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Abstract

This paper discusses an interested party who wishes to influence the behavior of agents
in a game (multi-agent interaction), which is not under his control. The interested party
cannot design a new game, cannot enforce agents’ behavior, cannot enforce payments by the
agents, and cannot prohibit strategies available to the agents. However, he can influence
the outcome of the game by committing to non-negative monetary transfers for the different
strategy profiles that may be selected by the agents. The interested party assumes that
agents are rational in the commonly agreed sense that they do not use dominated strategies.
Hence, a certain subset of outcomes is implemented in a given game if by adding non-
negative payments, rational players will necessarily produce an outcome in this subset.
Obviously, by making sufficiently big payments one can implement any desirable outcome.
The question is what is the cost of implementation? In this paper we introduce the notion
of k-implementation of a desired set of strategy profiles, where k stands for the amount of
payment that need to be actually made in order to implement desirable outcomes. A major
point in k-implementation is that monetary offers need not necessarily materialize when
following desired behaviors. We define and study k-implementation in the contexts of games
with complete and incomplete information. In the latter case we mainly focus on the VCG
games. Our setting is later extended to deal with mixed strategies using correlation devices.
Together, the paper introduces and studies the implementation of desirable outcomes by
a reliable party who cannot modify game rules (i.e. provide protocols), complementing
previous work in mechanism design, while making it more applicable to many realistic CS
settings.

1. Introduction

The design and analysis of interactions of self-interested parties are central to the theory and
application of multi-agent systems. In particular, the theory of economic mechanism design
or, more generally, implementation theory (Maskin, 1999; Maskin & Sjostrom, 2002) has
become a standard tool for researchers in the areas of multi-agent systems and e-commerce
(Rosenschein & Zlotkin, 1994; Nisan & Ronen, 1999; Shoham & Tennenholtz, 2001; Feigen-
buam & S, 2002; Tennenholtz, 1999; Papadimitriou, 2001). In classical mechanism design1

a center defines an interaction for self-motivated parties that will allow it to obtain some
desired goal (such as maximizing revenue or social welfare) taking the agents’ incentives

1. See e.g., Fudenberg and Tirole (1991), Chapter 7, or Mas-Colell, Whinston, and Green (1995), Chapter
23.
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into account. This perspective has been largely motivated by the view of the center as a
government or a seller that can define and control the rules of interaction. However, in
many distributed systems and multi-agent interactions, interested parties cannot control
the rules of interactions. A network manager for example cannot simply change the com-
munication protocols in a given distributed systems in order to lead to desired behaviors,
and a broker cannot change the rules in which goods are sold by an agency auctioneer to the
public. The focus of this paper is on how a reliable interested party, which cannot change
the rules of interaction, and cannot enforce behavior, can obtain its desired goals (in service
of the community or for its own benefits). The reliable party has only one source of power:
its reliability. It can commit to payments to the different agents, when certain observable
outcomes will be reached, and the agents can be sure that they will be paid appropriately.

In our work we introduce the study of implementation of desired behaviors by interested
party as above.2 There are two major issues that make the task non-trivial and challenging:

1. The interested party may wish to assume as little as possible about agents’ rationality.
Ideally, all that will be assumed is that an agent does not adopt a strategy if it is dominated
by another strategy.

2. The interested party may wish to minimize its expenses.

Consider the following simple congestion setting.3 Assume that there are two agents,
1 and 2, that have to select among two service providers (e.g., machines, communication
lines, etc.) One of the service providers, f , is a fast one, while the other, s, is a slower one.
We capture this by having an agent obtaining a payoff of 6 when he is the only one that
uses f , and a payoff of 4 when he is the only one who uses s. If both agents select the same
service provider then its speed of operation decreases by a factor of 2, leading to half the
payoff. That is, if both agents use f then each one of them obtains a payoff of 3, while if
both agents use s then each one of them obtains 2. In a matrix form, this game is described
by the following bimatrix:

M =

s

f

f s

3

3

4

6

6

4

2

2

2. For another interesting use of an interested party see Naor, Pinkas, and Sumner (1999).
3. Congestion in the context of self-motivated parties is a central topic in the recent CS literature (Kout-

soupias & Papadimitriou, 1999; Roughgarden, 2001; Roughgarden & Tardos, 2002), as well as in the
game theory literature (Rosenthal, 1973; Monderer & Shapley, 1996). This example is used for purposes
of illustration only; however, the technique used in this example can be extended to arbitrary complex
games, as we will later show.
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Assume that our reliable interested party may wish to prevent the agents from using the
same service provider (leading to low payoffs for both). Then it can do as follows: it can
promise to pay agent 1 a value of 10 if both agents will use f , and promise to pay agent 2
a value of 10 if both agents will use s. These promises transform M to the following game:

M ′ =

s

f

f s

13

3

4

6

6

4

2

12

Notice that in M ′, strategy f is dominant for agent 1, and strategy s is dominant for
agent 2. As a result the only rational strategy profile is the one in which agent 1 chooses f
and agent 2 chooses s. Hence, the interested party implements one of the desired outcomes.
Moreover, given that the strategy profile (f, s) is selected the interested party will have to
pay nothing. It has just implemented (in dominant strategies) a desired behavior (obtained
in one of the Nash equilibria) with zero cost, relying only on its creditability, without
modifying the rules of interactions or enforcing any type of behavior.

Similar simple examples can be found in other contexts (see e.g., Segal (1999), footnote
30, and Dybvig and Spatt (1983), Spiegler (2000)). Our work advocates the following line
of thought. Instead of reasoning about how agents will behave in the given protocol, we
may wish to cause agents to follow particular behaviors by making them desirable, using
monetary offers. An important point is that the monetary offers need not necessarily be
fully materialized when agents follow the desired behavior.

More formally, in this paper we introduce the notion and study of k-implementation
of a desired set of strategy profiles, where k stands for the amount of payment that need
to be actually made in order to implement the desirable outcomes.4 Section 3 provides
a characterization of k-implementation of a single pure strategy profile for finite games
and infinite regular games with complete information. This provides an effective algorithm
for determining the optimal monetary offers to be made in order to implement a desired
outcome, while minimizing expenses. In Section 4 we address the problem of finding a k-
implementation of a set of strategy profiles. We show that the general problem in this regard

4. Notice that this perspective is in the spirit of work on Artificial Social Systems in AI (see e.g., Shoham
and Tennenholtz (1995)), where we search for some form of ”modification” to the system, such that
given the modified system, and assuming agents tend to work individually, a desirable outcome will be
obtained.
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is NP-hard, and consider a modification of k-implementation, titled exact implementation,
under which the problem becomes tractable.5

Games with incomplete information introduce further challenges. In particular, in Sec-
tion 5 we consider the VCG mechanisms for combinatorial auctions 6. This setting has
interesting characteristics since the interested party cannot in general see the agents’ types
and needs to decide on appropriate payment only based on observed behaviors. We show
that in general 0-implementation (i.e. implementation with zero cost) in settings with in-
complete information is impossible, but any ex-post equilibrium of a frugal VCG mechanism
is 0-implementable.

In Section 6 we study the important case of mixed strategies. In that context, unless
we assume algorithmic observability, the interested party can observe only the actions se-
lected and not the probabilistic process leading to the selection, and therefore our earlier
results do not apply. For example, consider the simple routing problem above, one may
wish to consider the implementation of a more ”fair” outcome, such as the one obtained
in the mixed strategy Nash equilibrium of the game M . In order to address this issue, we
introduce the concept of implementation devices, and show that any mixed strategy equilib-
rium is 0-implementable with an implementation device. We also show that any correlated
equilibrium has this property.

2. k-implementation

A pre-game in strategic form is a pair G = (N, X), where N = {1, 2, · · · , n} is the set of
players, X = X1 × X2 × · · ·Xn, where for every i, Xi is the set of strategies available to
player i. Let i be a player, the set of strategy profiles of all other players is denoted by X−i,
and a generic element in X−i is denoted by x−i.

A payoff function vector is an n-tuple U = (U1, U2, · · · , Un), where Ui : X → � is the
payoff function of player i. We assume that the payoffs of the players are represented by
some common monetary unit, and that the payoff functions are bounded7.

A pre-game G and a payoff function vector U defines a game in strategic form denoted
by G(U). The game G(U) is finite if the strategy sets are finite.

Let xi, yi be strategies of player i in the game G(U).

xi dominates yi if Ui(xi, x−i) ≥ Ui(yi, x−i) for every x−i ∈ X−i, and there exists x−i ∈
X−i for which a strict inequality holds. yi is a dominated strategy if it is dominated by some
other strategy of i. xi is a dominant strategy for i if it dominates every other strategy of i.
A profile of strategies x is a (Nash) equilibrium if for every player i, xi is a best-response

5. Complexity of implementation when the organizer controls the structure of the game is discussed by
Conitzer and Sandholm (2002).

6. The VCG mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973) have been widely discussed in the
context of combinatorial auctions, a topic which received much attention in the recent multi-agent
systems and e-commerce literature, e.g., (Nisan, 2000; Sandholm, Suri, Gilpin, & Levine, 2001; Parkes,
1999)

7. If the game is finite the payoff functions are automatically bounded.
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to x−i. That is,

Ui(xi, x−i) ≥ Ui(yi, x−i) for every i ∈ N and yi ∈ Xi.

That is, if every player i believes that all other players act according to x, he is better off
by playing according to x. Modern economic theory has made an (some times implicit)
assumption that economic interactions are in equilibrium. However, the rationale for this
assumption is in debate in many cases, and it is particulary so when there exist multiple
equilibrium profiles. In contrast, using a non-dominated strategy is a rational behavior in
any reasonable definition of rationality. Moreover, refraining from the use of dominated
strategies is taken as the most basic idea and agreed upon technique in decision theory.

Let G = (N, X) be a pre-game. For every vector of payoff functions V , let X̄i(V )
be the set of non-dominated strategies of i in the game G(V ), and let X̄(V ) = X̄1(V ) ×
X̄2(V )×, · · · , X̄n(V ). Ḡ(V ) is the game (N, X̄, V ), where, by an innocent abuse of notations
V denotes the vector of the payoff functions restricted to X̄. A vector V of payoff functions
is non-negative (V ≥ 0) if Vi(x) ≥ 0 for every player i and for every x ∈ X.

Consider a set of desired strategy profiles O ⊆ X in the game G(U). A non-negative
vector of payoff functions V implements O in G(U) if

• ∅ ⊂ X̄(U + V ) ⊆ O.

Such a V is called a k-implementation of O in G(U), if in addition

• ∑n
i=1 Vi(x) ≤ k for every x ∈ X̄(U + V ).

Obviously, by paying every player i sufficient amount of money for playing the strategy
associated with a particular strategy profile in O, one can implement O.

That is, the interested party commits herself to certain non-negative payoffs V , in such
a way that ”rational” players will only choose strategy profiles in O, and such that in the
worst case the interested party will have to pay at most k.

Note that implicitly we have made two important assumptions :

• Output observability: The interested party can observe the actions chosen by the
players.

• Commitment power: The interested party is reliable in the sense that the players
believe that she will indeed pay the additional payoff defined by V .

However, the requirement V ≥ 0 means that the interested party cannot force players
to make payments based on their actions. In addition, the interested party cannot modify
the set of available strategies, or enforce behavior in any way. He can just reliably promise
positive monetary transfers conditioned on the observed outcome.

Let k(O) be the price of implementing O. That is, k(O) is the greatest lower bound
(GLB) of all non-negative numbers q for which there exists a q- implementation. That is,
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k(O) = k implies that for every ε > 0 O has a (k + ε)- implementation vector V ε, and O
does not have a k′- implementation for any k′ < k. V is an optimal implementation of O if
V implements O and

max
x∈X̄(U+V )

n∑
i=1

Vi(x) = k(O).

V is an ε optimal implementation of O if V implements O and

max
x∈X̄(U+V )

n∑
i=1

Vi(x) ≤ k(O) + ε.

3. k-Implementation of singletons

When O is a singleton, that is O = {z}, we sometimes abuse notations and we will say
that z (instead of {z}) has a k-implementation in G(U), and we refer to k(z) as the price
of implementing z.

3.1 Finite games

In this section we focus on finite games, and on the characterization of optimal k imple-
mentation of singletons.

Theorem 1 Let G(U) be a finite game with at least two strategies to every player. Every
strategy profile z has an optimal implementation V , and moreover:

k(z) =
n∑

i=1

max
xi∈Xi

(Ui(xi, z−i) − Ui(zi, z−i)) . 3.1.1

Proof: Let z ∈ X and let V implements z. Let i ∈ N . If for some xi 	= zi, for some
x−i, Vi(xi, x−i) > 0, then one can modify Vi by changing this term to 0, and get a cheaper
implementation of z. Hence, we can assume without loss of generality that we deal with
payoff function vectors V for which, for every i, Vi(xi, ∗) = 0 for every xi 	= zi.

As zi is a dominant strategy for i in G(U + V ),

Vi(zi, x−i)+Ui(zi, x−i) ≥ Vi(xi, x−i)+Ui(xi, x−i) for every xi ∈ Xi, and for every x−i ∈ X−i.

Since for xi 	= zi, Vi(xi, ∗) = 0, a necessary condition for an implementation is

Vi(zi, x−i) + Ui(zi, x−i) ≥ Ui(xi, x−i) for every xi ∈ Xi.

That is,

Vi(zi, x−i) ≥ max
xi∈Xi

(Ui(xi, x−i) − Ui(zi, x−i)).
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One can use x−i 	= z−i in order to get a costless strict inequality required by the definition
of domination ( here we use our assumption that every player has at least two strategies).
Hence, an optimal implementation vector for z, V is defined for every i by: Vi(xi, ∗) = 0 for
xi 	= zi, and Vi(zi, x−i) = maxxi∈Xi(Ui(xi, z−i) − Ui(zi, z−i)) + δ(x−i), where δ : X−i → �
is a nonnegative function that satisfies δ(z−i) = 0, and for some x−i 	= z−i, δ(x−i) > 0.
Therefore (3.1.1) is satisfied. �

Note that z is in equilibrium if and only if for every player i, maxxi∈Xi(Ui(xi, z−i) −
Ui(zi, z−i)) = 0. Hence the following characterization of equilibrium is a corollary of Theo-
rem 1:

Corollary 1 Let G(U) be a finite game with at least two strategies to every player, and let
z ∈ X. z is in equilibrium if and only if z has a zero- implementation.

3.2 Infinite games

When the game G(U) is infinite, one can get phenomena that contradicts our intuition. For
example, it is possible that X̄i = {zi} but zi is not a dominant strategy. E.g., consider the
two-person game in which player 1 can choose the strategy z1, or any number 0 < x1 < 1,
and player 2 can choose z2 or x2. U1(z1, z2) = 0.5, U1(z1, x2) = 10, U1(x1, ∗) = x1. U2 is
an arbitrary function. It is easily seen that every x1 is dominated by a bigger number in
the open interval (0,1), z1 is not dominated, and hence X̄1 = {z1}. However, z1 does not
dominate x1 for x1 > 0.5. Moreover, the max operator used in the proofs of Theorem 1 and
2 may not be well-defined for infinite games. A game G(U) = (N, X, U) is called regular if
every Xi is a compact metric space, and the payoff functions are continuous on X endowed
with the product metric.

Theorem 2 Theorems 1 holds for regular games.

Proof: The proof requires very standard techniques, and therefore it is omitted.�
We then immediately get:

Corollary 2 Corollary 1 holds for regular games.

3.3 Mixed strategies

For every finite set B we denote by ∆(B) the set of probability distributions over B. That is,
∆(B) consists of all functions q : B → [0, 1] with

∑
b∈B q(b) = 1. Let G(U) = (N, X, U) be

a finite game. The mixed extension of G(U) is the infinite game Gm(Um) = (N, Xm, Um),
where Xm = ∆(X1) × ∆(X2) × · · · × ∆(Xn), and for every player i, Um

i (p1, p2, · · · , pn) =∑
x∈X p1(x1)p2(x2) · · · pn(xn)Ui(x). That is, Um

i (p) is the expected payoff of player i when
every player j (including i) is choosing his strategy ( independently of the other players)
with a randomizing device that chooses each strategy xj with probability pj(xj).

A profile of mixed strategies p ∈ Xm is called a mixed-strategy equilibrium in G(U) if
p is in equilibrium in the game Gm(Um). By Nash (1950) every finite game possesses a
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mixed strategy equilibrium. Note that every strategy xi ∈ Xi of i can be identified with
the mixed strategy in which i chooses xi with probability 1. In this sense, Xi is a subset of
Xm

i . When we deal with an environment in which mixed strategies are considered, we refer
to every strategy xi ∈ Xi as a pure strategy of i.

Note that the possibility of using mixed strategies does not destroy our previous results.
That is, if xi is a dominant (dominated) strategy in G(U), it continues to be a dominant
(dominated) strategy in Gm(Um).

As Gm(Um) is a regular game we can apply Theorem 2 Corollary 2 and deduce:

Theorem 3 Let G(U) be a finite game in strategic form with at least two strategies for every
player. Let p be a profile of mixed strategies in G(U). p is a mixed strategy equilibrium in
G(U) if and only if p has a 0-implementation in Gm(Um).

Hence, technically, the case of mixed strategies follows from the theorems regarding pure
strategies in infinite games. However, the reader should notice that in this case our output
observability assumption has a strong implication. Implementing a mixed strategy profile in
Gm(Um) actually means algorithm observability in G(U). That is, the interested party can
observe the mixed strategies used by the players. This is a realistic assumption if we think
about the interested party as a system’s administrator that deploys algorithms submitted
by users. The designer is not allowed to alter the users’ algorithms, but can verify the exact
content of these algorithms. Hence, for example, in such a setting, if a user’s algorithm
flips a coin in order to decide on its course of action, then the exact randomized algorithms,
including the particular coin flipping, can be viewed by the interested party. The interesting
case in which the interested party cannot observe the mixed strategies will be discussed in
Section 6.

4. k-implementation of sets

In the previous sections we dealt with some properties of k- implementation. In particular
we emphasized the interesting cases of k-implementations of singletons. However, from a
computational perspective, given a game G(U), and a set of desired strategy profile O, it
may be of interest to find the smallest integer k ≥ 0 for which a k- implementation exists.
We can show:

Theorem 4 Given a game G(U), a set of desired strategy profiles O, and an integer k ≥ 0,
deciding whether there exists a k implementation of O in G(U) is NP-hard.

Proof: In order to prove the above theorem, we use a reduction from the SAT problem.
Given a set of primitive propositions {x1, x2, . . . , xn}, consider a CNF formula. A CNF
formula is a conjunction of clauses C1 ∧C2 ∧ . . .∧Cm, where Ci = l1i ∨ li2 ∨ . . .∨ lisi

(si ≥ 2)
and where ljq = xi or ljq = ¬xi for some i (for every 1 ≤ j ≤ m and 1 ≤ q ≤ sj). The SAT
problem is the following decision problem: given a CNF formula, is there a truth assignment
to the primitive propositions that satisfies it? This problem is known to be NP-complete.
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We will now show a polynomial reduction from SAT to the problem of deciding whether a
2- implementation exists, where the games are 2-person games. This will suffice to prove
our result. Without loss of generality we restrict our attention to CNF formulas where both
xi and ¬xi appear in the formula, and no clause refers to both xi and ¬xi (1 ≤ i ≤ n).

Both agents will have a strategy ci associated with clause Ci, for every 1 ≤ i ≤ m.
In addition, both agents will have strategies yi, zi, associated with the literals xi and ¬xi,
respectively (1 ≤ i ≤ n).

The payoff of agent 1, p1, will be defined as follows. For any strategy profile of the form
(ci, yj) the payoff will be 3 if xj appears in clause i and 0 otherwise. For any strategy profile
of the form (ci, zj) the payoff will be 3 if ¬xj appears in clause i and 0 otherwise. For any
strategy profile of the form (ci, cj) the payoff will be 50 if i = j and 0 otherwise. For any
strategy profile of the form (yi, yj) the payoff will be 2 if i = j and 3 otherwise. For any
strategy profile of the form (zi, zj) the payoff will be 2 if i = j and 3 otherwise. For any
strategy profile of the form (yi, zj) or the form (zi, yj) the payoff will be 1 if i = j and 3
otherwise. For any strategy profile of the form (yi, cj) the payoff will be 51 if xi or ¬xi

appear in clause Cj and 0 otherwise. For any strategy profile of the form (zi, cj) the payoff
will be 51 if xi or ¬xi appears in clause Cj and 0 otherwise.

The payoff to agent 2, p2, will be as follows. The payoff for any strategy profile of the
form (yi, yi) or (zi, zi) will be 101; the payoff for any strategy profile of the form (yi, zi) or
(zi, yi) will be 100; the payoff for any strategy profile of the form (yi, zj) or (zi, yj) where
i 	= j will be 0. The payoff for any strategy profile of the form (ci, cj) will be 50 if i = j,
and 0 otherwise. For any strategy profile of the form (yi, cj), (zi, cj) the payoff will be 50 if
i = j and 0 otherwise. The payoff for any strategy profile of the form (ci, yj), (ci, zj) will be
0.

The set O of desired strategy profiles will include all strategy profiles excluding the
following: All strategy profiles of the form (ci, s),(yi, zi),(zi, yi) (where s is any strategy)
will be prohibited.

If the formula is satisfiable then there is 2- implementation: add 1 to the payoff obtained
by agent 1 in any strategy profile of the form (yi, s) if xi is true in the satisfying assignment,
and add 1 to the payoff obtained by agent 1 in any strategy profile of the form (zi, s) if xi it
false. As for agent 2, increase its payoff by 1 for (zi, yi) if xi is true, and increase its payoff
by 1 for (yi, zi) if xi is false.

Notice that given the above construction the strategies of the form ci of agent 1 will
become dominated and will be removed. In addition, if xi has been assigned true (resp.
false) then strategy zi (resp. yi) will become dominated. The corresponding strategies of
agent 2 (i.e. zi if xi is true and yi if xi is false) will become dominated too, which yield the
desired behavior.

Similarly, notice that since we must remain with at least one yi or zi for agent 1, it
must be the case that at least one yi or zi will be removed for agent 2, and that this cannot
be obtained with a payment of 1 (increasing the payoff from 100 to 101). Hence, in a 2-
implementation the payment of agent 2 should be 1. However, notice that we must add 1
to the payoff of agent 1 for at least one of the elements of the form (yi, yi) or (zi, zi) which
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correspond to an xi or ¬xi that appear in clause j (i.e. for at least one of the literals in
clause j, we need to add 1 to a strategy profile of the form (yi, yi) or (zi, zi) associated with
that literal). Notice that this is based on the fact that the strategy ci of agent i cannot
be removed by adding a payment of 1 to the outcome of any strategy of the form yj , zj , cj

of agent 1, where xj and ¬xj do not appear in Ci, since the payoff of agent 1 for (yj , ci)
and for (zj , ci) is 0, while the payoff of agent 1 for (ci, ci) is 50. Moreover, if we add 1 to
the payoff that agent 1 obtains for both (yi, yi) and (zi, zi) then both yi and zi will not be
dominated for agent 1, which will result in the possibility of playing a strategy profile which
is not desired(given that it is impossible to remove both yi and zi for agent 2). Hence, the
implementation corresponds to a sound truth assignment to the CNF formula, where xi is
assigned true iff the payoff for agent 1 at (yi, yi) has been augmented by 1.

Notice that the previous result applies already in the case where we have a constant
number of agents. The previous result suggests one may wish to consider relaxations of the
optimal implementation problem that will be tractable.8 One interesting relaxation9 is the
following one:

A non-negative vector of payoff functions V is called a k- exact implementation of O in
G(U), if the following two conditions are satisfied:

• X̄(U + V ) = O.

• ∑n
i=1 Vi(x) ≤ k for every x ∈ O.

Hence, V implements O means that the set of non-dominated strategies in G(U + V ) is a
subset of O, while V is an exact implementation of O if this set equals O. When dealing
with singletons the concepts of implementation and exact implementation coincide.

Notice that the concept of exact implementation makes sense only when O = O1 ×
O2 · · · × On ⊆ X = X1 × X2 · · · × Xn since otherwise it will be impossible to (exactly)
implement O. We also assume that Oi is strictly contained in Xi for every agent i, and that
Oi does not contain two strategies such that one dominates the other. We can show:

Theorem 5 Computing the optimal k for which an exact implementation exists is polyno-
mial.

The algorithm leading to the above result is now illustrated for the case of two agents.
We construct the game matrix G′, where the payoff function of agent i is denoted by pi;
pi describes the payment to agent i for the different strategy profiles (if/when selected).
The matrix G′ will be the matrix of perturbations (non-negative monetary promises), while
Ḡ will denote the perturbed matrix generated. Let M = K + 1 where K is the maximal
element in the original game matrix.

The optimal perturbation [OP] algorithm:

8. Another approach may be to search for good approximation techniques.
9. See the discussion in the last section.
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1. Let (e1, . . . , ek) the list of possible differences between an agent’s payoffs in the original
game (i.e. the possible results one obtains by subtracting two possible payoffs of an
agent in the given game) , sorted from small to large.

2. Let p1(a, b) := M for every a ∈ O1 and b ∈ X2 \ O2, and let p1(a, b) = 0 whenever
a ∈ X1 \ O1 or b ∈ O2.

3. Let p2(a, b) := M for every b ∈ O2 and a ∈ X1 \ O1, and let p2(a, b) := 0 whenever
b ∈ X2 \ O2 or a ∈ O1,

4. Let i:=1

5. Let e := ei

6. Let p1(a, b) := e for every strategy profile of the form (a, b) where a ∈ O1 and b ∈ O2

7. Let Ḡ := G + G′

8. If the non-dominated strategies for agent 1 in Ḡ do not coincide with O1 then let
i:=i+1 and return to 5

9. Let i:=1

10. Let e := ei

11. Let p2(a, b) := e for every a ∈ O1 and b ∈ O2

12. Let Ḡ = G + G′

13. If the non-dominated strategies for agent 2 in Ḡ do not coincide with O2 then let
i:=i+1 and return to 10

5. Incomplete information

In previous sections we dealt with games with complete information. However, in many
real life situations the players ( and the interested party) have incomplete information
about certain parameters of the game. In the economic literature this phenomenon has
been mainly modelled by a Bayesian setting. In this setting every player receives some
private signal, which is correlated with the unknown parameters, and the joint distribution
of signals is commonly known to all players (and to the interested party). In the following
subsection we deal with Bayesian games without probabilistic information. Such games are
called games in informational form.

5.1 Games in informational form

The precise definition of games in informational form will not be given in this paper, in
which we focus on a particular type of such games – combinatorial auctions. However, a
typical example is shown in Figure 1.
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Figure 1: A game in informational form
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In this game, Player 1 is about to receive one of the signals s1 or t1, and Player 2 is
about to receive one of the signals10, s2 or t2. The true game to be played is determined by
the pair (c1, d2), where c, d ∈ {s, t}. However, neither player knows the exact game. Given
s1 (s2) player 1 (player 2) has to choose an action in {U1, D1} ({L1, R1}), and given t1 (t2)
player 1 (player 2) has to choose an action in {U2, D2} ({L2, R2}). The payoffs are shown
in the figure. A Bayesian game is obtained from a game in informational form by adding a
probability distribution over the pairs of signals as described in Figure 2. The probability
that 1 receives the signal c1, and 2 receives d2 equals pij , where i = 1 if c = s, i = 2 if c = t,
j = 1 if d = s, j = 2 if d = t.
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Figure 2: A Bayesian Game
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10. These signals are some times called types.
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A strategy of a player is a function defined on the set of signals, which assigns to every
signal an action11 in the games that are consistent with this signal. For example, in the game
in Figure 1, a strategy of player 1 is a function b1 : {s1, t1} → {U1, D1, U2, D2}, with the
property that b1(s1) ∈ {U1, D1} and b1(t1) ∈ {U2, D2}. A strategy of player 2 is analogously
defined as a function b2 : {s2, t2} → {L1, R1, L2, R2}. The concepts of domination and of
equilibrium ( traditionally referred to as ex post equilibrium) are naturally defined. For
example, in Figure 3 The strategy of player 1 in which she chooses U1 when she receives the
signal s1, and she chooses D2 given t1 dominates each of the other four strategies of player
1.

Figure 3: Domination 
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That is, given s1, independently of the other player’s signal and action, choosing U1 is
at least as good as choosing D1, and for at least one signal and action of Player 2, choosing
U1 is strictly better than choosing D1.

Figure 4 demonstrate an ex post equilibrium.

11. In an environment in which complex strategies exist, we refer to the choices of a player at a game in
strategic form as actions.
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Figure 4: Ex Post Equilibrium
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Note that even under the output observability assumption a player does not have to
reveal her strategy. The signal of a player is her private knowledge, and she reveals only
the action she chooses. The interested party does not observe the signals; therefore, if the
action sets in all games are the same ( as is the case in Figure 4) the interested party does
not receive any information about the true game to be played. Hence, the only thing he
can do is to use the same vector V at all games. Therefore:

Claim For every k ≥ 0 It is impossible to k-implement the ex post equilibrium described
in Figure 4.

Proof The interested party wishes to make U a dominant strategy at the game (s1, t2), and
she wishes to make D a dominant strategy at (t1, t2). Assume V1(U, L) = x and V1(D, L) =
y, then the following two contradictory inequalities should be satisfied: 0 + x ≥ 7 + y, and
5 + x ≤ 4 + y.�

As is stated in the next subsection, when the game in informational form has a particular
structure, our results for the complete information case are generalized.

5.2 The VCG combinatorial auctions

Combinatorial auctions constitute a special class of games in informational form. Our
notations and definitions are taken from Holzman and Monderer (2002).

In a combinatorial auction there is a seller, denoted by 0, who wishes to sell a set of m
goods A = {a1, . . . , am}, m ≥ 1, that she owns. We denote by 2A the family of all bundles
of goods (i.e., subsets of A). There is a set of n buyers N = {1, . . . , n}, n ≥ 1. An allocation
of the goods is an ordered partition γ = (γ0, γ1, . . . , γn) of A.12 We denote by Γ the set of
all allocations.

12. Note that the goods are allocated among the buyers and the seller. We assume, however, that the seller
derives no utility from keeping any of the goods, and that she does not set strategic reserve prices.
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A buyer’s valuation function is a function v : 2A → �, satisfying v(∅) = 0 and

B ⊆ C, B, C ∈ 2A ⇒ v(B) ≤ v(C).

When buyer i with the valuation function vi receives the set of goods B, and pays a monetary
transfer ci ∈ � his utility is vi(B) − ci. Every buyer knows his valuation function.

We denote by V the set of all possible valuation functions. The set V N , the n-fold
product of the set V , is the set of all profiles of valuations v = (v1, . . . ,vn), one for each
buyer.

For an allocation γ = (γ0, γ1, . . . , γn) ∈ Γ and a profile of valuations v = (v1, . . . ,vn) ∈
VN we denote by S(v, γ) the total social surplus of the buyers, that is,

S(v, γ) =
∑
i∈N

vi(γi).

We also denote
Smax(v) = max

γ∈Γ
S(v, γ),

and we refer to an allocation γ that achieves this maximum as an optimal allocation for v.

A Vickrey-Clarke (VC) auction mechanism is described as follows. Every buyer i is re-
quired to report a valuation function v̂i. Based on the reported valuations v̂ = (v̂1, . . . , v̂n) ∈
V N the mechanism selects an allocation d(v̂) = (d0(v̂), . . . , dn(v̂)) ∈ Γ, which is optimal for
v̂. Because ties are possible, such an allocation may not be unique, and therefore there is
more than one VC mechanism. Every function d : V N → Γ satisfying S(v̂,d(v̂)) = Smax(v̂)
for all v̂ ∈ VN determines uniquely a VC mechanism, which we refer to as the VC mecha-
nism d. This mechanism assigns to buyer i the bundle di(v̂) and makes him pay cd

i (v̂) to
the seller, where

cd
i (v̂) = max

γ∈Γ

∑
j �=i

v̂j(γj) −
∑
j �=i

v̂j(dj(v̂)).

This represents the loss to the other agents’ total surplus caused by agent i’s presence.

A Vickrey-Clarke-Groves (VCG) auction mechanism is parameterized by a VC mecha-
nism d, and by an n-tuple h = (h1, . . . ,hn) of functions hi : V N\{i} → �. The mechanism
selects an allocation according to the allocation function d, and the transfer function of
buyer i is

cd,h
i (v̂) = cd

i (v̂) + hi(v̂−i).

Hence, a VC auction mechanism is a special type of VCG auction mechanism, in which hi

is the function that is identically equal to zero for every i.

Let AM = (d, h) be a VCG mechanism. The utility of i with the valuation vi depends
on the vector of reported valuations v̂ = (vi, v̂−i), and it is denoted by ui(vi, v̂i, v̂−i). That
is,

ui(vi, v̂i, v̂−i) = vi(di(v̂)) − cd,h
i (v̂).

The behavior of buyer i in a mechanism AM is described by a strategy bi : V → V .
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A strategy bi is a dominant strategy for i if the following two conditions hold:13

• For every vi ∈ V , and for every v̂−i ∈ V N\{i}

ui(vi, bi(vi), v̂−i) ≥ ui(vi, v̂i, v̂−i) for every v̂i ∈ V .

• For every vi ∈ V , there exists v̂−i ∈ V N\{i} such that

ui(vi, bi(vi), v̂−i) > ui(vi, v̂i, v̂−i).

A strategy profile (b1, . . . , bn) forms an ex post equilibrium if for every profile of valua-
tions v = (v1, . . . ,vn) ∈ VN, and for every buyer i,

ui(vi, bi(vi),b−i(v−i)) ≥ ui(vi, v̂i,b−i(v−i)) for every v̂i ∈ V ,

where b−i(v−i) = (bj(vj))j�=i. The profile (b1, . . . , bn) is symmetric if bi = bj for every two
buyers i, j ∈ N .

It is well-known that every VCG auction mechanism is truth-telling in the sense that
for every buyer i, the strategy bi(vi) = vi of revealing the true valuation is a dominant
strategy.14

Special type of strategies were considered by Holzman et al. (2003), Holzman and Mon-
derer (2002). A bundling strategy for buyer i is parameterized by a subfamily Σi of 2A such
that ∅ ∈ Σi, and is denoted by fΣi . It maps every v ∈ V to vΣi ∈ V defined by

vΣi(B) = max
C⊆B,C∈Σi

v(C) for every B ∈ 2A.

This has the effect of pretending that the agent cares only about bundles in Σi (for which
he announces his true valuation), and derives his valuation for other bundles by maximizing
over the bundles in Σi that they contain.

A valuation vΣi that satisfies the above equalities is said to be based on Σi ( or, simply
Σi-based). The set of all Σ-based valuation function is denoted by V Σ.

A subfamily Σ of 2A such that ∅ ∈ Σ is a quasi field if it satisfies the following two
conditions:

B ∈ Σ ⇒ A \ B ∈ Σ,

B, C ∈ Σ and B ∩ C = ∅ ⇒ B ∪ C ∈ Σ.

In the work by Holzman and Monderer (2002) it was proven that every ex post equilib-
rium in the VCG mechanisms is a bundling equilibrium in the following sense: For every

13. In classical mechanism design the second condition is not required. We use it here for the sake of
consistency with the rest of this paper.

14. This is one of the reasons to the fact that the concept of ex post equilibrium in the VCG auction
mechanisms with private values has largely been ignored in the economics literature. However, the truth
telling strategy is induces a high communication complexity; It requires each player to communicate 2m

numbers. Hence, from the computer science perspective, an ex post equilibrium with less communication
complexity is desirable. The tradeoff between communication complexity and economic efficiency is
discussed by Holzman, Kfir-Dahav, Monderer, and Tennenholtz (2003).
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n ≥ 3, every profile (b1, b2, · · · , bn) of strategies, which satisfies that any subprofile (bi)i∈N ′ ,
N ′ ⊆ N , is an ex post equilibrium in all VCG mechanisms is a symmetric profile of bundling
strategies. That is, there exists ∅ ∈ Σ ⊆ 2A such that bi = fΣ for every i ∈ N , and moreover,
it was proved by Holzman et al. (2003) that this Σ must be a quasi field.

5.3 0-Implementation of ex post equilibrium in frugal VCG auction
mechanisms

We begin with a formal definition of a frugal VCG combinatorial auction:

Definition of Frugal VCG mechanisms A VCG mechanism (d, h) is called frugal if d
does not allocate unnecessary goods to the buyers. That is, for every v̂ = (v̂1, . . . , v̂n) ∈ V N

the mechanism selects an allocation d(v̂) = (d0(v̂), . . . , dn(v̂)) ∈ Γ, which is optimal for v̂
and satisfies in addition:

• For every player i, and for every Bi ⊂ γi,

v̂i(Bi) < v̂i(γi),

where γi = di(v̂).

Intuitively, in a frugal VCG mechanism the center never allocates unnecessary goods.
If an agent has a bid for a bundle B1 and the same bid for a superset of it, B2, the center
will never allocate B2 to that agent (the bid for B2 should be strictly higher than the bid
for B1 in order that allocating B2 to that agent will be a possibility.)

Consider an interested party who wishes to 0-implement the ex post equilibrium b =
(b1, b2, · · · , bn) in the VCG auction mechanism (d, h). Given the result by Holzman and
Monderer (2002) stated at the end of the previous subsection we can assume almost without
loss of generality that bi = fΣ for every i ∈ N . The interested party wishes to promise a
positive payment to every buyer i whenever he follows the recommendation to play according
to bi, and at least one of the players, say j, does not play according to bj . However, the
interested party does not know the valuation functions. Hence, how could she know whether
a player follows the recommendation? Indeed she cannot. However, since Σ is known to the
interested party she can partially monitor the players strategies, because, independently of
a player’s valuation function his reported valuation function must be Σ-based. Hence, the
best the interested party can do is to offer every player i a positive payment if his reported
valuation is Σ-based, and at least one of the other players’ reported a valuation function,
which is not Σ-based. These payments can be made arbitrarily high so that reporting a
Σ-based valuation function will yield a higher payoff for i than any other, non Σ-based
valuation function if at least one of the other players does not report a Σ-based valuation
function. However, player i can cheat within the set of Σ-based valuations without being
caught! It turns out that when the VCG mechanism is frugal, every player is better off not
cheating.

Lemma 1 Let (d, h) be a frugal VCG mechanism, let Σ be a quasi field, and let i ∈ N . For
every profile of reported valuations of the other players, v̂−i

ui(vi, v
Σ
i , v̂−i) ≥ ui(vi, wi, v̂−i) for every wi ∈ V Σ.
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Proof: Without loss of generality we can assume that hj is constantly 0 for every j.
Hence, the VCG mechanism is actually a VC mechanism. If v̂j is Σ-based for every j, j 	= i,
the inequality follows from the fact that fΣ induces an ex post equilibrium. However, our
proof does not use this fact. Let γ = d(vΣ

i , v̂−i) be the allocation chosen by the auctioneer
when i reports vΣ

i , and let δ = d(wi, v̂−i). Denote

t = max
γ∈Γ

∑
j �=i

v̂j(γj).

As the VCG mechanism is frugal, we have that γi ∈ Σ and δi ∈ Σ. Therefore we have
that vΣ

i (γi) = vi(γi), and vΣ
i (δi) = vi(δi). By definition we have that ui(vi, v

Σ
i , v̂−i) =

S(vi, v̂−i, γ)− t. Now since vΣ
i (γi) = vi(γi) we have that ui(vi, v

Σ
i , v̂−i) = S(vΣ

i , v̂−i, γ)− t.
By the optimality of γ we get that S(vΣ

i , v̂−i, γ) − t ≥ S(vΣ
i , v̂−i, δ) − t. However, since

frugality also implies that vΣ
i (δi) = vi(δi), we get the following equation and the desired

inequality:
S(vΣ

i , v̂−i, δ) − t = S(vi, v̂−i, δ) − t = ui(vi, wi, v̂−i).�

.

Hence, in the proof of Lemma 1 we used the fact that a frugal VCG mechanism must
allocate a subset of goods in Σ to every player who reports a Σ-based valuation function.
The next example shows that Lemma 1 does not hold for an arbitrary VCG mechanism.

Example

There are two buyers and four goods a,b,c,d.

Σ = {∅, ab, cd, abcd}.

The valuation function of 1 is v1, and the reported valuation of 2 is v̂2. Consider a VC
auction mechanism that allocate ab to 1 and cd to 2 when 1 reports vΣ

1 , and it allocates abc
to 1, and d to 2, when 1 reports the Σ-based valuation function w1. In both cases 1 pays
0. Hence, reporting vΣ

1 yields a utility of 1, while cheating yields 1.1. Note that the VC
mechanism is not frugal because when 1 declares w1 he receives abc, and w1(ab) = w1(abc).

∅ a b c d ab ac ad bc bd cd abc abd acd bcd abcd
v1 0 0 0 0 0 1 0 0 0 0 0 1.1 1 0 0 1.1
v̂2 0 0 0 0 0.75 0 0 0.75 0 0.75 0.75 0 0.75 0.75 0.75 0.75
vΣ
1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 1.1

w1 0 0 0 0 0 1 0 0 0 0 0.1 1 1 0.1 0.1 1.1

We need the following terminology. Let (d, h) be a VCG combinatorial auction, and let
M̄ > 0. We denote by (d, h, M̄) the direct combinatorial auction with the rules induced by
(d, h) in which, the set of feasible valuation functions ( and the set of bids) is V (M̄), which
is the set of all valuation functions v satisfying v(A) < M̄. The assumption of an upper
bound is natural but not common in the literature of mechanism design. It can be verified
that Lemma 1 holds for a VCG combinatorial auctions with bounded valuation functions.
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Theorem 6 Let (d, h, M̄) be a frugal VCG auction mechanism with at least two buyers.
Let Σ be a quasi fields of bundles. Then the symmetric ex post equilibrium induced by Σ is
0-implementable.

Proof: For every player i, the interested party promises i a very high payoff ( e.g., 2M̄ +1
if he reports a valuation function in V Σ, and at least one of the other players does not
report a Σ-based valuation function. Player i is promised no payment if all players report
valuation functions in V Σ. By Lemma 1, fΣ is a dominant strategy for every player.�

6. Implementation devices

As we mentioned in Section 3, the proof of our result (Theorem 3) that every mixed strategy
equilibrium is 0-implementable relies on the assumption that the interested party observes
the mixed strategies used by the players. In this section we prove this result without this
assumption. That is, the interested party can observe only the actions generated by the
mixed strategies, but not the algorithms that generate them. In order to deal with this
issue we define a new type of implementation by an implementation device.

Let G(U) = (N, X, U) be a finite game in strategic form. An implementation device
for G(U) is a tuple I = (S, h, Ṽ ), where S = S1 × S2 · · · × Sn, h ∈ ∆(S) is a probability
distribution over S, and Ṽ : S×X → �n

+. Si is the finite15 set of signals that can be sent to
i. The interested party uses the implementation device I as follows: She makes the device
public, she secretly runs a randomizing scheme that chooses every s ∈ S with a probability
h(s). If s = (s1, s2, · · · , sn) is chosen, she sends player i the signal si. If the strategy profile
x is selected then agent i is paid Ṽi(s, x). The implementation device generates a new game
G(U, I). This is actually a Bayesian game. A strategy for i in this game is a function
bi : Si → Xi. For every si and xi, and a vector b−i of the other players let Wi(xi|si, b−i) be
the expected payoff of i in the game G(U, I) if it chooses xi given that it receives the signal
si and all other players use b−i. That is,

Wi(xi|si, b−i) = Es−i (Ui(xi, b−i(s−i)) + Vi(si, s−i, xi, b−i(s−i)|si) ,

where s−i = (sj)j �=i, and b−i(s−i) = (bj(sj))j �=i. A strategy bi is a dominant strategy for i
if for every signal si with a positive probability ( that is

∑
t∈S,ti=si

h(t) > 0), and for every
b−i

Wi(bi(si)|si, b−i) ≥ Wi(xi|si, b−i) for every xi ∈ Xi,

and there exists a profile b−i of the other players for which a strict inequality holds.

Every profile b = (bi)i∈N determines a probability distribution probb over X defined as
follows:

probb(x) = h(b1 = x1, b2 = x2, · · · , bn = xn).

15. If S is an infinite set, we must specify additional parameters required in probability theory. We associate
with each Si a σ-algebra of events Σi, we endow S with the product σ-algebra, Σ, and we define h over
Σ.
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Let ξ be a desired probability distribution over X. We say that I implements ξ in G(U),
if in G(U, I) every player i has a dominant strategy bi, and probb = ξ. We say that I is a
k-implementation of ξ in G(U) if I implements ξ, and for every s with h(s) > 0,

n∑
i=1

Ṽi(si, bi(si)) ≤ k.

6.1 Mixed Strategies: Removing the algorithm observability assumption

Let p = (p1, p2, · · · , pn) be a mixed strategy profile in a finite game G(U). p generates a
probability distribution ξp over S as follows:

ξp(x) = p1(x1)p2(x2) · · · pn(xn) for every x ∈ X.

We say that an implementation device I implements p if it implements ξp.

In order to implement a mixed strategy equilibrium , the interested party employs an
implementation device I, in which the set of signals Si is the set of actions of i, Xi. h
is the product probability of p. That is, h(x) = p1(x1)p2(x2) · · · pn(xn), and the function
Ṽi : Si × Xi → �+ is designated in such a way that the strategy bi(si) = si, si ∈ Xi, is a
dominant strategy for every player i.

Hence, the interested party flips a coin for each player i according to the probability
pi in the profile she wishes to implement, and she sends the outcome of this coin flipping
to i. Thus, the signals sent to the players are just recommendations to play. The payoff
functions Ṽi, i ∈ N are designed in such a way that obeying the recommendation is a
dominant strategy for every player.

Theorem 7 Let G(U) be a finite game with at least two actions for every player. Every
mixed strategy equilibrium profile p is 0-implementable in G(U) with an appropriate imple-
mentation device I = (S, h, Ṽ ) in which S = X, and h = ξp is the product probability on X
defined by p.

Proof: Denote by bi the strategy of i in which it obeys every recommendation. That is
bi(si) = si for every si ∈ Xi. The function Ṽi should satisfy for every vector d−i of the other
players’ strategies,

Wi(si|si, d−i) ≥ Wi(xi|si, d−i) xi ∈ Xi.

We can assume without loss of generality that for every player i, Ṽi(si, s−i, xi, y−i) = 0 for
every xi 	= si. Therefore the above inequality can be written as follows:

Es−i

(
Ṽi(si, s−i, si, d−i(s−i))

)
≥ Es−i

(
Ũi(xi, d−i(s−i)) − Ui(si, d−i(s−i))

)
.

If d−i = b−i, that is dj(sj) = sj for every j 	= i and for every sj ∈ Xj , the right-hand-side
of the above inequalities are non-positive because p is a mixed strategy equilibrium. Hence,
we may define Ṽi(s, s) = 0 for every s ∈ X. To make sure that the inequalities hold in all
other cases (i.e., for all d−i), we can define Ṽi(s, si, x−i) = 2M + 1 for every x−i 	= s−i,
where M > 0 is an upper bound on the absolute value of all players’ payoff functions. The
choice of 2M + 1 (rather then 2M) ensures the existence of a strict inequality required by
the definition of domination.�
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6.2 0-implementations of correlated equilibrium

Aumann (1974) introduced the concept of correlated equilibrium. We provide one of the
many equivalent definitions:

Definition Let G(U) = (N, X, U) be a finite game in strategic form. A correlated equilib-
rium of G(U) is a probability distribution ξ over X (ξ ∈ ∆(X)) such that the strategies
bi(si) = si, si ∈ Xi, i ∈ N , form an equilibrium in the game G(U, I), where I = (S, h, Ṽ ) is
the following implementation device:

• S = X,

• h = ξ,

• Ṽi(s, x) = Ui(x) for every i ∈ N and for every s, x ∈ X.

Hence, ξ forms a correlated equilibrium if a mediator who makes no changes in the
players’ payoff can run a randomization device according to ξ, picks a profile of pure actions
s, and sends every player i the recommendation to play si, and every player is better off
obeying the recommendation if she believes that all other players obey the recommendations.
It is well-known ( and it was implicitly used in the proof of Theorem 7) that if p is a mixed
strategy equilibrium, ξp is a correlated equilibrium. Moreover, going over the proof of
Theorem 7 reveals that the only property of the mixed-strategy equilibrium p that we use
is the fact that ξp is a correlated equilibrium. Hence we get:

Theorem 8 Let G(U) = (N, X, U) be a finite game with at least two actions for every
player. Every correlated equilibrium profile ξ is 0-implementable in G(U) with an appropri-
ate implementation device I = (S, h, Ṽ ) in which, S = X and h = ξ.

Note that eventually, when the interested party implements a mixed strategy equilibrium
or a correlated equilibrium with the implementation device I, the players are using pure
strategies in the game G(U, I). Because the expected value operator is linear, it can be
easily seen that obeying the recommendation remains a dominant strategy for every player
even if this player believes that the other players use mixed strategies in G(U, I), where
a mixed strategy of i in G(U, I) is a probability distribution Qi over the set of his pure
strategies. A mixed strategy is not a natural description of behavior in G(U, I). A more
natural, and less computational demanding concept is the one of behavior strategy: A
behavior strategy of i in the game G(U, I) is a function ci : Si → ∆(Xi). Hence, a player
who is using a behavioral strategy chooses a mixed strategy in a game in strategic form as
a function of his signal, while a player who is using a mixed strategy in G(U, I) is picking a
pure strategy in G(U, I) with a randomization device before he receives the signal. The sets
of mixed and behavioral strategies are not technically related to each other. However, by
Kuhn (1953) ( see also Hart (1992) for details), for every player i, for every strategy bi of i
and for every profile Q−i = (Qj)j �=i of mixed strategies of the other players, there exists a
profile c−i = (cj)j �=i of behavioral strategies of the other players such that for every signal
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si the expected utility of i when using bi given that all other players are using Q−i equals
his expected utility when all other players are using c−i, and vice versa.16

Hence, theorems 7 and 8 remain valid in an environment that allows the utilization of
either mixed or behavioral strategies in G(U, I).

7. Conclusions, discussion and further research

One may distinguish between two main lines of research in multi-agent systems. One line
of research has to do with the design of mechanisms and protocols. In this context we
in fact deal with the design of games, such that when agents are assumed to behave in
particular way (e.g., be law-abiding, playing in equilibrium, reinforcement learners, etc.)
then a desired behavior (e.g., revenue maximization, the maximization of social surplus,
etc.) will be obtained. The other line of research deals with the study of the behavior of
agents in a given game. In economic theory the leading paradigm in the last decades has
been that agents use equilibrium strategies. However, this paradigm implicitly assumes that
agents are rational and moreover, that agents believe that the other agents are rational.17

In this paper we introduced an intermediate approach. The game/interaction is given,
and agents are not provided with newly designed protocol. The influence on agents’ behavior
is only through credible promises for positive monetary transfers conditioned on the actions
selected by the agents in the game. We also assume:

1. Minimal rationality: we would like to assume as little as possible on agent rationality.
Indeed all that we assume is that an agent will not use a strategy if it is dominated
by another strategy.

2. Minimal expenses: we assume that the interested party wishes to minimize its expenses
while leading the agents to the desired behavior.

The notion of k-implementation captures the above basic ideas. In the paper we have
provided several basic results about k-implementation. We have provided full character-
ization of k-implementation for the case of implementation of singletons in games with
complete information. In particular we have shown a formula for computing the optimal k,
which will yield the desired agent behavior, and fully specified a procedure for implementa-
tion. Our result is also applicable to a general class of games with infinitely many strategies.
We have shown that such characterization is likely to be impossible for the implementation
of sets of strategies. In particular, we have shown that the problem of whether the desired
behavior can be implemented with a cost of k is NP-hard. This led us to considering exact
k-implementation that we have shown to be tractable. Exact k-implementation requires
that every desirable strategy profile will be rational as a result of the promises for monetary

16. Actually, the theorem presented by Kuhn (1953) is stronger than the one we quote here.
17. In computer science the issue of how should an agent choose its action , unless he has a dominant strategy,

is a central one and no general satisfactory solution is known. Researchers appeal in this case to the
concept of competitive analysis (Borodin & El-Yaniv, 1998). In the context of games, some promising
results in this direction are presented by Tennenholtz (2002).
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transfers (in addition to the requirement that no undesirable strategy profile will remain
rational). In a sense, exact implementation requires that the number of strategies that
the system will ”remove” will be minimal. This is consistent with basic ideas of norma-
tive systems where in order to obtain desired behavior we would like to have minimal laws
that leave maximal freedom to the agents as long as they will enable to obtain the desired
(”social”) behavior. For a discussion of this issue see (Fitoussi & Tennenholtz, 2000).

The extension of our results to the context of mixed strategies can be interpreted as
a strong evidence for the importance of Nash equilibrium from the normative perspective,
and not only as a descriptive approach that attempts to explain/predict agent behavior in
economic contexts. The fact that any mixed strategy equilibrium can made into a dominant
one with zero payments given that we have a credible interested party, who cannot force
behaviors or punish agents, tells us that in many practical situations Nash equilibrium has
a special merit also from the normative perspective.

The games of incomplete information discussed in this section are games in informa-
tional form, rather than Bayesian games. This is in the spirit of work in computer science
that tries to minimize probabilistic assumptions about the economic environment, and in
particular the use of those as part of a solution concept. In this context the VCG mech-
anisms are probably the most central and widely studied mechanisms and we turn our
attention to the study of k-implementation in the context of these mechanisms. Indeed, as
we show, unlike in the case of finite games with complete information where there is always
some large k that (if paid) can lead to any desired behavior, this is no longer true in games
with incomplete information. The VCG mechanisms turn out to be very complex in their
equilibrium analysis. As recent work has shown (Holzman et al., 2003) there are exponen-
tially many equilibria of the VCG mechanisms that differ from truth telling. These are of
special interest since these other equilibria exhibit lower communication complexity than
the standard truth revealing equilibrium. Notice that these equilibria are obtained without
any restriction on the possible bids by the agents (this is the so called no imposition prop-
erty). The interested party has no access to the VCG protocol, and can influence it only
indirectly. We have proved 0-implementation of any ex-post equilibrium of any frugal VCG
mechanism, and that the frugality requirement is necessary.

There are many things left to be done. In particular, it will be interesting to further
develop the study of k-implementation for better understanding the case of k > 0. For
example, it may be interesting to study the effects of the cost of implementation on economic
efficiency. Further study of tractable cases is also of interest. We are interested also in
extending our study of k-implementation to games in informational form beyond the VCG
mechanisms. The issue of collusion may have very interesting ramifications in the context
of k-implementation. Collusive agreements may make benefit of the promises made by the
interested party. Similarly, if failures in the system are possible, then the interested party
might find itself paying its offers which he was hoping to ignore given rational behavior of
the agents. We have also assumed that there is only one interested party. In a case that
there are several interested parties who may wish to lead to different desired behaviors then
a new strategic situation emerges. We believe that these issues are of significant importance.
We hope to address some of them in future work, and that others will join us in the study of
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k-implementation and in exploring the spectrum between the system and agent perspectives
in multi-agent systems.
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