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Abstract

Despite their near dominance, heuristic state search planners still lag behind disjunctive
planners in the generation of parallel plans in classical planning. The reason is that directly
searching for parallel solutions in state space planners would require the planners to branch
on all possible subsets of parallel actions, thus increasing the branching factor exponentially.
We present a variant of our heuristic state search planner AltAlt called AltAltp which
generates parallel plans by using greedy online parallelization of partial plans. The greedy
approach is significantly informed by the use of novel distance heuristics that AltAltp

derives from a graphplan-style planning graph for the problem. While this approach is
not guaranteed to provide optimal parallel plans, empirical results show that AltAltp is
capable of generating good quality parallel plans at a fraction of the cost incurred by the
disjunctive planners.

1. Introduction

Heuristic state space search planning has proved to be one of the most efficient planning
frameworks for solving large deterministic planning problems (Bonet, Loerincs, & Geffner,
1997; Bonet & Geffner, 1999; Bacchus, 2001). Despite its near dominance, its one achilles
heel remains generation of “parallel plans” (Haslum & Geffner, 2000). Parallel plans allow
concurrent execution of multiple actions in each time step. Such concurrency is likely
to be more important as we progress to temporal domains. While disjunctive planners
such as Graphplan (Blum & Furst, 1997) SATPLAN (Kautz & Selman, 1996) and GP-
CSP (Do & Kambhampati, 2000) seem to have no trouble generating such parallel plans,
planners that search in the space of states are overwhelmed by this task. The main reason
is that straightforward methods for generation of parallel plans would involve progression
or regression over sets of actions. This increases the branching factor of the search space
exponentially. Given n actions, the branching factor of a simple progression or regression
search is bounded by n, while that of progression or regression search for parallel plans will
be bounded by 2n.

The inability of state search planners in producing parallel plans has been noted in the
literature previously. Past attempts to overcome this limitation have not been very suc-
cessful. Indeed, Haslum and Geffner (2000) consider the problem of generating parallel
plans using a regression search in the space of states. They note that the resulting plan-
ner, HSP*p, scales significantly worse than Graphplan. They present TP4 in (Haslum &
Geffner, 2001), which in addition to being aimed at actions with durations, also improves
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the branching scheme of HSP*p, by making it incremental along the lines of Graphplan.
Empirical studies reported by Haslum and Geffner (2001), however indicate that even this
new approach, unfortunately, scales quite poorly compared to Graphplan variants. Infor-
mally, this achilles heel of heuristic state search planners has been interpreted as a sort of
last stand of the disjunctive planners – only they are capable of generating parallel plans
efficiently.

Given that the only way of efficiently generating optimal parallel plans involves using
disjunctive planners, we might want to consider ways of generating near-optimal parallel
plans using state search planners. One obvious approach is to post-process the sequential
plans generated by the state search planners to make them parallel. While this can easily
be done - using approaches such as those explored by Backstrom (1998), one drawback
is that such approaches are limited to transforming the sequential plan given as input.
Parallelization of sequential plans often results in plans that are not close to optimal parallel
plans.1

An alternative, that we explore in this paper, involves incremental online parallelization.
Specifically, our planner AltAltp, which is a variant of the AltAlt planner (Sanchez, Nguyen,
& Kambhampati, 2000; Nguyen, Kambhampati, & Sanchez, 2002), starts its search in the
space of regression over single actions. Once the most promising single action to regress
is selected, AltAltp then attempts to parallelize (“fatten”) the selected search branch with
other independent actions. This parallelization is done in a greedy incremental fashion -
actions are considered for addition to the current search branch based on the heuristic cost
of the subgoals they promise to achieve. The parallelization continues to the next step
only if the state resulting from the addition of the new action has a better heuristic cost.
The sub-optimality introduced by the greedy nature of the parallelization is offset to some
extent by a plan-compression procedure called Pushup that tries to rearrange the evolving
parallel plans by pushing up actions to higher levels in the search branch (i.e. later stages
of execution) in the plan.

Despite the seeming simplicity of our approach, it has proven to be quite robust in
practice. In fact, our experimental comparison with five competing planners - STAN (Long
& Fox, 1999), LPG (Gerevini & Serina, 2002), Blackbox (Kautz & Selman, 1996), SAPA (Do
& Kambhampati, 2001) and TP4 (Haslum & Geffner, 2001) - shows that AltAltp is a viable
and scalable alternative for generating parallel plans in several domains. For many problems,
AltAltp is able to generate parallel plans that are close to optimal in makespan. It also
seems to retain the efficiency advantages of heuristic state search over disjunctive planners,
producing plans in a fraction of the time taken by the disjunctive planners in many cases.
AltAltp has also been found to be superior to post-processing approaches. Specifically,
we compared AltAltp to an approach that involves post-processing the sequential plans
generated by AltAlt using the techniques from Backstrom (1998). We found that AltAltp is
able to generate shorter parallel plans in many cases. Finally, we show that AltAltp incurs
very little additional overhead compared to AltAlt.

In the rest of this paper, we discuss the implementation and evaluation of our approach
to generate parallel plans with AltAltp. Section 2 starts by providing a review of the
AltAlt planning system, on which AltAltp is based. Section 3 describes the generation of

1. We will empirically demonstrate this later; curious readers may refer to the plots in Figure 15.
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Figure 1: Architecture of AltAlt

parallel plans in AltAltp. Section 4 presents extensive empirical evaluation of AltAltp. The
evaluation includes both comparison and ablation studies. Finally, Section 5 discusses some
related work in classical as well as metric temporal planning. Section 6 summarizes our
contributions.

2. AltAlt Background Architecture and Heuristics

The AltAlt planning system is based on a combination of Graphplan (Blum & Furst, 1997;
Long & Fox, 1999; Kautz & Selman, 1999) and heuristic state space search (Bonet et al.,
1997; Bonet & Geffner, 1999; McDermott, 1999) technology. AltAlt extracts powerful
heuristics from a planning graph data structure to guide a regression search in the space of
states. The high level architecture of AltAlt is shown in Figure 1. The problem specification
and the action template description are first fed to a Graphplan-style planner (in our case,
STAN from Long & Fox, 1999), which constructs a planning graph for that problem in
polynomial time (we assume the reader is familiar with the Graphplan algorithm of Blum
& Furst, 1997). This planning graph structure is then fed to a heuristic extractor module
that is capable of extracting a variety of effective heuristics (Nguyen & Kambhampati,
2000; Nguyen et al., 2002). These heuristics, along with the problem specification, and the
set of ground actions in the final action level of the planning graph structure are fed to a
regression state-search planner.

To explain the operation of AltAlt at a more detailed level, we need to provide some
further background on its various components. We shall start with the regression search
module. Regression search is a process of searching in the space of potential plan suf-
fixes. The suffixes are generated by starting with the goal state and regressing it over
the set of relevant action instances from the domain. The resulting states are then (non-
deterministically) regressed again over relevant action instances, and this process is repeated
until we reach a state (set of subgoals) which is satisfied by the initial state. A state S in our
framework is a set of (conjunction of) literals that can be seen as “subgoals” that need to be
made true on the way to achieving the top level goals. An action instance a is considered
relevant to a state S if the effects of a give at least one element of S and do not delete
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any element of S. The result of regressing S over a is then (S\eff(a)) ∪ prec(a) - which is
essentially the set of goals that still need to be achieved before the application of a, such
that everything in S would have been achieved once a is applied. For each relevant action
a, a separate search branch is generated, with the result of regressing S over that action as
the new fringe in that branch. Search terminates with success at a node if every literal in
the state corresponding to that node is present in the initial state of the problem.

The crux of controlling the regression search involves providing a heuristic function that
can estimate the relative goodness of the states on the fringe of the current search tree and
guide the search in the most promising directions. The heuristic function needs to evaluate
the cost of achieving the set S of subgoals (comprising a regressed state) from the initial
state. In other words, the heuristic computes the length of the plan needed to achieve the
subgoals from the initial state. We now discuss how such a heuristic can be computed from
the planning graph, which, provides optimistic reachability estimates.

Normally, the planning graph data structure supports “parallel” plans - i.e., plans where
at each step more than one action may be executed simultaneously. Since we want the plan-
ning graph to provide heuristics to the regression search module of AltAlt, which generates
sequential solutions, we first make a modification to the algorithm so that it generates a
“serial planning graph.” A serial planning graph is a planning graph in which, in addition
to the normal mutex relations, every pair of non-noop actions at the same level are marked
mutex. These additional action mutexes propagate to give additional propositional mu-
texes. Finally, a planning graph is said to level off when there is no change in the action,
proposition and mutex lists between two consecutive levels.

We will assume for now that given a problem, the Graphplan module of AltAlt is used
to generate and expand a serial planning graph until it levels off. As discussed by Sanchez
et al. (2000), we can relax the requirement of growing the planning graph to level-off, if we
can tolerate a graded loss of informedness of heuristics derived from the planning graph.
We will start with the notion of level of a set of propositions:

Definition 1 (Level) Given a set S of propositions, lev(S) is the index of the first level
in the leveled serial planning graph in which all propositions in S appear and are non-mutex
with one another. If S is a singleton, then lev(S) is just the index of the first level where
the singleton element occurs. If no such level exists, then lev(S) =∞ if the planning graph
has been grown to level-off.

The intuition behind this definition is that the level of a literal p in the serial planning
graph provides a lower bound on the length of the plan (which, for a serial planning graph,
is equal to the number of actions in the plan) to achieve p from the initial state. Using this
insight, a simple way of estimating the cost of a set of subgoals will be to sum their levels.

Heuristic 1 (Sum heuristic) hsum(S) :=
∑

p∈S lev({p})

The sum heuristic is very similar to the greedy regression heuristic used in UNPOP (Mc-
Dermott, 1999) and the heuristic used in the HSP planner (Bonet et al., 1997). Its main
limitation is that the heuristic makes the implicit assumption that all the subgoals (elements
of S) are independent. The hsum heuristic is neither admissible nor particularly informed
as it ignores the interactions between the subgoals. To develop more effective heuristics,
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we need to consider both positive and negative interactions among subgoals in a limited
fashion.

In (Nguyen et al., 2002), we discuss a variety of ways of using the planning graph to
incorporate negative and positive interactions into the heuristic estimate, and discuss their
relative tradeoffs. One of the best heuristics according to that analysis was a heuristic called
hAdjSum2M . We adopted this heuristic as the default heuristic in AltAlt. The basic idea
of hAdjSum2M is to adjust the sum heuristic to take positive and negative interactions into
account. This heuristic approximates the cost of achieving the subgoals in some set S as the
sum of the cost of achieving S, while considering positive interactions and ignoring negative
interactions, plus a penalty for ignoring the negative interactions. The first component
RP (S) can be computed as the length of a “relaxed plan” for supporting S, which is
extracted by ignoring all the mutex relations. To approximate the penalty induced by the
negative interactions alone, we proceed with the following argument. Consider any pair of
subgoals p, q ∈ S. If there are no negative interactions between p and q, then lev({p, q}),
the level at which p and q are present together, is exactly the maximum of lev(p) and lev(q).
The degree of negative interaction between p and q can thus be quantified by:

δ(p, q) = lev({p, q})−max (lev(p), lev(q))

We now want to use the δ - values to characterize the amount of negative interactions
present among the subgoals of a given set S. If all subgoals in S are pair-wise independent,
clearly, all δ values will be zero, otherwise each pair of subgoals in S will have a different
value. The largest such δ value among any pair of subgoals in S is used as a measure of the
negative interactions present in S in the heuristic hAdjSum2M . In summary, we have

Heuristic 2 (Adjusted 2M) hAdjSum2M (S) := length(RP (S)) + maxp,q∈Sδ(p, q)

The analysis by Nguyen et al. (2002) shows that this is one of the more robust heuristics
in terms of both solution time and quality. This is thus the default heuristic used in AltAlt

(as well as AltAltp; see below).

3. Generation of Parallel Plans Using AltAlt
p

The obvious way to make AltAlt produce parallel plans would involve regressing over subsets
of (non interfering) actions. Unfortunately, this increases the branching factor exponentially
and is infeasible in practice. Instead, AltAltp uses a greedy depth-first approach that makes
use of its heuristics to regress single actions, and incrementally parallelizes the partial plan
at each step, rearranging the partial plan later if necessary.

The high level architecture of AltAltp is shown in Figure 2. Notice that the heuristic
extraction phase of AltAltp is very similar to that of AltAlt, but with one important mod-
ification. In contrast to AltAlt which uses a “serial” planning graph as the basis for its
heuristic (see Section 2), AltAltp uses the standard “parallel” planning graph. This makes
sense given that AltAltp is interested in parallel plans while AltAlt was aimed at generating
sequential plans. The regression state-search engine for AltAltp is also different from the
search module in AltAlt. AltAltp augments the search engine of AltAlt with 1) a fattening
step and 2) a plan compression procedure (Pushup). The details of these procedures are
discussed below.
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parexpand(S)
A ← get set of applicable actions for current state S
forall ai ∈ A

Si ← Regress(S,ai)
CHILDREN(S) ← CHILDREN(S) + Si

Sp ← The state among Children(S) with minimum
hadjsum2M value
ap ← the action that regresses to Sp from S

/**Fattening process
O ← { ap }
forall g ∈ S ranked in the decreasing order of level(g)

Find an action ag ∈ A supporting g such that ag 6∈ O and
ai is pairwise independent with each action in O.
If there are multiple such actions, pick the one which has
minimum hadjsum(Regress(S, O + ag)) among all ag ∈ A

If hadjsum2M (S, O + ai) < hadjsum2M (S, O)
O ← O + ag

Spar ← Regress(S, O)
CHILDREN(S) ← CHILDREN(S) + Spar

return CHILDREN
END;

Figure 4: Node Expansion Procedure

The general idea in AltAltp is to select a fringe action ap from among those actions A

used to regress a particular state S during any stage of the search (see Figure 3). Then,
the pivot branch given by the action ap is “fattened” by adding more actions from A,
generating a new state that is a consequence of regression over multiple parallel actions.
The candidate actions used for fattening the pivot branch must (a) come from the sibling
branches of the pivot branch and (b) be pairwise independent with all the other actions
currently in the pivot branch. We use the standard definition of action independence: two
actions a1 and a2 are considered independent if the state S′ resulting after regressing both
actions simultaneously is the same as that obtained by applying a1 and a2 sequentially with
any of their possible linearizations. A sufficient condition for this is that the preconditions
and effects of the actions do not interfere:

((|prec(a1)| ∪ |eff(a1)|) ∩ (|prec(a2)| ∪ |eff(a2)|)) = ∅

where |L| refers to the non-negated versions of the literals in the set L. We now discuss
the details of how the pivot branch is selected in the first place, and how the branch is
incrementally fattened.

Selecting the Pivot Branch: Figure 4 shows the procedure used to select and parallelize
the pivot branch. The procedure first identifies the set of regressable actions A for the
current node S, and regresses each of them, computing the new children states. Next, the
action leading to the child state with the lowest heuristic cost among the new children is
selected as the pivot action ap, and the corresponding branch becomes the pivot branch.
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Figure 5: After the regression of a state, we can identify the Pivot and the related set of
pairwise independent actions.

The heuristic cost of the states is computed with the hadjsum2M heuristic from AltAlt,
based on a “parallel” planning graph. Specifically, in the context of the discussion of the
hadjsum2M heuristic at the end of Section 2, we compute the δ(p, q) values, which in turn
depend on the level(p), level(q) and level(p, q) in terms of the levels in the parallel planning
graph rather than the serial planning graph. It is easy to show that the level of a set of
conditions on the parallel planning graph will be less than or equal to the level on the serial
planning graph. The length of the relaxed plan is still computed in terms of number of
actions. We show later (see Figure 19(a)) that this change does improve the quality of the
parallel plans produced by AltAltp.

The search algorithm used in AltAltp is similar to that used in HSPr (Bonet & Geffner,
1999) - it is a hybrid between greedy depth first and a weighted A* search. It goes depth-
first as long as the heuristic cost of any of the children states is lower than that of the
current state. Otherwise, the algorithm resorts to a weighted A* search to select the next
node to expand. In this latter case, the evaluation function used to rank the nodes is
f(S) = g(S) + w ∗ h(S) where g(S) is the length of the current partial plan in terms of
number of steps, h(S) is our estimated cost given by the heuristic function (e.g. hAdjSum2M ),
and w is the weight given to the heuristic function. w is set to 5 based on our empirical
experience.2

Breaking Ties: In case of a tie in selecting the pivot branch, i.e., more than one branch
leads to a state with the lowest heuristic cost, we break the tie by choosing the action that

2. For the role of w in Best-First search see (Korf, 1993).
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supports subgoals that are harder to achieve. Here, the hardness of a literal l is measured
in terms of the level in the planning graph at which l first appears. The standard rationale
for this decision (c.f. Kambhampati & Sanchez, 2000) is that we want to fail faster by
considering the most difficult subgoals first. We have an additional justification in our case,
we also know that a subgoal with a higher level value requires more steps and actions for
its achievement because it appeared later into the planning graph. So, by supporting it
first, we may be able to achieve other easier subgoals along the way and thereby reduce the
number of parallel steps in our partial plan.

Fattening the Pivot Branch: Next the procedure needs to decide which subset O ⊆ A

of the sibling actions of the pivot action ap will be used to fatten the pivot branch. The
obvious first idea would be to fatten the pivot branch maximally by adding all pairwise
independent actions found during that search stage. The problem with this idea is that
it may add redundant and heuristically inferior actions to the branch, and satisfying their
preconditions may lead to an increase of the number of parallel steps.

So, in order to avoid fattening the pivot branch with such irrelevant actions, before
adding any action a to O, we require that the heuristic cost of the state S′ that results
from regressing S over O + a be strictly lower than that of S. This is in addition to the
requirement that a be pairwise independent with the current set of actions in O. This
simple check also ensures that we do not add more than one action for supporting the same
set of subgoals in S.

The overall procedure for fattening the pivot branch thus involves picking the next
hardest subgoal g in S (with hardness measured in terms of the level of the subgoal in the
planning graph), and finding the action ag ∈ A achieving g, which is pair-wise independent
of all actions in O and which, when added to O and used to regress S, leads to a state S′

with the lowest heuristic cost, which in consequence should be lower than the cost of S.
Once found, ag is then added to O, and the procedure is repeated. If there is more than one
action that can be ag, then we break ties by considering the degree of overlap between the
preconditions of action ag and the set of actions currently in O. The degree of precondition
overlap between a and O is defined as |prec(a)∩ {∪o∈Oprec(o)}|. The action a with higher
degree of overlap is preferred as this will reduce the amount of additional work we will need
to do to establish its preconditions. Notice that because of the fattening process, a search
node may have multiple actions leading to it from its parent, and multiple actions leading
from it to each of its children.

Example: Figure 5 illustrates the use of this node expansion procedure for a problem
from the logistics domain (Bacchus, 2001). In this example we have four packages pack1,

pack2, pack3 and pack4. Our goal is to place the first three of them at ASU and the
remaining one at home. There are two planes airp1 and airp2 to carry out the plans. The
figure shows the first level of the search after S has been regressed. It also shows the pivot
action ap given by unload(pack1,airp1,ASU), and a candidate set of pairwise independent
actions with respect to ap. Finally, we can see in Figure 6 the generation of the parallel
branch. Notice that each node can be seen as a partial regressed plan. As described in the
paragraphs above, only actions regressing to lower heuristic estimates are considered in apar

to fatten the pivot branch. Notice that the action unload(pack4,airp2,Home) has been
discarded because it leads to a state with higher cost, even though it is not inconsistent
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Figure 6: Spar is the result of incrementally fattening the Pivot branch with the pairwise
independent actions in O

with the rest of the actions chosen to fatten the pivot branch. Furthermore, we can also
see that we have preferred actions using the plane airp1, since they overlap more with the
pivot action ap.

Offsetting the Greediness of Fattening: The fattening procedure is greedy, since it
insists that the state resulting after fattening have a strictly better heuristic value. While
useful in avoiding the addition of irrelevant actions to the plan, this procedure can also
sometimes preclude actions that are ultimately relevant but were discarded because the
heuristic is not perfect. These actions may then become part of the plan at later stages
during search (i.e., earlier parts of the execution of the eventual solution plan; since we are
searching in the space of plan suffixes). When this happens, the length of the parallel plan
is likely to be greater, since more steps that may be needed to support the preconditions
of such actions would be forced to come at even later stages of search (earlier parts of the
plan). Had the action been allowed into the partial plan earlier in the search (i.e., closer to
the end of the eventual solution plan), its preconditions could probably have been achieved
in parallel to the other subgoals in the plan, thus improving the number of steps.

In order to offset this negative effect of greediness, AltAltp re-arranges the partial plan
to promote such actions higher up the search branch (i.e., later parts of the execution of
the eventual solution plan). Specifically, before expanding a given node S, AltAltp checks
to see if any of the actions in As leading to S from its parent node (i.e., Figure 6 shows
that Apar leads to Spar) can be pushed up to higher levels in the search branch. This online
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pushUP(S)
As ← get actions leading to S
forall a ∈ As

x ← 0
Sx ← get parent node of S

/** Getting highest ancestor for each action
Loop

Ax ← get actions leading to Sx

If (parallel(a,Ax))
x ← x + 1
Sx ← get parent node of Sx−1

Else
aj ← get action conflicting with a from Ax

If (Secondary Optimizations)
Remove a and aj from branch
Include anew if necessary

Else
Ax−1 ← Ax−1 + a

As ← As − a

break
End Loop

/**Adjusting the partial plan
Sx ← get highest ancestor x in history
createNewBranchFrom(Sx)
while x > 0

Snew ← regress Sx with Ax−1

Sx ← Snew

x ← x− 1
END;

Figure 7: Pushup Procedure

re-arrangement of the plan is done by the Pushup procedure, which is shown in Figure 7.
The Pushup procedure is called each time before a node gets expanded, and it will try to
compress the partial plan. For each of the actions a ∈ As we find the highest ancestor node
Sx of S in the search branch to which the action can be applied (i.e., it gives some literal in
Sx without deleting any other literals in Sx, and it is pairwise independent of all the actions
Ax currently leading out of Sx, in other words the condition parallel(a, Ax) is satisfied).
Once Sx is found, a is then removed from the set of actions As leading to S and introduced
into the set of actions leading out of Sx (to its child in the current search branch). Next, the
states in the search branch below Sx are adjusted to reflect this change. The adjustment
involves recomputing the regressions of all the search nodes below Sx. At first glance, this
might seem like a transformation of questionable utility since the preconditions of a (and
their regressions) just become part of the descendants of Sx, and this does not necessarily
reduce the length of the plan. We however expect a length reduction because actions
supporting the preconditions of a will get “pushed up” eventually during later expansions.
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(b) The Pushup procedure generates a new search branch.

Figure 8: Rearranging of the Partial Plan
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Rather than doctor the existing branch, in the current implementation, we just add a
new branch below Sx that reflects the changes made by the Pushup procedure.3 The new
branch then becomes the active search branch, and its leaf node is expanded next.

Aggressive Variation of Pushup: The Pushup procedure, as described above, is not
expensive as it only affects the current search branch, and the only operations involved are
recomputing the regressions in the branch. Of course, it is possible to be more aggressive
in manipulating the search branch. For example, after applying an action a to its ancestor
Sx the set of literals in the child state, say Snew changes, and thus additional actions may
become relevant for expanding Snew. In principle, we could re-expand Snew in light of the
new information. We decided not to go with the re-expansion option, as it typically does
not seem to be worth the cost. In Section 4.3, we do compare our default version of Pushup

procedure with a variant that re-expands all nodes in the search branch, and the results of
those studies support our decision to avoid re-expansion. Finally, although we introduced
the Pushup procedure as an add-on to the fattening step, it can also be used independent of
the latter, in which case the net effect would be an incremental parallelization of a sequential
plan.

Example: In Figure 8(a), we have two actions leading to the node Spar (at depth two),
these two actions are Unload(pack4,airp2,Home) and fly(airp1,LocX,ASU). So, before
expanding Spar we check if any of the two actions leading to it can be pushed up. While the
second action is not pushable since it interacts with the actions in its ancestor node, the first
one is. We find the highest ancestor in the partial plan that interacts with our pushable
action. In our example the root node is such an ancestor. So, we insert our pushable
action Unload(pack4,airp2,Home) directly below the root node. We then re-adjust the
state Spar to Snew at depth 1, as shown in Figure 8(b), adding a new branch, and reflecting
the changes in the states below. Notice that the action Unload(pack4,airp2,Home) was
initially discarded by the greediness of the fattening procedure (see Figure 6), but we have
offset this negative effect with our plan compression algorithm. We can see also that we
have not re-expanded the state Snew at depth 1, we have only made the adjustments to the
partial plan using the actions already presented in the search trace.4

4. Evaluating the Performance of AltAlt
p

We implemented AltAltp on top of AltAlt. We have tested our implementation on a suite
of problems that were used in the 2000 and 2002 AIPS competition (Bacchus, 2001; Long
& Fox, 2002), as well as other benchmark problems (McDermott, 2000). Our experiments
are broadly divided into three sets, each aimed at comparing the performance of AltAltp

under different scenarios:

1. Comparing the performance of AltAltp to other planning systems capable of producing
parallel plans.

3. Because of the way our data structures are set up, adding the new branch turns out to be a more robust
option than manipulating the existing search branch.

4. Instead, the aggressive Pushup modification would expand Snew at depth 1, generating similar states to
those generated by the expansion of Spar at the same depth.
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Figure 9: Performance on the Gripper (AIPS-98) and the Elevator (AIPS-00) Domains.
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(b)

Figure 10: Performance on the Schedule domain (AIPS-00)

2. Comparing our incremental parallelization technique to AltAlt + Post-Processing.

3. Ablation studies to analyze the effect of the different parts of the AltAltp approach
on its overall performance.

Our experiments were all done on a Sun Blade-100 workstation, running SunOS 5.8
with 1GB RAM. Unless noted otherwise, AltAltp was run with the hadjsum2M heuristic
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(b)

Figure 11: Performance on the Logistics domain(AIPS-00)

0


5


10


15


20


25


30


35


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15


Problems


S
te

p
s




AltAlt-p


STAN


TP4


Blackbox


LPG 2nd


Sapa


(a)

0


100


200


300


400


500


600


700


800


1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15


Problems


T
im

e



(b)

Figure 12: Performance on the DriverLog domain(AIPS-02)

described in section 2 of this paper, and with a parallel planning graph grown until the first
level where the top-level goals are present without being mutex. All times are in seconds.

4.1 Comparing AltAltp with Competing Approaches

In the first set of experiments we have compared the performance of our planner with
the results obtained by running STAN (Long & Fox, 1999), Blackbox (Kautz & Selman,
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1999), TP4 (Haslum & Geffner, 2001), LPG (Gerevini & Serina, 2002) and SAPA (Do &
Kambhampati, 2001). Unless noted otherwise, every planner has been run with its default
settings. Some of the planners could not be run in some domains due to parsing problems
or memory allocation errors. In such cases, we just omit that planner from consideration
for those particular domains.

4.1.1 Planners Used in the Comparison Studies

STAN is a disjunctive planner, which is an optimized version of the Graphplan algorithm
that reasons with invariants and symmetries to reduce the size of the search space. Blackbox
is also based on the Graphplan algorithm but it works by converting planning problems
specified in STRIPS (Fikes & Nilsson, 1971) notation into boolean satisfiability problems
and solving it using a SAT solver (the version we used defaults to SATZ).5 LPG (Gerevini
& Serina, 2002) was judged the best performing planner at the 3rd International Planning
Competition (Long & Fox, 2002), and it is a planner based on planning graphs and local
search inspired by the Walksat approach. LPG was run with its default heuristics and
settings. Since LPG employs an iterative improvement algorithm, the quality of the plans
produced by it can be improved by running it for multiple iterations (thus increasing the
running time). To make the comparisons meaningful, we decided to run LPG for two
iterations (n=2), since beyond that, the running time of LPG was generally worse than
that of AltAltp. Finally, we have also chosen two metric temporal planners, which are able
to represent parallel plans because of their representation of time and durative actions.
TP4 (Haslum & Geffner, 2001) is a temporal planner based on HSP*p (Haslum & Geffner,
2000), which is an optimal parallel state space planner with an IDA* search algorithm.
The last planner in our list is SAPA (Do & Kambhampati, 2001). SAPA is a powerful
domain-independent heuristic forward chaining planner for metric temporal domains that
employs distance-based heuristics (Kambhampati & Sanchez, 2000) to control its search.

4.1.2 Comparison Results in Different Domains

We have run the planners in the Gripper domain from the International Planning and
Scheduling competition from 1998 (McDermott, 2000), as well as three different domains
(Logistics, Scheduling, and Elevator-miconic-strips) from 2000 (Bacchus, 2001), and three
more from the 2002 competition (Long & Fox, 2002) - DriverLog, ZenoTravel, and Satellite.
In cases where there were multiple versions of a domain, we used the “STRIPS Untyped”
versions.6. We discuss the results of each of the domains below.

Gripper: In Figure 9(a), we compare the performance of AltAltp on the Gripper do-
main (McDermott, 2000) to the rest of the planners excluding SAPA. The plot shows the
results in terms of number of (parallel) steps. We can see that for even this simplistic do-
main, AltAltp and LPG are the only planners capable of scaling up and generating parallel

5. We have not chosen IPP (Koehler, 1999), which is also an optimized Graphplan planning system because
results reported by Haslum and Geffner (2001) show that it is already less efficient than STAN.

6. Since SAPA does not read the STRIPS file format, we have run the SAPA planner on equivalent problems
with unit-duration actions from Long and Fox (2002).
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(b)

Figure 13: Performance on the ZenoTravel domain (AIPS-02)

plans. None of the other approaches is able to solve more than four problems.7 AltAltp is
able to scale up without any difficulty to problems involving 30 balls. Furthermore, AltAltp

returns better plans than LPG.

Elevator: In Figure 9(b), we compare AltAltp to STAN, Blackbox and LPG in the Elevator
domain (Miconic Strips) (Bacchus, 2001).8 AltAltp approached the quality of the solutions
produced by the optimal approaches (e.g. Blackbox and STAN). Notice that Blackbox can
only solve around half of the problems solved by AltAltp in this domain.

Scheduling: Results from the Scheduling domain are shown in Figure 10. Only Blackbox
and STAN are considered for comparison.9 AltAltp seems to reasonably approximate the
optimal parallel plans for many problems (around 50 of them), but does produce significantly
suboptimal plans for some. However, it is again able to solve more problems than the other
two approaches and in a fraction of the time.

Logistics: The plots corresponding to the Logistics domain from Bacchus (2001) are shown
in Figure 11.10 For some of the most difficult problems AltAltp outputs lower quality
solutions than the optimal approaches. However, only AltAltp and LPG are able to scale
up to more complex problems, and we can easily see that AltAltp provides better quality
solutions than LPG. AltAltp also seems to be more efficient than any of the other approaches.

7. Although STAN is supposed to be able to generate optimal step-length plans, in a handful of cases it
seems to have produced nonoptimal solutions for the Gripper Domain. We have no explanation for this
behavior, but have informed the authors of the code.

8. we did not include the traces from TP4 because the pre-processor of the planner was not able to read
the domain.

9. The TP4 pre-processor cannot read this domain, LPG runs out of memory, and SAPA has parsing
problems.

10. Only SAPA is excluded due to parsing problems.
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(b)

Figure 14: Performance on the Satellite domain(AIPS-02)

The LPG solutions for problems 49 to 61 are obtained doing only one iteration, since LPG
was not able to complete the second iteration in a reasonable amount of time. This explains
the low time taken for LPG, and the lower quality of its solutions.

DriverLog: We see in Figure 12(a) that AltAltp does reasonably well in terms of quality
with respect to the other approaches in the DriverLog domain. Every planner is considered
this time. AltAltp is one of the two planners able to scale up. Figure 12(b) shows also that
AltAltp is more efficient than any of the other planners.

Zeno-Travel: Only AltAltp, SAPA, and LPG are able to solve most of the problems in this
domain.11 AltAltp solves them very efficiently (Figure 13(b)) providing very good solution
quality (Figure 13(a)) compared to the temporal metric planners.

Satellite: The results from the Satellite domain are shown in Figure 14. Although every
planner is considered, only AltAltp, SAPA, and LPG can solve most of the problems. SAPA
solves all problems but produces lower quality solutions for many of them. AltAltp produces
better solution quality than SAPA, and is also more efficient. However, AltAltp produces
lower quality solutions than LPG in four problems. LPG cannot solve one of the problems
and produces lower quality solutions in 5 of them.

Summary: In summary, we note that AltAltp is significantly superior in the elevator and
gripper domains. It also performs very well in the DriverLog, ZenoTravel, and Satellite
domains from the 2002 competition (Long & Fox, 2002). The performance of all planners
is similar in the Schedule domain. In the Logistics domain, the quality of AltAltp plans
are second only to those of Blackbox for the problems that this optimal planner can solve.
However, it scales up along with LPG to bigger size problems, returning very good step-

11. Blackbox and TP4 are not able to parse this domain.
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(b)

Figure 15: AltAlt and Post-Processing vs. AltAltp (Logistics domain)
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(b)

Figure 16: AltAlt and Post-Processing vs. AltAltp (Zenotravel domain)

length quality plans. TP4, the only other heuristic state search regression planner capable
of producing parallel plans is not able to scale up in most of the domains. SAPA, a heuristic
search progression planner, while competitive, is still outperformed by AltAltp in planning
time and solution quality.
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SOLUTION: solution found (length = 9)


  Time 1: load-truck(obj13,tru1,pos1) Level: 1


  Time 1: load-truck(obj12,tru1,pos1) Level: 1


  Time 1: load-truck(obj11,tru1,pos1) Level: 1


  Time 2: drive-truck(tru1,pos1,apt1,cit1) Level: 1


  Time 3: unload-truck(obj12,tru1,apt1) Level: 3


  Time 3: fly-airplane(apn1,apt2,apt1) Level: 1


  Time 3: unload-truck(obj11,tru1,apt1) Level: 3


  Time 4: load-airplane(obj12,apn1,apt1) Level: 4


  Time 4: load-airplane(obj11,apn1,apt1) Level: 4


  Time 5: load-truck(obj21,tru2,pos2) Level: 1


  Time 5: fly-airplane(apn1,apt1,apt2) Level: 2


  Time 6: drive-truck(tru2,pos2,apt2,cit2) Level: 1


  Time 6: unload-airplane(obj11,apn1,apt2) Level: 6


  Time 7: load-truck(obj11,tru2,apt2) Level: 7


  Time 7: unload-truck(obj21,tru2,apt2) Level: 3


  Time 8: drive-truck(tru2,apt2,pos2,cit2) Level: 2


  Time 9: unload-airplane(obj12,apn1,apt2) Level: 6


  Time 9: unload-truck(obj13,tru1,apt1) Level: 3


  Time 9: unload-truck(obj11,tru2,pos2) Level: 9


Total Number of actions in Plan: 19


(a) AltAltp Solution

POST PROCESSED PLAN ...


Time: 1 :  load-truck(obj13,tru1,pos1)


Time: 1 :  load-truck(obj12,tru1,pos1)


Time: 1 :  load-truck(obj11,tru1,pos1)


Time: 1 :  fly-airplane(apn1,apt2,apt1)


Time: 1 :  load-truck(obj21,tru2,pos2)


Time: 2 :  drive-truck(tru1,pos1,apt1,cit1)


Time: 2 :  drive-truck(tru2,pos2,apt2,cit2)


Time: 3 :  unload-truck(obj12,tru1,apt1)


Time: 3 :  unload-truck(obj11,tru1,apt1)


Time: 3 :  unload-truck(obj21,tru2,apt2)


Time: 3 :  unload-truck(obj13,tru1,apt1)


Time: 4 :  load-airplane(obj12,apn1,apt1)


Time: 4 :  load-airplane(obj11,apn1,apt1)


Time: 5 :  fly-airplane(apn1,apt1,apt2)


Time: 6 :  unload-airplane(obj11,apn1,apt2)


Time: 6 :  unload-airplane(obj12,apn1,apt2)


Time: 7 :  load-truck(obj11,tru2,apt2)


Time: 8 :  drive-truck(tru2,apt2,pos2,cit2)


Time: 9 :  unload-truck(obj11,tru2,pos2)


END OF POST PROCESSING: Actions= 19 Length: 9


(b) AltAltp plus Post-processing

Figure 17: Plots showing that AltAltp solutions cannot be improved anymore by Post-
processing.

4.2 Comparison to Post-Processing Approaches

As we mentioned earlier (see Section 1), one way of producing parallel plans that has been
studied previously in the literature is to post-process sequential plans (Backstrom, 1998). To
compare online parallelization to post-processing, we have implemented Backstrom (1998)’s
“Minimal De-ordering Algorithm”, and used it to post-process the sequential plans produced
by AltAlt (running with its default heuristic hAdjSum2M using a serial planning graph). In
this section we will compare our online parallelization procedure to this offline method.

The first set of experiments is on the Logistics domain (Bacchus, 2001). The results are
shown in Figure 15. As expected, the original AltAlt has the longest plans since it allows
only one action per time step. The plot shows that post-processing techniques do help in
reducing the makespan of the plans generated by AltAlt. However, we also notice that
AltAltp outputs plans with better makespan than either AltAlt or AltAlt followed by post-
processing. This shows that online parallelization is a better approach than post-processing
sequential plans. Moreover, the plot in Figure 15(b) shows that the time taken by AltAltp

is largely comparable to that taken by the other two approaches. In fact, there is not much
additional cost overhead in our procedure.

Figure 16 repeats these experiments in the ZenoTravel domain (Long & Fox, 2002). Once
again, we see that AltAltp produces better makespan than post-processing the sequential
plans of AltAlt. Notice that this time, AltAlt plus post-processing is clearly less efficient
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(d)

Figure 18: Analyzing the effect of the Pushup procedure

than either of the other two approaches. In summary, the results of this section demonstrate
that AltAltp is superior to AltAlt plus post-processing.

One might wonder if the plans generated by AltAltp can also benefit from the post-
processing phase. We have investigated this issue and found that the specific post-processing
routines that we used do not produce any further improvements. The main reason for
this behavior is that the Pushup procedure already tries to exploit any opportunity for
shortening the plan length by promoting actions up in the partial plan. As an illustrative
example, we show, in Figure 17, the parallel plan output by AltAltp for a problem from the
logistics domain (logistics-4-1 from Bacchus, 2001), and the result of post-processing
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(b) Solving a Serial domain

Figure 19: Plots showing the utility of using parallel planning graphs in computing the
heuristics, and characterizing the overhead incurred by AltAltp in serial domains.

this solution. Although the two solutions differ in terms of step contents, we notice that
they have the same step length. The difference in step contents can be explained by the fact
that the de-ordering algorithm relaxes the ordering relations in the plan, allowing for some
actions to come earlier, while Pushup always moves actions towards the end of the plan.
We have run more comprehensive studies in three different domains (Logistics, Satellite and
Zenotravel), and found that in no case is the step length of a plan produced by AltAltp

improved by the post-processing routine (we omit the comparison plots since they essentially
show the curves corresponding to AltAltp and AltAltp with post-processing coincident).12

4.3 Ablation Studies

This section attempts to analyze the impact of the different parts of AltAltp on its perfor-
mance.

Utility of the Pushup Procedure: Figure 18 shows the effects of running AltAltp with
and without the Pushup procedure (but with the fattening procedure), as well as running
it with a more aggressive version of Pushup, which as described in Section 3, re-expands all
the nodes in the search branch, after an action has been pushed up. We can see that running
AltAltp with the Pushup and fattening procedures is better than just the latter. Comparison
of results in Figure 15(a) and Figure 18(a) shows that even just the fattening procedure
performs better than the original AltAlt. In Figure 18(b) we can see that although the
Pushup procedure does not add much overhead, the aggressive version of Pushup does get
quite expensive. We also notice that only around 20 problems are solved within time limits

12. We also verified this with at least one problem in all the other domains.
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with aggressive Pushup. The plots in Figure 18(c) and Figure 18(d) show the results of the
same experiments in the Satellite domain. We see that the situation is quite similar in this
domain. We can conclude then that the Pushup procedure, used to offset the greediness of
the algorithm, achieves its purpose.

Utility of basing heuristics on Parallel Planning Graphs: We can see in Fig-
ure 19(a) that using parallel planning graph as the basis for deriving heuristic estimates
in AltAltp is a winning idea. The serial planning graph overestimates the heuristic values
in terms of steps, producing somewhat longer parallel solutions. The fact that the version
using serial planning graph runs out of time in many problems also demonstrates that the
running times are also improved by the use of parallel planning graphs.

Comparison to AltAlt: One final concern would be how much of an extra computational
hit is taken by the AltAltp algorithm in serial domains (e.g. Blocks-World from Bacchus,
2001). We expect it to be negligible and to confirm our intuitions, we ran AltAltp on a set
of problems from the sequential Blocks-World domain. We see from the plot 19(b) that the
time performance between AltAlt and AltAltp are equivalent for almost all of the problems.

5. Related work

The idea of partial exploration of parallelizable sets of actions is not new (Kabanza, 1997;
Godefroid & Kabanza, 1991; Do & Kambhampati, 2001). It has been studied in the area
of concurrent and reactive planning, where one of the main goals is to approximate optimal
parallelism. However, most of the research there has been focused on forward chaining
planners (Kabanza, 1997), where the state of the world is completely known. It has been
implied that backward-search methods are not suitable for this kind of analysis (Godefroid
& Kabanza, 1991) because the search nodes correspond to partial states. We have shown
that backward-search methods can also be used to approximate parallel plans in the context
of classical planning.

Optimization of plans according to different criteria (e.g. execution time, quality, etc)
has also been done as a post-processing step. The post-processing computation of a given
plan to maximize its parallelism has been discussed by Backstrom (1998). Reordering and
de-ordering techniques are used to maximize the parallelism of the plan. In de-ordering
techniques ordering relations can only be removed, not added. In reordering, arbitrary
modifications to the plan are allowed. In the general case this problem is NP-Hard and
it is difficult to approximate (Backstrom, 1998). Furthermore, as discussed in Section 1
and 4, post-processing techniques are just concerned with modifying the order between the
existing actions of a given plan. Our approach not only considers modifying such orderings
but also inserting new actions online which can minimize the possible number of parallel
steps of the overall problem.

We have already discussed Graphplan based planners (Long & Fox, 1999; Kautz &
Selman, 1999), which return optimal plans based on the number of time steps. Graphplan
uses IDA* to include the greatest number of parallel actions at each time step of the
search. However, this iterative procedure is very time consuming and it does not provide
any guarantee on the number of actions in its final plans. There have been a few attempts
to minimize the number of actions in these planners (Huang, Selman, & Kautz, 1999) by
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using some domain control knowledge based on the generation of rules for each specific
planning domain. The Graphplan algorithm tries to maximize its parallelism by satisfying
most of the subgoals at each time step, if the search fails then it backtracks and reduces
the set of parallel actions being considered one level before. AltAltp does the opposite, it
tries to guess initial parallel nodes given the heuristics, and iteratively adds more actions
to these nodes as possible with the Pushup procedure later during search.

More recently, there has been some work on generalizing forward state search to han-
dle action concurrency in metric temporal domains. Of particular relevance to this work
are the Temporal TLPlan (Bacchus & Ady, 2001) and SAPA (Do & Kambhampati, 2001).
Both these planners are designed specifically for handling metric temporal domains, and use
similar search strategies. The main difference between them being that Temporal TLPlan
depends on hand-coded search control knowledge to guide its search, while SAPA (like
AltAltp) uses heuristics derived from (temporal) planning graphs. As such, both these
planners can be co-opted to produce parallel plans in classical domains. Both these plan-
ners do a forward chaining search, and like AltAltp, both of them achieve concurrency
incrementally, without projecting sets of actions, in the following way. Normal forward
search planners start with the initial state S0, corresponding to time t0, consider all actions
that apply to S0, and choose one, say a1 apply it to S0, getting S1. They simultaneously
progress the “system clock” from t0 to t1. In order to allow for concurrency, the planners
by Bacchus and Ady (2001), and Do and Kambhampati (2001) essentially decouple the
“action application” and “clock progression.” At every point in the search, there is a non-
deterministic choice - between progressing the clock, or applying (additional) actions at the
current time point. From the point of view of these planners, AltAltp can be seen as provid-
ing heuristic guidance for this non-deterministic choice (modulo the difference that AltAltp

does regression search). The results of empirical comparisons between AltAltp and SAPA,
which show that AltAltp outperforms SAPA, suggest that the heuristic strategies employed
in AltAltp including the incremental fattening, and the pushup procedure, can be gainfully
adapted to these planners to increase the concurrency in the solution plans. Finally, HSP*,
and TP4, its extension to temporal domains, are both heuristic state search planners using
regression that are capable of producing parallel plans (Haslum & Geffner, 2000). TP4 can
be seen as the regression version of the approach used in SAPA and temporal TLPlan. Our
experiments however demonstrate that neither of these planners scales well in comparison
to AltAltp.

The Pushup procedure can be seen as a plan compression procedure. As such, it is similar
to other plan compression procedures such as “double-back optimization” (Crawford, 1996).
One difference is that double-back is used in the context of a local search, while Pushup

is used in the context of a systematic search. Double-back could be also applied to any
finished plan or schedule, but as any other post-processing approach its outcome would
depend highly on the plan given as input.

6. Concluding Remarks

Motivated by the acknowledged inability of heuristic search planners to generate parallel
plans, we have developed and presented an approach to generate parallel plans in the
context of AltAlt, a heuristic state space planner. This is a challenging problem because of
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the exponential branching factor incurred by naive methods. Our approach tries to avoid
the branching factor blow up by greedy and online parallelization of the evolving partial
plans. A plan compression procedure called Pushup is used to offset the ill effects of the
greedy search. Our empirical results show that in comparison to other planners capable of
producing parallel plans, AltAltp is able to provide reasonable quality parallel plans in a
fraction of the time of competing approaches. Our approach also seems to provide better
quality plans than can be achieved by post-processing sequential plans. Our results show
that AltAltp provides an attractive tradeoff between quality and efficiency in the generation
of parallel plans. In the future, we plan to adapt the AltAltp approach to metric temporal
domains, where the need for concurrency is more pressing. One idea is to adapt some of
the sources of strength in AltAltp to SAPA, a metric temporal planner being developed in
our group (Do & Kambhampati, 2001).
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