆π|). For later use, we now express this bound in terms of quantity |cut(π)|. From the
definition of ∆π we can easily see that there can be no more than one arc between any two
cuts, and therefore |∆π| ≤ |cut(π)|2. We obviously have k ≤ |V |. Also, it is not difficult to
prove that |V | ≤ |cut(π)|, using induction on the number of operator occurrences appearing
within π. We thus conclude that, in the worst case, the total time required by the on-the-fly
construction of relation ∆π is O(|cut(π)|3).

From all of the above observations we can conclude that, in the worst case, the algorithm
in Figure 3 takes an amount of time O(|G| d(k) |cut(π)|3). Using Lemma 2, we can then
state the following theorem.

Theorem 1 Given a context-free grammar G and an IDL-graph γ(π) with vertex set V
and with k = width(π), the algorithm in Figure 3 runs in time O(|G| d(k)(|V |k)3k).

We now more closely consider the choice of the data structure T and the issue of its
implementation. We discuss two possible solutions. Our first solution can be used when
|cut(π)| is small enough so that we can store |cut(π)|2 pointers in the computer’s random-
access memory. In this case we can implement T as a square array of pointers to sets of
our parsing items. Each cut in cut(π) is then uniquely encoded by a non-negative integer,
and such integers are used to access the array. This solution in practice comes down to
the standard implementation of the Earley algorithm through a parse table, as presented
by Graham et al. (1980). We then have d(k) = O(1) and our algorithm has time complexity
O(|G| (|V |k)3k).

As a second solution, when |cut(π)| is quite large, we can implement T as a trie (Gusfield,
1997). In this case each cut is treated as a string over set V , viewed as an alphabet, and we
look up string c1#c2 in T (# is a symbol not in V) in order to retrieve all items involving
cuts c1 and c2 that have been induced so far. We then obtain d(k) = O(k) and our algorithm
has time complexity O(|G| k(|V |k)3k).

The first solution above is faster than the second one by a factor of k. However, the first
solution has the obvious disadvantage of expensive space requirements, since not all pairs
of cuts might correspond to some grammar constituent, and the array T can be very sparse
in practice. It should also be observed that, in the natural language processing applications
discussed in the introduction, k can be quite small, say three or four.

To conclude this section, we compare the time complexity of CFG parsing as traditionally
defined for strings and the time complexity of parsing for IDL-graphs. As reference for string
parsing we take the Earley algorithm, which has already been presented in Section 6. By a
minor change proposed by Graham et al. (1980), the Earley algorithm can be improved to
have time complexity O(|G| · n3), where G is the input CFG and n is the length of the input
string. We observe that, if we ignore the factor d(k) in the time complexity of IDL-graph
parsing (Theorem 1), the two upper bounds become very similar, with function (|V |k)k in
IDL-graph parsing replacing the input sentence length n from the Earley algorithm.

We observe that function (|V |k)k can be taken as a measure of the complexity of the
internal structure of the input IDL-expression. More specifically, assume that no precedence
constraints at all are given for the words of the input IDL-expression. We then obtain IDL-
expressions with occurrences of the I operator only, with a worst case of k = |V |

2 − 1.

312

IDL-Expressions: A Formalism for Finite Languages

Then O((|V |k)k) can be written as O(c|V |) for some constant c > 1, resulting in exponential
running time for our algorithm. This comes at no surprise, since the problem at hand then
becomes the problem of recognition of a bag of words with a CFG, which is known to be
NP-complete (Brew, 1992), as already discussed in Section 2.

Conversely, no I operator may be used in the IDL-expression π, and thus the resulting
representation matches a finite automaton or word lattice. In this case we have k = 1 and
function (|V |k)k becomes |V |. The resulting running time is then a cubic function of the
input length, as in the case of the Earley algorithm. The fact that (cyclic or acyclic) finite
automata can be parsed in cubic time is also a well-known result (Bar-Hillel et al., 1964;
van Noord, 1995).

It is noteworthy to observe that in applications where k can be assumed to be bounded,
our algorithm still runs in polynomial time. As already discussed, in practical applications
of natural language generation, only few subexpressions from π will be processed simulta-
neously, with k being typically, say, three or four. In this case our algorithm behaves in a
way that is much closer to traditional string parsing than to bag parsing.

We conclude that the class of IDL-expressions provides a flexible representation for bags
of words with precedence constraints, with solutions in the range between pure word bags
without precedence constraints and word lattices, depending on the value of width(π). We
have also proved a fine-grained result on the time complexity of the CFG parsing problem
for IDL-expressions, again depending on values of the parameter width(π).

8. Final Remarks

Recent proposals view natural language surface generation as a multi-phase process where
finite but very large sets of candidate sentences are first generated on the basis of some input
conceptual structure, and then filtered using statistical knowledge. In such architectures, it
is crucial that the adopted representation for the set of candidate sentences is very compact,
and at the same time that the representation can be parsed in polynomial time.

We have proposed IDL-expressions as a solution to the above problem. IDL-expressions
combine features that were considered only in isolation before. In contrast to existing
formalisms, interaction of these features provides enough flexibility to encode strings in
cases where only partial knowledge is available about word order, whereas the parsing
process remains polynomial in practical cases.

The recognition algorithm we have presented for IDL-expressions can be easily extended
to a parsing algorithm, using standard representations of parse forests that can be extracted
from the constructed parse table (Lang, 1994). Furthermore, if the productions of the CFG
at hand are weighted, to express preferences among derivations, it is easy to extract a parse
with the highest weight, adapting standard Viterbi search techniques as used in traditional
string parsing (Viterbi, 1967; Teitelbaum, 1973).

Although we have only considered the parsing problem for CFGs, one may also parse
IDL-expressions with language models based on finite automata, including n-gram mod-
els. Since finite automata can be represented as right-linear context-free grammars, the
algorithm in Figure 3 is still applicable.

Apart from natural language generation, IDL-expressions are useful wherever uncer-
tainty on word or constituent order is to be represented at the level of syntax and has to be

313

Nederhof & Satta

linearized for the purpose of parsing. As already discussed in the introduction, this is an
active research topic both in generative linguistics and in natural language parsing, and has
given rise to several paradigms, most importantly immediate dominance and linear prece-
dence parsing (Gazdar, Klein, Pullum, & Sag, 1985), discontinuous parsing Daniels and
Meurers (2002), Ramsay (1999), Suhre (1999) and grammar linearization (Götz & Penn,
1997; Götz & Meurers, 1995; Manandhar, 1995). Nederhof, Satta, and Shieber (2003)
use IDL-expressions to define a new rewriting formalism, based on context-free grammars
with IDL-expressions in the right-hand sides of productions. By means of this formalism,
fine-grained results were proven on immediate dominance and linear precedence parsing.5

IDL-expressions are similar in spirit to formalisms developed in the programming lan-
guage literature for the representation of the semantics of concurrent programs. More
specifically, so called series-parallel partially ordered multisets, or series-parallel pomsets,
have been proposed by Gischer (1988) to represent choice and parallelism among processes.
However, the basic idea of a lock operator is absent from series-parallel pomsets.

Acknowledgments

A preliminary version of this paper has appeared in the Proceedings of the 7th Conference
on Formal Grammars (FG2002), Trento, Italy. The notions of IDL-graph and cut, central
to the present study, are not found in the earlier paper. We wish to thank Michael Daniels,
Irene Langkilde, Owen Rambow and Stuart Shieber for very helpful discussions related to
the topics in this paper. We are also grateful to the anonymous reviewers for helpful com-
ments and pointers to relevant literature. The first author was supported by the PIONIER
Project Algorithms for Linguistic Processing , funded by NWO (Dutch Organization for
Scientific Research). The second author was supported by MIUR under project PRIN No.
2003091149 005.

References

Aho, A., & Ullman, J. (1972). Parsing, Vol. 1 of The Theory of Parsing, Translation and
Compiling. Prentice-Hall.

Aust, H., Oerder, M., Seide, F., & Steinbiss, V. (1995). The Philips automatic train
timetable information system. Speech Communication, 17, 249–262.

Bangalore, S., & Rambow, O. (2000). Exploiting a probabilistic hierarchical model for gen-
eration. In The 18th International Conference on Computational Linguistics, Vol. 1,
pp. 42–48, Saarbrücken, Germany.

Bar-Hillel, Y., Perles, M., & Shamir, E. (1964). On formal properties of simple phrase
structure grammars. In Bar-Hillel, Y. (Ed.), Language and Information: Selected
Essays on their Theory and Application, chap. 9, pp. 116–150. Addison-Wesley.

Beaven, J. (1992). Shake-and-bake machine translation. In Proc. of the fifteenth Interna-
tional Conference on Computational Linguistics, Vol. 2, pp. 602–609, Nantes.

5. In the cited work, the lock operator was ignored, as it did not affect the weak generative capacity nor
the compactness of grammars.

314

IDL-Expressions: A Formalism for Finite Languages

Billot, S., & Lang, B. (1989). The structure of shared forests in ambiguous parsing. In 27th
Annual Meeting of the Association for Computational Linguistics, Proceedings of the
Conference, pp. 143–151, Vancouver, British Columbia, Canada.

Brew, C. (1992). Letting the cat out of the bag: generation for Shake-and-Bake MT. In
Proc. of the fifteenth International Conference on Computational Linguistics, Vol. 2,
pp. 610–616, Nantes.

Brown, P., et al. (1990). A statistical approach to machine translation. Computational
Linguistics, 16 (2), 79–85.

Brzozowski, J. (1964). Derivatives of regular expressions. Journal of the ACM, 11 (4),
481–494.

Charniak, E. (2001). Immediate-head parsing for language models. In 39th Annual Meeting
and 10th Conference of the European Chapter of the Association for Computational
Linguistics, Proceedings of the Conference, pp. 116–123, Toulouse, France.

Daniels, M., & Meurers, W. (2002). Improving the efficiency of parsing with discontinuous
constituents. In Wintner, S. (Ed.), Proceedings of NLULP’02: The 7th International
Workshop on Natural Language Understanding and Logic Programming, Vol. 92 of
Datalogiske Skrifter, pp. 49–68, Copenhagen. Roskilde Universitetscenter.

Dassow, J., & Păun, G. (1989). Regulated Rewriting in Formal Language Theory. Springer-
Verlag.

Earley, J. (1970). An efficient context-free parsing algorithm. Communications of the ACM,
13 (2), 94–102.

Gazdar, G., Klein, E., Pullum, G., & Sag, I. (1985). Generalized Phrase Structure Grammar.
Harvard University Press, Cambridge, MA.

Gischer, J. (1988). The equational theory of pomsets. Theoretical Computer Science, 61,
199–224.

Götz, T., & Meurers, W. (1995). Compiling HPSG type constraints into definite clause
programs. In 33rd Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, pp. 85–91, Cambridge, Massachusetts, USA.

Götz, T., & Penn, G. (1997). A proposed linear specification language. Volume 134 of
Arbeitspapiere des SFB 340, Universität Tübingen.

Graham, S., & Harrison, M. (1976). Parsing of general context free languages. In Advances
in Computers, Vol. 14, pp. 77–185. Academic Press, New York, NY.

Graham, S., Harrison, M., & Ruzzo, W. (1980). An improved context-free recognizer. ACM
Transactions on Programming Languages and Systems, 2 (3), 415–462.

Gusfield, D. (1997). Algorithms on Strings, Trees and Sequences. Cambridge University
Press, Cambridge, UK.

Harrison, M. (1978). Introduction to Formal Language Theory. Addison-Wesley.

Jurafsky, D., & Martin, J. (2000). Speech and Language Processing. Prentice-Hall.

Knight, K. (1999). Decoding complexity in word-replacement translation models. Compu-
tational Linguistics, 25 (4), 607–615.

315

Nederhof & Satta

Knight, K., & Hatzivassiloglou, V. (1995). Two-level, many-paths generation. In 33rd
Annual Meeting of the Association for Computational Linguistics, Proceedings of the
Conference, pp. 252–260, Cambridge, Massachusetts, USA.

Lang, B. (1994). Recognition can be harder than parsing. Computational Intelligence,
10 (4), 486–494.

Langkilde, I. (2000). Forest-based statistical sentence generation. In 6th Applied Natural
Language Processing Conference and 1st Meeting of the North American Chapter
of the Association for Computational Linguistics, pp. 170–177 (Section 2), Seattle,
Washington, USA.

Langkilde, I., & Knight, K. (1998). Generation that exploits corpus-based statistical knowl-
edge. In 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics, Vol. 1, pp. 704–710,
Montreal, Quebec, Canada.

Manandhar, S. (1995). Deterministic consistency checking of LP constraints. In Seventh
Conference of the European Chapter of the Association for Computational Linguistics,
Proceedings of the Conference, pp. 165–172, Belfield, Dublin, Ireland.

Nederhof, M.-J., & Satta, G. (2004). The language intersection problem for non-recursive
context-free grammars. Information and Computation. Accepted for publication.

Nederhof, M.-J., Satta, G., & Shieber, S. (2003). Partially ordered multiset context-free
grammars and free-word-order parsing. In 8th International Workshop on Parsing
Technologies, pp. 171–182, LORIA, Nancy, France.

Nevill-Manning, C., & Witten, I. (1997). Compression and explanation using hierarchical
grammars. The Computer Journal, 40 (2/3), 103–116.

Pollard, C., & Sag, I. (1994). Head-Driven Phrase Structure Grammar. University of
Chicago Press.

Ramsay, A. (1999). Direct parsing with discontinuous phrases. Natural Language Engineer-
ing, 5 (3), 271–300.

Reape, M. (1989). A logical treatment of semi-free word order and bounded discontinuous
constituency. In Fourth Conference of the European Chapter of the Association for
Computational Linguistics, Proceedings of the Conference, pp. 103–110, Manchester,
England.

Reape, M. (1994). Domain union and word order variation in german. In Nerbonne, J.,
Netter, K., & Pollard, C. (Eds.), German in Head-Driven Phrase Structure Grammar,
pp. 151–197. CSLI Publications.

Shieber, S., Schabes, Y., & Pereira, F. (1995). Principles and implementation of deductive
parsing. Journal of Logic Programming, 24, 3–36.

Suhre, O. (1999). Computational aspects of a grammar formalism for languages with freer
word order. Diplomarbeit, Department of Computer Science, University of Tübingen.
Published in 2000 as Volume 154 of Arbeitspapiere des SFB 340.

316

IDL-Expressions: A Formalism for Finite Languages

Teitelbaum, R. (1973). Context-free error analysis by evaluation of algebraic power series.
In Conference Record of the Fifth Annual ACM Symposium on Theory of Computing,
pp. 196–199.

van der Vlist, E. (2003). RELAX NG. O’Reilly.

van Noord, G. (1995). The intersection of finite state automata and definite clause gram-
mars. In 33rd Annual Meeting of the Association for Computational Linguistics,
Proceedings of the Conference, pp. 159–165, Cambridge, Massachusetts, USA.

Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, IT-13 (2), 260–269.

Whitelock, P. (1992). Shake-and-Bake translation. In Proc. of the fifteenth International
Conference on Computational Linguistics, Vol. 2, pp. 784–790, Nantes.

317

